TWI245167B - Attenuated embedded phase shift photomask blanks - Google Patents

Attenuated embedded phase shift photomask blanks Download PDF

Info

Publication number
TWI245167B
TWI245167B TW92108395A TW92108395A TWI245167B TW I245167 B TWI245167 B TW I245167B TW 92108395 A TW92108395 A TW 92108395A TW 92108395 A TW92108395 A TW 92108395A TW I245167 B TWI245167 B TW I245167B
Authority
TW
Taiwan
Prior art keywords
group
phase shift
phase
layer
substrate
Prior art date
Application number
TW92108395A
Other languages
Chinese (zh)
Other versions
TW200401952A (en
Inventor
Marie Angelopoulos
Katherina Babich
S Jay Chey
Michael Straight Hibbs
Robert N Lang
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/793,646 external-priority patent/US6653027B2/en
Priority claimed from US10/122,876 external-priority patent/US6682860B2/en
Application filed by Ibm filed Critical Ibm
Publication of TW200401952A publication Critical patent/TW200401952A/en
Application granted granted Critical
Publication of TWI245167B publication Critical patent/TWI245167B/en

Links

Abstract

An attenuating embedded phase shift photomask blank that produces a phase shift of the transmitted light is formed with an optically translucent film made of metal, silicon, nitrogen and oxygen. An etch stop layer is added to improve the etch selectivity of the phase shifting layer. A wide range of optical transmission (0.001% up to 15% at 157 nm) is obtained by this process.

Description

1245167 玖、發明說明: 相關專利申請案之交叉參照 2001年2月26日申請且同在申請中之美國專利申請案第 09/793,646號,其標題為「衰減嵌入相移光罩空位」,該案 之内容以引用方式併入本文中。 發明所屬之技術領域 本發明係針對衰減嵌入相移光罩空位,具體而言,係針 對衰減相移光罩(APSM)材料及其加工製程。 先前技術 由於相移光罩能夠產生高於傳統二元光罩的解析度之 圖像,其作為第二代微電子製造微影蝕刻技術正愈來愈引 起吾人之關注。於多種相移設計方案中,由Burn J.Lin於「固 態技術」(Solid State Technology,January issue, page 43(1 992))提出之衰減嵌入相移器正獲得廣泛接受,其原因 在於其製作容易且節省費用,該文之内容以引用方式併入 本文中。為改進光罩之光學屬性(即,光透射之可調諧性及 對光子輻照和化學處理之阻抗性),目前已有多個與該設計 方案相關之變化形式。 專業人士現將157 nm微影蝕刻認作一繼193 nm之後之微 影蝕刻方案。且前尚無適於157 nm並顯現出適宜之光學屬 性、可調諧性、輻照及化學耐久性、蝕刻選擇性、低瑕疵 且製造便利之成熟APSM材料。先前,於2001年2月26日申 請之美國專利申請案第09/793,646號中,吾人曾揭示了一 種基於SiTiN,SiTiON系統(用於193 nm微影蝕刻技術)之 84782.doc 1245167 apsm材料及其加工製程,該案之内容以引用方式併入本 文中。 藉由本文,吾人旨在說明材料之組合、157nm APSM材 料(具體而言,一種疊置雙層結構)之製作方法及一種相移 光罩 < 製作方法,該種光罩具有可調諧之光透射且在使用 (光子輻照及化學處理)中結合了穩定之光學屬性及一優良 之蝕刻選擇性。該組合物由帶有一蝕刻阻擋層之siMx〇yNz 材料組成,其中,兀素Μ代表一申請專利範圍中所述之金 屬。 發明内衮 本發明之_ —廣闊方面包括—種衰減歲人相移光罩空 位,其能夠在一選擇之微影蝕刻波長下產生一具有至少 o.oom光透射之180。相移,且具有化學/光學耐久性及靈活 的光透射可調諧性。 本發明之另-方面包括一種製作一衰減嵌入相移光罩 之製程,該製程包括—雙層薄膜相移材料之沉積步驟。 本發明之另一方面肖括_如#仏β 万囬已栝才目移物質組合物,其包括一相 移層及一蝕刻阻擋層。 實施方式 a仞及1程係用於製作光罩-位,立 製成具有下列性能之相移薄膜:可調諧之光學特性(%二 及k)(T為光透射;n為折射率;k為消光係數);在157腿 長…80。_ ;敗好的抗雷射轉照及化學處理之轉 性;及良好㈣刻選擇性。該相料膜包含-雙層㈣ 84782 1245167 田比鄰基板之層控制著%T且亦作為一 I虫刻阻擋層,而其頂部 疊置層乃相移層。第一層包含一金屬或金屬基薄膜。下文 中提出一鈥和赵實例。相移薄膜包含矽、一金屬、氮及/ 或氧。該金屬可為一來自第II族、第…族、第又族、過渡金 屬、鑭系元素及婀系元素之元素。下文中提出一鈦當做該 金屬之實例。本發明包括位於一蝕刻阻擋層上之相移層 (SiwTixNy〇z,其中w介於〇·1〜〇·6之間,X介於〇 〇1〜〇 2之 間,y介於0〜0·6之間,z介於〇〜〇·7之間)、一沉積於一基 板(石英、氟化石英、CaF2或Al2〇3等)上之蝕刻阻擋層(金屬 或金屬基層)及該相移層及蝕刻阻擋層之形成方法。 1、沉積 薄膜可藉由濺射沉積方法(RF、DC磁控管、Ac磁控管、 脈衝雙極DC磁控管、RF二極體濺射、或熟悉此項技術者 所熟知之其他濺射沉積方法)自一由一種組合材料(例如: Si!_xMx,其中,x介於〇 〇1〜〇 5之間,M代表一來自第η族、 第1V族、第ν族、過渡金屬、鑭系元素及婀系元素之任一 '之元素)製成之單一目標或由不同組合物製成之兩個 或兩個以上目標(例如:si〇2及Μ目標或Si〗-XMX及Μ目標) 沉積而成。組合目標之組合變化或純粹目標之功率及沉積 時間之單獨變化皆可導致薄膜之組合變化。對於單—目 ^ ’基板夾持台可為固定式或可為繞軌道轉動,而對於多 個目標’基板夹持台須繞軌道轉動且轉速可調。 具體而言’對於相移層SiTiO(鈦當做元素Μ )之栗 ,^ (s. 7平—目標 、lQ7(TiSi2)G1)沉積採用了 rf磁控管濺射沉積,而蚀刻阻 84782.doc 1245167 擔層(Ta及Tl)之沉積採用了 Dc石兹控管沉積。為獲得具有良 好抗化學處理(料光罩清洗)穩定性之㈣,沉積條件需 最佳化。吾人業已判明耐化學性所需之較佳沉積條件。 2、 光學屬性 相移層及钱刻阻擋層之光學屬性(折射率⑷及消光係數 (k))皆藉由一量程為!5〇邮至7^㈣之多角度νΕ§Α Woollam橢圓偏振計測定。爾後,藉由使用該等光學常數 來計算出用以獲得-180。相移之較佳賴厚度。在擴圓偏 振計之透射模式下量測180。相移時之透射,並且比較所計 算出4透射值。藉由監視雷射輻照八“厘樣品時之雷射強 度變化,即時監視雷射輻照期間之透射變化。雷射量測裝 置與Liberman等人所述(1999)裝置相同。 3、 實例 (A)SiwTixNy〇z單一層 1)處理氣體Ar/02/N2 將基板置於一繞軌道轉動之旋轉夾具或定位於一非繞 軌道轉動之目標下,使用一 Sl〇 7(丁iSi2)〇】目標沉積由 SiwTlxNyOz構成之薄膜。在一具有1〇 mT ^分壓之氬/氮/ 氧混合氣體中實施濺射。Ar、沁及…均採用超高純度之氣 體(99.999%)且沉積室之背景壓力為<9〇><1〇-、〇1^。薄膜藉 由RF磁控管濺射方法用一5英寸直徑之目標沉積而成,所 用功率為450 W。·:上述條件下,沉積率通常為〇 3至1 6Α/ 秒。 濺射前,目標以450 W功率在5 mT氬氣内受到5分鐘之預 84782.doc 1245167 歲射;爾後,再在薄膜之沉積條件下受到5分鐘之預賤射, 藉以預處理該目標之表面。預濺射後,基板較佳立即藉由 一裝載鎖定室(load lock chamber)裝入沉積室且立即實施 沉積。依據沉積條件,薄膜厚度介於400〜2000A之間。圖 2將光透射顯示為波長之一函數。該薄膜之折射率k為21〇 且吸收常數k為0.467。該薄膜之對應厚度745A,其在157 nm 波長時之光透射為5·26%。根據計算,若需在157 nm波長 下獲得一 180。相移以致成一 5.9%之透射,具有相同光常數 之薄膜要一 711A之厚度。藉由調整氧··氮之比率,在157 nm波長下可達成咼達18 〇/〇之透射。圖3為各種具有不同氧 濃度(藉由X射線光電子能譜方法及盧瑟福(Rutherford:^b 散射方法測得)之薄膜之原子組合列表。光學常數^及k藉由 VESA Woollam橢圓偏振計量測且同時算出對應於18〇。相 移之薄膜厚度在157 nm波長下之光透射。隨氧濃度之增 大’折射率η降低。因此,180。相移所需薄膜厚度與丨57 nm 波長下之光透射一同增大。 雖然此單一層APSM可滿足光學屬性之要求,但石英之 姓刻選擇性卻不佳,CF4電漿下之蝕刻選擇性不足1.7。上 述狀況之原因在於下列事實··若欲獲得合適之光透射,需 要相▲南之氧^度(>3 5。/〇),而此等高氧濃度卻導致石英基 板之低選擇性。作為一改進蝕刻選擇性之努力,吾人發明 了 一採用一蚀刻阻擋層之雙層APS Μ。 (B)SlwTlxOz/金屬雙層 對於雙層APSM而言,一金屬蝕刻阻擋層沉積於氟化石 84782.doc -10- 1245167 英基板之上(圖0。在本文中,吾人所示實例為鈦蝕刻阻擋 層及鈕蝕刻阻擋層。沉積金屬蝕刻阻擋層之後,使用一 Sio.HTiShVi目標沉積一由SlwTlxNy〇z構成之相移層。本文 所舉實例使用了在S1至T1i約定比率下具有最大透明度 (y=〇)之組合物。 金屬層之濺射在具有1·〇 mT Αι*分壓之氬處理氣體中實 施,其方式為DC磁控管濺射。在實際薄膜沉積前,目標受 到10分鐘之預濺射,同時基板被隔離於裝載鎖定室内。薄 膜以介於150〜300 W之功率用一 5英寸直徑之目標沉積而 成。在上述條件下,沉積率通常為2.3至4· 5 A/秒。通常, 姓刻阻擋層之厚度介於10人〜4〇〇A之間。金屬蝕刻阻擋層 沉積完畢後,基板轉移至裝載鎖定室且同時進行相移層之 預濺射清洗。該相移層藉由RF濺射沉積用一 5英寸直徑目 才衣>儿積而成。以此為例,一 SiTiO薄膜在具有1 〇 mT Ar分 壓(15 sccm時之Ar流量)之氬/氧混合處理氣體下沉積而 成。氧氣藉由一Gransville_Phillips精確洩漏閥泄入,以保 持一介於0.10〜0.70Π1Τ間之恒定〇2分壓。RF射頻範圍從 450 W至900 W。在前述條件下,沉積速率通常為〇75至 1.7A/秒。依據沉積條件之不同,相移層之厚度介於4〇〇〜 2000人之間不等。 下列適於相移層SiTiO之條件下曾達成最佳光學及化學 耐久性。RF功率設置為9〇〇 W,Ar分壓為1.0 mT且氧分壓 為0.55 mT。倘使薄膜之氧分壓低於〇35 mT,因薄膜之氧 氣納入量過低’其光透射過低而不具有實際使用價值。另 84782.doc -11 - 1245167 外’低沉積功率(450 W)導致了低劣之化學耐久性,其原因 可能在於薄膜之高孔隙度(低密度)。裝載基板之前,使用 一氧氣灰化器來預清洗基板,以清除會在157 nm波長下降 低光透射之碳氫化合物。 圖4所示為作為波長函數之SiTi〇/Ti及SiTi〇/Ta光透射曲 線。對於兩種APSM,檢驗波長248 nm下之光透射皆低於 3 0% ’此乃另一勝過單層apsM之優點。相移層SiTiO之原 子組合展示於圖3列表中。光學常數0和k)及薄膜厚度係藉 由W〇〇llam橢圓偏振計所量測。圖5在列出上述數值之同時 亦列出對應於157 nm波長之光透射。雙層設計方案之優點 在於·與單層相比,其光透射更易於調整。僅藉由調整姓 刻層而無需改變氧氣濃度即可調整光透射。舉例而言,厚 度為1150A(其中鈦厚度為149入)之以丁丨〇薄膜可獲得一光 透射為5.9%之180。相移。若將鈇降至60人(且3丨1:丨〇降至 1175入),光透射即變為12%。同樣,厚度為117〇人之以丁1〇 薄膜(其中赵厚度為106A)可獲得一光透射為5.9%之180。相 移。若將鋰降至50人(且SiTiO降至1183A),光透射變為 10.6% 〇 圖6概括了相移層siTiOi %T在1 57 nm波長下之變化,該 變化為硫酸/過氧化氫清洗溶液(1123〇4:112〇2=3:1,9〇。(:)中 /文/又時間之函數;該溶液亦稱之為piranha溶液,通常在製 造線中用於移除光阻。在長達Η 5分鐘之浸沒中,之總 變化為0.3%。該卓越之穩定性可保證該材料與標準光罩製 造方法之相容性。為對比起見,圖中亦示出了低功率(4 5 〇 W) 84782.doc • 12 - 1245167 沉積之情形。該雙層SiTiO/Ta之化學耐久性亦顯示出極穩 定之%丁(作為piranha清洗一函數)。圖7概括了雙層SiTiO/Ta 之%1:在157 nm波長下之變化,該變化乃硫酸及過氧化氫清 洗溶液中浸沒時間之函數。最初清洗後,T%自6.07%增至 6.27%,隨後,長達90分鐘之清洗僅使T%增大0.02%。此 一結果表明雙層SiTi〇/Ta具有耐受反復清洗之極佳化學穩 定性。 圖8概括了單層設計方案與雙層設計方案之蝕刻選擇 性。SiTi〇/Ti與SiTi〇/Ta可相互媲美,兩者皆係單層設計方 案之重大改良。然而,在相同之蝕刻條件下,鈦/石英組合 較姮/石英組合顯現出更佳之蝕刻選擇性。1245167 发明 Description of the invention: Cross-references to related patent applications refer to U.S. Patent Application No. 09 / 793,646, filed on February 26, 2001, and which is also pending. The contents of the case are incorporated herein by reference. FIELD OF THE INVENTION The present invention is directed to the attenuation of the phase-shift mask vacancy, specifically, to the material of the attenuation phase-shift mask (APSM) and its manufacturing process. Prior art Because phase shift masks can produce images with higher resolution than traditional binary masks, they are attracting more and more attention as the second-generation microelectronics manufacturing lithography etching technology. Among the various phase-shift design schemes, the attenuation embedded phase shifter proposed by Burn J. Lin in "Solid State Technology" (January issue, page 43 (1 992)) is gaining wide acceptance because of its fabrication Easy and cost-effective, the content of this article is incorporated herein by reference. In order to improve the optical properties of the reticle (that is, the tunability of light transmission and the resistance to photon irradiation and chemical treatment), there have been many variations related to this design scheme. Professionals now consider 157 nm lithography as a lithography solution after 193 nm. And there is no mature APSM material suitable for 157 nm and showing suitable optical properties, tunability, irradiation and chemical durability, etch selectivity, low defects, and convenient manufacturing. Previously, in US Patent Application No. 09 / 793,646, filed on February 26, 2001, we have disclosed a 84782.doc 1245167 apsm material based on the SiTiN, SiTiON system (for 193 nm lithography etching technology) and For the manufacturing process, the content of the case is incorporated herein by reference. Through this article, I aim to explain the combination of materials, the manufacturing method of 157nm APSM material (specifically, a stacked double-layer structure) and a phase shift mask < manufacturing method, which has a tunable light Transmission and in use (photon irradiation and chemical treatment) combine stable optical properties and an excellent etch selectivity. The composition consists of a siMxOyNz material with an etch stop layer, where the element M represents a metal as described in a patent application. Intrinsic aspects of the invention The broad aspect of the present invention includes an attenuating phase shift mask vacancy for an aged person, which can produce a 180 with at least o.oom light transmission at a selected lithographic etching wavelength. Phase shifted with chemical / optical durability and flexible light transmission tunability. Another aspect of the present invention includes a process for making an attenuated embedded phase shift mask, the process including a step of depositing a two-layer thin film phase shift material. Another aspect of the present invention includes, for example, # 仏 β Wanhui has moved the material composition, which includes a phase shift layer and an etch barrier layer. Embodiments a1 and 1 are used to make a mask-position, and are made into a phase-shifting film with the following properties: tunable optical characteristics (% 2 and k) (T is the light transmission; n is the refractive index; k Is the extinction coefficient); at 157 legs ... 80. _; Poor resistance to laser radiation and chemical treatment; and good engraving selectivity. The phase material film contains-double layer ㈣ 84782 1245167 The layer adjacent to the substrate controls% T and also acts as a worm-blocking layer, and the top layer is a phase shift layer. The first layer includes a metal or metal-based film. An example is given below. The phase shift film includes silicon, a metal, nitrogen, and / or oxygen. The metal may be an element from Group II, Group ..., Group I, Transition Metal, Lanthanide and Actinide. An example of the metal is given hereinafter. The invention includes a phase shift layer (SiwTixNyOz) on an etch stop layer, where w is between 〇1 ~ 〇 · 6, X is between 〇〇1 ~ 〇2, and y is between 0 ~ 0 · 6, z is between 0 ~ 〇 · 7), an etch stop layer (metal or metal base layer) deposited on a substrate (quartz, fluorinated quartz, CaF2 or Al203), and the phase Method for forming transfer layer and etching barrier layer. 1.The deposited film can be deposited by sputtering (RF, DC magnetron, Ac magnetron, pulsed bipolar DC magnetron, RF diode sputtering, or other sputtering known to those skilled in the art) The spray deposition method is composed of a combination of materials (for example: Si! _XMx, where x is between 0.001 and 〇5, M represents a group from the η, 1V, ν, transition metals, A single target made of any of the lanthanides and actinides, or two or more targets made of different compositions (for example, si02 and M targets or Si)-XMX and M (Target). Combination changes in the combination of targets or separate changes in power and deposition time for pure targets can result in changes in the combination of films. For a single-head ^ 'substrate holding table can be fixed or can be rotated around the track, while for multiple targets' substrate holding table must be rotated around the track and the speed can be adjusted. Specifically, for the phase shift layer of SiTiO (titanium as the element M), ^ (s. 7 flat-target, lQ7 (TiSi2) G1) deposition using rf magnetron sputtering deposition, and the etching resistance 84782.doc 1245167 The support layer (Ta and Tl) was deposited using Dc stone controlled tube deposition. In order to obtain good stability against chemical treatment (material mask cleaning), the deposition conditions need to be optimized. We have identified better deposition conditions required for chemical resistance. 2. Optical properties The optical properties (refractive index ⑷ and extinction coefficient (k)) of the phase-shift layer and the money-blocking layer are all based on a range! Multi-angle νΕ§Α Woollam ellipsometry measured from 50 to 7 ^. Thereafter, it is calculated to obtain -180 by using these optical constants. The preferred phase shift depends on the thickness. Measure 180 in the transmission mode of a rounded polarimeter. The transmission at the time of the phase shift was compared and the 4 transmission values were calculated. By monitoring the change in laser intensity when the laser irradiates eight inches, the transmission change during the laser irradiation is monitored in real time. The laser measurement device is the same as that described by Liberman et al. (1999). 3. Examples ( A) SiwTixNy0z single layer 1) Processing gas Ar / 02 / N2 Place the substrate in a rotating fixture orbiting or non-orbiting target, using a S107 (丁 iSi2).] The target is to deposit a thin film composed of SiwTlxNyOz. Sputtering is performed in an argon / nitrogen / oxygen mixed gas with a partial pressure of 10mT ^. Ar, Qin and ... all use ultra-high purity gas (99.999%) and the deposition chamber The background pressure is < 9〇 > < 10-, 〇1 ^. The film was deposited by a RF magnetron sputtering method with a 5 inch diameter target, and the power used was 450 W. ·: The above conditions The deposition rate is usually 0 to 16 A / sec. Before sputtering, the target was subjected to 5 minutes of pre-sintering at 450 m in 5 mT of argon. 84782.doc 1245167 years old; after that, under the film deposition conditions After 5 minutes of pre-spray, the surface of the target is pretreated. After pre-sputtering, the substrate is preferably immediately A load lock chamber is loaded into the deposition chamber and the deposition is performed immediately. Depending on the deposition conditions, the film thickness is between 400 and 2000 A. Figure 2 shows light transmission as a function of wavelength. Refraction of the film The rate k is 21 ° and the absorption constant k is 0.467. The corresponding thickness of this film is 745A, and its light transmission at a wavelength of 157 nm is 5.26%. According to calculations, if it is required to obtain a 180 at a wavelength of 157 nm. Phase shift Therefore, a transmission of 5.9% is required, and a film with the same optical constant needs a thickness of 711A. By adjusting the ratio of oxygen and nitrogen, a transmission of up to 18 〇 / 〇 can be achieved at a wavelength of 157 nm. List of atomic combinations of films with different oxygen concentrations (measured by X-ray photoelectron spectroscopy and Rutherford: ^ b scattering method). Optical constants ^ and k are calculated by VESA Woollam ellipsometry and calculated simultaneously Corresponds to 18 °. The light transmission of the phase-shifted film thickness at a wavelength of 157 nm. As the oxygen concentration increases, the refractive index η decreases. Therefore, 180. The film thickness required for the phase shift and the light transmission at a wavelength of 57 nm Increase together. This single-layer APSM can meet the requirements of optical properties, but the selectivity of quartz is not good, and the selectivity of etching under CF4 plasma is less than 1.7. The reason for the above situation lies in the following facts. It is necessary to have a degree of oxygen in the south (> 3 5 //), and these high oxygen concentrations lead to low selectivity of the quartz substrate. As an effort to improve the selectivity of etching, we invented an etch stop Double-layer APS M. (B) SlwTlxOz / metal double layer For the double APSM, a metal etch barrier is deposited on the fluorite 84782.doc -10- 1245167 English substrate (Figure 0. In this article, the example I show is titanium etching Barrier layer and button etch barrier layer. After the metal etch barrier layer is deposited, a Sio.HTiShVi target is used to deposit a phase shift layer composed of SlwTlxNy0z. The examples in this article use the maximum transparency at the agreed ratio of S1 to T1i ( y = 〇). The sputtering of the metal layer was carried out in an argon processing gas with a partial pressure of 1.0mT A **, by means of DC magnetron sputtering. Before the actual film deposition, the target was subjected to 10 minutes Pre-sputtering, while the substrate is isolated in the load lock chamber. The film is deposited with a 5-inch diameter target at a power between 150 and 300 W. Under the above conditions, the deposition rate is usually 2.3 to 4.5 A The thickness of the barrier layer is usually between 10 and 400 A. After the deposition of the metal etching barrier layer, the substrate is transferred to the load lock chamber and the pre-sputter cleaning of the phase shift layer is performed simultaneously. Phase shift layer deposited by RF sputtering A 5-inch diameter mesh garment was created. Taking an example, a SiTiO film was deposited under an argon / oxygen mixed processing gas having a partial pressure Ar of 10 mT (Ar flow rate at 15 sccm). Oxygen is leaked through a Gransville_Phillips precision leak valve to maintain a constant 02 partial pressure between 0.10 ~ 0.70 and 1T. The RF radio frequency range is from 450 W to 900 W. Under the aforementioned conditions, the deposition rate is usually 075 to 1.7 A / sec. Depending on the deposition conditions, the thickness of the phase shift layer ranges from 400 to 2000 people. The following conditions have been achieved for the best optical and chemical durability under the conditions suitable for the phase shift layer SiTiO. RF power Set to 900W, Ar partial pressure is 1.0 mT and oxygen partial pressure is 0.55 mT. If the oxygen partial pressure of the film is lower than 035 mT, the amount of oxygen incorporated in the film is too low, its light transmission is too low to have actual Use value. Another 84782.doc -11-1245167 'low deposition power (450 W) leads to poor chemical durability, which may be due to the high porosity (low density) of the film. Before loading the substrate, use an oxygen ash To clean the substrate to remove Hydrocarbons that reduce light transmission at a wavelength of 157 nm. Figure 4 shows the light transmission curves of SiTi〇 / Ti and SiTi〇 / Ta as a function of wavelength. For both APSMs, the light transmission at 248 nm was examined below 3 0% 'This is another advantage over single layer apsM. The atomic composition of the phase shift layer SiTiO is shown in the list in Figure 3. The optical constants 0 and k) and the thickness of the film are determined by a Wollam ellipsometry. Measure. Figure 5 lists the above values as well as the light transmission corresponding to a wavelength of 157 nm. The advantage of the two-layer design is that its light transmission is easier to adjust than a single layer. The light transmission can be adjusted by adjusting the surname layer without changing the oxygen concentration. For example, a thin film with a thickness of 1150A (wherein the thickness of titanium is 149mm) can obtain a light transmission of 180% of 5.9%. Phase shift. If 鈇 is reduced to 60 people (and 3 丨 1: 丨 0 to 1175), the light transmission becomes 12%. Similarly, a thin film of Ding 10 (with a thickness of Zhao of 106 A) with a thickness of 117.0 people can obtain a light transmission of 180% of 5.9%. Phase shift. If the lithium is reduced to 50 people (and SiTiO is reduced to 1183A), the light transmission becomes 10.6%. Figure 6 summarizes the change of the phase shift layer siTiOi% T at a wavelength of 1 57 nm. This change is sulfuric acid / hydrogen peroxide cleaning Solution (1123〇4: 112〇2 = 3: 1,90. (:) A function of Chinese / English / also time; this solution is also called piranha solution, which is usually used in manufacturing lines to remove photoresist. The total change in immersion up to Η 5 minutes is 0.3%. This excellent stability guarantees the compatibility of the material with standard photomask manufacturing methods. For comparison, the figure also shows low power (4 5 〇W) 84782.doc • 12-1245167 deposition. The chemical durability of this double-layer SiTiO / Ta also shows extremely stable% D (as a function of piranha cleaning). Figure 7 summarizes the double-layer SiTiO / Ta% 1: change at 157 nm wavelength, this change is a function of immersion time in sulfuric acid and hydrogen peroxide cleaning solution. After the initial cleaning, the T% increased from 6.07% to 6.27%, and then, up to 90 minutes The cleaning only increased T% by 0.02%. This result shows that the double-layer SiTi0 / Ta has excellent chemical stability that can withstand repeated cleaning. Figure 8 summarizes the etch selectivity of the single-layer design and the double-layer design. SiTi0 / Ti and SiTi0 / Ta are comparable to each other, both of which are major improvements in the single-layer design. However, under the same etching conditions Below, the titanium / quartz combination shows better etch selectivity than the hafnium / quartz combination.

SiTi〇/Ta與SiTi〇/Ti皆顯現出耐受157 nm雷射輻照之極 佳穩定性。圖9概括了在157 nm波長下SiTi〇/Ti APSMi%T 之變化,該變化乃157 nm雷射糕照(使用Lambda Physik LPX 120 F2雷射)之一函數。在50 Hz頻率下使用到雷射功 率密度為2.5 mJ/平方公釐/脈衝之雷射輻照該薄膜。5.0 kJ/ 平方公釐劑量下之總光透射變化為0.50%。在一氧氣低於2 ppm之氮氣環境中輻照樣品。SiTi〇/Ti APSM之總增量為 0.5%(自5.94%增至6.44%)。同樣,SiTi〇/Ta雙層試驗可與 SiTi〇/Ti雙層相媲美。圖10概括了 3丨丁丨〇/丁&之%丁在157 11111 波長下之變化,該變化乃157 nm雷射轉照(使用Lambda Physik LPX 120雷射)之一函數。在50 Hz頻率下使用雷射 功率密度為2.5 mJ/平方公釐/脈衝之雷射輻照薄膜。5.0 kJ/ 平方公釐劑量下之總光透射變化為0.55%。在一氧氣低於2 84782.doc -13 - 1245167 pp 、氮氣衣境中轉照樣品。SiTi〇/Ta之總增量為〇 55%(自 5.71%增至626%)。 雖然本又^使用名;_;r L ^ 右卞本發明之實施例來說明本發明,但本 文並非心欲將本發明限於上述說明,而僅將其限於後附申 Μ專利乾11所逑之範_。所要求擁有專屬所有權或特權之 本發月貫施例在隨附中請專利範圍内界定。本文中所引用 之王邠參考資料之内容均以引用方式併入本文中。 圖式簡單說^ 結合附圖閱讀並熟思上述詳細說明及本發明本身,本發 明(ΤΙ些及其它目的、特點及優點清晰可見,圖式中: 圖1所示為APSM之單層方法及雙層方法示意圖。 圖2所示為單一層方法(具體而言,SiTiON)作為波長之函 數之光透射曲線圖。 圖3為一在157 nm波長下產生180。相移及相應光透射所 需之原子組合、光學常數η和k及厚度之列表。原子組合藉 由X射線光電子能譜方法及盧瑟福(Rutherford)背散射方法 量測。光學常數藉由Woollam橢圓偏振計量測。厚度和光 透射利用光學常數算出。 圖4以波長之函數顯示雙層APSM之光透射曲線圖。(a) 頂層為相移層SiTiO,而底層為钱刻阻擋層Ti。(b)頂層為 相移層SiTi〇,而底層為蝕刻阻擋層Ta。 圖5顯示157 nm波長下之光學常數(η和k)、薄膜之厚度及 相應之光透射。光學常數藉由VESA wooUam橢圓偏振計量 測,而180。相移及光透射之對應厚度利用光學常數算出。 84782.doc -14- 1245167 圖6為光透射與相移層SiTiO在一 90°C熱硫酸/過氧化氫 (H2S〇4 : H2〇2 = 3 : 1)混合液中清洗時間之曲線圖。 圖7為一光透射與雙層SiTi〇/Ta在一 90°C熱硫酸/過氧化 氫(H2S〇4 : H2〇2 = 3 : 1)混合液中清洗時間之曲線圖。 圖8為一帶有對應蝕刻氣體之SiTiO、Ti、Ta及石英RIE 蝕刻選擇性列表。 圖9為APSMSiTi〇/Ti之雷射耐久性曲線圖。光透射變化 繪製為雷射劑量之一函數。1 5 7 nm雷射光束之能量密度為 2.5 mJ/平方公釐/脈衝,且重複率為50 Hz。總雷射劑量為5 kJ/平方公釐。 圖10為APSM SiTi〇/Ta之雷射耐久性曲線圖。光透射變 化績製為雷射劑量之一函數。1 5 7 nm雷射光束之能量密度 為2.5 mJ/平方公釐/脈衝,且重複率為50 Hz。總雷射劑量 為5 mJ/平方公釐。 84782.doc -15 -Both SiTi〇 / Ta and SiTi〇 / Ti show excellent stability against 157 nm laser radiation. Figure 9 summarizes the change in SiTi0 / Ti APSMi% T at 157 nm, which is a function of the 157 nm laser photo (using Lambda Physik LPX 120 F2 laser). The film was irradiated with a laser power density of 2.5 mJ / mm² / pulse at a frequency of 50 Hz. The total light transmission change at a dose of 5.0 kJ / mm2 was 0.50%. Irradiate the sample in a nitrogen atmosphere with oxygen below 2 ppm. The total SiTi0 / Ti APSM increase was 0.5% (from 5.94% to 6.44%). Similarly, the SiTi0 / Ta double-layer test is comparable to the SiTi0 / Ti double-layer test. Figure 10 summarizes the change of 3%, 3%, 3%, 3%, and 3% at a wavelength of 157 to 11111, which is a function of the 157 nm laser radiation (using Lambda Physik LPX 120 laser). The film was irradiated with a laser power density of 2.5 mJ / mm² / pulse at a frequency of 50 Hz. The total light transmission change at a dose of 5.0 kJ / mm2 was 0.55%. Retransmit the samples in a nitrogen-clad environment with an oxygen below 2 84782.doc -13-1245167 pp. The total increase in SiTi0 / Ta was 0.55% (from 5.71% to 626%). Although this article uses the name; _; r L ^ right to illustrate the invention of the embodiment of the invention, but this article is not intended to limit the invention to the above description, but only limited to the attached application patent patent 11 Zhifan_. The current embodiment of the present invention, which requires exclusive ownership or privilege, is defined within the scope of the patent attached to it. The contents of the Wang Xi reference materials cited in this article are incorporated herein by reference. Brief description of the drawing ^ Read and meditate the above detailed description and the present invention itself with reference to the drawings. The present invention and other objects, features, and advantages are clearly visible. In the drawing: Figure 1 shows the single-layer method and dual-layer method of APSM. Schematic diagram of the layer method. Figure 2 shows the light transmission curve of the single-layer method (specifically, SiTiON) as a function of wavelength. Figure 3 is a diagram that produces 180 at a wavelength of 157 nm. The phase shift and corresponding light transmission are required. A list of atomic combinations, optical constants η and k, and thickness. Atomic combinations are measured by X-ray photoelectron spectroscopy and Rutherford backscattering. Optical constants are measured by Woollam ellipsometry. Thickness and light transmission Calculated using optical constants. Figure 4 shows the light transmission curve of double-layer APSM as a function of wavelength. (A) The top layer is a phase-shift layer SiTiO, and the bottom layer is a coin-cut barrier layer Ti. (B) The top layer is a phase-shift layer SiTi. The bottom layer is the etch barrier layer Ta. Figure 5 shows the optical constants (η and k), the thickness of the film, and the corresponding light transmission at a wavelength of 157 nm. The optical constants were measured by VESA wooUam ellipsometry, and 180. Phase The corresponding thickness of the light transmission and light transmission is calculated using the optical constant. 84782.doc -14-1245167 Figure 6 shows the light transmission and phase shift layer of SiTiO at 90 ° C thermal sulfuric acid / hydrogen peroxide (H2S〇4: H2〇2 = 3: 1) Curve of cleaning time in the mixed solution. Figure 7 is a light transmission and double-layered SiTi〇 / Ta at 90 ° C hot sulfuric acid / hydrogen peroxide (H2S〇4: H2〇2 = 3: 1) mixed solution The cleaning time is shown in the graph. Figure 8 is a list of SiTiO, Ti, Ta and quartz RIE etching selectivity with corresponding etching gas. Figure 9 is the laser durability curve of APSMSiTi〇 / Ti. A function of the radiation dose. The energy density of a 15 7 nm laser beam is 2.5 mJ / mm² / pulse and the repetition rate is 50 Hz. The total laser dose is 5 kJ / mm². Figure 10 shows APSM SiTi 〇 / Ta laser durability curve. The light transmission change is a function of the laser dose. The energy density of a 15 7 nm laser beam is 2.5 mJ / mm² / pulse and the repetition rate is 50 Hz. .Total laser dose is 5 mJ / mm² 84782.doc -15-

Claims (1)

修止讀摄龜奶號專利申請案 年中取申讀專利範圍替換本(93年10月) 拾、申請專利範園: 1 種運用在微影餘刻之衰減相移光罩空位,其包括: 一基板; 一沉積於該基板上之姓刻阻擋層; 一沉積於該蝕刻阻擂層上之相移層;及 该相移光罩空位可在80 nm至500 nm間之一選擇波長 下產生一具有180。相移且〇 〇〇1%至1〇%光透射之光罩, 其中▲相私層包括一具有公式AwBxNy〇z之組合材料,其 中A係一選自由第IVA族、第VA族或第VIA族所組成之群 組;B係選自由一來自第賜、第以族、第v族、過渡金 屬、鑭系兀素和婀系元素之元素所組成之群組;其中% 介於〇·1〜0.6之間,X介於0·01〜〇·2之間,y介於〇〜〇6 之間,Z介於〇〜〇·7之間。 如申请專利範圍第1項之衰減相移光罩空位,其中該相移 層包含一矽/鈦/氮/氧組合物。 2. 3.如申請專利範圍第2項之衰減相移光罩空位,其中該矽/ 鈦/氮/氧組合物具有結構式SiwTlxNy〇z,其中w介於 0.6之間,X介於0·01〜〇·2之間,y介於〇〜〇 6之間,# 於0〜0.7之間。 4·如甲知專利範圍第1項之衰減相移光罩空位,其中該 層具有一介於400人〜2000人間之厚度。 5·如申請專利範圍第1項之衰減相移光罩空位,其中該 阻擋層包含一選自由一金屬所組成之群組的材料: 合材料’其中該組合材料包含—選自由—金屬所组 1245167 群組的材料 和氧。 —來自第11族、第1v族和第v族之元素、氮 6. 如申請專利範園第5項之衰減相蔣# ¥ 阻择“人 哀减相移先罩空位’其中該蝕刻 擋層包.-選自由鈦和釦所組成之群組的材料。 7. 如中請專利範園第5项之衰減相移光罩空位,其中該钱刻 阻擋層具有一介於5〇A〜5〇〇A間之厚度。 8. 如中請專利範圍第工項之衰減相移光罩空位,其中該相移 層為SiTiO,該蝕刻阻擋層為妲(仏)。 9. 如申請專利範園第巧之衰減相移光罩空位,其中該相移 層為SiTiO,該蝕刻阻擋層為鈦(Ti)。 10· —種微影蝕刻用衰減相移光罩空位之製作方法,其包括: 提供一基板; 在該基板上設置一蝕刻阻擋薄層; 在4基板上設置一相移層; 該空位能夠在80 nm至500 nm間之一選擇波長下產生 一具有180。相移及〇.〇〇1%至10%光透射之光罩,其中該 相移層包括一具有公式AwBxNyOz之組合材料,其中a係 一選自由第IVA族、第VA族或第VIA族所組成之群組;B 係選自由一來自第II族、第IV族、第V族、過渡金屬、鑭 系元素和射系元素之元素所組成之群組;其中w介於〇 · i 〜0·6之間,X介於0.01〜0.2之間,y介於0〜0.6之間,z 介於0〜0.7之間。 11 ·如申請專利範圍第10項之方法,其中該相移層包含一選 自由一矽/鈦/氮組合物與一矽/鈦/氮/氧組合物所組成之 84782-931007.doc -2- 1245167 群組的材料。 12·如申睛專利範圍第ίο項之方法,其中該矽/鈦/氮/氧組合 物具有結構式SiwTixNyOz,其中W介於0.1〜0.6之間,乂介 、0·01〜〇·2之間,y介於〇〜〇·6之間,z介於〇〜〇·7之間。 13·如申請專利範圍第1〇項之方法,其中該相移薄膜係藉由 使用技術從兩個或兩個以上不同組合物目標濺射沉積 所开y成’该技術係選自由RF匹配網路、DC磁控管、AC 磁控官、脈衝雙極Dc磁控管&RF二極體所組成之群組。 如申叫專利範圍第13項之方法,其中該相移層係藉由使 用一万法從一組合材料(siixTix)目標濺射沉積所形成, 八’丨表〇·01〜〇·5之間,該方法係選自由RF匹配網 路、DC磁控管、Ac磁控管、脈衝雙極1)〇磁控管及rf二 極體所組成之群組。 15.如中請專利範圍第13項之方法,其中該基板被設置於一 夾”内,㉗夾具可繞軌遒轉動4固定<,及/或旋轉或不 16,如中請專利範圍第1G項之方法,纟中該相移薄膜係藉由 使用一技術從兩個或兩個以上不同組合物目標賤射沉賴 所形成’孩技術係選自由RF匹配網路、dc磁控管、A( 17磁控管、脈衝雙極DC磁控管及灯二極體所組成之群組。 如中請專利範圍第16項之方法,其中該等兩個或兩個以 上目標係選自由Sl〇2目標及Τι目標所組成之群組,或由 (::-χτ1χ)目標’其中χ介於〇〇1〜〇5之間,及則標所組 成之群組。 84782-931007.doc 1245167 18. 19. 如申請專利範圍第16項之方法,其中該基板被設置於一 夾具内,該夾具可繞軌道轉動或固定式,及/或旋轉或不 旋轉。 如申請專利範圍第10項之方法,其中該基板在一選自由 空氣、氧氣、真空所組成之群組的氣體環境中及一選自 由 〇2、N2、h2、Ar、Kr、Ne、He、〇3&h2〇所組成之群 組的混合氣體中受到高溫退火。 84782-931007.doc 4-Revision of the patent application for the photo tortoise milk mid-year replacement of the patent application scope (October 1993) Pick up and apply for a patent garden: 1 type of fading phase-shift mask space used in the shadow of the microlithography, including : A substrate; a engraved barrier layer deposited on the substrate; a phase shift layer deposited on the etch stop layer; and the phase shift mask vacancy can be selected at a wavelength between 80 nm and 500 nm Produces one with 180. Photomask with phase shift and 0.001% to 10% light transmission, where ▲ phase private layer includes a composite material with formula AwBxNy0z, where A is a group selected from group IVA, group VA or VIA Group B; group B is selected from the group consisting of an element from Group X, Group I, Group V, transition metal, lanthanide and actinide;% is between 0.1 Between 0.6 and 0.6, X is between 0.01 and 0.2, y is between 0.0 and 0.0, and Z is between 0.0 and 0.7. For example, the vacant phase-shifting reticle of item 1 of the patent application scope, wherein the phase-shifting layer comprises a silicon / titanium / nitrogen / oxygen composition. 2. 3. Attenuated phase shift mask vacancies according to item 2 of the patent application scope, wherein the silicon / titanium / nitrogen / oxygen composition has a structural formula SiwTlxNy0z, where w is between 0.6 and X is between 0 · Between 01 ~ 〇 · 2, y is between 0 ~ 〇6, and # is between 0 and 0.7. 4. The vacant phase-shifting mask vacancy of item 1 in the scope of Jiazhi patent, wherein the layer has a thickness between 400 and 2000 people. 5. The fading phase shift mask vacancy of item 1 in the patent application scope, wherein the barrier layer comprises a material selected from the group consisting of a metal: a composite material, wherein the composite material includes—selected from—the metal group 1245167 Group of materials and oxygen. —Elements from Group 11, Group 1v and Group v, Nitrogen 6. As the patent application for the fifth phase of the attenuation phase Jiang # ¥ Select "People will reduce phase shift before covering the gap" where the etching barrier layer Package.-A material selected from the group consisting of titanium and buckle. 7. Please refer to Patent No. 5 for the phase-shift mask vacancy of the patent fan garden, wherein the money-cut barrier layer has a range between 50A and 5O. 〇A. 8. If the attenuation phase shift mask vacancy of the first item of the patent scope is requested, the phase shift layer is SiTiO, and the etching barrier layer is 妲 (仏). The fading phase-shifting mask vacancy, wherein the phase-shifting layer is SiTiO, and the etching barrier layer is titanium (Ti). 10 · —A method for manufacturing a vacant phase-shifting mask vacancy for lithographic etching, comprising: providing a A substrate; an etching barrier layer is provided on the substrate; a phase shift layer is provided on the 4 substrate; the vacancy can produce a phase shift of 180 at a selected wavelength between 80 nm and 500 nm and a phase shift of 0.000. Photomask with 1% to 10% light transmission, wherein the phase shift layer includes a composite material having the formula AwBxNyOz, where a One is selected from the group consisting of Groups IVA, VA or VIA; B is selected from the group consisting of elements from Groups II, IV, V, transition metals, lanthanides and radioactive elements A group consisting of: w is between 0 · i ~ 0 · 6, X is between 0.01 ~ 0.2, y is between 0 ~ 0.6, and z is between 0 ~ 0.7. 11 · 如The method of claim 10, wherein the phase shift layer comprises a group selected from the group 84782-931007.doc -2- 1245167 consisting of a silicon / titanium / nitrogen composition and a silicon / titanium / nitrogen / oxygen composition 12. The method of item No. ο as claimed in the patent application, wherein the silicon / titanium / nitrogen / oxygen composition has the structural formula SiwTixNyOz, where W is between 0.1 and 0.6, and Between 0 · 2, y between 0 ~ 0 · 6, and z between 0 ~ 0 · 7. 13. The method according to item 10 of the patent application scope, wherein the phase shift film is used by The technology is developed from target sputtering deposition of two or more different compositions. The technology is selected from RF matching network, DC magnetron, AC magnetron, pulsed bipolar DC magnetron & RF. two A group of polar bodies. For example, the method of claim 13 of the patent scope, wherein the phase shift layer is formed by sputter deposition from a composite material (siixTix) target using the 10,000 method. · 01 ~ 〇 · 5, the method is selected from the group consisting of RF matching network, DC magnetron, Ac magnetron, pulsed bipolar 1) magnetron and rf diode. 15 The method of item 13 in the patent application, wherein the substrate is set in a clamp ", the jig can be rotated around the rail 固定 4 fixed <, and / or rotated or not 16, as in the patent application 1G In the method described above, the phase-shifting film is formed by using a technique from two or more targets of different compositions to form a thin film. The technique is selected from the group consisting of an RF matching network, a dc magnetron, and A. (A group of 17 magnetrons, pulsed bipolar DC magnetrons and lamp diodes. For example, the method of item 16 of the patent scope, wherein the two or more targets are selected from the group consisting of Sl02 targets and Ti targets, or (::-χτ1χ) targets, where χ is introduced Between 〇〇1〜〇5, and the group formed by the standard. 84782-931007.doc 1245167 18. 19. In the method of claim 16 in which the substrate is applied, the substrate is set in a jig, which can be rotated or fixed around the track, and / or rotated or not rotated. For example, the method of claim 10, wherein the substrate is in a gaseous environment selected from the group consisting of air, oxygen, and vacuum, and a substrate is selected from the group consisting of 02, N2, h2, Ar, Kr, Ne, He, 〇3 & h2〇 is subjected to high-temperature annealing in a mixed gas of a group composed of & 84782-931007.doc 4-
TW92108395A 2001-02-26 2003-04-11 Attenuated embedded phase shift photomask blanks TWI245167B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/793,646 US6653027B2 (en) 2001-02-26 2001-02-26 Attenuated embedded phase shift photomask blanks
US10/122,876 US6682860B2 (en) 2002-04-12 2002-04-12 Attenuated embedded phase shift photomask blanks

Publications (2)

Publication Number Publication Date
TW200401952A TW200401952A (en) 2004-02-01
TWI245167B true TWI245167B (en) 2005-12-11

Family

ID=37190027

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92108395A TWI245167B (en) 2001-02-26 2003-04-11 Attenuated embedded phase shift photomask blanks

Country Status (1)

Country Link
TW (1) TWI245167B (en)

Also Published As

Publication number Publication date
TW200401952A (en) 2004-02-01

Similar Documents

Publication Publication Date Title
TW542920B (en) Multilayer system with protecting layer system and production method
KR100734834B1 (en) Attenuated embedded phase shift photomask blanks
TW449675B (en) Multilayer attenuating phase-shift masks
KR101485754B1 (en) Blank mask for euv and photomask manufactured thereof
TW200400416A (en) Halftone type phase shift mask blank and halftone type phase shift mask
TW200804970A (en) Reflective mask blank for EUV lithography and substrate with functional film for the same
TW201033729A (en) Phase shift mask blank, phase shift mask, and pattern transfer method
TWI610126B (en) Method for manufacturing photomask substrate and method for manufacturing transfer mask
US6730445B2 (en) Attenuated embedded phase shift photomask blanks
CN1161656C (en) Attenuating embedded phase shift photomask blanks
US6682860B2 (en) Attenuated embedded phase shift photomask blanks
TWI245167B (en) Attenuated embedded phase shift photomask blanks
JP7337245B2 (en) BLANK MASK, BLANK MASK FORMING APPARATUS, AND BLANK MASK MANUFACTURING METHOD
JP4868416B2 (en) Halftone phase shift mask blank and halftone phase shift mask
JP7288959B2 (en) Extreme UV mask with backside coating
JP2003322959A (en) Halftone phase shifting mask blank and halftone phase shifting mask
TWI834417B (en) Blank mask, apparatus for forming a layer and manufacturing method for the blank mask
Miyazaki Structure and optical properties of silicon oxycarbide films deposited by reactive RF magnetron sputtering using a SiC target
TW557409B (en) Photomask and method for manufacturing the same
Lai High-transmittance attenuated phase-shift masks using three-stack (Ta2O5) x/(Al2O3) 1− x coatings for the 90 nm-technology node
KR20000015804A (en) Attenuating embedded phase shift photomask blanks
Cangemi et al. Properties and potential of VUV lithographic thin film materials

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees