TWI247413B - Electrostatic discharge protection circuit and semiconductor circuit having the same - Google Patents

Electrostatic discharge protection circuit and semiconductor circuit having the same Download PDF

Info

Publication number
TWI247413B
TWI247413B TW94113189A TW94113189A TWI247413B TW I247413 B TWI247413 B TW I247413B TW 94113189 A TW94113189 A TW 94113189A TW 94113189 A TW94113189 A TW 94113189A TW I247413 B TWI247413 B TW I247413B
Authority
TW
Taiwan
Prior art keywords
type
voltage source
circuit
semiconductor
electrostatic discharge
Prior art date
Application number
TW94113189A
Other languages
Chinese (zh)
Other versions
TW200638530A (en
Inventor
Chun-Hsiang Lai
Yen-Hung Yeh
Chia-Ling Lu
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW94113189A priority Critical patent/TWI247413B/en
Application granted granted Critical
Publication of TWI247413B publication Critical patent/TWI247413B/en
Publication of TW200638530A publication Critical patent/TW200638530A/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

An ESD protection circuit and a semiconductor circuit using the same are provided. The ESD protection circuit is connected between a first and a second power source lines, and comprises a first silicon controlled rectifier (SCR), a second silicon controlled rectifier, and a parasitic diode. The gate of the first silicon controlled rectifier is connected to a first power source line, and the gate of the second silicon controlled rectifier is also connected to the first power source line.

Description

且特別是有關於一種And especially about one kind

1247413 14327twf.doc/006 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種保護電路 靜電放電之保護電路。 【先前技術】 現今的積體電路因為製程跟技術的創新,使得運 所需的電壓越來越低’也因此更加的省電。但由 體電路的電壓並非理想咖定標準值,偶爾會域有= =並且電難過大的靜電電壓雜訊產生,若不防制此現 象,雜訊過大導致運作中的積體電路燒毀的比比皆是。因 此必須要防制突如其來的靜電電壓雜訊使之不對内 積體電路造成傷害,就是保護電路的職責。 圖1緣示為靜電放電之保護電路架構的方塊圖。如圖 所不’此靜電放電之倾€路_具有兩 護箝位電路13〇與135、靜電放電保護電路刚以及=呆 其中,所要保護的電路即為積體電路1GS、積體電路ιι〇、 =位於積體電路105與積體魏110中間作為資料傳遞 /1面電路120。而靜電放電保護電路14〇與靜電放保 護電路145係為相同作用的電路。 ,、 積體電路105連接至第一電壓源vddl以及第地 端GND卜積體電路11〇連接至第二電壓源v贴以及第 二接地端GND2 ’而介面電路12〇與第一電壓源侧卜 =地端G腦、第二電壓源Vdd2、以及第二接 臟 均有電性相連。 5 1247413 14327twf.doc/006 因此,若第一電壓源Vddl發生靜電電壓雜訊時,靜 電放電粉位電路130以及靜電放電連結電路14〇理論上會 立即導通,讓靜電電壓雜訊所產生之雜訊電流經由靜電放 電I甘位電路130與靜電放電連結電路14〇❿流向GNm以 及Vdd2,並不讓雜訊電流流過積體電路1〇5與介面電路 120導致燒毀。相反地,若第二電壓源Vdd2發生靜電電壓 雜吼日才’靜電放電箝位電路135以及靜電放電連結電路14〇 φ 會立即V通,讓靜電電壓雜訊所產生之雜訊電流經由靜電 放電箝位電路130與靜電放電連結電路14〇而流向GND2 以及Vddl’並不讓雜訊電流流過積體電路11〇與介面電路 120導致燒毀。 、 . 於習知技術中,靜電放電連結電路140以及145多以 二極體(dlode)或是半導體矽控整流器(silicon controlled rectifier,簡稱SCR)製成,特點即為二極體或是半導體矽 控整流器的保持電壓低,因此產生的功率也較低,其中, 半導體矽控整流器可分為橫向半導體矽控整流器(lateral > SCR,簡稱LSCR)、低電壓觸發半導體矽控整流器(i〇w voltage trigger SCR,簡稱 LVTSCR)等種類。 請參照圖2。圖2為圖1中習知之靜電放電連結電路 140、145的電路方塊圖與結構圖。此處使用的半導體石夕控 整流為係為檢向半導體石夕控整流器,由於橫向半導體石夕控 整流為内的結構類似一個PM〇S(positive_channel metal oxide semiconductor)電晶體加上一個N+極區,此處將其稱 之為P型半導體石夕控整流器(P-type SCR,簡稱PSCR),或 6 1247413 14327twf.doc/006 是類似一個 NMOS(negative-channel metal oxide semiconductor)電晶體再加上一個p+極區,此處將其稱之為 N型半導體石夕控整流器⑽ype SCR,簡稱psc幻,'因此為 了便於觀看圖2,特於圖2之左圖加上等效1>河〇8之圖示, 於圖2之右圖加上等效NM〇s之圖示,以便於理解其原 A 理。而圖2之左右兩圖的功能係為相同。 圖2之左圖係由兩個pscr I4la與143a所組成,其 Φ 中PSCR 141a中的PMOS之控制閘極與Vddl相接,PSCR M3a中的PMOS之控制閘極與Vdd2相接,其餘連結關係 研參㈣2。此,當Vddl產生較大的正靜電電壓雜訊 時,於此瞬時時間内,PSCR 143a的陽極(即其内pM〇s的 source端)與PMOS之控制閘極之電壓差會大於此pM〇s 之臨界電壓(threshold voltage)而產生電流通路,使得Vddl 與Vdd2經由PSCR 143a而導通,通常此臨界電壓為〇·4〜2 伏特,為了簡化說明,以下之臨界電壓均為丨伏特。 同樣地,當Vdd2產生較大的正靜電電壓雜訊時,於 # 1瞬時時間内,PSCR 14la的陽極(即其内PM0S的瞻ce 端)^與PMOS之控制閘極之電壓差會大於此pM〇s之臨界 電壓(約1伏特)而產生電流通路,使得vddl與Vdd2經由 PSCR 141a而導通,讓靜電電壓雜訊產生之雜訊電流不至 於k害到内部電路。 圖2右圖之靜電放電連結電路14〇係由兩個nscr 141b與143b所組成,其中NSCR 141b中的NMOS之控制 閘極與Vss2相接,NSCR 143b中的NMOS之控制閘極與 1247413 14327twf.doc/0061247413 14327twf.doc/006 IX. Description of the Invention: [Technical Field] The present invention relates to a protection circuit for protecting an electrostatic discharge of a circuit. [Prior Art] Today's integrated circuits are becoming more and more power-saving because of the innovation of the process and technology, and thus more power-saving. However, the voltage of the body circuit is not an ideal standard value. Occasionally, there is an electric voltage noise generated by == and the electric power is too large. If this phenomenon is not prevented, the noise is too large and the integrated circuit in operation is burned. All are. Therefore, it is necessary to prevent sudden voltage noise from causing damage to the internal circuit, which is the responsibility of the protection circuit. Figure 1 is a block diagram showing the protection circuit architecture for electrostatic discharge. As shown in the figure, the circuit of the electrostatic discharge has two clamp circuit 13〇 and 135, and the electrostatic discharge protection circuit just and = stay, the circuit to be protected is the integrated circuit 1GS, integrated circuit ιι〇 = is located between the integrated circuit 105 and the integrated body 110 as the data transfer/1-plane circuit 120. The electrostatic discharge protection circuit 14A and the electrostatic discharge protection circuit 145 serve the same function. The integrated circuit 105 is connected to the first voltage source vddl and the ground terminal GND integrated circuit 11 is connected to the second voltage source v and the second ground GND2' and the interface circuit 12 is connected to the first voltage source side. Bu = ground G brain, second voltage source Vdd2, and the second dirty are electrically connected. 5 1247413 14327twf.doc/006 Therefore, if the electrostatic voltage noise occurs in the first voltage source Vddl, the electrostatic discharge powder level circuit 130 and the electrostatic discharge connection circuit 14 are theoretically turned on immediately, so that the electrostatic voltage noise is generated. The current flows through the electrostatic discharge I-growth circuit 130 and the electrostatic discharge connection circuit 14 to GNm and Vdd2, and does not cause the noise current to flow through the integrated circuit 1〇5 and the interface circuit 120 to cause burnout. Conversely, if the second voltage source Vdd2 generates an electrostatic voltage hysteresis, the 'electrostatic discharge clamp circuit 135 and the electrostatic discharge connection circuit 14〇φ will immediately V-pass, and the noise current generated by the electrostatic voltage noise is discharged through the electrostatic discharge. The clamp circuit 130 and the electrostatic discharge connection circuit 14 are turned to GND2 and Vddl', and the noise current does not flow through the integrated circuit 11 and the interface circuit 120 to cause burnout. In the prior art, the electrostatic discharge connection circuits 140 and 145 are mostly made of a diode or a semiconductor controlled rectifier (SCR), which is characterized by a diode or a semiconductor. The controlled rectifier has a low holding voltage and therefore low power. Among them, the semiconductor controlled rectifier can be divided into a lateral semiconductor controlled rectifier (lateral > SCR, LSCR for short) and a low voltage triggered semiconductor controlled rectifier (i〇w). Voltage trigger SCR, referred to as LVTSCR). Please refer to Figure 2. Figure 2 is a block diagram and block diagram of a conventional electrostatic discharge connection circuit 140, 145 of Figure 1. The semiconductor-controlled rectifier used here is a semiconductor-controlled rectifier, which is similar to a PM〇S (positive_channel metal oxide semiconductor) transistor plus an N+ pole region due to the lateral semiconductor-controlled rectification. Here, it is called a P-type semiconductor-controlled rectifier (P-type SCR, PSCR for short), or 6 1247413 14327twf.doc/006 is similar to an NMOS (negative-channel metal oxide semiconductor) transistor plus A p+ pole region, which is referred to herein as an N-type semiconductor rock-controlled rectifier (10) ype SCR, referred to as psc illusion, 'so for the convenience of viewing Figure 2, the left diagram of Figure 2 plus the equivalent 1> The illustration is shown in the right diagram of Figure 2 with an equivalent NM〇s diagram to facilitate understanding of the original A. The functions of the left and right diagrams of Figure 2 are the same. The left diagram of Figure 2 is composed of two pscr I4la and 143a. The control gate of the PMOS in PSCR 141a is connected to Vddl in Φ, and the control gate of PMOS in PSCR M3a is connected to Vdd2. Research (4) 2. Therefore, when the Vddl generates a large positive electrostatic voltage noise, the voltage difference between the anode of the PSCR 143a (ie, the source end of the pM〇s) and the control gate of the PMOS may be greater than the pM in this instantaneous time. The threshold voltage of s generates a current path, so that Vddl and Vdd2 are turned on via PSCR 143a. Usually, the threshold voltage is 〇·4~2 volts. To simplify the description, the following threshold voltages are 丨VV. Similarly, when Vdd2 generates a large positive electrostatic voltage noise, the voltage difference between the anode of the PSCR 14la (ie, the end of the PM0S) and the control gate of the PMOS is greater than this in the #1 instantaneous time. The threshold voltage of pM〇s (about 1 volt) generates a current path, so that vddl and Vdd2 are turned on via PSCR 141a, so that the noise current generated by the electrostatic voltage noise does not harm the internal circuit. The electrostatic discharge connection circuit 14 of the right diagram of FIG. 2 is composed of two nscr 141b and 143b, wherein the control gate of the NMOS in the NSCR 141b is connected to Vss2, and the control gate of the NMOS in the NSCR 143b is 1247413 14327twf. Doc/006

Vss 1相接’其餘連結關係睛茶照圖2。此處之Vss 1盘Yg§2 係與Vddl及Vdd2相同,由於說明方便而更改其名稱。因 此,當Vssl產生較大的正靜電電壓雜訊時,於此瞬時時間 内,NSCR 143b内的NMOS之控制閘極與NSCR 141b的Vss 1 is connected to the rest of the relationship. Here, the Vss 1 disk Yg § 2 is the same as Vddl and Vdd2, and its name is changed for convenience of explanation. Therefore, when Vssl generates a large positive electrostatic voltage noise, the control gate of the NMOS in the NSCR 143b and the NSCR 141b are in this instantaneous time.

陰極(即NMOS的source端)之電壓差會大於此nm〇s之 臨界電壓(也是大約1伏特)而產生電流通路,使得Vssl與 Vss2經由NSCR 143b而導通,讓靜電電壓雜訊產生之雜 訊電流不至於傷害到内部電路。而NSCR 141b之運作原理 與NSCR 143b相同,在此不再贅述。 、 如上所述 白笔狡電之保護電路架構内的靜 電放電連結電路,由於當第一電壓源Vddl與第二電壓源-令The voltage difference between the cathode (ie, the source end of the NMOS) is greater than the threshold voltage of this nm〇s (also about 1 volt) to generate a current path, so that Vssl and Vss2 are turned on via the NSCR 143b, so that the noise generated by the electrostatic voltage noise is generated. The current does not hurt the internal circuitry. The operation principle of NSCR 141b is the same as that of NSCR 143b, and will not be described here. As described above, the electrostatic discharge connection circuit in the protection circuit structure of the white pen is used as the first voltage source Vddl and the second voltage source -

Vdd2相差大於1伏特時,上述之靜電放電連結電路即會 =’使得積體電路1〇5與110 *能接收從外界輸入的丄確 貝=。因此,第—電壓源Vddl與第二電壓源Vdd2之差运Ί 必定小於1伏特才能使用此電路,或者必須串聯多個靜命含 J電連結電路才能讓第—源Vddl與第二電壓源Vdd】/ 田1伏特的差異’使得此處的限制導致電路設計上的 ㈣連結電路’就必須多 由圖2下方的結構圖可看出,由於PSCR 141a 相i,^^lVddl相接,PSCR 143a的控制閘極與她 必須各自上PSCR 141a與PSCR 143a的N井區 Γ置於同二N井區,職141b與, 也疋相同的情況,導致電路佈線的面積會增 1247413 14327twf.doc/006 大,也會增加成本。 【發明内容】 本發明的目的就是在 路,可於設計電路時不種靜電放電之保護電 差異,即可使用本發明r w弟—電壓源與第二電壓源的 本《明的再-目的是提供一種靜電放恭 路,能夠確實減少電路的佈绩 兒之保護電 太恭M 佈線面積而降低成本。 x 、目的是提供一種靜電放電之伴護兩路 結構,可於設計電路時不需在意第-電壓源與第: 的差異,即可使財翻,並且 的= 面積而降低成本。 1路的佈線 本發明提出-種靜電放電保護電路 第之-積體電路中,包括第石夕 控正—、第—半導_控整流器以及寄生二 — 半導體雜整流ϋ包括第—金屬氧化物半導-中第-半導财控整流器之陰極與第—電壓源相^體第: 半導體雜整流器之陽極與第二電壓源相接。第 石夕控整流$包括第二金屬氧化物半導體電晶體, 二 半導體矽控整流器之陽極與第一電壓源相接,第2 二 石夕控整流态之陰極與第二電壓源相接,其中第一與兮一一 金屬氧化物半導體電晶體的閘極連接到第_電壓源盥 電壓源的其中之-。寄生二極體之陰極與第—電壓源^ 接’寄生二極體之陽極與第二電壓源相接。 、 依據本發明一實施例,若第一與第二電壓源為系統之 9 1247413 14327twf.doc/006 相對高的電壓源(Vdd),且第一與該第二金屬氧化物半導體 電晶體為P型並且閘極連接到第一電壓源。靜電放電保蠖 電路更可包括訊號延遲單S,電性_至第—電壓源與^ 型之第二金屬氧化物半導體電晶體之閘極之間。 〜 依據本發明一實施例,若第一與第二電壓 相對低的電壓源(Vss),且第一與第二金屬氧化物半導體電 晶體為N型並且閘極連接到第二電壓源。此時,可更包括 訊號延遲單元,電性耦接至第二電壓源與N型之第一金 氧化物半導體電晶體之閘極之間。 前述訊號延遲單元係為電阻組成之電路、電阻與電容 組成之電路、或傳輸閘。 ,外’本發明更提出—種靜電放電賴電路,適用於 具有第-電廢源與第二電墨源之積體電路中,包括第一半 導體雜整流||、第二轉财控整流輯寄生二極體。 第半‘體石夕控整流裔包括第一金屬氧化物半導體電晶 體’其中第-半導财控整流器之陰極與第_電壓源相 接,,第-半導體石夕控整流器之陽極與第二電壓源相接。第 -半V體⑪控整流$包括第二金屬氧化物半導體電晶體, 其中第二半導體石夕控整流器之陽極與第一電壓源相接,第 -半導體々控整流ϋ之陰極與第二㈣源相接,其中 與第二金屬氧化物半導體電晶體的閉極,經由訊號延遲單 元連接到第-電壓源與第二電壓源的其中之_。寄生 ^ ’其中陰極與該第一電壓源相接,寄生二極體之 第二電壓源相接。 1247413 14327twf.doc/006 依據本發明一實施例,若第一與第二電壓源為系統之 相對高的電壓源,且第一與第二金屬氧化物半導體電晶體 為P型並且閘極經由訊號延遲單元連接到第一電壓源。若 第一與第二電壓源為系統之相對低的電壓源,且第一與第 二金屬氧化物半導體電晶體型並且閘極經由訊號延遲 單元連接到第二電壓源。When Vdd2 differs by more than 1 volt, the above-mentioned electrostatic discharge connecting circuit will =' such that the integrated circuits 1〇5 and 110* can receive the input from the outside. Therefore, the difference between the first voltage source Vddl and the second voltage source Vdd2 must be less than 1 volt to use the circuit, or a plurality of static J-connected circuits must be connected in series to allow the first source Vddl and the second voltage source Vdd. 】 / Tian 1 volt difference 'so that the limitations here lead to the circuit design (four) link circuit ' must be seen from the structure diagram below Figure 2, because PSCR 141a phase i, ^ ^ lVddl meet, PSCR 143a The control gate and her must be on the PSCR 141a and PSCR 143a N well area Γ placed in the same N N well area, job 141b and, the same situation, resulting in circuit wiring area will increase 1247413 14327twf.doc/006 Large, it will also increase costs. SUMMARY OF THE INVENTION The object of the present invention is to use a circuit in which the circuit can be designed without the electrostatic discharge of the electrostatic discharge, and the present invention can be used with the voltage source and the second voltage source of the present invention. Providing an electrostatic discharge road can reduce the cost of the circuit and protect the electric wiring area and reduce the cost. x, the purpose is to provide a two-way structure for electrostatic discharge, which can be used to design the circuit without paying attention to the difference between the first voltage source and the first: the cost can be reduced and the area can be reduced. 1 way wiring The present invention proposes an electrostatic discharge protection circuit, the first-integrated circuit, including the first-phase control positive-, first-semiconductor-controlled rectifier, and parasitic two-semiconductor rectifying ϋ including the first-metal oxide The cathode of the semi-conductive-medium-semiconducting financial control rectifier and the first voltage source phase: the anode of the semiconductor hybrid rectifier is connected to the second voltage source. The second MOS rectifier transistor includes a second metal oxide semiconductor transistor, the anode of the second semiconductor thyristor is connected to the first voltage source, and the second cathode of the second rectifier is connected to the second voltage source, wherein The gate of the first and the first metal oxide semiconductor transistor is connected to the -voltage source and the voltage source. The cathode of the parasitic diode and the anode of the first voltage source are connected to the second voltage source. According to an embodiment of the invention, the first and second voltage sources are relatively high voltage sources (Vdd) of the system 9 1247413 14327 twf.doc/006, and the first and the second metal oxide semiconductor transistors are P And the gate is connected to the first voltage source. The ESD protection circuit may further include a signal delay single S, between the electrical_to-first voltage source and the gate of the second metal oxide semiconductor transistor. According to an embodiment of the invention, the first and second voltages are relatively low voltage sources (Vss), and the first and second metal oxide semiconductor transistors are N-type and the gates are connected to the second voltage source. In this case, the signal delay unit may be further coupled between the second voltage source and the gate of the N-type first metal oxide semiconductor transistor. The signal delay unit is a circuit composed of a resistor, a circuit composed of a resistor and a capacitor, or a transmission gate. The invention further proposes an electrostatic discharge circuit suitable for use in an integrated circuit having a first electric waste source and a second electric ink source, including a first semiconductor hybrid rectification||, a second conversion financial control rectification series Parasitic diode. The first half of the body-rock control rectifier includes a first metal oxide semiconductor transistor, wherein the cathode of the first-semiconductor financial rectifier is connected to the first voltage source, and the anode and the second of the semiconductor-controlled rectifier The voltage sources are connected. The first-half V body 11-controlled rectification includes a second metal oxide semiconductor transistor, wherein an anode of the second semiconductor-controlled rectifier is connected to the first voltage source, and a cathode of the first-semiconductor controlled rectification crucible and the second (four) The source is connected, wherein the closed end of the second metal oxide semiconductor transistor is connected to the first voltage source and the second voltage source via the signal delay unit. The parasitic ^' where the cathode is connected to the first voltage source and the second voltage source of the parasitic diode is connected. 1247413 14327twf.doc/006 According to an embodiment of the invention, the first and second voltage sources are relatively high voltage sources of the system, and the first and second metal oxide semiconductor transistors are P-type and the gates are signaled The delay unit is connected to the first voltage source. The first and second voltage sources are relatively low voltage sources of the system, and the first and second metal oxide semiconductor transistor types are coupled to the second voltage source via the signal delay unit.

前述之訊號延遲單元係為電阻組成之電路、電阻與電 容組成之電路、或傳輸閘。 . 根據本發明一實施例,又提供一種靜電放電保護半導 體電路’賴於具有第—電壓源與第二電壓源之積體電路 中。靜電放電/呆護半導體電路包括··基底;井區,位於基 底中;第一第一型(例如N型)摻雜區與第二第一型摻雜 區,位於基底中且在井區外,其中第二第一型摻雜區轉接 至第二電壓源;第一與第二第二型(例如p型)摻雜區,分 別鄰近第m型摻雜區,且位在基底與井區中,· 第二與第四第二型摻雜區,分別鄰近第—與第二第二型換 雜區,且位於井區中,其中第三第二割錄區_至第^ 電壓源;第-閘極結構,位於基底上且在第—與第三第二 區之,,其中第—第—型掺雜區與第-閘極結構搞 ,到弟-電壓源;第三第—型摻雜區,位於井區中且位於 ^三與第四第二型摻雜區之間;以及第二閘極結構,位於 基底上且在第二與第四第二型摻雜區之間,其 =雜區、第四第二型摻雜區與第二閘極結_接^第一 電壓源。在上述結構中,第三第二师雜d與第三第一型 11 1247413 14327twf.doc/006 摻雜區構成寄生二極體。該第一第一型摻雜區、該基底、 t»亥井£與該苐二弟一型推雜區構成第一半導體砍控整流 的,另外,邊弟四第二型摻雜區、該井區、該基底與該第 二第一型摻雜區構成第二半導體矽控整流器。 根據本發明一實施例,又提供一種靜電放電保護半導 體電路,適用於具有第-電壓源與第二電壓源之積體電路 中。靜,放電保護半導體電路包括:基底;井區,位於基 底中;第一第一型摻雜區與第二第一型摻雜區,位於基底 中結^區外,其中第一第一型摻雜區減至第一電壓源 且第二第一型摻雜區耦接至第二電壓源;第三與第四第一 型摻雜區,分別鄰近第一與第二第一型摻雜區了且位在基 底,,區中,第一閘極結構,位於該基底上且在該第一鱼 「型摻雜區之間,其中該第-間極結__ 一私堅源,第二閘極結構,位於基底上且在第二與第四 雜區之間’其中第二間極結構_接到第二電壓 ,、弟〃、第一第二型摻雜區,分別與第三盘第四第一 = : 刻錄樹,其中第一第二型摻雜區· 以及篦:二墾源且第二第二型摻雜區耦接至第一電壓源; 弟五弟一型摻雜區,位於井區中且位於第-鱼第-第 ==間,其中第五第一型摻雜區耦接至第= 區構成。’第Γ第,推雜區與第五第一型換雜 區與該第一第二型摻構二型、該基底、該井 外,η楚-構成第一丰導體石夕控整流器;另 χ 一 —31摻雜區、該井區、該基底與該第二第一 12 1247413 14327twf.doc/006 型摻雜區構成第二半導體矽控整流器。 本發日㈣將兩辨導财控整流⑽之金屬氧化物 體電緒的控侧極均連結至同_個電麵上,因此 适兩個半導體石夕控整流器之導通與否均係由上述之電壓源 ::控,’如i匕一來,便不需要將多個半導體矽控整流器串 =卩可讓弟-電壓源與第二電壓源的電壓差距較大。並 袖带因金屬氧化物半導體電晶體的控制_均連結至同-/壓源,所以於電路佈線時可將N井區作在一 電路佈線的面積因而縮小,而降低生產的成本。传 為讓本發明之上述和其他目的、特徵和優 3下了文特舉較佳實施例,並配合所附圖式'作詳細Ϊ 【實施方式】 本發明即是將習知技術之靜電放 個半導體石夕控整流器之控制間極連結於同===的兩 以Γ半導體嫌泉器的導通與否僅與以 大。::關由因此第一電顧與第二電壓源的電屋差; 於同ί:源===流器的控制•别妾 路佈線的面積,以節省成本。 更加減少電 保護依f本判崎示之—較佳實施例之靜電放帝 ± 的靜電放電保護電路的電路方塊圖应姓 电 =時參考圖】朗3,圖3中之靜電放電t、:構圖。 子應圖1之靜電放電保護電路140的。為了便 =路340 j使於蜆看圖 13 1247413 14327twf.doc/006 3,特於圖3之左圖加上等效PM〇s之圖示,於圖3之右 圖加上等效NMOS之圖示,以便於理解其原理。而圖3左 右兩圖的運作原理係為相同,因此於以下之實施例中,僅 =論圖左半部之利用P型半導體矽控整流器(p_typeSCR, 簡稱PSCR)所設計之靜電放電保護電路34〇,圖右半部之 利用N型半導體矽控整流器(N-type SCR,簡稱NSCR)所 设计之靜電放電保護電路34〇則參考psCR之操作原理。 • 圖3之左半部中,電路為架構在基底,例如P型基底。 基底中具有一個井區,例如N型摻雜的井區。如圖所示, 在基底與井區中分別形成數個摻雜區,以形成本發明之靜 電,電保漠電路340。第-第一型(例如N型)摻雜區與第 一第一型摻雜區,位於基底中且在井區外,其中第二第一 型摻雜區耦接至第二電壓源Vdd2。第一與第二第二型(例 如P型)摻雜區,分別鄰近第一與第二第一型摻雜區,且位 在基Ϊ與ί區中。第三與第四第二型摻雜區,分別鄰近第 一與第二第二型摻雜區,且位於井區中,其中第三第二型 換雜區輕接至第二電壓源Vdd2。第-閘極結構G卜位於 基底上且在第一與第三第二型摻雜區之間,其中第一第一 型,雜區與第-閘極結構G1搞接到第一電壓源vddl。第 了第一型摻雜區位於井區中且位於第三與第四第二型摻雜 區之間。以及第二閘極結構G2位於基底上且在第二與第 四第二型摻雜區之間,其中第三第一型摻雜區、第四第二 型摻雜區與第二閘極結構G2麵接到第一電壓源The aforementioned signal delay unit is a circuit composed of a resistor, a circuit composed of a resistor and a capacitor, or a transmission gate. According to an embodiment of the present invention, an electrostatic discharge protection semiconductor circuit is further provided in an integrated circuit having a first voltage source and a second voltage source. The electrostatic discharge/protective semiconductor circuit comprises: a substrate; a well region, located in the substrate; a first first type (eg N-type) doped region and a second first type doped region, located in the substrate and outside the well region The second first type doped region is switched to the second voltage source; the first and second second type (eg, p-type) doped regions are adjacent to the m-type doped region, respectively, and are located at the substrate and the well In the region, the second and fourth second type doping regions are respectively adjacent to the first and second second type impurity regions, and are located in the well region, wherein the third second cutting region _ to the ^ voltage source a first gate structure, located on the substrate and in the first and third regions, wherein the first-type doped region and the first-gate structure are engaged, the younger-voltage source; the third- a doped region located in the well region between the third and fourth second doped regions; and a second gate structure on the substrate and between the second and fourth second doped regions , the = impurity region, the fourth second type doping region and the second gate junction are connected to the first voltage source. In the above structure, the third second division d and the third first type 11 1247413 14327twf.doc/006 doped regions constitute a parasitic diode. The first first type doping region, the substrate, the t»海井£ and the second two-type doping region constitute a first semiconductor cut-controlled rectification, and in addition, the brother-in-four second-type doping region, the The well region, the substrate and the second first type doped region constitute a second semiconductor controlled rectifier. According to an embodiment of the invention, an electrostatic discharge protection semiconductor circuit is further provided for use in an integrated circuit having a first voltage source and a second voltage source. The static and discharge protection semiconductor circuit comprises: a substrate; a well region, located in the substrate; the first first type doping region and the second first type doping region are located outside the junction region of the substrate, wherein the first first type is doped The doped region is reduced to the first voltage source and the second first doped region is coupled to the second voltage source; the third and fourth first doped regions are adjacent to the first and second first doped regions, respectively And in the substrate, in the region, the first gate structure is located on the substrate and between the first fish "type doped regions, wherein the first-interpole junction __ a private source, the second a gate structure, located on the substrate and between the second and fourth inter-cells, wherein the second interpole structure _ is connected to the second voltage, the dice, the first second type doped region, and the third disc respectively a fourth first = : a burn tree, wherein the first second type doped region · and the second: the second source and the second second type doped region are coupled to the first voltage source; , located in the well zone and located between the first and the first -the ===, wherein the fifth first type doped region is coupled to the third region. 'The third, the doping region and the fifth first type are mixed. Area And the first second type doped type II, the substrate, the well, η Chu-constituting the first abundance conductor stone-controlled rectifier; another χ-31 doped region, the well region, the substrate and the first The first 12 1247413 14327twf.doc/006 type doped region constitutes the second semiconductor controlled rectifier. The present invention (4) connects the control side poles of the metal oxide body of the two financial control rectifiers (10) to the same On the electrical surface, therefore, the conduction of the two semiconductor-controlled rectifiers is based on the above-mentioned voltage source:: control, 'if one is, it is not necessary to connect multiple semiconductors to control the rectifier string=卩The voltage difference between the voltage source and the second voltage source is large. And the cuff is connected to the same-/voltage source due to the control of the metal oxide semiconductor transistor, so the N well region can be used in the circuit wiring. The area of the circuit wiring is thus reduced, and the cost of the production is reduced. The above-mentioned and other objects, features and advantages of the present invention are described in detail with reference to the accompanying drawings. The invention is to put a static electricity of a conventional technology into a semiconductor The control pole of the device is connected to the same two ========================================================================================== : Source === Control of the flow device • Do not cover the area of the wiring to save the cost. Reduce the electrical protection according to the frustration - the circuit block of the electrostatic discharge protection circuit of the electrostatic discharge ± of the preferred embodiment Figure should be surnamed = time reference picture] Lang 3, electrostatic discharge t in Figure 3,: composition. The sub-electrode protection circuit 140 of Figure 1. For the sake of = road 340 j to see Figure 13 1247413 14327twf. Doc/006 3, especially on the left diagram of Figure 3 plus the equivalent PM 〇 s diagram, the right diagram of Figure 3 plus the equivalent NMOS diagram to facilitate understanding of the principle. The operation principle of the left and right diagrams of FIG. 3 is the same. Therefore, in the following embodiments, only the left half of the diagram is an electrostatic discharge protection circuit 34 designed by a P-type semiconductor controlled rectifier (p_type SCR, PSCR for short). 〇 The electrostatic discharge protection circuit 34 designed by N-type semiconductor controlled rectifier (NSCR) in the right half of the figure refers to the operating principle of psCR. • In the left half of Figure 3, the circuit is framed on a substrate, such as a P-type substrate. There is a well region in the substrate, such as an N-doped well region. As shown, a plurality of doped regions are formed in the substrate and the well region, respectively, to form the electrostatic, electrical protection circuit 340 of the present invention. The first-type (eg, N-type) doped region and the first first-type doped region are located in the substrate and outside the well region, wherein the second first-type doped region is coupled to the second voltage source Vdd2. The first and second second type (e.g., P-type) doped regions are adjacent to the first and second first type doped regions, respectively, and are located in the base and ί regions. The third and fourth second type doping regions are adjacent to the first and second second type doping regions, respectively, and are located in the well region, wherein the third second type impurity changing region is lightly connected to the second voltage source Vdd2. The first gate structure G is located on the substrate and between the first and third second type doping regions, wherein the first first type, the impurity region and the first gate structure G1 are connected to the first voltage source vddl . The first doped region of the first type is located in the well region and between the third and fourth doped regions. And the second gate structure G2 is located on the substrate and between the second and fourth second type doping regions, wherein the third first type doping region, the fourth second type doping region and the second gate structure G2 side is connected to the first voltage source

Vddl。在 上述結構中,第三第二型掺雜區與第三第一型摻雜區構成 14 1247413 14327twf.doc/006 寄生二極體(虛線所示)。第一第一型摻雜區、基底、井區Vddl. In the above structure, the third second type doping region and the third first type doping region constitute a 14 1247413 14327 twf.doc/006 parasitic diode (shown by a broken line). First first type doped region, substrate, well region

與第二第一型摻雜區構成第一半導體石夕控整流器(例如P 型SCR ’ PSCR) 341a。另外,第四第二型摻雜區、井區、 基底與第二第一型摻雜區構成第二半導體石夕控整流器 343a 〇 靜電放電保護電路340内有兩個PSCR 341a、343a, PSCR 341a之陰極接至第一電壓源Vddl,而陽極接至第二 電壓源Vdd2,PSCR 341a中的PMOS之控制閘極連結至 Vddl。PSCR 343a之陽極接至第一電壓源,而陰極 接至弟一電壓源Vdd2 ’ PSCR 343a中的PMOS之控制間 極也是連結至Vddl。The first semiconductor-type doped region (e.g., P-type SCR 'PSCR) 341a is formed with the second first-type doped region. In addition, the fourth second type doping region, the well region, the substrate and the second first type doping region constitute a second semiconductor rock-controlled rectifier 343a. The electrostatic discharge protection circuit 340 has two PSCRs 341a, 343a, PSCR 341a. The cathode is connected to the first voltage source Vddl, and the anode is connected to the second voltage source Vdd2, and the control gate of the PMOS in the PSCR 341a is coupled to Vddl. The anode of the PSCR 343a is connected to the first voltage source, and the control terminal of the PMOS of the cathode connected to the voltage source Vdd2' PSCR 343a is also coupled to Vddl.

因此,PSCR 341a、343a的導通與否均是依據第一電 壓源Vddl來決定。若第一電壓源vddl發生大於pscR 343a内之PMOS的崩潰電壓(breakdown voltage)之正靜電 電壓雜訊,則於此瞬時時刻,此PSCR 343a會由KpM〇s 崩潰後產生的電流,而讓PSCR 343a導通,使得靜電電壓 雜訊所產生之雜訊電流通過靜電放電保護電路14〇到達第 一電壓源Vdd2,以完成本發明之目的。於本實施例中, PSCR與NSCR的臨界電壓均以i伏特為例。 若第二電壓源Vdd2發生極大的正靜電電壓雜訊時, 則於此瞬時時刻,位於此兩個PSCR341a、343a中間之寄 生二極體344a會由於第二電壓源vdd2極大於第一電壓源 vddl而導通,使得PSCR341a中連結別汜之/級區、^ 井區、以及P型基底(p-type substrate)變成一個類似pNp 15 1247413 14327twf.doc/006 接面之雙載子接面電晶體(Bip〇iar juncti〇n transistor,簡稱 BJT)將電流導入P型基底而讓PSCR 341a導通;此外, 若Vdd2相對於vddl之電壓差大於PSCR 341a内的 PMOS之臨界電壓,也會使PSCR 341a導通;最後,使得 此靜電電壓雜訊產生之雜訊電流得以從靜電放電保護電路 340到達第一電壓源vddl,以達成本發明之目的。 另外’如圖3左下方之結構圖所示,由於PSCr 341a 以及343a内的pm〇S之控制閘極均連結至第一電壓源 Vddl,因此可將兩個n井區放置在同一 n井區内,如此 一來大幅減少了電路佈線時的面積。當中所繪示的虛線二 極體便是寄生二極體344a的位置。Therefore, whether or not the PSCRs 341a and 343a are turned on or not is determined based on the first voltage source Vddl. If the first voltage source vddl generates a positive electrostatic voltage noise greater than the PMOS breakdown voltage in the pscR 343a, then at this instant, the PSCR 343a will be generated by the KpM〇s collapse current, and the PSCR The 343a is turned on, so that the noise current generated by the electrostatic voltage noise passes through the electrostatic discharge protection circuit 14A to reach the first voltage source Vdd2 to accomplish the object of the present invention. In this embodiment, the threshold voltages of the PSCR and the NSCR are both taken as i volts. If the second voltage source Vdd2 has a large positive static voltage noise, then at this instant, the parasitic diode 344a located between the two PSCRs 341a, 343a may be greater than the first voltage source vddl due to the second voltage source vdd2. Turning on, the PSCR 341a is connected to a different level/stage, a well area, and a p-type substrate to become a bi-carrier junction transistor similar to pNp 15 1247413 14327twf.doc/006 junction ( Bip〇iar juncti〇n transistor (BJT for short) conducts current into the P-type substrate to turn on PSCR 341a; in addition, if the voltage difference of Vdd2 with respect to vddl is greater than the threshold voltage of PMOS in PSCR 341a, PSCR 341a is also turned on; Finally, the noise current generated by the electrostatic voltage noise is caused to reach the first voltage source vddl from the electrostatic discharge protection circuit 340 for the purpose of the present invention. In addition, as shown in the structural diagram at the lower left of Fig. 3, since the control gates of pm〇S in PSCr 341a and 343a are both connected to the first voltage source Vddl, the two n well regions can be placed in the same n well region. This greatly reduces the area of the circuit wiring. The dotted diode shown in the figure is the position of the parasitic diode 344a.

圖3右下方繪示出另一個實施型態,其結構與pscR 型類似,其詳細結構便不多冗述。同理,圖3右下方之結 構圖^是由於NSCR 341b與343b之控制閘極均連結至第 一電壓源Vss2,因此可將兩個n井區放置在同一 N井區 内。當中所繪示的虛線二極體便是寄生二極體344b的位 置。 圖4係依照本發明所繪示之另一較佳實施例之靜電放 電之保護電路内的靜電放電連結電路的電路方塊圖。圖4 圖3上半部分之電路方塊圖大致相同,僅於pscR 343a 之控制閘極到第-電壓源Vddl間多了—個訊號延遲單元 (soft_pull_up circuit unit,SPU)450a。 此訊號延遲單元450a與450b係為相同裝置,主要是 用來傳遞並延遲由第一電壓源Vddl當中所發生的靜電電 16 1247413 14327twf.doc/006 壓雜訊。此靜電電壓雜訊會被延遲大約數百奈秒 (nanoseconds)至數微秒(microseconds)之間,以致於讓 PSCR 343a中之PMOS的控制間極之電壓在靜電電壓雜訊 發生時,維持在低電壓狀態以維持第一電壓源vddl與第 一電壓源Vdd2於導通狀態。NSCR 343b中之NMOS的控 制閘極也是相同原理,於靜電電壓雜訊發生時,維持在高 電壓狀態,其餘過程在此不贅述。 • 因為此靜電電壓雜訊發生的時間長短僅只有數百奈 秒,因此此訊號延遲單元450a與450b的作用即是一旦^ 生靜電電壓雜訊,便導通第一電壓源與第二電壓源 Vdd2 —段時間,讓靜電電壓雜訊通過,使得此靜電放電保 護電路能夠快速的消去靜電電壓雜訊。 圖5為依照本發明所繪示之另一較佳實施例之靜電放 電連結電路中之訊號延遲單元45〇a的電路圖。圖6為依照 本發明所繪示之另一較佳實施例之靜電放電連結電路中之 訊號延遲單元450b的電路圖。請同時參照圖5與圖6,由 於所要延遲的時間很短,因此電路⑻僅需一個電阻即可延 遲訊號。電路(b)則是使用電阻-電容電路(RC drcuit),可依 據電容的大小來調整延遲時間的長短。電路⑷則是利用傳 輸閘作為訊號延遲單元,利用傳輸閘内的電阻與其寄生電 容,來使得靜電電壓雜訊得以延遲,以達到上述之傳遞^ 維持靜電電壓雜訊的目的。 “圖7係依照本發明所繪示之再一較佳實施例之靜電放 電之保濩電路内的靜電放電連結電路的電路方塊圖。圖7 17 1247413 14327twf.doc/006Another embodiment is shown in the lower right of Fig. 3, and its structure is similar to that of the pscR type, and its detailed structure is not redundant. Similarly, the structure diagram at the lower right of Fig. 3 is because the control gates of the NSCRs 341b and 343b are both connected to the first voltage source Vss2, so that the two n well regions can be placed in the same N well region. The dotted diode shown in the figure is the position of the parasitic diode 344b. 4 is a circuit block diagram of an ESD connection circuit in a protection circuit for electrostatic discharge according to another preferred embodiment of the present invention. The block diagram of the upper half of Figure 3 is roughly the same, with only a signal delay unit (soft_pull_up circuit unit, SPU) 450a between the control gate of the pscR 343a and the first voltage source Vddl. The signal delay units 450a and 450b are the same device, and are mainly used to transmit and delay the electrostatic noise generated by the first voltage source Vddl 16 1247413 14327twf.doc/006. The electrostatic voltage noise is delayed by between about a few nanoseconds and a few microseconds, so that the voltage of the PMOS control terminal in the PSCR 343a is maintained during the occurrence of electrostatic voltage noise. The low voltage state maintains the first voltage source vddl and the first voltage source Vdd2 in an on state. The control gate of the NMOS in NSCR 343b is also the same principle. When the electrostatic voltage noise occurs, it is maintained at a high voltage state. The rest of the process will not be described here. • Since the duration of the electrostatic voltage noise is only a few hundred nanoseconds, the function of the signal delay units 450a and 450b is to turn on the first voltage source and the second voltage source Vdd2 once the electrostatic voltage noise is generated. - For a period of time, the electrostatic voltage noise is passed, so that the electrostatic discharge protection circuit can quickly eliminate the electrostatic voltage noise. FIG. 5 is a circuit diagram of a signal delay unit 45A in an electrostatic discharge connection circuit according to another preferred embodiment of the present invention. FIG. 6 is a circuit diagram of a signal delay unit 450b in an electrostatic discharge connection circuit according to another preferred embodiment of the present invention. Referring to FIG. 5 and FIG. 6, at the same time, since the delay time is short, the circuit (8) only needs one resistor to delay the signal. Circuit (b) uses a resistor-capacitor circuit (RC drcuit) to adjust the delay time depending on the size of the capacitor. The circuit (4) uses the transmission gate as the signal delay unit, and uses the resistance in the transmission gate and its parasitic capacitance to delay the electrostatic voltage noise to achieve the above-mentioned transmission to maintain the electrostatic voltage noise. Figure 7 is a block diagram showing the circuit of an electrostatic discharge connection circuit in an electrostatic discharge protection circuit according to still another preferred embodiment of the present invention. Figure 7 17 1247413 14327twf.doc/006

左半部與圖3上左半部分之電路方塊圖大致相同,僅於 PSCR 343a之控制閘極到第一電壓源vd(n間,以及psCR 3jla之控制閘極到第一電壓源vddl間,均接至訊號延遲 單το 550a。由於兩個半導體矽控整流器pscR341a、343& 内之控制閘極均由第—電壓源vddl來作驅動 ,因於此實 施例中,畜第一電壓源vddl具有正靜電電壓雜訊時,則 汛唬延遲單元會將此靜電電壓雜訊延遲送至此兩個半導體 _ 矽控整流裔PSCR 341a與343a的控制閘極並維持控制閘 極於低電壓一段時間,因而導通pscR341a、343a以持續 將第-電壓源Vddl與Vdd2導通。圖7之訊號延遲單元 550a與圖4之訊號延遲單元45加係為相同。 圖7之右半部與左半部類似,僅於NSCR 343b之控制 閘極到第二電壓源Vss2間,以及NSCR341b之控制間極 到第二電壓源Vss2間’均接至訊號延遲單元5幾。圖7 之訊號延遲單元550b與圖4之訊號延遲單元概係為相 同。 I 另外,依據第一電壓源Vddl與第二電壓源Vdd2之 間的電壓差’靜電放電保護電路内也可將多個pcSR 連(未繪示)設置在第-電壓源Vddl與第二電壓源Vdd2, 在此並不贅述其原理。依據電壓源Vssl與電壓源Vss2之 間的電壓差,靜電放電保護電路内也可將多個NCSR相串 連(未繪示)設置在電壓源vssl與電壓源vssd2。 练上所述、,本發明由於將兩個半導體石夕控整流器内之 金屬氧化物半導體電晶體的控制閘極均連結至同一個電壓 1247413 14327twf.doc/006 源上,因此這兩個半導體矽控整流器之導通與否均係由上 述之電壓源所控制,如此一來,便不需要將多個半導體矽 控整流器串聯,即可讓第—電壓源與第二電屡源的電墨差 距較大。並且,因金屬氧化物半導體電晶體的控制間極均 連結至同一個電壓源,所以於電路佈線時可將^^井區作在 一起’使得電路佈線的面積因此縮小,而降低生產的成本。The left half is substantially the same as the circuit block diagram of the left half of Figure 3, only between the control gate of PSCR 343a to the first voltage source vd (n, and the control gate of psCR 3jla to the first voltage source vddl, Both are connected to the signal delay τ 550a. Since the control gates of the two semiconductor step-controlled rectifiers pscR 341a, 343 & are driven by the first voltage source vddl, in this embodiment, the first voltage source vddl has In the case of positive electrostatic voltage noise, the delay unit will delay the electrostatic voltage noise to the control gates of the two semiconductors 矽 整流 PS PS PS PS PS PS 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并The pscR 341a, 343a is turned on to continuously turn on the first voltage source Vddl and Vdd2. The signal delay unit 550a of Fig. 7 is identical to the signal delay unit 45 of Fig. 4. The right half of Fig. 7 is similar to the left half, only The control gate of the NSCR 343b is connected to the second voltage source Vss2, and the control terminal of the NSCR 341b to the second voltage source Vss2 is connected to the signal delay unit 5. The signal delay unit 550b of FIG. 7 and the signal of FIG. 4 are delayed. Unit overview is phase In addition, according to the voltage difference between the first voltage source Vddl and the second voltage source Vdd2, a plurality of pcSR connections (not shown) may be disposed in the first voltage source Vddl and the second in the electrostatic discharge protection circuit. The voltage source Vdd2 does not describe the principle here. According to the voltage difference between the voltage source Vssl and the voltage source Vss2, a plurality of NCSRs can be connected in series (not shown) to the voltage source vssl in the ESD protection circuit. And the voltage source vssd2. As described above, the present invention connects the control gates of the metal oxide semiconductor transistors in the two semiconductor-controlled rectifiers to the same voltage 1247413 14327twf.doc/006 source. The conduction and non-conduction of the two semiconductor controlled rectifiers are controlled by the above voltage source, so that the plurality of semiconductor step-controlled rectifiers are not required to be connected in series, so that the first voltage source and the second power source can be used. The difference between the electro-inks is large. Moreover, since the control electrodes of the MOS transistors are all connected to the same voltage source, the well regions can be made together during the circuit wiring, so that the area of the circuit wiring is reduced. , While reducing the cost of production.

雖然本發明已以較佳實施例揭露如上,然其並非用以 限^本杳明任何热習此技藝者,在不脫離本發明之精神 =範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1繪不為靜電放電之保護電路架構的方塊圖。 圖2為圖1中習知之靜電放電連結電路140的電路方 塊圖與結構圖。 圖3係依照本發明所繪示之一較佳實施例之靜電放電 =保護電路内的靜電放電連結電路的電路方塊圖與結構 即抵心不鴒叨所繪示之另一較佳實施例之…^ 〃之保濩電路内的靜電放電連結電路的電路方塊圖。 圖5為依照本發明所綠示之另—較佳實施例之靜霄 電連結電路中之訊號延遲單元45加的電路圖。 圖6為依照本發明_示之另_較佳實施例之靜, 電連結電路中之訊號延遲單元45%的電路圖。 圖7係依照本發明崎示之再_較佳實施例之靜電 1247413 14327twf.doc/006 電之保護電路内的靜電放電連結電路的電路方塊圖。 【主要元件符號說明】 105、110 :積體電路 120 ··介面電路 130、135 :靜電放電箝位電路 140、145 :靜電放電連結電路 141a、143a、341a、343a:P 型半導體矽控整流器(p_type SCR) 141b、143b、341b、343b ·· N型半導體矽控整流器 (N-type SCR) 344a、344b ··寄生二極體 450a、450b、550a、550b ··訊號延遲單元Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the scope of the invention, and it is possible to make some modifications and retouchings without departing from the spirit of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 depicts a block diagram of a protection circuit architecture that is not an electrostatic discharge. 2 is a circuit block diagram and a structural diagram of a conventional electrostatic discharge connection circuit 140 of FIG. 3 is a circuit block diagram and a structure of an electrostatic discharge connection circuit in an electrostatic discharge=protection circuit according to a preferred embodiment of the present invention, which is a preferred embodiment of the present invention. ...^ The circuit block diagram of the ESD connection circuit in the protection circuit. Figure 5 is a circuit diagram showing the addition of a signal delay unit 45 in a static electrical connection circuit in accordance with another embodiment of the present invention. Figure 6 is a circuit diagram of a signal delay unit 45% in a static and electrical connection circuit in accordance with another embodiment of the present invention. Figure 7 is a block diagram of an electrostatic discharge connection circuit in an electrical protection circuit in accordance with a repetitive embodiment of the present invention. 1247413 14327twf.doc/006. [Description of main component symbols] 105, 110: integrated circuit 120 · interface circuit 130, 135: electrostatic discharge clamp circuit 140, 145: electrostatic discharge connection circuit 141a, 143a, 341a, 343a: P-type semiconductor controlled rectifier ( P_type SCR) 141b, 143b, 341b, 343b · N-type semiconductor controlled rectifier (N-type SCR) 344a, 344b · Parasitic diodes 450a, 450b, 550a, 550b ··Signal delay unit

2020

Claims (1)

1247413 14327twf.doc/006 十、申請專利範園: 1·一種靜電放電保護電路,褕 與m原之—積體3/=具有—第-電1原 包括一;3?石夕斗控整机益’該第一半導體石夕控整流器 匕括一弟-金屬氧化物半導體電晶體,其中該第 矽控整流器之陰極與該第一電麵相接,該第一 控整流器之陽極與該第二電壓源相接; _ 勺杯一々第I"半導體石夕控整流器’該第二半導體石夕控整流器 弟=金屬氧化物半導體電晶體,其中該第二半導體 秒控整流器之陽極與該第一fg 一 控整产考之源相接’該第二半導體石夕 二:屬二電壓源相接’其中該第一與該第 =電晶體_極同時連接到該第一電壓 源與6亥第一電塵源的其中之一,·以及 一寄生二極體,其中該寄生二極 壓源相接,該寄生二極體之_“=一電 路,其中该弟一與該第二電 源,且該第-與該第二金屬氧之相對4電壓 且閘極連接到該第一電壓源。 ^體電晶體為Ρ型並 3·如申請專利範圍第丨項所 路,其中該第-與該第二電璧源 ^ Υ之保護電 源,且該第一與該第二金屬氧化物半導體目==電壓 且閘極連接到該第二電壓源。 —體電曰曰體為N型並 4·如申請專利範圍第2項所述之靜電放電之保護電 21 1247413 14327twf.doc/006 路,更包括一訊號延遲單元,電性耦接至該第一電壓源與 P型之該第二金屬氧化物半導體電晶體之閘極之間。 5·如申請專利範圍第3項所述之靜電放電之保護電 路,更包括一訊號延遲單元,電性耦接至該第二電壓源與 N型之該第二金屬氧化物半導體電晶體之閘極之間。 6·如申請專利範圍第4項或第5項所述之靜電放電之 保羞電路,其中该訊號延遲單元係為電阻組成之電路。1247413 14327twf.doc/006 X. Application for Patent Park: 1. An electrostatic discharge protection circuit, 褕 and m original - integrated 3 / = with - first - electricity 1 original including one; 3? Shi Xidou control machine The first semiconductor-controlled rectifier includes a metal-oxide semiconductor transistor, wherein a cathode of the first controlled rectifier is connected to the first electrical surface, and an anode of the first controlled rectifier and the second The voltage source is connected; _ a cup of a cup I" semiconductor stone-controlled rectifier 'the second semiconductor-stone rectifier rectifier = metal oxide semiconductor transistor, wherein the anode of the second semiconductor second-controlled rectifier and the first fg The source of the control of the whole production test is connected to the 'the second semiconductor stone Xi 2: the two voltage sources are connected', wherein the first and the second transistor are connected to the first voltage source and the first One of the electric dust sources, and a parasitic diode, wherein the parasitic diode source is connected, the parasitic diode is _"= a circuit, wherein the brother and the second power source, and the First - opposite to the second metal oxygen and the gate is connected The first voltage source. The body transistor is a Ρ-type and 3· as in the scope of the patent application scope, wherein the first-and second-source power source protects the power source, and the first and the first The second metal oxide semiconductor has a voltage and the gate is connected to the second voltage source. The body electrical body is N-type and 4. The electrostatic discharge protection power according to the second item of claim 2 21474413 14327twf The .doc/006 circuit further includes a signal delay unit electrically coupled between the first voltage source and the gate of the P-type second metal oxide semiconductor transistor. The protection circuit for electrostatic discharge of the present invention further includes a signal delay unit electrically coupled between the second voltage source and the gate of the N-type second metal oxide semiconductor transistor. The anti-shake circuit for electrostatic discharge according to the fourth or fifth aspect of the invention, wherein the signal delay unit is a circuit composed of a resistor. 7·如申請專利範圍第4項或第5項所述之靜電放電之 保護電路,其中該訊號延遲單元係為電阻與電容組成之電 路0 8.如申請專利第4項或第5項所述之靜電放電之 保護電路,其中該訊號延遲單元係為—傳_。 =-轉電放·護電路,適•具有—第—電麼源 與一第二電壓源之一積體電路中,包括·· 财控整流器,該第-半導_控整流器 包括-苐-金屬氧化物半導體電晶體,其中該第 流器之陰極與該第-電_相接,該第—半導體石^ 控整流器之陽極與該第二電壓源相接· -=半導财控錢器H半導财控整流器 氧化物半導體電晶體,其中該第二半導體 器之陽極與該第-電髮源相接,該第二半導體石夕 控正^之陰極與該第二電_、相接 物半導體電晶體的閉極,經由—訊號延遲= 連接到轉—電壓源與該第二_源的其中之―;以= 22 1247413 14327twf.doc/006 -寄生一極體’其巾該寄生二極體之陰極與該第 壓源相接,該寄生二極體之陽極與該第二電壓源相接^ 10.如申請專職圍第9項所述之靜電放電之保 路’其Λ該第—與該第二電壓源為系統之相對高的電壓 源,且該第-與該第二金屬氧化物半導體電晶體為 •且閘極經由該訊號延遲單元連接到該第一電壓源。I亚 . 如申請專利顧第9項所叙靜電放電之 φ路,其^該第-^該第二電壓源為系統之相對低的^ 源’且5亥第-與為第—金屬氧化物半導體電晶體為 且閘極經由該訊號延遲單元連接到該第二電壓源。、’ 12. 如申請專職圍第9韻述之靜钱電之保 路,其中該訊號延遲單元係為電阻組成之電路。 又 13. 如申請專利範圍第9項所述之靜電放電之保護電 路,其中該訊號延遲單元係為電阻與電容組成之電路。 14. 如申請專利範圍第9項所述之靜電放電之保護電 路,其中該訊號延遲單元係為一傳輸閘。 • 15.一種具有靜電放電保護電路的半導體電路,包括: -第-積體電路,電性_於—第—高電壓源與一第 一低電壓源; -第二積體電路,電性祕於—第二高電壓源與一第 二低電壓源; 一第一靜電放電保護電路,耦接於該第一與該第二高 電壓源之間,更包括: ^ -Ρ型第-半導體秒控整流器,包括—ρ型第 23 1247413 14327twf.doc/006 一金屬氧化物半導體電晶體,其中該p型第一半導體矽控 整流器之陰極與該第一高電壓源相接,該p型第一半導體 石夕控整流器之陽極與該第二高電壓源相接, 一 P型第二半導體矽控整流器,包括一 p型第二 ^屬氧化物半導體電晶體,其中該p型第二半導體矽控& 流器之陽極與該第一高電壓源相接,該p型第二半導體石夕 控整流器之陰極與該第二高電壓源相接,其中該p型第一 • 與該p型第二金屬氧化物半導體電晶體的閘極連接到該第 一高電壓源,及 一寄生二極體,其中該寄生二極體之陰極與該第 一高電壓源相接,該寄生二極體之陽極與該第二高電壓源 相接;以及 ' 一第二靜電放電保護電路,耦接於該第一與該第二低 電壓源之間,更包括·· 一 一 N型第一半導體矽控整流器,包括一 N型第 一金屬氧化物半導體電晶體,其中該1^型第一半導體矽控 整流器之陰極與該第一低電壓源相接,該N型第一半導體 矽控整流器之陽極與該第二低電壓源相接, N型第二半導體石夕控整流器,包括一 N型第 屬氧化物半導體電晶體,其中該N型第二半導體矽控 整流器之陽極與該第一低電壓源相接,該N型第二半導體 矽控整流器之陰極與該第二低電壓源相接,其中該N型第 *與忒N型第二金屬氧化物半導體電晶體的閘極連接到該 第二低電壓源,及 24 1247413 14327twf.doc/006 一可生二極體,其中該寄生二極體之陰極與該第 -低電壓源相接,該寄生二極體之陽極與該第二低電 相接。 "' 16.如申請專鄉_ 15項所狀具有靜電放 電路的半導體電路,更包括n號延遲較,電= ,至该第-高電壓源與之該p型第二金屬氧化物半導體電 晶體之閘極之間。 電路15項所狀具有靜電放電保護 接3 ’更包括—第二訊號延遲單71,電性輕 與該_第二金屬氧化物半導體電晶 放電圍第16項或第17項所述之具有靜電 阻組成之ΪΪ 電路,其中該訊號延遲單元係為電 放電料關絲17項輯之具有靜電 阻與電容電路’其中該訊號延遲單元係為電 放電16項或第t7項所述之具有靜電 傳輸閘。、v體電路,其中戎峨延遲單元係為一 電路的半導月^轨圍帛15項所述之具有靜電放電保護 一丁守筱電路,更包括: 源與該箝位電路,電性輕接於該第-高電壓 低冤壓源之間;以及 25 1247413 14327twf.doc/006 電壓 -第二靜電放電箝位電路,電性 古 源與該第二低電壓源之間。 安、β弟一同 電放電保護 22.如申請專利範圍第15項所述之 電路的半導體電路,更包括: 〃 -介面電路,電性辆接至該第—積體電路與該第二積 體第—與該第二_源及該第7. The protection circuit for electrostatic discharge according to claim 4 or 5, wherein the signal delay unit is a circuit composed of a resistor and a capacitor. 8. 8. As described in claim 4 or 5. The protection circuit for electrostatic discharge, wherein the signal delay unit is _. =-Transfer to protect the circuit, suitable for having a first-in-one source and a second voltage source, including a financial rectifier, the first-semiconductor-controlled rectifier includes -苐- a metal oxide semiconductor transistor, wherein a cathode of the current device is connected to the first electrical source, and an anode of the first semiconductor controlled rectifier is connected to the second voltage source. An H-conductor-controlled rectifier oxide semiconductor transistor, wherein an anode of the second semiconductor device is connected to the first-electro-electric source, and the cathode of the second semiconductor-controlled cathode is connected to the second-electrode The closed pole of the semiconductor transistor, via the signal delay = connected to the turn-voltage source and the second source - to = 22 1247413 14327twf.doc / 006 - parasitic one body 'the parasitic pole The cathode of the body is connected to the first voltage source, and the anode of the parasitic diode is connected to the second voltage source. 10. 10. For the protection of the electrostatic discharge according to Item 9 of the full-time application, the first section is And the second voltage source is a relatively high voltage source of the system, and the first and the second metal oxide are half • crystals and electrically connected to the first gate voltage source through the signal delay unit. I亚. As claimed in the patent application, the φ path of the electrostatic discharge described in the ninth item, the second voltage source is the relatively low source of the system and the 5th - and the - metal oxide The semiconductor transistor is and the gate is connected to the second voltage source via the signal delay unit. , ' 12. If you apply for the full-scale circumstance of the 9th rhyme, the signal delay unit is a circuit composed of resistors. 13. The protection circuit for electrostatic discharge according to claim 9, wherein the signal delay unit is a circuit composed of a resistor and a capacitor. 14. The protection circuit for electrostatic discharge according to claim 9, wherein the signal delay unit is a transmission gate. • A semiconductor circuit having an electrostatic discharge protection circuit, comprising: - a first-integrated circuit, an electrical-to-high voltage source and a first low-voltage source; - a second integrated circuit, an electrical secret And a second high voltage source and a second low voltage source; a first electrostatic discharge protection circuit coupled between the first and the second high voltage source, further comprising: ^ -Ρ type - semiconductor second a controlled rectifier comprising: -p type 23 1247413 14327 twf.doc/006 a metal oxide semiconductor transistor, wherein a cathode of the p-type first semiconductor controlled rectifier is connected to the first high voltage source, the p type first An anode of the semiconductor-controlled rectifier is connected to the second high-voltage source, and a P-type second semiconductor-controlled rectifier includes a p-type second oxide semiconductor transistor, wherein the p-type second semiconductor is controlled And an anode of the flow device is connected to the first high voltage source, and a cathode of the p-type second semiconductor rock-controlled rectifier is connected to the second high voltage source, wherein the p-type first and the p-type Gate connection of two metal oxide semiconductor transistors The first high voltage source, and a parasitic diode, wherein the cathode of the parasitic diode is connected to the first high voltage source, and the anode of the parasitic diode is connected to the second high voltage source; a second electrostatic discharge protection circuit coupled between the first and the second low voltage source, further comprising: an N-type first semiconductor controlled rectifier, comprising an N-type first metal oxide semiconductor a transistor, wherein a cathode of the first semiconductor controlled rectifier is connected to the first low voltage source, and an anode of the N-type first semiconductor controlled rectifier is connected to the second low voltage source, N type a semiconductor magnet synchronous rectifier comprising an N-type oxide semiconductor transistor, wherein an anode of the N-type second semiconductor controlled rectifier is connected to the first low voltage source, the N-type second semiconductor controlled rectifier a cathode connected to the second low voltage source, wherein a gate of the N-type *Nth and N-type second metal oxide semiconductor transistors is connected to the second low voltage source, and 24 1247413 14327twf.doc/006 a viable dipole, of which The cathode of the parasitic diode and the second - the low voltage source in contact with the anode of the parasitic diode of the second low electrical contact. "' 16. If you apply for a home circuit _ 15 semiconductor circuits with electrostatic discharge circuits, including n delay, electricity =, to the first high voltage source and the p-type second metal oxide semiconductor Between the gates of the transistor. The circuit 15 has an electrostatic discharge protection connection 3' and further includes a second signal delay unit 71, which is electrically lighter and has static electricity as described in Item 16 or Item 17 of the second metal oxide semiconductor The circuit consisting of a resistor, wherein the signal delay unit is an electric discharge material, and the circuit has a static resistance and a capacitance circuit, wherein the signal delay unit is electrically discharged according to item 16 or item t7. brake. And a v-body circuit, wherein the 戎峨 delay unit is a circuit of a semi-conducting ^ ^ 帛 帛 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电Connected between the first high voltage and low voltage source; and 25 1247413 14327twf.doc/006 voltage-second electrostatic discharge clamp circuit between the electrical source and the second low voltage source. The electric circuit of the circuit of claim 15, wherein the semiconductor circuit of the circuit of claim 15 further comprises: a 〃-interface circuit electrically connected to the first integrated circuit and the second integrated body First - with the second source and the first 23·-種具有靜電放電保護電路的半導體電路,包括: 一第一積體電路,電性耦接於_第一高電壓源盥一第 一低電壓源; ' 一第二積體電路,電性耦接於一第二高電壓源與一第 二低電壓源; ^ 一第一靜電放電保護電路,耦接於該第一與該第二高 電壓源之間,更包括: 一 ρ型第一半導體矽控整流器,包括_ ρ型第 一金屬氧化物半導體電晶體,其中該ρ型第一半導體石夕控 整流器之陰極與該第一高電壓源相接,該ρ型第一半導體 矽控整流器之陽極與該第二高電壓源相接, 一 Ρ型第二半導體矽控整流器,包括一 ρ型第二 金屬氧化物半導體電晶體,其中該Ρ型第二半導體石夕控整 流器之陽極與該第一高電壓源相接,該Ρ型第二半導體石夕 控整流器之陰極與該第二高電壓源相接,其中該ρ型第一 與該Ρ型第二金屬氧化物半導體電晶體的閘極經由一第一 訊號延遲單元連接到該第一高電壓源,及 26 1247413 14327twf.doc/006 一寄生二極體,其中該寄生二極體之陰極與該第 一高電壓源相接,該寄生二極體之陽極與該第二高電壓源 相接;以及 一第二靜電放電保護電路,耦接於該第一與該第二低 電壓源之間,更包括: 一N型第一半導體矽控整流器,包括一N型第 一金屬氧化物半導體電晶體,其中該N型第一半導體矽控 整流器之陰極與該第一低電壓源相接,該N型第一半導體 碎控整流為之陽極與該第二低電麼源相接, 一 N型第二半導體矽控整流器,包括一 N型第 一金屬氧化物半導體電晶體,其中該N型第二半導體矽控 整流為之陽極與該第一低電壓源相接,該N型第二半導體 石夕控整流ϋ之陰極與該第二低電壓源祕,其巾型第 -與該N型第二金屬氧化物半導體電晶體的間極經由一第 二訊號延遲單元連接到該第二低電壓源,及 -寄生二極體,其中該寄生二極體之陰極與該第 電壓源相接,該寄生二極體之陽極與該第二低電壓源 相接。 雷路m專聰圍第23項所述之具有靜電放電保護 為電阻組成之第一與該第二訊號延遲單元係 25.如申請專利範㈣23項所述之 電路的半導體電路,其中該第:保, 為電阻與電容組成之電路。…弟-喊延遲早7L係 27 1247413 14327twf.doc/006 26·如申請專利範圍第23項所述之具有靜電放電保護 電路的半導體電路,其中該訊號延遲單元係為一傳輪閘。 27·如申請專利範圍第23項所述之具有靜電放電保護 電路的半導體電路,更包括: 一第一靜電放電箝位電路,電性耦接於該第一高電壓 源與該第一低電壓源之間;以及 一弟一靜電放電箝位電路,電性搞接於該第二高電壓 鲁 源與該第二低電壓源之間。 28·如申請專利範圍第23項所述之具有靜電放電保護 電路的半導體電路,更包括: 一介面電路,電性耦接至該第一積體電路與該第二積 體電路之間,並且耦接於該第一與該第二高電壓源及該第 一與該第二低電壓源之間。 29· —種靜電放電保護半導體電路,適用於具有_第一 電壓源與一第二電壓源之一積體電路中,該靜電放電保護 半導體電路包括: _ 一基底; 一井區,位於該基底中; 第一第一型摻雜區與一第二第一型摻雜區,位於該 基底中且在該井區外,其中該第二第一型摻雜區耦接至該 第二電壓源; 弟與一弟一弟一型播雜區,分別鄰近該第一與該 第二第一型摻雜區,且位在該基底與該井區中; 一第二與一第四第二型摻雜區,分別鄰近該第一與該 28 1247413 14327twf.doc/006 第二第二型摻雜區,且位於該井區中,其中該第三第二型 摻雜區耦接至該第二電壓源; 一第一閘極結構,位於該基底上且在該第一與該第三 第二型摻雜區之間,其中該第一第一型摻雜區與該第一閘 極結構耦接到該第一電壓源; 一第三第一型摻雜區,位於該井區中且位於該第三與 該弟四弟二型播雜區之間;以及23·- a semiconductor circuit having an electrostatic discharge protection circuit, comprising: a first integrated circuit electrically coupled to the first high voltage source 盥 a first low voltage source; 'a second integrated circuit, Is coupled to a second high voltage source and a second low voltage source; ^ a first electrostatic discharge protection circuit coupled between the first and the second high voltage source, further comprising: a p type A semiconductor controlled rectifier comprising: a _-type first metal oxide semiconductor transistor, wherein a cathode of the p-type first semiconductor-controlled rectifier is connected to the first high-voltage source, the p-type first semiconductor is controlled The anode of the rectifier is connected to the second high voltage source, and the second semiconductor controlled rectifier of the second type includes a p-type second metal oxide semiconductor transistor, wherein the anode of the second semiconductor magnet controlled rectifier of the second type The first high voltage source is connected, the cathode of the second semiconductor magnetron rectifier is connected to the second high voltage source, wherein the p-type first and the second metal oxide semiconductor transistor of the second type The gate is via a first message The delay unit is connected to the first high voltage source, and 26 1247413 14327 twf.doc/006 a parasitic diode, wherein the cathode of the parasitic diode is connected to the first high voltage source, and the anode of the parasitic diode Connected to the second high voltage source; and a second electrostatic discharge protection circuit coupled between the first and the second low voltage source, further comprising: an N-type first semiconductor controlled rectifier, including a An N-type first metal oxide semiconductor transistor, wherein a cathode of the N-type first semiconductor controlled rectifier is connected to the first low voltage source, and the N-type first semiconductor is shredded to an anode and the second low An N-type second semiconductor step-controlled rectifier includes an N-type first metal-oxide-semiconductor transistor, wherein the N-type second semiconductor is controlled and rectified to be an anode and the first low-voltage source Connected to the cathode of the N-type second semiconductor-controlled rectifying yoke and the second low-voltage source, the interpole of the towel-type and the N-type second MOS transistor is delayed via a second signal The unit is connected to the second low battery Source, and - a parasitic diode, wherein a cathode of the parasitic diode of the second voltage source in contact with the anode of the parasitic diode of the low voltage source and the second contact. The semiconductor circuit of the circuit described in claim 23, which has the electrostatic discharge protection as the first component and the second signal delay unit, as described in claim 23, wherein the circuit is as described in claim 23, wherein the first: Guaranteed, a circuit composed of a resistor and a capacitor. The semiconductor circuit having an electrostatic discharge protection circuit according to claim 23, wherein the signal delay unit is a transfer brake. The semiconductor circuit having the electrostatic discharge protection circuit of claim 23, further comprising: a first electrostatic discharge clamp circuit electrically coupled to the first high voltage source and the first low voltage Between the sources; and a younger-electrostatic discharge clamp circuit electrically connected between the second high voltage source and the second low voltage source. The semiconductor circuit having the electrostatic discharge protection circuit of claim 23, further comprising: an interface circuit electrically coupled between the first integrated circuit and the second integrated circuit, and And coupled between the first and the second high voltage source and the first and second low voltage sources. An electrostatic discharge protection semiconductor circuit is suitable for use in an integrated circuit having a first voltage source and a second voltage source, the electrostatic discharge protection semiconductor circuit comprising: a substrate; a well region located on the substrate The first first type doping region and the second first type doping region are located in the substrate and outside the well region, wherein the second first type doping region is coupled to the second voltage source a younger and a younger brother-type doping area adjacent to the first and the second first type doped regions, respectively, and located in the base and the well region; a second and a fourth second type a doped region adjacent to the first and the 28 1247413 14327 twf.doc/006 second second type doped region, and located in the well region, wherein the third second type doped region is coupled to the second a voltage source; a first gate structure on the substrate and between the first and the third second type doping regions, wherein the first first type doping region is coupled to the first gate structure Receiving the first voltage source; a third first type doping region located in the well region and located in the third and the younger brother Di-type titanium heteroaryl between multicast areas; and ^ 一第二閘極結構,位於該基底上且在該第二與該第四 第二型摻雜區之間,其中該第三第一型摻雜區、該第四第 一良4雜區與5亥苐一閘極結構搞接到該第一電壓源, 其中该第二第二型摻雜區與該第三第一型摻雜區構 成該第—第—型掺雜區、該基底、該井區 與f第—第—型摻雜區構成第—半導财控整流器,該第 :::型ίΐ區、該井區、該基底與該第二第-型摻雜區 構成弟一半導體矽控整流器。 士申口月專利範圍第29項所述之靜電放電仵罐半導 體電路,其中該第-型摻雜區為Ν型摻雜: ; = : 雜區為Ρ型摻雜區。 忑弟一孓6 體電第29顿述讀較電減半導 二二寅為P形基底,且該井區為N型井。 放電保護半導體電路的相對高電ii。目4,且為該靜電 33.-種靜電放電保護半導體電路,適用於具有一第一 29 1247413 14327twf.doc/006 電壓源與-第二電壓源之一積體電路中,該靜電放電 半導體電路包括·· 一基底; 一井區,位於該基底中; 一第一第一型摻雜區與一第二第一型摻雜區,位於讀 基底中且在該賴外,其中該第—第—型摻雜_接至^a second gate structure on the substrate between the second and the fourth second type doped regions, wherein the third first type doping region, the fourth first good region 4 region And the first voltage source is connected to the gate structure, wherein the second second type doping region and the third first type doping region constitute the first-type doping region, the substrate The well region and the f-th-type doped region constitute a first-semi-conducting financial control rectifier, the first::: type ΐ region, the well region, the substrate and the second first-type doped region form a brother A semiconductor controlled rectifier. The electrostatic discharge canister semiconductor circuit of claim 29, wherein the first-type doped region is doped-type doped: ; = : the impurity region is a germanium-type doped region. The younger brother, the 6th body, the 29th, the second, the second, the second is the P-shaped base, and the well is the N-type well. The discharge protects the relatively high power ii of the semiconductor circuit. Item 4, and the electrostatic discharge 33.-type electrostatic discharge protection semiconductor circuit, suitable for having a first 29 1247413 14327twf.doc/006 voltage source and a second voltage source integrated circuit, the electrostatic discharge semiconductor circuit a substrate comprising: a well region located in the substrate; a first first type doped region and a second first type doped region located in the read substrate and outside the substrate, wherein the first —Type doping _ connected to ^ 第-2源且該第二第—型摻雜_接至該第二電壓源广 斤一 f第三與一第四第一型摻雜區,分別鄰近該第一與讀 第二第了型摻雜區,且位在該基底與該井區中; 3 一第一閘極結構,位於該基底上且在該第一盥該第二 ^一型推雜區之間,其中該第—閘極結_接到該第二; 源, 笛-:Ιί祕結構,錄織底上且在該第二與該第四 之間’其巾該帛二雜結馳接職第二電 Μ源, 見 第-與―第二第二型摻雜區,分職該第三與該 四弟一型摻雜區相鄰,且位於 弟 型摻雜區耦接至該第,中二其中该弟-弟二 至該第—電壓源,·=γ 相二第二型摻雜區輕接 ^五第—型摻雜區,位於該井區巾且位於該第—盘 換雜區之間’其㈣五第-型崎接 成4::極第趙第:第型摻:區與該第五第-型摻雜區構 w苐一苐一型摻雜區、該基底、該井區 30 1247413 14327twf.doc/006 與該第一第二型摻雜區構成第一半導體矽控整流器,該第 二第二型摻雜區、該井區、該基底與該第二第一型摻雜區 構成第二半導體矽控整流器。 34. 如申請專利範圍第33項所述之靜電放電保護半導 體電路,其中該第一型摻雜區為N型摻雜區,該第二型摻 雜區為P型摻雜區。 35. 如申請專利範圍第33項所述之靜電放電保護半導 體電路,其中該基底為P型基底,且該井區為N型井。 36·如申請專利範圍第33項所述之靜電放電保護半導 體電路,其中該第一與該第二電壓源不相等,且為該靜電 放電保護半導體電路的相對低電壓源。a second source and a second first type doping _ connected to the second voltage source, a third and a fourth first type doped region, respectively adjacent to the first and second type a doped region, located in the substrate and the well region; 3 a first gate structure on the substrate and between the first and second type of doping regions, wherein the first gate The pole junction_ receives the second; source, flute-: Ι 秘 secret structure, recorded on the bottom of the weaving and between the second and the fourth 'the towel, the second chorus, the second electric source, See the first-and second-type doped regions, the third is adjacent to the four-type doped region, and is located in the doped region coupled to the first, the second of which is the brother- Dimensions to the first - voltage source, · = γ phase two second type doped region lightly connected to the fifth type-type doped region, located in the well zone and located between the first disk-changing region 'its (four) The fifth-type is connected to the fourth:: the first radix: the first type doping region and the fifth first-type doping region, the doping region, the substrate, the well region 30 1247413 14327twf .doc/006 and the first second type doped region constitute the first Conductor silicon controlled rectifier, the second second-type doping region, the well region, the first substrate and the second semiconductor-type doped region forming the second silicon-controlled rectifiers. 34. The ESD protection semiconductor circuit of claim 33, wherein the first type doped region is an N-type doped region and the second type doped region is a P-type doped region. 35. The electrostatic discharge protection semiconductor circuit of claim 33, wherein the substrate is a P-type substrate and the well region is an N-type well. 36. The ESD protection semiconductor circuit of claim 33, wherein the first and the second voltage source are unequal and are a relatively low voltage source of the electrostatic discharge protection semiconductor circuit. 3131
TW94113189A 2005-04-26 2005-04-26 Electrostatic discharge protection circuit and semiconductor circuit having the same TWI247413B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94113189A TWI247413B (en) 2005-04-26 2005-04-26 Electrostatic discharge protection circuit and semiconductor circuit having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94113189A TWI247413B (en) 2005-04-26 2005-04-26 Electrostatic discharge protection circuit and semiconductor circuit having the same

Publications (2)

Publication Number Publication Date
TWI247413B true TWI247413B (en) 2006-01-11
TW200638530A TW200638530A (en) 2006-11-01

Family

ID=37399863

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94113189A TWI247413B (en) 2005-04-26 2005-04-26 Electrostatic discharge protection circuit and semiconductor circuit having the same

Country Status (1)

Country Link
TW (1) TWI247413B (en)

Also Published As

Publication number Publication date
TW200638530A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP2633746B2 (en) Semiconductor device
JP2959528B2 (en) Protection circuit
US7643258B2 (en) Methods and apparatus for electrostatic discharge protection in a semiconductor circuit
TW495952B (en) Electrostatic discharge protection device
TW200818652A (en) Circuit configurations to reduce snapback of a transient voltage suppressor
JP3573674B2 (en) I / O protection device for semiconductor integrated circuit and its protection method
WO2021213024A1 (en) Electrostatic protection circuit
EP1046193A1 (en) An integrated circuit provided with esd protection means
JP2009165114A (en) Load driving device
US20040155257A1 (en) Semiconductor device
US8526147B2 (en) High voltage tolerant SCR clamp with avalanche diode triggering circuit
JP3320872B2 (en) CMOS integrated circuit device
TWI221662B (en) Semiconductor device having a protective circuit
JP2834485B2 (en) Bipolar transistor
JP2009038130A (en) Lateral mos transistor, and semiconductor device using same
EP1139566B1 (en) Semiconductor circuit with insulated gate device and associated control circuitry
TWI247413B (en) Electrostatic discharge protection circuit and semiconductor circuit having the same
JPH1084098A (en) Esd protection of high-density dram using triple well tehchnology
JP2001035935A (en) Semiconductor device
JPH11178205A (en) Protective circuit
JP4457620B2 (en) ESD protection circuit
JP2003092357A (en) Input protecting circuit
US10475783B2 (en) Electrostatic discharge protection apparatuses
JPS61264754A (en) Semiconductor integrated circuit device
JP2867546B2 (en) Semiconductor integrated circuit device