TWI244477B - Compositions comprising higher diamondoids and processes for their separation - Google Patents

Compositions comprising higher diamondoids and processes for their separation Download PDF

Info

Publication number
TWI244477B
TWI244477B TW91100771A TW91100771A TWI244477B TW I244477 B TWI244477 B TW I244477B TW 91100771 A TW91100771 A TW 91100771A TW 91100771 A TW91100771 A TW 91100771A TW I244477 B TWI244477 B TW I244477B
Authority
TW
Taiwan
Prior art keywords
scope
component
patent application
composition
diamond
Prior art date
Application number
TW91100771A
Other languages
Chinese (zh)
Inventor
Jeremy E Dahl
Robert M Carlson
Original Assignee
Chevron Usa Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Usa Inc filed Critical Chevron Usa Inc
Application granted granted Critical
Publication of TWI244477B publication Critical patent/TWI244477B/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Higher diamondoids ranging from tetramantanes through undecamantanes are disclosed in isolated and enriched forms. Methods for obtaining these higher diamondoids are disclosed, as well.

Description

1244477 A7 一丨· .. B7 五、發明説明(1 ) 相關矣參考 本中凊案依據35 USC 1.1 19(e)主張下列美國專利申請案 〜1k 先權.i,i9,2〇〇i 申請之 Serial Numbers 60/262,842 ; 6,2 1,2001 中請之 6〇/3〇0,148 ; 7,20,2001 中請之 60/307,063 ; 8,15,2001 申請之 6〇/3 12,563 ; 9,5,2001 申請之 60/3 17,546 ; 9,2〇,2〇〇1_ 請之 6〇/323,883 ; 12,4,2001 中請之 60/334,929 ; 12,1,2001 申請之 60/334,938 ;及 12,12,2001 申請之 1〇/〇12,3 36,所有均在此提出供參考。 發明背景 發明領域 發月係針對單離或冨含高級鑽石樣成分,且針對包括 種或夕種咼級鑽石樣成分之組合物。本發明亦針對自含 、種或夕種兩級鑽石樣成分之原料分離且單離高級鑽石樣 成分成為可回收餾份之新穎方法。 參考 下列a告及專利以上標編號列於本申請案中:1244477 A7 I 丨 .. B7 V. Description of the Invention (1) Relevant (refer to this document) Claims based on 35 USC 1.1 19 (e) claim the following U.S. patent applications ~ 1k preemptive rights. I, i9, 2000 applications Serial Numbers 60 / 262,842; 6,2 1,2001 requested 60 / 300,148; 7,20,2001 requested 60 / 307,063; 8,15,2001 applications 60/10 / 3,563; 9, 5,2001 applications 60/3 17,546; 9,20,2001_ applications 60 / 323,883; 12,4,2001 applications 60 / 334,929; 12,1,2001 applications 60 / 334,938; and 12,12,2001 application 10 / 012,336, all of which are hereby incorporated by reference. BACKGROUND OF THE INVENTION FIELD OF THE INVENTION The present invention is directed to compositions that are isolated or contain high-grade diamond-like ingredients, and are directed to a composition that includes a variety of diamond-like ingredients. The present invention is also directed to a novel method for separating raw materials containing two grades of diamond-like components, and separating high-grade diamond-like components into recoverable fractions. References The following notices and patent superscript numbers are listed in this application:

Fort,Jr‘,等人.,金剛烷:鑽石樣結構之推論,chem Rev.,: 277-300 (1964) ^ Sandla Natlonal Laboratones (2〇〇〇),Sandia製造之世界 罘一鑽石微機械,Press Release,(2/22/2〇〇〇) www gov. 八Lln,寺人.,深石油儲槽燃料中天然產生之(C22H28),五 金剛烷(c26H32)及六金剛烷(C3gH36),(1〇):151入152 1 (1995) 1Fort, Jr ', et al., Adamantane: The Inference of Diamond-Like Structures, chem Rev.,: 277-300 (1964) ^ Sandla Natlonal Laboratones (2000), World's First Diamond Micromachinery by Sandia, Press Release, (2/22 / 2OO) www gov. Eight Lln, Teren., Naturally occurring in deep oil storage tank fuel (C22H28), metal adamantane (c26H32) and hexaamantane (C3gH36), (10): 151 to 152 1 (1995) 1

Chen,等人.,高純度鑽石樣餾份及成分之單離,u s 1244477 A7 B7 五、發明説明(2 )Chen, et al., Isolation of high-purity diamond-like fractions and components, us 1244477 A7 B7 V. Description of the invention (2)

Patent No. 5,414,189, issued May 9, 1995 )Alexander,等人.,自烴餾份移除鑽石樣化合物,u s. Patent No. 4,952,747,August 28,1990受讓 6 Alexander,等人.,烴餾份之純化,U,S. Patent No. 4,952,748, August 28,1990受讓 7 Alexander,等人.,自烴餾份移除鑽石樣化合物,u s Patent No. 4,952,749, August 28,1990受讓Patent No. 5,414,189, issued May 9, 1995) Alexander, et al., Removal of Diamond-Like Compounds from Hydrocarbon Distillates, US Patent No. 4,952,747, August 28, 1990 Assignment 6 Alexander, et al., Hydrocarbon Distillation 7 Purification, U.S. Patent No. 4,952,748, August 28, 1990 7 Alexander, et al., Diamond-like compounds removed from hydrocarbon fractions, us Patent No. 4,952,749, August 28, 1990

Alexander,等人.,煙館份足純化,u s. Patent No. 4,982,049, January 1,1991 受讓 9 Swanson,使用溶劑系統萃取鑽石樣之方法,u.S. Patent No. 5,461,184,October 24,1995 受讓 1G Partndge,等人.,濃縮含鑽石樣烴溶劑之形狀選擇 法,U.S. Patent No. 5,019,665, May 28,1991 受讓 "Dahl,等人.,當作天然油裂解指示劑之鑽石樣烴, Nature,, 54-57 (1999). 12 McKervey,大鑽石樣烴之合成方法,Tetrahedr〇n,97卜 992 (1980).Alexander, et al., Tobacco House Purification, US Patent No. 4,982,049, January 1, 1991 Assignment 9 Swanson, Method for Extracting Diamond Samples Using a Solvent System, uS Patent No. 5,461,184, October 24 , 1995 Assigned 1G Partndge, et al., Shape Selection Method for Concentrated Diamond-Like Hydrocarbon Solvents, US Patent No. 5,019,665, May 28, 1991 Assigned " Dahl, et al., As an indicator of natural oil cracking Diamond-Like Hydrocarbons, Nature, 54-57 (1999). 12 McKervey, Synthesis of Large Diamond-Like Hydrocarbons, Tetrahedrón, 97, 992 (1980).

Wu,等人.,南黏度指數潤滑油流體,No. 5,306,85 1, April 26,1994受讓. 14 Chung等人,鬲能量密度液體燃料近來之發展,Energy and Fuels, 64 1 -649 (1 999). 15 Balaban et al.,鑽石烴“之系統分類及命名,Wu, et al., Southern Viscosity Index Lubricant Fluid, Assigned No. 5,306,85 1, April 26, 1994. 14 Chung et al., Recent Development of Energy Density Liquid Fuels, Energy and Fuels, 64 1 -649 ( 1 999). 15 Balaban et al., Systematic Classification and Naming of Diamond Hydrocarbons,

Tetrahedron,34,3599-3609. 所有上述公告及專利均在此提出供參考,且各單獨公告 -5- 本紙張尺度適用中國國家標準(CMS) A4規格(21〇x 297公董) 1244477Tetrahedron, 34, 3599-3609. All of the above announcements and patents are hereby incorporated by reference, and each is separately announced. -5- This paper size applies to the Chinese National Standard (CMS) A4 specification (21〇x 297 public directors) 1244477

成專利特別且單獨指示者亦全部在此提出供參考。 绩石樣為帶有含疊加在鑽石結晶晶格之碳原子骨架之特 刈硬之結構(見圖1)。金剛烷(十碳分子)為鑽石樣系列之最 J、組伤’包含一籠狀鑽石結晶次單元。金剛境為市售,且 廣用作化學中間物。其可自石油合成且回收。二金剛烷含 一面融5之鐵石次單元,三金剛燒含三面。此等三種物質 均可自石油合成且單離,且在研究上受到矚目。金剛烷、 二金剛烷及三金剛烷歸類為&quot;低級鑽石樣&quot;。四金明烷、五 金剛烷等具有與低級金剛烷不同之特性(包含多異構物、 對掌性及超過四金剛烷、多分子量形式),且歸類為”高級 鑽石樣&quot;。雖然僅合成高級鑽石樣之一,但已列出其與結 構及假設之性質相關之概念。 ° 雖然金剛 了解應為四 在鑽石晶格 此等異構物 種四金剛烷 金剛燒之數 各較高數目 單元可共用 例,亦即縮 級鑽石樣族 剛貌至十一 低級鑽石 烷、二金剛烷及三金剛烷顯示非異構物,但需 :不同異構之四金剛垸;可以以不同方式叠: 中I四種含四種鑽石籠狀次單元之不同形狀。 (二為立體異構物(彼此間鏡面呈像)。因為 各具有可融合下一鑽石籠單元之十面,因此四 目增加超過四金剛烷。可能之異構物數目隨f 之鑽石樣系列急速的增加。而且, =音 部分高級鑽石樣中之單一面,因此氯 合程度亦顯示增加之變[導致増力口各後嗜古 之不同分子量(圖υ。圖2顯示針對範圍為二 金剛烷之高級鑽石樣計算之不同系列分子θ ^ 樣實際上係存在每一種石油(油及氣體濃:物) -6- 1244477 五、發明説明(4 以及油源岩石萃取物中。Η 中 &gt;曰r Β ^又鑽石樣天然濃縮物隨 π八。例如’加州中央山谷之相對低熟化度粗油中之 ς甲基广金剛燒濃度為數啊(每依萬份)。美…紀 Smackover Formation, Gulf Coasts ^ 人,、w、 L〇aSt〈低熱化度油源之甲基二 至岡度為20_3〇ppm。因a鑽石接、 一 、、 U為缉石樣又安定性高於石油 k,木度燃燒之石油,在高敎 、、 仏门”、、卜、、工歷貫質裂解使其甲基金 剛义元〉辰度為數千ppm。伸;^ 了 了妒— 一 &quot;PP仁亚不了鮮在天然系統中如何形成 南級鑽石樣,但可能包含需要數百萬年之製程。 裝 :包含四金剛垸、五金剛垸等之高級鑽石樣相對的受到少 許汪目。事實上,本發明者Dahl及Carh〇n在研究前,已經 在U9,200丨中請之美國專利申請案第6〇/262,842號及許多 後續文獻中具體化,此等化合物係假設僅合成一種化合物 及數種其他暫時一致(但非單離)之化合物。尤其, McKervey等人提出使用人工多段製程低產率下合成反-四 金剛烷。12高級鑽石樣無法藉由使用低級鑽石樣所用之碳 化異構化法合成。Lln等人單由質譜建議在深石油儲槽中 存在四金剛烷、五金剛烷及六金剛烷,且不需任何單離物 質。3槽物質中可能存在之含鑽石樣原料蒸餾後回收之四 金剛燒及五金剛烷已由Chen等人4討論。而且,其並非針 對該槽物質中之單離物質。 至於額外之背景,指出者為本發明者分開單離高級鑽石 樣環六金剛烷’最濃縮之六金剛烷系列,且使本發明擁有 專利申請案。 總s足’並未被確認或單離或其他之高級鑽石樣提供下 -7- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477The special and individual designators of patents are also all hereby incorporated by reference. The stone sample is a very hard structure with a carbon atom skeleton superimposed on the crystal lattice of the diamond (see Figure 1). Adamantane (ten carbon molecules) is the most J-shaped group of diamond-like series, which contains a cage-shaped diamond crystal subunit. King Kong is commercially available and widely used as a chemical intermediate. It can be synthesized from petroleum and recovered. Diadamantane contains iron side subunits with 5 melting sides, and Sanadam firing contains 3 sides. These three substances can be synthesized from petroleum and isolated, and have attracted research attention. Adamantane, diamantane and triamantane are classified as &quot; lower diamond-like &quot;. Tetra adamantane, metal adamantane, etc. have different characteristics from lower adamantane (including polyisomers, palmarity and more than tetramantane, multiple molecular weight forms), and are classified as "advanced diamond-like". Although only Synthesize one of the advanced diamond samples, but its concepts related to the structure and hypothetical properties have been listed. ° Although King Kong understands that it should be a higher number of units in the diamond crystal lattice, such heterogeneous species, tetramantane and diamond. Common examples, that is, the reduced diamond-like family rigid appearance to eleven lower diamond alkane, diamantane and triamantane show non-isomers, but need: four isomers of different isomers; can be stacked in different ways: The four types of Chinese I contain four different diamond cage-shaped subunits. (Two are stereoisomers (mirror images of each other). Because each has ten faces that can be fused to the next diamond cage unit, the four meshes increase by more than four. Tetra adamantane. The number of possible isomers increases rapidly with the diamond-like series of f. Moreover, the single face in the high-grade diamond sample of the phonogram, so the degree of chlorination also shows an increasing changeDifferent molecular weights (Figure υ. Figure 2 shows the calculation of different series of molecules θ ^ for advanced diamond samples in the range of diadamantane. In fact, every petroleum (oil and gas concentration: substances)-6-1244477 V. Description of the invention (4 and oil source rock extracts. Η Medium &gt; said r Β ^ and diamond-like natural concentrate with π 八. For example, the concentration of methyl glutamate in crude oil of relatively low maturity in the Central Valley of California is several. Ah (per 10,000 parts). The United States ... Smackover Formation, Gulf Coasts ^ person, w, L〇aSt <low heat degree oil source of methyl 2 to Gang degree of 20_30ppm. Because a diamond connection, one, U and U are stone samples with stability higher than petroleum k, and the wood burning oil is cracked at high temperature, high temperature, high temperature, high temperature, high temperature, high temperature, and high temperature. Thousands of ppm. Extension; ^ I got jealous-one &quot; PP Renya can't form how to form a South-level diamond sample in the natural system, but may include a process that takes millions of years. Equipment: including four diamonds, metal hardware High-grade diamond-like objects are relatively slightly blinded. In fact, the present invention The author Dahl and Carhon have been embodied in U.S. Patent Application No. 60 / 262,842 and many subsequent documents that have been requested in U9,200 丨 before the research. These compounds are assumed to synthesize only one compound and several other Temporarily consistent (but not isolated) compounds. In particular, McKervey et al. Proposed the use of an artificial multi-stage process to synthesize trans-tetramantane at low yields. 12 Advanced diamond samples cannot be synthesized by the carbon isomerization method used for lower diamond samples. .Lln et al. Suggested that the presence of tetramantane, metal adamantane and hexamantane in deep oil storage tanks by mass spectrometry alone, without the need for any single-ionized substances. Diamond-like raw materials that may be present in the 3 tanks were recovered after distillation Tetragonam and metal adamantane have been discussed by Chen et al.4. Moreover, it is not directed to the isolated material in the tank material. As for the additional background, the presenter has separated the single-advanced diamond-like cyclohexamantane's most concentrated hexamantane series for the present inventors, and has patented the present invention. The total s foot ’has not been confirmed or provided with single diamonds or other advanced diamond samples. -7- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 1244477

列異議:異四金剛严八 2 由本發明者發現。成—及未取代之環六金剛烷-分別 ,^ ρ 發明概要 本發明係提供—種含 發明亦提供—種舍冬田:或單離化合物之高級鑽石樣。本 物(&amp;彡Α,,二田s或單離化合物之刀讀高級鑽石樣異構 備舍八芬上 锬成y刀,)。另外,本發明提供一種製 .4, ^ ^ 及鑽石樣及高級鑽石樣成分之方法。 依據本發明,係星 供r接 、離出結晶柱之各種先前未使用之高級 鑽石樣,包含四金剛卢x人门丨 w j心、五金剛烷、六金剛烷、七金剛 坑、八金剛烷、九合 古 “ ^元’甚至是十金剛垸。較高分子量 南、、及績石樣之單龜由女&gt; ^ 觀祭尤其不被看好,因為各鐵石樣 狹(四對五等)之厶景铒、人丄 ^ 、 &quot;置對於加於結構中之各結晶次單元係以 、 之Q子下卩牛。思指單離之十金剛烷在原料中普遍約為 任-種四金剛烷之例如約1〇-6倍,且包含先前技藝中合成 之物種。 附圖簡要敘述 圖1庹月鑽石樣 &lt; 蘢狀結構及鑽石之相互關係。特別說 明者為鑽石樣結構與鑽石晶格次單元之關係。 圖2為敘述以各鬲級鑽石樣系列顯示之不同分子量之 表。 圖j說明本發明提供之四金剛垸結構。 圖4过明與鑽石晶格有關之具有碳骨架之四種四金剛 烷,且可看到其100晶格面(圖4A)、n〇晶格面(圖4]8)及111 鑽石晶格面(圖4C)。 -8- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477 A7 B7 五、發明説明(6 圖5說明本發明提供之五金剛烷結構。 圖6A、6B、6C及6D說明本發明提供之六金剛烷結構。 圖7A、7B及7C說明本發明提供之七金剛烷結構。但僅 顯示各立體異構物之一。 圖8說明本發明提供之八金剛燒結構。且僅顯示500、 486、472及432分子量態之實例。 圖9 4明本發明提供之九金剛垸結構。且僅顯示各分子 量族之實例。 圖1 0說明本發明提供之十金剛烷結構,且僅顯示各分子 量族之實例。 圖11說明本發明提供之^金剛烷結構,且僅顯示各分 子量族之實例。 圖12提供代表含高級鑽石樣餾份及單獨高級鑽石樣成分 之單離中所用各步騾之流程圖。需了解各步驟在部分例中 可依不同順序使用,且可能在實例中討論。 圖13A及13B為本申請案中包含之各種高級鑽石樣gc/ms 及HPLC性質知彙總。 圖14顯示用於單離單獨四金剛烷及五金剛烷之二七扎c 管柱策略。 〜 圖15說明發展分子電子裝置中所用相對於c 、8 、 9及10 。 (BuckminSterfuUerene)及代表性碳次微米管之選擇高級绩〇 石樣之尺寸及形狀。選擇之鑽石^骨架結構見、貝 圖⑽明氣鈥濃縮物原料之氣相層析;石例中所用原有 -9-Dissent: Yi Si King Kong Yan Ba 2 was discovered by the inventor. Formation-and unsubstituted cyclohexamantane-respectively, ^ ρ Summary of the invention The present invention provides-a kind of containing the invention also provides-a kind of winter diamond: or a high-grade diamond-like compound. This product (&amp; 彡 Α ,, Nida s or single-ion compound knife read advanced diamond-like isomerization, sacrifice bafen into y knife,). In addition, the present invention provides a method for making .4, ^ ^ and diamond-like and high-grade diamond-like ingredients. According to the present invention, the various unused high-grade diamond samples previously connected to and separated from the crystal column by the star system include four diamond diamonds x human gates, wj heart, metal adamane, six adamantane, seven adamantane, and octamantine , Jiuhegu "^ yuan" or even ten diamonds. The higher molecular weight of the south, and the stone-like single tortoise by the woman &gt; ^ The viewing festival is not particularly promising because the iron stones are narrow (four to five etc.)厶 景 铒 、 人 丄 ^, &quot; Set for each crystalline subunit added to the structure is the yak under the Q. Think about the solitary ten adamantane in the raw material is generally about any kind-four kinds The adamantane is, for example, about 10 to 6 times, and includes species synthesized in the prior art. Brief description of the drawings Figure 1 Moon-like diamond-like structure and the interrelationship of diamonds. Special descriptions are diamond-like structures and diamonds. The relationship between the lattice subunits. Figure 2 is a table describing the different molecular weights displayed in each diamond-like diamond series. Figure j illustrates the four diamond structure provided by the present invention. Figure 4 Explains that the diamond lattice has a carbon skeleton. Of the four tetramantane, and its 100 lattice plane can be seen ( 4A), n0 lattice plane (Figure 4) 8) and 111 diamond lattice plane (Figure 4C). -8- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 1244477 A7 B7 5. Description of the invention (6 Figure 5 illustrates the structure of the metal adamantane provided by the present invention. Figures 6A, 6B, 6C and 6D illustrate the structure of the hexamantane provided by the present invention. Figures 7A, 7B and 7C illustrate the heptamantane provided by the present invention Structure. However, only one of the stereoisomers is shown. Figure 8 illustrates the octamantine structure provided by the present invention. Only examples of molecular weight states of 500, 486, 472, and 432 are shown. Fig. 9 illustrates the nine diamanta provided by the present invention.垸 structure. Only examples of each molecular weight family are shown. Figure 10 illustrates the decamantane structure provided by the present invention, and only examples of each molecular weight family are shown. Figure 11 illustrates the ^ adamantane structure provided by the present invention, and only each Examples of molecular weight families. Figure 12 provides a flow chart representing the steps used in a single ion containing a high-grade diamond-like fraction and a single high-grade diamond-like component. It is important to understand that each step can be used in a different order in some examples and may be used in Discussed in the examples. Figures 13A and 13B A summary of the properties of various advanced diamond-like gc / ms and HPLC included in the application. Figure 14 shows the strategy for single-column c-column separation of tetramantane and metal adamantane. Figure 15 illustrates the development of molecular electronic devices. Relative to c, 8, 9, and 10 (BuckminSterfuUerene) and representative carbon sub-micron tubes used in the selection of high-level performance 0 stone size and shape. The selected diamond ^ skeleton structure, see, Betu ⑽mingqi 'concentrate Gas chromatography of raw materials; original -9-

口44477 A7 ---- - B7 彡、發明説明~) — 原料足一(原料A);顯示高級鑽石之紀錄濃度(該規格無法 偵測)。 圖17祝明大氣蒸餾650卞+塔底物當作原料之原料B之高 溫模挺蒸鶴輪廓。該圖亦說明用於高級鑽石樣單離所用之 目標館份點(1 - 1 〇丨。 圖18A及18B說明原料B65(rF +蒸餾塔底物之蒸餾物餾份 #6足氣相層析(^1〇)(表38,圖18),及熱裂解製程之最終產 物。此等圖顯示非鑽石成分已經藉由熱裂解法破壞,且濃 縮咼級鑽石樣,尤其是六金剛烷,且可進行單離。 圖19及20為說明各種單獨之高級鑽石樣(六金剛烷)在二 不同HPLC層析管:如實例1及7中討論之〇DS&amp; Hypercarb 上之溶離順序。 圖2 1說明實例3及5中進行之四金剛烷單離用之製備用虹 吸氣相層析數據。圖2 1A顯示由蒸餾物餾份# 33,原料A上 取得之餾份。黑體面編號係指四金剛烷之峰。圖21B顯示 單離且送到承載器之峰。圓圈之標號峰(2、4及6)為四金 剛燒。需了解光活化四金剛烷之二立體異構物包含於此等 +之一中。 圖22A、22B及22C說明以致備用氣體層析(圖21)之由原 料A义離之四四體結晶之光微影姓刻。圖2 2 a係自承載器 鶴份# 2單離’圖2 2 B係自承載器餘份# 4單離,且圖2 2 C係 自承載器館伤# 6單離。因為一立體異構四金剛燒在圖2 1中 具有相同GC駐留時間’,因此結晶之一含二立體異構 物。 -10- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477 A7 B7 五、發明説明(8 ) 圖23 A說明實例1中列舉之原料B氣體蒸餾攔截餾份之氣 相層析,其係用作熱解製程中之原料。攔截之餾份為原料 B在約65 0 °F蒸餾後自蒸餾塔回收之物質。顯示四金剛烷 # 1至 # 3。 圖23B說明圖23A中起始材料熱解產物之氣體層析,亦 即原料B氣體蒸餾650°F +塔底物攔截餾份顯示非鑽石樣成 分之裂解。 圖24A及24B比較注入Vydac〇DS HPLC管柱之含四金剛 烷及富含四金鋼完成份之HPLC餾份#6之氣相層析。 圖25說明原料B氣相蒸餾650°F +塔底物之攔截餾份之製 備用〇DS HPLC單離,顯示各種時點取出之餾份及四金鋼 完成份之溶離順序,以及依序分離步騾中所用餾份# 12之 配置時間。上圖23中呈現該原料之氣相層析。 圖26說明在Hyp ere arb靜態項與丙酮移動向上操作之顧份 12之HPLC層析(圖25),得到四金剛烷#2之單離。 圖27A及27B說明藉由使用二不同HPLC管柱單離之四金 剛烷#1之GC/MS全部離子管柱(TIC)及質譜。 圖28A及28B說明藉由使用二不同HPLC管柱單離之四金 剛烷#2之GC/MS全部離子層析(TIC)及質譜。 圖29A及29B說明藉由使用二不同HPLC管柱單離之四金 剛烷#3之GC/MS全部離子層析(TIC)及質譜。 圖3 0A及3 0B說明藉由使用Hypercarb HPLC單離之甲基四 金剛烷之GC/MS全部離子層析(TIC)及質譜。 圖3 1 A及3 1 B說明五金剛烷單離用之製備用虹吸氣相層 -11- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 1244477 A7 B7 五、發明説明(9 ) 析數據。圖3 1A顯示含來自熱處理之原料B之五金剛烷之 一之第一種管柱館份。館份中之物質在第二管柱上分離。 圖3 1B顯示送到承載器之第二種管柱峰。五金剛烷# 1 (GC/MS分析中溶離之第一種五金剛烷)在承載器6中單離。 圖32A及32B顯示藉由至備用虹吸氣相層析單離之五金 剛烷#1之GC/MS總離子層析及質譜。 圖33 A為藉由製備用氣相層析(圖31及3 2)自原料B單離之 五金剛烷# 1結晶之光微影蝕刻。圖33B說明五金剛烷之共 結晶。 圖3 4說明以顯示使用十八矽烷管柱及丙酮移動相取得之 HPLC餾份之烴餾份飽和之原料B蒸餾物餾份熱解產物之製 備用HPLC折射係述痕跡(具有負極性)。五金剛烷係依其在 GC/MS分析上之溶離編號。 圖35說明在具有丙酮移動相之1^0€1^&amp;1*13靜態相上操作, 得到五金剛烷# 1之單離之〇DS HPLC餾份Π之層析(圖 34)。 圖36A及36B說明使用二不同HPLC管柱單離之五金剛烷 #1之GC/MS總離子層析(TIC)及質譜。 圖37A及37B說明使用二不同HPLC管柱單離之五金剛烷 #2之GC/MS總離子層析(TIC)及質譜。 圖3 8A及3 8B說明使用二不同HPLC管柱單離之五金剛烷 #3之GC/MS總離子層析(TIC)及質譜。 圖39A及39B說明使用二不同HPLC管柱單離之五金剛烷 #4之GC/MS總離子層析(TIC)及質譜。 -12- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 1244477 A7 B7 五、發明説明(10 ) 圖40A及40B說明使用二不同HPLC管柱單離之五金剛烷 #5之GC/MS總離子層析(TIC)及質譜。 圖41 A及41B說明使用二不同HPLC管柱單離之五金剛烷 # 6之GC/MS總離子層析(TIC)及質譜。 圖42A及42B說明六金剛烷單離用之製備用虹吸氣相層 析數據。圖42A顯示含來自原料B之六金剛烷之二之第一 管柱餾份。圖42B顯示單離且送到承載器之第二管柱峰。 由該程序可單離出醇六金剛燒(圖43及44),六金剛燒# 2, 第二種再GC/MS分析中溶離之六金剛烷,且六金剛烷# 8為 第八種溶離物。 圖43A及43B說明以製備用虹吸氣相層析單離之六金剛 烷#2之GC/MS總離子層析及質譜。 圖44A及44B說明以製備用虹吸氣相層析高度濃縮之六 金剛烷# 8之GC/MS總離子層析及質譜。該樣品中含微量甲 基七金剛烷(408分子量)。 圖45說明藉由製備用氣相層析(圖42及44)自原料B單離 之六金剛烷# 2結晶之光微影蝕刻。 圖46說明藉由製備用氣相層析(圖145及147)自原料B單 離之六金剛烷# 8結晶之光微影蝕刻。 圖47A及47B說明〇DS HPLC餾份#39中六金剛烷#8之 GC/MS總離子層析(TIC)及質譜。 圖48A及48B說明〇DS HPLC餾份#48中六金剛烷# 10之 GC/MS總離子層析(TIC)及質譜。 圖49A及49B說明〇DS HPLC餾份# 63中六金剛烷# 6之 -13- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 1244477 A7 B7 五、發明説明(11 ) GC/MS總離子層析(TIC)及質譜。 圖50A及50B說明大量富含於Hypercarb HPLC餾份# 53中 之六金剛燒# 2之GC/MS總離子層析(TIC)及質譜。 圖5 1A及51B說明使用二不同HPLC管柱單離之六金剛烷 # 13之GC/MS總離子層析(TIC)及質譜。 圖52A及52B說明使用二不同HPLC管柱單離之六金剛烷 # 7之GC/MS總離子層析(TIC)及質譜。 圖53 A及53B說明原料B蒸餾餾份#6之熱解製程產物之飽 和烴餾份中縮合’’不規則”六金剛烷(莫耳wt. 382)之GC/MS 重構離子層析m/z 3 82及質譜。 圖5 4A及54B說明ODS HPLC餾份# 36中不規則六金剛烷 (莫耳wt. 382)之GC/MS重構離子層析m/z 3 82及質譜。 圖55 A及55B說明ODS HPLC餾份#55中單離之甲基六金 剛烷(莫耳wt. 410)之GC/MS總離子層析(TIC)及質譜。 圖56說明含環六金剛烷及甲基環六金剛烷之〇DS HPLC 合併餾份# 23-26之GC/MS總離子層析(TIC)。 圖57A及57B說明使用多管柱靜態相HPLC (ODS接著 Hypercarb)單離之甲基環六金剛烷# 1(莫耳wt. 356)之GC/MS 總離子層析(TIC)及質譜。 圖58A及58B說明使用多管柱靜態相HPLC (ODS接著 Hypercarb)高純度單離之甲基環六金剛烷#2(莫耳wt. 356) 之GC/MS總離子層析(TIC)及質譜。 圖59及60顯示使用二不同HPLC管柱單離之甲基環六金 剛烷# 1及甲基環六金剛烷# 2結晶之光微影蝕刻。 _ -14- 本紙張尺度適用中國國家標準(CNs) A4規格(210X297公釐) 1244477 A7 B7 五、發明説明(12 ) 圖6 1A及61 B說明六金剛烷單離用之製備用虹吸氣相層 析數據。圖61A顯示含來自原料B之七金剛烷之二之第一 種管柱餾份。圖6 1B顯示單離且送到承載器之第二管柱 峰。由該程序可單離出純的七金鋼完成份(圖8及9 ),七金 岡|J烷# 1,GC/MS分析中溶離之第一種七金剛烷,且第二次 溶離之七金剛烷# 2。 圖62A及62B說明以製備用虹吸氣相層析單離之七金剛 烷#1之GC/MS總離子層析及質譜。 圖63A及63B說明以製備用虹吸氣相層析高度濃縮之七 金剛烷#2之GC/MS總離子層析及質譜。 圖64說明藉由製備用氣相層析(圖61及62)自原料B單離 之七金剛烷# 1結晶之光微影蝕刻。 圖65說明以製備用氣相層析(圖61及63)自原料B單離之 七基鋼烷# 2結晶之光微影蝕刻。 圖66A及66B說明〇DS HPLC餾份#45中之七金剛烷成分 #1之GC/MS總離子層析(TIC)及質譜。 圖67A及67B說明〇DS HPLC餾份#41中之七金剛烷成分 #2之GC/MS總離子層析(TIC)及質譜。 圖68A及68B說明〇DS HPLC餾份#61中之七金剛烷成分 #9之GC/MS總離子層析(TIC)及質譜。 圖69A及69B說明〇DS HPLC餾份# 87中之七金剛烷成分 #10之GC/MS總離子層析(TIC)及質譜。 圖70A及70B說明大量富含於Hypercarb HPLC餾份#55中 之七金剛烷#1之GC/MS總離子層析(TIC)及質譜。 -15- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477 A7 B7 五、發明説明(13 ) 圖7 1A及71B說明使用二不同HPLC管柱單離之七金剛烷 #2之GC/MS總離子層析(TIC)及質譜。七金剛烷#2係使用 Hypercarb HPLC系統自〇DS HPLC餾份#41(圖67)單離。 圖72說明顯示〇DS HPLC餾份#61中部分縮合七金鋼完成 份(莫耳wt. 420)之GC/MS重構離子層析m/z 420。 圖73說明圖72中分子量420之七金剛烷之質譜。 圖74A及74B說明ODS HPLC餾份#51中單離之甲基七金 剛烷(莫耳wt. 408)之GC/MS總離子層析(TIC)及質譜。 圖75A及75B說明以高效能液態層析高度濃縮之八金剛 烷#1之GC/MS總離子層析(TIC)及質譜。 圖76說明以高效能液態層析自原料B單離之八金剛烷# 1 結晶之光微影触刻。 圖77A及77B說明由〇DS HPLC餾份#63生長之共結晶八 金剛烷# 3及八金剛烷#5 (圖77C)之GC/MS總離子層析(TIC) 及質譜。 圖78 A及78B說明共結晶八金剛烷# 3及# 5之光微影蝕 刻,結晶B係溶於環己烷中且以GC/MS分析(圖77)。 圖79A及79B說明含八金剛烷# 1及八金剛烷# 1〇之0DS HPLC餾份# 80之GC/MS總離子層析(TIC)及質譜。 圖80A及80B說明含八金剛烷(分子量500)之ODS HPLC館 份#92之GC/MS總離子層析(TIC)及質譜。 圖81A及81B說明含甲基八金剛烷(分子量46C0之QDS HPLC餾份# 94之GC/MS總離子層析(TIC)及質譜。 圖82A及82B說明以高效能液體層析濃縮之九金剛之 -16- __ 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 1244477 A7 B7 五、發明説明(14 ) GC/MS總離子層析及質譜。 圖83A及83B說明使用二不同HPLC管柱濃縮之九金剛烷 之GC/MS總離子層析(TIC)及質譜。 圖84A及84B說明九金剛烷結晶之光微影蝕刻及及溶解 結晶之質譜 ° 圖85A及85B說明甲基九金剛烷(莫耳wt. 512)之GC/MS總 離子層析(TIC)及質譜。 圖86A及86B說明[123 1241(2)3],分子量456,以高效能 液體層析濃縮之十金剛烷之GC/MS總離子層析及質譜。 圖87A及87B說明[123 1241(2)3],分子量456,使用二不 同HPLC管柱單離之十金剛烷之GC/MS總離子層析(TIC)及 質譜。 圖88A及88B說明[123 1241(2)3],十金剛烷結晶之光微影 蝕刻,及溶解結晶之質譜。 圖8 9A及8 9B說明十金骯烷(莫耳wt. 496)之GC/MS選擇之 離子層析(TIC)及質譜。 圖90A及90B說明二種甲基十金剛烷(莫耳wt. 470)之 0(:/“5總離子層析(丁1(:),及0(:/1^5分析中在18.84分鐘溶 離之質譜。 圖91A及91B說明原料B大氣蒸餾餾份#7(表3)濃縮十一金 剛烷熱解懺物之GC/MS選擇離子層析(m/z 508)及質譜。 圖92A、92B及92C說明在21.07分鐘溶離之十一金剛烷成 份(莫耳wt· 5 08)之GC/MS選擇之離子層析(m/z 5 08)及質 譜,即在21.30分鐘溶離之甲基十一金剛烷成份(莫耳wt. -17- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)Mouth 44477 A7 -----B7 彡, description of the invention ~) — raw material is enough (raw material A); shows the recorded concentration of high-grade diamond (this specification cannot be detected). Fig. 17 outline of high temperature mold steaming crane with atmospheric distillation 650 卞 + tower bottom as raw material B. The figure also illustrates the target site (1-10) for high-grade diamond-like separation. Figures 18A and 18B illustrate raw material B65 (rF + distillate fraction from bottom of distillation column # 6 foot gas chromatography). (^ 1〇) (Table 38, Figure 18), and the final product of the thermal cracking process. These figures show that the non-diamond component has been destroyed by the thermal cracking method, and the rhenium diamond-like sample is concentrated, especially hexamantane, and Single dissociation can be performed. Figures 19 and 20 illustrate the dissociation sequence of various individual high-grade diamond samples (hexamantane) on two different HPLC chromatography tubes: as discussed in Examples 1 and 7 on the DS &amp; Hypercarb. Figure 2 1 Explain the siphon gas chromatography data for the preparation of tetramantane single ionization performed in Examples 3 and 5. Fig. 2 1A shows the fraction obtained from the distillate fraction # 33, the raw material A. The black face number refers to The peak of tetramantane. Figure 21B shows the peak that is isolated and sent to the carrier. The circled peaks (2, 4 and 6) are tetramantanes. It is necessary to understand that the two stereoisomers of photoactivated tetramantane are contained in One of these +. Figures 22A, 22B, and 22C illustrate the fourth gas separation from raw material A so that the spare gas chromatogram (Figure 21) The light crystal shadow of the body crystal is engraved on the surname. Figure 2 a is the self-supporting device Hefen # 2 single-separation 'Figure 2 2 is the self-supporting device remaining part # 4 is single-separating, and Figure 2 C is the self-supporting device # 6Single. Because one stereoisomer tetraammonite has the same GC dwell time in Fig. 21, one of the crystals contains distereoisomers. -10- This paper size applies to China National Standard (CNS) A4 Specifications (210 X 297 mm) 1244477 A7 B7 V. Description of the invention (8) Figure 23 A illustrates the gas chromatography of the gaseous distillation interception fraction of the raw material B listed in Example 1, which is used as the raw material in the pyrolysis process The intercepted fraction is the material recovered from the distillation column after distillation of raw material B at about 65 ° F. Tetramantane # 1 to # 3 are shown. Figure 23B illustrates the gas chromatography of the pyrolysis product of the starting material in Figure 23A, That is, raw material B gas distillation at 650 ° F + column bottom interception fraction shows cracking of non-diamond-like components. Figures 24A and 24B compare the completion of the tetramantane-containing and tetra-rich steel fractions injected into the Vydac DS HPLC column. Gas Chromatography of HPLC Fraction # 6. Figure 25 illustrates the preparation of the gaseous distillation of starting material B at 650 ° F + the bottoms of the intercept fractions. It shows the dissolution order of the distillate taken out at various points and the finish of Sijin Steel, and the configuration time of the fraction # 12 used in the sequential separation step. The gas chromatography of the raw material is shown in Figure 23 above. Figure 26 illustrates HPLC chromatography (Figure 25) of Gu Fen 12 operated on a Hyper ere arb static term and acetone move up to obtain tetramantane # 2. Figures 27A and 27B illustrate the use of two separate HPLC columns to isolate them. GC / MS full ion column (TIC) and mass spectrometry for tetramantane # 1. Figures 28A and 28B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of tetramantane # 2 isolated using two different HPLC columns. Figures 29A and 29B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of tetramantane # 3 isolated using two different HPLC columns. Figures 3A and 3B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of methyltetramantane isolated using Hypercarb HPLC. Figure 3 1 A and 3 1 B illustrate the siphon gas phase layer for the preparation of metal adamantane single release -11- This paper size applies Chinese National Standard (CNS) A4 specification (210X 297 mm) 1244477 A7 B7 V. Invention Note (9) analyze the data. Fig. 3 1A shows the first type of column assembly containing one of the metal adamantane from the heat-treated raw material B. The contents of the library are separated on the second column. Figure 31B shows the second column peak sent to the carrier. Hardware adamane # 1 (the first hardware adamantane that dissolves in GC / MS analysis) is isolated in the carrier 6. Figures 32A and 32B show GC / MS total ion chromatography and mass spectrometry of the metal adamantane # 1, which was isolated by a spare siphon gas chromatography. Fig. 33A is a photolithographic etch of the metal adamantane # 1 crystallized separately from the raw material B by preparative gas chromatography (Figs. 31 and 32). Figure 33B illustrates the co-crystallization of metal adamantane. Fig. 34 illustrates the production of a pyrolysis product of the raw material B distillate fraction pyrolysis product showing the saturated hydrocarbon fraction of the HPLC fraction obtained with an octadecane column and an acetone mobile phase. The standby HPLC refraction system traces (with negative polarity). Hardware adamantane is based on its dissociation number for GC / MS analysis. Figure 35 illustrates the chromatogram of the isolated DSDS HPLC fraction Π of hardware adamantane # 1 when operated on a static phase of 1 ^ 0 € 1 ^ &amp; 1 * 13 with a mobile phase of acetone (Figure 34). Figures 36A and 36B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of metal adamantane # 1 isolated from two different HPLC columns. Figures 37A and 37B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of metal adamantane # 2 isolated from two different HPLC columns. Figures 3A and 38B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of metal adamantane # 3 isolated from two different HPLC columns. Figures 39A and 39B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of metal adamantane # 4 isolated from two different HPLC columns. -12- This paper size is in accordance with Chinese National Standard (CNS) A4 specification (210X 297 mm) 1244477 A7 B7 V. Description of the invention (10) Figures 40A and 40B illustrate the use of two separate HPLC columns with separate metal justane # 5 GC / MS total ion chromatography (TIC) and mass spectrometry. Figures 41 A and 41B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of metal adamantane # 6 isolated from two different HPLC columns. Figures 42A and 42B illustrate siphon gas phase chromatography data for the preparation of hexadamantane for single ionization. Fig. 42A shows a first column fraction containing six adamantan bis from feedstock B. Figure 42B shows a second column peak that is isolated and sent to the carrier. Alcohol hexamantine (Figures 43 and 44) can be isolated by this procedure, hexamantine # 2, the second type is hexamantane dissolving in GC / MS analysis, and hexamantane # 8 is the eighth type of dissociation. Thing. Figures 43A and 43B illustrate GC / MS total ion chromatography and mass spectrometry for the preparation of hexamantane # 2 isolated by siphon gas chromatography. Figures 44A and 44B illustrate GC / MS total ion chromatography and mass spectrometry for the preparation of six adamantane # 8 highly concentrated by siphon gas chromatography. This sample contained traces of methyl heptamantane (408 molecular weight). Fig. 45 illustrates photolithographic etching of hexadamantane # 2 crystallized separately from raw material B by preparative gas chromatography (Figs. 42 and 44). Fig. 46 illustrates photolithographic etching of six adamantane # 8 crystals isolated from raw material B by preparative gas chromatography (Figs. 145 and 147). 47A and 47B illustrate GC / MS total ion chromatography (TIC) and mass spectrum of hexamantane # 8 in ODS HPLC fraction # 39. Figures 48A and 48B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of hexamantane # 10 in ODS HPLC fraction # 48. Figures 49A and 49B illustrate 〇DS HPLC fraction # 63 中 六 Adamantane # 6-13-This paper size applies Chinese National Standard (CNS) A4 specifications (210X 297 mm) 1244477 A7 B7 V. Description of the invention (11) GC / MS total ion chromatography (TIC) and mass spectrometry. Figures 50A and 50B illustrate GC / MS total ion chromatography (TIC) and mass spectra of a large amount of Six King Kong Burn # 2 in Hypercarb HPLC Fraction # 53. Figures 1A and 51B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of hexamantane # 13 isolated using two different HPLC columns. Figures 52A and 52B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of hexamantane # 7 isolated using two different HPLC columns. Figures 53 A and 53B illustrate GC / MS reconstructed ion chromatography of condensation "irregular" hexamantanes (mole wt. 382) in the saturated hydrocarbon fraction of the pyrolysis process product of distillation fraction # 6 of feedstock B. / z 3 82 and mass spectrum. Figure 5 4A and 54B illustrate GC / MS reconstructed ion chromatography m / z 3 82 and mass spectrum of irregular hexamantane (Mole wt. 382) in ODS HPLC fraction # 36. Figure 5 55 A and 55B illustrate the GC / MS total ion chromatography (TIC) and mass spectrum of methylhexamantane (Mole wt. 410) isolated in ODS HPLC fraction # 55. Figure 56 illustrates cyclohexamantane and GC / MS Total Ion Chromatography (TIC) of Methylcyclohexamantane 〇DS HPLC with Fractions # 23-26. Figures 57A and 57B illustrate the use of multi-column static phase HPLC (ODS followed by Hypercarb) to isolate the methylated formaldehyde. GC / MS Total Ion Chromatography (TIC) and Mass Spectroscopy of Cycloadamantane # 1 (Mole wt. 356). Figures 58A and 58B illustrate the use of multi-column static phase HPLC (ODS followed by Hypercarb) for high-purity monoisolation. GC / MS Total Ion Chromatography (TIC) and Mass Spectrometry of Methylcyclohexamantane # 2 (Mole wt. 356). Figures 59 and 60 show methylcyclohexamantane # isolated using two different HPLC columns. 1 and methylcyclohexamantane # 2 crystal light _ -14- This paper size is in accordance with Chinese National Standards (CNs) A4 specifications (210X297 mm) 1244477 A7 B7 V. Description of the invention (12) Figure 6 1A and 61 B illustrate the preparation of hexamantanes for single release Siphoning gas chromatographic data. Figure 61A shows the first column fraction containing heptamantane bis from feedstock B. Figure 6 1B shows the second column peak that is isolated and sent to the carrier. From this The program can separate the pure seven gold steel completes (Figures 8 and 9), seven gold gang | Jane # 1, the first heptamantane dissolving in the GC / MS analysis, and the second dissolution of heptamantane. # 2. Figures 62A and 62B illustrate GC / MS Total Ion Chromatography and Mass Spectrometry of Sepamantane # 1 isolated for preparative siphon gas chromatography. Figures 63A and 63B illustrate for preparative siphon gas chromatography. GC / MS Total Ion Chromatography and Mass Spectrometry of Highly Concentrated Heptamantane # 2. Figure 64 illustrates the light of crystallization of Heptamantane # 1 isolated from raw material B by preparative gas chromatography (Figs. 61 and 62). Lithographic etching. Figure 65 illustrates light lithographic etching of hepylgangane # 2 crystallized from raw material B by preparative gas chromatography (Figures 61 and 63). Figures 66A and 66B illustrate DS HPLC GC / MS Total Ion Chromatography (TIC) and Mass Spectrum of Heptamantane Component # 1 in Part # 45. Figures 67A and 67B illustrate GC / MS totals of Heptamantane Component # 2 in ODS HPLC Fraction # 41. Ion chromatography (TIC) and mass spectrometry. Figures 68A and 68B illustrate GC / MS total ion chromatography (TIC) and mass spectrum of heptamantane component # 9 in ODS HPLC fraction # 61. Figures 69A and 69B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of the heptamantane component # 10 in ODS HPLC fraction # 87. Figures 70A and 70B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of heptamantane # 1, which is abundant in Hypercarb HPLC fraction # 55. -15- This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 1244477 A7 B7 V. Description of the invention (13) Figure 7 1A and 71B illustrate the use of two different HPLC columns for adamantane. # 2 GC / MS Total Ion Chromatography (TIC) and Mass Spectrometry. Heptamantane # 2 was isolated from the ODS HPLC fraction # 41 (Figure 67) using a Hypercarb HPLC system. Figure 72 illustrates GC / MS reconstructed ion chromatography m / z 420 showing partially condensed seven gold steel fractions (mole wt. 420) in ODS HPLC fraction # 61. Figure 73 illustrates the mass spectrum of heptamantane with a molecular weight of 420 in Figure 72. Figures 74A and 74B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of methyl heptamantane (Mole wt. 408) isolated in ODS HPLC fraction # 51. Figures 75A and 75B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of octamantane # 1 highly concentrated by high performance liquid chromatography. FIG. 76 illustrates light lithography of octamantane # 1 crystallized from raw material B by high performance liquid chromatography. Figures 77A and 77B illustrate GC / MS total ion chromatography (TIC) and mass spectra of co-crystals octamantane # 3 and octamantane # 5 (Figure 77C) grown from ODS HPLC fraction # 63. Figures 78A and 78B illustrate photolithographic etching of cocrystals octamantane # 3 and # 5. Crystal B was dissolved in cyclohexane and analyzed by GC / MS (Figure 77). Figures 79A and 79B illustrate GC / MS total ion chromatography (TIC) and mass spectrum of octamantane # 1 and octamantane # 1 0DS HPLC fraction # 80. Figures 80A and 80B illustrate GC / MS total ion chromatography (TIC) and mass spectrometry of ODS HPLC library # 92 containing octamantane (molecular weight 500). Figures 81A and 81B illustrate GC / MS total ion chromatography (TIC) and mass spectrum with methyl octamantane (QDS HPLC fraction # 94 with a molecular weight of 46C0) and mass spectra. Figures 82A and 82B illustrate nine diamonds concentrated by high performance liquid chromatography -16- __ This paper size is in accordance with Chinese National Standard (CNS) A4 (210X297 mm) 1244477 A7 B7 V. Description of the invention (14) GC / MS total ion chromatography and mass spectrometry. Figures 83A and 83B illustrate the use of two different GC / MS Total Ion Chromatography (TIC) and Mass Spectrometry of Condensed Nonamantane on HPLC Columns. Figures 84A and 84B illustrate mass spectra of photolithographic etching and dissolved crystals of nonamantane crystals. Figures 85A and 85B illustrate methyl groups. GC / MS total ion chromatography (TIC) and mass spectrum of nonamantane (Mole wt. 512). Figures 86A and 86B illustrate [123 1241 (2) 3], with a molecular weight of 456. GC / MS Total Ion Chromatography and Mass Spectrometry of Adamantane. Figures 87A and 87B illustrate [123 1241 (2) 3], molecular weight 456, GC / MS total ion chromatography of ten adamantane isolated using two different HPLC columns. (TIC) and mass spectrum. Figures 88A and 88B illustrate [123 1241 (2) 3], photolithographic etching of decamantane crystals, and mass spectra of dissolved crystals. Figures 8A and 8B illustrate GC / MS selected ion chromatography (TIC) and mass spectrometry of decamantane (Mole wt. 496). Figures 90A and 90B illustrate two methyl decamantane (Mole wt. 470) of 0 (: / "5 total ion chromatography (Ding 1 (:), and 0 (: / 1 ^ 5 mass spectrum dissociated at 18.84 minutes in the analysis. Figures 91A and 91B illustrate the atmospheric distillation fraction # 7 of raw material B (Table 3) GC / MS selective ion chromatography (m / z 508) and mass spectrum of concentrated undecamantane pyrolysate. Figures 92A, 92B, and 92C illustrate the undecamantane component (Mole) that dissolves at 21.07 minutes. wt · 5 08) GC / MS selected ion chromatography (m / z 5 08) and mass spectrometry, that is, methyl undecamantane component (Mole wt. -17- This paper size applies to China National Standard (CNS) A4 specification (210X297 mm)

裝 玎Pretend

A7A7

1244477 五、發明説明(15 522)之質譜。 丨爪π打W灯〇,文氣壓蒸餾殘^ 物)之蒸餾餾份,顯示潠阳 力、人认4 V用以對冨含特殊之鬲級最時 有利之餾份 圖94顯示[1234 1]六令刷f ,、 仏^ 至剛烷之螺旋狀結構(右及左旋)。 發明詳細敘述 該詳細敘述包含下列小段: 定義 原料 單離方法 利用性 實例 定義 至於本文中所用之名詞之意如下。 •’鑽石樣” 一詞係指包含金剛烷、二金剛烷、三金剛 烷、四金剛烷、五金剛烷、六金剛烷、七金剛烷、八金剛 烷、九金剛烷、十金剛烷、十一金剛烷等,且亦包含所有 異構物及其立體異構物之金剛烷系列之經取代或未經取代 複狀化合物。經取代 &lt; 鑽石樣較好包括1至丨〇個,更好^至 4個烷基取代基。 低級鑽石樣成分或”金剛貌、二金剛;):完及三金剛燒成 份&quot;係指任一種及/或所有金剛烷、二金剛烷及三金剛燒之 未經取代及經取代衍生物。 ’’高級鑽石樣成分” 一詞係指相當於四金剛烷及以上之 -18- 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐)1244477 V. Mass spectrum of invention description (15 522).丨 Claw π hits W lamp 0, distillates the residue of atmospheric pressure), showing dioxin power, and 4 V is considered to be the most favorable distillate containing special grades. Figure 94 shows [1234 1 ] Liuling brush f ,, 仏 ^ to the spiral structure of rightane (right and left). Detailed description of the invention The detailed description contains the following sub-paragraphs: Definition Raw material Isolation method Utilization Example Definition The meaning of the terms used in this text is as follows. • The term 'diamond-like' refers to the inclusion of adamantane, diamantane, triamantane, tetraamantane, hardware adamantane, hexaamantane, heptamantane, octamantane, nonamantane, decamantane, ten Monoamantane and the like, and also all substituted and unsubstituted compound compounds of the adamantane series which also include all isomers and stereoisomers thereof. The substituted &lt; diamond-like preferably includes 1 to 0, more preferably ^ To 4 alkyl substituents. Lower diamond-like composition or "Vanadium appearance, two diamonds;): End and three diamonds &quot; refers to any and / or all of the diamonds, two diamonds and three diamonds Unsubstituted and substituted derivatives. The term ‘’ high-grade diamond-like composition ’means equivalent to tetramantane and above. -18- This paper size applies Chinese National Standard (CNS) A4 (210X297 mm)

裝 ηΗ

1244477 16 五、發明説明( 經取代及未經取代鑽石樣,包含四金剛烷、五金剛燒、六 金剛烷、七金剛烷、八金剛烷、九金剛烷、十金剛烷、十 一金剛燒等,且包含所有異構物及其立體異構物。較好, 南級鑽石樣包含取代及未經取代之四金剛烷、五金剛燒、 六金剛烷、七金剛烷、八金剛烷、九金剛烷、十金剛烷及 十一金剛烷。圖2為顯示代表性高級鑽石樣及其分子量之 圖。”鑽石樣族”、”四金剛烷族”等詞係用於定義具有相 同數量之鑽石晶格籠形單元之似”鑽石樣成分,,。 &quot;四金剛烷成份” 一詞係指任一種及/或所有相當於四金 剛垸成份之取代或未經取代鑽石樣。 五金剛烷成份” 一詞係指任一種及/或所有相當於五金 剛燒成份之取代或未經取代鑽石樣。 ”非離子化鑽石樣成分”一詞係指不帶質譜分析過程中 產生〈電荷如正電荷之高級鑽石樣成分,纟中&quot;高級鑽石 樣成分&quot;一詞係如本文中之定義。 ’:非離…金剛燒成餘&quot;一詞係指不帶質譜分析過程 中產生之電何如正電荷之四金咧烷成份。 一’:非離子化五金剛燒成份及高於五金剛燒之鑽石樣成分&quot; -帽旨不帶質譜分析過程中產生之電荷如正電荷之五々 剛烷成份及大於五金剛烷之高級鑽石樣成分。 王 ’’選擇之高級鑽石樣成分&quot;等係指需要單離或&quot;含本&quot;於 產物::;Γ種或/種取代或未經取代之高級績 倒::二 =石樣成分”等係指非為”選擇之高級 19- x 297¾)- 本紙張尺度適用中國國家標準 1244477 A7 B71244477 16 V. Description of the invention (Substituted and unsubstituted diamond-like samples, including tetramantane, adamantine, hexamantane, heptamantane, octamantane, nonamantane, decamantane, eleven adamantine, etc. , And contains all isomers and stereoisomers. Better, the southern diamond samples include substituted and unsubstituted tetramantane, adamantine, hexamantane, heptamantane, octamantane, and nine adamantine , Decamantane, and undecamantane. Figure 2 is a graph showing representative high-grade diamond samples and their molecular weights. The words "diamond-like family" and "tetra-adamantane family" are used to define diamond crystals with the same number. The term "diamond-like composition" of a grid-cage unit &quot; tetramantane component &quot; means any and / or all substituted or unsubstituted diamond-like components equivalent to the tetramantidine component. Hardware adamantane component " The term refers to any and / or all substituted or unsubstituted diamond-like components equivalent to freshly burned components of hardware. The term "non-ionized diamond-like components" refers to the generation of < High diamond The composition, the term "advanced diamond-like composition" in langzhong is as defined in this article. ': Non-isolated ... King Kong firing residue &quot; refers to the electric charge generated during mass spectrometry analysis without any positive charge. Gold grind components. One ': non-ionized metal freshly burned components and diamond-like components higher than freshly burned metal &quot;-cap without the charge generated during the mass spectrometry analysis, such as positively charged pentadecantane components and greater than Advanced diamond-like ingredients of metal adamantane. The "selected advanced diamond-like ingredients" by King "means that it needs to be isolated or" contains this "in the product: Γ species or / substituted or unsubstituted advanced Results :: 2 = stone-like composition "etc. refers to non-selected advanced 19- x 297¾)-This paper size applies to Chinese national standard 1244477 A7 B7

五、發明説明(17 田。一岡用於敘述一種或多種古&amp; μ 产狀能得化盘店®同級鑽石樣成分之純 —Α鈒鐙石蛘4 V 物且在〃富含&quot;單獨 〜问、.及1石饭成分之例中,原 抖5々垃、 王見/辰鈿至少25倍,且較 予主y 0倍之原始濃度。較好&quot; 古 &quot;古纫鍈z:接丄 同級鑽石樣或丨丨冨含 冋、.及1石4κ成分構成至少25%, ^ ιηη〇/ , . r 尤具主少50%(亦即50- 100%)’更好至少75%,且最好 ^ 、仏女仏π 土 y /。’甚至至少99% 一 /、係包S A呈現至少25%、50%、 7)%、95%或99°〆。重量純度之該物質。 原料’或’’烴原料”一詞係指句 、μ从所^ ,、扣匕括可回收量高級鑽石樣 之fe物貝。較好,兮届4人、丄 d原科包含油、氣體濃縮物、涵流、V. Description of the invention (17 fields. Ichioka is used to describe one or more ancient &amp; μ properties that can be obtained as a pure diamond-like ingredient of the same grade-Α 鈒 镫 石 蛘 4 V and is rich in 〃 &quot; Separately ~ ask,., And 1 stone rice ingredients, the original shake 5 々 々, Wang Jian / Chen 钿 at least 25 times, and 0 times the original concentration of the main y. Better &quot; 古 &quot; 古 鍈z: followed by diamonds of the same grade or 丨 丨 containing at least 25% of 冋,., and 1 stone 4κ composition, ^ ιηη〇 /,. r is especially 50% less (that is, 50-100%) 'better at least 75%, and preferably ^, 仏 女 仏 π soil y /. 'Or even at least 99% -1 /, the SA package presents at least 25%, 50%, 7)%, 95% or 99 ° 〆. The purity of the substance. The term "raw material" or "hydrocarbon raw material" refers to the sentence, μ from the source, and the recyclable amount of high-grade diamond-like fe shells. Better, 4 people, the original family contains oil and gas Concentrate, culvert,

油儲存岩衍生之油、油百山往上 M /;,L 生〈油油頁石、焦油砂及原油岩等。該成分 石=vs並非必要)—種或多種低崎石樣成分及非鐵 石=刀°後者—般之特徵為包括在大氣壓下之絲低於 及南於在大氣壓下約35Gt„之四金㈣最低彿點之成 料亦可含雜質如沉積物、金屬包含鎳、訊及 其他播機物。叾亦可含含硫、氮等之雜分子。所有此等非 鎮石樣物質均包含於本文中所定義之詞,,非鐵石樣成分” 中。 非選擇物質,,一詞係指非為”選擇之高級鑽石樣&quot;之原 料成分之總合,且包含本文中定義之',非鑽石樣成分,,、 低級鑽石樣”及”非選擇高級鑽石樣,,。 …私除 岡係指自原料移除非鑽石樣成分及/或低級鑽 石樣成分及/或非選擇高級鑽石樣成分之方法。該方法包 含(僅為列舉)尺寸分離技術、蒸餾、在常壓或低壓下之蒸 _______-20- 本紙蘇尺度適用中國國豕標準(CNS) A4規格(210 X 297公爱) 18 1244477 五、發明説明( 離、吸附、層析、化學萃取、結晶等。例如 八:揭示自烴原料移除金岡&quot;完、取代之金剛烷、二 _,纟人 玉剛烷及三金剛烷之蒸餾方法。尺寸分 薄膜分離、分子筛、凝膠層析、尺寸層析等。 心:詞係指依蒸氣恩之差異為準分離材料,且高 程中所得之分齒物上進行。本文中,最 :。 下在真空中進行,但亦可在大氣壓或高壓下進 度、VI ―::指混合物中之物質藉由如不同之溶解 :。°之潞乳壓、不同之層析親和性等彼此分離之方 ’’熱解”及”熱處理埶解&quot; 下加熱原料或原份寺大氣塵、低壓或高壓 熱劣化。&quot;科“ ’使-邵份原料中-種或多種成分 原料足非鑽石樣成分,,—詞^ ^ ^ ^ ^ ^ 原料或原料餾份夕戌八^ 曰行您上不為鑽石樣足 義。 餾6之成分,其中,,鑽石樣,,一詞如本文中之定 時保口:一:係指與原始原料中發現之該鑽石樣量比較 二Γ原料中發現留有至少-部份高級鐵石樣成分。 車父佳具體例中, 貝私风刀 樣成分;更好,回收居保ί至少約10 wt%之高級鑽石 成分 ’、料中保有至少5〇 wt〇/0之高級鑽石樣 坎刀,且取好回收斥料击 分,各個均以處理前”中wt%m鑽石樣成 〜原科中發現之該鑽石樣總量為準。 -21-X 297^5) 本纸i尺度家標 1244477 A7The oil derived from oil storage rocks, oil Baishan up M / ;, L Health <oil shale, tar sands and crude oil rocks. This component stone = vs is not necessary)-one or more low-stone stone-like components and non-iron stone = knife ° the latter-generally characterized by including silk at atmospheric pressure is lower and south at about 35 Gt The material of the lowest Buddha's point may also contain impurities such as sediments, metals including nickel, zinc and other seeding materials. 叾 may also contain heteromolecules containing sulfur, nitrogen, etc. All these non-ballast-like materials are included herein As defined in "Non-stone-like ingredients". Non-selective substances, the term refers to the sum of the raw material ingredients that are not "selected high-grade diamond-like" and include ", non-diamond-like ingredients ,, low-grade diamond-like," and "non-selective high-grade diamonds" as defined herein Diamond-like, ...… Exclusion means the method of removing non-diamond-like and / or low-grade diamond-like ingredients and / or non-selection of high-grade diamond-like ingredients from raw materials. This method includes (to name only) size separation techniques, Distillation, steaming at atmospheric pressure or low pressure _______- 20- This paper applies the Chinese National Standard (CNS) A4 specification (210 X 297 public love) 18 1244477 V. Description of the invention (Ionization, adsorption, chromatography, chemistry Extraction, crystallization, etc. For example, eight: Reveal the distillation method for the removal of Jingang &quot; finished and substituted adamantane, di-, amanantane and triamantane from hydrocarbon raw materials. Size separation by membrane separation, molecular sieve, gel layer Analysis, dimensional chromatography, etc. Mind: The word refers to the separation of materials based on the difference in vapor, and it is carried out on the teeth that are obtained in the elevation. In this article, the most: is performed in a vacuum, but it can also be performed at atmospheric pressure. Or progress under high pressure, VI :: means that the materials in the mixture are dissolved by different methods such as: ° Plasma pressure, different chromatographic affinity, etc., which are separated from each other, such as "pyrolysis" and "heat treatment" &quot; heating raw materials or ingredients The atmospheric dust, low pressure or high pressure thermal degradation of temples. &Quot; 科 "'Making-Shao Fen raw materials-one or more ingredients in raw materials are not diamond-like ingredients,-words ^ ^ ^ ^ ^ ^ ^ It ’s not enough to say that you are diamond-like. The composition of Distillation 6, where diamond-like, is the wording of this article: One: It refers to the comparison of the diamond-like quantity found in the original raw materials. Γ At least-part of the high-grade iron stone-like ingredients are found in the raw materials. In the specific example of Che Fujia, beifeng style knife-like ingredients; better, at least about 10 wt% of high-grade diamond ingredients are recycled. At least 50wt0 / 0 high-grade diamond-like ridge knife, and take the repellent material to score, each of which is based on the wt% m diamond sample before processing ~ the total amount of the diamond sample found in the original section. -21-X 297 ^ 5) Paper scale i-mark 1244477 A7

發明説明 B7 層析’’係指許多習知層析技術之任一種,包含(僅為列 舉)管柱或重量層析(一般或逆相)、氣相層析、高效能液相 層析等。 ’燒基” 一詞係指一般具有1至2〇個碳原子,更好具有1至 6個k原子(低級燒基)之直鏈或支鏈飽和之脂族基,以及 一般具有3至20個碳原子,且較好具有3至6個碳原子(,,低 級烷基&quot;)足環狀飽和脂族基。”烷基”及”低級烷基” 一詞列 舉足基為如甲基、乙基、丙基、丁基、異丙基、異丁基、 第一-丁基、第二_ 丁基、正_庚基、辛基、環丙基、環丁 基、環戊基、環己基等。 问級鑽石樣 如圖1中所不’咼級鑽石樣為具有可疊加在鑽石晶格(圖 1及4 )上足妓原子骨架之橋接環環烷,其為金剛烷(三環 [乂 j.1.1 ]癸丨兀)或CiqHm之四聚物、五聚物、六聚物、七 聚物、八聚物、九聚物、十聚物等,其中各種金剛烷單元 均為3,7面融合。高級鑽石樣可含許多烷基取代基。此等 化合物之結構極硬,且具有其式之任何化合物最高之安定 性。四金剛燒有四種結構(圖2及3):異-四金剛烷upp]、 反-四金剛坑[12 1 ]、及螺旋_四金剛境[1 2 3 ]之二種立體異構 物(圖3),一般此等鑽石樣較通常之命名係由Baiaban等人 命名。五金剛虎有十種(圖5),九種之分子式為C26h32(分 子量344),此九種中三對為以下列表示之立體異構物: [12(1)3],[ 123 4] ’ [1213],且非立體異構之物金剛烷為 [12(3)4],[1(2,3)4] ’ [12 12]。亦有更緊之五金剛烷[1231], -22- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477Description of the invention `` B7 chromatography '' refers to any of many conventional chromatography techniques, including (for example only) column or gravimetric chromatography (general or reverse phase), gas chromatography, high performance liquid chromatography, etc. . The term "alkyl" refers to a straight or branched chain saturated aliphatic group generally having 1 to 20 carbon atoms, more preferably 1 to 6 k atoms (lower alkyl group), and generally 3 to 20 carbon atoms. Carbon atoms, and preferably 3 to 6 carbon atoms (,, lower alkyl &quot;) are cyclic saturated aliphatic groups. The terms "alkyl" and "lower alkyl" list foot groups such as methyl , Ethyl, propyl, butyl, isopropyl, isobutyl, first-butyl, second-butyl, n-heptyl, octyl, cyclopropyl, cyclobutyl, cyclopentyl, Cyclohexyl, etc. Interrogated diamond samples are not shown in Figure 1. 'Grade-diamond diamond samples are bridged cyclonaphthenes that have a superb atomic skeleton superimposed on the diamond lattice (Figures 1 and 4), which is adamantane (three Tetramer, pentamer, hexamer, heptamer, octamer, ninemer, decamer, etc. of the ring [乂 j.1.1] or CiqHm, in which all the adamantane units are 3,7 face fusion. Advanced diamond-like samples can contain many alkyl substituents. The structure of these compounds is extremely hard and has the highest stability of any compound of its formula. Tetramanganite has four structures (Figures 2 and 3): two stereoisomers of iso-tetramantane upp], trans-tetramantine pit [12 1], and helix_tetramantine [1 2 3], generally this The more commonly named diamonds are named by Baiaban et al. There are ten kinds of metal rigid tigers (Figure 5), and the molecular formula of nine kinds is C26h32 (molecular weight 344). Three of these nine pairs are stereoisomers represented by the following [12 (1) 3], [123 4] '[1213], and the non-stereomeric adamantane is [12 (3) 4], [1 (2,3) 4]' [12 12 ]. There is also a tighter metal adamane [1231], -22- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 1244477

其係以分子式(:2出3〇(分子景,,n、士 一 卞I JJ〇)衣不。見圖4。六金剛烷 具有j9種不同結構(圖6), )其28種又分子式為C3qH36(分子量 J96),且此等中,六種 r u , ^ 為非對旱性;十種為分子式為 C29H34(分子I 382)之f蘩 &gt;、入门,,、 s 炅&lt;τ、&lt; π金剛烷,因為其高度縮合之 壤狀結構,因此亦稱之立进、 冉 &lt; 為3衣κ金剛烷。七金剛烷基本上係 以16 0種可能之結構存在、 傳什在,8d種又分子式為c34h4G(分子量 8)(圖7)起此等中七種為非對掌性,沒有立體異構物。 圖7中僅顯π對掌性七金剛垸之二立體異構物結構之一。 ”於七至剛洮中,67種之分子式為分子量434),且 ”種足分子式為C32H36(分子量420)。此等二七金剛烷族具 有顯π更大内建張力之結構,安定性相當低,且未列於圖 7中。其於二種之分子式4C3qH34(分子量394)(圖7)。八金 剛烷帶有八種&quot;鑽石結晶蘢形單元&quot;,且存在於五族之不同 分子量蕊結構(圖2)中。八金剛烷中,十八種之分子式為 C34H38(分子量446)。圖8顯示各種446分子量之八金剛烷異 構物。其他八金剛烷之分子式為C38h44(分子量5〇〇)。其他 八金剛烷族C37H42(分子量486)、C36H4〇(分子量472)及 C33H36(分子量432),顯示更大之鍵結張力及相對較低之安 定性。九金剛烷含具有下列分子式之六種不同分子量: C42H48(分子量 552)、C41H46(分子量 53 8)、C4GH44(分子量 524)、C38H42(分子量 498)、C37H4Q(分子量 484)、及 C34H36(分子量444)。另夕卜,十金剛烷含七種不同分子量。 十金剛坑中’僅一在構造上比其他十金剛坑緊密且内键張 力低’且分子式為(:35出6(分子量456)之十金剛烷。其他十 -23- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)It is based on the molecular formula (: 2 out of 30 (molecular view ,, n, Shi Yi 卞 I JJ〇)). See Figure 4. Hexamantane has 9 different structures (Figure 6), and 28 of its molecular formulas Is C3qH36 (molecular weight J96), and among them, six kinds of ru, ^ are non-drought; ten kinds are f 蘩 &gt;, entry,, s 炅 &lt; τ, &lt; π-adamantane, because of its highly condensed soil-like structure, is also known as Lijin, Ran &lt; 3 kappa-adamantane. Heptamantane basically exists in 160 possible structures and is passed on. The 8d species have molecular formula c34h4G (molecular weight 8) (Figure 7). Seven of these are non-palladium and have no stereoisomers. . In FIG. 7, only one of the two stereoisomer structures of the π-paired palmitrantamidine is shown. "In Qi Zhigang, the molecular formula of 67 species is molecular weight 434), and the molecular formula of" foot species "is C32H36 (molecular weight 420). These ptamantanes have a structure with significantly greater built-in tension, and their stability is rather low, which is not shown in Figure 7. It is in two kinds of molecular formula 4C3qH34 (molecular weight 394) (Figure 7). Octamantane carries eight "diamond crystalline diamond-shaped units" and exists in five molecular weight core structures (Figure 2). Eighteen kinds of octamantane have a molecular formula of C34H38 (molecular weight 446). Figure 8 shows various octamantane isomers of 446 molecular weight. The molecular formula of other octamantane is C38h44 (molecular weight 500). Other octamantane groups C37H42 (molecular weight 486), C36H4O (molecular weight 472) and C33H36 (molecular weight 432) show larger bond tension and relatively low stability. Nonamantane contains six different molecular weights with the following molecular formulas: C42H48 (molecular weight 552), C41H46 (molecular weight 53 8), C4GH44 (molecular weight 524), C38H42 (molecular weight 498), C37H4Q (molecular weight 484), and C34H36 (molecular weight 444) . In addition, decamantane contains seven different molecular weights. Among the ten diamond pits, 'only one is structurally tighter than other ten diamond pits and has a lower internal bond tension' and has a molecular formula of (: 35 out of 6 (molecular weight 456)). Standard (CNS) A4 size (210 X 297 mm)

裝 訂Binding

k 1244477 A7 B7 五、發明説明(21 至剛,凡狹 &lt; -刀子式為CwHy分子量6〇4)、c^H^(分子量 )90) C44H48(刀子里)76)、分子量 55〇)、C4iH44(分 子量536)及分子量496)。十一金剛烷(圖n)以分子 式 C)〇H)6(刀子 I 656)、C49H54(分子量 642)、C48H52(分子量 628)、C46H5G(分子量 6〇2) 、hay 分子量 588)、 c42h44(分子量 548)、C4iH42(分子量 534)、CmHw 分子量 爾)存在更好及較差之高級鑽石樣(圖2)係以其内鍵張力 及相對應之安定性Λ淮,甘技=十&gt; 為τ,其係反應各種原料中之相對濃 度。 原料 本發明提供之高級鑽石樣僅以稀濃度容易存在於石油原 料中。 、依本發明之方法’ I料係經選擇使該原料包括可回收量 之-種或多種選用之高級鑽石樣成分。較好,該原料包括 至少約,更好至少約25PPb且最好至少約1〇〇ppb之I 種或多種鬲級鑽石樣成分。當然需了 _,具有較高濃度之 高級鑽石樣成分之原料可協助此等成分之回收。 較佳之原料包含例如具有高濃度較高鑽石樣之天然氣濃 縮物及精餾流。針對後者,該精餾流包含可自裂解製程、 态餾、焦化寺回收之烴流。最佳之原料包含可自Gdf吋 Mex!⑶中之Norphlet F〇rmati〇n及自加拿大之 Formation回收之氣體濃縮物。 其-具體例中’本發明製程中所用之原料一般包括沸點 低於及咼於回收之經選擇最低沸點高級鑽石樣成分之非鑽 -24-k 1244477 A7 B7 V. Description of the invention (21 to Gang, Fan Nang &lt;-Knife formula is CwHy molecular weight 604), c ^ H ^ (molecular weight) 90) C44H48 (knife inside) 76), molecular weight 55)), C4iH44 (molecular weight 536) and molecular weight 496). Undecamantane (Figure n) with molecular formula C) 0H) 6 (knife I 656), C49H54 (molecular weight 642), C48H52 (molecular weight 628), C46H5G (molecular weight 602), hay molecular weight 588), c42h44 (molecular weight) 548), C4iH42 (molecular weight 534), and CmHw molecular weight) have better and worse high-grade diamond-like samples (Figure 2) is based on its internal bond tension and the corresponding stability Λ Huai, Gan Ji = ten &gt; is τ, It reflects the relative concentration of various raw materials. Raw materials The high-grade diamond samples provided by the present invention are easily present in petroleum raw materials only at dilute concentrations. According to the method of the present invention, the material is selected so that the material includes a recoverable amount of one or more selected advanced diamond-like ingredients. Preferably, the material comprises one or more hafnium-grade diamond-like ingredients of at least about, more preferably at least about 25 PPb, and most preferably at least about 100 ppb. Of course, _ is needed. Raw materials with higher concentrations of high-grade diamond-like ingredients can assist in the recovery of these ingredients. Preferred feedstocks include, for example, natural gas condensates with higher concentrations of diamond-like substances and rectification streams. For the latter, the rectification stream includes hydrocarbon streams that can be recovered from cracking processes, state distillation, and coking temples. The best raw materials include Norphlet Fomation from Gdf inch Mex! ⑶ and gas concentrates recovered from Formation in Canada. In its specific example, the raw materials used in the process of the present invention generally include non-diamonds with a boiling point lower than or lower than the selected low-boiling high-grade diamond-like ingredients. -24-

裴 ·· 本紙張尺度適用中國國家標準(CNS) A4^(2l〇X297公 221244477 五、發明説明( 石樣成分以及一種或多種 高級鑽石樣成分之混合物。依:::::争原科通常會含 =等高級鑽石樣之滞點可;:::績石樣,部分 i回收之選用最低滩點高級睪:成及鑽石樣滞點。通 3说。-般原料中,低;.石广成…'弗點高於約 般約250:1或更高。再者二樣比高級鑽石樣之濃度一 X:接λ、\ 丹者圖18中之說明,一妒6 h 一 石“/刀之原料亦包括非績石樣成分。α括高級鐵 β原料中’選擇之高級鑽石樣成分通常 的回收’因為其濃度相對於非選擇之成分低^原料有效 明〈方法可能需在條件下自原 之轉此^發 口收選擇之高㈣石樣成分之經處染物, 高級鑽石樣之一般單離方法如圖12中所示。 依/、具眼例,3染物之移除包含蒸餾原料,移除非 石樣成分以及低級鑽石樣成分及部分例中之其他㈣低 :收〈經選擇最低彿點高級鑽石樣成分之非選擇高級鑽 依最佳具體例,係蒸餾原料得到約335t上下,氣舉 當於滞點之㈣,且更好在345tjl下且氣壓相當 《餾份。纟一例中,富含低級鑽石樣及低滞點非鑽石樣成 分之低級餾份為塔頂餾出物且丟棄,留下富含高級績石 之高沸點餾出物。當然需了解,蒸餾過程中分餾點之溫 為壓力足函數,且對於大氣壓較佳者為上述溫度。低壓 使恶餾溫度較低下達到相同之分餾點,但高壓會造成蒸 裝 鑽 於 石 訂 一 相 點 線 樣 度 餾 -25- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477 A7 B7 五、發明説明(23 ) 溫度較高以達到相同分餾點。自大氣壓至低壓或高壓之壓 力/溫度關係為熟習本技藝者習知。 蒸餾可經操作以分餾原料且在期望之溫度範圍中得到許 多餾份,以提供起初富含之選擇高級鑽石樣或選擇之高級 鑽石樣群。留下富含一種或多種選擇之鑽石樣或期望之特 殊鑽石樣成分之餾份,且可能需要進一步純化。下表說明 可用於使塔頂餾出物富含各種高級鑽石樣之代表性分餾 點。實務上,製造較廣溫度範圍之經常含可在後續分離步 驟中一起分離之高級鑽1石樣之館份較有利。 分餾點 最佳 較佳 較低館份 較高館份 較低餾份 較鬲館份 南級鑽*石樣 溫度(°c) 溫度(°C) 溫度(°C) 溫度(°C) 四金剛燒 349 382 330 400 五金剛烷 385 427 360 450 環六金剛燒 393 466 365 500 六金剛燒 393 466 365 500 七金剛烷 432 504 395 540 八金剛烷 454 527 420 560 九金剛烷 463 549 425 590 十金剛燒 472 571 435 610 十一金剛垸 499 588 455 625 -26- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477 A7 B7 五、發明説明(24 ) 用途 南級鑽石樣 較低餾份溫度(°c) 較高餾份溫度(°C) 四金剛燒 300 430 五金剛烷 330 490 環六金剛烷 330 550 六金剛烷 330 550 七金剛烷 350 600 八金剛燒 375 610 九金剛烷 380 650 十金剛烷 390 660 十一金剛燒 400 675 應了解由於加入取代基,因此經取代之高級鑽石樣可據 此轉移此等較佳分餾點溫度至較高溫。其他溫度精餾將用 於期望之鑽石樣之高純度餾份。圖93提供可得到富含單獨 或多重高級鑽石樣成分之傲份分顧之進一步說明。 另需了解分餾可在塔頂餾出物取出選擇之高級鑽石樣後 終止。該情況下,該及鐵石樣可自分餾之塔底館出物單 離。 其他移除低級鑽石樣、非選擇之高級鑽石樣(若存在)及/ 或烴族非鑽石樣成分之方法包含(僅說明用)尺寸分離技 術、常壓或低壓蒸發、結晶、層析、塔頂分離、減壓等。 移除法可利用大尺寸之高級鑽石樣,以自其分離低級鑽石 樣。例如,使用薄膜之尺寸分離技術會使原料流在薄膜 中,使低級鑽石樣選擇性的通過薄膜遮蔽層,其條件為選 -27- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477 五、發明說明(25 擇薄膜遮蔽物之尺寸使其與低級绩石樣成分 於南級鑽石樣成分之化合物之間。 尺寸南 尺切可料進行尺寸㈣。師“等之孔隙 ::具體例t ’移除法提供低級鑽石樣成分 =ΓΓ比不大於9:1;更好不大於π且最好該比= 大於㈧之經處理原料。更好,自原料移除及鑽: 後’與移除前原料中之量比較,至少約1〇%,更:至: 1 5 0二且最好至少9 〇 %之高級鑽石樣成分留在原料令〜 當需要回收六金剛烷及高級鑽石樣成分,且當原料含 鑽石樣時,原料一般亦會進行熱解,以自原料移除至;一 部$烴類非鑽石樣成分。熱解可有效濃縮熱解處理原料中 之高級鑽石樣量,因此使其回收成為可能(圖Μ)。 熱解係藉由使原料在真空條件下或在惰性氣體中,溫度 至^約39(rC,且較好約為400至55(TC,更好約為4〇〇^ 450 C,且最好約410至43(TC下加熱進行有效熱解原料之 非鑽石樣成分之至少一部份之時間。所用之特殊條件係經 選擇,使得將可回收量之選擇高級鑽石樣成分留在原料 中。條件之選擇為熟習本技藝者習知。 較好’熱解持續充分之時段’且在夠高之溫度下,以煞 劣化熱解處理原料之至少約10%之非鑽石樣成分(更好至 少約50%,且最好至少約90%)(以熱解前原料終非鑽石樣 成分之總重量為準)。 又另一車父佳具體例中’原料熱解後,與熱解處理前原料 中之量比較,至少約10。/。’更好至少約50%,且最好至少 -28- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 1244477 A7 B7Pei ·· This paper size applies to Chinese National Standard (CNS) A4 ^ (2l0X297 公 221244477) V. Description of the invention (a mixture of stone-like ingredients and one or more high-grade diamond-like ingredients. According to ::::: It can contain the lag point of high-grade diamond samples, etc. ::: Ji stone samples, the lowest beach point for some i recovery is high 睪: Cheng and diamond-like lag points. Tong 3 said.-Normal raw materials, low;. Shi Guangcheng … 'Fu points are about 250: 1 or higher than normal. Second, the concentration is higher than that of high-grade diamonds. One X: then λ, \ Dan, as shown in Figure 18, one jealous 6 h, one stone "/ knife Raw materials also include non-refined stone-like ingredients. Α includes high-grade iron β raw materials 'usual recovery of selected high-grade diamond-like ingredients' because its concentration is lower than non-selected ingredients ^ The raw materials are effective. The method may need to be In turn, ^ hair mouth to select the high-chertite-like ingredients of the dyeing process, the high-level diamond-like general separation method is shown in Figure 12. According to the eye example, the removal of 3 dyes includes distillation raw materials, Remove non-stone-like components, low-grade diamond-like components and others in some cases : The best specific example of non-selected advanced diamonds with the highest diamond-like composition selected from the lowest Buddha point is the distillation of raw materials to obtain about 335t. The gas lift is equivalent to the stagnation point, and it is better to be at 345tjl and the pressure is equivalent. Fractions. In one example, the lower fractions rich in lower diamond-like and low-stagnation non-diamond-like components were overhead and discarded, leaving high-boiling distillates rich in high-grade stones. Of course, you need to understand The temperature of the fractionation point during the distillation process is a function of the pressure sufficient, and the above temperature is preferred for atmospheric pressure. Low pressure makes the bad distillation temperature reach the same fractionation point at a lower temperature, but high pressure will cause the steam to be drilled in the stone. Linear Sample Distillation-25- This paper size is applicable to Chinese National Standard (CNS) A4 (210 X 297 mm) 1244477 A7 B7 V. Description of the invention (23) The temperature is higher to reach the same fractionation point. From atmospheric pressure to low pressure or The pressure / temperature relationship of high pressure is well known to those skilled in the art. Distillation can be operated to fractionate the raw materials and obtain many fractions in the desired temperature range to provide a choice of high-grade diamond-like or high choices at first. Diamond-like clusters. Leaving fractions rich in one or more selected diamond-like or desired special diamond-like ingredients, and may require further purification. The table below illustrates the types of high-end diamond-like distillates that can be used to enrich the top distillate. Representative fractionation point. In practice, it is advantageous to produce a wide range of temperature often containing high-grade diamond 1 stone samples that can be separated together in subsequent separation steps. The fractionation point is best, better, lower, and higher. Lower distillate and higher grade South drill * Stone sample temperature (° c) Temperature (° C) Temperature (° C) Temperature (° C) Four diamonds firing 349 382 330 400 metal rigids 385 427 360 450 ring six King Kong Yam 393 466 365 500 Six King Yam 393 466 365 500 Heptamantane 432 504 395 540 Octamantane 454 527 420 560 Nine Adamantane 463 549 425 590 Ten Kingam 472 571 435 610 Eleven King Kong 499 588 455 625- 26- This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 1244477 A7 B7 V. Description of the invention (24) Use Southern diamond-like sample lower distillate temperature (° c) higher distillate temperature (° C) Four King Kong Fired 300 430 Five Adamantane 330 490 cyclohexamantane 330 550 hexamantane 330 550 heptamantane 350 600 octamantine 375 610 nonamantane 380 650 decamantane 390 660 eleven adamantane 400 675 It should be understood that due to the addition of substituents, Substituted high-grade diamond samples can accordingly transfer these preferred fractional temperatures to higher temperatures. Other temperature distillations will be used for the desired diamond-like high-purity fractions. Figure 93 provides a further illustration of the pride of interest that can be obtained with single or multiple high-grade diamond-like ingredients. It is also important to understand that the fractionation can be terminated after the top distillate has been removed from the selected high-grade diamond sample. In this case, the iron and stone samples can be separated from the bottom of the tower. Other methods for removing low-grade diamond samples, non-selected high-grade diamond samples (if present), and / or hydrocarbon-based non-diamond-like components include (for illustration only) size separation techniques, atmospheric or low pressure evaporation, crystallization, chromatography, columns Top separation, decompression and so on. The removal method can take advantage of large-sized high-grade diamond samples to separate low-grade diamond samples from them. For example, the use of film size separation technology will make the raw material flow in the film, so that the low-level diamond-like can selectively pass through the film shielding layer, the condition is to select -27- This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) 1244477 V. Description of the invention (25 Select the size of the film cover to make it between the low-grade stone-like component and the compound of the South-level diamond-like component. The size of the ruler can be cut to size. The division "wait for Porosity :: specific example t 'removal method provides low-grade diamond-like composition = ΓΓ ratio is not greater than 9: 1; better not greater than π and preferably this ratio = processed raw materials greater than ㈧. Better, remove and drill from raw materials : After 'compared with the amount in the raw material before removal, at least about 10%, more: to: 1520 and preferably at least 90% of the high-grade diamond-like ingredients are left in the raw material order ~ when hexamantanes need to be recovered And high-grade diamond-like ingredients, and when the raw material contains diamond-like ingredients, the raw materials are generally pyrolyzed to remove from the raw materials; a $ hydrocarbon non-diamond-like ingredients. Pyrolysis can effectively concentrate the pyrolysis treatment of raw materials High-quality diamonds, so they are recycled into Possibly (Figure M). Pyrolysis is carried out by subjecting the raw material under vacuum or in an inert gas to a temperature of about 39 (rC, and preferably about 400 to 55 (TC, more preferably about 400) 450 C, and preferably about 410 to 43 (TC for at least a portion of the non-diamond-like ingredients of the effective pyrolysis raw material. The special conditions used are selected such that the recoverable amount is selected by the high-grade diamond sample The ingredients remain in the raw materials. The selection of conditions is familiar to those skilled in the art. It is better to treat the non-diamonds that are at least about 10% of the raw materials to degrade the pyrolysis materials at a sufficiently high temperature period and at a sufficiently high temperature. Sample composition (better at least about 50%, and preferably at least about 90%) (based on the total weight of the final non-diamond-like ingredients of the raw materials before pyrolysis). Compared with the amount in the raw material before pyrolysis treatment, it is at least about 10%. 'Better at least about 50%, and preferably at least -28- This paper size applies to China National Standard (CNS) A4 specification (210X 297 mm) ) 1244477 A7 B7

五、發明説明(2S 、的90 /。〜间級讀石樣成分留在熱解處理後之原料中。 &quot;&quot;,】中,自原料移除低級鑽石樣及低彿點烴類非 鑽石橾成刀進仃熱解處理。然而,需了解此等程序之順序 可改變成自原料移除低級鑽石樣前進行。 幸:佳具體例之熱解程序並非必須。此係由於高級鑽石樣 定原料中夠高,使得經處理之原料(移除低級 、'貝水刀後)可直接用於純化技術中如層析、結晶等, 以後付円級鑽石樣成分。然而,當原料中高級鑽石樣成分 心濃度或純度並未達回收之水準,則應使用熱解步驟。 =當使用熱解時,較好使用—種或多種純化技術進一 逐步結晶、尺寸分離等。依最佳製程擴::術、區域精館 ^ m取丨王灰私’先使回收之原料進 =用硝I銀次切膠之重力管住層_,接著使用不同選 不同管柱之HPLC單離選擇之鑽石樣且結晶,得 標:級鐵石樣。當高級鐵石樣濃度並未高到足 - i濃::可能需要藉由例如製備用紅吸氣相層析進 法Γ吏:立體選擇性(對掌)靜態相進-步分離。亦 使用同效能液態層析法,使得使 到解晰立體異構物成為可能用對旱性溶劑或添加劑達 分:如其裝f達到高较靖石樣立體異構物態之 體呈構物-析农、、、:’合’夜及機械分離之自動結晶。該立 劑、對掌性溶劑或各類晶種生/或藉由使用添加 ,另一解晰之選擇為在 本纸張尺度S ?:鮮(c¥s) -29· 1244477 A7 B7 五、發明説明(27 ) 動態或熱力控制下化學分離。立體異構物解析用之其他適 用方法包含對掌性分離、其可使用氣相層析(GC)(見”對掌 性層析 ’’,T.E. Beesley 等人,Wlley,J〇hns〇n l Sons, January 1998,在此提出供參考),藉由高效能液態層析 (HPLC)及藉由超流體層析(SFC)技術(見,,層析及萃取中之 超说體 ’’ R.M. Smith,Elsevier Science,December 1997,在 此提出供參考)。 用途 本發明之方法提供一種提昇高級鑽石樣之組合物。此等 高級鑽石樣係用於微-及分子-電子及奈米技術之應用。尤 其’此等分子顯示之硬度、強度、安定性、導熱性,各種 結構態及多重附接位置使得具有奈米尺寸之堅固、耐用、 精確裝置之精確建構成為可能。圖15顯示相對於用於分子 電子裝置中之分子組件(Buckminsterfullerene及碳奈米管) 足選擇向級鑽石樣之尺寸及形狀。 南級鑽石樣為顯不不同鑽石晶格排列之三次元奈米尺寸 之單元。此可轉換成各種形狀及尺寸之此等極硬之奈米結 構,例如[12 1(3)4]六金剛烷為,,T,,形,[12 134]為&quot;L,,形,且 [1(2)3(1)2]為具有四葉片之平板狀。[12(3,4) 12]七金剛烷具 有交叉形結構而[121234]為L形,[12312]六金剛烷為盤狀 結構。[12 13 2 1 ]七金剛燒為具有一共平面葉片之盤狀物, 且[1213(1)21]八金剛烷為具有二相反共平面葉片之盤狀 物。[1232(1)3]八金剛烷為楔形。[121(2)32(1)3]九金剛烷 為三角形板狀結構。[123 1241 (2)3]十金剛烷為完美之八面 -30- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477V. Description of the invention (2S, 90 /. ~ Intermediate reading stone-like components are left in the raw materials after pyrolysis treatment. &Quot; &quot;, &quot; In the removal of low-grade diamond-like and low-buddose hydrocarbons from raw materials Diamonds are cut into knives and pyrolyzed. However, it is important to understand that the order of these procedures can be changed to remove lower diamond samples from the raw material. Fortunately, the pyrolysis procedure for good examples is not necessary. This is due to the high-grade diamond sample. The raw material is high enough so that the processed raw material (after removing the low grade and 'shell water knife') can be directly used in purification technology such as chromatography, crystallization, etc., and later pays for diamond-like components of high grade. However, when the raw material is medium and high grade Diamond-like components have a core concentration or purity that does not reach the level of recovery, then a pyrolysis step should be used. = When using pyrolysis, it is better to use one or more purification techniques for further crystallization, size separation, etc. According to the optimal process expansion :: Surgery and regional fine hall ^ m take 丨 Wang Huishui 'first put the recovered raw materials into the gravity tube with nitrocellulose and then use a HPLC single-selection diamond with different column selection Sample and crystallized, qualified: grade iron stone. When Grade iron stone concentration is not high enough-i concentration :: may need to be prepared by, for example, gas chromatography with red-sucking gas chromatography: stereoselective (opposite) static phase-step separation. The same performance is also used Liquid chromatography makes it possible to resolve stereoisomers. It is possible to use dry solvents or additives to achieve a high level: if its content is high, it is a stereo-isomer in the form of a stereo-isomer. : Automatic crystallization of 'he' night and mechanical separation. The standing agent, palm solvent or various seed crystals can be grown and / or added by use. Another clear choice is at the paper scale S?: Fresh (c ¥ s) -29 · 1244477 A7 B7 V. Description of the invention (27) Chemical separation under dynamic or thermal control. Other applicable methods for the analysis of stereoisomers include palm separation, which can be performed using gas chromatography ( GC) (see "Palamic Chromatography", TE Beesley et al., Wlley, Johnsson Sons, January 1998, hereby incorporated by reference), by high performance liquid chromatography (HPLC) and by Superfluid Chromatography (SFC) Technology (see, Ultrasound in Chromatography and Extraction '' RM Smith, Elsevier Scie (nce, December 1997, hereby incorporated by reference). Uses The method of the present invention provides a composition that enhances advanced diamond patterns. These advanced diamond patterns are used in micro- and molecular-electronic and nanotechnology applications. In particular, ' The hardness, strength, stability, and thermal conductivity shown by these molecules, various structural states and multiple attachment positions make possible the precise construction of a rugged, durable, precise device with nanometer dimensions. Figure 15 shows the relative The molecular components (Buckminsterfullerene and carbon nano tube) in the device are sufficient to select the size and shape of the diamond. Southern diamond samples are three-dimensional nanometer-sized units with different diamond lattice arrangements. This can be converted into these extremely hard nanostructures of various shapes and sizes, such as [12 1 (3) 4] hexamantane is ,, T ,, shape, [12 134] is &quot; L ,, shape, [1 (2) 3 (1) 2] is a flat plate having four leaves. [12 (3,4) 12] Heptamantane has a cross-shaped structure while [121234] has an L-shape, and [12312] hexaadamantane has a disc-like structure. [12 13 2 1] Heptamanthin is a disk having a coplanar blade, and [1213 (1) 21] octamantane is a disk having two opposite coplanar blades. [1232 (1) 3] Octamantane is wedge-shaped. [121 (2) 32 (1) 3] Nonamantane has a triangular plate structure. [123 1241 (2) 3] Decamantane is the perfect octahedron -30- This paper size applies Chinese National Standard (CNS) A4 (210 X 297 mm) 1244477

^ 且[丨2123 1212]八金剛烷為長方形板狀結構。 U^U,2)42 143]十一金剛烷為狹長金字塔形。奈米技術及 奈米結構材料之應用中,可依其特殊形狀使用各種其他形 J 1&gt; 二 ,『、 阿級鑽石樣。四金剛烷至十一金剛烷之碳骨架結構示 於圖3至1丨中。 同級鑽石樣亦包含一系列不同長度之棒狀結構。順序 &quot;1 ? 1 &quot;、 - 足四金剛烷為第一組該棒狀結構系列’ [1212]五金 剛燒為下—組,接著為[12121]六金剛烷等,該附加之鑽石 處會使棒之長度增加約0.3毫米,且[1212]五金剛烷長度約 為 1.1 nm 〇 [1(2)3]四金剛烷為更小型系列,上面平的金字塔結構 (圖3) ° [1(2,3)4]五金剛烷(圖5)依該形式為完美之四面體金 字塔。 南級鑽石樣亦包含各種長度之螺旋狀結構。第一種對掌 性鑽石樣為順序123之四金剛烷。將123四金剛烷之立體異 構物足為A&amp;B。其結構亦可為Balaban命名改良之順序Η] 及124 °此等二鑽石樣具有左(逆時針)亦及四金剛垸A,及 右(順時針)(四金剛烷B)方向之旋轉或螺旋狀結構,二者均 代表部分旋轉之螺旋體。不幸的是,Balaban命名並盔法 才疋供分辨左及右螺旋體之方法,僅證明含二種形式。該順 序以對於五金剛烷以順序1234及1243(亦即八及⑴持績(圖 5),對於六金剛烷為12341及1243 1(亦即A及B)持續(圖6) 等。六金剛烷組份包含全轉之此等螺旋狀奈米結構之左及 右螺旋體(圖94)。^ And [丨 2123 1212] Octamantan has a rectangular plate-like structure. U ^ U, 2) 42 143] Elundantane has a long and narrow pyramid shape. In the application of nano technology and nano structural materials, various other shapes can be used according to its special shape. J 1 &gt; II, A, diamond grade. The carbon skeleton structures of tetramantane to undecamantane are shown in Figs. 3 to 1 丨. Diamonds of the same grade also contain a series of rod-shaped structures of different lengths. Order &quot; 1? 1 &quot;,-Ashikata is the first group of this rod-shaped structure series' [1212] Hardware just burned as the next group, followed by [12121] Six adamantane, etc., the additional diamond Will increase the length of the rod by about 0.3 mm, and the length of [1212] metal adamantane is about 1.1 nm. [1 (2) 3] tetramantane is a smaller series, with a flat pyramid structure above (Figure 3) ° [1 (2,3) 4] Hardware adamane (Figure 5) is a perfect tetrahedron pyramid in this form. Southern diamond samples also include spiral structures of various lengths. The first palm-like diamond pattern was tetramantane of order 123. The stereoisomer of 123 tetramantane is sufficient as A &amp; B. Its structure can also be modified in the order of Balaban nomenclature.] And 124 ° These two diamonds have left (counterclockwise) and four diamonds 垸 A, and right (clockwise) (tetradamantane B) directions of rotation or spiral. Like structures, both of which represent partially rotating spirals. Unfortunately, Balaban's nomenclature and helmet method is only a method for distinguishing left and right spirochaetes, which only proves to contain two forms. This sequence is continued in the order 1234 and 1243 (that is, eight and ⑴) for metal adamantane (Figure 5), and 12341 and 1243 1 (that is, A and B) for hexamantane (Figure 6) and so on. Six diamonds The alkane component contains left and right spirals of these helical nanostructures that are fully rotated (Figure 94).

12444771244477

A7 B7 五、發明説明(29 ) 此 等特殊結構特徵構成與 丙烯' 酸 系 分子, 與環狀系 統 甚 至 與 橋接環狀對等物分離之 之高 級 鑽 石樣。 大安 定性 、 奈 米 尺 寸、不同硬度形狀充分 定義 附 接 非平面 橋接 頭放 置 之 5巨 離 ,形成其獨特特性。由 於高 級 鑽 石樣成 分之 硬度 , 特 殊 幾 合形狀之三次元形狀及 奈米 尺 寸 ,因此 希望 可建構 分 子 聚 集及形成包含其之塊體 可建 構 且 合成史無前 例之 所 需 物 質 之陣列,且可見於分子 電子 計 算 裝置、 小尺 寸機 械 如 分 子 自動控制及自行複製之 製造 系 統 。相反 的, 南級 鑽 石 樣 可 用作塗料、薄膜層及其 他需 要 似 鑽石性 質優 點之 應 用 之 具 有特殊化學光電及導熱 性之 新 穎 材料。 本文 揭示 微 子 領 域中之含高級鑽石樣物質之新穎用途 。具 體例 包 含 (但不限)積體電路封裝中之 導熱 薄 膜 ,積體 電路 多層 連 結 中 之 低-k介電層、導熱黏著 劑膜 、 熱 電冷卻 裝置 中之 導 4k 薄 膜 、積體電路裝置(1C)中之被動膜 ,及電場發射陰極( 另 外,此等高級鑽石樣亦 可用 於 現南黏 度係 數及極 低 流 點 1'之南品質潤滑流體。 當使 用 時 ,此等 流體 包括 潤 滑 黏 度 及自約0.1至10 wt%鑽石 樣之 流 體 0 另 外,此等高級鑽*石樣可用作Chung等人 14所 述之 方 式 之 南 密度燃料,在此提出供 參考 〇 下 列實例係用於說明本發 明, 且 並 不以任 何方 式限 制 本 發 明 之範圍。除非另有說明 ,所 有 溫 度均為 °C。 實例 至 於本文中所用及圖中, 下列 簡 寫 之意如 下。 未於 下 列 定 義 之任何簡寫均為一般之 音。 -32- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477 A7 B7 五、發明説明(3〇 ) API 二 : 美國石油協會 atm eqv = : 大氣當量 btms 二 : 底部 EOR Traps 二 :操作承載器之端點 fid 二 : 火焰氧化偵測器 g = :克 GC 二 : 氣相層析 GC/MS 二 : 氣相層析/質譜 h = : 小時 HPLC - : 南效能液怨層析 HYD RDG : :水力計讀數 L 二 :升 min = : 分鐘 mL 二 = 毫升 mmol = = 毫莫耳 N 二 : 公稱 p A : : pico amps ppb = = 每十億份 ppm : = 每百萬份 RI 二 = 折射係數 SIM DIS = 模擬蒸館 ST = = 起始 TIC : = 總離子電流 TLC : = 薄層層析 -33- 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐)A7 B7 V. Description of the invention (29) These special structural features constitute high-level diamond samples separated from acrylic acid molecules, cyclic systems, and even bridged cyclic equivalents. The large stability, nanometer size, and different hardness shapes fully define the 5 large distances of the attached non-planar bridge head placement, forming its unique characteristics. Due to the hardness of advanced diamond-like components, the three-dimensional shape and nanometer size of the special couple shape, it is hoped that constructable molecules can be aggregated and formed into an array of blocks that can be constructed and synthesized unprecedentedly, and can be seen in molecules Electronic computing device, small-sized machinery such as molecular automatic control and self-replicating manufacturing system. In contrast, the South-level diamond samples can be used as coatings, thin film layers, and other new materials with special chemical photoelectricity and thermal conductivity for applications that require diamond-like quality. This article reveals the novel uses of advanced diamond-like substances in microdomains. Specific examples include (but not limited to) thermally conductive films in integrated circuit packages, low-k dielectric layers in multilayer connections of integrated circuits, thermally conductive adhesive films, conductive 4k films in thermoelectric cooling devices, and integrated circuit devices ( 1C) passive film and electric field emission cathode (In addition, these advanced diamond samples can also be used for South-South viscosity coefficient and extremely low flow point 1 'South-quality lubricating fluid. When used, these fluids include lubricating viscosity and From about 0.1 to 10 wt% of diamond-like fluid. 0 In addition, these high-grade diamond * stone samples can be used as a South Density fuel in the manner described by Chung et al. 14 and are hereby incorporated by reference. The following examples are provided to illustrate the present. This invention is not intended to limit the scope of the invention in any way. Unless otherwise stated, all temperatures are in ° C. Examples As used herein and in the drawings, the following abbreviations are as follows. Any abbreviations not defined below are General Voice -32- This paper size applies to China National Standard (CNS) A4 Grid (210 X 297 mm) 1244477 A7 B7 V. Description of the invention (30) API II: American Petroleum Institute atm eqv =: atmospheric equivalent btms II: bottom EOR Traps II: operating end point fid II: flame oxidation Detector g =: gram GC II: gas chromatography GC / MS II: gas chromatography / mass spectrometry h =: hour HPLC-: south performance liquid chromatography HYD RDG:: hydrometer reading L II: liter min =: Minutes mL = milliliters mmol = = millimoles N II: nominal p A:: pico amps ppb = = ppm per billion parts: = RI per million parts = refractive index SIM DIS = simulated steaming hall ST = = Initial TIC: = Total Ion Current TLC: = Thin Layer Chromatography-33- This paper is sized for China National Standard (CNS) A4 (210 x 297 mm)

1244477 A71244477 A7

裝 訂Binding

1244477 A7 B7 五、發明説明(32 ) 實例10敘述九金剛烷成份之富含及單離。 實例1 1敘述十金剛烷成份之富含及單離。 實例12敘述十一金剛烷成份之富含及單離。 需了解可改變各種蒸餾、層析及熱解步,驟之順序,但以 實例1中所列之順序為結加之結果。 實例1 該實例有七個步驟(見圖12中之流程圖)。 步騾1.選擇原料 步騾2. GCMC分析發展 步驟3 .原料大氣蒸顧 步驟4.大器蒸館殘留物真空分I留 步驟5.單離餾份之熱解 步騾6.芳系及極性非鑽石樣成分之移除 步驟7.高級鑽石樣之多管柱HPLC之單離 a) 第一種選擇性之第一管柱,以提供富含特定高 級鑽石樣之餾份 b) 不同選擇性之第二管住以提供單離之高級鑽石樣 該實例係針對多種六金剛烷之單離。如實例5-12中所 示,其可輕易地用於單離其他高級鑽石樣。 步驟1 -原料選擇 取得適當之起始物質。此等物質包含氣態濃縮物、原料 A(圖1 6)及含石油成分之氣體濃縮物、原料B。雖然層使用 其他濃縮物、石油、或精製餾份及產物,均選用此二物 質,因為以G C及G C / M S測定具有高鑽石樣濃度(約0.3 -35- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 12444771244477 A7 B7 V. Description of the Invention (32) Example 10 describes the enrichment and isolation of the nonamantane component. Example 11 1 describes the enrichment and isolation of the decamantane component. Example 12 describes the enrichment and isolation of the undecamantane component. It should be understood that the order of the various distillation, chromatography, and pyrolysis steps can be changed, but the order listed in Example 1 is the final result. Example 1 This example has seven steps (see the flowchart in Figure 12). Step 1. Select raw materials. Step 2. GCMC analysis and development. Step 3. Atmospheric vaporization of raw materials. Step 4. Vacuum distillation of residues in the Daqi steaming hall. I. Step 5. Pyrolysis step of single fractions. 6. Aromatic and Steps for removing polar non-diamond-like constituents. 7. Multi-column HPLC separation of high-grade diamond samples. A) First selective first column to provide fractions rich in specific high-grade diamond samples. B) Different options. The second example is the high-grade diamond sample that provides a single ion. This example is for a single ion of multiple hexamantanes. As shown in Example 5-12, it can be easily used to isolate other high-grade diamond samples. Step 1-Selection of raw materials Obtain appropriate starting materials. These materials include gaseous concentrates, raw material A (Fig. 16) and petroleum-containing gas concentrates, and raw material B. Although the layer uses other concentrates, petroleum, or refined fractions and products, these two materials are selected because of the high diamond-like concentration determined by GC and GC / MS (approximately 0.3 -35- This paper scale applies to Chinese national standards (CNS ) Α4 size (210 X 297 mm) 1244477

wt%之高級鑽石樣)^二原料均為淡色且Αρι比重為19至2〇 API。 步驟2-GC/MS分析之發展 使用氣相層析/質譜儀分析原料A,以確定含目標高級鑽 石樣,且提供此等目標物質之氣相層析駐留時間。使用該 資訊經由後續單離程序追蹤單獨之目標高級鑽石樣。圖 13八為列出一般六金剛烷之GC/MS分析資訊之表(GC駐留時 間,質譜分子離子(从+)及基礎峰)。該表(圖13A)亦含其他 高級鑽石樣之類似GC/MS分析資訊。雖然相對之Gc駐留 時間約為一定,但非參考用之〇(:駐留時間會隨著時間改 變。建議當偵測到GC駐留時間改變時,Gc/Ms*析值一 定時間應修正。 步驟3 -原料大氣蒸餘 將原料B之樣品蒸餾成許多以沸點為準之餾份,以分離 低沸點成分(非鑽石樣及低級鑽石樣),且進一步在各餾份 中濃縮且覆含特殊之高級鑽石樣。二不同樣品之原料B: 大氣蒸餾餾份之產率列於下表丨中,且與模擬蒸餾產率比 較三由表1中可看出,模擬之蒸餾數據與實際之蒸餾數據 相符。模擬蒸餾數據係用於規劃後續之蒸餘製程。 -36- 1244477 A7 B7 五 、發明説明(34 ) 表1 :二不同操作之原料B大氣蒸餾餾份之產率 餾扮(°F) 模擬蒸餾 預估產率(Wt%) 原料B (操作2) 產率(Wt%) 差異 至349 8.0 7.6 0.4 349至491 57.0 57.7 -0.7 491至643 31.0 30.6 0.4 643及更高 4.0 4.1 -οι 餾份(°F) 模擬蒸館 預估產率(Wt%) 原料B (操作1) 產率(Wt%) 差異 至477 63.2 59.3 3.9 477至515 4.8 7.3 -2.5 515至649 28.5 31.2 -2.7 649及更高 3.5 2.1 1.4 步騾4-真空蒸餾殘留之大氣蒸餾之餾份 將步騾3獲得之原料B大氣蒸餾殘留物(包括2-4重量%之 原有原料)蒸餘成含高級鑽石樣之餾份(如圖17及93所示)。 高溫蒸餾製程之飼入物為大氣壓650°F +塔底物。完全之原 料B蒸餾數據列於表2A及表2B中。表3A及表3B說明原料B 650°F +蒸館塔底物之蒸館數據。 -37- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)wt% high-grade diamond-like) ^ The two raw materials are light-colored and the Aρι specific gravity is 19 to 20 API. Step 2-Development of GC / MS Analysis Use gas chromatography / mass spectrometer to analyze raw material A to determine the target advanced diamond sample and provide the GC residence time of these target substances. Use this information to track individual target advanced diamond patterns through subsequent single-off procedures. Figure 13-8 is a table listing the GC / MS analysis information of general hexamantane (GC residence time, molecular ion (from +) and basic peak). The table (Figure 13A) also contains similar GC / MS analysis information for other advanced diamond samples. Although the Gc dwell time is about constant, it is not used for reference (the dwell time will change with time. It is recommended that when the GC dwell time is detected to change, the Gc / Ms * analysis value should be corrected for a certain time. Step 3 -Distillation of raw material atmospheric distillation Distills the sample of raw material B into many boiling-point-based fractions to separate low-boiling components (non-diamond-like and low-grade diamond-like), and further concentrates in each fraction and covers special high-grade Diamond sample. 2. Raw materials of different samples. B: The yields of atmospheric distillation fractions are listed in the table below, and compared with the simulated distillation yields. 3. As can be seen from Table 1, the simulated distillation data is consistent with the actual distillation data. The simulated distillation data is used to plan the subsequent distillation process. -36- 1244477 A7 B7 V. Description of the invention (34) Table 1: Yield distillation (° F) simulation of the atmospheric distillation fraction of raw material B in two different operations Estimated Distillation Yield (Wt%) Raw Material B (Operation 2) Yield (Wt%) Difference to 349 8.0 7.6 0.4 349 to 491 57.0 57.7 -0.7 491 to 643 31.0 30.6 0.4 643 and higher 4.0 4.1 -οι Fraction (° F) Estimated Yield (Wt%) B (Operation 1) Yield (Wt%) Difference to 477 63.2 59.3 3.9 477 to 515 4.8 7.3 -2.5 515 to 649 28.5 31.2 -2.7 649 and higher 3.5 2.1 1.4 Step 骡 4-Vacuum distillation residual atmospheric distillation distillation The atmospheric distillation residue of the raw material B obtained in step 3 (including the original raw materials of 2-4% by weight) is distilled into fractions containing high-grade diamonds (as shown in Figures 17 and 93). The input is atmospheric pressure 650 ° F + tower bottom. The complete distillation data of Raw Material B is listed in Tables 2A and 2B. Tables 3A and 3B show the raw material B 650 ° F + steam tower data of the steam tower bottom.- 37- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

1244477 A7 B7 五、發明説明(35 ) 表2A. 原料B之蒸餾數據1244477 A7 B7 V. Description of the invention (35) Table 2A. Distillation data of raw material B

原料B 所用管柱:清潔之9’’ X 1.4&quot;之突起充填 蒸铜1己錄 公稱化 確實 餾份 蒸汽溫度 重量 體積 API 密度 WT 體積 WT 體積 開始-結束 G ml @60°F 60/60 @60Τ PCT PCT PCT PCT 1 226 - 349 67.0 80 38.0 0.8348 7.61 .8.54 7.39 8.26 2 349 - 491 507.7 554 22.8 0.9170 57.65 59.12 55.98 57.23 3 491 - 643 269.6 268 9.1 1_ ⑻64 30.62 28.60 29.73 27.69 管柱停留 0.2 0 6.6 1.0246 0.02 0.00 0.02 0.00 BTMS ! I 643 + 36.1 35 6.6 1.0246 4.09 3.74 3.98 3.62 EOR承載器 0.0 0 0.00 0.00 0.00 1 合計 880.6 937 100.00 100.00 97.09 96.80 損失 26.4 31 2.91 3.20 進料 907.0 968 19.5 0.9371 100.00 100Ό0 循環回去之API及密度 19.1 0.9396 表2B :原料B之蒸餾數據Raw Material B: Column used: clean 9 "X 1.4 &quot; bump filled with steamed copper 1 hexadecimal nominal fraction steam temperature weight volume API density WT volume WT volume start-end G ml @ 60 ° F 60/60 @ 60Τ PCT PCT PCT PCT 1 226-349 67.0 80 38.0 0.8348 7.61 .8.54 7.39 8.26 2 349-491 507.7 554 22.8 0.9170 57.65 59.12 55.98 57.23 3 491-643 269.6 268 9.1 1_ ⑻64 30.62 28.60 29.73 27.69 Column retention 0.2 0 6.6 1.0246 0.02 0.00 0.02 0.00 BTMS! I 643 + 36.1 35 6.6 1.0246 4.09 3.74 3.98 3.62 EOR carrier 0.0 0 0.00 0.00 0.00 1 Total 880.6 937 100.00 100.00 97.09 96.80 Loss 26.4 31 2.91 3.20 Feed 907.0 968 19.5 0.9371 100.00 100Ό0 Loop back API and density 19.1 0.9396 Table 2B: Distillation data of raw material B

原料B 所用管柱:清潔之9” X 1.4&quot;之突起充填 溫度下 壓力 回流 餾份 體積 mi_T 重量 G 比重 蒸汽 POT 托耳 比例 無 觀察 60T VLT 大氣對 等物 氫讀數 溫度 93 225.8 262 50.000 3:1 起始塔頂物 198 349.1 277 50.000 3:1 1 80 67.0 39.6 80.0 38.0 321 490.8 376 50.000 3:1 2 554 507.7 24.1 80.0 22.8 操作向下流管中餾份2似乳狀,白色結晶態,對滴管中施加加熱燈 冷卻移至底部至較小瓶 208 437.7 323 10.000 3:1 起始塔頂物 378 643.3 550 10.000 3:1 3 268 269.6 | 9.9 75.0 9.1 由於乾燥而關掉 操作承載器終點 0 0.0 蒸餾體積 902 管柱停留 0 0.2 0.0 0.0 6.6 塔底物1 35 36.1 7.2 72.0 6.6 回收 937 880.6 飼入物 968 907.0 20.7 80.0 19.5 損耗1 31 26.4 -38- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 1244477 A7 B7 五、發明説明(36 ) 表3A :原料B之真空蒸餾數據 原料B-大氣蒸餾殘留物650下十塔底物 所用管柱 :Sarnia Hi Vac 溫度。F 壓力 回流 顧份 體積 ml 重量 G API比重 VAPOR POT 丁ORJR 比率 無 觀察 60T 蒸汽 大氣對 等物 60°F 氫讀數 溫度 T 315 601.4 350 5.000 起始壓差 344 636.8 382 5.000 300 讀取 342 644.9 389 4.000 500 讀取 344 656.3 395 3.300 1 639 666.4 7.S 138.0 4.1 353 680.1 411 2.500 400 讀取 364 701.6 430 2.100 2 646 666.9 9.4 138.0 5.6 333 736.0 419 0.400 200 讀取 1 336 751.9 432 0.300 3 330 334.3 12.4 139.0 8.3 391 799.9 468 0.500 4 173 167.7 19.0 139.0 14.5 411 851.6 5⑻ 0.270 5 181 167.3 26.8 139.0 21.7 460 899.8 538 0.360 6 181 167.1 27.0 139.0 21.9 484 950.3 569 0.222 7 257 238.4 26.2 139.0 21.2 關掉蒸餾檢查缸溫(排出承載器材料5.3克) 1 472 935.7 576 0.222 起始壓差 521 976.3 595 0.340 8 91 85.4 23.7 139.0 18.9 527 999.9 610 0.235 9 85 80.8 23.0 139.0 18.2 527 1025.6 624 0.130 10 98 93.8 21.6 139.0 16.9 16.5克之排放留下材半 K〜4克之水) 1 1 1 ME) AND 操作承載器結束 20 17.8 (數學 合併) 體積蒸餾 2701 管柱停留 4 4.0 0.0 0.0 3.4 塔底 593 621.8 11.0 214.0 3.4 回收 3298 3311.7 飼入物注入 3298 3326.3 18.0 234.0 8.6 損耗1 -5 14.6 -39- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477 A7 B7 五、發明説明(37 ) 表3B :原料B之真空蒸餾數據 原料B-大氣蒸餾殘留物650°F +塔底物 所用管柱 :Sarnia HiVac 餾份 蒸氣溫度 重量 體積 API 密度 WT VOL WT VOL 開始-結束 G ml @6〇Τ 60/60 60°F PCT PCT PCT PCT 1 601 - 656 666.4 639 4.1 1.0435 20.12 19.38 20.03 19.40 2 656 - 702 666.9 646 5.6 1.0321 20.14 19.59 20.05 19.62 3 702 - 752 334.3 330 8.3 1.0122 10.09 10.01 10.05 10.02 4 752 - 800 167.7 173 14.5 0.9692 5.06 5.25 5.04 5.25 5 800 - 852 167.3 181 21.7 0.9236 5.05 5.49 5.03 5.50 6 852 - 900 167.1 181 21.9 0.9224 5.05 5.49 5.02 5.50 7 900 - 950 238.4 257 21.2 0.9267 7.25 7.79 7.17 7.80 8 950 - 976 85.4 91 18.9 0.9408 2.58 2.76 2.57 2.76 9 976 - 1000 80.8 85 18.2 0.9452 2.44 2.58 2.43 2.58 10 1000 - 1026 93.8 98 16.9 0.9535 2.83 2.97 2.82 2.98 管柱停留 4.0 4 3.4 1.0489 0.12 0.12 0.12 0.12 BTMS 1026 + 621.8 593 3.4 1.0489 18.78 17.98 18.69 18.01 承載器 17.8 20 0.54 0.61 0.54 0.61 1 合計 3311.7 3298 100.00 100.00 99.56 100.15 損耗 14.6 -5 0.44 -0.15 飼入物 3326.3 3293 8.6 1.0100 100.00 moo 回頭計算之API及密度 9.4 1.0039 表4.原料B之元素組合物 以原料B65(TF殘留物為準之分析 測量 值 氮 0.991 wt% 硫 0.863 wt% 鎳 8.61 ppm 釩 &lt;0.2 ppm 表4說明原料B氣體蒸餾(650°F )殘留物之部分元素組合 物,包含部分相同之雜質。表4顯示原料B大氣蒸顧殘留物 中之氮、硫、鎳及釩之重量%。後續步騾係移除此等物 質。 步驟5 -單離館份之熱解 -40- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477Raw material B: used column: clean 9 ”X 1.4 &quot; pressure reflow fraction volume mi_T weight G specific gravity steam POT torture ratio no observation 60T VLT atmospheric equivalent hydrogen reading temperature 93 225.8 262 50.000 3: 1 Starting column top 198 349.1 277 50.000 3: 1 1 80 67.0 39.6 80.0 38.0 321 490.8 376 50.000 3: 1 2 554 507.7 24.1 80.0 22.8 Fraction in the downflow tube 2 Milky, white crystalline, anti-drop Apply heating lamp cooling in the tube and move to the bottom to the smaller bottle 208 437.7 323 10.000 3: 1 Starting column top 378 643.3 550 10.000 3: 1 3 268 269.6 | 9.9 75.0 9.1 Switch off the operation carrier end due to drying 0 0.0 Distillation volume 902 Column retention 0 0.2 0.0 0.0 6.6 Column bottom 1 35 36.1 7.2 72.0 6.6 Recovery 937 880.6 Feed 968 907.0 20.7 80.0 19.5 Loss 1 31 26.4 -38- This paper size applies to China National Standard (CNS) A4 specifications (210X 297 mm) 1244477 A7 B7 V. Description of the invention (36) Table 3A: Vacuum distillation data of raw material B Raw material B-atmospheric distillation residue 650 Ten-column column used: Sarnia Hi Vac temperature. F pressure reflux volume volume ml weight G API specific gravity VAPOR POT butORJR ratio no observation 60T steam atmospheric equivalent 60 ° F hydrogen reading temperature T 315 601.4 350 5.000 start Differential pressure 344 636.8 382 5.000 300 Read 342 644.9 389 4.000 500 Read 344 656.3 395 3.300 1 639 666.4 7.S 138.0 4.1 353 680.1 411 2.500 400 Read 364 701.6 430 2.100 2 646 666.9 9.4 138.0 5.6 333 736.0 419 0.400 200 Read 1 336 751.9 432 0.300 3 330 334.3 12.4 139.0 8.3 391 799.9 468 0.500 4 173 167.7 19.0 139.0 14.5 411 851.6 5⑻ 0.270 5 181 167.3 26.8 139.0 21.7 460 899.8 538 0.360 6 181 167.1 27.1 139.0 21.9 484 950.3 569 0.222 7 257 238.4 26.2 139.0 21.2 Turn off the distillation to check the temperature of the cylinder (5.3 g of the carrier material discharged) 1 472 935.7 576 0.222 Initial pressure difference 521 976.3 595 0.340 8 91 85.4 23.7 139.0 18.9 527 999.9 610 0.235 9 85 80.8 23.0 139.0 18.2 527 1025.6 624 0.130 10 98 93.8 21.6 139.0 16 .9 16.5 grams of emissions left half K ~ 4 grams of water) 1 1 1 ME) AND operation carrier end 20 17.8 (mathematical combination) volume distillation 2701 column stay 4 4.0 0.0 0.0 3.4 column bottom 593 621.8 11.0 214.0 3.4 recovery 3298 3311.7 Feed infusion 3298 3326.3 18.0 234.0 8.6 Loss 1 -5 14.6 -39- This paper size applies to Chinese National Standard (CNS) A4 (210 X 297 mm) 1244477 A7 B7 V. Description of the invention (37) Table 3B : Vacuum distillation data of raw material B Raw material B-atmospheric distillation residue 650 ° F + column bottom: Sarnia HiVac fraction vapor temperature weight volume API density WT VOL WT VOL start-end G ml @ 6〇 60 60 60 ° F PCT PCT PCT PCT 1 601-656 666.4 639 4.1 1.0435 20.12 19.38 20.03 19.40 2 656-702 666.9 646 5.6 1.0321 20.14 19.59 20.05 19.62 3 702-752 334.3 330 8.3 1.0122 10.09 10.01 10.05 10.02 4 752-800 167.7 173 14.5 0.9692 5.06 5.25 5.04 5.25 5 800-852 167.3 181 21.7 0.9236 5.05 5.49 5.03 5.50 6 852-900 167.1 181 21.9 0.9224 5.05 5.49 5.02 5.50 7 900-950 238.4 257 21.2 0.9267 7.25 7.79 7.17 7.80 8 950-976 85.4 91 18.9 0.9408 2.58 2.76 2.57 2.76 9 976-1000 80.8 85 18.2 0.9452 2.44 2.58 2.43 2.58 10 1000-1026 93.8 98 16.9 0.9535 2.83 2.97 2.82 2.98 Tube Column retention 4.0 4 3.4 1.0489 0.12 0.12 0.12 0.12 BTMS 1026 + 621.8 593 3.4 1.0489 18.78 17.98 18.69 18.01 Carrier 17.8 20 0.54 0.61 0.54 0.61 1 Total 3311.7 3298 100.00 100.00 99.56 100.15 Loss 14.6 -5 0.44 -0.15 Feed 3326.3 3293 8.6 1.0100 100.00 moo Calculated API and density 9.4 1.0039 Table 4. Analysis of the elemental composition of raw material B based on raw material B65 (TF residue based on the measured value of nitrogen 0.991 wt% sulfur 0.863 wt% nickel 8.61 ppm vanadium &lt; 0.2 ppm table 4 Explain that part of the elemental composition of the gas distillation (650 ° F) residue of raw material B contains some of the same impurities. Table 4 shows the weight percent of nitrogen, sulfur, nickel and vanadium in the atmospheric distillation residue of raw material B. The subsequent steps are to remove these substances. Step 5-Pyrolysis of single-departures -40- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 1244477

使用南溫反應器熱放1丄、” 餾餾份中之非鑽石樣 石樣。熱解製程係在 之氣相層析(HD)列於圖18A中。 析。比較此等層析顯示熱解移除」 高級鑽石樣之濃度明顯的增加,; 驟中使用伊利諾州、Mo line之PAR 500毫升PARR®反應器。 步驟6 - ^系及極性非金剛垸成份之移除 使步驟5之熱解產物通過矽膠重量層析管(使用環己烷溶 離溶劑),移除及性化合物及asphaltenes(步驟6,圖12)。使 用硝酸銀浸泡之矽膠(10 wt% AgN〇3),藉由移除游離之芳 係及極性成分,得到較乾淨之含鑽石樣餾份。但並不需要 使用該層析芳系分離方法,協助後續之步驟。 步驟7-高級鑽石樣之多管柱hplc單離 單離鬲純度鑽石樣之極佳方法使用連續之不同選擇性二 或多HPLC管柱。 第一 HPLC系統包含使用丙酮當作移動相,在5.〇〇毫升/ 分鐘下串聯操作之Whatman M20 10/50 ODS管柱。取出一 系列HPLC餾份(見圖19)。合併餾份36及37,且在第二 HPLC系統進行進一步純化。該合併之餾份(36及37)含六金 剛烷#7,#11及#13(圖19,亦見圖13B)。 該合併〇DS HPLC餾份之進一步純化係使用與上述之 ODS管柱不同之具有不同各種六金剛烷中不同選擇性之 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477 A7 B7 五、發明説明(39 )The Nanwen reactor was used to heat the non-diamond-like stone samples in the 1 "," distillate. The pyrolysis process is shown in Figure 18A. Analysis. Comparing these chromatography shows heat "Removal" The concentration of high-grade diamond-like samples increased significantly; a 500-ml PARR® PAR reactor from Mo Line, Illinois was used in this step. Step 6-Removal of systemic and polar non-adamantine components Pass the pyrolysis product of step 5 through a silica gel chromatography tube (using cyclohexane as a dissolution solvent) to remove neutral compounds and asphaltenes (step 6, Figure 12) . Silica gel soaked with silver nitrate (10 wt% AgNO3) was used to remove the free aromatic and polar components to obtain a cleaner diamond-like fraction. However, it is not necessary to use this chromatographic aromatic separation method to assist subsequent steps. Step 7-Multi-column hplc for advanced diamond-like separations. An excellent method for single ion-purity diamond-like purity is the use of continuous different selectivity two or more HPLC columns. The first HPLC system contained a Whatman M20 10/50 ODS column operating in series at 5.0 ml / min using acetone as a mobile phase. Take a series of HPLC fractions (see Figure 19). Fractions 36 and 37 were combined and further purified on a second HPLC system. The combined fractions (36 and 37) contain hexamantane # 7, # 11 and # 13 (Figure 19, see also Figure 13B). The further purification of the combined ODS HPLC fractions was performed using a paper size different from the above-mentioned ODS column and having different selectivity in various hexamantane. The Chinese paper standard (CNS) A4 (210 X 297 mm) was applied. 1244477 A7 B7 V. Description of the invention (39)

Hyp ere arb靜態相HP LC管柱達成。圖20顯示各六金剛、j:完在 Hypercarb HPLC管柱(以丙酮作為移動相)上之溶離時間。 六金剛烷在ODS及Hypercarb HPLC管柱上之溶離時間差 異及溶離順序比較圖19及20可看出。例如,六金剛烷# 11 及# 13在ODS HPLC系統中溶離在一起(見圖19),但在 Hypercarb系統(圖20)上之不同館份(分別為顧份32及27)。 此二系統上選擇之高級鑽石樣之不同溶離順序及時間可 用於分離共溶離之高級鑽石樣。其亦可用於移除雜質。在 合併之ODS HPLC分餾36及37上使用該方法,可取出適當 之Hypercarb HPLC餾份,因此獲得高純度六金剛烷# 13(圖 51A及 51B)。可使用其他ODS HPLC分餾及 Hypercarb HPLC 分餾點,單離其餘六金剛烷。該單離策略異議用於其他高 級鑽*石樣,但可改變溶離溶劑組合物。 ODS及Hypercarb管柱亦可以此等單離之相反順序使用。 藉由使用上述方法,以及使用Hypercarb或其他適用之管柱 分館含六金剛燒Ο D S館份,且在相當之溶離時間下收集會 導致以高純度單離其餘之六金剛燒。此對於由四金剛規至 十一金剛烷之其他高級鑽石樣亦為確實,包含取代之形 式。 實例2 重複實例1之步騾1、2、3、4、5及6(圖12),接著進行下 列不同之步騾7。 步騾7 : 使用二管柱製備用虹吸氣相層析自實例1、步騾6之產物 -42- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477 A7 B7 五、發明説明(40 ) 單離六金剛烷。六金剛烷之分餾時間係使用Gc/ms分析 (實例1,步驟2)之駐留時間及圖案,針對第一製備用虹吸 G C g柱’甲基碎g同D B -1當量設定。結果列於表4 2 A中,、结 果列於圖42A中,取出含原料B六金剛燒成份之二且確認 為&quot;♦顧份且送到管柱2&quot;之二館份。所用之至備用虹吸氣 相層析係由美國馬里蘭州之Gerstel,Inc.,Baltimore製造。 使用第一管柱藉由取出接著送到第二管柱之餾份,濃縮 高級鑽石樣,如六金剛烷(見圖42B針對六金剛烷#2及#8之 說明)。第二管柱(苯基-甲基矽酮,DB-17對等物)進一步分 離且純化六金剛烷,接著用於目標之單離物峰,且將其留 在獨乂承載奋上(承載器1-6)。GC承載器餘份1含六金剛院 # 2之結晶。GC承載器餾份3含六金剛烷# 8之結晶。承載氣 # 1物質之後續GC/MS分析(圖43A及B)顯示以步騾2之 GC/MS分析為準為鬲純度六金剛烷42。同樣的,承載器# 3 物質之GC分析(圖44A及B)顯示其為主要之六金剛烷# 8。 π金剛烷#2及#8結晶之相片(圖43及44中之分析)顯示於圖 45及46中。該程序可重複以分離其他六金剛烷。此對於其 他高級鑽石樣亦適用。 實例3 使用原料Α重複實例丨之步驟卜2、3及4(圖12)。步驟4 回收之大氣殘留餾份中之原料A中之非鑽石樣尤其低。膏 例14熱解步驟⑺可省略,尤其在尋找之高級鑽石樣為四 金剛烷、五金剛烷及環六金剛烷時。該例中,步驟\中回 收之紹分直接實例i中之步驟6及7中,&amp;直接送到實例2之 -43- 1244477 A7 B7 41 五、發明説明( v驟7中(圖1 2)。該製程之變化可用於原料B 弗今 金剛燒餘份'然而,當含有明顯非績石樣成分=需;熱 解。 相當於步驟4分餾點之餾份(見蒸餾表3,實例丨及圖17) 係自該原料取得。該餾份以與實例2步驟7中所示類似之製 程,以製備用虹吸氣相層析進一部分餾(見圖12)。 ^矣著使用二管柱製備用虹吸氣相層析,以管I層析清洗 目瘵餾物餾份單離目標四金剛烷(步驟6,圖! y。使用 之駐留時間及圖案(實例!步驟2),針對製備用虹吸 g柱甲基矽酮DB_ 1設足目標鑽石樣(例如四金剛烷)之 分餘時間。結果如圖21之上方所示,且與館份卜2 同。 :吏用第-管柱’藉由取出接著送到第二管柱(苯基-甲基 :同,DB]靖等物)濃縮目標鑽石樣(例如四金剛燒狀圖 一,下万)二王進一步分離且純化目標绩石樣,接 ::入獨Μ承載器(承載器“6)中。GC承載器2、4及6含 遥擇之四金剛烷(圖21)。 接著使南濃度四金剛檢古如供 解,且在溶液社曰Γ7Λ 載器中結晶或溶Hyp ere arb static phase HP LC column was achieved. Figure 20 shows the dissolution time of each six diamond, j: completion on a Hypercarb HPLC column with acetone as the mobile phase. The differences in dissolution time and dissolution order of hexamantane on ODS and Hypercarb HPLC columns can be seen in Figures 19 and 20. For example, hexamantane # 11 and # 13 dissolve together in the ODS HPLC system (see Figure 19), but in different libraries on the Hypercarb system (Figure 20) (Gufen 32 and 27, respectively). The different dissolution order and time of the advanced diamond samples selected on these two systems can be used to separate co-dissolved advanced diamond samples. It can also be used to remove impurities. Using this method on the combined ODS HPLC fractions 36 and 37, the appropriate Hypercarb HPLC fraction can be taken out, thus obtaining high-purity hexamantane # 13 (Figures 51A and 51B). Other ODS HPLC fractionation and Hypercarb HPLC fractionation points can be used to isolate the remaining hexamantane. This single ion strategy objection is used for other advanced diamond * stone samples, but can change the dissolution solvent composition. ODS and Hypercarb columns can also be used in the reverse order of these single isolations. By using the above method, and using Hypercarb or other applicable column, the branch library contains six diamonds, and the collection at a comparable dissolution time will result in a single isolation of the remaining six diamonds with high purity. This is also true for other high-grade diamond samples ranging from four diamond gauges to eleven adamantane, including substitution forms. Example 2 Steps 1, 2, 3, 4, 5, and 6 (Figure 12) of Example 1 were repeated, followed by different steps 7 below. Step 7: Siphon gas chromatography for the preparation of two-column columns. Example 1-Product of Step 6-42- This paper is sized for China National Standard (CNS) A4 (210 X 297 mm) 1244477 A7 B7 5. Description of the invention (40) Hexamantane is isolated. The fractionation time of hexamantane was determined using the residence time and pattern of Gc / ms analysis (Example 1, Step 2), and was set to D B -1 equivalent for the first preparation siphon G C g column 'methyl crush g. The results are shown in Table 4 2A, and the results are shown in Figure 42A. Two of the six ingredients containing the raw material B were taken out and confirmed as &quot; gu share and sent to the second column of the column 2 &quot;. The spare siphon gas chromatography used was manufactured by Gerstel, Inc., Baltimore, Maryland, USA. Use the first column to concentrate the higher diamond sample, such as hexamantane, by taking out the fractions that are sent to the second column (see Figure 42B for hexamantane # 2 and # 8). The second column (phenyl-methyl silicone, DB-17 equivalent) was used to further separate and purify the hexamantane, which was then used for the single isolated peak of the target, and it was left on the unique support 1-6). The remaining part of the GC carrier 1 contains the crystals of Six King Kong Yuan # 2. GC carrier fraction 3 contains crystals of hexamantane # 8. Subsequent GC / MS analysis of the carrier gas # 1 substance (Figures 43A and B) showed that the GC / MS analysis of step 骡 2 prevailed as 鬲 purity hexamantane 42. Similarly, GC analysis of the substance in carrier # 3 (Figures 44A and B) showed that it was the major hexamantane # 8. Photographs of the π-adamantane # 2 and # 8 crystals (analysis in Figures 43 and 44) are shown in Figures 45 and 46. This procedure can be repeated to separate other hexamantanes. This also applies to other fine diamond patterns. Example 3 Steps 2, 3, and 4 of Example 1 were repeated using raw material A (Figure 12). Step 4 The non-diamond-like content of raw material A in the recovered atmospheric residual fraction is particularly low. The pyrolysis step of Example 14 can be omitted, especially when the high-grade diamond samples sought are tetramantane, metal adamantane and cyclohexamantane. In this example, the content recovered in step \ is directly used in steps 6 and 7 in example i, and &amp; is directly sent to -43-1244477 A7 B7 41 in Example 2 5. Description of the invention (v step 7 (Figure 1 2 ). The change of this process can be used for the raw material B. The remaining portion of Vajrayon's burnt '. However, when it contains obvious non-grade stone-like ingredients = required; pyrolysis. (Figure 17) was obtained from this raw material. This fraction was prepared by a process similar to that shown in step 7 of Example 2 to prepare a part of the distillation by siphon gas chromatography (see Figure 12). For column preparation, siphon gas chromatography was used. Tube I chromatography was used to clean the distillate fraction from the target tetramantane (step 6, figure! Y. Residence time and pattern used (example! Step 2). The siphon g-pillar methyl silicone DB_1 is set to the remaining time of the target diamond sample (such as tetramantane). The result is shown in the upper part of Fig. 21, and is the same as that in the museum. 2: 用 用 第-管Column 'by taking out and then sending it to a second column (phenyl-methyl: the same, DB] Jing, etc.) to concentrate the target diamond-like sample (such as four diamond-like firing diagram one Xia Wan) The second king further separated and purified the target stone sample, then: into the sole M carrier (carrier "6). The GC carriers 2, 4 and 6 contained the remotely selected tetramantane (Figure 21). Then, the South Concentration Si King Kong was examined as ancient solution, and it was crystallized or dissolved in the solution carrier Γ7Λ.

承載器2' 4及6;;見到…大之顯微鏡下,製備用GC 未高到足以發生之結晶(見圖22)。當濃度 •、制 日日時,需要以製備用GC進一步濃缩。 …办可用於自原料Α單離其他高級鑽石樣。Carriers 2 '4 and 6; See ... Under large microscope, the preparation GC is not high enough to cause crystallization (see Figure 22). When the concentration is • and the day is produced, it needs to be further concentrated by the preparation GC. … Can be used to separate other advanced diamond samples from raw material A.

爲例4 · HPLC餾份之製備用GC 十於七至剛烷、八金鋼鹽及高級鑽石樣等,可能需要進 -44- 公釐)— 1244477 五、 發明説明( 42 #分餘實例I、步 m % 7中所得HPLC產物。此可# w制 用::=層析進行,如實例2、步驟™。使用製備 之所古入 4κ成刀且結晶··來自原料A及B -去 又所有四金剛烷, 久者 3441 6厂, 录科β早離〈所有五金剛烷(莫耳 J44),自原料B單離之—二 (旲耳wt 原科β單離之二+入.—/、 結晶(莫耳wt 396);及自 之 至剛烷結晶(莫耳wt 394),單離自原料Example 4 · GC for the preparation of HPLC fractions. Ten to seven to adamantane, eight gold steel salts, and high-grade diamond samples, etc., may need to be -44- mm) — 1244477 V. Description of the invention (42 # 分 余 例 I 2. The HPLC product obtained in step m% 7. This can be prepared by using :: = chromatography, as in Example 2, step ™. Use the prepared ingredients to enter 4κ into a knife and crystallize ... from raw materials A and B-to And all four adamantane, Jiuzhe 3441 6 factory, Luke β early leave <all metal adamane (Moore J44), separated from the raw material B-two (旲 ear wt original two β separated + into. — / 、 Crystallization (mole wt 396); and from crystallization of adamantane (mole wt 394), isolated from raw materials

又八金剛烷結晶(莫耳 目原科B 烷级日及單離自原料8之九金哪 ::曰“吴細98)及十金剛垸結晶(莫耳 」 '.及鱗石樣成分亦^使用此等實射所列之程序單離局 賞例5A :四金剛烷之單離 使:貫例1及2之-般製程富含及單離四金剛烷。 古心例中’並未使用熱解步驟5(圖12),且步驟4 =行f柱層析(實例1之步释接著如下列般= 柱層析產物: 又处i g 分:斤步驟6管柱層析之溶離液,以測定四金剛 几兴構物足大約駐留時間。單獨之四金剛烷係以其在 C^C/MS分析中之溶離順序編號。使用該參考數目以確認後 績步驟中之單獨四金剛燒。需了解立體異構物對在該分析 中並未分離,因此此等立體異構物(消旋混合物)針等 目的係以一數字編號。GC駐留時間隨管柱而變,且Ο。條 下實例5D中。 四金剛烷參考# 1 2— GC/MS駐留時間(分) 11.28 nil 接著使用二管柱製備用虹吸氣相層析自以管柱層析清潔 -45- 本紙浪尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) I244477The crystals of octamantane (Morphelanaceae B alkane grade day and Nine gold from raw material 8 :: "Wuxi 98" and ten adamantane crystals (Mole) '. And scale-like components are also ^ Using these actual shots, the list of single-off rewards Example 5A: The single-off of tetramantane: The general process of Examples 1 and 2 is rich in and single-off of tetramantane. In the ancient example, it is not used Pyrolysis step 5 (Figure 12), and step 4 = f column chromatography (step 1 of Example 1 followed by the following = column chromatography product: again ig points: jin step 6 column chromatography column eluate, To determine the approximate dwell time of the tetrakimanta chimera structure. The tetramantine alone is numbered according to its dissociation order in C ^ C / MS analysis. Use this reference number to confirm the individual tetramantine burning in the subsequent step. It is important to understand that the stereoisomer pairs were not separated in this analysis, so the purpose of these stereoisomers (racemic mixtures) needles is numbered. The GC residence time varies with the column, and 0. Below In Example 5D. Tetra Adamantane Reference # 1 2—GC / MS Dwell Time (min) 11.28 nil Cleaning -45- column chromatography paper waves this scale applicable Chinese National Standard (CNS) A4 size (210 X 297 mm) I244477

A7 B7 發明説明(43 之蒸餾餾份單離四金剛烷。結果列於圖2 1中,且確認為顧 份1、2及3。 使用第一管柱,藉由取出接著送到第二管柱中之餾份濃 縮四金剛坑(見圖2 1)。第二管柱(苯基-甲基矽酮,DB -1?對 等物)進一步分離且純化四金剛烷,接著送入單獨之藥瓶 中(承載器1-6)。收集GC承載器2、4及6且進一步處理。 接著使咼濃度四金剛烷自溶液結晶。在3 〇倍放大之顯微 鏡下,製備用GC承載器餾份2、4及6中可見到結晶(見圖 22)。當;辰度未而到足以發生結晶時,需要以製備用進 —步濃縮。圖22A、B及C說明承載器#2、#4及#6中自原料 A單離之四金剛烷(相當於四金剛烷# 1、#2及#3(分別結 晶之相片。 獲得適當尺寸之結晶後,使用X-射線測定物質之結構。 立體異構四金剛烷可進一步分離,如先前所述般移除其二 成分。 κ例5B ·使用熱解含四金剛少完 該實例顯示四金剛烷單離中可使用熱解(步驟5,實例 1。圖 12)。 下之餾粉,其組成與 熱解前,含四金剛垸淘份(蒸餘留 熱解使非鑽石樣成分 固體。如圖23B所示, 餾份1類似,圖17)中含有非鑽石樣。 劣·化成溶液移除之氣體及似焦炭之 熱解後之非鑽石樣峰消失。 真空45〇°c下加熱富含四金剛烷之 熱解係在反應器中, 蒸餾餾份20.4小時進行 -46-A7 B7 Description of the invention (The distillation fraction of 43 is isolated from tetramantane. The results are shown in Figure 21 and confirmed as Gus 1, 2 and 3. Using the first column, take it out and send it to the second tube. The fraction in the column was concentrated in the tetramantine pit (see Figure 2 1). The second column (phenyl-methylsilicone, DB-1? Equivalent) was further separated and purified, and then sent to the separate In the vial (carriers 1-6). Collect GC carriers 2, 4 and 6 and further process. Then crystallize the tetramantane concentration of tritium from the solution. Under a microscope magnified at 30 times, prepare a GC carrier for distillation. Crystals can be seen in parts 2, 4 and 6 (see Figure 22). When the aging time is not enough to crystallize, it needs to be further concentrated with preparation. Figures 22A, B and C illustrate the carrier # 2, # Tetramantane (equivalent to tetramantane # 1, # 2, and # 3, respectively, isolated from raw material A in 4 and # 6 (respectively crystallized photos. After obtaining crystals of appropriate size, the structure of the substance is determined using X-rays. The stereoisomeric tetramantane can be further separated and its two components can be removed as described previously. Κ Example 5B · Using pyrolysis to contain tetramantane is less Pyrolysis can be used for tetramantane single ionization (step 5, example 1. Figure 12). The following distillate, its composition and before pyrolysis, contain tetraamantane distillate (steam leftover pyrolysis makes non-diamond-like components Solid. As shown in Figure 23B, fraction 1 is similar, Figure 17) contains non-diamond-like. The gas removed from the solution and non-diamond-like peaks after pyrolysis of coke-like disappeared. Under vacuum at 45 ° C The pyrolysis rich in tetramantane is heated in the reactor, and the distillation fraction is performed for 20.4 hours -46-

1244477 A7 B7 五、發明説明(44 ) 實例5C :使用單HPLC系統單離四金剛烷 鑽石樣使用HPLC之單離 除上述氣體層析及熱解方法外,亦可使用HPLC獲得足 夠富含之四金剛烷,使其結晶。使用之適當管柱為熟習本 技藝者習知。部分情況下,可使用丙酮當作移動相之逆相 HPLC進行該純化。進行原料A、氣體濃縮物、相當於館份 # 1之分餾點之蒸餾餾份之製備用HPLC操作(圖17),且紀錄 色彩層析圖。操作過程中取出九種餾份。所用HPLC管柱 為二25公分X 10毫米I.D.。Vydac十八烷基矽烷ODS管柱串 聯操作(Vydac管柱係由美國,CA. Separations Group,Inc., 製造)。將20毫升濃度55毫克/毫升之含四金剛烷餾份之溶 液樣品注入管柱中。管柱係使用2.00毫升/分鐘之丙酮當作 移動相載劑進行。 圖24 (A,B)比較起始物質(圖24A)及HPLC餾份#6之氣相 層析。與起始物質比較,HPLC館份# 6明顯的富含四金剛 烷圖24B(圖24B與起始物質(圖24A)比較)。HPLC餾份#6中 之四金剛燒# 2之濃度剛好足以使其結晶。 實例5D :以HPLC單離之單獨四金剛烷異構物 使用具不同選擇性之多管柱 如實例5C中所述,可使用HPLC法單離四金剛烷。該實 例中,使用不同選擇性之HPLC管柱單離單獨之四金剛烷 異構物。圖25顯示使用以丙酮當作移動相之十八烷基矽烷 (〇DS) HPLC管柱製備分離四金岡烷。實例5B中用作起始 物質之蒸餾產物為原料。尤其,進行自在約650°F下進行 -47- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)1244477 A7 B7 V. Description of the invention (44) Example 5C: Single HPLC system using a single diamantane diamond sample Single HPLC using HPLC In addition to the above gas chromatography and pyrolysis methods, HPLC can also be used to obtain a sufficiently enriched Adamantane to crystallize. Appropriate tubing used is known to those skilled in the art. In some cases, this purification can be performed by reverse phase HPLC using acetone as the mobile phase. The preparation of the raw material A, the gas concentrate, and the distillation fraction equivalent to the fractional point of the fraction # 1 was performed by HPLC (FIG. 17), and the color chromatogram was recorded. Nine distillates were taken out during the operation. The HPLC column used was 25 cm x 10 mm I.D. Vydac octadecylsilane ODS columns are operated in series (Vydac columns are manufactured by CA. Separations Group, Inc., USA). A 20 ml sample of a solution containing tetramantane fraction at a concentration of 55 mg / ml was injected into the column. The column was run using 2.00 ml / min of acetone as a mobile phase carrier. Figure 24 (A, B) compares the gas chromatography of the starting material (Figure 24A) with HPLC fraction # 6. Compared to the starting material, HPLC fraction # 6 is obviously rich in tetramantane. Figure 24B (Figure 24B compared to the starting material (Figure 24A)). The concentration of the four adamantine # 2 in HPLC fraction # 6 was just enough to crystallize it. Example 5D: Tetramantane isomers isolated by HPLC alone. Using multiple columns with different selectivity. As described in Example 5C, tetramantane can be isolated by HPLC. In this example, HPLC columns with different selectivities were used to isolate the tetramantane isomers alone. Figure 25 shows the preparation and separation of tetragamantane using an octadecylsilane (ODS) HPLC column with acetone as the mobile phase. The distillation product used as a starting material in Example 5B was used as a starting material. In particular, it is carried out at about 650 ° F -47- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

裝 玎Pretend

1244477 A7 B7 五、發明説明(45 ) 之原料B大氣蒸餾留下之餾份之製備用HPLC分餾。第一管 柱包含使用5.00毫升/分鐘之丙酮當作移動相串聯操作之二 Whatman M2 0 10/5 0 (x2) ODS 管(@ 590 psi),含 0.500 毫升注 射物之56毫克/毫升含留下餾份之丙酮。所得層析圖示於 圖25中。HPLC系統(圖25)中四金剛烷#1先溶離,接著溶離 四金剛燒# 3,最後為四金剛院# 2。所用之偵測器為差分 折射計。由該操作,去出顧份12 (圖2 5)進行進一步純化。 餾份12之進一步純化係使用與上述ODS管柱由其不同之 Hypercarb-S HPLC管柱達成,以單離四金剛烷# 2(圖26)。 二 Hypercarb-S 管柱(由美國 Penn. Thermo Hypersil製造)、4.6 毫米I.D. X 250毫米,使用1.00毫升/分鐘丙酮當作移動相串 聯操作(@ 180 psi),50毫升之4毫克/毫升丙酮注射液亦使 用差分折射計。該Hypercarb HPLC系統(圖14)上四金剛烷 # 3先溶離,接著溶離四金剛烷# 1,最後溶離四金剛烷 #2。四金剛烷#2自該HPLC操作分餾(圖26),且其純度說 明於圖28A及B中。Hypercarb HPLC再ODS HPLC六份上操 作,使所有四金剛烷單離(立體異構物係以對掌HPLC方法 分離)。 圖27A顯示含四金剛烷# 1之HPLC餾份之GC/MS總離子層 析(TIC);且其下之圖27B顯示其質譜。圖29A顯示邯鄲離 四金剛烷#3之HPLC餾份之GC/MS總離子層析(TIC);起其 下之圖29B顯示質譜。 實例5E :取代之四金剛烷之單離 烷基四金剛烷可使用實例5A至5D中獲得非烷基化四金 -48- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 12444771244477 A7 B7 V. Description of the invention (45) Raw material B The fraction left by atmospheric distillation is prepared by HPLC fractionation. The first column contains Whatman M2 0 10/5 0 (x2) ODS tube (@ 590 psi) in tandem using 5.00 ml / min of acetone as a mobile phase. 56 mg / ml containing 0.500 ml of injection The lower fraction was acetone. The resulting chromatogram is shown in Figure 25. In the HPLC system (Fig. 25), tetramantane # 1 was first dissolved, then tetramangan # 3 was dissolved, and finally, tetramangan # 2. The detector used is a differential refractometer. From this operation, Gufen 12 (Figure 25) was removed for further purification. Further purification of fraction 12 was achieved using a different Hypercarb-S HPLC column from the ODS column described above to isolate tetramantane # 2 (Figure 26). Two Hypercarb-S columns (manufactured by Penn. Thermo Hypersil, USA), 4.6 mm ID X 250 mm, using 1.00 ml / min acetone as mobile phase in series operation (@ 180 psi), 50 ml 4 mg / ml acetone injection The liquid also uses a differential refractometer. On the Hypercarb HPLC system (Figure 14), tetramantane # 3 was first dissolved, then tetramantane # 1, and finally tetramantane # 2. Tetramantane # 2 was fractionated from this HPLC operation (Figure 26), and its purity is illustrated in Figures 28A and B. Hypercarb HPLC was performed on six portions of ODS HPLC to isolate all tetramantane (stereoisomers were separated by the para-HPLC method). Figure 27A shows GC / MS total ion chromatography (TIC) of an HPLC fraction containing tetramantane # 1; and Figure 27B below shows its mass spectrum. Figure 29A shows the GC / MS total ion chromatography (TIC) of the HPLC fraction of Handan from tetramantane # 3; Figure 29B below shows the mass spectrum. Example 5E: Monoalkylated tetramantane of substituted tetramantane. Non-alkylated tetragold can be obtained from Examples 5A to 5D.-48- This paper is applicable to China National Standard (CNS) A4 (210 X 297). Centimeter) 1244477

發明説明(46 剛燒所述之方法分離。圖30顯示分子量306,且質譜分子 離子為m/z ^06足單離單甲基化四金光烷,且顯示得到爪/2 29 1貝瑨部分離子(顯示四金剛烷之部位)之甲基質譜損 粍。k基化化合物係以Hypercarb HpLc單離,且在gc/ms 系統中顯π心柱寮時間為u 46分鐘(圖3〇)。其可能需要使 用頜外4HPLC分離或製備用Gc(如實例3及句,以單離部 分之垸基四金剛燒。 貝例6A以製備用氣相層析單離五金剛燒 重複實例1之步.驟Κ4(圖12)。依步驟5,在真空450ΐ下 …解5.2克原料Β 65〇 ρ +塔底蒸餾餾份5(表3,圖18)歷時 16.7小時。接著一實例1步騾6處理該產物。 、GC/MS刀析g柱層析(步驟6)之溶離液,以測定五金剛 烷異構物之GC駐留時間。分子量344之單獨五金剛烷成份 依據其在GC/MS分析中之溶離順序編號。 接著使用二管柱製備用虹吸氣相層析自上述步騾6之產 :早離五金剛烷。列舉之結果顯示酮31中之五金剛烷#卜 =1枉^含五金剛規#1之沉學在圖31钟稱之為,,峰餾 份且送到管柱2中&quot;。 使二第-管纟’藉由取出接著送到第二管柱中之顧份濃 =金岡m。第二管柱(苯基·曱基秒酮,db_i7對等物)進 二目其:也物質分離且純化五金剛燒#1。送到承載器之 Ι::Λ”之物質送到GC承載器餘份6,於該處收集 =岡,!之結晶(見圖31B)。承載器#6物質之沉祕分 斤(見圖32)顯示(依該製備用Gc程序之五金剛燒參考 -49- 1244477 A7 B7 五、發明説明(47 ) GC/MS駐留時間系統),收先溶離之五金剛烷(# 1)顯示之駐 留時間為16.233分鐘。圖32A及B顯示由GC承載器6回收之 高純度五金剛烷# 1。可重複該程序單離似中其他五金剛烷 及三種立體異構物對,其可使用對掌HPLC或其他解析技 術分離。 高度濃縮之五金剛烷結晶可直接加於承載器中或由溶液 加入。在30倍放大之顯微鏡下,可在製備用GC承載器6中 看到五金剛烷# 1之結晶(見圖33A)。此等結晶較好為透明 且顯示高折射係數。單離前五金剛烷# 1之結晶並未存在。 當濃度未高至足以發生結晶時,需要以製備用GC進一步 濃縮。圖33B為再製備用GC承載器中共結晶之二種五金剛 烷之相片。 獲得適當尺寸之結晶後,可使用X-射線繞設測定非立體 異構物之五金剛烷物質之結構。立體異構之五金剛烷可進 一步分離解析成二成分。 實例6B :以HPLC單離五金剛烷 重複實例6A之步驟1-6。344分子五金剛烷之GC/MS分析 參考編號及駐留時間如下 五金剛烷參考# 1 2 4 5 6 GC/MS駐留時間 (分) 13.68 15.26 15.31 15.72 15.85 16.06 * (HPoMS,0.25微米薄膜,0.25毫米I.D. X 30米,氦載劑 氣體) 使用1^96&quot;^&amp;作1^1^(圖35)進一步純化圖34中所示含五 -50- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Description of the invention (46 The method described in the just-fired method is used for separation. Figure 30 shows a molecular weight of 306, and the molecular ion of the mass spectrum is m / z ^ 06. The methyl mass spectrum of the ion (where the tetramantane is shown) is lost. The k-based compound is isolated with Hypercarb HpLc, and the π-pillar time in the gc / ms system is u 46 minutes (Figure 3). It may require the use of extra-maxillary 4 HPLC for separation or preparation of Gc (as in Example 3 and sentences, with a single-isolated part of fluorene-based tetrahydropyrrolidone. Example 6A to prepare a gas-chromatographic single-isolated hard-metal die-fired powder, repeat the steps of Example 1. Step K4 (Figure 12). According to step 5, under a vacuum of 450 Torr ... 5.2 grams of raw material B 65〇ρ + bottom distillation fraction 5 (Table 3, Figure 18) took 16.7 hours. Then an example 1 step 6 Process the product. GC / MS analysis of the eluate from column chromatography (step 6) to determine the GC dwell time of isomers of isomers of amantadine. The components of adamantane with a molecular weight of 344 are analyzed by GC / MS. The dissociation sequence number in the following. Then use a two-column preparation with siphon gas chromatography to produce from step 6 above: early leaving metal adamane. Column The results show that the metal alkane # in the ketone 31 # 卜 = 1 沉 ^ Shen Xue, which contains the metal gang gauge # 1, is called in Figure 31, and the peak fraction is sent to column 2 &quot; The first-tube 纟 'is taken out and then sent to the second column of Gu Fennong = Jingang m. The second column (phenyl · fluorenyl second ketone, db_i7 equivalent) into the binocular: it is also the material separation And the purified metal was just burned # 1. The material sent to the carrier 1: 1: Λ ”was sent to the GC carrier remainder 6, where it was collected = 冈, the crystal (see Figure 31B). The carrier # 6 substance The Secret Separation (see Figure 32) shows (Refer to 49- 1244477 A7 B7 for the hardware burned according to the Gc program for preparation. V. Description of the invention (47) GC / MS dwell time system) The dwell time shown by # 1 is 16.233 minutes. Figures 32A and B show the high-purity metal adamane # 1 recovered from the GC carrier 6. The procedure can be repeated. Pairs, which can be separated using palladium HPLC or other analytical techniques. Highly concentrated metal adamantane crystals can be added directly to the carrier or added from solution. Under the microscope, the crystals of metal adamantane # 1 can be seen in the preparation GC carrier 6 (see FIG. 33A). These crystals are preferably transparent and show a high refractive index. It does not exist. When the concentration is not high enough to crystallize, it needs to be further concentrated by GC for preparation. Figure 33B is a photo of two kinds of metal adamantane co-crystallized in the GC carrier for re-preparation. After obtaining the crystals of appropriate size, The structure of non-stereoisomer metal adamantane was determined using X-ray winding. Stereoisomerized metal adamantane can be further separated into two components. Example 6B: Repeat steps 1-6 of Example 6A with HPLC single ion hardware adamantane. The GC / MS analysis reference number and residence time of 344 molecular hardware amantane are as follows. Hardware adamane reference # 1 2 4 5 6 GC / MS residence time (Minutes) 13.68 15.26 15.31 15.72 15.85 16.06 * (HPoMS, 0.25 micron film, 0.25 mm ID X 30 m, helium carrier gas) Use 1 ^ 96 &quot; ^ &amp; to make 1 ^ 1 ^ (Figure 35) for further purification Figure 34 Contains five to 50-This paper size applies to Chinese National Standard (CNS) A4 specifications (210 X 297 mm)

裝 訂Binding

1244477 A7 B7 五、發明説明(48 ) 金剛烷# 1〇DS HPLC餾份,單離五金剛烷# 1。圖14顯示如 何合併使用〇DS HPLC及Hypercarb HPLC單離其餘五金剛 燒。ODS及Hypercarb管柱針對該單離亦依相反順序使用。 圖36顯示經單離五金剛烷# 1之GC/MS總離子層析(TIC)。 圖36之下一半說明五金剛烷# 1 GC/MS峰之質譜。如圖14 及34中之說明,各種其餘之〇DS HPLC餾份含其他五金剛 燒。藉由使用上述類似方法,亦即使用Hypercarb(如圖14 中所示)或使用另一適當之管柱分餾含五金剛烷ODS之餾 份,且在相當之溶離時間收集,得到其餘五金剛烷之高純 度溶離,如圖37-41中所示。尤其,圖37說明使用二不同 HPLC管柱單離之五金岡丨J烷#2之GC/MS總離子層析(TIC)及 質譜;圖38說明使用二不同HPLC管柱單離之五金剛烷#3 之GC/MS總離子層析(TIC)及質譜;圖39說明使用二不同 HPLC管柱單離之五金岡丨J烷#4之GC/MS總離子層析(TIC)及 質譜;圖40說明使用二不同HPLC管柱單離之五金剛烷#5 之GC/MS總離子層析(TIC)及質譜;及圖41說明使用二不同 HPLC管柱單離之五金岡'J烷#6之GC/MS總離子層析(TIC)及 質譜。GC/MS中並未分離立體五金剛烷,且因此單一數目 代表此等立體異構對。此等立體異構對可藉由對掌分離方 法分離。另外,如先前所述,含有分子量330之五金剛烷 縮合異構物,其為更立體性且呈現明顯較低之濃度。該五 金剛烷成分可再使用實例1之步騾6清除之蒸餾餾份5熱解 產物之GC/MS分析中發現(圖12)。該五金剛烷成份在實例 1,步騾4之分析中,於14.4分鐘時溶離,且可使用該實例 -51- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477 A7 B7 五、發明説明(49 ) 中之程序單離。 實例6C ··經取代五金剛烷之純化 經取代之五金剛燒係存在於原料A及B中。經取代之五 金剛烷可由此等原料富含,且使用實例1 -4中之非烷基化 五金剛烷所述之方法純化。該例中富含之單甲基化五金剛 烷分子量為358(得到之質譜分子離子為!n/z 358,且顯示五 金剛烷步未之m/z 343質譜段離子指標之甲基質譜損耗)。 該烷基化化合物富含於〇DS HPLC餾份# 3 1中,且可藉由額 外HPLC分離,或再以製備用GC程序進一步純化形成結晶 (如實例3)。 實例7 A :六金剛垸成份之單離 本實例之目的係證明可用於富含及單離39種六金剛烷成 份之程序。以下列改變重複實例1之製程。步騾5中,在真 空45 0°C下熱解34.4克原料B 650下塔底蒸餾餾份#6(表3, 圖18)17.3小時。 以GC/MS分析管柱層析(步·驟6)之溶離液,測定六金剛烷 之驻留時間。分子量396之單獨六金剛烷成份係依其在該 G C / M S分析之落離順序編號。此等六金剛燒為最多且方便 選擇。類似分析亦可用於其他分子量。GC/MS分析中之六 金剛纟元;谷離時間為17.8 8分鐘(六金剛燒# 1)及19.5 1分鐘(六 金剛坑# 7)。駐留時間隨著GC管柱改變及,駐留時間再測量 所需時間而變。圖13Α列出六金剛娱ι成份之另一 gc/MS分 析結果。 使用_管柱製備用虹吸氣相層析,自以管柱層析清除之 __ '52-1244477 A7 B7 V. Description of the invention (48) Adamantane # 1〇DS HPLC fraction, isolated from metal adamantane # 1 alone. Figure 14 shows how the combination of ODS HPLC and Hypercarb HPLC can be used to separate the remaining hardware. ODS and Hypercarb columns are also used in the reverse order for this single isolation. FIG. 36 shows GC / MS total ion chromatography (TIC) of singly isolated metal adamantane # 1. The lower half of Figure 36 illustrates the mass spectrum of the metal adamantane # 1 GC / MS peak. As illustrated in Figures 14 and 34, the various remaining ODS HPLC fractions contain other hardware. By using a similar method as described above, that is, using Hypercarb (as shown in Figure 14) or using another suitable column to fractionate the fraction containing hardware adamantane ODS, and collect it at an equivalent dissolution time, the remaining hardware adamantane is obtained The high-purity dissolution is shown in Figure 37-41. In particular, Figure 37 illustrates GC / MS Total Ion Chromatography (TIC) and mass spectrometry using two different HPLC columns for single ionization. Figure 38 illustrates metal pentane single ionization using two different HPLC columns. GC / MS Total Ion Chromatography (TIC) and Mass Spectrometry of # 3; Figure 39 illustrates GC / MS Total Ion Chromatography (TIC) and Mass Spectrometry of Jane # 4 using two separate HPLC columns. 40 illustrates GC / MS total ion chromatography (TIC) and mass spectrometry of metal gangane # 5 using two separate HPLC columns; and FIG. 41 illustrates metal gang 'Jane # 6 using two different HPLC columns. GC / MS total ion chromatography (TIC) and mass spectrometry. GC / MS does not separate the stereometallic adamantanes, and therefore a single number represents these stereoisomeric pairs. These stereoisomeric pairs can be separated by the palm separation method. In addition, as described earlier, the metal adamantane condensed isomers having a molecular weight of 330 are more steric and exhibit a significantly lower concentration. This pentamantane component was found by GC / MS analysis of the pyrolysis product of distilled fraction 5 which was removed using step 6 of Example 1 (Fig. 12). In the analysis of Example 1 and Step 4, the metal adamantane component dissolves at 14.4 minutes, and this example can be used. -51- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 1244477 A7 B7 5. The procedure in the description of the invention (49) is separated. Example 6C. Purification of Substituted Metal Gangane Substituted metal gangue is present in raw materials A and B. Substituted pentamantane can be enriched with these starting materials and purified using the method described in the non-alkylated hardware adamantane in Examples 1-4. The molecular weight of the monomethylated metal adamantane rich in this example is 358 (the obtained molecular ion of the mass spectrum is! N / z 358, and it shows the loss of the methyl mass spectrum of the ion index of the m / z 343 spectrum of the metal adamantane step. ). The alkylated compound is enriched in ODS HPLC Fraction # 31 and can be separated by additional HPLC or further purified by preparative GC procedures to form crystals (as in Example 3). Example 7 A: Isolation of Six Amantadine Components The purpose of this example is to demonstrate that the procedure can be used to enrich and isolate 39 types of hexaamantanes. The process of Example 1 was repeated with the following changes. In step 骡 5, 34.4 g of raw material B 650 was pyrolyzed at 45 ° C under vacuum at bottom distillation fraction # 6 (Table 3, Fig. 18) for 17.3 hours. The eluate of column chromatography (step · step 6) was analyzed by GC / MS, and the residence time of hexamantane was measured. Individual hexaadamantane components with a molecular weight of 396 are numbered according to the order in which they fall off in this G C / M S analysis. These six diamonds are the most popular and convenient choice. Similar analyses can be used for other molecular weights. GC / MS analysis of No. 6 Diamond Kong Yuan; Gu Li time was 17.8 8 minutes (Six King Kong # 1) and 19.5 1 minute (Six King Kong Hang # 7). The dwell time varies with the GC column and the time required to remeasure the dwell time. Figure 13A lists the results of another gc / MS analysis of the ingredients of Six King Kong. Use _ column preparation for siphon gas chromatography to remove __ '52-

本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 1244477 A7 B7 五、發明説明(SO ) 蒸誠份單離六金剛燒。針對第-製備用虫工吸GC管柱(甲 基石夕嗣DB- i對等物),使用GC/MS分析之駐留時間極圖案 設定六金剛烷之分餾時間。結果列於圖42八中,且確認為 含六金剛烷餾份之二之”峰餾份且送入管柱2中&quot;。〜、 、使用第一管柱’ #由取出接著送到第二管柱中之餾份濃 縮六金剛烷(見說明六金剛烷# 2及# 8之圖〇)。第二管柱 (苯基-甲基石夕酮,DB-Π對等物)進一步自其他物質 純化六㈣燒,接著用於單離目標之_,^將其留在獨立 t承載益(承載器1-6)中。收集GC承载器餾份丨且進一不針 對六金剛烷#2之分離加工。收集gC承載器餾份3,且針對 六金剛烷#8之分離進一步處理。承载器#1物質之後續 GOMS分析(圖43)顯示其為以較早操作之gc/ms*析為主 〜/、至剛:k #2。同樣的,承載器# 3物質(圖44)之分析顯 示其為主要之六金剛烷# 8。該程序可重複以單離其他六金 剛垸。 高度濃縮之六金剛烷可直接加於承載器中或由溶液加入 使足結晶。在30倍放大之顯微鏡下,可在製備用gC承載 器餾份1中看到結晶(見圖45)。此等結晶較好為透明且顯 示高折射係數。單離前六金剛烷#2之結晶並未存在。當濃 度未高至足以發生結晶時,需要以製備用GC進一步濃 縮。圖46為在製備用gc:承載器3中結晶之六金剛烷#8之相 片。單離前並未含六金剛烷#8之結晶。 獲得適當尺寸之結晶後,可使用射線繞設測定非立體 兴構物 &lt; 六金剛烷物質之結構。立體異構之五金剛烷可進 -53- 1244477 A7 _ B7 五、發明説明(51 ) 一步分離,分離二成分。 實例7B :使用單一 HPLC系統單離六金剛烷 所用HPLC管柱為二個50公分X 20毫米ID5。Whatman十 八規基石夕垸(ODS)管柱(Whatman管柱為美國Whatman Inc.製 造)串聯操作。以烴餾份(54毫克)使500毫升之餾份6熱解產 物溶液樣品,將實例1,步驟6之產物注入管柱中。使用 5. 〇〇毫升/分鐘之丙酮當作移動相啟動管柱。部分HPLC餾 份達到單獨六金剛烷結晶所需之純度,如〇DS HPLC餾份 # 39中之六金剛烷# 8(圖47)。ODS HPLC餾份#48(圖48)中之 六金剛烷# 10及〇DS HPLC餾份#63 (圖49)中之六金剛烷#6 所示。另外可使用Hypercarb管柱(由美國,Penn之Thermo Hypersil製造)或其他適用之管柱將六金剛烷純化至結晶所 需之濃度。進行以烴飽和之原料B蒸餾物餾份6熱解產物之 製備用Hypercarb HPLC操作,且使用差相折射計紀錄HPLC 層析。操作過程中取出餾份(例如圖50)且顯示大部分六金 剛烷在Hypercarb HPLC系統上彼此呈現不同溶離時間(以 GC/MS分析證明)(圖20)。 實例7C :使用不同選擇性之多重HPLC管柱單離六金剛烷 圖51證明進行Hypercarb HPLC餾份得到高純度六金剛烷 # 13。可使用其他〇DS HPLC餾份及Hypercarb HPLC分餾點 單離其餘六金剛燒。〇DS及Hypercarb管柱亦可依反續使用 單離。圖52顯示含六金剛烷# 7之Hypercarb HPLC管柱之 GC/MS總離子層析(ΤΙ〇。圖52之下半部說明GC/MS峰之質 譜’證明單離六金剛烷# 7之高純度。 -54- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) ^1 1244477 Α7 -----一 Β7 五、發明説明(52 )~^ - 可依相同方式分離含其他六金剛烷之各種剩餘之〇DS HPLC傲伤(圖19)。藉由使用上述類似方法,亦即使用 Hypercarb或其他適用之管柱,且在相對應之溶離時間下收 集(分餾含六金剛烷之〇DS餾份以高純度單離剩餘之六金 剛烷。此對於分子量382之六金剛烷(”不規則,,六金剛烷) 亦適用’其再本原料中之量遠低於分子量為396之六金剛 烷。圖53及54顯示m/z 382之再見構離子層析,顯示分別在 18.30及18.07分鐘下操作之六金剛烷。圖53及54亦顯示此 等18.30分鐘及18.07分鐘峰之相對應質譜,證明含有來自 原料B蒸館餾份# 6之熱解製程之產物之飽和烴餾份中382 分子量之六金剛烷。382分子量六金剛烷顯示内键張力, 比396分子量六金剛烷低之安定性,及相對應之低濃度, 產生較差六金剛烷之382分子量六金剛烷。 立體異構物六金剛烷在GC/MS分析中並未分離,且因此 此等ϋ體異構物對以單一數目表示。此等立體異構物可以 以對掌性分離方法分離。 實例7D :經取代六金剛烷之單離 原料Α及Β中亦含有包含虎基六金剛燒之經取代六金剛 坑。此等經取代之六金剛烷用途與未經取代六金剛烷相 同,且可在各種六金剛烷用途中用作中間物(例如聚合物 產物)’且可經去燒化產生相對未衍生之六金剛垸。因 此’設計單離經取代六金剛烷之方法且以單離烷基取代之 六金剛烷舉例。經取代之六金剛烷(包含烷基六金剛烷)可 使用適當蒸餾餾份之HPLC分離’以高純度單離,如圖55 -55- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477 A7 B7 五、發明説明(53 ) 所示。圖55顯示由原料B之飽和烴餾份之〇DS HPLC分離之 餾份# 55,含高純度甲基化六金剛烷之脂蒸餾餾份6熱解。 單甲基化六金剛烷之分子量烷4 10(產生之質譜分子離子為 m/z 4 10,且顯示甲基之質譜損耗得到m/z 3 95部分離子(圖 55B))。以HPLC單離經取代之六金剛烷成份需要不同選擇 性之多管柱。例如,連續操作ODS及Hypercarb HPLC管 柱,自烴館份飽和之蒸鶴鶴份6熱產物單離甲基環六金剛 烷成份(甲基取代之莫耳重量342六金剛烷)。由該第一〇DS HPLC操作,合併餾份# 23-26,且在第二HPLC系統中進一 步純化。合併之餾份含六金剛烷(莫耳重342係指環六金剛 烷)之混合物,在GC/MS系統上12.31分鐘溶離以及在 12.56、12.72及13.03分鐘下溶離之三種甲基環六金剛烷 (# 1-3)。該混合物之進一步純化(亦即合併之ODS HPLC餾 份# 23-26)係使用Hypercarb靜態相HPLC管柱達成。將50毫 升含約1毫克該合併餾份之丙酮樣品注入Hypercarb管柱(10 mm I.D. X 25 0 mm)中,使用3.00毫升/分鐘之丙酮當作移動 相,使用差相折射偵測器操作(@ 480 psi)。該Hypercarb系 統中,甲基環六金剛烷# 1先在餾份18-22中溶離,且甲基 環金剛烷# 2在餾份23-25中溶離。甲基環金剛烷# 1及#2以 足夠之純度單離,形成結晶。此等化合物之GC/MS總離子 層析及質譜說明於圖57及59中,且以圖59及60中相片之結 晶說明。圖9說明由Hypercarb HPLC餾份#19-21沉澱之甲基 環六金剛烷結晶,且圖60說明由Hypercarb HPLC餾份#23 沉澱之甲基環六金剛烷結晶。 -56- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477This paper size applies to Chinese National Standard (CNS) A4 specifications (210 X 1244477 A7 B7) 5. Description of the invention (SO) Steamed fractions are separated by six diamonds. For the first-preparation worm-suction GC column (methyl stone eve)嗣 DB-i equivalent), set the fractionation time of hexamantane using the dwell time pole pattern of GC / MS analysis. The results are shown in Figure 42 and confirmed as two of the hexamantane-containing fractions. And send it to column 2 &quot; ~~, using the first column 'to condense the hexamantanes from the fractions taken out and then sent to the second column (see description of hexamantanes # 2 and # 8 of Figure 〇). The second column (phenyl-methyl lithoxone, DB-II equivalent) was further purified from other substances, and then used to isolate the target _, leaving it at independent t Carrying benefits (carriers 1-6). Collect GC carrier fractions and proceed to a separation process that does not target hexamantane # 2. Collect gC carrier fraction 3 and further process for separation of hexamantane # 8 Subsequent GOMS analysis of the material of carrier # 1 (Figure 43) shows that it is mainly based on the earlier operation of gc / ms * analysis ~ /, to just: k # 2. Similarly, the carrier Analysis of the substance # 3 (Figure 44) shows that it is the main six-adamantane # 8. This procedure can be repeated to isolate the other six-adamantane. The highly concentrated hexa-adamantane can be added directly to the carrier or added from the solution. Crystallize the foot. Under a 30x magnification microscope, the crystals can be seen in the preparation of gC carrier fraction 1 (see Figure 45). These crystals are preferably transparent and show a high refractive index. The crystal of alkane # 2 does not exist. When the concentration is not high enough to crystallize, it needs to be further concentrated by GC for preparation. Figure 46 is a photo of hexamantane # 8 crystallized in preparation gc: carrier 3. Single There is no crystal containing hexamantane # 8 before leaving. After obtaining a crystal of an appropriate size, the structure of the non-stereostructured substance &lt; hexamantane can be determined using ray winding. Stereoisomerized metal adamantane can be entered- 53-1244477 A7 _ B7 V. Description of the invention (51) One step separation and separation of two components. Example 7B: Single HPLC system using single HPLC system. Two HPLC columns with 50 cm x 20 mm ID5. Whatman 18 gauge Cornerstone Xishuang (ODS) tubing (Whatman tubing is (Manufactured by Whatman Inc.) in series operation. 500 ml of Fraction 6 pyrolysis product solution sample was taken with a hydrocarbon fraction (54 mg), and the product of Example 1, Step 6 was injected into the column. 5.0 ml / A minute of acetone was used as the mobile phase to start the column. Part of the HPLC fraction reached the purity required for crystallization of hexamantane alone, such as ODS HPLC fraction # 39, hexamantane # 8 (Figure 47). ODS HPLC fraction Hexamantane # 10 in # 48 (Fig. 48) and Hexamantane # 6 in ODS HPLC Fraction # 63 (Fig. 49) are shown. Alternatively, Hypercarb columns (manufactured by Thermo Hypersil, Penn, USA) or other applicable columns can be used to purify hexamantane to the concentration required for crystallization. Preparation of the pyrolysis product of the hydrocarbon-saturated starting material B distillate fraction 6 was performed using Hypercarb HPLC, and HPLC chromatography was recorded using a differential phase refractometer. Fractions were removed during the operation (for example, Figure 50) and showed that most of the hexamantane exhibited different dissolution times from each other on the Hypercarb HPLC system (as evidenced by GC / MS analysis) (Figure 20). Example 7C: Isolation of hexamantane using multiple HPLC columns with different selectivity Figure 51 demonstrates that performing a Hypercarb HPLC fraction to obtain high purity hexamantane # 13. Other ODS HPLC fractions and Hypercarb HPLC fractionation points can be used to isolate the remaining six diamonds. 〇DS and Hypercarb columns can also be used in reverse. Figure 52 shows GC / MS total ion chromatography (TIO) of a Hypercarb HPLC column containing hexamantane # 7. The lower half of FIG. 52 illustrates the mass spectrum of the GC / MS peak 'to demonstrate the high purity of hexamantane # 7. -54- This paper size is in accordance with China National Standard (CNS) A4 (210X 297mm) ^ 1 1244477 Α7 ----- 一 Β7 5. Invention Description (52) ~ ^-It can be separated in the same way with other Various remaining 0 DS HPLC hexaamantane residues (Figure 19). By using a similar method as described above, that is, using Hypercarb or other applicable columns, and collecting at the corresponding dissolution time (fractionation of hexaamantane containing The 〇DS fraction separates the remaining hexamantane with high purity. This is also applicable to hexamantane with molecular weight 382 ("irregular, hexamantane). Its amount in this raw material is far lower than the molecular weight of 396 Figures 53 and 54 show goodbye ion chromatography at m / z 382, showing hexamantane operating at 18.30 and 18.07 minutes, respectively. Figures 53 and 54 also show the phases of these 18.30 minutes and 18.07 minutes peaks Corresponding to mass spectrometry, it is proved to contain pyrolysis process from raw material B steaming house fraction # 6 The 382 molecular weight hexamantane in the saturated hydrocarbon fraction of the product. The 382 molecular weight hexamantane shows internal bond tension, which is lower in stability than the 396 molecular weight hexamantane, and the corresponding low concentration, which results in a worse 382 molecular weight of hexamantane. Hexamantane. Stereoisomers Hexamantane was not separated in the GC / MS analysis, and therefore these carcass isomer pairs are represented by a single number. These stereoisomers can be separated by a palm separation method Example 7D: Substituted raw materials A and B of substituted hexamantane also contain substituted hexamantanes containing tiger-based hexamantine. These substituted hexamantanes are used in the same way as unsubstituted hexamantanes. And can be used as an intermediate in various hexamantane applications (such as polymer products) 'and can be de-sintered to produce relatively underivatized hexamantane hydrazone. Therefore,' design the method of replacing hexamantane with a single Examples of alkyl substituted hexamantane. Substituted hexamantane (including alkyl hexamantane) can be separated by HPLC with appropriate distillation fractions and isolated with high purity, as shown in Figure 55 -55- This paper is applicable to the standard in National Standard (CNS) A4 specification (210 X 297 mm) 1244477 A7 B7 V. Description of the invention (53). Figure 55 shows the fraction # 55 separated by SDS HPLC from the saturated hydrocarbon fraction of raw material B, containing The high-purity methylated hexamantane lipid distillation fraction 6 is pyrolyzed. The monomethylated hexamantane has a molecular weight alkane 4 10 (the resulting molecular ion is m / z 4 10 and the mass loss of the methyl group is obtained. m / z 3 95 partial ions (Figure 55B)). Separating the substituted hexamantane component by HPLC requires multiple columns with different selectivity. For example, ODS and Hypercarb HPLC columns are operated continuously to isolate the methylcyclohexamantane component (the methyl-substituted mole weight of 342 hexamantane) from the steam product saturated with hydrocarbons. From this first SDS HPLC operation, fractions # 23-26 were combined and further purified in a second HPLC system. The combined fractions contain a mixture of hexamantane (Molar weight 342 refers to cyclohexamantane), three methyl cyclohexamantane (12.31 minutes dissolution on the GC / MS system and dissolution at 12.56, 12.72 and 13.03 minutes ( # 1-3). Further purification of this mixture (i.e., combined ODS HPLC fractions # 23-26) was achieved using a Hypercarb static phase HPLC column. A 50 ml sample of acetone containing approximately 1 mg of the combined fractions was injected into a Hypercarb column (10 mm ID X 25 0 mm), using 3.00 ml / min of acetone as a mobile phase, and operated using a differential phase refraction detector ( @ 480 psi). In this Hypercarb system, methylcyclohexamantane # 1 is first dissolved in fractions 18-22, and methylcycloadamantane # 2 is dissolved in fractions 23-25. Methylcycloadamantane # 1 and # 2 were isolated with sufficient purity to form crystals. The GC / MS total ion chromatograms and mass spectra of these compounds are illustrated in Figures 57 and 59 and illustrated by the crystals of the photographs in Figures 59 and 60. Figure 9 illustrates methylcyclohexamantane crystals precipitated from Hypercarb HPLC fraction # 19-21, and Figure 60 illustrates methylcyclohexamantane crystals precipitated from Hypercarb HPLC fraction # 23. -56- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 1244477

立體異構物對需經進一步分 一 、 刀離,以醉斫二成分。獲得適 當尺寸之結晶後,可择μ …射、'泉結晶圖測定非立體異構烷 基六金剛燒之結構。 男'例8 A ·七金剛燒化合物之單離 以GC/MS分析管柱層析(步驟6,圖12)之溶離液,以測定 七金剛烧(GC駐留時間。&gt; +量394及448之個別七金剛 燒成份係依據其在GC/MS分析中之溶離順序編號(見圖&quot;A 4代表性分析值)。分子量448七金剛烷(含最多之七金剛 燒值)在該實例中容易選用。類似分析可用於製備其他分 子量之七金剛院。 接著使用二管柱製備用虹吸氣相層析自以管柱層析清除 &lt;悉餾餾份單離七金剛烷。七金剛烷之分餾時間係使用 GC/MS分析之駐留時間及圖案(自上述步騾2,圖12)。針對 第一種製備用虹吸GC管柱(甲基矽酮DB-1對等物)設定。列 舉結果列於圖61之上方,以含來自原料b之七金剛垸之二 之π峰顧份且送到管柱2&quot;確認。 使用第一種管柱,以取出接著送到第二管柱之餘份濃縮 七金剛烷(見說明七金剛烷# 1及# 2之圖6 1)。第二管柱(苯 基-甲基矽酮,DB-17對等物)進一步分離且純化七金剛 烷,接著用於單離目標之峰,且將其留在獨立之承載哭 (承載器1 -6)中。收集0(1:承載器館份2且進一步針對七金剛 烷# 1之分離進一步加工。收集GC承載器餾份4,且針對七 金剛烷# 2之分離進一步處理。承載器# 2物質之後續GC/MS 分析(圖62)顯示其為以步騾4較早操作之GC/MS分析為主之 -57- ^紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公~&quot; '&quot;&quot;&quot;&quot;'~~' *-- 1244477 A7 B7 五、發明説明(55 ) 七金剛烷# 1。同樣的,承載器#4物質(圖63)之GC分析顯示 其為七金剛烷# 2。該程序可重複,以單離其他七金剛烷成 份。 高度濃縮之七金剛烷可接著直接加於承載器中或由溶液 加入使之結晶。在30倍放大之顯微鏡下,可在製備用GC 承載器餾份2中看到結晶(見圖64)。此等結晶較好為透明 且顯示高折射係數。單離前七金剛烷# 1之結晶並未存在。 當濃度未高至足以發生結晶時,需要以製備用GC進一步 濃縮。圖65為在製備用GC承載器4中結晶之七金剛烷#2之 相片。單離前並未含七金剛烷#2之結晶。 獲得適當尺寸之結晶後,可使用X-射線結晶圖測定七金 剛烷之結構。立體異構七金剛烷可進一步分離解析其二成 分。 實例8B :單一七金剛烷異構物之純化 HPLC亦顯示提供足夠富含之部分七金剛烷使其結晶。 所用之HPLC管柱與其他實例相同(ODS及Hypercarb)。將 500毫升之烴餚份飽和之餾份7熱解產物溶液(步驟6,圖12) 之樣品注入ODS管柱中。餾份7之熱解使用25.8克,在450 °C下加熱16小時。舖份〇DS HPLC餾份達到單獨七金剛烷 結晶所需之純度,如〇DS HPLC餾份#45(圖66)中之七金剛 烷# 1所示。其他,如ODS HPLC餾份#4 1(圖67)中之七金剛 烷#2,〇DS HPLC餾份#61(圖68)中之七金剛烷#9,ODS HPLC餾份#87(圖69)中之七金岡|J烷# 10均可能需要在HPLC 系統中,以不同選擇性進一步分離。在Hypercarb管柱上進 -58- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)The stereoisomer pairs need to be further divided and separated to get the two components. After obtaining crystals of an appropriate size, you can choose μ ... shot, 'spring crystal chart to determine the structure of non-stereoisomeric alkyl hexadiamond. Male 'Example 8 A · Isolation of heptammeine compound by GC / MS analysis of the eluate of column chromatography (step 6, Fig. 12) to determine heptammein (GC residence time. &Gt; + amounts 394 and 448 The individual heptamole components are numbered according to their dissociation order in the GC / MS analysis (see Figure &quot; A 4 representative analysis value). The molecular weight 448 heptamantane (with the most heptamole value) is in this example. Easy to use. Similar analysis can be used to prepare other seven molecular weight institutes of other molecular weights. Then use two-column preparation for siphon gas chromatography to remove from column chromatography &lt; Separate fractions separate heptamantane. Heptamantane The fractionation time is based on the dwell time and pattern of GC / MS analysis (from step 2 above, Figure 12). It is set for the first preparation siphon GC column (methyl silicone DB-1 equivalent). List The results are listed above Fig. 61, and they are sent to column 2 &quot; with the peaks of the π peaks of the seven diamond ridges two from the raw material b. The first type of column is used to remove and then sent to the second column. The remaining concentrated heptamantane (see Figure 6 1 explaining heptamantane # 1 and # 2). Second column (phenyl group -Methylsilicone, DB-17 equivalent) Further separation and purification of heptamantane, which was then used to isolate the peak of the target and leave it in a separate carrier cry (carriers 1 -6). Collect 0 (1: Carrier House 2 and further processing for separation of heptamantane # 1. Collect GC carrier fraction 4 and further process for separation of heptamantane # 2. Subsequent GC / MS analysis (Figure 62) shows that it is mainly based on the GC / MS analysis of the earlier operation of Step 4. -57- ^ The paper size applies the Chinese National Standard (CNS) Α4 specification (210 X 297 male ~ &quot; '&quot; &quot; &quot; &quot; '~~' *-1244477 A7 B7 V. Description of the Invention (55) Heptamantane # 1. Similarly, the GC analysis of the substance # 4 (Figure 63) shows that it is heptamantane # 2. This procedure can be repeated to separate the other heptamantane components. The highly concentrated heptamantane can then be directly added to the carrier or crystallized from the solution. Under a 30x magnification microscope, it can be prepared in Crystals were seen in the GC carrier Fraction 2 (see Figure 64). These crystals are preferably transparent and show a high refractive index. Crystals of adamantane # 1 did not exist. When the concentration was not high enough to cause crystallization, it was necessary to further concentrate with preparative GC. Figure 65 is a photo of seven adamantane # 2 crystallized in the preparative GC carrier 4. Single There is no crystal containing heptamantane # 2 before leaving. After obtaining a crystal of an appropriate size, the structure of heptamantane can be determined using an X-ray crystal chart. The stereoisomeric heptamantane can be further separated and analyzed for its two components. Example 8B : Purification HPLC of a single heptamantane isomer has also been shown to provide a sufficient amount of heptamantane to crystallize. The HPLC column used was the same as the other examples (ODS and Hypercarb). A 500 ml sample of a saturated distillate solution of pyrolysis product 7 (step 6, FIG. 12) of hydrocarbons was injected into the ODS column. The pyrolysis of fraction 7 used 25.8 g and was heated at 450 ° C for 16 hours. ODS HPLC fractions reach the purity required for crystallization of heptamantane alone, as shown by heptamantane # 1 in ODS HPLC fraction # 45 (Figure 66). Others, such as heptamantane # 2 in ODS HPLC fraction # 41 (Figure 67), heptamantane # 9 in ODS HPLC fraction # 61 (Figure 68), and ODS HPLC fraction # 87 (Figure 69) All of the seven Kanaoka | Jane # 10 may need to be further separated in HPLC system with different selectivity. Progress on Hypercarb column -58- This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm)

裝 言丁Pretend

1244477 A7 B7 五、發明説明(56 ) 行ODS分餾(圖13B)得到單獨七金剛烷成份結晶所需之純 度,如Hypercarb HPLC餾份#55(圖70)中之七金剛烷成份#1 及七金剛烷#2(圖71)所示。各HPLC餾份中之高級鑽石樣均 可使用包含製備用氣相層析即使用不同選擇性之管柱之其 他HPLC之其他層析技術分離,如下所列。另外,結晶技 藝中之其他技術均可使用,包含(但不限)分館昇華、逐步 再結晶或區精製均可用於純化七金剛烷。 藉由使用上述類似方法,亦即使用Hypercarb或其他適 用之管柱,且在相對應之溶離時間下收集之含七金剛烷之 〇D S館份之分顧可以或得勝於七金剛垸之單離。此對於分 子量420及434之七金剛烷(其再本原料中之量遠低於分子 量394及448之七金剛烷成份)。分子量420之七金剛烷成份 顯示在具有在16.71分鐘時之m/z 420成分之質譜(該例中之 m/z 420,圖73B)中極強分子離子之ODS HPLC餾份#61(圖 73A)中。該質譜(突出之分子離子極低量且附含之部分)為 績石樣成分之特性。 實例8C :經取代七金剛烷之單離 原料A及B中亦含包含經取代七金剛烷之烷基七金剛 烷。烷基七金剛烷可藉由使用如上述之熱解,自原料移除 非鑽石樣雜質純化。特定之烷基七金剛烷自熱介製程中留 下,如先前確認之七金剛烷成份。包含經取代七金剛烷成 份之烷基七金剛烷可使用單一 HPLC分離,以高純度單 離,如圖74中所示。單甲基化七金剛烷之分子量為408(得 到之質譜分子離子為m/z 408,且顯示甲基之質譜損耗, -59- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)1244477 A7 B7 V. Description of the invention (56) ODS fractionation (Figure 13B) to obtain the purity required for crystallization of heptamantane alone, such as heptamantane ingredient # 1 and seven in Hypercarb HPLC fraction # 55 (Fig. 70) Adamantane # 2 (Figure 71). Advanced diamond samples in each HPLC fraction can be separated using other chromatography techniques including preparative gas chromatography, or other HPLC using columns of different selectivity, as listed below. In addition, other techniques in the crystallization technique can be used, including (but not limited to) branch sublimation, stepwise recrystallization, or zone purification can be used to purify heptamantane. By using a similar method as described above, that is, using Hypercarb or other applicable columns, and collecting at the corresponding dissolution time, the division of the 0DS containing heptamantane can be better or better than the single ionization of the seven adamantane. . This is for heptamantane with molecular weights of 420 and 434 (the amount in the raw material is much lower than that of heptamantane with molecular weights of 394 and 448). The heptamantane component with a molecular weight of 420 is shown in an ODS HPLC fraction # 61 (Figure 73A) with extremely strong molecular ions in a mass spectrum with m / z 420 component at 16.71 minutes (m / z 420 in this example, Figure 73B) )in. This mass spectrometry (a very low amount of prominent molecular ions and an included part) is characteristic of the stone-like composition. Example 8C: Isolation of substituted heptamantane The starting materials A and B also contained alkyl heptamantane containing substituted heptamantane. The alkyl heptamantane can be purified by removing non-diamond-like impurities from the raw materials by using pyrolysis as described above. The specific alkyl heptamantane is left in the thermal process, as previously identified for heptamantane. The alkyl heptamantane containing the substituted heptamantane component can be separated using a single HPLC and isolated in high purity, as shown in Figure 74. The molecular weight of the monomethylated heptamantane is 408 (the obtained molecular ion of the mass spectrum is m / z 408, and it shows the mass loss of the methyl group, -59- This paper size applies to the Chinese National Standard (CNS) A4 specification (210 X 297 Mm)

裝 訂Binding

1244477 A7 B7 五、發明説明(57 ) 得到顯示七金剛烷部位之111/2393質譜份離子(圖748)。 實例9A :八金剛烷成份之單離 使步驟6之富含八金剛:):完之餾彳分進行逆相Η P L C。部分例 中,可使用丙酮當作移動相之逆相HPLC進行該純化。執 行原料B蒸餾餾份7熱解產物飽和之烴餾份(用於實例8A中) 之製備用〇DS HPLC操作,且使用差分折射計紀錄HPLC層 析。以GC/MS分析HPLC餾份,以測定八金剛烷HPLC之溶 離時間及監測純度(見製備用分析值之圖13 A)。所用之 HPLC管柱與先前實際中所用之ODS及Hypercarb系統相 同。將500毫升含飽和餾份7熱解產物之烴(25毫克)餾份丙 酮溶液之樣品注入ODS管柱中。雖然使用該HPLC系統, 但部分八金剛烷達到單獨八金剛烷結晶所需之純度。例 如,圖75說明HPLC餾份之GC/MS總離子層析及質譜,其 中之八金剛烷# 1已經純化至形成結晶之點(見圖76)。HPLC 餾份63得到合併之八金剛烷#3及#5(圖77),其自餾份共結 晶(圖78)〇 針對其他八金剛烷成份之高純度單離(例如圖79及80), 可使用多管柱例如Hyp ere arb。 實例9B :經取代八金剛烷成份之單離 烷基八金剛烷可使用實例1及3中之非烷基化八金剛烷所 述之方法純化。圖81 (A/B)顯示ODS HPLC餾份94含高純度 甲基化八金剛烷。單甲基化八金剛烷之分子量為460(得到 m/z 460之質譜分子離子,且顯示甲基質讀損耗之m/z 445 質譜份離子之八金剛烷部位(圖81B)。而且,當ODS或 -60- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477 A7 B7 五、發明説明(58 )1244477 A7 B7 V. Description of the invention (57) The 111/2393 mass spectrum ion showing the heptamantane site was obtained (Figure 748). Example 9A: Isolation of the octamantane component The octamantane rich in step 6 :): The finished fraction was subjected to reverse phase Plc. In some cases, the purification can be performed by reverse-phase HPLC using acetone as a mobile phase. Raw material B distillation fraction 7 pyrolysis product-saturated hydrocarbon fraction (used in Example 8A) was prepared using an ODS HPLC operation, and the HPLC analysis was recorded using a differential refractometer. The HPLC fractions were analyzed by GC / MS to determine the dissolution time of octamantane HPLC and monitor the purity (see Figure 13A of the analytical values for preparation). The HPLC column used was the same as the ODS and Hypercarb systems previously used in practice. A 500 ml sample of a hydrocarbon (25 mg) distillate acetone solution containing the pyrolysis product of saturated fraction 7 was injected into an ODS column. Although this HPLC system was used, some octamantane reached the purity required for octamantane crystallization alone. For example, Figure 75 illustrates GC / MS total ion chromatography and mass spectrometry of an HPLC fraction in which octamantane # 1 has been purified to the point where crystals are formed (see Figure 76). HPLC fraction 63 yields the combined octamantane # 3 and # 5 (Figure 77), which co-crystallizes from the fractions (Figure 78). For the high-purity ionization of other octamantane components (for example, Figures 79 and 80), Multi-column columns such as Hyper ere arb can be used. Example 9B: A mono-alkylated octamantane substituted with an octamantane component can be purified using the method described for the non-alkylated octamantane in Examples 1 and 3. Figure 81 (A / B) shows that ODS HPLC fraction 94 contains high purity methylated octamantane. The monomethylated octamantane has a molecular weight of 460 (m / z 460 mass spectrum molecular ion is obtained, and the m / z 445 mass fraction ion of the octamantane portion of the methyl mass read loss is shown (Fig. 81B). Moreover, when ODS or -60- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 1244477 A7 B7 V. Description of the invention (58)

Hypercarb HPLC餾份中含超過一種之烷基八金剛烷時,該 餾份之額外HPLC分離或製備用GC程序(如實例3中)可得到 高純度燒基八金剛燒。 實例10A :九金剛烷成份之單離 執行原料B蒸餾餾份7熱解產物飽和之烴餾份之製備用 〇DS HPLC操作(實例8A中所述之物質),且以GC/MS分析 HPLC館份,以測定九金剛烷HPLC之溶離時間(圖82)及監 測純度。將5 00毫升含飽和鶴份7熱解產物之烴(25毫克)顧 份丙酮溶液之樣品注入管柱中。該管柱使用5.00毫升/分鐘 之丙酮當作移動相載劑啟動。 針對以高純度單離烴金剛烷成份,可使用多管柱HPLC 管柱。為說明該分法,係連續使用不同選擇性ODS及 Hypercarb之HPLC管柱(如先前實例中所述),以單離單一 九金剛烷。由〇DS HPLC之操作,合併含九金剛烷之餾份 84-88(圖13B),在Hypercarb HPLC管柱系統中進一步純 化。 · 將50微升含1毫克ODS HPLC合併餾份(84-88)之二氯甲烷 樣品注入二 Hypercarb 管柱(二 4.6 mm I.D.X 200 mm)中,使 用1.30毫升/分鐘之二氯甲烷當作移動相連續操作。 圖83顯示含濃縮九金剛统之Hypercarb HPLC館份之 GC/MS總離子層析(TIC)。圖83之下半部說明GC/MS峰之質 譜。九金剛燒係使用相同之Hypercarb靜態相管柱,氮其溶 劑包含二氯甲烷/丙酮(70: 30體積%,在1.00毫升/分鐘下操 作),以第三種HPLC操作單離。所得單離九金剛烷結晶及 -61- 本紙張尺度適用中國國家標準(CNS&gt; A4規格(210 X 297公釐)When the Hypercarb HPLC fraction contains more than one alkyl octamantane, additional HPLC separation or preparation of the fraction using a GC procedure (as in Example 3) can result in high purity octamantan. Example 10A: Isolation of the nonadamantane component. Raw material B. Distillation fraction 7. Preparation of saturated hydrocarbon fractions of pyrolysis products. SDS HPLC operation (substance described in Example 8A). To determine the dissolution time of nonamantane HPLC (Figure 82) and monitor purity. A 500 ml sample of a hydrocarbon (25 mg) portion of acetone solution containing saturated pyrolysis product 7 was injected into the column. The column was started using 5.00 ml / min of acetone as a mobile phase carrier. For high-purity monomeric adamantane components, multi-column HPLC columns can be used. To illustrate this method, HPLC columns with different selectivities of ODS and Hypercarb (as described in the previous example) were used continuously to isolate a single nonamantane. From the operation of ODS HPLC, the diamantane-containing fractions 84-88 (Fig. 13B) were combined and further purified in a Hypercarb HPLC column system. · Inject 50 microliters of a dichloromethane sample containing 1 mg of ODS HPLC combined fractions (84-88) into a two Hypercarb column (two 4.6 mm IDX 200 mm), using 1.30 ml / min of dichloromethane as a mobile Phase continuous operation. Figure 83 shows GC / MS Total Ion Chromatography (TIC) of Hypercarb HPLC fractions containing concentrated Nine Diamonds. The lower half of Figure 83 illustrates the mass spectrum of the GC / MS peak. Jiujingang uses the same Hypercarb static phase column, and its solvent contains dichloromethane / acetone (70:30 vol%, operating at 1.00 ml / min), and is isolated by a third HPLC operation. The obtained mono-nine adamantane crystal and -61- This paper size is applicable to Chinese national standards (CNS &gt; A4 size (210 X 297 mm)

裝 玎Pretend

1244477 A7 B7 五、發明説明(59 ) 相對之質譜不於圖84中。 藉由使用如上述類似之方法,亦即使用具有不同選擇性 之管柱(如Hypercarb或其他適用之管柱)分傲含九金剛燒之 〇DS HPLC餾份,以高純度單離分子量498之九金剛烷。可 重複該方法單離分子量552之九金剛烷,及分子量538、 484及444之九金剛烷,其分別在本原料中為低含量。需了 解立體異構九金剛烷在GC/MS中並未解析,然而,此等立 體異構物可以以對掌分離方法單離。 實例10B ··經取代九金剛烷之單離 原料A及B中亦含包含經取代九金剛烷。烷基九金剛烷 可使用非烷化九金剛烷所述之方法純化。圖85 (A/B)顯示 蒸餾餾份# 7之熱解產物中之甲基化九金剛烷。其一類單甲 基化九金剛烷之分子量為512(獲得m/z 512之質譜分子離 子,且顯示甲基之質譜損耗,得到顯示九金剛烷部位之 m/z 497質譜份離子)(圖85B)。其中含超過一種之烷基九金 剛燒,且此等可使用〇DS或Hyp ere arb管柱單離,額外之 HPLC分離或藉由製備用GC單離,獲得高純度烷基九金剛 燒。 實例11A :十金剛烷成份之單離 執行原料B蒸餾餾份7熱解產物飽和之烴餾份之製備用 〇DS HPLC操作,且以GC/MS分析HPLC餾份,以測定十金 剛烷HPLC之溶離時間(圖86)及監測純度。所用之HPLC管 柱為二支串聯操作之50公分X 20毫米I.D.之Whatman十八 烷基矽烷(ODS)管。將500毫升含餾份7熱解產物飽和之烴 -62- 本紙張尺度適用中國國家標準(CNS&gt; A4規格(210 X 297公釐) 12444771244477 A7 B7 5. Explanation of the invention (59) The relative mass spectrum is not shown in Fig. 84. By using a method similar to the above, that is, using a column with a different selectivity (such as Hypercarb or other applicable columns) to separate the ODS HPLC fraction containing nine diamonds, with a high purity of 498 Nine adamantane. This method can be repeated to isolate the nonamantane with a molecular weight of 552 and the nonamantane with a molecular weight of 538, 484, and 444, which are low in the raw materials. It is necessary to understand that the stereoisomers of nonamantane are not resolved in GC / MS, however, these stereoisomers can be isolated in a single palm separation method. Example 10B .. Single Isolation of Substituted Amantadine Raw materials A and B also contained substituted nonamantane. Alkyl nonamantane can be purified using methods described for non-alkylated nonamantane. Figure 85 (A / B) shows methylated nonamantane in the pyrolysis product of distillation fraction # 7. The molecular weight of one type of monomethylamtamantane is 512 (obtain a mass molecular ion of m / z 512 and show the mass loss of the methyl group to obtain the m / z 497 mass ion showing the nonamantane position) (Figure 85B) ). There are more than one type of alkyl pentamycin, and these can be isolated using ODS or Hyper arb column. Additional HPLC separation or GC isolation for preparation can be used to obtain high-purity alkyl pentamide. Example 11A: Desolation of decamantane component. Distillation of raw material B. Preparation of saturated hydrocarbon fraction of pyrolysis product. DS HPLC operation was performed and HPLC fraction was analyzed by GC / MS to determine decamantane HPLC. Dissolution time (Figure 86) and purity monitoring. The HPLC column used was two 50 cm X 20 mm I.D. Whatman octadecylsilane (ODS) tubes operated in series. 500 ml of saturated hydrocarbons containing pyrolysis products of fraction 7

餾份(25毫克)丙酮溶液之樣品注入管柱中。該管柱使用 5.00毫升/分鐘之丙酮當作移動相載劑啟動。 針對以高純度單離十金剛烷成份,可使用多管柱HpLC 官枉。為說明該分法’係連續使用不同選擇性之HPLc管 枉,以單離單一之十金剛烷。第—HPLC系統包含與先前 所述相同之〇DS管柱。由該HPLC之操作,可合併含十金 剛烷足餾份74-83,在第二HPLC管柱系統中進一步純化。 重複遠操作五次’且合併所有操作之含十金剛烷餾份。該 合併之餾份含分子量456之十金剛烷及各種雜質。 為純化來自〇DS HPLC分離之合併HPLC餾份74-83,金50 微升含約1耄克ODS HPLC合併餾份之丙酮/二氯甲烷(7〇:3〇 體積%)樣品注入使用1.00毫升/分鐘丙酮/二氯甲烷(7〇: 3〇 體積% )當作移動相(@ 480 psi)之二Hypercarb管柱(4,6 mm I.D. X 200 mm)中。 圖87顯示再18.55分鐘溶離之含濃十金剛烷Hypercarb HPLC館份GC/MS總離子層析(TIC)。圖87之下半部說明再 m/z 456時具有突出峰之GC/MS質譜。所得[123 124 1(2)3]分 子里4 5 6十金剛坑結晶及質譜示於圖8 8中。4 5 6十金剛丨充在 Hypercarb HPLC系統中比五金剛烷# 3早溶離,因為其較小 極低表面積結構(圖10)。456分子量十金剛燒之該性質使其 可以以極高之純度單離。 藉由使用上述類似之方法,亦即使用具有不同選擇性之 管柱(如Hypercarb或其他適用之管柱)分餘含十金剛院之 〇D S Η P L C i留份,以高純度單離分子量4 5 6之十金剛、j:充。該 -63- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)A sample of the fraction (25 mg) of the acetone solution was injected into the column. The column was started using 5.00 ml / min of acetone as a mobile phase carrier. For high-purity monodecamantane, multi-column HpLC can be used. In order to illustrate the method, HPLc tubes with different selectivities are used continuously to separate a single decamantane. The HPLC system contains the same ODs column as previously described. From the operation of this HPLC, the decamantane-containing full fractions 74-83 can be combined and further purified in a second HPLC column system. The remote operation was repeated five times' and the ten adamantane-containing fractions of all operations were combined. The combined fractions contained decamantane with a molecular weight of 456 and various impurities. To purify the combined HPLC fractions 74-83 from ODS HPLC separation, 50 microliters of gold containing approximately 1 耄 g of ODS HPLC combined fractions of acetone / dichloromethane (70: 30% by volume) was injected using 1.00 ml / Min. Acetone / dichloromethane (70: 30% by volume) was used as the mobile phase (@ 480 psi) in a Hypercarb column (4,6 mm ID X 200 mm). Figure 87 shows GC / MS total ion chromatography (TIC) of a concentrated decamantane-containing Hypercarb HPLC library that dissolves for another 18.55 minutes. The lower half of Figure 87 illustrates a GC / MS mass spectrum with a prominent peak at m / z 456. The crystals and mass spectra of the obtained [123 124 1 (2) 3] molecule in 4 5 6 ten diamond pits are shown in Figs. 4 5 6 10 Ammonia® dissolves in the Hypercarb HPLC system earlier than Hardane # 3 because of its smaller, extremely low surface area structure (Figure 10). This property of 456-molecular weight ten diamonds allows it to be isolated with extremely high purity. By using a similar method as described above, that is, using a column with a different selectivity (such as Hypercarb or other applicable columns) to separate the fraction containing ΗDS Η PLC i from Shijingangyuan with a high molecular weight of 4 5 6 ten ten King Kong, j: charge. The -63- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

裝 訂Binding

line

1244477 A7 ^----- -B7_ 五、發明 61 )&quot; --— 万法可重複以單離分子量496(以蒸餾餾份# 7之熱解產物之 飽和餾份示於圖89中)以及分子量55〇或6〇4之十金剛烷, 及分子量536、576及590之十金剛烷,其在本原料中分別 為低含量。需了解立體異構物十金剛烷在Gc/Ms中並未解 析’然而,此等十金剛烷可以以對掌性分離方法單離。 貫例11B :經取代十金剛垸之單離 原料A及B中亦含包含經取代十金剛烷。烷基十金剛烷 可使用非烷化十金剛烷所述之方法純化。圖9〇顯示蒸餾餾 份# 7之熱解產物之飽和餾份中含甲基化十金剛烷。其一類 單甲基化十金剛烷之分子量為47〇(獲得m/z 47〇之質譜分子 離子)。而且,當ODS或含Hypercarb HPLC餾份中含超過一 種足烷基十金剛垸時,此等餾份之額外ΗΡΙχ分離或不同 之製備用GC程序可得到高純度烷基十金剛烷。 實例12 :十一金剛燒成份之單離 為以高純度單離十一金剛烷成份,可使用多hplc管 柱。孩方法使用時金剛烷,以不同選擇性之HPLC管柱連 續使用,以單離單一十金剛烷(實例u)證明。適用之起始 物質(原料B,蒸餾餾份7熱解產物)經顯示含十一金剛垸 (圖 9 1)。 來自〇DS HPLC餾份1〇〇+之濃縮十一金剛烷(圖13B)示於 圖92中。該餾份可在Hypercarb HPLC上使用系統(與實例i i 中說明者相同)純化單離十一金剛垸。該方法可重複以單 離分子量656及/或602,以及分子量642、628、5 88、548或 5 3 4 (其分別在本原料中為如預期)之十一金剛燒。 I -64- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)1244477 A7 ^ ----- -B7_ V. Invention 61) &quot; --- Wanfa can repeat with a molecular weight of 496 (the saturated fraction of the pyrolysis product of distillation fraction # 7 is shown in Figure 89) And decamantane with a molecular weight of 55 or 60, and decamantane with a molecular weight of 536, 576, and 590, which are low content in this raw material, respectively. It is to be understood that the stereoisomer decamantane is not resolved in Gc / Ms', however, these decamantane can be isolated in a single palm separation method. Example 11B: Single ion of substituted ten adamantane. Raw materials A and B also contain substituted adamantane. Alkyl decamantane can be purified using methods described for non-alkylated decamantane. Figure 90 shows methylated decamantane in the saturated fraction of the pyrolysis product of distillation fraction # 7. One type of monomethylated decamantane has a molecular weight of 47 ° (mass molecular ions of m / z 47 ° are obtained). Furthermore, when ODS or Hypercarb-containing HPLC fractions contain more than one decyladamantane, these fractions can be separated by additional PlIX separation or different GC procedures can be used to obtain high purity alkyl decamantane. Example 12: Isolation of eleven adamantane ingredients To separate elundadamantane ingredients with high purity, a multi-hplc column can be used. This method was used when adamantane was used continuously with HPLC columns of different selectivity, as demonstrated by a single decamantane (example u). Applicable starting materials (raw material B, distillation fraction 7 pyrolysis product) have been shown to contain elundamidine (Figure 9 1). Concentrated undecamantane (Figure 13B) from the ODDS HPLC fraction 100+ is shown in Figure 92. This fraction can be purified on Hypercarb HPLC using the system (same as described in Example i i). This method can be repeated with eleven adamantines having an molecular weight of 656 and / or 602, and a molecular weight of 642, 628, 5 88, 548, or 5 3 4 (which are as expected in this raw material, respectively). I -64- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

Claims (1)

4物复i —獅110的7 ¥號專利申請案A _ 7· 4 、申請專利範圍 種田3選擇灸鬲級鑽石樣成分,it不八、 2. 反-四金岡m,亦不含富含環六金剛;、s富含未經取代 ;高級鑽石樣成分呈現至少25 wt%&lt;V其中蔹富含選擇 一種富含-種或多種選擇高級鑽石樣成:。 中-種或多種選擇之高級轉石樣成分:二::物’其 1 w t❶’其條件為當僅有—種選擇二括組合物之至少 時,其不為未經取代之反-四金剛燒::::石樣成分 六金剛燒。 不為未經取代之環 3·如申請專利範圍第2項之組合物 之高級鑽石樣成分包括組合物之至;:—種或多種選擇 4·如申請專利範圍第2項之組合物…〇::%。 或多種選擇之高級鑽石樣成分。… /一種 含70至1〇〇 wt%之一種 含95至1〇〇 wt%之一種 含99至1 〇〇 wt%之一種 5·如申請專利範圍第2項之組合物 或多種選擇之高級鑽石樣成分。 6.如申請專利範圍第2项之組合物 或多種選擇之高級鑽石樣成分。 7·如申請專利範圍第2項之組合物 或多種選擇之高級鑽石樣成分。 8. 圍第”项中任-項之組合物,其中選擇高 八Y K刀之一種或多種為單一選擇之高級鑽石樣成 =括相對於鑽石樣總量富含一種或多種經選擇高級 貝〇、Κ成刀之鑽石樣組合物,其中鑽石樣總量之至少25 為種或多種經選擇之高級鑽石樣,其條件為當僅 〉Χ 297公釐) 12444774 物 复 i — 7 ¥ of Lion 110 Patent Application A _7.4, Patent Application Scope Farming 3 Select moxibustion 鬲 -grade diamond-like ingredients, it is not eight, 2. Anti-four Jingang m, also does not contain rich Ring Six King Kong ;, s rich in unsubstituted; high-grade diamond-like components present at least 25 wt% &lt; V where 蔹 is rich in the choice of one kind of rich-one or more choices of high-grade diamond into :. Medium-species or multiple choices of high-grade turnstone-like ingredients: two :: thing 'its 1 w t❶', the condition is that when there is only-one choice of at least the composition, it is not an unsubstituted anti-four King Kong :::: Stone-like ingredients Six King Kong. Not an unsubstituted ring 3. The high-grade diamond-like composition of the composition as claimed in the scope of the patent application, including the composition;-one or more options 4. The composition as the scope of the patent application, the second category ... ::%. Or a selection of premium diamond-like ingredients. … / A kind containing 70 to 100 wt%, a kind containing 95 to 100 wt%, a kind containing 99 to 1000 wt%, 5. A composition such as the scope of the patent application item 2, or a variety of advanced options Diamond-like composition. 6. The composition as claimed in item 2 of the patent application or a variety of advanced diamond-like ingredients. 7. The composition of item 2 of the scope of patent application or a selection of advanced diamond-like ingredients. 8. The composition of any of the "items", in which one or more of the selected high eight YK knives are single-selected high-grade diamond samples = including one or more selected high-grade shells relative to the total number of diamond samples. K-shaped knife-like diamond-like composition, in which at least 25 of the total number of diamond-like diamonds is one or more selected types of high-grade diamond-like diamonds, the condition is that when only> X 297 mm) 1244477 種選擇之高級鑽石樣成分時,复 ]四金剛燒’亦不為環六金剛燒。 為未經取代之反 〇. ΐ :睛專利範圍第9項之組合物,A中— :擇之高級蹲石樣成分為在單—样石中:-種或多種經 分。 鑽石樣族中之許多成 U·如:請專利範圍第9項之組合物,其中— :睪:級鑽石樣成分為單一選:::或多綱 12.如申請專利範圍第」至7及9至&quot;項中任石」:成分。 其中經選擇之高級鑽石樣成分 J &lt;組合物, 成份。 估種或多種四金剛娱 其中一種或多種四金 其中單四金剛燒成份 其·中單四金剛烷成份 13·如申請專利範圍第12項之組合物 门1J k成份為單四金剛烷成份。 14,如申請專利範圍第13項之組合物 為異-四金剛烷。 15·如申凊專利範圍第1 3項之組合物 為螺旋-四金剛烷。 中單四金剛烷成份 中四金剛燒成份包 16·如申睛專利範圍第13項之組合物,其 為螺旋-四金剛烷之單一立體異構物。 17.如申請專利範圍第丨2項之組合物,其 括經取代之四金剛烷成份。 队一種富含之異-四金剛烷,其呈現至少25wt%之純度。 19'種s含之螺旋_四金剛烷立體異構物a,其呈ί見至,卜 2 5 w t %之純度。 J 20· —種冨含之螺旋-四金剛烷立體異構物B,其呈視至… -2- 木紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) A8 B8 C8 1244477 六、申請專利範圍 2 5 w t %之純度。 21. 如申請專利範目第18-2”中任一項之富含四金剛烷,其 為結晶態。 22. 如申請專利範圍第丄至7及9至丨丨項中任一項之組合物, 其中緃廷擇之向級鑽石樣成分包括一種或多種五金剛烷 成份。 23. 如申凊專利範圍第22項之組合物,纟中一種或多種五金 剛烷成份為單-五金剛烷成份。 24. 如申清專利範圍第22項之組合物,其中一種或多種五金 剛燒成份為單離之光學異構物。 25·如申凊專利範圍第22項之組合物,其中一種或多種五金 剛、成份為異構之五金剛燒成份。 26.如申叫專利範圍第22項之組合物,其中一種或多種五金 剛:^成份為以式(^出⑼表示之非異構五金剛烷成份。 27· —種§含之五金剛烷成份,其呈現至少2 5 w t %之純度。 28.如申請專利範圍第27項之富含五金剛烷成份,其為結晶 態。 29·如申請專利範圍第27項之富含五金剛烷成份,其中五金 剛烷成份為[1 23 1 ]五金剛烷。 30·如申請專利範圍第27項之富含五金剛烷成份,其中五金 剛燒成份為[1 2 13]立體異構物A五金剛烷。 31·如申請專利範圍第27項之富含五金剛烷成份,其中五金 剛^元成份為[12 1 3 ] 體異構物B五金剛炫*。 32.如申請專利範圍第27項之富含五金剛烷成份,其中五金 -3- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1244477 as B8 C8 _ D8 六、申請專利範園 剛烷成份為[1234]立體異構物A五金剛烷。 33. 如申請專利範圍第27項之富含五金剛烷成份,其中五金 剛烷成份為[1234]立體異構物B五金剛烷。 34. 如申請專利範圍第27項之富含五金剛烷成份,其中五金 剛烷成份為[12(1)3]立體異構物A五金剛烷。 35·如申請專利範圍第27項之富含五金剛烷成份,其中五金 剛烷成份為[12( 1 )3]立體異構物B五金剛烷。 36. 如申凊專利範圍第27項之富含五金剛坑成份,其中五金 剛烷成份為[1212]五金剛烷。 37. 如申請專利範圍第27項之富含五金剛烷成份,其中五金 剛烷成份為[1(2,3)4]五金剛烷。 38·如申請專利範圍第27項之富含五金剛烷成份,其中五金 剛燒成份為[12(3)4]五金剛燒。 39.如申請專利範圍第27項之富含五金剛烷成份,其中五金 剛烷成份為未經取代之五金剛烷成份。 40·如申請專利範圍第27項之富含五金剛烷成份,其中五金 剛烷成份為經取代之五金剛烷成份。 41.如申請專利範圍第1至7及9至1 1項中任一項之組合物, 其中經選擇高級鑽石樣成分包括一種或多種六金剛烷成 份。 42·如申請專利範圍第4 1項之組合物,其中一種或多種六金 剛燒成份為單-六金剛貌成份。 43.如申請專利範圍第4 1項之組合物,其中一種或多種六金 剛烷成份為單離之光學異構物。 -4- 本紙張尺度適财關家標準(CNS) A4規格(2igx 公釐j 1244477 as B8 C8 D8 六、申請專利範圍 44·如申請專利範圍第4 1項之組合物,其中一種或多種六金 剛貌成份為異構之六金剛燒成份。 45. 如申請專利範圍第4 1項之組合物,其中一種或多種六金 剛燒成份為以式C3GH36表示之一種或多種六金剛燒成 份。 46. 如申請專利範圍第4 1項之組合物,其中一種或多種六金 剛:fe成份為以式C 2 9 Η 3 4表示之一種或多種六金剛燒成 份。 47. —種富含六金剛烷成份,其係以有取代或沒有取代之式 C3〇H364 C29H34表示,且其呈現至少2 5 w t %之純度。 48·如申請專利範圍第47項之富含六金剛烷成份,其為結晶 態。 49·如申請專利範圍第47項之富含六金剛烷成份,其係以式 C29H36表示。 50.如申請專利範圍第47項之富含六金剛烷成份,其係以式 C30H36表示。 51·如申請專利範圍第50項之富含六金剛烷成份,其係選自 以下之群組: [1(2)3 14]立體異構物A六金剛烷 [1(2)3 14]立體異構物B六金剛烷 [12(1)32]立體異構物A六金剛烷 [12(1)32]立體異構物B六金剛烷 [12(1)34]立體異構物A六金剛烷 [12(1)34]立體異構物B六金剛烷 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐 1244477 as B8 C8 D8 六、申請專利範圍 [12(1,3)4]六金剛烷 [12(3) 14]立體異構物A六金剛烷 [12(3) 14]立體異構物B六金剛烷 [121 (2)3]立體異構物A六金剛烷 [12 1(2)3]立體異構物B六金剛烷 [12 123]立體異構物A六金剛烷 [12 123]立體異構物B六金剛烷 [121 31]立體異構物A六金剛烷 [12131]立體異構物B六金剛烷 [121 34]立體異樣物A六金剛烷 [12134]立體異構物B六金剛烷 [12324]立體異構物A六金剛烷 [12324]立體異構物B六金剛烷 [12341]立體異構物A六金剛烷 [12341]立體異構物B六金剛烷 [1(2)3(1)2]六金剛烷 [12(3)12]六金剛烷 [121(3)4]六金剛烷 [12 12 1 ]六金剛烷 [12321]六金剛烷 [1(2)3( 1)4]立體異構物A六金剛烷 [1(2)3( 1)4]立體異構物B六金剛烷 52.如申請專利範圍第47項之富含六金剛烷成份,其中六金 剛貌成份為未經取代之六金剛燒成份。 -6- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) A8 B8 C8When choosing a kind of high-grade diamond-like composition, it is also not a ring six diamond. It is the unsubstantiated reverse. The composition of item 9 in the patent scope of the eye, in A-: The selected high-level squatting stone-like composition is in a single-like stone:-one or more kinds of economic scores. Many of the diamond-like families are U. For example, please apply for the composition in item 9 of the patent scope, where-: 睪: grade diamond-like ingredients are single selection: :: or multiple outlines. 9 to "item of any stone": ingredients. Among them, selected advanced diamond-like ingredients J &lt; composition, ingredients. Estimate one or more types of tetra-ammonium entertainment One or more types of tetra-ammonium, of which the single-tetra-ammonium flammable component is the middle-mono-tetra-adamantane component 13. The composition such as the scope of application for item 12 of the door 1J k component is a single-tetra-adamantane component. 14. If the composition of claim 13 is iso-tetramantane. 15. The composition according to item 13 of the patent application is helical-tetramantane. Medium monotetramantanane composition Medium tetratemantine composition package 16. The composition of item 13 in the scope of the patent, which is a single stereoisomer of helical-tetramantane. 17. A composition as claimed in claim No. 2 and including a substituted tetramantane component. A rich iso-tetramantane that exhibits a purity of at least 25% by weight. The helical-tetramantane stereoisomer a contained in 19 ′ species was found to have a purity of 25 w t%. J 20 · —The helical-tetramantane stereoisomer B contained in the species, which appears to ... -2- Wood paper size is applicable to China National Standard (CNS) A4 specifications (210X297 mm) A8 B8 C8 1244477 Six, The patent application range is 25 wt% purity. 21. If the tetramantane rich in any of Patent Application No. 18-2 "is crystalline. 22. If the combination of any one of Patent Application Nos. 丄 to 7 and 9 to 丨 丨The diamond-like components selected by the Chinese court include one or more metal adamantane components. 23. For example, in the composition of claim 22, one or more metal adamantane components are mono-metal adamantane. 24. If the composition of claim 22 of the patent claim, one or more of the components of the freshly burned metal are isolated optical isomers. 25. If the composition of claim 22 of the patent claim, one or A variety of hardware steels and components are heterogeneous hardware burned components. 26. For example, the composition claimed in item 22 of the patent scope, where one or more hardware steels: ^ The composition is a non-isomeric five represented by the formula (^ 出 ⑼ Amantadine component. 27 · —A kind of metal adamantane component contained in §, which has a purity of at least 25 wt%. 28. If the metal adamantane component rich in the 27th item of the patent application scope, it is crystalline. 29 · If the patent application scope 27 is rich in hardware adamane, of which hardware The alkane component is [1 23 1] hardware adamantane. 30. For example, the 27th aspect of the scope of patent application is rich in hardware adamantane component, wherein the metal just burned component is [1 2 13] stereoisomer A hardware adamantane. 31 · If the 27th item in the scope of patent application is rich in metal adamantane, and the first metal component is [12 1 3] isomer B hardware Dangxuan *. 32. If the 27th scope of patent application is rich in Components of metal adamantane, of which hardware-3- This paper size is applicable to Chinese National Standard (CNS) A4 specification (210 X 297 mm) 1244477 as B8 C8 _ D8 VI. Patent application Fanyuan amantane composition is [1234] three-dimensional Structure A. Hardware adamane. 33. For example, the scope of patent application No. 27 is rich in hardware adamane, where the hardware adamane component is [1234] stereoisomer B hardware adamantane. 34. If the scope of patent application is 27 The item rich in metal adamantane, of which the metal adamantane is [12 (1) 3] stereoisomer A metal adamantane. 35. For example, if the item 27 of the scope of patent application is rich in metal adamantane, five of them The adamantane component is [12 (1) 3] stereoisomer B metal adamantane. 36. For example, the 27th item in the patent application Components of metal rigid pits, of which metal rigids are [1212] metal rigids. 37. For example, the scope of patent application for item 27 is rich in metal rigids, among which metal rigids is [1 (2,3) 4] Hardware adamane. 38. If the 27th item of the scope of patent application is rich in metal adamantane component, of which the metal agglutination component is [12 (3) 4] hardware agglutination. 39. if the patent application is rich in item 27 Hardware adamantane component, wherein the hardware adamantane component is an unsubstituted hardware adamantane component. 40. If the patent application scope item 27 is rich in metal adamantane, the metal adamantane component is a substituted metal adamantane component. 41. The composition as claimed in any one of claims 1 to 7 and 9 to 11 in the patent application range, wherein the selected higher diamond-like ingredients include one or more hexamantane components. 42. The composition according to item 41 of the scope of patent application, wherein one or more of the six diamonds are single-six diamonds. 43. The composition according to item 41 of the application, wherein one or more of the hexamantane components are isolated optical isomers. -4- The paper size is suitable for financial standards (CNS) A4 specification (2igx mm j 1244477 as B8 C8 D8 VI. Patent application scope 44. For example, the composition of patent application scope item 41, one or more of which The diamond-like composition is a heterogeneous six-kingdom-fired ingredient. 45. For example, in the composition of claim 41 in the scope of patent application, one or more of the six-kingdom-fired ingredient is one or more six-kingdom-fired ingredient represented by the formula C3GH36. 46. For example, the composition in the scope of application for item 41, wherein one or more hexamantine: fe component is one or more hexamantine ingredients represented by the formula C 2 9 Η 3 4. 47.-hexamantane-rich component It is represented by substituted or unsubstituted formulas C30H364 C29H34, and it exhibits a purity of at least 25 wt%. 48. If the hexaamantane-rich component in item 47 of the patent application scope is rich, it is crystalline. 49. If the hexamantane-rich component in item 47 of the patent application scope is represented by formula C29H36. 50. If the hexamantane-rich component in item 47 of the patent application scope is represented by formula C30H36. 51 · If the scope of patent application is 50th It is rich in hexamantane, which is selected from the group: [1 (2) 3 14] stereoisomer A hexadamantane [1 (2) 3 14] stereoisomer B hexadamantane [ 12 (1) 32] stereoisomer A hexamantane [12 (1) 32] stereoisomer B hexamantane [12 (1) 34] stereoisomer A hexamantane [12 (1) 34 ] Stereoisomer B Hexamantane The paper size is applicable to Chinese National Standards (CNS) A4 specifications (210 X 297 mm 1244477 as B8 C8 D8 6. Application scope [12 (1,3) 4] Hexamantane [ 12 (3) 14] stereoisomer A hexaadamantane [12 (3) 14] stereoisomer B hexaadamantane [121 (2) 3] stereoisomer A hexaadamantane [12 1 (2) 3] Stereoisomer B Hexamantane [12 123] Stereoisomer A Hexamantane [12 123] Stereoisomer B Hexamantane [121 31] Stereoisomer A Hexamantane [12131] Stereo Isomer B Hexadamantane [121 34] Stereoisomer A Hexamantane [12134] Stereoisomer B Hexamantane [12324] Stereoisomer A Hexamantane [12324] Stereoisomer B Hexamantane [12341] Stereoisomer A Hexamantane [12341] Stereoisomer B Hexamantane [1 (2) 3 (1) 2] Hexamantane [12 (3) 12] Hexade [121 (3) 4] hexamantane [12 12 1] hexamantane [12321] hexamantane [1 (2) 3 (1) 4] stereoisomer A hexamantane [1 (2) 3 (1) 4] Stereoisomer B Hexamantane 52. For example, the hexaamantane-rich component in Item 47 of the scope of application for patents, in which the hexa-amantadine component is an unsubstituted hexa-amantadine component. -6- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) A8 B8 C8 1244477 53. 如申請專利範園第47項之富含六金 . 岡&quot;“份為經取代之六金剛烷成份。’其中六金 54. 種田D之經取代環六金剛燒成份,其呈現至少2 5 w t % 之純度。 55·如申請專利範圍第1至7及9至1 1項中任一項之組合物, 其中經選擇高級鑽石樣成分包括一種或多種七金剛烷成 份。 56·如申請專利範圍第55項之組合物,其中一種或多種七金 剛烷成份為單-七金剛烷成份。 57. 如申請專利範圍第5 5項之組合物,其中一種或多種七金 剛燒成份為單離之光學異構物。 58. 如申請專利範園第55項之組合物,其中一種或多種七金 剛烷成份為異構之七金剛烷成份。 59·如申凊專利範園第5 5項之組合物,其中一種或多種七金 剛统成份為以式C3GH34表示之一種或多種異構之七金剛 烷成份。 60.如申凊專利範圍第5 5項之組合物,其中一種或多種七金 剛垸成份為以式C32h36表示之一種或多種異構之七金剛 烷成份。 61 ·如申凊專利範園第y項之組合物,其中一種或多種七金 剛坑成份為以式C3 3 H38表示之一種或多種異構之七金剛 烷成份。 62。如申凊專利範園第μ項之組合物,其中一種或多種七金 剛垸成份為以式C34H4G表示之一種或多種異構之七金剛 本紙張尺度適财S B家鮮(CNS) A4規格(㈣χ 297公羡) 1244477 益 C8 D8 六、申請專利範圍 燒成份。 63. —種I含之七金剛院成份’其呈現至少2 5 w t %之純度。 64. 如申請專利範圍第63項之画含七金剛燒成份,其為結晶 態。 65. 如申請專利範圍第63項之冨含七金剛燒成份,其中七金 剛烷成份之分子量為394。 66·如申請專利範圍第63項之富含七金剛烷成份,其中七金 剛烷成份為[12 1 32 1 ]七金剛烷。 67.如申請專利範圍第63項之富含七金剛烷成份,其中七金 剛烷成份為[123 124]七金剛烷。 68·如申請專利範圍第63項之富含七金剛烷成份,其中七金 剛乾成份為未經取代之七金剛燒成份。 69·如申請專利範圍第63項之富含七金剛烷成份,其中七金 剛燒成份為經取代之七金剛烷成份。 70. 如申請專利範圍第1至7及9至1 1項中任一項之組合物, 其中經選擇高級鑽石樣成分包括一種或多種八金剛烷成 份。 71. 如申請專利範圍第7〇項之組合物,其中一種或多種八金 剛燒成份為單-八金剛烷成份。 72. 如申μ專利範圍第7 〇項之組合物,其中一種或多種八金 剛烷成份為單離之光學異構物。 73·如申請專利範圍第7〇項之組合物,其中一種或多種八金 剛烷成份為異構之八金剛烷成份。 74.如中請專利範圍㈣積之組合物,其中—種或多種八金 1244477 Α8 Β8 C8 D8 、 申請專利範園 種或多種異構之八金剛 ’其中一種或多種八金 種或多種異構之八金剛 ’其中一種或多種八金 種或多種異構之八金剛 ’其中一種或多種八金 種或多種異構之八金剛 剛燒成份為以式C:33H36表示之一 燒成份。 75·如申請專利範圍第7〇項之組合物 剛燒成伤為以式C;34H38表示之一 燒成份。 76·如申請專利範圍第70項之組合物 剛:^成份為以式c36h4q表示之一 燒成份。 77.如申請專利範圍第70項之組合物 剛燒成份為以式C37H42表示之一 燒成份。 一種或多種八金 種異構之八金剛 78·如申請專利範圍第7〇項之組合物,其中 剛燒成份為以式C38H“表示之一種或多 奴成份。 八金剛垸成份,其呈現至少25wt%之純度 79. on j. ^ ^ ^ &lt; 乂 2 5 w t % 之純度。 肌;广專利範圍第79項之富含八金剛故成份,其為結晶 81·:Π:利範圍第79項之富含八金剛捷成份,其中八金 J、几成6為未經取代之八金剛烷成份。 82.如申請專利範圍第79項之富含八金剛烷成份,其中八金 剛fe成份為經取代之八金剛烷成份。 83·如申請專利範圍第1至7及9至1 1項中任一項之組合物, 其中經選擇高級鑽石樣成分包括一種或多種九金剛烷成 份0 84·如申請專利範圍第83項之組合物,其中一種或多種九金 -91244477 53. If the patent application No. 47 of the patented garden is rich in six-gold. Oka &quot; "Parts are substituted hexaamantane components. 'Of which six-gold 54. Farming D's substituted cyclic hexa-amantanes, which presents A purity of at least 25 wt%. 55. The composition of any one of claims 1 to 7 and 9 to 11 in the patent application scope, wherein the selected higher diamond-like component includes one or more heptamantane components. 56 · For example, if the composition in the scope of patent application No. 55, one or more of the heptamantane component is a mono-heptamantane component. 57. In the composition in the scope of patent application No. 55, one or more of the heptamantane component is Single-isolated optical isomers. 58. For example, in the composition of the patent application No. 55, one or more of the heptamantane components are isomeric heptamantane components. 59. Such as the patent application No. 5 5 The composition according to item 1, wherein one or more heptamantane components are one or more isomeric heptamantane components represented by formula C3GH34. 60. The composition according to item 55 of the patent application scope, wherein one or more The composition of Vajrayana is C32h3 One or more isomers of heptamantane represented by 6 61. The composition of item y of Shenyang Patent Fanyuan, wherein one or more of the heptamantane ingredients is one or more isomers represented by the formula C3 3 H38 Heptamantane component 62. For example, in the composition of the Shenyang Patent Fanyuan Item μ, one or more of the heptamantane component is one or more heterogeneous seven adamantane papers expressed by the formula C34H4G Fresh (CNS) A4 specification (㈣χ 297 public envy) 1244477 Yi C8 D8 Six, apply for patent scope burned ingredients. 63.-Seven I Kongangyuan ingredients contained in 'I' presents a purity of at least 25 wt%. 64. If applied The painting in item 63 of the patent scope contains the heptammonite component, which is in a crystalline state. 65. For example, the application in the scope of the patent item 63 contains a heptammonite component, in which the molecular weight of the heptamantane component is 394. 66. If applying for a patent The heptamantane-rich component of the 63rd item, of which the heptamantane component is [12 1 32 1] heptamantane. 67. For example, the heptamantane-rich component of the 63th item of the patent application scope, wherein the heptamantane component [123 124] Heptamantane. 68. If the heptamantane-rich component of item 63 in the scope of the patent application is applied, of which the heptamate dry component is the unsubstituted heptamantane component. 69. If the heptamantane-rich component of item 63 of the patent application scope, of which The heptammonite component is a substituted heptamantane component. 70. The composition of any one of claims 1 to 7 and 9 to 11 in which the selected advanced diamond-like component includes one or more octamantine Hexane ingredient. 71. The composition according to item 70 of the patent application scope, wherein one or more of the octamantine components are mono-octamantine components. 72. A composition as claimed in claim 70, wherein one or more octamantane components are isolated optical isomers. 73. The composition of claim 70, wherein one or more octamantane components are isomeric octamantane components. 74. As claimed in the patent, the composition of the accumulation of which, one or more kinds of eight gold 1244477 A8 B8 C8 D8, one or more kinds of eight gold or more isomers One of the one or more eight gold species or more isomers of one of the eight golds' one or more eight gold species or more isomers of one or more eight golds is one of the ingredients represented by the formula C: 33H36. 75. If the composition in the scope of patent application No. 70 is just burned, it is one of the formula C; 34H38. 76. The composition according to item 70 of the scope of application for patent: The ingredient is one of the ingredients expressed by the formula c36h4q. 77. The composition according to the scope of patent application No. 70. The freshly burned component is one of the components expressed by the formula C37H42. One or more eight gold species isomerized eight diamonds 78. The composition according to item 70 of the patent application scope, wherein the freshly burned component is one or more slave components represented by the formula C38H ". ^ ^ ^ &Lt; 乂 2 5 wt% purity. Muscle; wide patent range 79 rich in adamantine ingredients, which is crystal 81 ·: Π: 利 范围 79 The item is rich in octamantine, of which octamantine J and 6% are unsubstituted octamantane. 82. For example, the octamantane-rich component in item 79 of the patent application scope, of which octamantine fe is Substituted octamantane component 83. The composition according to any one of claims 1 to 7 and 9 to 11 of the scope of patent application, wherein the selected high-grade diamond-like component includes one or more nonamantane components 0 84 · For example, for the composition in the scope of patent application No. 83, one or more of nine gold-9 X2Q7公釐) A B c I 1244477 六、申請專利範圍 剛燒成份為單一九金剛烷成份。 85·如申請專利範圍第83項之組合物,其中一種或多種九金 剛燒成份為單離之光學異構物。 86·如申凊專利範圍第83項之組合物,其中一種或多種九金 剛k成份為異構之九金剛燒成份。 87.如申請專利範圍第83項之組合物,其中一種或多種九金 剛燒成份為以式C^H36表示之異構九金剛烷成份。 88·如申凊專利範圍第8 3項之組合物,其中一種或多種九金 剛烷成份為以式表示之一種或多種異構之九金剛 燒成份。 89·如申请專利範圍第83項之組合物,其中一種或多種九金 剛烷成份為以式CwH42表示之一種或多種異構之九金剛 燒成份。 90_如申請專利範圍第83項之組合物,其中一種或多種九金 剛成份為以式C4〇H44表示之一種或多種異構之九金剛 燒成份。 91. 如申請專利範圍第83項之組合物,其中一種或多種九金 剛:fe成份為以式C^H46表示之一種或多種異構之九金剛 烷成份。 92. 如申請專利範圍第83項之組合物,其中一種或多種九金 剛纪成份為以式C^H4 8表示之一種或多種異構之九金剛 燒成份。 93· 一種富含之九金剛烷成份,其呈現至少25wt %之純度。 94-如申請專利範圍第93項之富含九金剛烷成份,其為結晶 態。 -10- 本紙張尺度適用中國國家標準(CNS) A4规格(210 X 297公釐) 1244477 A8 B8 C8 ______ —_ D8 六、申請專利範圍 95. 如申請專利範圍第93項之富含九金剛烷成份,其中九金 剛、成份為未經取代之九金剛燒成份。 … 96. 如申請專利範圍第93項之富含九金剛烷成份,其中九金 剛燒成份為經取代之九金剛烷成份。 ’、 97. 如申請專利範圍第}至7及9至11項中任—項之組合物, 其中經選擇高級鑽石樣成分包括一種或多種十金剛烷成 份。 98·如申請專利範圍第97項之組合物,其中一種或多種十金 剛燒成份為單一十金剛烷成份。 99.如申請專利範圍第97項之組合物,其中一種或多種十金 剛燒成份為單離之光學異構物。 肌如申請專利範圍第97項之組合物,其中—種或多種十金 剛坑成份為異構之十金剛烷成分。 1〇1·如申請專利範圍第97項之組合物,其中一種或多種十金 剛烷成份為以式C^H36表示之非異構十金剛烷成份。 102. 如申請專利範圍第97項之組合物,其卜m &amp; 剛:k成份為以式⑽表示之一種或多種異構之十金剛 烷成份。 103. 如申請專利範圍第97項之組合物,其中κ μ + &amp; 剛烷成份為以式匕汨44表示之一種或多種異構之十金剛 烷成份。 104. 如申請專利範圍第97項之組合物,其中一種或多種十金 门J ^成伤為以式C42H“表示之一種或多種異構之十金剛 烷成份。 105. 如中請專利範圍第97項之經合物,其中—種或多種十金 -11- !244477 A8 B8 C8 r- ___ D8 _______ 六、申請專利範園 剛烷成份為以式c44H48表示之一種或多種異構之十金剛 烷成份。 106. 如申請專利範圍第97項之組合物,其中一種或多種十金 剛烷成份為以式C45H5G表示之一種或多種異構之十金剛 烷成份。 107. 如申請專利範圍第97項之組合物,其中一種或多種十金 剛烷成份為以式C46H5 2表示之一種或多種異構之十金剛 烷成份。 108. —種冨含之十金剛燒成份,其呈現至少2 5 w t %之純度。 109. 如申請專利範圍第1⑽項之富含十金剛成份,其為結 晶態。 110. 如申請專利範圍第i項之富含十金剛坑成份,其中十 金剛烷成份為[123 1241 (2)3]十金剛烷。 111. 如申請專利範圍第1 〇 8項之富含十金剛说成份,其中十 金剛烷成份為未經取代之十金剛烷成份。 112·如申請專利範圍第1 08項之富含十金剛烷成份,其中十 金剛燒成份為經取代之十金剛烷成份。 113.如申請專利範圍第1至7及9至1 1項中任一項之組合物, 其中經選擇高級鑽石樣成分包括一種或多種十一金剛燒 成份。 U4.如申請專利範圍第n3項之組合物,其中一種或多種十 一金剛烷成份為單一十一金剛烷成份。 115·如申請專利範圍第113項之組合物,其中—種或多種十 一金剛燒成份為單離之光學異構物。 116.如申請專利範圍第113項之組合物,其中—種或多種十 -12- 8 8 8 8 A B c D 1244477 六、申請專利範圍 一金剛燒成份為異構之十一金剛燒成份。 117.如申請專利範圍第1 1 3項之组合物,其中一種或多種十 一金剛烷成份為以式C39H4()表示之異構十一金剛烷成 份。 118·如申請專利範圍第113項之組合物,其中一種或多種十 一金剛烷成份為以式C41H42表示之一種或多種異構之十 一金剛燒成份。 119. 如申請專利範圍第113項之組合物,其中一種或多種十 一金剛烷成份為以式C42H44表示之一種或多種非異構之 Η 金剛燒成份。 120. 如申請專利範圍第11 3項之組合物,其中一種或多種十 一金剛烷成份為以式C45H48表示之一種或多種非異構之 Η 金剛燒成份。 121. 如申請專利範圍第1 1 3項之組合物,其中一種或多種十 一金剛燒成份為以式C46H5Q表示之一種或多種非異構之 Η—^金剛燒成份。 122. 如申請專利範圍第1 1 3項之組合物,其中一種或多種十 一金剛燒成份為以式C48H52表示之一種或多種非異構之 十一金剛燒成份。 123. 如申請專利範圍第1 1 3項之組合物,其中一種或多種十 一金剛烷成份為以式C49H54表示之一種或多種非異構之 Η 金剛燒成份。 124. 如申請專利範圍第113項之組合物,其中一種或多種十 一金剛烷成份為以式C5QH56表示之一種或多種非異構之 十一金剛、j:完成份。 -13- 木紙張尺度適用中國國家標準(CNS) A4-€格(210X 297公釐) 1244477 as B8 C8 D8 六、申請專利範圍 125. —種富含之十一金剛烷成份,其呈現至少2 5 w t %之純 度。 126. 如申請專利範圍第125項之富含十一金剛烷成份,其為 結晶態。 127. 如申請專利範圍第125項之富含十一金剛烷成份,其中 十一金剛虎成份為未經取代之十一金剛院成份。 128. 如申請專利範圍第125項之富含十一金剛烷成份,其中 Η 金剛燒成份為經取代之十一金剛燒成份。 129. —種回收富含高級鑽石樣成分之組合物之方法,該方法 包括: a·選擇包括可回收量高級鑽石樣成分之原料; b.在條件下自沸點低於目標高級鑽石樣成分之最低沸 點之原料移除足量之成分,得到經處理之原料,且 由該原料回收高級鑽石樣成分;及 c ·以選自包含層析技術、熱擴散技術、區精製、逐步 再結晶及尺寸分離技術之分離技術,自該經處理之 原料回收高級鑽石樣成分。 130. —種回收如申請專利範圍第1項富含高級鑽石樣之方 法,包括: a.選擇包括可回收量高級鑽石樣成分或回收、非高級 鑽石樣成分之成分,及沸點低於經選擇回收之高級 鑽石樣最低沸點之成分原料; b·在條件下自原料移除足量之沸點低於選擇回收之高 級鑽石樣成分最低沸點之成分,其中可回收量之高 級鑽石樣成分或選擇回收之成分硫再經處理之原料 -14- 本紙張尺度適用中國國家標準(CNS:) A4規格( 210 X 297公釐) A BCD 1244477 六、申請專利範圍 中;及 C.熱處理上述b)中回收之原料,以熱解至少足量之非鑽 石樣成分,以自熱解處理之原料回收選擇之高級鑽 石樣成分或諸成分,其中之熱解係在條件下進行, 以得到留下可回收量經選擇高級鑽石樣成分或諸成 分之經處理原料; d.以選自包含層析技術、熱擴散技術、區精製、逐步 再結晶及尺寸分離技術之分離技術,自該經處理之 原料回收經選擇之高級鑽石樣成分。 -15- 本紙張尺度適用b國國家標準(CNS) A4規格(210X297公釐)X2Q7 mm) A B c I 1244477 6. Scope of patent application The calcined ingredients are single adamantane ingredients. 85. The composition of claim 83, wherein one or more of the nine-fired diamond components are isolated optical isomers. 86. The composition of claim 83 in the scope of patent application, in which one or more of the nine diamond k components are isomeric nine diamond burner components. 87. The composition of claim 83 in the scope of patent application, wherein one or more of the nonadamantane components are isomeric nonamantane components represented by the formula C ^ H36. 88. The composition according to item 83 of the patent application, wherein one or more of the nonamantane component is one or more isomerized nonamantane components expressed by the formula. 89. The composition as claimed in claim 83, wherein the one or more nonamantane components are one or more isomerized nine adamantane components represented by the formula CwH42. 90_ The composition according to item 83 of the patent application scope, wherein the one or more nine diamond components are one or more isomeric nine diamond components expressed by the formula C40H44. 91. The composition according to item 83 of the patent application scope, wherein one or more of the nonadamantane: fe component is one or more isomeric adamantane components represented by the formula C ^ H46. 92. If the composition of the scope of application for item 83 is used, one or more of the nine diamond content is one or more isomerized nine diamond content expressed by the formula C ^ H4 8. 93. A nonamantane-rich ingredient with a purity of at least 25% by weight. 94- If it is rich in nonamantane in the scope of the patent application No. 93, it is crystalline. -10- This paper size is in accordance with Chinese National Standard (CNS) A4 specification (210 X 297 mm) 1244477 A8 B8 C8 ______ —_ D8 VI. Application scope of patent 95. For example, the scope of application for patent scope 93 is rich in nonamantane Ingredients, of which Nine King Kong, the ingredients are unreplaced Nine King Kong. … 96. For example, in the 93rd patent application, it is rich in nonamantane, in which the nine adamantane component is a substituted nonamantane component. ', 97. The composition according to any one of items} to 7 and 9 to 11 in the scope of patent application, wherein the selected high-grade diamond-like component includes one or more decamantane components. 98. The composition according to item 97 of the application, wherein one or more of the decamanthin components are a single decamantane component. 99. The composition according to claim 97, wherein one or more of the decamantine components are isolated optical isomers. The composition of the scope of application of the patent No. 97, wherein one or more of the decamantane component is isomeric decamantane component. 101. The composition according to item 97 of the application, wherein one or more of the decamantane components are non-isomeric decamantane components represented by the formula C ^ H36. 102. If the composition of the scope of application for the patent No. 97, the m &amp; k: k component is one or more isomeric decamantane components represented by formula (i). 103. The composition according to item 97 of the application, wherein the κ μ + &amp; adamantane component is one or more isomeric decamantane components represented by the formula D 44. 104. For example, if the composition of the scope of patent application No. 97, one or more decamidine J ^ into wounds is one or more isomeric decamantane components represented by the formula C42H ". 105. If the scope of the patent application is 97 Meridian compounds of the item, in which one or more ten gold-11-! 244477 A8 B8 C8 r- ___ D8 _______ Six, the patent application Fanyuan adamantane component is one or more isomeric decamantane expressed by the formula c44H48 106. For example, the composition in the scope of patent application No. 97, wherein one or more of the decamantane component is one or more isomeric decamantane components represented by the formula C45H5G. 107. In the scope of patent application No. 97, A composition in which one or more decamantane components are one or more isomeric decamantane components represented by the formula C46H5 2. 108.-A decamanthin component contained in a kind of radon, which exhibits a purity of at least 25 wt% 109. If the tenth diamond-rich component in item 1 (1) of the patent application scope is crystalline. 110. The ten diamond-pit-rich component in item i of the patent application scope, where the decamantane component is [123 1241 (2 3) Ten King Kong 111. For example, in the application for the scope of patent No. 108, the ten-amantanes-rich component, in which the decamantane component is an unsubstituted decamantane component. 112. For example, the patent application scope No. 108 is rich in ten components. The adamantane component, of which the decamantine component is the substituted decamantane component. 113. The composition according to any one of claims 1 to 7 and 9 to 11 in the patent application scope, wherein the selected high-grade diamond-like components include One or more eleven amantadine ingredients. U4. A composition as claimed in item n3 of the scope of patent application, wherein one or more elundamantane ingredients are a single undecamantane component. 115. As in item 113 of the scope of patent application A composition in which one or more eleven rambutan components are isolated optical isomers. 116. The composition according to item 113 of the patent application range, wherein one or more ten-12- 8 8 8 8 AB c D 1244477 6. Scope of patent application: The one-and-one adamantine composition is isomeric and one-and-a-one adamantine composition. 117. For example, the composition of item 113 of the application scope, wherein one or more of the undanadamantane component is represented by formula C39H4 ( Heterogeneous ten The adamantane component. 118. The composition according to item 113 of the patent application scope, in which one or more undecamantane components are one or more isomeric decamanthin components represented by the formula C41H42. 119. If the scope of patent application The composition according to item 113, wherein the one or more undecamantane components are one or more non-isomeric amaranthine components represented by the formula C42H44. 120. For example, the composition of claim 11 in the scope of patent application, wherein one or more eleven adamantane components are one or more non-isomeric osmium fragrant ingredients represented by formula C45H48. 121. For example, the composition of item 113 of the scope of application for patent, wherein one or more of the eleven diamond-fired ingredients are one or more non-isomeric osmium-^-diamond-fired ingredients represented by the formula C46H5Q. 122. For example, in the composition of claim 113, one or more of the eleven emery ingredients are one or more non-isomeric eleven emery ingredients represented by the formula C48H52. 123. For example, the composition of claim 113 in the scope of patent application, wherein the one or more eleven adamantane components are one or more non-isomeric Η aramid components represented by the formula C49H54. 124. If the composition of the scope of application for patent No. 113, wherein one or more eleven adamantane components is one or more non-isomeric eleven adamantane, j: finished part represented by formula C5QH56. -13- The size of wood paper is applicable to Chinese National Standard (CNS) A4- € (210X 297 mm) 1244477 as B8 C8 D8 6. Application scope of patent 125. — 11 kinds of eleven adamantane rich in ingredients, which present at least 2 5 wt% purity. 126. If the eleven adamantane-rich component in the scope of the application for a patent is 125, it is crystalline. 127. If the scope of application for patent No. 125 is rich in undecamantane, of which the depotent of the eleven diamonds is the undeprecated constituent of the eleven diamonds. 128. For example, the eleven amantadine-rich ingredients in the 125th scope of the application for patents, of which Η the diamond-fired ingredients are substituted eleven-adamantines. 129. A method for recovering a composition rich in high-grade diamond-like ingredients, the method comprising: a. Selecting a raw material including a recoverable amount of high-grade diamond-like ingredients; b. Under conditions that have a boiling point lower than the target high-grade diamond-like ingredients The lowest boiling point raw material is removed from a sufficient amount of the component to obtain a processed raw material, and the advanced diamond-like component is recovered from the raw material; and c. Selected from the group consisting of chromatography technology, thermal diffusion technology, zone refining, progressive recrystallization and size Separation technology Separation technology recovers advanced diamond-like components from the processed raw materials. 130. A method for recovering high-grade diamond-like samples as described in the first scope of the patent application, including: a. Selecting components that include recoverable quantities of high-grade diamond-like components or recycled, non-high-grade diamond-like components, and boiling points lower than those selected Recovered raw materials with the lowest boiling point of high-grade diamond-like materials; b. Under the conditions, remove a sufficient amount of components with a boiling point lower than the lowest boiling point of the high-grade diamond-like components that are selected for recovery, among which a recoverable amount of high-grade diamond-like components or choose to recover Composition of sulfur and processed raw materials-14- This paper size applies to Chinese National Standards (CNS :) A4 specifications (210 X 297 mm) A BCD 1244477 6. In the scope of patent application; and C. Heat treatment recovered in b) above For raw materials, at least a sufficient amount of non-diamond-like ingredients are pyrolyzed, and selected high-grade diamond-like ingredients or ingredients are recovered from raw materials treated by pyrolysis. The pyrolysis is performed under conditions to obtain a recoverable amount. Selected high-grade diamond-like ingredients or processed raw materials of the ingredients; d. Selected from the group consisting of chromatography techniques, thermal diffusion techniques, zone refining, stepwise recrystallization, and size separation techniques The separation from the treated feedstock recovered after the selection of the advanced diamond-like component. -15- This paper size applies to the national standard (CNS) A4 (210X297 mm) of b
TW91100771A 2001-01-19 2002-01-18 Compositions comprising higher diamondoids and processes for their separation TWI244477B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US26284201P 2001-01-19 2001-01-19
US30014801P 2001-06-21 2001-06-21
US30706301P 2001-07-20 2001-07-20
US31256301P 2001-08-15 2001-08-15
US31754601P 2001-09-05 2001-09-05

Publications (1)

Publication Number Publication Date
TWI244477B true TWI244477B (en) 2005-12-01

Family

ID=37154820

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91100771A TWI244477B (en) 2001-01-19 2002-01-18 Compositions comprising higher diamondoids and processes for their separation

Country Status (1)

Country Link
TW (1) TWI244477B (en)

Similar Documents

Publication Publication Date Title
TWI235743B (en) Processes for the purification of higher diamondoids and compositions comprising such diamondoids
AU2002321993A1 (en) Processes for the purification of higher diamondoids and compositions comprising such diamondoids
US6861569B2 (en) Processes for the purification of higher diamondoids and compositions comprising such diamondoids
TWI244477B (en) Compositions comprising higher diamondoids and processes for their separation
US6843851B2 (en) Compositions comprising pentamantanes and processes for their separation
US6812370B2 (en) Compositions comprising hexamantanes and processes for their separation
US6815569B1 (en) Compositions comprising tetramantanes and processes for their separation
US6828469B2 (en) Compositions comprising heptamantane and processes for their separation
US20020147373A1 (en) Compositions comprising octamantanes and processes for their separation
US20030097032A1 (en) Compositions comprising decamantanes and processes for their separation
US6812371B2 (en) Compositions comprising nonamantanes and processes for their separation
US7094937B2 (en) Compositions comprising cyclohexamantane
EP1351904B1 (en) Compositions comprising cyclohexamantane
JP2004517886A (en) Composition containing higher diamond-like compound and method for separating the same
AU2002236732A1 (en) Compositions comprising cyclohexamantane
AU2002246966A1 (en) Compositions comprising higher diamondoids and processes for their separation
AU2007202543A1 (en) Processes for the purification of higher diamondoids and compositions comprising such diamondoids