TWI239179B - Channel estimation in orthogonal frequency-division multiplexing (OFDM) systems - Google Patents
Channel estimation in orthogonal frequency-division multiplexing (OFDM) systems Download PDFInfo
- Publication number
- TWI239179B TWI239179B TW92122187A TW92122187A TWI239179B TW I239179 B TWI239179 B TW I239179B TW 92122187 A TW92122187 A TW 92122187A TW 92122187 A TW92122187 A TW 92122187A TW I239179 B TWI239179 B TW I239179B
- Authority
- TW
- Taiwan
- Prior art keywords
- channel
- symbol
- period
- training
- transmitting
- Prior art date
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
Description
12391791239179
玖、發明說明: 【發明所屬之技術領域】 ,發明疋-種通訊系統和方法,且特別關於—種估測通道特徵 值之系統和方法,應用於採傳輸分集式架構之正交分頻多工系統。" 【先前技術】 射頻區域網路(Radio-frequency local area network)系統運 作受到美國聯邦機構嚴格管制。舉例來說,5.15 — 5. 25 GHz、 5. 25-5· 35 GHz和5· 725-5· 825 GHz免執照國家資訊基礎頻帶 (unlicensed national information structure,U-NII)的使用 受到美國聯邦管制法(CFR) 15· 407節47條的規範。不僅美國聯邦 管制法對射頻網路的使用有明文規範,其他組織,如:美國電子電 機工程師協會(Institute of Electrical and Electronics说明 Description of the invention: [Technical field to which the invention belongs], invents a communication system and method, and particularly relates to a system and method for estimating channel characteristic values, which are applied to orthogonal frequency division of a transmission diversity architecture. Engineering system. " [Previous Technology] Radio-frequency local area network system operation is strictly controlled by the US federal agencies. For example, the use of 5.15-5. 25 GHz, 5. 25-5 · 35 GHz and 5.725-5 · 825 GHz unlicensed national information structure (U-NII) is subject to U.S. federal regulations Regulation (CFR) 15.407 Section 47. Not only does the US Federal Regulations regulate the use of radio frequency networks, other organizations such as the Institute of Electrical and Electronics
Engineers,IEEE)也對無線網路制訂技術規格,藉以確保不同製 造商生產的無線系統的互通性。例如,美國電子電機工程師協會制 訂的『無線區域網路媒介接取控制層和實體層規格:5Ghz頻帶之高 速實體層』(Wireless LAN Medium Access Control (MAC) andEngineers (IEEE) also develop technical specifications for wireless networks to ensure interoperability of wireless systems made by different manufacturers. For example, the "Wireless LAN Medium Access Control Layer and Physical Layer Specification: 5Ghz Band High-Speed Physical Layer" (Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band),以下簡稱為 IEEE 5Ghz 標準,就對 5Ghz 123917¾ 頻帶運作的系統訂定一些規範。 在IEEE 5Ghz標準中,其中的一部分是關於一正交分頻多工 (orthogonal frequency division multiplexing,OFDM)的實體 層收斂程序(physical layer convergence procedure,PLCP)子 層。第一 A圖繪示IEEE 5Ghz標準之一展現協定資料單元 (Presentation Protocol Data Unit,PPDU)的訊框格式。如第一 A圖所示,該展現協定資料單元訊框包括:一短訓練時段 鲁 (short-training period) 110 ; —長訓練時段(i〇ng-training period) 120,接於該短訓練時段no之後;一信號時段(signaling period) 130,接在該長訓練時段120之後;以及多個資料時段(data period) 140、142、144,接在該信號時段13〇之後。依據IEEE 5Ghz 標準’該長訓練時段120、信號時段130和多個資料時段140、142、 144都包含一保護時間間距(gUar(j intervai,gi )。 _ 該短訓練時段110内包含十個符元(ή,△ · . .以“),功 用為信號檢測(signal detection)、初步頻率獲取 (coarse-freqUency acquisition)、分集式接收挑選(diversity selection),以及臓5Ghz鮮所制訂的其他功能。關於短訓練 時段110的完整規範詳細定義於1£腿5Ghz標準,在此就不在對其 7 1239179Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band, hereinafter referred to as the IEEE 5Ghz standard, sets some specifications for systems operating in the 5Ghz 123917¾ band. In the IEEE 5Ghz standard, a part of it is about a physical layer convergence procedure (PLCP) sublayer of an orthogonal frequency division multiplexing (OFDM). Figure A shows the frame format of a Presentation Protocol Data Unit (PPDU), one of the IEEE 5Ghz standards. As shown in Figure A, the frame of the display agreement data unit includes: a short-training period 110;-a long training period 120, followed by the short training period After no; a signaling period 130 followed by the long training period 120; and a plurality of data periods 140, 142 and 144 followed after the signal period 130. According to the IEEE 5Ghz standard, the long training period 120, signal period 130, and multiple data periods 140, 142, and 144 all include a guard time interval (gUar (j intervai, gi). _ The short training period 110 contains ten symbols Yuan (price, △ ·... "), The functions are signal detection, preliminary frequency acquisition (coarse-freqUency acquisition), diversity reception selection (diversity selection), and other functions developed by 臓 5Ghz. The full specification for the short training period 110 is defined in detail in the 1 £ leg 5Ghz standard, which is not covered here anymore 7 1239179
做更深入討論。 該長訓練時段120包含一保護時間間距(GI2),和二長訓練符元 (刀與%)。依據IEEE 5Ghz標準,每個長訓練符元由53個子載波的 付元所組成,其直流電壓值為零,而其内容由一串數字序列/經過 運算而產生。該數字序列J如下: X = {1,1,-1,-1,1,1,-1,1,—1,1,1,1,1,1,1,-1,-1,1,1,—1,1—1,11m 1,-1,-i,i,i,-i,i,-i,i,-i,-i,-i,_i,-i,i,i,-i,-l,i,—11,—ΐ,ΐ,ΐ,ι,ΐ} [Εςι· 1 ]· 此外,IEEE 5Ghz標準定義了長訓練符元之產生運算函數為·· y 53 [Eq· 2], X(’)= X ((~TGI2 )Do more in-depth discussions. The long training period 120 includes a guard time interval (GI2) and two long training symbols (knife and%). According to the IEEE 5Ghz standard, each long training symbol is composed of 53 subcarriers, and its DC voltage value is zero, and its content is generated by a series of digital sequences / operations. The number sequence J is as follows: X = {1,1, -1, -1,1,1, -1,1, -1,1,1,1,1,1,1, -1, -1,1 , 1, —1,1—1,11m 1, -1, -i, i, i, -i, i, -i, i, -i, -i, -i, _i, -i, i, i , -I, -l, i, —11, —ΐ, ΐ, ΐ, ι, ΐ} [Ειι · 1] · In addition, the IEEE 5Ghz standard defines the operation function for generating long training symbols as y 53 [ Eq · 2], X (') = X ((~ TGI2)
k=Q 其中是該長訓練符元之一時間軸符元 子,功用為訊號之頻譜波形調整(spectral shaping);々是一子載 波引數;iU)是Eq. 1所定義的训練符元之一參數;而-是保護時 間間距,在IEEE 5Ghz標準中該數值為丨6 s。 IEEE 5Ghz鮮除了定義該長訓練符元的内容外(依據阳.& 同時也規定長訓練符元的數目為二(71與刀),藉以增加通道估測的 精準度。 又,IEEE 5Ghz標準規定第— 長剌練符元頭第二長崎符元 Z之内容相同。因此,設計相同的長钏練符元I, 第一長訓練符元/155 1239179 和弟二長觀符元/165鱗輕_ 二支傳輪分集式正交分頻多工系統(如:第二段120。所以,對— 器260傳送如下内容: 〜圖所示)’一第一傳輪 ⑴於長训練時段120之時間内 /脑於-第—通道及; —,練符元/脇和 ⑵於信號of段130之時間内 通’·又, 傳4就貝料於該第- ⑶在後物喊叫142之時叫傳娜謂a和 及190a於該第_通道忍。 類似地,一第二傳輸器265傳送如下内容: ⑴於長训練時段⑽之時間内,傳送二長訓練符元Ji55b和 J 165b於一第二通道怂; (2)於化唬時段13〇之時間内,傳送信號資訊SHOb於該第二 通道怂;又, (3)在後續資料時段140和142之時間内,傳送資料Λ 18〇b和 及190b於該第二通道及。 一接收器205接收來自第一、第二傳輸器之傳輸訊號,而該接收 5凡號是傳送符元和通道特徵值(channel characteristic)的函數。 1239179 經過移除保護時間間距後,每個接收符 ^ 遵行一反向傅利葉轉換運 算。如此,對於_如第二圖所示的二支 又得輪分集式正交分頻多工系 統,頻率軸上的接收訊號包括第一接收 伐叹付215、第二接收符元 D 225、第三接收符元t'3 235、第接 僚收付兀ΤΙ 245以及第五接收 符元K 255,其申第一接收符元Γι 215可表示為· yi=(ha^)^Hb.X)+zu [Eq. 3]· 其中錢接收雜訊,忍和展是頻率轴上的通道特雌,並且假 設在訊框_ (frame duratiQn)峰持残,而此二通道的傳輸 延遲也假設是相同。因為同—長訓練符元糟送於此二支傳輸分集 式系統的二傳輸器上,Eq· 3可簡化為· Ά={ΗΑ+ΗΒ).χ+Ζι. [Eq. 4]. 類似地,後續接收資料區塊第二接收符元τ,2 225、第三接收符 兀Τ’3 235、第四接收符元Τ’4 245以及第五接收符元Ή255可表示為: [Eq· 5], [Eq. 6], [Eq. 7], Υ2 =(^ + ^)·χ + ζ2, Y3=(HA+HBys + Z3, Y4=H+HB.Dm+Z4, 和 [—Ha · DA2 + Ηβ · DB2 + Z5 [Eq· 8]· Ι259Κ79ι [Eq. 9], 合併Eqs. 4和5,可獲得下列方程式: (^Γ2).ζ·=(^+^).(2|χ|2)+(Ζι+ζ2)χ.5 經過移項後,又可改寫為: ηα+ηβ =适 2 2 , 或更精確的表示為: HA(k) + HB(k) = (Zx{k) + Z2{k))-X(k) 2 - 2 [Eq. 10], 其中#;!:正交分頻純的子餘數目,而}是子載波的引 數。 在Eq· 1巾,對於所有的纽,·e{±1},因此傳輸符元麟 的複數共輛符元/⑷也是和傳輸符元相同。又,因為彻e㈣,該 傳輸符元iU)的平方項丨/⑷丨2都會是卜此外,因為雄)e㈣, (則+則)/(幻和(則+彻)的統計值,一般來說是相同的。 略過雜訊項,此二通道的綜合特徵值㈤尉及)可用下列方程 式來估測得知:k = Q where is the time axis symbol of one of the long training symbols, whose function is the spectral shaping of the signal; 々 is a subcarrier argument; iU) is a training symbol defined by Eq. 1. One parameter of the element; and-is the guard time interval. In the IEEE 5Ghz standard, the value is 6 s. In addition to the definition of the long training symbols (according to Yang. &Amp;), IEEE 5Ghz also specifies the number of long training symbols to be two (71 and the knife) to increase the accuracy of channel estimation. Also, the IEEE 5Ghz standard It is stipulated that the content of the first Nagasaki rune element second Nagasaki rune element Z is the same. Therefore, the same long run training element I is designed, the first long training rune element / 155 1239179 and the younger second long rune element / 165 scale Light _ two-pass diversity diversity orthogonal frequency division multiplexing system (such as: the second section 120. Therefore, the pair 260 transmits the following: ~ shown in the figure) 'a first pass in the long training period Within 120 minutes / brain in the-channel and;-, practice symbol element / threaten and pass in the signal of paragraph 130 within the time of 'and again, pass 4 is expected to be in the first-⑶ shouted after the 142 At that time, it was called Chuan Na and A and 190a on the _th channel. Similarly, a second transmitter 265 transmits the following: ⑴ Within the time of the long training period, it transmits the two long training symbols Ji55b and J 165b on a second channel; (2) within 13 hours of the bluffing period, send signal information SHOb on the second channel; (3) During the subsequent data periods 140 and 142, the data Λ 18〇b and 190b are transmitted on the second channel and. A receiver 205 receives the transmission signals from the first and second transmitters, and the Receive 5 Fan sign is a function of the transmission symbol and channel characteristic. 1239179 After removing the guard time interval, each receiver ^ follows an inverse Fourier transform operation. Thus, for _ as shown in the second figure The two shown in the figure have a round diversity orthogonal frequency division multiplexing system. The receiving signals on the frequency axis include the first receiving signal 215, the second receiving symbol D 225, and the third receiving symbol t'3 235. The first receiver receives payment ΤΙ 245 and the fifth receiving symbol K 255. The first receiving symbol Γι 215 can be expressed as: yi = (ha ^) ^ Hb.X) + zu [Eq. 3] · where When money receives noise, tolerance and spread are channel-specific females on the frequency axis, and it is assumed that the peak remains at the frame duratiQn, and the transmission delay of the two channels is also assumed to be the same. Since the same-long training symbols are sent to the two transmitters of the two transmission diversity systems, Eq · 3 can be simplified to · · = {ΗΑ + ΗΒ) .χ + Zι. [Eq. 4]. Similarly , In the subsequent receiving data block, the second receiving symbol τ, 2 225, the third receiving symbol T′3 235, the fourth receiving symbol T′4 245, and the fifth receiving symbol Ή255 may be expressed as: [Eq · 5 ], [Eq. 6], [Eq. 7], Υ2 = (^ + ^) · χ + ζ2, Y3 = (HA + HBys + Z3, Y4 = H + HB.Dm + Z4, and [—Ha · DA2 + Ηβ · DB2 + Z5 [Eq · 8] · Ι259Κ79ι [Eq. 9], combining Eqs. 4 and 5, the following equation can be obtained: (^ Γ2) .ζ · = (^ + ^). (2 | χ | 2) + (Zι + ζ2) χ.5 After shifting the term, it can be rewritten as: ηα + ηβ = suitable 2 2, or more precisely: HA (k) + HB (k) = (Zx {k ) + Z2 {k))-X (k) 2-2 [Eq. 10], where #;!: The number of orthogonal sub-purity sub-remainders, and} is the argument of the subcarrier. In Eq · 1, for all buttons, · e {± 1}, so the transmission of the complex number of symbols / 麟 is also the same as the transmission of symbols. Also, because 彻 e㈣, the square term of the transmission symbol iU) 丨 / ⑷ 丨 2 will be Bu. In addition, because the male) e㈣, (then + then) / (magic sum (then + thru)), generally come It is the same. Ignoring the noise term, the comprehensive eigenvalues of the two channels (and the second channel) can be estimated by the following equation:
k=lL,Nk = lL, N
[Eq. 11], 雖然Eq. Π提供-種計算综合通鞠㈣的方法,很明顯的, 1239179 - -*- --... .........-..........一......... 重複傳送符元J卻無法協助區別侧通道(忍和忍)的通道特徵值。 換勹話β兒口為一支傳輸的通道(忍和展)上都傳輸單一符元γ, 因此該系統的通道特徵值就可用一二元單一方程式來表示,只有綜 合通道特徵值柯以計算得知。又,賴重複傳送符元何增加訊 號雜訊比(Signal—1〇—n〇ise恤〇,SNR)可是訊號雜訊比的提升 卻無法協助計算出個別通道的特徵值。 雖然目前有-些複雜演算法可以從綜合通道特增值特徵值_,分 · 隔出個別通道的特徵值特增值,但是這些演算法都需要先對通道特 性做額外的假設,才可能正確估測個別通道的特徵值。因此,這些 通道估測演算法僅適躲這些假設成立的條件下u為這些通 / 道估測演算法的高運算複雜度,當此二支傳輸分集式系統擴充為更 支傳輸架構時(如·二支或四支傳輸),此計算複雜度將會成指數 倍數成長。 因此,在此-工業領域存在著一個尚未有解決方案的需求,來解 決上述的足現有演算法的不足與不適切性。 【發明内容】 本發明是-種侧通道概值之_和方法,朗於採傳輸分集 式架構之正交分頻多工系統環境。 12 1239 難 、〆. / 上 簡言之,本發明之系統之-實施例在架構上包括—傳輸單元,功 能為於第-時段傳送-訓練航於—第—通道,料,傳送該訓練 符元於m於第二雜傳雖辑符元之—魏共輛符元 ^該第-通道;同時,傳送獅丨練符元之_負值複數共婦元於該 第—通道。 又,本發明提供通道特徵值估測方法,應用於採傳輸分集式架構 之正交分頻多工系統環境。 本發明之此方法之-實補的操作步驟包括:於第_時段傳送一 訓練符元於m同時舰齡丨練符元於—第二通道;於第 二時段傳送該訓練符元之一複數共軛符元於該第一通道;同時,傳 送該訓練符元之一負值複數共軛符元於該第二通道。 習此藝者在審視下文之圖示說明和實施方式後,應可輕易瞭解本 發明之其他系統、方法、功能和優點。而且,舉凡此系統、方法、 功能與優點皆屬本發明之專利範圍。 【實施方式】 下文將詳細敘述圖示所繪示之實施例。雖然上列圖示已繪示部分 實施例,但本發明之實施例並不限於此;相反的,本發明範圍涵蓋 其他相關、局部更動或等效之實施例。 13 12 祕 79 本發明的-些實施例將在下文中敘述。在這些實施例中,利用傳 送額外__元,以達到精確侧通道特徵_目的。不同於先 前系統和方法必須耗費紅運算能力或是對_多傳輸分集絲财 · 額外的操作假設,本發明之實施例僅需簡單計算能力,並對多傳輸 、 为集式糸統做較少的操作假設。 第二A圖和第圖綠示一系統之一實施例,用以估測通道特徵 值°第三A圖繪示-第—傳輸器所傳送之符元,而第^圖繪示—· 第二傳輸器所傳送之符元。第三A圖和第三B圖繪示本發明之-實 (physical layer convergence procedure ’ PLCP)檔麵位(pre_e field),其功料訊號同 步。如第三A圖和第三B圖所示,該實體層收斂程序铜攔位包含: 短訓練時段31G,-長训練時段咖,接於該短訓練時段31Q之後; -信號時段33〇,接於該長訓練時段32〇之後;以及一複數個資料時 參 段340 342 344等’接於該信號時段33〇之後。依據ieee 5阪 標準,該短訓練時段310、長訓練時段32〇、信號時段33〇和多資料 時段340、342、344都包含一保護時間間距。 因此’如第三Α圖所示’該第—傳輪器傳送符元於該短訓練時段 310,依據腿5Ghz標準。當驗訓練符元傳送後,長訓練符元^驗 14 和JT 365a傳送於該長訓練時段320。此處,大寫/代表一正交分頻 多工系統之一組頻率軸符元。J可視為是一向量(vector),包含水 個元素(element),而#是該正交分頻多工系統之子載波數目。符 元J的元素双々)是由第々個子載波所傳送。必須知道的是,在經由 一傳送天線發射之前,該符元/會先經過反向傅利葉轉換(inverse Fourier transform)運算,變成一時間轴訊號,並且添加一循環前 置位元組(cyclic prefix),接著利用一射頻模組轉換為一射頻類 比訊號。 