TWI244583B - Optimization method of clock network capacitance on an integrated circuit - Google Patents
Optimization method of clock network capacitance on an integrated circuit Download PDFInfo
- Publication number
- TWI244583B TWI244583B TW92127914A TW92127914A TWI244583B TW I244583 B TWI244583 B TW I244583B TW 92127914 A TW92127914 A TW 92127914A TW 92127914 A TW92127914 A TW 92127914A TW I244583 B TWI244583 B TW I244583B
- Authority
- TW
- Taiwan
- Prior art keywords
- trace
- clock
- capacitance
- traces
- integrated circuit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000005457 optimization Methods 0.000 title claims description 6
- 238000009966 trimming Methods 0.000 claims abstract description 5
- 230000009467 reduction Effects 0.000 claims description 13
- 239000003990 capacitor Substances 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 19
- 238000013461 design Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008571 general function Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000012550 audit Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Design And Manufacture Of Integrated Circuits (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
1244583 _案號 92127914_年月日__ 五、發明說明(1) 本專利申請主張了美國優先權,其申請號為: 10/464782 ,申請日期為2003年5月21日,在此將該申請專 利所有内容和目的併入本發明。 [發明所屬之技術領域] 本發明是有關於一種積體電路(I C )佈局(佈線)和設 計,更確切地說,是有關於一種積體電路時脈網路電容的 最佳化。 [先前技術] 當今數位積體電路在很小面積内就可併入幾百萬個電 晶體元件。這些元件根據核心時脈信號的邊界資訊實現開 關控制並完成自身功能。最近核心時脈信號頻率已超過1 個十億赫茲(G Η z )閥值。時脈頻率越高,核心時脈信號 電容的控制就越困難。當時脈走線對不可避免地佈線在時 脈走線所在層的上層和下層的信號走線的電容耦合變得愈 加敏感時,控制電容的傳統技術是遮罩掉位於同一層上兩 接地走線之間的時脈走線。 第1圖為積體電路(1C) 100的局部上視圖,該圖表示 時脈走線電容控制的傳統方法。圖中可見,時脈走線1 0 1 佈線在層1 0 7上,接地走線1 0 3、1 0 5相對於時脈走線1 0 1等 距離佈線,通過遮罩兩個等寬度接地走線1 0 3和1 0 5之間的 時脈走線1 0 1 ,可使得該時脈走線與處於同一層1 0 7上的其 他信號π隔離π 。例如:每一接地走線1 0 3、1 0 5的寬度為 ” W π ,且信號走線1 0 1與每一接地走線之間的距離為n D π 。 此時相對於時脈走線接地端的電容為接地走線1 0 3、1 0 5的1244583 _Case No. 92127914_year month__ V. Description of the invention (1) This patent application claims the priority of the United States. Its application number is 10/464782, and the application date is May 21, 2003. All contents and purposes of the patent application are incorporated in the present invention. [Technical Field to which the Invention belongs] The present invention relates to an integrated circuit (IC) layout (wiring) and design, and more specifically, to optimization of an integrated circuit clock network capacitance. [Previous Technology] Today's digital integrated circuits can incorporate millions of transistor components in a small area. These components implement switch control and perform their functions based on the boundary information of the core clock signal. The core clock signal frequency has recently exceeded a gigahertz (G Η z) threshold. The higher the clock frequency, the more difficult it is to control the core clock signal capacitance. At that time, the capacitive coupling of the signal traces that are inevitably routed to the upper and lower signal traces of the layer where the clock traces are located becomes more sensitive. The traditional technique of controlling capacitance is to shield two ground traces on the same layer. Clock routing between. Figure 1 is a partial top view of the integrated circuit (1C) 100, which shows the traditional method of clock trace capacitance control. As can be seen in the figure, the clock traces 1 0 1 are routed on layer 1 0, and the ground traces 1 0 3, 1 0 5 are routed at equal distances to the clock traces 1 0 1 and grounded through two equal widths of the shield. A clock trace 1 0 1 between traces 10 3 and 105 can make the clock trace isolated from other signals π on the same layer 10 7. For example: the width of each ground trace 1 0 3, 1 0 5 is "W π", and the distance between the signal trace 1 0 1 and each ground trace is n D π. The capacitance of the ground terminal of the line is the ground trace 1 0 3, 1 0 5
12445831244583
_ 案號92127914_年月 日 格|T 五、發明說明(2) 寬度W及每一接地走線1 0 3、1 〇 5與時脈走線1 之間距 的函數。透過採用等寬度接地走線1 0 3、1 〇 5,且將接地走 線1 0 3、1 〇 5等距離放置在時脈走線1 〇 1的兩側的處理方 式,對於較低時脈頻率來說,就可獲得時脈走線相對均 的單位長度電容,即:C 1 =C2 = C3 = C4。 二 在較低時脈頻率下,如低於1 G Η z,採用傳統技術足以 控制時脈信號電容。但隨著比例描繪(s c a丨丨n g )技術的發 展,當允許設備運行在更高頻率下時,時脈走線丨〇 1的^ 容就會受到不可避免地要佈線在該時脈走線丨上、下層 的信號走線的更多影響。這種影響是由時脈走線丨〇 1和^ 線在另一層1 1 1上且在跨接點丨丨3處從該時脈走線丨下方 跨越通過的信號走線丨〇 9之間的電容c 5、C 6所表示。在跨 接點1 1 3處時脈走線丨0 1對地電容要大於沿時脈走線丨〇ι其 他點上的對地點容。尤其是,在跨接點丨丨3處:_ Case No. 92127914_ year month grid | T V. Description of the invention (2) The width W and the function of the distance between each ground trace 1 0 3, 1 05 and the clock trace 1. By using equal width ground traces 1 0 3, 1 〇5, and placing ground traces 1 0 3, 1 〇5 equidistantly on both sides of clock trace 1 〇1, for the lower clock In terms of frequency, a relatively uniform unit length capacitance of the clock trace can be obtained, that is: C 1 = C2 = C3 = C4. 2. At lower clock frequencies, such as below 1 G Η z, traditional techniques are sufficient to control the clock signal capacitance. However, with the development of sca 丨 ng technology, when the device is allowed to run at higher frequencies, the content of the clock trace 丨 〇1 will inevitably be routed at this clock trace丨 The influence of signal routing on the upper and lower layers is more. This effect is caused by the clock traces 丨 〇1 and ^ lines on the other layer 1 1 1 and at the crossover point 丨 3 from the clock trace 丨 across the signal traces passing under 〇 09 The capacitances c 5 and C 6 are represented. At the crossover point 1 1 3 clock traces 丨 0 1 The capacitance to ground is greater than the capacitance at other points along the clock traces 丨 〇ι. In particular, at crossover points 丨 丨 3:
Cj + C 5/ C 1 ’且c 4 + C 6 > C 3。在更高時脈頻率下會出現附加電 谷問題’原因是此時在諸如跨接點丨丨3之類的跨接點處時 脈走線1 0 1的電阻—電容(Rc )網路特性會顯著改變,從而 導致上升時間增加,延遲現象,以及此處將述及的相對歪 斜内部時脈信號。 _ h現在請參閱第2圖,該方塊示圖2 0 0表示非均勻走線電 ,疋士何V致與内部時脈歪斜(c 1 〇 c k s k e w )有關的計時問 題。方塊jf圖2 〇 〇中包括兩個連續的邏輯塊,即:邏輯塊1 2 0 和邏輯塊2 2 〇 2,它們均為管線式資料電路的一部分。 在該類電路中,資料連同假定同步運行的内部時脈信號Cj + C 5 / C 1 'and c 4 + C 6 > C 3. At higher clock frequencies, an additional valley problem will occur. The reason is that at this time, the resistance-capacitance (Rc) network characteristics of the clock trace 1 0 1 at a cross-connect point such as the cross-connect point 丨 3 Significant changes can result in increased rise times, delays, and relatively skewed internal clock signals as will be discussed here. _ h Please refer to FIG. 2. The block diagram 2 0 indicates non-uniform wiring, and the voltage V causes timing problems related to the internal clock skew (c 1 0 c k s k e w). The block jf in FIG. 2 includes two consecutive logic blocks, that is, a logic block 1 2 0 and a logic block 2 2 02, both of which are part of a pipeline data circuit. In this type of circuit, the data is accompanied by an internal clock signal that assumes synchronous operation
1244583 案號 92127914 Λ_3 曰 修正 五、發明說明(3) LCLK1 204和LCLK2 205 —起同步從一個邏輯塊201提供到 下一個邏輯塊2 0 2。借助於資料匯流排2 0 3,資料從邏輯塊 1 2 0 1提供到邏輯塊2 2 0 2。此處假定資料匯流排2 0 3有效 且在點Α處應閂鎖到邏輯塊2 2 0 2内。在點Β處,資料在資 料匯流排2 0 3上不再有效。為便於描述,信號L C L K 2 2 0 5描 述為延遲性的,故不與信號L C L K 1 2 0 4運行保持相對同步 狀態。LCLK2 205時脈歪斜的原因是LCLK2 204的緩衝邏輯 器(圖中未示出)附近走線跨接所導致的電容不均勻性。 這樣,主時脈分配信號(圖中未示出)的上升和下降時間 就會增加,以致於緩衝邏輯器就會生成一個作為L C L K 1 2 0 4延遲型的内部時脈信號LCLK 2 2 0 5。在點C處信號LCLK2 205有一個閃鎖邊界(latching edge),該邊界可閃鎖住來 自匯流排2 0 3上的無效資料。第2圖所示情況僅為分配時脈 信號電容非均勻性所致時脈歪斜引起的多個模式不同計時 問題中的一個典型例。 因此,當前所需要的是一種方法和設備,其用途是為 包括運行在較高時脈頻率下電路在内的佈線電路和積體電 路(I C )提供時脈走線均勻單位長度電容。 [發明内容] 根據本發明實施形式積體電路(I C )時脈網路電容最 佳化方法包括識別時脈走線和信號走線之間的跨接點,在 識別出的跨接點上將時脈走線電容降低為參考走線電容 值。每一時脈走線均由分佈在該時脈走線兩側的參考走線 所遮罩。將時脈走線電容降低到參考走線電容操作可包括1244583 Case No. 92127914 Λ_3 Name Amendment V. Description of the Invention (3) LCLK1 204 and LCLK2 205 are synchronized from one logic block 201 to the next logic block 202. With the help of data bus 2 0 3, data is provided from logical block 1 2 0 1 to logical block 2 2 0 2. It is assumed here that the data bus 2 0 3 is valid and should be latched into the logic block 2 2 0 2 at point A. At point B, the data is no longer valid on the data bus 203. For ease of description, the signal L C L K 2 2 0 5 is described as delayed, so it is not kept relatively synchronized with the operation of the signal L C L K 1 2 0 4. The cause of the skew of LCLK2 205 is the non-uniformity of capacitance caused by the crossover of the traces near the buffer logic (not shown) of LCLK2 204. In this way, the rise and fall time of the main clock distribution signal (not shown in the figure) will increase, so that the buffer logic will generate an internal clock signal LCLK 2 2 0 5 as a delay type . The signal LCLK2 205 at point C has a latching edge, which can latch on invalid data from the bus 203. The situation shown in Fig. 2 is only a typical example of the different timing problems caused by clock skew caused by the non-uniformity of the distributed signal capacitance. Therefore, what is currently needed is a method and a device whose purpose is to provide a clock trace uniform unit length capacitor for wiring circuits and integrated circuits (ICs) including circuits operating at higher clock frequencies. [Summary] According to an embodiment of the present invention, an integrated circuit (IC) clock network capacitance optimization method includes identifying a jumper between a clock trace and a signal trace, and identifying the jumper on the identified jumper. The clock trace capacitance is reduced to the reference trace capacitance. Each clock trace is masked by reference traces distributed on both sides of the clock trace. Reducing the clock trace capacitance to the reference trace capacitance operation can include
1244583 案號92127914 年 月 曰 修正 五、發明說明(4) 在識別出的跨接點處縮小參考走線寬度。該方法還可進一 步包括求出時脈走線單位長度電容,求出識別出的跨接點 處時脈走線和信號走線之間的附加電容,求出為抵消附加 電容需要在識別出的跨接點處應採用的參考走線寬度減小 量。積體電路佈局和設計過程中可採用時脈網路最佳化器 控制檔案或應用程式。1244583 Case No. 92127914 Amendment V. Description of the invention (4) Reduce the reference trace width at the identified crossover points. The method may further include finding the capacitance of the unit length of the clock trace, finding the additional capacitance between the clock trace and the signal trace at the identified crossover point, and finding the required capacitance to offset the additional capacitance. The reference trace width reduction that should be used at the jumper. Clock circuit optimizer control files or applications can be used in the integrated circuit layout and design process.
根據本發明實施形式添加一電路到積體電路的方法包 括在第一層的時脈走線兩側分別佈線(繞線)第一和第二接 地走線,確定時脈走線和佈線在第二層上的信號走線之間 的跨接點,分別降低跨接點處第一和第二接地走線寬度。 這兩個接地走線佈線時寬度近似相等,且與時脈走線之間 距離也近似相等。 根據本發明實施形式,積體電路包括位於第一和第二 參考走線之間且與該兩走線距離近似相等的第一層上的時 脈走線,以及跨過時脈走線的第二層上的信號走線。每一 參考走線除在信號走線與其跨接處寬度變窄外,它們具有 近似相等寬度。A method for adding a circuit to an integrated circuit according to an embodiment of the present invention includes wiring (winding) first and second ground traces on both sides of a clock trace on a first layer, and determining that the clock trace and wiring The crossover points between signal traces on the second layer reduce the width of the first and second ground traces at the crossover points, respectively. The two ground traces are approximately the same width when routed, and the distances from the clock traces are also approximately equal. According to an implementation form of the present invention, the integrated circuit includes a clock trace on a first layer located between the first and second reference traces and a distance approximately equal to the two traces, and a second trace across the clock trace. Signal routing on layers. Each reference trace has approximately the same width except that the signal traces and their junctions become narrower.
根據本發明實施形式,運行在電路佈線資料庫的媒體 併入程式編碼包括用於識別信號走線和時脈走線之間跨接 點的第一程式編碼,用於計算具有至少一個跨接點的時脈 走線和相應的佈線在該時脈走線兩側的第一和第二參考走 線之間單位長度電容的第二程式編碼,用於計算在每一跨 接點處由相應信號走線引起的附加電容的第三程式編碼, 用於計算為抵消每一跨接點處該附加電容所需相應參考走According to the implementation form of the present invention, the media-incorporated program code running in the circuit wiring database includes a first program code used to identify a crossover point between a signal trace and a clock trace, and is used to calculate a circuit having at least one crossover point. The second program code of the unit length capacitance between the clock trace and the corresponding wiring between the first and second reference traces on both sides of the clock trace is used to calculate the corresponding signal at each crossover point. The third program code of the additional capacitance caused by the trace is used to calculate the corresponding reference trace required to offset the additional capacitance at each crossover point
第10頁 1244583 _案號92127914_年月日_iMz_ 五、發明說明(5) 線寬度減小量的第四程式編碼。該媒體還可進一步包括第 五程式編碼,用於修改電路佈線資料庫,以便根據所計算 出的寬度減小量來減小參考走線寬度。 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉一較佳實施例,並配合所附圖式,作詳 細說明如下: [實施方式] 以下描述目的是為了讓瞭解本領域技術者能根據特定 應用領域及其要求順利使用本發明。然而對於瞭解本領域 技術者,彳艮明顯情況是,可對所提供的幾個較佳實施形式 進行修改,而此處所定義的一般原理也適用於其他一些實 施形式。因此,本發明並非僅僅局限於此處所述特定實施 形式,而是適用於與本發明所述原理和新穎特徵相關的一 個廣闊領域。 本發明者認識到保持時脈信號走線單位長度電容均勻 性的奮求,尤其是對於運行在較高頻率的積體電路來說更 是如此。因而據此發明了一種時脈信號走線電容波動補償 方法,下面將結合第3圖-第6圖描述本方法。 第3圖繪示一積體電路(1C) 300之局部上視圖,該積 體電路是根據本發明實施例的方法做成,在每單位長度的 核心時脈信號上提供均勻電容。時脈走線1 0 1佈線在層1 0 7 上,信號走線1 0 9佈線在層1 1 1上,類似第1圖所示方式, 形成跨接點1 1 3。與積體電路1 0 0相比,電容C 1、C 3、C 5和 C 6實質上保持不變。值得注意的是所用術語’’跨接點Page 10 1244583 _Case No. 92127914_year month_iMz_ V. Description of the invention (5) The fourth program code of the line width reduction amount. The media can further include a fifth program code to modify the circuit routing database to reduce the reference trace width based on the calculated width reduction. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is described below in detail with the accompanying drawings as follows: [Embodiment] The purpose of the following description is to Those skilled in the art can smoothly use the present invention according to specific application fields and requirements. However, it is obvious to those skilled in the art that several preferred implementation forms provided can be modified, and the general principles defined herein are also applicable to other implementation forms. Therefore, the present invention is not limited to the specific embodiments described herein, but is applicable to a wide field related to the principles and novel features of the present invention. The inventors have recognized the quest to maintain the uniformity of the capacitance per unit length of the clock signal traces, especially for integrated circuits running at higher frequencies. Therefore, a method for compensating for fluctuations in the capacitance of clock signal traces has been invented. This method will be described below with reference to FIGS. 3 to 6. Fig. 3 shows a partial top view of an integrated circuit (1C) 300. The integrated circuit is made according to the method of the embodiment of the present invention to provide a uniform capacitance on the core clock signal per unit length. Clock traces 1 0 1 are routed on layer 10 7 and signal traces 10 9 are routed on layer 1 1 1. Similar to the way shown in Figure 1, a jumper 1 1 3 is formed. Compared with the integrated circuit 100, the capacitors C1, C3, C5, and C6 remain substantially unchanged. It ’s worth noting that the term ‘’
第11頁 1244583 案號 92127914 Λ_η 曰 修正 五、發明說明(6) (crossover point)”通常指這樣一種位置,在該位置處 信號走線與垂直於積體電路層並與時脈走線同線的理論平 面十字交叉或相交,而與特定參考平面或方向(如:上 面、下面、左邊、右邊等)無關。相同信號走線可在多個 跨接點與一時脈走線十字相交,多個不同信號走線也可在 多個跨接點與一給定信號走線十字相交。 如圖所示實施例,積體電路3 0 0在相對很小區域内併 入了很多電晶體元件。時脈走線1 0 1承載具有典型時脈頻 率(例如:1 G Η z或更高)的核心時脈信號。然而本發明所 指電路包括含有印刷電路板(P C B s )或使用某一運行頻率 的類似電路,此處所指運行頻率指在該頻率下跨接點能導 致沿一個或多個時脈信號走線長度上產生附加電容。層/ 1 0 7和1 1 1通常相互平行,且可能相鄰,儘管本發明考慮的 是在它們中間有一些中間層(一層或多層),在這些中間 層記憶體在附加電容,它們改變了沿著給定時脈走線的單 位長度電容。 圖示參考走線3 0 3和3 0 5分別佈線在該信號走線1 0 1兩 側,佈線方式與接地走線1 0 3和1 0 5佈線方式類似。π參考 走線’’可承載任何適當參考電位且包括接地走線。圖示參 考走線3 0 3、3 0 5具有相同寬度W且都與該信號走線1 0 1保持 近似相等的距離D,如同第1圖所示接地走線1 0 3和1 0 5的情 況,這樣通常可獲得相等的均勻單位長度電容C 1和C 3,此 時C 1 = C 3。跨接點1 1 3通常產生包括兩個附加跨接點3 0 7 a和 3 0 7 b的跨接位置,在此位置處信號走線1 0 9分別跨接相應Page 11 1244583 Case No. 92127914 Λ_η Revision V. Description of Invention (6) (crossover point) "usually refers to a position where the signal trace is perpendicular to the integrated circuit layer and is in line with the clock trace The theoretical plane crosses or intersects, regardless of the specific reference plane or direction (such as: top, bottom, left, right, etc.). The same signal trace can intersect with a clock trace cross at multiple crossover points, multiple Different signal traces can also cross a given signal trace cross at multiple crossover points. As shown in the figure, the integrated circuit 300 incorporates many transistor components in a relatively small area. The pulse trace 1 0 1 carries the core clock signal with a typical clock frequency (for example: 1 G Η z or higher). However, the circuit according to the present invention includes a printed circuit board (PCB s) or uses a certain operating frequency. The similar operating circuit here refers to the operating frequency at which the crossover point can cause additional capacitance along the length of one or more clock signal traces. Layers / 1 0 7 and 1 1 1 are usually parallel to each other and may Adjacent The present invention considers that there are some intermediate layers (one or more layers) between them, and in these intermediate layers, the memory has additional capacitance, which changes the unit length capacitance along a given pulse line. Reference trace 3 0 3 and 3 0 5 are routed on both sides of the signal trace 1 0 1, and the wiring is similar to that of the ground traces 10 3 and 105. The π reference trace can carry any appropriate reference potential and includes ground The traces in the figure. The reference traces 3 0 3 and 3 0 5 have the same width W and are kept at approximately the same distance D from the signal trace 1 0 1 as shown in Figure 1. Ground traces 1 3 and 1 In the case of 0 5, this usually results in equal uniform unit length capacitors C 1 and C 3, where C 1 = C 3. Jumper 1 1 3 usually results in two additional jumpers 3 0 7 a and 3 0 7 b crossover position at which signal traces 1 0 9 crossover respectively
第12頁 1244583 _ 案號 92127914 五、發明說明(7) 參考走線303和305。參考走線3〇3和3Q5在各自跨接點3〇7a 和3 0 7 b處寬度變窄,其寬度值變為新值” W2” 。在圖示配置 狀態下,參考走線刻有弓形或弧形刻槽3 〇 9 a和3 〇 9 b,這兩 個刻槽對稱为佈在參考走線3 〇 3和3 0 5的兩側,以便在跨接 點307a和307b處獲得新的寬度值μ。 刻槽(η 〇 t c h ) 3 0 9 a和3 0 9 b分別用於減小參考走線3 〇 3和 3 〇 5寬度’因此也相應地將跨接點3 0 7a和3 〇 7b處的電2 和C4分別減小到C7和C8。尤其是,該減小後的電容C7用於 抵消附加電容C 5 ’目的是維持單位長度電容值為c 1 ,即: C 7 + C 5 = C 1 。採用類似方式,該減小後的電容c 8用於抵消附 加電容C6,目的是保證單位長度電容值為c3,即: C8 + C6 = C3。總之,在與跨接點丨13相關的跨接點3〇7a和 3 0 7 b處,隔離的參考走線3 〇 3和3 〇 5上開有刻槽可降低時脈 -參考走線電容(例如:將C2降到C7,將C4降到C8 )以便 補償時脈-相鄰信號走線電容(例如·· C 5和c 6 ),目的是 讓跨接點1 1 3處時脈走線1 0 1電容實質上等於所期望的時脈 網路均勻單位長度電容。 對稱放置和對稱形狀的弧形刻槽提供了 一種為進行電 容補償而減小傳導走線寬度的簡單且易實施的方案。但還 應考慮幾個偏差。在保持電學和機械統一性的同時,允許 將走線修整(t r i m m i n g )成足以達到所需電容減小要求的任 幵7狀或形式。此時可採用正方形,但過尖的角度會導致 出現某些不希望的結果。弧形刻槽沒有尖角。此時^將正 方形刻槽的角和邊更改成圓形。可考慮在傳導走線一側開Page 12 1244583 _ Case No. 92127914 V. Description of the invention (7) Refer to traces 303 and 305. The reference traces 303 and 3Q5 become narrower at their respective junctions 3007a and 3 07b, and their width values become the new values "W2". In the configuration shown in the figure, the reference traces are engraved with arcuate or arc-shaped grooves 3 009 a and 3 009 b. These two pairs of grooves are called two sides of the reference traces 3 〇 03 and 305 To obtain a new width value μ at the junctions 307a and 307b. Notch grooves (η 〇tch) 3 0 9 a and 3 0 9 b are used to reduce the width of the reference traces 3 0 3 and 3 0 5 ', respectively. Therefore, the crossover points 3 0 7a and 3 0 7b Electricity 2 and C4 are reduced to C7 and C8, respectively. In particular, the reduced capacitance C7 is used to offset the additional capacitance C 5 ′ in order to maintain the capacitance value per unit length as c 1, that is, C 7 + C 5 = C 1. In a similar manner, the reduced capacitance c 8 is used to offset the additional capacitance C 6, and the purpose is to ensure that the capacitance value per unit length is c 3, that is, C 8 + C 6 = C 3. In short, at the jumper points 307a and 3 07b related to the jumper point 丨 13, the isolated reference traces 3 〇3 and 305 are notched to reduce the clock-reference trace capacitance. (Eg: C2 to C7, C4 to C8) in order to compensate the clock-adjacent signal trace capacitance (such as C 5 and c 6), the purpose is to make the clock at the jumper 1 1 3 The line 1 0 1 capacitance is substantially equal to the desired uniform unit length capacitance of the clock network. Symmetrically placed and symmetrically shaped arc-shaped grooves provide a simple and easy-to-implement solution for reducing the width of conductive traces for capacitance compensation. However, several deviations should be considered. While maintaining electrical and mechanical uniformity, it is allowed to trim the traces (t r m m i n g) into any shape or form sufficient to meet the required capacitance reduction requirements. Squares can be used at this time, but excessively sharp angles can cause some undesirable results. The curved notches have no sharp corners. At this point ^ change the corners and sides of the square notch to a circle. Consider opening on the side of the conductive trace
第13頁 1244583 案號 92127914_年月日_修正 五、 發明說明(8) 單 個 刻 槽 以 達 到 所 需 走 線 寬 度 減 小 程 度 的要求 , 缺 * 而在兩 側 開 刻 槽 方 式 時 每 個 刻 槽 皆 採 用 較 小 尺 寸的話 亦可 。為達 到 所 需 的 寬 度 縮 減 在 一 側 所 開 單 個 弧 形刻槽 尺寸 需比所 期 望 的 刻 槽 尺 寸 長 〇 為 減 小 弧 線 長 度 可採用 較小 弧線半 徑 但 這 樣 的 結 果 可 能 導 致 走 線 邊 緣 變 尖。 第 4圖表示用於根據本發明實施時脈網路’ 電容最佳化 的 積 體 電 路 設 計 程 序4 0 0的流程圖 。如第一個方塊4 0 1所 述 e又 計 工 程 師 生 成 一 積 體 電 路 的 電 路 描述。 該電 路描述 可 採 用 熟 籴 心 該 領 域 技 術 者 所 熟 知 的 很 多 格式中 的任 一格式 提 供 比 如 任 一 適 當 的 硬 體 描 述 語 言 ( HDL ) 。硬體描述 語 ( HDL ) 示例包括暫存器傳輸級 (RTL )、 V e r i 1 og硬 體 描 述 語 言 等 〇 如 下 一 個 方 塊4 0 3所示 ,暫存器傳輸級或 硬 體 描 述 語 言 編 碼 稽 案 借 助 於 一 適 當 電 路圖輸 入和 網絡列 表(η e t 1 is t) 程 式 進 行 處 理 如 可 採 用 諸如大 .師圖 形軟體 ( Me n t 〇r G r a ph i C S )提供! 的 電: 圖」 輪 入和網 絡列表工 具 〇 電 路 圖 輸 入 和 網 絡 列 表 程 式 生 成 一 資料庫 以及 一網絡 列 表 j 該 資 料 庫 描 述 電 路 的 組 成 元 件 1 該網絡 列表 描述元 件 之 内 連 結(i n t e r C 0 η η e c t i on ) 〇 電, 路 圖輸入 和網絡列表 資 料 庫 可 採 用 諸 如 A S C I I碼 (美國資訊交換標準碼) 或類 似 格 式 中 的 任 一 適 當 格 式 ο 如 下 一 方 塊4 0 5所述 ,電路圖4 输入和網絡; 0J表資料庫 用 作 繪 圖 和 佈 線 工 具 對 晶 片 進 行 佈 線 0 繪圖和 佈線 工具的 一 個 示 例 是Ca d e n c e設計系統公司提供的V i r t u osoR 系列工 具 〇 繪 圖 工 具 之 所 以 有 效 是 由 於 它 們 含 有全部 設計 專案所Page 13 1244583 Case No. 92127914_Year Month Day_Revision V. Description of the Invention (8) A single groove is used to achieve the required reduction in the width of the trace. It is also possible to use a smaller size for the grooves. In order to reduce the required width, the size of a single arc groove on one side needs to be longer than the desired groove size. To reduce the arc length, a smaller arc radius can be used, but this result may cause the edge of the trace to be sharpened. . Fig. 4 shows a flowchart of an integrated circuit design program 400 for implementing a clock network 'capacitor optimization according to the present invention. As described in the first block 401, e also calculates the circuit description of engineers and students to form an integrated circuit. This circuit description can be provided in any one of many formats known to those skilled in the art, such as any appropriate hardware description language (HDL). Examples of hardware description language (HDL) include register transfer level (RTL), Veri 1 og hardware description language, etc. As shown in the following box 4 0 3, the register transfer level or hardware description language encoding audit Processing with the aid of a suitable circuit diagram input and network list (η et 1 is t) program can be provided, for example, using software such as a master graphics software (Ment 〇r Graph i CS)! Electricity: Diagram ”Rotation and network list tool. Circuit diagram input and network list program generates a database and a network list. The database describes the components of the circuit. The network list describes the internal links of the components (inter C 0 η η ecti on) 〇 Electrical, road map input and network list database can be in any suitable format such as ASCII (American Standard Code for Information Interchange) or a similar format ο circuit diagram 4 input and network as described in box 4 0 5 below 0J table library is used as a drawing and routing tool to route the wafer. 0 An example of drawing and routing tools is the Virtu osoR series of tools provided by Cadence Design Systems. The drawing tools are effective because they contain all design projects.
第14頁 1244583 案號 92127914 A_a. 曰 修正 五、發明說明(9) 需的各種多邊形,這些設計專案包括堆積的光罩層、電晶 體、層間傳導内連線或介層孔(v i a s )。自動佈線工具或其 他類似工具可用於設計諸如C a d e n c e用戶晶片組裝繞線器 (Cadence Custom Chip Assembly Router)之類'的内連 線。如方塊4 0 7所示,繪圖和佈線工具提供了一個佈線資 料庫輸出檔案,也稱作’’磁帶輸出(t a p e 〇 u t ) π 。佈線資 料庫檔案可遵從諸如G D S I I或類似的某個工業標準格式。 G D S I I檔案格式也稱作’’凱碼流(C a 1 m a s t r e a m ) π格式, 該格式最先由通用電氣公司凱碼分部研製成功。該格式所 有權現歸屬於Cade nee設計系統公司。另外還可採用諸如 設計規則檢驗程式之類附加處理步驟,以確定佈線資料庫 檔案是否與晶片製造廠提供的設計產品一致。佈線資料庫 檔案可π變動”或是可修改以便確保滿足所用設計規則。在 下一方塊4 0 9,最終佈線資料庫檔案發送到工廠以便生成 確認光罩,該最終佈線資料庫檔案最終生成晶片。 在積體電路設計過程中,採用了與本發明實施形式相 應的時脈網路最佳化器函數。作為一實施例,時脈網路最 佳化器函數是當作控制檔案4 1 1 ,被設計和佈線工具所使 用以便解釋所選定形狀或所有形狀。控制檔案4 1 1併入一 種程式編碼,該程式編碼通知設計和佈線工具如何實施特 定功能,諸如:在本發明情況下,表現為如何在識別出的 跨接點處縮小參考走線寬度,修整參考走線或在參考走線 上開刻槽。控制檔案4 1 1包括:識別時脈走線跨接點的程式 編碼及為實質維持時脈走線電容均勻性而求出適當參數以Page 14 1244583 Case No. 92127914 A_a. Revision V. Various polygons required for the description of the invention (9) These design projects include stacked photomask layers, electrical crystals, interlayer conductive interconnects or vias (v i a s). Auto-routing tools or other similar tools can be used to design 'inner wires' such as Cadence Custom Chip Assembly Router. As shown in box 407, the drawing and routing tool provides a wiring database output file, also called '' tape output (t ape o u t) π. The wiring library archive may follow an industry standard format such as G DS I or similar. The G D S I I file format is also referred to as the '' Ka code stream (C a 1 m a s t r e a m) π format, which was first developed by the Ka code branch of General Electric Company. Ownership of the format now belongs to Cadenee Design Systems. Additional processing steps, such as design rule verification procedures, can also be used to determine if the wiring database file is consistent with the design product provided by the chip manufacturer. The wiring library file can be changed π ”or can be modified to ensure that the design rules used are met. At the next box 409, the final wiring library file is sent to the factory to generate a confirmation mask, and the final wiring database file finally generates the wafer. During the design of the integrated circuit, a clock network optimizer function corresponding to the implementation form of the present invention is used. As an embodiment, the clock network optimizer function is used as the control file 4 1 1, Used by design and routing tools to explain the selected shape or all shapes. The control file 4 1 1 incorporates a programming code that informs the design and routing tool how to perform a particular function, such as: in the case of the present invention, it appears as How to reduce the width of the reference traces at the identified crossover points, trim the reference traces, or make grooves in the reference traces. The control file 4 1 1 includes: the program code for identifying the clockwise crossover junctions and the maintenance Clock trace capacitance uniformity to find appropriate parameters to
第15頁 1244583 _案號 92127914_年月日__ 五、發明說明(10) 減小與每一跨接點相關的參考走線寬度的程式編碼。 作為另一實施例,時脈網路最佳化器函數可當作應用 程式4 1 3或類似程式以實施,它修改整個佈線資料庫檔 案,目的是識別跨接點並減小相應參考走線寬度,以便從 實質上保持每一時脈走線的均句性電容。佈線資料庫檔案 在其發送到工廠前,會被相應地修改。 第5圖表示時脈網路最佳化器控制檔案4 1 1或時脈網路 最佳化器應用程式4 1 3程式編碼一般功能流程圖5 0 0。該程 式編碼可用於任一適當媒體,諸如:磁性媒體(磁帶、磁 碟機、軟碟等),光學媒體(光碟唯讀記憶體、光碟驅動 器等),電子媒體(隨機記憶體、唯讀記憶體等)等,其 他現在已知或以後發明的媒體。在第一個方塊5 0 1 ,可確 定或識別出一個或多個跨接點。在下一方塊5 0 3,計算具 有至少一個跨接點時脈走線單位長度電容(例如:C 1和C 3 )。在下一方塊5 0 5,計算跨接點處的附加電容(例如: C5和C6)。在下一方塊507,求出為達到電容補償目的而 減小與跨接點相關的參考走線寬度所需參數。例如:該參 數可包括參考走線識別、沿著參考走線跨接點、實施走線 寬度減小、走線修整、開刻槽所需參數等。在最後一個方 塊5 0 9,將走線寬度減小參數用於佈線資料庫從而達到電 容補償目的。方塊5 (H - 5 0 9每次可操作一個跨接點,或每 次可操作佈線資料庫内已識別出的一個跨接點。 現在請參閱第6圖,方塊圖示6 0 0表示在跨接點處如何 根據本發明採用參考信號走線開刻槽方式消除與内部時脈Page 15 1244583 _Case No. 92127914_ Year Month Day__ V. Description of the invention (10) Program code for reducing the reference trace width associated with each crossover point. As another example, the clock network optimizer function can be implemented as an application 4 1 3 or similar program, which modifies the entire wiring database file in order to identify the crossover points and reduce the corresponding reference traces Width so as to maintain the uniform capacitance of each clock trace from virtually. The wiring library file is modified accordingly before it is sent to the factory. Figure 5 shows the clock network optimizer control file 4 1 1 or the clock network optimizer application 4 1 3 program coding general function flow chart 5 0 0. The program code can be used for any appropriate media, such as: magnetic media (tape, disk drive, floppy disk, etc.), optical media (CD-ROM, CD-ROM drive, etc.), electronic media (random memory, read-only memory Media, etc.), etc., other media now known or later invented. At the first block 5 0 1, one or more crossover points can be identified or identified. On the next block 5 0 3, calculate the unit length capacitance (for example: C 1 and C 3) with at least one jumper clock trace. At the next block 5 0 5, calculate the additional capacitance at the crossover point (for example: C5 and C6). In the next block 507, determine the parameters required to reduce the reference trace width associated with the jumper for capacitance compensation purposes. For example, the parameters can include reference trace identification, crossover points along the reference trace, implementation of trace width reduction, trace trimming, and parameters required for grooving. In the last block 509, the trace width reduction parameter is used for the wiring library to achieve the purpose of capacitance compensation. Box 5 (H-5 0 9 can be operated one jump point at a time, or one jump point identified in the wiring library can be operated each time. Now refer to Figure 6, the block icon 6 0 0 indicates that How to use the reference signal trace slotting method to eliminate the internal clock at the crossover point according to the present invention
第16頁 1244583 _____一案號 92127914_ 年_月 日_修正__ 五、發明說明(11) 歪斜相關的計時問題。方塊圖示6 〇 〇可見兩個連續邏輯 塊,邏輯塊1 6 0 1和邏輯塊2 6 0 2,它們均為管線式資料電 路的組成部分。如同結合第2圖所述實施例,資料從邏輯 塊6 0 1傳送到下一邏輯塊6 0 2,傳送時與假定運行同步的内 部時脈信號L C L K 1 6 0 4和L C L K 2 6 0 5同步。資料從邏輯塊1 6 0 1傳送到邏輯塊2 6 0 2通過資料匯流排6 0 3完成。此時假 定資料匯流排6 0 3有效且在點A處該匯流排應閂鎖到邏輯塊 2 6 0 2内。在點B處,資料在資料匯流排6 0 3上不再有效。 為便於描述,信號LCLK 2 6 0 5描述為加速的,原因是根據 本發明在跨接點處對走線開有刻槽。這樣在點A處就存在 一個閂鎖資料上升邊界,與點C情況相反,點C情況如同圖 中虛線所示,此處非補償内部時脈走線具有一個上升邊 界。作為將本發明應用到信號LCLK2 605緩衝器電路(圖 中未示出)附近時脈分佈信號(圖中未示出)的結果,其 運行與信號LCLK1 604同步。因此在點B處LCLK2 605可在 匯流# 6 0 3將有效資料清除之前將該有效資料閂鎖。第6圖 所示僅為本發明多個不同實施形式中的一個實施例,用於 檢測和糾正由非均勻時脈電容所致積體電路計時問題。 當根據本發明實施例採用時脈網路電容最佳化後,可 獲得本發明其他好處和優點。此時可修正跨接點處時脈走 線和參考走線之間的情況,以便抵消信號走線附加電容, 從而獲得時脈信號走線均勻單位長度電容。在更高核心時 脈頻率下,時脈走線阻容網路特徵在修正後的跨接點處不 會明顯改變,上升時間和延遲時間不會明顯增加。這樣,Page 16 1244583 _____ Case No. 92127914_ Year _ Month Day _ Amendment __ V. Description of Invention (11) Timing related to skew. The block diagram 60 shows two consecutive logic blocks, logic block 16001 and logic block 2602, both of which are part of the pipeline data circuit. As in the embodiment described in connection with FIG. 2, the data is transferred from logic block 6 0 1 to the next logic block 6 0 2 in synchronization with the internal clock signals LCLK 1 6 0 4 and LCLK 2 6 0 5 which are supposed to be synchronized. . Data is transferred from logic block 16 0 1 to logic block 2 6 0 2 through the data bus 6 0 3. At this time, it is assumed that the data bus 60 3 is valid and that the bus should be latched into the logic block 2 6 0 2 at the point A. At point B, the data is no longer valid on the data bus 6 0 3. For ease of description, the signal LCLK 2 6 0 5 is described as accelerated because the grooves are notched at the crossover points according to the present invention. In this way, there is a rising boundary of the latch data at point A, which is opposite to the case of point C. The situation of point C is shown by the dashed line in the figure. Here, the non-compensated internal clock routing has a rising boundary. As a result of applying the present invention to a clock distribution signal (not shown) near a buffer circuit (not shown) of the signal LCLK2 605, its operation is synchronized with the signal LCLK1 604. Therefore LCLK2 605 at point B can latch the valid data before bus # 6 0 3 clears the valid data. Figure 6 shows only one embodiment of the present invention in a number of different implementations, and is used to detect and correct timing problems of integrated circuit caused by non-uniform clock capacitance. When the clock network capacitor is optimized according to the embodiment of the present invention, other benefits and advantages of the present invention can be obtained. At this time, the situation between the clock trace and the reference trace at the crossover point can be corrected to cancel the additional capacitance of the signal trace, so as to obtain the uniform unit length capacitance of the clock signal trace. At higher core clock frequencies, the characteristics of the clock trace RC network will not change significantly at the modified crossover points, and the rise time and delay time will not increase significantly. such,
第17頁 1244583 案號 92127914_年月日_修正 五、 發明說明(12) 在 更 時 脈 頻 率 下 伴 隨 時 脈 速 度 增 加 的 同 時 核 心 時 脈 信 號 表 現 出 更 均 勻 的 單 位 長 度 電 容 特 性 〇 另 外 , 由 於 消 除 了 或 控 制 了 負 面 電 容 效 應 ^rL ό又 計 人 員 可 更 白 由 實 施 信 號 走 線 跨 接 時 脈 走 線 的 佈 線 工 作 〇 儘 管 詳 細 描 述 本 發 明 時 採 用 特 定 優 先 實 施 形 式 J 但 其 他 形 式 或 更 改 也 可 能 實 現 且 應 包 括 在 本 發 明 考 慮 範 圍 之 内 〇 例 如 除 白 動 更 改 或 包 括 控 制 軟 體 應 用 程 式 等 電 腦 軟 體 更 改 外 本 發 明 也 適 用 於 電 路 設 計 人 員 手 動 更 改 方 式 〇 另 外 5 本 發 明 還 考 慮 為 達 到 電 容 補 償 而 減 小 參 考 走 線 寬 度 的 很 多 參 數 如 • 刻 槽 類 型 和 尺 寸 或 傳 導 走 線 之 簡 單 修 整 Ο 雖 本 發 明 說 明 的 是 時 脈 走 線 電 容 補 償 本 發 明 還 適 用 於 任 何 參 考 走 線 ( 而 非 時 脈 走 線 ) 遮 罩 的 高 頻 信 號 走 線 且 在 該 參 考 走 線 内 期 望 沿 信 號 走 線 保 持 均 勻 電 容 〇 最 後 J 熟 悉 本 領 域 技 術 者 應 贊 同 在 不 脫 離 本 發 明 之 精 神 和 範 圍 内 他 們 可 採 用 此 處 所 述 概 念 和 幾 個 具 體 實 施 例 作 為 基 礎 對 用 於 完 成 與 本 發 明 同 樣 目 的 的 其 他 結 構 進 行 δ又 計 和 更 改 因 此 本 發 明 之 保 護 範 圍 以 中 請 專 利 範 圍 界 定 者 為 准 〇 雖 夕k Ό、 本 發 明 已 以 較 佳 實 施 例 揭 露 如 上 缺 其 並 非 用 以 限 定 本 發 明 任 何 熟 習 此 技 藝 者 在 不 脫 離 本 發 明 之 精 神 和 ΑτλΓ 犯 圍 内 當 可 作 些 許 之 更 動 與 潤 飾 因 此 本 發 明 之 保 護 範 圍 當 視 後 附 之 中 請 專 利 範 圍 所 界 定 者 為 準 〇Page 17 1244583 Case No. 92127914_year month day_revision V. Description of the invention (12) At the same clock frequency, the core clock signal shows a more uniform capacitance characteristic per unit length while the clock speed increases. Eliminated or controlled the negative capacitance effect ^ rL, and the personnel can make the wiring work more easily by implementing signal traces and crossover the clock traces. Although the specific preferred implementation form J is used when the present invention is described in detail, other forms or changes are also possible. May be implemented and should be included in the scope of the present invention. For example, in addition to white-motion changes or computer software changes including control software applications, the present invention is also suitable for circuit designers to manually modify the way. In addition, the present invention also considers Many parameters such as groove type and rule Simple trimming of inch or conductive traces 0 Although the present invention illustrates clock trace capacitance compensation, the present invention is also applicable to any reference traces (not clock traces) for high-frequency signal It is expected to maintain a uniform capacitance along the signal traces in the traces. Finally, those familiar with the art should agree that they can use the concepts described herein and several specific embodiments as a basis for using within the spirit and scope of the present invention. The other structures that accomplish the same purpose as the present invention are calculated and changed. Therefore, the scope of protection of the present invention is subject to the scope of the patent application. Although the present invention has been disclosed in the preferred embodiment, it is not useful. In order to limit any person skilled in the art of this invention, they can make some changes without departing from the spirit of the present invention and ΑτλΓ. Thus the retouch protection of the present invention when the visual range of the appended patent requested range bounded by predetermined whichever is square
第18頁 1244583 _案號 92127914_年月日_IfJE._ 圖式簡單說明 第1圖繪示用於描述控制時脈走線電容傳統方法的積 體電路(I C )局部區域上視圖。 第2圖繪示非均勻時脈電容如何導致管線式系統計時 問之說明圖。 第3圖繪示一積體電路(1C)的局部上視圖,該積體電 路是根據本發明實施例的方法做成,在每單位長度的核心 時脈上提供均勻電容。 第4圖繪示根據本發明實施例之用於積體電路設計的 流程圖,該積體電路設計係併入時脈網路電容的最佳化。 第5圖繪示控制檔案或第4圖應用程式内之時脈網路最 佳化器程式編碼之一般功能流程圖。以及 第6圖繪示根據本發明管線式系統適當計時圖表。 [圖式標示說明] 100、300:積體電路,101:時脈走線層, 1 0 3、1 0 5 :接地走線,1 0 7、1 1 1 ··接地走線, 1 0 9 :信號走線, 1 1 3、3 0 7 a、3 0 7 b :跨接點, 2 0 0、:方塊示圖,2 0 1、2 0 2 .·輯塊1、輯塊2 2 0 3 :資料匯流排’ 2 0 4、2 0 5 :内部時脈信號L C L K 1、L C L K 2, 3 0 3、3 0 5 ·.參考走線,3 0 9 a、3 0 9 b :刻槽, 4 0 0 :積體電路設計程序, 401:積體電路之電路描述,Page 18 1244583 _Case No. 92127914_Year Month Day _IfJE._ Brief Description of Drawings Figure 1 shows a top view of a partial area of an integrated circuit (IC) used to describe the traditional method of controlling the capacitance of a clock trace. Figure 2 illustrates how non-uniform clock capacitance can cause timing problems in pipelined systems. Fig. 3 shows a partial top view of an integrated circuit (1C), which is made according to the method of the embodiment of the present invention and provides uniform capacitance on the core clock per unit length. Figure 4 shows a flowchart for integrated circuit design according to an embodiment of the present invention, which is integrated with the optimization of the clock network capacitance. Figure 5 shows the general functional flow chart of the clock network optimizer program code in the control file or Figure 4 application. And FIG. 6 shows an appropriate timing chart of the pipeline system according to the present invention. [Illustration of diagrams] 100, 300: integrated circuit, 101: clock trace layer, 1 0 3, 1 0 5: ground trace, 1 0 7, 1 1 1 ·· ground trace, 1 0 9 : Signal routing, 1 1 3, 3 0 7 a, 3 0 7 b: jumper, 2 0 0,: block diagram, 2 0 1, 2 0 2. · Compilation block 1, compilation block 2 2 0 3: data bus' 2 0 4, 2 0 5: internal clock signal LCLK 1, LCLK 2, 3 0 3, 3 0 5 ·. Reference trace, 3 0 9 a, 3 0 9 b: groove, 4 0 0: integrated circuit design program, 401: circuit description of integrated circuit,
第19頁 1244583 _案號92127914_年月日__ 圖式簡單說明 4 0 3 :電路圖輸入和網絡列表, 4 0 5 :繪圖和佈線工具, 4 0 7 :積體電路佈線資料庫, 4 0 9 _·將積體電路最終佈線資料庫發送到晶片製造廠, 4 1 1 :時脈網路最佳化器控制檔案, 4 1 3 :時脈網路最佳化器應用程式, 5 0 0 :時脈網路最佳化器應用程式4 1 3程式編碼之一般 功能流程圖, 5 0 1 :識別跨接點, 5 0 3 :計算帶有跨接點的時脈走線單位長度電容, 5 0 5 :計算跨接點處單位長度附加電容, 5 0 7 :求出為進行電容補償所需相應參考走線寬度減小 參數, 5 0 9 ·.將求出的參考走線寬度減小參數應用到佈線資料 庫檔案, 600:方塊圖示,601、602: 邏輯塊1、邏輯塊2, 6 0 4 、6 0 5 :内告P日寺脈信號LCLK1 、LCLK2 , 6 0 3 :資料匯流排Page 19 1244583 _Case No. 92127914_Year Month Day__ Brief description of diagrams 4 0 3: Circuit diagram input and network list, 4 0 5: Drawing and wiring tools, 4 0 7: Integrated circuit wiring database, 4 0 9 _ · Send the final wiring database of the integrated circuit to the chip manufacturer, 4 1 1: Clock network optimizer control file, 4 1 3: Clock network optimizer application, 5 0 0 : Clock network optimizer application program 4 1 3 General function flowchart of program coding, 5 0 1: Identify jumper, 5 0 3: Calculate the unit length capacitance of clock trace with jumper, 5 0 5: Calculate additional capacitance per unit length at the crossover point, 5 0 7: Find the corresponding reference trace width reduction parameter required for capacitance compensation, 5 0 9 ·. Reduce the obtained reference trace width The parameters are applied to the wiring database file, 600: block diagram, 601, 602: logic block 1, logic block 2, 6 0 4, 6 0 5: internal report P-day pulse signal LCLK1, LCLK2, 6 0 3: data Bus
Cl、C2、C3、C4、C5、C6:電容, D :信號走線與接地走線之間的距離, W :走線寬度,W2 :跨接點處的寬度。Cl, C2, C3, C4, C5, C6: Capacitance, D: Distance between signal trace and ground trace, W: trace width, W2: width at the crossover point.
第20頁Page 20
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/464,782 US7131083B2 (en) | 2002-06-18 | 2003-05-21 | Optimization of clock network capacitance on an integrated circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200426560A TW200426560A (en) | 2004-12-01 |
TWI244583B true TWI244583B (en) | 2005-12-01 |
Family
ID=34272417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92127914A TWI244583B (en) | 2003-05-21 | 2003-10-08 | Optimization method of clock network capacitance on an integrated circuit |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN1266758C (en) |
TW (1) | TWI244583B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100357023C (en) * | 2005-07-28 | 2007-12-26 | 中国科学院大连化学物理研究所 | Method for preparing metal ruthenium nano-wire |
CN105810237B (en) * | 2016-03-15 | 2018-08-21 | 西安紫光国芯半导体有限公司 | One kind is about DRAM clock tree Wiring structure |
-
2003
- 2003-10-08 TW TW92127914A patent/TWI244583B/en not_active IP Right Cessation
- 2003-10-16 CN CN 200310101403 patent/CN1266758C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CN1266758C (en) | 2006-07-26 |
TW200426560A (en) | 2004-12-01 |
CN1514476A (en) | 2004-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7943436B2 (en) | Integrated circuit devices and methods and apparatuses for designing integrated circuit devices | |
US11775725B2 (en) | System and computer program product for integrated circuit design | |
US6622294B2 (en) | Adaptive power routing and shield sharing to reduce shield count | |
US6453447B1 (en) | Method for fabricating integrated circuits | |
US20160147928A1 (en) | Method, device and computer program product for integrated circuit layout generation | |
TW201544897A (en) | Mask-aware routing and resulting device | |
US9785740B2 (en) | Computer implemented system and method for modifying a layout of standard cells defining a circuit component | |
US20040025125A1 (en) | Correction of spacing violations between design geometries and wide class objects of dummy geometries | |
US6651232B1 (en) | Method and system for progressive clock tree or mesh construction concurrently with physical design | |
US20040019868A1 (en) | Correction of width violations of dummy geometries | |
US20040019861A1 (en) | Automated design rule violation correction when adding dummy geometries to a design layout | |
US10534884B2 (en) | Layout of large block synthesis blocks in integrated circuits | |
US20040019867A1 (en) | Correction of spacing violations between dummy geometries and wide class objects of design geometries | |
TWI244583B (en) | Optimization method of clock network capacitance on an integrated circuit | |
CN102664142B (en) | Insertion method for filling redundant polysilicon strip arrays in existing layout | |
US20040019866A1 (en) | Correction of spacing violations between wide class objects of dummy geometries | |
US7886240B2 (en) | Modifying layout of IC based on function of interconnect and related circuit and design structure | |
US11900041B2 (en) | Via coloring methods and systems | |
US7131083B2 (en) | Optimization of clock network capacitance on an integrated circuit | |
US10540470B1 (en) | Generating a power grid for an integrated circuit | |
Xiang et al. | An ECO routing algorithm for eliminating coupling-capacitance violations | |
JPH11312185A (en) | Method for preparing layout data | |
Zhang et al. | Wire shaping is practical | |
JPH0877243A (en) | Load capacity arithmetic method, delay arithmetic method, and method for designing semiconductor integrated circuit | |
JPH04132237A (en) | Method of calculating capacity between wiring of electronic circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Expiration of patent term of an invention patent |