緊接於符元J重複傳送之後,信號資料^ 37〇a傳送於信號時段 330訓練時段330。傳送該信號資料㈣如後,長訓練符元之一複 數共輛符元/ 385a傳送於-第-資料時段34〇。如上文所述,因為 I中每個元素都為實數(real nuinber),自然的,科每個元素也都 為實數。同時,因為j中每個元素都為實數,所是相同的。鲁 然而,必須知道的是,在麵5Ghz標準之外,7不一定必須限定是 實數,可以是複數,擁有虛部元素。 類似地’如第三B圖所示,該第二傳輸器依據臟·標準, 傳送麟付猶驗鱗時段31()。當雜麟符元舰後,長訓練 叙/ 355b和j 365b傳送於該長训練時段32{)。緊接於符元,重 15 1239179 複傳送之後,信號資料S 370b傳送於信號時段330。傳送該信號資 料S 370b後’長訓練符元之一負值複數共軛符元-/ 385b傳送於一 第一資料時段340。如上文所述,因為/中每個元素都為實數,自然 的,-/中每個元素也都為實數。同樣的,必須知道的是,在IEEE 5Ghz 標準之外,/不一定必須限定是實數,可以是複數,擁有虛部元素。 基於此一認知,如果J是一複數,傳送於時段385a和385b的符元 可以是(-i;乃、U; 於)或(并-私)等符元對耦。為 簡化說明,下文敘述將採用符元對耦(/< —/次)為例作說明。 如上文中所敘述,本發明之實施例不僅是重複傳送訓練符元7, 第二A圖和第三B圖之系統還在該第一通道增添傳送共扼符元/, 以及在第一通道增添傳送負值共輛符元。增添傳送符元γ和一^^ 的好處將於下文中敘述,並搭配第四圖說明之。 第四圖繪示-二支傳輸分集式正交分頻多工系統,包括一無線裝 置(wireless device) 470和一接收器405。該無線裝置47〇可以 是一無線區域網路的接取點(access point)單元、一無線區域網 路卡、一蜂巢式電話、一無線個人數位助理(pers〇nal邮制 assistant,PDA)或是一具無線傳輸功能的可攜式電腦等。如第四 圖所示,該無線裝置470包括二傳輸器460和465,傳送資料於一正 16 交分頻多工環境。該接收器405接收由此二傳輸器460和465所傳 送之訊號。如第四圖所示,一第一通道轉移函數(channel t㈣ function)yK對第一傳輸器460所傳送之訊號造成改變,而一第二通 道轉移函數歸第二傳輸器465所傳送之訊號造成改變。此通道轉 移函數就是通道特徵值。 田緣罘一得鞠裔460和該第二傳輸器465傳送符元j時(其 步驟為·先對符元j進行反向傅利雜換運算,產生_咖軸訊號尤; 接著加入-循w·元組,魅,將補換 為一射頻類比訊號,並且利用傳輸天線傳送xCp),在頻率轴上的第 -接收符元TWi5可表示為: I⑻斗⑻.糾, [Eq. 12]. 其中%是第一接收符元之雜訊。因為相同訓練符it J傳送於此 一支傳輸分集式祕之二傳輸器上,EQ· 12可簡化為: Ά^ΗΛ^ΗΒ).χ^Ζχ [Eq· 13]. 類似的,因為相同訓練符元又再度被傳送,此二傳輸器460和 5所运出之第二接收符元Τ,2 425可表示為: υ^ηλ^ηβ\χ^ζ [Eq· 14]. 又,如果信號資料370a接著傳送,為一第三接收符元TW35, 1239179 第三接收符元Τ,3 435則是: ^{ha+hb).s+z^ LEq· 15], …中5疋頻率軸上的信號資料。在一實施例中,當傳送信號資料 ,“長訓練符70之複數共輊符元/ 385a傳送於該第-傳輪器 ,成為第四接收符心秘;㈣長訓練符蚊紐複數= 符兀/傳思於該第二傳輸器465,成為第四接收符元η桃。如上 文所提及,因為J是實數,該複數共轭符以和負值複數共執符元 /也Ρ為實數。此外’基於相同原因,符元間有以下關係式: [Eq· 16], [Eq· 17], 和 [Eq· 18]· ’該第四接收符元T,4 445可表示為· [Eq· 19],[Eq. 11], Although Eq. Π provides a method for calculating comprehensive Tongju㈣, it is obvious that 1239179--*---... .........-..... ..... 一 ......... Repeatedly transmitting the symbol J does not help distinguish the channel feature values of the side channels (forbearance and forbearance). In other words, β Erkou is a single transmission channel (Nuhezhan), and a single symbol γ is transmitted. Therefore, the channel characteristic value of the system can be expressed by a single binary equation. Only the integrated channel characteristic value can be calculated. Learned. In addition, the repeated transmission of symbols increases the signal-to-noise ratio (Signal—10—noise), but the improvement of the signal-to-noise ratio cannot help calculate the characteristic value of individual channels. Although there are currently some complex algorithms that can separate the feature value of individual channels from the feature value of integrated channels, they need to make additional assumptions about channel characteristics before they can be correctly estimated. Eigenvalues of individual channels. Therefore, these channel estimation algorithms are only suitable for avoiding the assumption that these assumptions hold. U is the high computational complexity of these channel / channel estimation algorithms. When these two transmission diversity systems are expanded to more support transmission architectures (such as · Two or four transmissions), the computational complexity will grow exponentially. Therefore, there is a need in this industry for which there is no solution to solve the above-mentioned shortcomings and inadequacy of existing algorithms. [Summary of the Invention] The present invention is a method and method of the side channel probabilistic value, which adopts the orthogonal frequency division multiplexing system environment of the transmission diversity architecture. 12 1239 Difficult, sloppy. / In short, the embodiment of the system of the present invention includes an architecture-transmission unit, the function of which is to transmit in the first period, training to sail in the first channel, and to transmit the training symbol. Yuan Yum in the second miscellaneous series of symbols Yuan-Wei Gongche Fu Yuan ^ the first-channel; at the same time, the lion 丨 practice symbol Yuan _ negative value complex number of women in this first channel. In addition, the present invention provides a channel characteristic value estimation method, which is applied to an orthogonal frequency division multiplexing system environment adopting a transmission diversity architecture. The operation steps of the method of the present invention include: transmitting a training symbol at the _th period to m at the same time, and training the symbol at the second channel; transmitting a plural number of the training symbol at the second period. A conjugate symbol is on the first channel; at the same time, a negative complex conjugate symbol of one of the training symbols is transmitted on the second channel. After reviewing the following illustrations and implementations, the artist should easily understand other systems, methods, functions, and advantages of the present invention. Moreover, all such systems, methods, functions and advantages are within the patent scope of the present invention. [Embodiment] The embodiment shown in the drawings will be described in detail below. Although some of the embodiments have been shown in the above figure, the embodiments of the present invention are not limited thereto; on the contrary, the scope of the present invention covers other related, partially modified or equivalent embodiments. 13 12 79 79 Some embodiments of the present invention will be described below. In these embodiments, the extra __ element is used to achieve the precise side channel feature_ purpose. Unlike previous systems and methods that required red computing power or extra-multiple transmission diversity, additional operating assumptions, the embodiments of the present invention only require simple computing power and do less for multi-transmission and centralized systems. Operating assumptions. The second chart A and the second chart show an embodiment of a system for estimating the channel characteristic value. The third chart A shows the first symbol transmitted by the transmitter, and the second chart shows the first symbol. Symbols transmitted by the two transmitters. Figures A and B show the physical layer convergence procedure (PLCP) pre-e field of the present invention, and the power and material signals are synchronized. As shown in Figures 3A and 3B, the copper block of the physical layer convergence procedure includes: short training period 31G,-long training period coffee, following this short training period 31Q;-signal period 33 °, After the long training period of 32 o'clock; and a plurality of data reference sections 340 342 344, etc. 'are connected after the signal period of 33 o. According to the ieee 5 Han standard, the short training period 310, the long training period 32, the signal period 33, and the multi-data period 340, 342, and 344 all include a guard time interval. Therefore, 'as shown in the third A', the first-wheeler transmits symbols during the short training period 310, according to the leg 5Ghz standard. When the training symbols are transmitted, the long training symbols ^ 14 and JT 365a are transmitted during the long training period 320. Here, uppercase / represents a group of frequency axis symbols of an orthogonal frequency division multiplexing system. J can be regarded as a vector including water elements, and # is the number of subcarriers of the orthogonal frequency division multiplexing system. The elements of the symbol J are transmitted by the first subcarrier. It must be known that before transmitting through a transmitting antenna, the symbol / will first undergo an inverse Fourier transform operation to become a time axis signal, and a cyclic prefix is added. , And then use a radio frequency module to convert into a radio frequency analog signal. Immediately after the repeated transmission of the symbol J, the signal data ^ 37〇a is transmitted in the signal period 330 and the training period 330. After the signal data is transmitted, one of the long training symbols, a total of 385a, is transmitted at the -data period of 34. As mentioned above, because each element of I is a real nuinber, naturally, every element of the family is also a real number. Also, because each element in j is a real number, it is the same. Lu However, it must be known that outside of the 5Ghz standard, 7 does not have to be limited to a real number, it can be a complex number, and has imaginary elements. Similarly, as shown in FIG. 3B, the second transmitter transmits the linguistic test period 31 () according to the dirty standard. When the hybrid Lin Fuyuan ship, the long training session / 355b and j 365b are transmitted during the long training period 32 {). Immediately after the symbol, the weight 15 1239179 is retransmitted, and the signal data S 370b is transmitted in the signal period 330. After transmitting the signal data S370b, one of the 'long training symbols', a negative complex conjugate symbol-/ 385b, is transmitted in a first data period 340. As mentioned above, because each element in / is a real number, naturally, every element in-/ is also a real number. Also, it must be known that outside of the IEEE 5Ghz standard, / is not necessarily limited to real numbers, can be complex numbers, and have imaginary elements. Based on this knowledge, if J is a plural number, the symbols transmitted in the periods 385a and 385b can be (-i; Nai, U; Yu) or (para-private) symbol couples. To simplify the description, the following description will use the symbol couple (/ <-/ time) as an example. As described above, the embodiment of the present invention is not only a system for repeatedly transmitting training symbols 7, the second A picture and the third B picture, but also adding a transmission conjugate symbol / on the first channel, and Teleport negative symbols. The benefits of adding teleportation symbols γ and ^^ will be described below, and illustrated with the fourth figure. The fourth figure shows a two-branch transmission diversity orthogonal frequency division multiplexing system, which includes a wireless device 470 and a receiver 405. The wireless device 47 may be an access point unit of a wireless local area network, a wireless LAN card, a cellular phone, a wireless personal digital assistant (personal postal assistant, PDA), or It is a portable computer with wireless transmission function. As shown in the fourth figure, the wireless device 470 includes two transmitters 460 and 465, which transmit data in a normal 16 crossover multiplexing environment. The receiver 405 receives signals transmitted by the two transmitters 460 and 465. As shown in the fourth figure, a first channel transfer function (yK) changes the signal transmitted by the first transmitter 460, and a second channel transfer function is caused by the signal transmitted by the second transmitter 465. change. This channel transfer function is the channel characteristic value. When Tian Yuanzhang got Ju Ju 460 and the second transmitter 465 to transmit the symbol j (the steps are as follows: first perform the inverse Fourier miscellaneous operation on the symbol j to generate the _ coffee axis signal especially; then add-cycle The w-tuple, Charm, replaces the complement with a radio-frequency analog signal, and transmits xCp using a transmission antenna. The T-th receiving symbol TWi5 on the frequency axis can be expressed as: I⑻ 斗 ⑻.⑻, [Eq. 12] Where% is the noise of the first received symbol. Because the same training symbol it J is transmitted on this second transmission diversity transmitter, EQ · 12 can be simplified as: Ά ^ ΗΛ ^ ΗΒ) .χ ^ Zχ [Eq · 13]. Similar because of the same training The symbol is transmitted again. The second receiving symbol T, 2 425 carried by the two transmitters 460 and 5 can be expressed as: υ ^ ηλ ^ ηβ \ χ ^ ζ [Eq · 14]. Also, if the signal The data 370a is then transmitted as a third receiving symbol TW35, 1239179 and the third receiving symbol T, 3 435 is: ^ {ha + hb) .s + z ^ LEq · 15],… on the 5 疋 frequency axis Signal information. In one embodiment, when transmitting the signal data, "the complex number of long training symbols 70 / 385a is transmitted to the first-password transmitter and becomes the fourth receiving symbol. The number of long training symbols is equal to the symbol. Wu / passing thought on the second transmitter 465 becomes the fourth receiving symbol η peach. As mentioned above, because J is a real number, the complex conjugate symbol and the negative complex number symbol / also P Real numbers. In addition, 'for the same reason, the symbols have the following relations: [Eq · 16], [Eq · 17], and [Eq · 18] ·' The fourth receiving symbol T, 4 445 can be expressed as · [Eq · 19],
丨双々)丨2=1。 所以,依據IEEE 5Ghz標準 ^ = (^.χ)+(//β.(-χ))+ζ4, 或,更進一步簡化為: [EQ. 20]. 結合13 * 2Q,就可提供-方法,單獨計算μ和他值。 換句話說’不同於先前技術僅能計算綜合通道特徵值(純⑽,本 18 1239179 發明可分離計算出忍和展個別的數值,因為: (Y^Y,)^r=((HA+HB)-X + Z^r+((HA-HB)^X + Z,yX^ = 2Ηα·\Χ\2^(Ζ^Ζ4)·Χ* [Eq. 21]. 在此必須注意的是,Eq. 21式中每個變數項目都是一正交分頻 多工符元之一頻率軸訊號。若是由子載波的角度來敘述,Eq. 21可 改寫為· (y(A:) + r4⑹).;Φ0·=2%(幻·|Χ⑻f+hOSO + Z]⑻).Z*⑻,A: = 1,L #, [Eq· 22], 其中水是正交分頻多工系統中子載波之數目,而々是子載波之引 數。 計算Eci. 13和20後,通道轉移函數就可用下列方程式求 得.丨 Double 々) 丨 2 = 1. Therefore, according to the IEEE 5Ghz standard ^ = (^ .χ) + (// β. (-Χ)) + ζ4, or, further simplified to: [EQ. 20]. Combining 13 * 2Q, we can provide a method Calculate μ and other values separately. In other words, 'different from the prior art, only the integrated channel characteristic values can be calculated (pure ⑽, Ben 18 1239179 invention can be calculated separately for tolerance and development, because: (Y ^ Y,) ^ r = ((HA + HB ) -X + Z ^ r + ((HA-HB) ^ X + Z, yX ^ = 2Ηα · \ χ \ 2 ^ (Z ^ Z4) · χ * [Eq. 21]. It must be noted here that Eq . Each variable item in the formula 21 is a frequency axis signal of an orthogonal frequency division multiplex symbol. If it is described by the angle of the subcarrier, Eq. 21 can be rewritten as · (y (A :) + r4⑹). Φ0 · = 2% (Magic · | × ⑻f + hOSO + Z] ⑻). Z * ⑻, A: = 1, L #, [Eq · 22], where water is the subcarrier in the orthogonal frequency division multiplexing system Number, and 々 is the argument of the subcarrier. After calculating Eci. 13 and 20, the channel transfer function can be obtained by the following equation.
[Eq. 23]. Ηα (/〇 _ (^)+n (k)) · X{k) (Z, (k)+Z4 (k)) > X(k) 又,依據Eq. 23,忍可估測為: [Eq. 24], 聯_巧))·趟,叫,Ν 或,簡化表示為: 19 1239179 [Eq. 25]. 在此必須注意的是,Eqs. 24和25方程式中,一估測誤差 (estimationerror)與雜訊項(说石)//2有關。一般而言,該雜訊 項之估測誤差之平均值(mean)為0 ( ^:(4+24)1/9 = 0,方是統計期 望值函數)。而且,該估測誤差之變異值(variance)是4/2 (var((Z+石)//2)= variXZ+^/^hvarix^+zj/〕):^/〗,其中 var() 是統計變異值函數,而2和^之變異值假設為σ〗)。 該第二通道之特徵值及也可以類似方式計算得之: + -//,).Χ + Ζ4).χ* ^2ΗΒ·\Χ\2 ^{zx-z,\r [Eq. 26], 又更進一步簡化為: [Eq. 27].[Eq. 23]. Ηα (/ 〇_ (^) + n (k)) · X (k) (Z, (k) + Z4 (k)) > X (k) According to Eq. 23, It can be estimated as: [Eq. 24], 联 _ 巧)) · trip, called, N or, simplified expression is: 19 1239179 [Eq. 25]. It must be noted here that Eqs. 24 and 25 equations Among them, an estimation error (estimationerror) is related to the noise term (say Shi) / 2. In general, the mean of the estimation error of the noise term (mean) is 0 (^ :( 4 + 24) 1/9 = 0, which is the statistical expectation function). Moreover, the variance of the estimation error is 4/2 (var ((Z + 石) // 2) = variXZ + ^ / ^ hvarix ^ + zj /]): ^ /〗, where var () is the statistics Function of the variance value, and the variance values of 2 and ^ are assumed to be σ). The eigenvalues of the second channel can also be calculated in a similar manner: +-//,). × + ZZ4) .χ * ^ 2ΗΒ · \ Χ \ 2 ^ {zx-z, \ r [Eq. 26] , Which is further simplified as: [Eq. 27].
_(^-r4).x izx-z,yx H「--2 2— 或 HAk)_(m)-uk))'X(k) {zx{k)-zA{k)yx{k) [Eq. 28]. 因此展可估測為: 20 1239179 2 [Eq. 29]. 如同於Eqs· 24和25之估測值,Eqs· 28 〇和29式中之一估測 . 誤差也與雜訊項(么一J/2有關。因此, 雊汛項之估測誤差之平均 、 值為〇 2)//2>〇),而且該估測誤差之變異值是^ (var((^i-^)//2)= var((ii-^)/2)=a^/2 ) 〇 由Eqs. 12 JL 29之方程式推導可以看出,藉由在資料時段之第 籲 -部分傳送符元/和—/,每個單獨通道之特徵值皆可精確計算。所 以,不僅侷限於估測綜合通道特徵值,本發明之方法也可用以估測 單獨通道之特徵值。 _· 本發明之另一實施例,藉由結合Eqs· 13、14和20,可獲得較 佳訊號完整性和較低估測誤差。因為Eqs· 13和14是重複傳送相同 訓練符元/,之後的接收訊號,所以結合此二方程式可視為進一步的 春 訊號平均運算(signal averaging)。因此,經由利用重複傳送训練 符元J所帶來訊號雜訊比提升的好處,個別的通道特徵值可依照下 列方程式計算: (W 2¾),= 4見·丨 X |2 + (4 + Ζ2 + 2Ζ4) · [ Eq· 3 0 ], 和 21 12391¾ [Eq. 31],_ (^-r4) .x izx-z, yx H 「-2 2— or HAk) _ (m) -uk)) 'X (k) {zx (k) -zA (k) yx (k) [Eq. 28]. Therefore, the exhibition can be estimated as: 20 1239179 2 [Eq. 29]. As in Eqs · 24 and 25, one of Eqs · 28 〇 and 29 is estimated. The error is also related to The noise term (Mei J / 2 is related. Therefore, the average value of the estimation error of the flood term is 02 // 2 > 〇), and the variation value of the estimation error is ^ (var ((^ i-^) // 2) = var ((ii-^) / 2) = a ^ / 2) 〇 From the derivation of the equation of Eqs. 12 JL 29, it can be seen that by transmitting Symbols / and-/, the characteristic values of each individual channel can be accurately calculated. Therefore, it is not limited to estimating the characteristic value of the integrated channel, the method of the present invention can also be used to estimate the characteristic value of the individual channel. _ · The present invention In another embodiment, by combining Eqs · 13, 14, and 20, better signal integrity and lower estimation error can be obtained. Because Eqs · 13 and 14 repeatedly transmit the same training symbols /, and then receive signals , So combining these two equations can be regarded as a further spring signal averaging. Therefore, The benefits of increasing the signal-to-noise ratio brought by repeatedly transmitting the training symbol J, the individual channel characteristic values can be calculated according to the following equation: (W 2¾), = 4 see · X | 2 + (4 + Zn2 + 2Z4) · [Eq · 3 0], and 21 12391¾ [Eq. 31],
Ha = (jllI2+274)-X (Ζ1+Ζ2+2Ζ4).χ 4 4 或’等效表示為: HA(k)=: (灸)+ 2r4 ⑷)·雄)_ (Zx(k) + Z2 ⑷ + 2Z4 ⑷)· X⑻ 7 _ιτ λγHa = (jllI2 + 274) -X (Z1 + Z2 + 2Z4). Χ 4 4 or 'equivalent expression is: HA (k) =: (moxibustion) + 2r4 ⑷) · male) _ (Zx (k) + Z2 ⑷ + 2Z4 ⑷) · X⑻ 7 _ιτ λγ
4 ~λ , A: = i5L ?7V4 ~ λ, A: = i5L? 7V
[Eq. 32],[Eq. 32],
因此,忍可估測為: [Eq· 33]· HA(ir\^k\ ^Y2(k)^2YA(k))-X(k) 4 而且,不同於EqS. 24、25、28和29之計算,Eq. 32中雜訊項 所導致之估測誤差是(別^+22)//4。所以,估測誤差之平均值是〇 (双(/+2+2石)//4)=0 ),而估測誤差之變異值是3#/8 (var((Z+^f2Z)J/4)= var((i!+Z+2Z4)/4)=3a】/8,其中假設/、 名和Z之變異值為4)。 由Eq· 32可看出,估測誤差之變異值減少,連帶提升估測精準 度。類似的,第二通道之特徵值屑也可由下列方程式得之: k = i,L,N [Eq. 34], 於上式中,估測誤差之平均值是0 (双U+Z2-2Z)i74)=〇)而估 測誤差之變異值是3σ〗/8 (var(U+石-22)//4)= 22 1239179 var(U+么-2幻/4)=308,其中假設%、名和%之變異值為g)。 總體而g,藉由傳送額外的長訓練符元I、或是該符元之複數共 軛付元/和負值複數共軛符元—/,估測誤差之變異值可進一步降低。 對於上述之多傳輸分集式系統,本發明之另一實施例可當成一方 法,估測通道特徵值。第五圖和第六圖繪示此方法之實施例。 第五圖是一流程圖,繪示本方法之實施步驟,運作於一二支傳輸 分集式正交錢乡H之鱗裝置470。依據臟5Ghz鮮,在 _ 第五圖傳輸之訊號都包含保護時間間距。如第五圖所示,於一第一 時段時,一訓練符元傳送於第一和第二通道(步驟52〇)。在一實施 例中,該無線裝置470包括第一通道傳輸單元(transmit 1〇以幻 555和第二通道傳輸單元565,分別用在傳送資訊於第一通道和第二 通道。緊接於第一時段之傳送訓練符元之後(步驟52〇),在第二時 ^又中,該付元之一複數共輛符元傳送於該第一通道(步驟530)。於 鲁 此同時,在第二時段巾,該符元之-負值複數共婦元傳送於該第 二通道(步驟540)。 若通道估測方法依據IEEE 5Ghz標準,該第一時段是長訓練時段 之 疋實體層收傲私序之槽頭搁位的時框,而第二時段是後巧, 料時段之一時段。 23 1239179 第六圖是-流程圖,繪示一方法,估測通道特徵值,實施於接收 器405。如第六圖所示,一接收器接收符元(步驟咖)。當該符元 接收完成後,個別通道效應可由該接收符元中計算得之(步驟63〇)。 此個別通道效應可用以侧_通道之特徵值(步驟_。在一實 施例中,該接收器405包括接收單元625、個別通道效應之計算單元 635和估測單元645,分顧於第六圖中接收(步驟620)、侧通道 效應計算(步驟630)和估測(步驟64〇)等步驟。又,在一範例實 施例中,該接收符元是第五圖中傳輸訊號之類比訊號。又,對於一万 支傳輸分集式(^"branch)系統,該接收器405於步驟620接收/7 個符元,其中每個符元都是相同訓練符元經過不同通道效應轉換後 之訊號,形成一 77個/7元一次聯立方程組之系統。參考Eqs. 12至 34的方程式,該π個通道特徵值就可個別計算得之。 由第五圖和第六圖中可看出,本方法之實施例可獲得更精確估測 的個別通道特徵值,而非僅是估測綜合通道特徵值,或必須對通道 特徵值做額外假設。 雖然上文已提及本發明之示範實施例,習此藝者應暸解,本發明之上述實 施例可輕易做改變及更動。例如:為方便說明之故,一二支傳輸分集式系統繪 示於上文中,然而習此藝者應瞭解,上文提及之方法可擴及多支傳輸分集式系 24 1239179 統(三、四或更多支傳輸)。此外,雖然第四圖繪示_無線裝置之天線,習 此藝者應瞭解,該傳輪!!可以是一無線區域網路接取點單元、—無線區域網路 卡、-蜂巢式電話、-無線個人數位助理或是其他可收送資料之類似無線裝置。 又’雖然在本發明之-實施例中,一額外的訓練符元傳送於特定時段以,習此 藝者應瞭解,該額外_練符元也可傳送於賴資料時財任—時段。又,雖 然第三A圖和第三B圖僅繪示一額外的訓練符元(如:該長訓練符元的複數共 姉元或是貞賴數共婦元),f此藝麵_,更多辦的繼符元也可應 用於此系統’藉以提昇通道估測時的訊號雜訊比,以及用於計算多支傳輸分集 · 式系統(超過二支雜)的侧通道特徵值。又,軸本發明之油實施例都 依循IEEE5Ghz標準,習此藝者應瞭解,本發明之方法和系統可擴及任意正交 分頻多工祕之傳輸環境。又,雖然赃以此標準用以敘述本發明之部分概 ·· 念内容,習此藝者應瞭解,本發日月之系統和方法也適用於班2鳥標準(職 : 802.11g)或是其他類似無線標準,不管是採用何種運作頻帶,舉凡此等改變或 更動都應是在本發明之專利範圍内。 【圖式簡單說明】 鲁 為讓本文說蚊容歸解,特舉下觸示,並搭配簡單說明。 第-A圖和第-B圖是封包訊框圖,繪示臓·標準之展現 協疋身料單兀(presentati〇n pr〇t〇c〇1 Data此沅,pp卯)之訊 框架構。 第二圖是-架翻嘴示_二支傳輸分赋正交分頻多工系統, 25 1239179 運作方式依循IEEE 5Ghz標準。 第三A圖和第三B圖繪示本發明之一系統之一實施例,用以估測 通道特徵值。 第四圖是一架構圖,依據本發明之一實施例所繪示之一通道特徵 值估測系統,用於一二支傳輸分集式正交分頻多工系統。 第五圖是一流程圖,繪示本發明之一方法之一實施例,應用於一 二支傳輸分集式正交分頻多工系統之一傳輸器端,用以估測通道特 徵值。 第六圖是一流程圖,繪示本發明之一方法之一實施例,應用於一 二支傳輸分集式正交分頻多工系統中之一接收器端,用以估測通道 特徵值。 【圖式標記說明】 110 短訓練時段 120 長訓練時段 130 信號時段 140 資料時段 142 資料時段 144 資料時段 150 第一長訓練符元 155 第一長訓練符元J 160 第二長訓練符元 165 第二長訓練符元/ 26 1239179 170 信號資料S 180 傳送資料Λ 190 傳送資料及 155a長訓練符元/ *Therefore, the tolerance can be estimated as: [Eq · 33] · HA (ir \ ^ k \ ^ Y2 (k) ^ 2YA (k))-X (k) 4 Moreover, it is different from EqS. 24, 25, 28 and In the calculation of 29, the estimation error caused by the noise term in Eq. 32 is (Don't ^ + 22) // 4. Therefore, the average value of the estimation error is 0 (double (/ + 2 + 2 stone) // 4) = 0), and the variation value of the estimation error is 3 # / 8 (var ((Z + ^ f2Z) J / 4) = var ((i! + Z + 2Z4) / 4) = 3a] / 8, where the variation of /, name and Z is assumed to be 4). It can be seen from Eq. 32 that the variation of the estimation error is reduced, and the estimation accuracy is improved. Similarly, the eigenvalue chip of the second channel can also be obtained by the following equation: k = i, L, N [Eq. 34], In the above formula, the average value of the estimation error is 0 (double U + Z2-2Z ) i74) = 〇) and the variation of the estimation error is 3σ〗 〖/ 8 (var (U + Shi-22) // 4) = 22 1239179 var (U + Mod-2 Magic / 4) = 308, where it is assumed that%, The variance of the name and% is g). In general, g, by transmitting an additional long training symbol I, or a complex conjugate payment element of the symbol / and a negative complex conjugate symbol-/, the variation of the estimation error can be further reduced. For the above-mentioned multi-transmission diversity system, another embodiment of the present invention can be used as a method to estimate channel characteristic values. The fifth and sixth figures show embodiments of this method. The fifth figure is a flowchart showing the implementation steps of the method, which operates on one or two transmission diversity quadrature scale H devices 470. According to the dirty 5Ghz, the signals transmitted in the fifth picture all include the guard time interval. As shown in the fifth figure, during a first period, a training symbol is transmitted on the first and second channels (step 52). In one embodiment, the wireless device 470 includes a first channel transmission unit (transmit 10 to 555 and a second channel transmission unit 565, respectively, for transmitting information to the first channel and the second channel. Immediately after the first channel After the training symbols are transmitted during the period (step 52), in the second time ^, a plurality of symbols of the pay unit are transmitted to the first channel (step 530). At the same time, Lu Lu The time period towel, the negative-plural value of the symbol element is transmitted to the second channel (step 540). If the channel estimation method is based on the IEEE 5Ghz standard, the first period is a long training period for the entity layer to receive privacy. The time frame of the slot slot of the sequence, and the second period is one of the time period and the expected period. 23 1239179 The sixth diagram is a flowchart showing a method to estimate the characteristic value of the channel and is implemented in the receiver 405. As shown in the sixth figure, a receiver receives a symbol (step C). After the symbol is received, an individual channel effect can be calculated from the receiving symbol (step 63). This individual channel effect is available Take the characteristic value of the side_channel (step_. In the example, the receiver 405 includes a receiving unit 625, an individual channel effect calculation unit 635, and an estimation unit 645, which are divided into the sixth picture of receiving (step 620), side channel effect calculation (step 630), and estimation ( Step 64) and other steps. Also, in an exemplary embodiment, the received symbol is the analog signal of the transmission signal in the fifth figure. Also, for a 10,000 transmission diversity (^ " branch) system, the reception The receiver 405 receives / 7 symbols in step 620, each of which is a signal after the same training symbols are transformed by different channel effects to form a system of 77 / 7-element simultaneous equations. See Eqs. From the equations of 12 to 34, the π channel characteristic values can be calculated individually. As can be seen from the fifth and sixth graphs, the embodiment of the method can obtain a more accurate estimation of the individual channel characteristic values, and It is not just the estimation of the integrated channel characteristic value, or additional assumptions must be made on the channel characteristic value. Although the exemplary embodiments of the present invention have been mentioned above, practitioners should understand that the above embodiments of the present invention can be easily changed. And changes. For example: For the sake of explanation, one or two transmission diversity systems are shown above. However, practitioners should understand that the method mentioned above can be extended to multiple transmission diversity systems 24 1239179 system (three, four or more). Multi-transmission). In addition, although the fourth picture shows the antenna of the wireless device, the artist should understand that the transmission wheel!! It can be a wireless LAN access point unit, a wireless LAN card, -Cellular phone,-Wireless personal digital assistant, or other similar wireless device that can send and receive data. Also, "Although in the embodiment of the present invention, an additional training symbol is transmitted at a specific time period, this artist It should be understood that the additional training symbol can also be transmitted in the time period of Lai data. Moreover, although Figures 3A and 3B only show an additional training symbol (such as the long training symbol) (Combined with multiple sisters or singularity with common wife), f this art face _, more follow-on symbols can also be applied to this system 'to improve the signal-to-noise ratio in channel estimation, and for Calculate side channel characteristics of multi-branch transmission diversity systems (more than two branches) . In addition, the oil embodiments of the present invention all follow the IEEE 5Ghz standard. Those skilled in the art should understand that the method and system of the present invention can be extended to the transmission environment of any orthogonal frequency division multiplexing. In addition, although this standard is used to describe some of the concepts of the present invention, those skilled in the art should understand that the system and method of this day and month are also applicable to the class 2 bird standard (job: 802.11g) or Other similar wireless standards, no matter what operating frequency band is used, such changes or modifications should be within the scope of the patent of the present invention. [Schematic explanation] Lu In order to explain the mosquito resilience in this article, let me give you some instructions and a simple explanation. Figures -A and -B are packet message block diagrams, showing the standard framework for presenting a communication protocol (presentati〇n pr0t〇c〇1 Data, pp 卯). . The second picture is a frame-turning mouth _ two transmission division orthogonal frequency division multiplexing system, 25 1239179 The operation mode follows the IEEE 5Ghz standard. Figures 3A and 3B illustrate an embodiment of a system of the present invention for estimating channel characteristic values. The fourth figure is an architecture diagram. According to an embodiment of the present invention, a channel eigenvalue estimation system is used for one or two transmission diversity orthogonal frequency division multiplexing systems. The fifth figure is a flowchart illustrating one embodiment of a method of the present invention, which is applied to a transmitter of one or two transmission diversity orthogonal frequency division multiplexing systems to estimate channel characteristic values. The sixth diagram is a flowchart illustrating one embodiment of a method of the present invention, which is applied to one receiver end of a transmission diversity orthogonal orthogonal division multiplexing system for estimating channel characteristic values. [Illustration of graphical symbols] 110 short training period 120 long training period 130 signal period 140 data period 142 data period 144 data period 150 first long training symbol 155 first long training symbol J 160 second long training symbol 165 Two long training symbols / 26 1239179 170 signal data S 180 transmission data Λ 190 transmission data and 155a long training symbols / *
155b長訓練符元J 165a長訓練符元J ' 165b長訓練符元/ 170a信號資料S 170b信號資料S 180a傳送資料Λ 180b傳送資料Λ 190a傳送資料及 · 190b傳送資料及 205 接收器 215 第一接收符元Γ! 225 第二接收符元Γ2 235 第三接收符元Γ3 . 245 第四接收符元Γ4155b long training symbol J 165a long training symbol J '165b long training symbol / 170a signal data S 170b signal data S 180a transmission data Λ 180b transmission data Λ 190a transmission data and 190b transmission data and 205 receiver 215 first Received symbol Γ! 225 Second received symbol Γ2 235 Third received symbol Γ3. 245 Fourth received symbol Γ4
255 第五接收符元TS 260 第一傳輸器 265 第二傳輸器 310 短訓練時段 320 長訓練時段 330 信號時段 _255 Fifth receiving symbol TS 260 First transmitter 265 Second transmitter 310 Short training period 320 Long training period 330 Signal period _
340資騎段 W 342 資料時段 344 資料時段 355a長訓練符元/ 355b長訓練符元/ 365a長訓練符元/ 365b長訓練符元/340 information riding section W 342 data period 344 data period 355a long training symbol / 355b long training symbol / 365a long training symbol / 365b long training symbol /
370a信號資料S 370b信號資料S 385a長訓練符元/之一複數共軛符元/ 385b長訓練符元/之一負值複數共軛符元_/ 27 1239179 390a傳送資料/¾ 390b傳送資料及 405 接收器 415 第一接收符元Γ! ‘ 425 第二接收符元Tf2 435 第三接收符元Ή " 445 第四接收符元Ή 460 第一傳輸器 465 第二傳輸器 470 無線裝置 555 第一通道傳輸單元 565第二通道傳輸單元 · 625 接收單元 635 個別通道效應之計算單元 645 估測單元370a signal data S 370b signal data S 385a long training symbol / one complex conjugate symbol / 385b long training symbol / one negative complex conjugate symbol_ / 27 1239179 390a transmission data / ¾ 390b transmission data and 405 receiver 415 first receiving symbol Γ! '425 second receiving symbol Tf2 435 third receiving symbol Ή " 445 fourth receiving symbol Ή 460 first transmitter 465 second transmitter 470 wireless device 555 first One-channel transmission unit 565 Second-channel transmission unit 625 Receiving unit 635 Calculation unit for individual channel effects 645 Estimation unit
2828
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/308,513 US7272108B2 (en) | 2002-08-01 | 2002-12-03 | Channel estimation in orthogonal frequency-division multiplexing (OFDM) systems |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200412092A TW200412092A (en) | 2004-07-01 |
TWI239179B true TWI239179B (en) | 2005-09-01 |
Family
ID=37001220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92122187A TWI239179B (en) | 2002-12-03 | 2003-08-13 | Channel estimation in orthogonal frequency-division multiplexing (OFDM) systems |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI239179B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8102849B2 (en) | 2009-02-12 | 2012-01-24 | Qualcomm, Incorporated | Association procedure to enable multiple multicast streams |
US8667144B2 (en) | 2007-07-25 | 2014-03-04 | Qualcomm Incorporated | Wireless architecture for traditional wire based protocol |
US8674957B2 (en) | 2011-02-04 | 2014-03-18 | Qualcomm Incorporated | User input device for wireless back channel |
US8811294B2 (en) | 2008-04-04 | 2014-08-19 | Qualcomm Incorporated | Apparatus and methods for establishing client-host associations within a wireless network |
US8964783B2 (en) | 2011-01-21 | 2015-02-24 | Qualcomm Incorporated | User input back channel for wireless displays |
US9065876B2 (en) | 2011-01-21 | 2015-06-23 | Qualcomm Incorporated | User input back channel from a wireless sink device to a wireless source device for multi-touch gesture wireless displays |
US9198084B2 (en) | 2006-05-26 | 2015-11-24 | Qualcomm Incorporated | Wireless architecture for a traditional wire-based protocol |
US9264248B2 (en) | 2009-07-02 | 2016-02-16 | Qualcomm Incorporated | System and method for avoiding and resolving conflicts in a wireless mobile display digital interface multicast environment |
US9398089B2 (en) | 2008-12-11 | 2016-07-19 | Qualcomm Incorporated | Dynamic resource sharing among multiple wireless devices |
US9413803B2 (en) | 2011-01-21 | 2016-08-09 | Qualcomm Incorporated | User input back channel for wireless displays |
US9503771B2 (en) | 2011-02-04 | 2016-11-22 | Qualcomm Incorporated | Low latency wireless display for graphics |
US9525998B2 (en) | 2012-01-06 | 2016-12-20 | Qualcomm Incorporated | Wireless display with multiscreen service |
US9582239B2 (en) | 2011-01-21 | 2017-02-28 | Qualcomm Incorporated | User input back channel for wireless displays |
US9582238B2 (en) | 2009-12-14 | 2017-02-28 | Qualcomm Incorporated | Decomposed multi-stream (DMS) techniques for video display systems |
US9787725B2 (en) | 2011-01-21 | 2017-10-10 | Qualcomm Incorporated | User input back channel for wireless displays |
US10108386B2 (en) | 2011-02-04 | 2018-10-23 | Qualcomm Incorporated | Content provisioning for wireless back channel |
US10135900B2 (en) | 2011-01-21 | 2018-11-20 | Qualcomm Incorporated | User input back channel for wireless displays |
-
2003
- 2003-08-13 TW TW92122187A patent/TWI239179B/en not_active IP Right Cessation
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9198084B2 (en) | 2006-05-26 | 2015-11-24 | Qualcomm Incorporated | Wireless architecture for a traditional wire-based protocol |
US8667144B2 (en) | 2007-07-25 | 2014-03-04 | Qualcomm Incorporated | Wireless architecture for traditional wire based protocol |
US8811294B2 (en) | 2008-04-04 | 2014-08-19 | Qualcomm Incorporated | Apparatus and methods for establishing client-host associations within a wireless network |
US9398089B2 (en) | 2008-12-11 | 2016-07-19 | Qualcomm Incorporated | Dynamic resource sharing among multiple wireless devices |
US8102849B2 (en) | 2009-02-12 | 2012-01-24 | Qualcomm, Incorporated | Association procedure to enable multiple multicast streams |
US9264248B2 (en) | 2009-07-02 | 2016-02-16 | Qualcomm Incorporated | System and method for avoiding and resolving conflicts in a wireless mobile display digital interface multicast environment |
US9582238B2 (en) | 2009-12-14 | 2017-02-28 | Qualcomm Incorporated | Decomposed multi-stream (DMS) techniques for video display systems |
US9787725B2 (en) | 2011-01-21 | 2017-10-10 | Qualcomm Incorporated | User input back channel for wireless displays |
US9065876B2 (en) | 2011-01-21 | 2015-06-23 | Qualcomm Incorporated | User input back channel from a wireless sink device to a wireless source device for multi-touch gesture wireless displays |
US9413803B2 (en) | 2011-01-21 | 2016-08-09 | Qualcomm Incorporated | User input back channel for wireless displays |
US9582239B2 (en) | 2011-01-21 | 2017-02-28 | Qualcomm Incorporated | User input back channel for wireless displays |
US8964783B2 (en) | 2011-01-21 | 2015-02-24 | Qualcomm Incorporated | User input back channel for wireless displays |
US10135900B2 (en) | 2011-01-21 | 2018-11-20 | Qualcomm Incorporated | User input back channel for wireless displays |
US10382494B2 (en) | 2011-01-21 | 2019-08-13 | Qualcomm Incorporated | User input back channel for wireless displays |
US10911498B2 (en) | 2011-01-21 | 2021-02-02 | Qualcomm Incorporated | User input back channel for wireless displays |
US9503771B2 (en) | 2011-02-04 | 2016-11-22 | Qualcomm Incorporated | Low latency wireless display for graphics |
US9723359B2 (en) | 2011-02-04 | 2017-08-01 | Qualcomm Incorporated | Low latency wireless display for graphics |
US8674957B2 (en) | 2011-02-04 | 2014-03-18 | Qualcomm Incorporated | User input device for wireless back channel |
US10108386B2 (en) | 2011-02-04 | 2018-10-23 | Qualcomm Incorporated | Content provisioning for wireless back channel |
US9525998B2 (en) | 2012-01-06 | 2016-12-20 | Qualcomm Incorporated | Wireless display with multiscreen service |
Also Published As
Publication number | Publication date |
---|---|
TW200412092A (en) | 2004-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI239179B (en) | Channel estimation in orthogonal frequency-division multiplexing (OFDM) systems | |
US11323162B2 (en) | Data detection in MIMO systems with demodulation and tracking reference signals | |
US8842584B2 (en) | System and method for full duplex cancellation | |
US20200116817A1 (en) | Low-power, long-range rf localization system and method | |
CN107979403A (en) | Arrival time is estimated | |
CN104604325A (en) | System and method for a collaborative service set | |
CN110493156A (en) | Frequency deviation estimating method based on constellation point diversity in 5G mobile communication system | |
CN112235215B (en) | Wireless channel detection method, storage medium and terminal equipment | |
WO2018086447A1 (en) | Control apparatus, device and method, signal processing apparatus and method, and mobile terminal | |
CN104753832B (en) | Auxiliary synchronous signals detection method and device | |
WO2018126940A1 (en) | Electronic device, radio communication apparatus, and radio communication method | |
TWI449367B (en) | Channel estimation method, pilot information selection method, user equipment and base station | |
US10466345B1 (en) | Time-of-arrival estimation with subspace methods | |
Athreya et al. | Beyond 5G: Leveraging cell free TDD massive MIMO using cascaded deep learning | |
CN104168241A (en) | Multiple-input multiple-output orthogonal frequency division multiplexing communication system and signal compensation method | |
WO2022183979A1 (en) | Synchronization signal transmission method and apparatus, and device and storage medium | |
US20200274740A1 (en) | Wireless communication device and channel estimating method thereof | |
WO2010130101A1 (en) | Method, device and system for channel pre-coding | |
CN102130864A (en) | Channel estimation method and device | |
CN101939943A (en) | Methods and systems for choosing cyclic delays in multiple antenna OFDM systems | |
TWI360974B (en) | A synchronization method for ofdm systems | |
WO2016109952A1 (en) | Pilot frequency transmission method and data transmission device in wireless local area network | |
Guan et al. | Iterative phase noise suppression for full-duplex communication systems | |
WO2016095092A1 (en) | Method, apparatus and system for sending and receiving information in wireless local area network | |
US10892916B2 (en) | Channel estimation method and circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |