TWI238242B - Beam splitter, laser marking apparatus equipped with the beam splitter, multi-beam generator and line beam generating optical system - Google Patents

Beam splitter, laser marking apparatus equipped with the beam splitter, multi-beam generator and line beam generating optical system Download PDF

Info

Publication number
TWI238242B
TWI238242B TW92123417A TW92123417A TWI238242B TW I238242 B TWI238242 B TW I238242B TW 92123417 A TW92123417 A TW 92123417A TW 92123417 A TW92123417 A TW 92123417A TW I238242 B TWI238242 B TW I238242B
Authority
TW
Taiwan
Prior art keywords
light
laser
item
patent application
optical element
Prior art date
Application number
TW92123417A
Other languages
Chinese (zh)
Other versions
TW200404989A (en
Inventor
Takashi Nishimura
Original Assignee
Hitachi Koki Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002141031A external-priority patent/JP2003329451A/en
Priority claimed from JP2002140842A external-priority patent/JP2003329815A/en
Priority claimed from JP2002245124A external-priority patent/JP2004085784A/en
Application filed by Hitachi Koki Kk filed Critical Hitachi Koki Kk
Publication of TW200404989A publication Critical patent/TW200404989A/en
Application granted granted Critical
Publication of TWI238242B publication Critical patent/TWI238242B/en

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

A beam splitter is configured by assembling three triangular prisms having bottom surfaces formed in shapes of right isosceles triangles. A film is formed on side surfaces of the prisms that include the edges of each right isosceles triangle for separating incident light. With this construction, light directing at the apex angle of the triangle is reflected as two beams and transmitted as one beam by the light separating surface. Hence, the light incident on the beam splitter is separated in three directions. Accordingly, it is able to provide an optical system capable of forming a plurality of beams with substantially the same strength from a single laser beam, and a low cost laser marking apparatus equipped with the above-described optical system and capable of emitting a plurality of line beams.

Description

1238242 玖、發明說明: 【發明所屬之技術領域】 本發明係關於用以將1條雷射光分割為複數條雷射光 分光器及使用該分光器之多光束產生光學系,尤其是關 在屋内外的房屋建築施工時,用於晝線作業的雷射晝線 置。 【先前技術】 在建築房屋時,尤其是施工開始時,必須對各種構件 安裝基準的設定及構件加工的定位等進行畫出標準線的 業,亦即必須進行晝線作業。因此,在建築工地中,使 水準測量儀等工具來進行水準標示,於作為對象的建築 的牆壁上沾上複數條的標記墨線,並將此等連接而形成 晝出的墨線,藉以作為施工用基準。 晝線除具有從地板向著牆壁、天花板而描繪垂直線的 謂「立線」、藉由2條「立線」而於天花板描繪直角線的「 三角規線(大三角規線)」、或於牆壁上描繪水平線的「陸 (水平線)」等的各式各樣的線以外,還有描繪於地板上 「地墨」(圓點)等。 藉由手工作業的晝線作業至少要有2個人來進行,且 常繁雜,而有效率差的問題。為了改善該問題,最近大 使用具有線光照射功能的雷射晝線裝置而效率良好地進 晝線作業。若有雷射畫線裝置,則一個人也可容易地進 晝線作業,因此漸漸成為建築作業所不可或缺的建築作 工具。 312/發明說明書(補件)/92-11/92123417 的 於 裝 的 作 用 物 所 所 大 線 的 非 多 行 行 業 5 1238242 為獲得使用雷射晝線裝置的晝線作業的效率化,最好可 由一台雷射晝線裝置來照射複數條晝線線條。為此,最近 不斷提出可利用一台裝置而照射2條以上的線的裝置。 習知,作為從一台雷射晝線裝置來照射複數條線的方 式,已知有使用複數個雷射光源的方式及藉由分割從1個 雷射光源出射的雷射束而得到複數條線的方式。 在前者之方式的情況,具有伴隨著所搭載的雷射光源數 的增加,裝置的成本也隨之增加的問題。 另一方面,作為後者之藉由分割雷射光而得到複數條線 光的方式,例如日本專利申請公開公報平9 - 1 5 9 4 5 1所揭 示,有使用於雷射出射方向串聯層合複數個半反射鏡的構 造的出射光學系的方式。但是,該方式中穿透第1半反射 鏡(half-mirror)的光,其強度減少1/2,接著穿透第2半 反射鏡的光,其強度再減少1 / 2。如此,因為逐漸減少每 一穿透半反射鏡的光強度,因此,每一被分割的光束的光 強度不同,而有所得到的複數條線光的亮度各自不同的問 題。另外,為分割光束而有並排構成複數個半反射鏡的必 要,因此有光學系變得複雜,而且光學元件的零件數增加 的問題。 為此,可照射複數條線光的習知雷射晝線裝置,大多為 具備線光數量的雷射光源之構造。但是,該情況如前所述, 伴隨著光源數的增加,裝置的價格也隨之上升。因此,在 晝線作業中,為進行更為高效率的作業,高價的裝置則成 為必要。 6 312/發明說明書(補件)/92-11 /92123417 1238242 【發明内容】 本發明正是用以解決此等習知課題,其目的之一在 供可從1條雷射光形成複數條光束的簡單構造的分光 使用該分光器之多光束產生器。 又,本發明之另一目的在於提供可照射搭載著上述 束產生器的複數條線光之低價的雷射晝線裝置。 為達成上述目的,本發明提供一種分光器,其具備 穿透體,至少具有2個面;第1光分離部,係形成於 少2個面中的第1面;及第2光分離部,係形成於該 2個面中的第2面,藉以從一條入射光得到複數條分离 另外,本發明提供一種多光束產生器,其具備:光2 係產生光束;以及分光器,其係由至少具有2個面以 該光束之光穿透體、形成於該至少2個面中的第1面 1光分離部、及形成於該至少2個面中的第2面之第 分離部所構成。 另外,本發明提供一種線光產生光學系,其具備:光 係產生雷射光;準直透鏡,係將來自該光源的出射光 為準直光;三角棱鏡,係形成具有3側面的三角柱的布 且於該三角柱的該3側面中的2側面形成第1光分離 第2光分離部的三角稜鏡,並於由該2側面所形成的 接受該準直光,用以將該準直光分離為4條光束;及 產生光學元件,係配置於從該三角稜鏡出射的光束的 徑中至少一個光路徑上,並將該光束變換為線光。 另外,本發明提供一種雷射晝線裝置,其具備:雷射 312/發明說明書(補件)/92-11 /92123417 於提 器及 多光 :光 該至 至少 ^光。 P、, 入射 之第 2光 源, 變換 狀, 部及 頂角 線光 光路 器, 7 1238242 係產生光束;分光器,其係由至少具有2個面以入 束之光穿透體、形成於該至少2個面中的第1面之 分離部、及形成於該至少2個面中的第2面之第2 部所構成;線光產生光學元件,係從由該第1光分 第2光分離部中至少一個光分離部所分離的光束獲 光;以及支持部,係支持該雷射器、該分光器及該 生光學元件。 【實施方式】 (第1實施形態) 以下,參照圖1〜圖1 3來說明本發明之分光器、 該分光器之多光束產生器暨搭載該分光器之雷射晝 置。 圖1為顯示分光器1的基本構成的立體圖。圖2 器1的俯視圖。分光器1係由底面形狀為直角等腰 的3個三角柱(三角柱光學元件(稜鏡))1 a、1 b、1 c 構成,全體形成為略長方體的形狀。更詳細地說, 1 a係在其直角等腰三角形的底面形狀,具有包含形 2 2 (為一直角)的兩邊(相等的兩邊)的2個側面2 0 a 另外,三角柱1 b、1 c係在其直角等腰三角形底面形 有包含與此等頂角2 3、2 4面對的底邊之側面2 0 b、 三角柱1 a的2個側面2 0 a、2 0 a分別與三角柱1 b、 面20b、20c接合。三角柱la、lb、lc係由可使光 玻璃或塑膠所構成。本實施形態中,稜鏡的材料係 玻璃材料的B K 7 (折射率為1 . 5 )。構成稜鏡的一個三 31W發明說明書(補件)/9孓11/92123417 射該光 第1光 光分離 離部及 得線 線光產 及使用 線裝 為分光 三角形 組合而 三角柱 成頂角 、2 0 a 〇 狀,具 2 0 c 〇 I c的側 穿透的 使用屬 角柱形 8 1238242 狀的元件1 a、1 b、1 c的尺寸,係例如成為如下。側面2 0 a、 20a的一邊的長度為5πιπι,又,三角柱的高度為5mm。因此, 分光器1全體的寬度成為7mni,深度成為3.5πΐίη,高度成為 5 m hi 〇 於2個側面2 0 a分別形成將入射光分離為穿透光與反射 光用的光分離薄膜2。光分離薄膜2係位於側面2 0 a與2 0 b 之間,以及側面2 0 a與2 0 c之間。形成光分離薄膜2的2 個側面2 0 a,係作為將入射光分離為穿透光與反射光的2 個光分離面而行使功能。 光分離薄膜2具有指定的反射率(本例中約為6 7 % )與指 定的穿透率(本例中約為3 3 % )。作為光分離薄膜2的材料, 只要為將入射光分離為穿透光與反射光者,可任意使用。 光分離薄膜2的材料最好為由Cr、A 1等的金屬或T i 〇2、1238242 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a laser beam splitter for splitting one laser beam into a plurality of laser beam splitters and a multi-beam generating optical system using the beam splitter, especially closed inside and outside the house. During the construction of a house, a laser daylight is used for daylight operation. [Prior art] When building a house, especially at the beginning of construction, it is necessary to draw a standard line for setting the installation standards of various components and the positioning of component processing, that is, day line operations. Therefore, in a construction site, tools such as a level gauge are used to perform level marking, and a plurality of marking ink lines are attached to the walls of the target building, and these are connected to form daytime ink lines for construction purposes Benchmark. The day line includes a "triangle line" that draws a vertical line from the floor to the wall and the ceiling, a "triangle rule line (large triangle rule line)" that draws a right angle on the ceiling with two "vertical lines", or In addition to various lines such as "land (horizontal line)" where horizontal lines are drawn on the wall, there are "ground ink" (dots) drawn on the floor. At least two people need to perform the day line work by manual work, which is often complicated and inefficient. In order to improve this problem, a laser daylight device having a linear light irradiation function has recently been widely used to efficiently perform daylight operation. If there is a laser line drawing device, one can easily enter the day line operation, so it has gradually become an indispensable construction tool for construction work. 312 / Invention Specification (Supplement) / 92-11 / 92123417 for non-multi-line industries in the large line of installed objects 5 1238242 In order to achieve the efficiency of day line operations using laser day line devices, it is best to use A laser daylight device is used to illuminate a plurality of daylight lines. For this reason, devices that can irradiate two or more lines with one device have recently been proposed. Conventionally, as a method for irradiating a plurality of lines from one laser daylight device, a method using a plurality of laser light sources and a plurality of lines obtained by dividing a laser beam emitted from one laser light source are known. Way of line. In the case of the former method, there is a problem that the cost of the device increases as the number of laser light sources mounted increases. On the other hand, as the latter method of obtaining a plurality of linear lights by dividing the laser light, for example, as disclosed in Japanese Patent Application Laid-Open Publication No. Hei 9-1 5 9 4 5 1, there is a method of laminating a complex number in series in a laser emission direction. Way of constructing a half mirror to exit the optical system. However, in this method, the light transmitted through the first half mirror (half-mirror) has a reduced intensity of 1/2, and then the light transmitted through the second half mirror has a reduced intensity of 1/2. In this way, because the light intensity of each penetrating half-mirror is gradually reduced, the light intensity of each divided beam is different, and the brightness of a plurality of line lights is different. In addition, since it is necessary to constitute a plurality of half mirrors side by side in order to divide the light beam, there are problems that the optical system becomes complicated and the number of parts of the optical element increases. For this reason, conventional laser daylight devices capable of radiating a plurality of linear lights are mostly structures having a laser light source having a linear light quantity. However, as described above, as the number of light sources increases, the price of the device also increases. Therefore, in daytime operations, expensive equipment is necessary to perform more efficient operations. 6 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242 [Summary of the Invention] The present invention is to solve these conventional problems. One of the purposes of the present invention is to provide a light beam that can form a plurality of light beams from one laser light. A simple structured beam splitter uses the beam splitter of the beam splitter. Another object of the present invention is to provide a low-cost laser daylight device capable of irradiating a plurality of linear lights on which the above-mentioned beam generator is mounted. In order to achieve the above object, the present invention provides a beam splitter including a penetrating body having at least two surfaces; a first light separation section formed on a first surface among at least two surfaces; and a second light separation section, The second surface is formed on a second surface of the two surfaces to obtain a plurality of separations from one incident light. In addition, the present invention provides a multi-beam generator including: a light 2 system generating a light beam; and a beam splitter formed by at least It has two surfaces consisting of a light penetrating body of the light beam, a first surface 1 light separation portion formed on the at least two surfaces, and a second separation portion formed on the second surface of the at least two surfaces. In addition, the present invention provides a linear light generating optical system including: the optical system generates laser light; a collimating lens that collimates the light emitted from the light source into collimated light; and a triangular prism that forms a cloth having triangular columns with 3 sides. A triangle ridge of a first light separation and a second light separation unit is formed on two sides of the three sides of the triangular column, and the collimated light is received by the two sides to separate the collimated light. It is four light beams; and a generating optical element is arranged on at least one light path in a diameter of a light beam exiting from the triangle ridge, and converts the light beam into linear light. In addition, the present invention provides a laser daylight device, which includes: Laser 312 / Invention Specification (Supplement) / 92-11 / 92123417 on a lifter and multi-light: light to at least ^ light. P., the incident second light source, transformed shape, part and top angle line optical path device, 7 1238242 system generates a light beam; a beam splitter is formed by a light penetrating body having at least two faces to be incident on the beam, The first part of at least two faces is composed of a separation part and the second part of the second face formed on the at least two faces; the linear light generating optical element is composed of the first light and the second light. The light beams separated by at least one of the light separation sections of the separation section obtain light; and a support section is configured to support the laser, the beam splitter, and the green optical element. [Embodiment] (First Embodiment) Hereinafter, a spectroscope of the present invention, a multi-beam generator of the spectroscope, and a laser daylight setting equipped with the spectroscope will be described with reference to FIGS. 1 to 13. FIG. 1 is a perspective view showing a basic configuration of the spectroscope 1. Figure 2 Top view of the device 1. The beam splitter 1 is composed of three triangular prisms (triangular prism optical element (稜鏡)) 1 a, 1 b, and 1 c whose bottom surface is a right-angle isosceles, and is formed in a generally rectangular parallelepiped shape. In more detail, 1 a is the shape of the bottom surface of its right-angle isosceles triangle, and has 2 sides including two sides (equivalent sides) of the shape 2 2 (which is a right angle) 2 0 a In addition, the triangular columns 1 b, 1 c At the bottom of the right-angle isosceles triangle, there are side faces 2 0 b including the bottom sides facing the top corners 2 3, 2 4 and the two sides of the triangular column 1 a 2 0 a, 2 0 a and the triangular column 1 respectively. b. The faces 20b, 20c are joined. The triangular pillars la, lb, and lc are made of glass or plastic. In this embodiment, the material of rhenium is B K 7 of glass material (refractive index is 1.5). A three 31W invention specification (Supplementary) / 9 孓 11/92123417 that constitutes a beam of light. The first beam of light is separated from the light, and the optical line is produced. The wire is used as a combination of beam-splitting triangles, and the triangular prisms form a vertex angle. 2 0 The shape of a 〇, with side penetration of 20 c 〇c is a corner cylinder 8 1238242-shaped element 1 a, 1 b, 1 c. The dimensions are as follows, for example. The length of one side of the side surfaces 20 a and 20 a is 5 μm, and the height of the triangular column is 5 mm. Therefore, the overall beam splitter 1 has a width of 7 mni, a depth of 3.5 πΐίη, and a height of 5 m hi 〇 On each of the two sides 20 a, a light separation film 2 for separating incident light into transmitted light and reflected light is formed. The light separation film 2 is located between the sides 20 a and 20 b, and between the sides 20 a and 20 c. The two side surfaces 20 a forming the light separation film 2 function as two light separation surfaces that separate incident light into transmitted light and reflected light. The light separation film 2 has a specified reflectance (about 67% in this example) and a specified transmittance (about 33% in this example). As the material of the light separation film 2, any material can be used as long as it separates incident light into transmitted light and reflected light. The material of the light separation film 2 is preferably a metal such as Cr, A 1 or T i 02.

Si 〇2、MgF2等的介電質材料。光分離薄膜2係將此等材料 的薄膜形成為單層或多層。為多層構造的情況,光分離薄 膜2既可層合金屬薄膜彼此,亦可為層合介電質材料薄膜 彼此的多層介電層(DielectricMultipleLayer),或為層 合金屬薄膜與介電質材料薄膜的混合(h y b r i d )膜。本實施 形態中,光分離薄膜2係為單層的介電質薄膜。 具有相關構造的分光器1,如圖3所示,係用來使自未 圖示的光源出射的光束B1向著三角柱1 a的頂角2 2入射。 入射於分光器1的光B1,係藉由光分離薄膜2,一邊反射 而成為光B 2,而另一邊則穿透成為B 3。例如,為簡便起見’ 若將入射光B 1的激光功率(1 a s e r p〇w e r )設為1 0 0,則入 9 312/發明說明書(補件)/92-11 /92123417 1238242 射光中功率5 0的部分用於圖中之右方向的反射及穿透,其 餘功率5 0的部分同樣用於圖中之左方向的反射及穿透。 本例中,光分離薄膜2的反射率大致為6 7 %,穿透率大 致為3 3 %。因此,光分離薄膜2的反射光的強度成為5 0 X 0.67=33.5。穿透光的強度成為50χ (1-0.67)=16.5 。左右 兩方向也同樣算出。也就是說,分為左右的反射光的強度 分別成為3 3 . 5,穿透光的強度成為1 6 . 5 X 2 = 3 3,而所分離 的3條光束具有大致均勻的強度。另外,可使藉由分光器 1所分離的光束中2條反射光B 2位於相同直線上,並且, 可使1條穿透光B 3位於垂直於2條反射光B 2的直線上。 又,光分離薄膜2的反射率及穿透率並不限於上述例 子。分離光B 2、B 2、B 3的強度係對應此等反射率及穿透率 而定。2個光分離薄膜2也可具有不同的反射率及穿透率。 另外,因為分光器1係僅經由組合3個光學元件1 a、1 b、 1 c而可形成3條的出射光束,因此構造簡單。另外,分光 器1係藉由其底面形狀為直角等腰三角形的透明三角柱1 a 所構成,因此,相互可於直角方向產生3條的出射光束B 2、 B 3。故,若搭載於後述的雷射晝線裝置1 2,對於立線、陸 線等的描繪均非常適用。 接著,說明分光器1的製造方法。首先,如圖4所示, 藉由蒸鍍等形成光分離薄膜2 (本例中為介電質單層膜), 該光分離薄膜2用以將光以所想要的比例分別穿透及反射 於三角稜鏡1 a的2個側面2 0 a。此時,以光的穿透與反射 的比例成為所想要的值的方式,製成光分離薄膜2的膜 10 312/發明說明書(補件)/92-11 /92123417 1238242 厚。本例中,以光分離薄膜2的反射率大致成為6 7 %,穿 透率大致成為33 %的方式,來製作光分離薄膜2的膜厚。 其次,如圖5所示,使形成於三角稜鏡1 a的2個側面 2 0 a上的光分離薄膜2與三角柱1 b、1 c的側面2 0 b、2 0 c 面對配置而接合,藉以將三角稜鏡1 a與三角柱1 b、1 c接 合。接合可使用一般的接合劑,但也可於平滑面之光分離 薄膜2與側面2 0 b、2 0 c組合時,利用此等之貼合面所產生 的分子間力。 接著,參照圖6、7、8來說明藉由組合分光器1與其他 的三角稜鏡3,以增加所產生的光束的數量的原理。又, 三角稜鏡3係為其底面形狀略呈直角等腰三角形的透明三 角柱。 如圖6所示,若從三角稜鏡3的頂角3 0側將光束B 5入 射於側面3 1、3 2,則光束B 6、B 7以特定角度從稜鏡3的 側面33出射。 以下,參照圖7詳細說明入射角度與出射角度的關係。 首先,從圖中之稜鏡3的下側稜線3 1入射的光之入射 角為4 5 ° 。該光係以角度0 1直接進入稜鏡内部。若設定 稜鏡材的折射率為nP = l . 5(BK7的情況),及空氣的折射率 為1,則藉由斯内爾(Snell)定律,下式(1)可成立。 Ixsin45〇=1.5xsin01 (1) 從式(1 )求得0 1,則成為0 1 = 2 8 ° 。因此,可得到0 2 = 1 7 ° 。接著,從式(2 ) 1.5xsinl7〇:=lxsin(93 (2) 11 312/發明說明書(補件)/92-11 /92123417 1238242 求得0 3,則0 3 = 2 6 ° 。也就是說,從三角稜鏡3的頂角 3 0側以4 5 °的入射角進入的光,從稜鏡底面3 3以2 6 °的 出射角向斜上方出射。 因為入射光束B5具有一定程度的粗細,入射光束B5的 1 / 2係如圖7之說明,從三角稜鏡3的下側稜線31入射, 以2 6 °的出射角向斜上方出射(光束B 6 )。剩餘的1 / 2係從 三角稜鏡3的上側稜線3 2入射,以2 6 °的出射角向斜下 方出射(光束B 7 )。也就是說,從直角等腰三角形的稜鏡頂 角3 0入射的光束B 5,被分離為2條光束B 6、B 7,並分別 以26°的角度向斜上方及斜下方出射。 如圖8所示配置上述直角等腰三角形的稜鏡3,並僅使 光束B8的1/2入射於底面33。於是,根據上述原理,因 為光束B 8的1 / 2係以2 6 °的角度出射(光束B 9 ),剩餘的 1/2未通過稜鏡的内部,因此,直接進入空氣中(光束B10)。 如上所述,可知藉由控制稜鏡3的形狀、折射率、入射 角度等,即可改變出射角度。 圖9為使用分光器1及三角稜鏡3的多光束產生器40 的側視圖,圖1 0為其俯視圖。 多光束產生器40具備準直光源42、分光器1及三角稜 鏡3。多光束產生器40係藉由將三角稜鏡3配置於分光器 1的後方,而合計產生4條光束。 準直光源4 2例如係由未圖示的半導體雷射器及準直透 鏡所構成。當從準直光源4 2使光束B1 1入射於分光器1, 得到位於相同線上且行進方向相互相差1 8 0 °的2條反射 12 312/發明說明書(補件)/92-11 /92123417 1238242 光B 1 2 (對應圖3的B 2 )與1條穿透光B 1 3 (對應圖3的B 3 )。 接著,從分光器1出射的穿透光B1 3的一部分通過三角棱 鏡3,而在稜鏡内部改變光路徑以2 6 °的角度出射(光束 B 1 4 (對應圖8的B 9 ))。同時,出射光B 1 3的剩餘的光未通 過三角稜鏡3的内部,因而直接進入空氣中(光束B15(對 應圖8的B1 0 ))。因此,可從一個光源4 2得到合計4條的 光束B 1 2、B 1 2、B 1 4、B 1 5。又,本例中,雖僅將分光器1 的輸出光中的1條光束B1 3分離為2條光束,但是,也可 視需要也同樣將另一出射光B 1 2分離為2條光束。 接著,參照圖1 1至圖1 3說明將分光器1及三角稜鏡3 安裝於雷射晝線裝置1 2的例子。 如圖1 1所示,雷射晝線裝置1 2基本上係由產生線光之 線光產生光學系4、水平地保持線光產生光學系4用的支 持機構部5、及覆蓋線光產生光學系4與支持機構部5的 殼體5 4所構成。線光產生光學系4具備分光器1及三角稜 鏡3 〇 支持機構部5係使用公知的萬向懸掛支架(g i m b a 1 )機 構。萬向懸掛支架機構具備支持框架5 Ο、大環5 1、小環 5 2及安裝台5 3。大環5 1係藉由未圖示的軸承,相對於支 持框架5 0,而可繞X軸搖動。小環5 2係藉由未圖示的軸 承,相對於大環5 1,而可繞Υ軸(垂直於紙面的方向)搖動。 在小環5 2上固定著搭載有光學系4的安裝台5 3。藉由上 述構成,搭載有光學系4的安裝台5 3可保持為水平。 圖1 2及圖1 3為概略顯示線光產生光學系4的側視圖及 13 312/發明說明書(補件)/92-11 /92123417 1238242 俯視圖。線光產生光學系4具備半導體雷射器6、準直透 鏡7、分光器1、三角稜鏡3及4個玻璃製的棒狀透鏡(rod lens)8、 9、 10 和 11 〇 從半導體雷射器6出射的雷射光束,係藉由準直透鏡7 而變換為準直光(平行光),並沿水平方向前進。接著,準 直光通過本實施形態的分光器1而分離為3條光束。其中 穿透光入射於配置在分光器之後的三角稜鏡3而分離為2 條光束。也就是說,從半導體雷射器6射出的一條雷射光 束可得到4條準直光。接著,4條準直光藉由穿透屬線光 產生光學元件的一種的玻璃製棒狀透鏡8、9、10和11而 變換為線光。 在此,棒狀透鏡8、9、1 0和1 1所產生的線光的方向, 係藉由棒狀透鏡8、9、1 0和1 1的設置方向所限定。也就 是說,在欲得到水平線光的情況,以其軸成為垂直方向的 方式配置棒狀透鏡,而在欲得到垂直線光的情況,以其軸 成為水平方向的方式配置棒狀透鏡。本實施形態中,以其 軸成為水平方向的方式配置棒狀透鏡8、9及10,而以其 軸成為與水平方向垂直的方式配置棒狀透鏡1 1,藉以得到 3條垂直線光L1、L 2、L 3及1條水平線光L 4。 如上所述,若使用本實施形態之分光器1,可以簡單的 方法將一條雷射光束分離為複數條雷射光束。也就是說, 分光器1可極為簡單且低價地從一條入射光產生3條輸出 光束。又,將分光器1搭載於雷射畫線裝置1 2的光學系4 上,可藉此而容易地從1個光源得到複數條雷射光束。亦 14 312/發明說明書(補件)/92-11 /92123417 1238242 即,藉由將分光器1應用於雷射晝線裝置1 2,即可簡單地 形成3條立線或陸線。其結果可提供低價的複數條線光照 射用雷射晝線裝置。 (第2實施形態) 以下,參照圖1 4〜圖2 0來說明本發明之第2實施形態 的線光產生光學系及搭載該線光產生光學系的雷射晝線裝 置。 圖1 4為顯示本實施形態之線光產生光學系1 0 0的說明 圖(側視圖)。 線光產生光學系1 0 0具備雷射光源1 0 1、準直透鏡1 0 2、 三角稜鏡103、反射鏡104、棒狀透鏡105及106。雷射光 源1 0 1具備雷射出射面1 0 1 a。雷射光源1 0 1係配置為使雷 射出射面1 0 1 a沿著水平方向的狀態。三角稜鏡1 0 3係為底 面形狀為直角等腰三角形的三角柱。三角稜鏡1 0 3係為由 可使光穿透的玻璃或塑膠所構成。三角稜鏡103係在其直 角等腰三角形底面形狀中,具有包含形成頂角103d的兩邊 的2個側面103a與103b;及包含與頂角103d面對的底邊 的側面1 0 3 c。三角稜鏡1 0 3係使其頂角1 0 3 d介由準直透 鏡102而與雷射出射面101a相對面。 本實施形態中,與第1實施形態的三角柱1 a不同,於3 個側面1 0 3 a、1 0 3 b、1 0 3 c均未形成光分離薄膜。但是,側 面1 0 3 a、1 0 3 b具有反射率(例如數% )與穿透率(例如1 0 0 -數% ),具有將入射光的一部分反射並穿透剩餘部分的光分 離面的功能。 15 312/發明說明書(補件)/92-11 /92123417 1238242 從雷射光源1 Ο 1的雷射出射面1 Ο 1 a出射的光通過準直 透鏡1 0 2,形成具有指定大小的平行光(準直光),而沿水 平方向行進。接著,該準直光從三角稜鏡1 0 3的頂角1 0 3 d 側入射,藉由三角稜鏡1 0 3分離為2條反射光R1及R 2與 2條穿透光T1及T 2。也就是說,入射光的一部分由側面 1 0 3 a反射,作為一條反射光R 1而沿著圖中的向上方向、 亦即垂直向上方向行進。入射光的另一部分由側面1 0 3 b 反射,作為另一條反射光R2而沿著圖中的向下方向、亦即 垂直向下方向行進。入射光的另一部分穿透側面1 0 3 b,作 為穿透光T1而通過稜鏡1 0 3内部後,藉由折射作用偏轉指 定角度而從稜鏡端面1 0 3 c出射。入射光的剩餘部分穿透側 面103a,作為穿透光T2而通過棱鏡103内部後,藉由折 射作用偏轉指定角度而從稜鏡端面1 0 3 c出射。又,本實施 形態中,使用穿透光T1作為垂直線照射用,使用穿透光 T2作為水平線照射用。 穿透光T 2係由反射鏡1 0 4所反射,其行進方向調節為 水平方向。棒狀透鏡1 0 5的方向係配置為使其軸成為水平 方向,棒狀透鏡1 0 6的方向係配置為使其軸成為垂直方 向。因此,穿透光T 1藉由棒狀透鏡1 0 5而變換為垂直線光。 穿透光T 2藉由棒狀透鏡1 0 6而變換為水平線光。 接著,參照圖1 5詳細說明從光入射於三角稜鏡1 0 3至 出射為止的狀況。 三角棱鏡1 0 3係使其頂角1 0 3 d正對著雷射出射面 10 1a。也就是說,三角稜鏡1 0 3係配置為使從雷射出射面 16 312/發明說明書(補件)/92-11 /92123417 1238242 1 Ο 1 a延伸的光軸0將頂角1 Ο 3 d二等分的狀態。因此,入 射光的1 / 2入射於側面1 0 3 a,而剩餘的1 / 2則入射於側面 1 03b ° 從稜鏡1 0 3的下側稜線1 0 3 b入射的光的入射角度成為 4 5 ° 。該光中的一部分以角度0 1直接進入稜鏡内部。若 設定稜鏡材的折射率為η P = 1 . 5 ( B K 7的情況),及空氣的折 射率為1,則藉由斯内爾定律可使下式(3 )成立。 Ixsin45〇=1.5xsin01 (3) 當從式(3 )求得0 1,則成為0 1 = 2 8 ° 。因此,得到0 2 = 1 7 ° 。接著,若從式(4 ) 1.5xsinl7°=lxsin03 (4) 求得 0 3,貝|J 0 3 = 2 6 ° 。 因此,可知從三角稜鏡1 0 3的頂角1 0 3 d側以4 5 °的入 射角進入側面1 〇 3 b的光的一部分,係從稜鏡底面1 0 3 c以 相對水平方向呈2 6 °向上的出射角出射(穿透光T 1 )。 另一方面,以4 5 °的入射角進入側面1 0 3 b的光的剩餘 部分,以與入射角相等的反射角(4 5 ° )進行反射,形成反 射光R2。因此,可知反射光R2以相對入射光的光軸0偏 90°向下的垂直方向行進。 在此,因為入射光具有一定程度的粗細,入射光的1 / 2 從三角稜鏡1 0 3的下側稜線1 0 3 b入射,其一部分(穿透光 T 1 )以2 6 °的出射角出射,而剩餘的部分(反射光R 2 )向垂 直下方出射。剩餘的1 / 2係從三角棱鏡1 0 3的上側稜線 1 0 3 a入射,其一部分(穿透光T 2 )以2 6 °的出射角向下方 17 312/發明說明書(補件)/92-11 /92123417 1238242 出射,而剩餘的部分(反射光R 1 )向垂直上方出射。也就是 說,從直角等腰三角形的稜鏡頂角1 0 3 d入射的光被分離為 4條光’並分別以垂直向上方、垂直向下方、從水平方向 向上2 6 ° 、從水平方向向下2 6 °的角度出射。 根據如上述說明之線光產生光學系1 0 0,因為將準直光 入射於三角稜鏡1 0 3的頂角1 0 3 d側,因而可從一條入射光 束產生4條光束。也就是說,產生與準直光的入射方向大 致垂直的方向的2條光束及沿著準直光的大約入射方向的 2條光束。因此,若將線光產生光學系1 0 0搭載於雷射晝 線裝置上,即可從一條入射光束得到2條上下方向的光 束、一條水平線光及一條垂直線光。上下方向的光束適合 作為地墨用,而線光適合描繪立線或陸線用。 又,作為本實施形態的光源1 0 1,最好使用產生接近類 似未處理雷射(green laser)的光束圓形度大的圓形光束 的雷射器。 圖1 6為顯示線光產生光學系1 0 0的變化例的線光產生 光學系1 2 0的說明圖(側視圖)。本變化例中,作為光源1 0 1 係使用紅色半導體雷射。一般而言,紅色半導體雷射之光 束的圓形度小且光束形狀呈橢圓形狀。因此,若使用紅色 半導體雷射作為光源1 0 1,在以稜鏡1 0 3將紅色雷射光束 分離為4條光束而直接變換為線光時,會造成所產生的垂 直線光與水平線光在其線的寬度上產生差異。在此,本變 化例中,將雙稜鏡1 0 7配置於穿透光T 1或T 2的光路徑上, 以使垂直線光的線寬與水平線光的線寬大致相同。 18 312/發明說明書(補件)/92-11 /92123417 在 系1 鏡1 束剖 準直 103 在 射於 橢圓 向使 的寬 軸A 光束 為A 垂直 長軸 所示 向垂 但 相互 鏡1 光束 又 方向 1238242 線光產生光學系1 2 0中,也與圖1 4之線光產生: 0 0相同,從紅色半導體雷射1 0 1出射的光經由準 0 2而變換為準直光。在此,通常紅色半導體雷射 面係呈橢圓形狀,因此,藉由準直透鏡1 0 2所獲 光的光束剖面亦成為橢圓形狀。據此,藉由三角 所獲得的4條光束的剖面全部成為橢圓形狀。 此,考慮長軸直徑為A、短軸直徑為B的糖圓光 棒狀透鏡N ( 1 0 5、1 0 6 )的情況。如圖1 7 ( a )所示, 的長軸A方向與棒狀透鏡N的軸方向垂直之狀態 橢圓光束入射於棒狀透鏡N的情況,其所得到的 度成為B。另一方面,如圖17(b)所示,在以橢圓 方向與棒狀透鏡N的軸方向平行之狀態的方向使 入射於棒狀透鏡N的情況,其所得到的線光的寬 。因此,為使棒狀透鏡1 0 5、1 0 6的兩方產生線寬 線及水平線,有必要如圖1 7 ( a )所示,使穿透光 A方向與棒狀透鏡1 0 5的軸方向垂直,同時,如圖 ,也使穿透光T2的長轴A方向與棒狀透鏡106的 直。 是,棒狀透鏡1 0 5與棒狀透鏡1 0 6係配置為其軸 垂直。在此,本變化例中,將屬於像旋轉元件之 0 7配置於穿透光T1或T 2的光路徑的途中,藉以 形狀的方向。 ,本變化例中,光源1 0 1係產生長軸A方向沿著 的光束。該情況下,穿透光T1的長軸A方向係形 312/發明說明書(補件)/92-11 /92123417 先學 直透 之光 得的 稜鏡 束入 在以 的方 線光 的長 橢圓 度成 B的 T1的 17(a) 軸方 方向 雙稜 變換 垂直 成為 19 1238242 與棒狀透鏡1 Ο 5的軸垂直的如圖1 7 ( a )所示之關係。另一 方面,穿透光T 2的長軸A方向係形成為與棒狀透鏡1 0 6 的軸平行的如圖1 7 ( b )所示之關係。在此,雙稜鏡1 0 7係 配置於穿透光T 2的光路徑的途中,具體而言,係設於反射 鏡1 0 4與棒狀透鏡1 0 6之間的位置。 如圖1 7 ( c )所示,雙稜鏡1 0 7具備平行於長軸L的2個 側面107a、107a;底面107c;上面107b;及相對長軸L 傾斜的入射面1 0 7 d與出射面1 0 7 e。側面1 0 7 a係形成為梯 形。雙棱鏡1 0 7係配置為其長軸L與穿透光T 2之光軸0 向著一致之方向的狀態。雙稜鏡1 0 7的底面1 0 7 c係以水平 方向配置的狀態為基準位置。另外,雙稜鏡1 0 7以長軸L 為中心而從基準位置僅旋轉角度0的狀態稱為角度0位 置。雙稜鏡1 0 7於角度0位置的情況下,使穿透光T 2的光 束剖面形狀僅旋轉2 0的角度。本變化例中,雙稜鏡1 0 7 係配置為角度4 5 °的位置,使穿透光T 2的光束剖面形狀 旋轉9 0 °的角度。據此,從雙稜鏡1 0 7出射的穿透光T 2 係相對於棒狀透鏡1 0 6而可以圖1 7 ( a )所示的方向進行入 射。 藉由如此之構成,因為橢圓光束T1、T 2的兩方係相對 棒狀透鏡1 0 5、1 0 6,以光束剖面的長軸A方向與透鏡的軸 方向垂直的圖1 7 ( a )所示的關係進行入射,因此,得到的 垂直線光與水平線光均具有相同線寬B (橢圓的短軸徑)。 又,上述例子中,光源1 0 1產生長軸A方向沿著垂直方 向的光束。但是,光源1 01也可產生長軸A方向沿著水平 20 312/發明說明書(補件)/92-11 /92123417 1238242 方向的光束。該情況下,穿透光T2的長軸A方向係形成為 與棒狀透鏡1 0 6的軸垂直的圖1 7 ( a )所示關係。但是,穿 透光T 1的長軸A方向係形成為與棒狀透鏡1 0 5的軸平行的 圖1 7 ( b )所示關係。在此,若將雙稜鏡1 0 7配置於穿透光 T 1的光路徑的途中,亦即,設於稜鏡1 0 3與棒狀透鏡1 0 5 之間的位置,即可以如圖1 7 ( a )所示方向將穿透光T 1入射 於棒狀透鏡1 0 5。 又,光源1 0 1也可產生長軸A方向為任意之方向的光 束。該情況下,只要準備2個雙稜鏡1 0 7,分別將該等配 置於穿透光T1與T2的光路徑的途中,以使穿透光T1、T2 的光束剖面形狀僅旋轉必要的角度,而入射於對應的棒狀 透鏡105、106即可。 圖1 8為顯示線光產生光學系1 2 0的變化例的線光產生 光學系1 4 0的說明圖(側視圖)。線光產生光學系1 4 0中, 不配置雙稜鏡1 0 7,取而代之係於準直透鏡1 0 2的後段配 置歪像(anamorphic)透鏡 108。 歪像透鏡1 0 8係變換橢圓的準直光的縱橫比(a s p e c t r a t i ο ),而將該光束形狀變換為圓形。縱橫比係表示橢圓 的圓形度。歪像透鏡1 0 8係將橢圓形狀的準直光變換為圓 形的準直光,形成長軸徑與短軸徑均為B的光,亦即形成 光束形狀為圓形的光。該圓形光束藉由稜鏡1 0 3而分離所 形成的穿透光T卜T 2也成為長軸徑與短軸徑均為B的圓形 光束。因此,藉由棒狀透鏡1 0 5、1 0 6可得到線寬B的垂直 線及線寬B的水平線。 21 312/發明說明書(補件)/92-11 /92123417 1238242 又,也可取代歪像透鏡,而使用可將彳隋圓形的準 換為圓形準直光的其他任意光學構件。 圖1 9為顯示搭載著上述線光產生光學系1 0 0的〗 線裝置1 1 1的概略說明圖。雷射畫線裝置1 1 1基本 產生線光之光學單元1 0 9、水平保持光學系4用的 構部1 1 0、及覆蓋光學單元1 0 9與支持機構部1 1 0 1 1 2所構成。支持機構部1 1 0因為與第1實施形態 之支持機構部5的構成相同,故省略說明。 本實施形態之雷射晝線裝置1 1 1中,顯示將無處 用作為光源1 0 1的情況。無處理雷射因為其圓形度 此即便不使用雙稜鏡1 0 7或歪像透鏡1 0 8,仍可得 的光束形狀。據此,本實施形態中,光學單元1 〇 9 光產生光學系1 0 0 (參照圖1 4 ),但是,根據所使用 也可使用其他的線光產生光學系1 2 0 (參照圖1 6 )或 照圖18)。 圖2 0為顯示光學單元1 0 9的構成的說明圖(側視 從雷射光源1 0 1出射的光通過準直透鏡1 0 2,成為 定大小且水平前進的準直光。接著,該準直光從三 1 0 3的頂角1 0 3 d側入射,以側面1 0 3 a、1 0 3 b反射 的反射光R 1及R 2各自沿著垂直之上下方向行進並 點光。穿透側面1 0 3 a、1 0 3 b的穿透光T 1及T 2通過 鏡1 0 3的内部並藉由折射作用而偏轉一定的角度, 端面1 0 3 c出射。本實施形態中,係將穿透光T 2作 線照射用,使用反射鏡1 0 4來調節,以使光的行進 312/發明說明書(補件)/92-11 /92123417 直光變 隊射畫 上係由 支持機 的殼體 所說明 理雷射 大,因 到圓形 具備線 的雷射 140(參 圖)。 具有指 角稜鏡 而獲得 成為圓 三角稜 從棱鏡 為水平 方向成 22 1238242 為水平方向。接著,穿透光Τ 1及Τ 2係藉由棒狀透鏡1 Ο 5、 1 0 6變換為線光。也就是說,穿透光Τ1變換為垂直線光, 而穿透光Τ2變換為水平線光。 根據如此之構成的雷射畫線裝置1 1 1,可從一個光源得 到2條線光與2個圓點光。 如上所述,若使用本實施形態的線光產生光學系1 0 0、 1 2 0或1 4 0,可以簡單的方法將一條雷射光束分離為4條雷 射光束。另外,利用將線光產生光學系1 0 0、1 2 0或1 4 0 搭載於雷射晝線裝置1 1 1上,可容易從1個光源1 0 1得到 4條雷射光束,故可以低成本產生晝線用雷射線光。其結 果可提供低價的2條線光、2個圓點光的雷射晝線裝置。 (第3實施形態) 以下,參照圖2 1〜圖3 3來說明本發明第3實施形態之 分光器、及搭載該分光器之雷射晝線裝置。 圖2 1顯示本實施形態之分光器2 Ο 1。分光器2 Ο 1係由可 使光穿透的玻璃或塑膠所構成。本實施形態中,係使用屬 玻璃材料的Β Κ 7 (折射率為1 . 5 )。分光器2 Ο 1具有長方體形 狀。分光器2 Ο 1之相互對向的2個側面具有光學平面2 0 2 與2 0 4。光學平面2 0 2與2 0 4相互平行。本例中,分光器 201的長度為20mm,高度為10mm,深度(光學平面202與 2 0 4間的間隔)為1 0 m m。 在光學平面2 0 2的一部分形成將入射光分離為穿透光與 反射光用的第1光分離薄膜(第1光分離面)2 0 3。在光學平 面2 0 4的一部分形成第2光分離薄膜(第2光分離面)2 0 5。 23 312/發明說明書(補件)/92-11 /92123417 1238242 第1光分離薄膜2 Ο 3與第2光分離薄膜2 Ο 5兩者均與第1 實施形態的光分離薄膜2相同,係為金屬薄膜或介電質薄 膜的單層或多層的薄膜。本例中,第1光分離薄膜2 0 3具 有反射率3 3 %,穿透率6 7 %。第2光分離薄膜2 0 5具有反射 率5 0 %,穿透率5 0 %。 又,第1光分離薄膜2 0 3及第2光分離薄膜2 0 5與第1 實施形態的光分離薄膜2相同,可由蒸鍍等形成。只要可 形成所需的反射率及穿透率的膜厚即可。 圖2 2顯示分光器2 Ο 1的俯視圖。將入射光Β 2 1傾斜(具 體而言為入射角45° )入射於第1光分離薄膜203。入射光 Β 2 1的一部分(本例中為3 3 % )反射後成為反射光R 2 1。剩餘 的光(本例中為6 7 % )成為穿透光Τ 2 1而通過分光器2 0 1的 内部。當穿透光Τ 21到達第2光分離薄膜2 0 5時,穿透光 Τ 2 1的一部分(本例中為5 0 % )反射而成為反射光R 2 2。通過 分光器2 0 1内部的光R 2 2從光學平面2 0 2出射,成為光線 R 2 3。Τ 2 1中的剩餘的光(本例中為5 0 % )穿透第2光分離薄 膜2 0 5而成為光線Τ 2 2。因此,從分光器2 0 1得到3條分 離光R21、R23、Τ22。分離光R21、R23、Τ22具有大致相 同的強度(3 3 % = 6 7 % X 5 0 % )。 又,第1光分離薄膜2 0 3與第2光分離薄膜2 0 5的反射 率及穿透率,並不限於上述例子。分離·光R 2 1、R 2 3、Τ 2 2 的強度係對應此等反射率及穿透率而定。 接著,參照圖2 3詳細說明將入射光Β 2 1分割為3條光 R 2 1、R 2 3、Τ 2 2 的原理。 24 312/發明說明書(補件)/92-11 /92123417 1238242 如圖2 3所示,以相對光學平面2 Ο 2的法線呈4 5 °的角 度使準直光之雷射光B 2 1入射(入射點0 )。入射光B 2 1的 一部分以相對於第1光分離面2 0 3的法線呈4 5 °的角度反 射而成為反射光R 2 1。剩餘的光T 2 1以相對於法線呈0的 角度入射於分光器2 0 1的内部。 此時,若設定空氣的折射率為1,分光器2 Ο 1的折射率 為η,則藉由斯内爾定律可滿足下式(5 )。Dielectric materials such as SiO2 and MgF2. The optical separation film 2 is formed of a thin film of these materials as a single layer or multiple layers. In the case of a multilayer structure, the light separation film 2 can either laminate metal films with each other, or a multilayer dielectric layer (Dielectric Multiple Layer) with a dielectric material film, or a laminated metal film with a dielectric material film. Hybrid (hybrid) membrane. In this embodiment, the light separation film 2 is a single-layer dielectric film. As shown in FIG. 3, the spectroscope 1 having a related structure is used to make a light beam B1 emitted from a light source (not shown) incident toward the vertex angle 22 of the triangular prism 1a. The light B1 incident on the spectroscope 1 is reflected by the light separation film 2 to become light B 2 on one side, and penetrates to B 3 on the other side. For example, for the sake of simplicity, 'If the laser power (1 aserpower) of the incident light B 1 is set to 1 0 0, enter 9 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242 and the power in the emitted light is 5 The part of 0 is used for reflection and transmission in the right direction in the figure, and the part of the remaining power of 50 is also used for reflection and transmission in the left direction in the figure. In this example, the reflectance of the light separation film 2 is approximately 67%, and the transmittance is approximately 33%. Therefore, the intensity of the reflected light of the light separation film 2 is 50 × 0.67 = 33.5. The intensity of the transmitted light becomes 50χ (1-0.67) = 16.5. The left and right directions are also calculated in the same way. In other words, the intensity of the reflected light divided into the left and right becomes 3 3.5, the intensity of the transmitted light becomes 16. 5 X 2 = 3 3, and the separated three beams have approximately uniform intensity. In addition, two reflected lights B 2 of the light beam separated by the spectroscope 1 may be positioned on the same straight line, and one transmitted light B 3 may be positioned on a straight line perpendicular to the two reflected lights B 2. The reflectance and transmittance of the light separation film 2 are not limited to those described above. The intensity of the separated light B 2, B 2, B 3 depends on these reflectances and transmittances. The two light separation films 2 may have different reflectances and transmittances. In addition, the beam splitter 1 has a simple structure because it can form three outgoing light beams only by combining three optical elements 1 a, 1 b, and 1 c. In addition, the beam splitter 1 is constituted by a transparent triangular prism 1 a whose bottom surface shape is a right-angle isosceles triangle. Therefore, three outgoing light beams B 2 and B 3 can be generated in a right-angle direction. Therefore, if it is mounted on a laser daylight device 12 to be described later, it is very suitable for drawing vertical lines and land lines. Next, a method for manufacturing the spectroscope 1 will be described. First, as shown in FIG. 4, a light separation film 2 (a dielectric single-layer film in this example) is formed by vapor deposition or the like, and the light separation film 2 is used to respectively transmit light at a desired ratio and Reflected on the two sides 20 a of the triangular ridge 1 a. At this time, the film of the light separation film 2 is made so that the ratio of light transmission and reflection becomes a desired value 10 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242. In this example, the film thickness of the light separation film 2 is produced so that the reflectance of the light separation film 2 is approximately 67% and the transmittance is approximately 33%. Next, as shown in FIG. 5, the light separation film 2 formed on the two side faces 2 0 a of the triangular ridge 1 a and the side faces 2 0 b and 2 0 c of the triangular pillars 1 b and 1 c are arranged to face each other and joined. , Thereby joining the triangular ridge 1 a with the triangular columns 1 b, 1 c. A common bonding agent can be used for bonding, but it is also possible to use the intermolecular force generated by these bonding surfaces when the light-separating film 2 on the smooth surface is combined with the side surfaces 2 b and 20 c. Next, the principle of increasing the number of generated light beams by combining the beam splitter 1 and the other triangular ridges 3 will be described with reference to Figs. In addition, the triangular ridge 3 is a transparent triangular pillar whose bottom surface shape is a slightly right-angled isosceles triangle. As shown in FIG. 6, when the light beam B 5 is incident on the side surfaces 31, 3 2 from the apex angle 30 side of the triangle 稜鏡 3, the light beams B 6, B 7 are emitted from the side surface 33 of 稜鏡 3 at a specific angle. Hereinafter, the relationship between the incident angle and the exit angle will be described in detail with reference to FIG. 7. First, the incident angle of the light incident from the lower edge line 31 of 稜鏡 3 in the figure is 45 °. The light system directly enters the inside of the maggot at an angle of 0 1. If the refractive index of the sacrificial material is set to nP = 1.5 (in the case of BK7) and the refractive index of air is 1, then the following formula (1) can be established by Snell's law. Ixsin45〇 = 1.5xsin01 (1) When 0 1 is obtained from the formula (1), it becomes 0 1 = 2 8 °. Therefore, 0 2 = 1 7 ° is obtained. Next, from the formula (2), 1.5xsinl7〇: = lxsin (93 (2) 11 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242, to obtain 0 3, then 0 3 = 2 6 °. That is, The light that enters from the apex angle 30 side of the triangle 稜鏡 3 at an incidence angle of 45 °, exits obliquely upward from the 稜鏡 bottom surface 33 at an angle of 26 °. Because the incident beam B5 has a certain degree of thickness 1/2 of the incident light beam B5 is incident from the lower edge line 31 of the triangle 稜鏡 3 as shown in FIG. 7 and emerges obliquely upward at an exit angle of 2 ° (beam B 6). The remaining 1/2 of the system is It enters from the upper ridgeline 3 2 of the triangle 稜鏡 3 and exits obliquely downward at an exit angle of 2 6 ° (beam B 7). That is, the light beam B 5 which enters from the apex angle 30 of the right-angle isosceles triangle. , Is separated into two beams B 6 and B 7, and exits obliquely upward and downward at an angle of 26 °. The right-angled isosceles triangle 稜鏡 3 is arranged as shown in FIG. 8, and only the beam B8 1/2 is incident on the bottom surface 33. Therefore, according to the above principle, because 1/2 of the light beam B 8 is emitted at an angle of 26 ° (beam B 9), the remaining 1/2 does not pass through the inside of the beam. Therefore, it directly enters the air (beam B10). As described above, it can be seen that the exit angle can be changed by controlling the shape, refractive index, incident angle, etc. of 稜鏡 3. A side view of the multi-beam generator 40 of the mirror 3 is shown in FIG. 10. The multi-beam generator 40 includes a collimated light source 42, a beam splitter 1, and a triangular ridge 3. The multi-beam generator 40 is configured by combining triangular edges The mirror 3 is arranged behind the beam splitter 1 and generates a total of 4 beams. The collimated light source 4 2 is composed of, for example, a semiconductor laser and a collimating lens (not shown). When the collimated light source 4 2 makes the beam B1 1 incident on the beam splitter 1 to obtain two reflections located on the same line and traveling directions different from each other by 180 ° 12 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242 Light B 1 2 (corresponding to B in FIG. 3 2) and 1 penetrating light B 1 3 (corresponding to B 3 in FIG. 3). Then, a part of the penetrating light B 1 3 emitted from the beam splitter 1 passes through the triangular prism 3, and the light path is changed inside the ridge to 2 6 ° (beam B 1 4 (corresponding to B 9 in FIG. 8)). At the same time, the remaining It does not pass through the inside of the triangle 稜鏡 3, and therefore directly enters the air (beam B15 (corresponding to B1 0 in FIG. 8)). Therefore, a total of 4 light beams B 1 2, B 1 2, B can be obtained from one light source 4 2 1 4. B 1 5. In this example, although only one light beam B1 3 in the output light of the beam splitter 1 is separated into two light beams, the other outgoing light B 1 2 may be similarly used as required. Split into 2 beams. Next, an example in which the beam splitter 1 and the triangular beam 3 are mounted on the laser daylight device 12 will be described with reference to FIGS. 11 to 13. As shown in FIG. 11, the laser daylight device 12 basically consists of a linear light generating optical system 4 that generates linear light, a support mechanism portion 5 for horizontally maintaining the linear light generating optical system 4, and a cover line light generating device. The optical system 4 and the housing 54 of the support mechanism section 5 are configured. The linear light generating optical system 4 includes a beam splitter 1 and a triangular prism 3. The supporting mechanism 5 uses a known gimbal suspension bracket (g i m b a 1) mechanism. The gimbal suspension bracket mechanism is provided with a supporting frame 5 0, a large ring 51, a small ring 5 2 and a mounting table 53. The large ring 51 is swingable about the X axis with respect to the support frame 50 through a bearing (not shown). The small ring 5 2 is swingable around the axis (direction perpendicular to the paper surface) with respect to the large ring 5 1 through a bearing (not shown). A mounting ring 5 3 on which the optical system 4 is mounted is fixed to the small ring 52. With the above configuration, the mounting table 5 3 on which the optical system 4 is mounted can be kept horizontal. Figures 12 and 13 are side views and 13 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242 which are schematic views showing the line light generating optical system 4. The linear light generating optical system 4 includes a semiconductor laser 6, a collimator lens 7, a beam splitter 1, a triangular prism 3, and 4 glass rod lenses 8, 9, 10, and 11. The laser beam emitted from the emitter 6 is converted into collimated light (parallel light) by the collimating lens 7 and proceeds in a horizontal direction. Next, the collimated light is split into three light beams by the spectroscope 1 of this embodiment. The transmitted light is incident on the triangular beam 3 arranged behind the beam splitter and split into two beams. That is, one laser beam emitted from the semiconductor laser 6 can obtain four collimated lights. Next, the four collimated beams are converted into linear beams by transmitting glass rod lenses 8, 9, 10, and 11 which are one of the optical elements that generate linear light. Here, the directions of the linear light generated by the rod lenses 8, 9, 10, and 11 are defined by the arrangement directions of the rod lenses 8, 9, 10, and 11. That is, when a horizontal line of light is desired, the rod lens is arranged so that its axis becomes the vertical direction, and when a vertical line of light is desired, the rod lens is arranged so that its axis becomes the horizontal direction. In this embodiment, the rod lenses 8, 9, and 10 are arranged so that their axes become horizontal, and the rod lenses 11 are arranged so that their axes are perpendicular to the horizontal direction, thereby obtaining three vertical line lights L1. L 2, L 3 and 1 horizontal line light L 4. As described above, if the beam splitter 1 of this embodiment is used, a laser beam can be separated into a plurality of laser beams in a simple manner. That is, the spectroscope 1 can generate 3 output light beams from one incident light at a very simple and low cost. Moreover, by mounting the beam splitter 1 on the optical system 4 of the laser line device 12, a plurality of laser beams can be easily obtained from one light source. Also 14 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242 That is, by applying the beam splitter 1 to the laser daylight device 12, three vertical lines or land lines can be simply formed. As a result, it is possible to provide a low-cost plural-line laser daylight device. (Second Embodiment) Hereinafter, a linear light generating optical system according to a second embodiment of the present invention and a laser daylight device equipped with the linear light generating optical system will be described with reference to Figs. 14 to 20. Fig. 14 is an explanatory diagram (side view) showing the linear light generating optical system 100 of this embodiment. The linear light generating optical system 100 includes a laser light source 101, a collimating lens 102, a triangular prism 103, a reflecting mirror 104, and rod lenses 105 and 106. The laser light source 1 0 1 has a laser emitting surface 1 0 1 a. The laser light source 1 0 1 is arranged in a state where the laser emitting surface 1 0 1 a is horizontal. Triangular 稜鏡 1 0 3 is a triangular column whose bottom surface is a right-angled isosceles triangle. The triangle 稜鏡 1 0 3 is made of glass or plastic which can penetrate light. Triangular ridge 103 is in the shape of the bottom surface of a right-angled isosceles triangle, and has two side surfaces 103a and 103b including two sides forming a vertex angle 103d; and a side surface 103c including a bottom side facing the vertex angle 103d. The triangular ridge 1 0 3 is such that its vertex angle 10 3 d is opposite to the laser exit surface 101 a through the collimating lens 102. In this embodiment, unlike the triangular prism 1 a of the first embodiment, no light separation film is formed on the three sides 10 3 a, 10 3 b, and 10 3 c. However, the side surfaces 10 3 a and 10 3 b have reflectance (for example, several%) and transmittance (for example, 100-several%), and have a light separation surface that reflects a part of the incident light and penetrates the remaining part. Functions. 15 312 / Instruction of the Invention (Supplement) / 92-11 / 92123417 1238242 The light emitted from the laser emitting surface 1 〇 1 of the laser light source 1 〇 1 passes through the collimating lens 1 0 2 to form parallel light with a specified size. (Collimated light) while traveling horizontally. Then, the collimated light is incident from the side of the top angle 1 0 3 d of the triangle 稜鏡 103, and is separated into two reflected lights R1 and R 2 and two penetrating lights T1 and T by the triangle 稜鏡 103. 2. That is, a part of the incident light is reflected by the side surface 1 0 3 a and travels in the upward direction in the figure, that is, the vertical upward direction, as a piece of reflected light R 1. The other part of the incident light is reflected by the side surface 1 0 3 b and travels in the downward direction in the figure, that is, the vertically downward direction, as another reflected light R2. The other part of the incident light penetrates the side surface 1 0 3 b, passes through the interior of the 稜鏡 10 3 as the penetrating light T1, and is deflected by a specified angle by the refraction effect to exit from the 稜鏡 end surface 10 3 c. The remaining portion of the incident light penetrates the side surface 103a, passes through the inside of the prism 103 as the penetrating light T2, and is deflected by a predetermined angle by refraction to exit from the end surface 103c. In this embodiment, the penetrating light T1 is used for vertical line irradiation, and the penetrating light T2 is used for horizontal line irradiation. The transmitted light T 2 is reflected by the reflecting mirror 104, and its traveling direction is adjusted to a horizontal direction. The direction of the rod lens 105 is arranged so that its axis is horizontal, and the direction of the rod lens 105 is arranged so that its axis is vertical. Therefore, the transmitted light T 1 is converted into vertical line light by the rod lens 105. The transmitted light T 2 is converted into horizontal light by the rod lens 106. Next, a description will be given in detail of a state from when the light enters the triangular ridge 103 until it exits with reference to FIG. 15. The triangular prism 1 0 3 has its vertex angle 10 3 d facing the laser exit surface 10 1a. That is, the triangle 稜鏡 1 0 3 is configured so that the optical axis 0 extending from the laser exit surface 16 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242 1 Ο 1 a will be the vertex angle 1 Ο 3 d The state of halving. Therefore, 1/2 of the incident light is incident on the side 1 0 3 a, and the remaining 1/2 is incident on the side 1 03b ° The incident angle of the light incident from the lower edge line 1 0 3 b of 稜鏡 1 0 3 becomes 4 5 °. A part of this light directly enters the inside of the maggot at an angle of 0 1. If the refractive index of the wood material is set to η P = 1.5 (in the case of B K 7) and the refractive index of air is 1, the following formula (3) can be established by Snell's law. Ixsin45〇 = 1.5xsin01 (3) When 0 1 is obtained from the formula (3), it becomes 0 1 = 2 8 °. Therefore, we get 0 2 = 1 7 °. Next, if the formula (4) 1.5xsinl7 ° = lxsin03 (4) is obtained as 0 3, | J 0 3 = 2 6 °. Therefore, it can be seen that a part of the light entering the side surface 〇3 b from the apex angle 1 0 3 d of the triangle 稜鏡 103 at an angle of incidence of 45 ° from the bottom side of the triangle 0 1 0 3 c is relatively horizontal. The light exits at an upward angle of 6 ° (through the light T 1). On the other hand, the remainder of the light entering the side 103 b at the incident angle of 45 ° is reflected at a reflection angle (45 °) equal to the incident angle to form reflected light R2. Therefore, it can be seen that the reflected light R2 travels in a vertical direction that is 90 ° downward from the optical axis 0 of the incident light. Here, because the incident light has a certain degree of thickness, 1/2 of the incident light is incident from the lower edge line 1 0 3 b of the triangular ridge 1 0 3, and a part (the penetrating light T 1) is emitted at 2 6 ° And the remaining part (reflected light R 2) exits vertically downward. The remaining 1/2 of the light is incident from the upper edge line 1 0 3 a of the triangular prism 103, and a part of it (through the light T 2) is directed downward at an exit angle of 2 6 ° 17 312 / Invention Specification (Supplement) / 92 -11 / 92123417 1238242 exits, and the remaining part (reflected light R 1) exits vertically upward. In other words, the light incident from the apex angle 1 0 3 d of a right-angle isosceles triangle is separated into 4 lights' and vertically upwards, vertically downwards, 2 6 ° from the horizontal direction, and from the horizontal direction, respectively. Shoot down at an angle of 2 6 °. According to the linear light generating optical system 100 as described above, since the collimated light is incident on the side of the vertex angle 10 3 d of the triangle 稜鏡 103, four light beams can be generated from one incident light beam. That is, two light beams in a direction substantially perpendicular to the incident direction of the collimated light and two light beams along the approximate incidence direction of the collimated light are generated. Therefore, if the linear light generating optical system 100 is mounted on a laser daylight device, two vertical beams, one horizontal line beam and one vertical line beam can be obtained from one incident beam. The vertical beam is suitable for ground ink, while the linear light is suitable for drawing vertical lines or land lines. Further, as the light source 101 of this embodiment, it is preferable to use a laser that generates a circular light beam having a large circularity similar to that of an unprocessed laser beam. FIG. 16 is an explanatory diagram (side view) showing a modification example of the linear light generating optical system 1 0 0. In this modification, a red semiconductor laser is used as the light source 1 0 1. Generally, the circularity of the red semiconductor laser beam is small and the beam shape is elliptical. Therefore, if a red semiconductor laser is used as the light source 1 0, when the red laser beam is separated into 4 beams and directly converted into line light by 稜鏡 103, the vertical line light and horizontal line light generated will be caused. Make a difference in the width of its lines. Here, in the present modification, the double beam 1 107 is arranged on the light path of the penetrating light T 1 or T 2 so that the line width of the vertical line light is substantially the same as the line width of the horizontal line light. 18 312 / Instruction of the Invention (Supplement) / 92-11 / 92123417 In the system 1 Mirror 1 Beam section collimation 103 In the ellipse direction, the wide-axis A beam is A perpendicular to the vertical long axis but perpendicular to each other 1 beam In the direction 1238242 of the linear light generating optical system 1 2 0, it is also the same as the linear light generating in FIG. 14: 0 0, and the light emitted from the red semiconductor laser 1 0 1 is converted into collimated light through the quasi 0 2. Here, the red semiconductor laser surface generally has an elliptical shape. Therefore, the beam cross section of the light obtained by the collimator lens 102 also becomes an elliptical shape. Accordingly, the cross sections of the four light beams obtained by the triangle are all elliptical. In this case, consider a case of a sugar rod lens N (105, 10) having a major axis diameter of A and a minor axis diameter of B. As shown in FIG. 17 (a), in a state where the long axis A direction of is perpendicular to the axis direction of the rod lens N, and when the elliptical light beam is incident on the rod lens N, the obtained degree becomes B. On the other hand, as shown in FIG. 17 (b), in the case where the elliptical direction is parallel to the axial direction of the rod lens N, the width of the obtained linear light is made incident on the rod lens N. Therefore, in order to generate line width lines and horizontal lines on both sides of the rod lenses 105 and 106, it is necessary to make the direction of the transmitted light A and the rod lens 105 as shown in FIG. 17 (a). The axis direction is perpendicular. At the same time, as shown in the figure, the long axis A direction of the transmitted light T2 is also made straight with the rod lens 106. Yes, the rod lens 105 and the rod lens 106 are arranged so that their axes are perpendicular to each other. Here, in this modified example, 0 7 belonging to the image rotation element is arranged on the way of the light path penetrating the light T1 or T 2 to thereby take the shape direction. In this modification, the light source 101 generates a light beam along the long axis A direction. In this case, the long axis A direction of the penetrating light T1 is 312 / Invention Manual (Supplement) / 92-11 / 92123417 The ellipses that are obtained by learning the straight light first enter the ellipse of the square light The angle (B) of the 17 (a) axis of the T1 double-angle transformation perpendicular to 19 1238242 is perpendicular to the axis of the rod lens 105 as shown in Fig. 17 (a). On the other hand, the long axis A direction of the transmitted light T 2 is formed in a relationship as shown in FIG. 17 (b) parallel to the axis of the rod lens 106. Here, the double-lens 10 7 is disposed in the middle of the light path of the penetrating light T 2, and specifically, is located between the mirror 104 and the rod lens 106. As shown in FIG. 17 (c), the double 稜鏡 107 has two side faces 107a, 107a parallel to the long axis L; a bottom surface 107c; an upper surface 107b; and an incident surface 1 0 7 d inclined with respect to the long axis L and Exit surface 1 0 7 e. The side surface 1 0 7 a is formed in a ladder shape. The double prism 1 0 7 is arranged in a state where the long axis L and the optical axis 0 of the transmitted light T 2 are aligned with each other. The bottom surface 1 0 7 of the double 稜鏡 10 7 c is a reference position in a state of being horizontally arranged. In addition, the state in which the double pin 10 7 is rotated around the long axis L from the reference position by an angle of 0 is referred to as an angle 0 position. In the case where the double beam 1 0 7 is at the angle 0 position, the cross-sectional shape of the light beam passing through the light T 2 is rotated by an angle of only 20 °. In this modification, the double-chirped 10 7 series is arranged at a position of an angle of 45 °, and the cross-sectional shape of the beam of transmitted light T2 is rotated by an angle of 90 °. Accordingly, the penetrating light T 2 emitted from the double-lens 107 is incident on the rod lens 106 in the direction shown in FIG. 17 (a). With this structure, since the two sides of the elliptical beams T1 and T2 are opposite to the rod lenses 105 and 106, the long axis A direction of the beam cross section is perpendicular to the axis direction of the lens. Fig. 17 (a) The relationship shown is incident, and therefore, the obtained vertical line light and horizontal line light have the same line width B (short axis diameter of the ellipse). In the above example, the light source 101 generates a light beam in the direction of the long axis A along the vertical direction. However, the light source 101 can also generate a light beam whose long axis A direction is along a horizontal direction of 20 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242. In this case, the long axis A direction of the transmitted light T2 is formed in a relationship shown in FIG. 17 (a) which is perpendicular to the axis of the rod lens 106. However, the long-axis A direction penetrating the light-transmitting T 1 is formed so as to be parallel to the axis of the rod lens 105 as shown in Fig. 17 (b). Here, if the double 稜鏡 10 7 is arranged in the light path of the penetrating light T 1, that is, it is set at a position between 稜鏡 1 0 3 and the rod lens 10 5, as shown in FIG. The transmitted light T 1 is incident on the rod lens 105 in the direction shown by 17 (a). In addition, the light source 1 0 1 may generate a light beam whose long axis A direction is an arbitrary direction. In this case, it is only necessary to prepare two double beams 1 0 7 and arrange them respectively in the light path of the penetrating lights T1 and T2 so that the beam cross-sectional shapes of the penetrating lights T1 and T2 are rotated only by a necessary angle. It is only necessary to enter the corresponding rod lenses 105 and 106. FIG. 18 is an explanatory diagram (side view) showing a modification example of the linear light generating optical system 120. FIG. In the linear light generating optical system 140, a double-lens 107 is not disposed, and an anamorphic lens 108 is disposed at the rear of the collimator lens 102. The anamorphic lens 108 converts the aspect ratio (as spe c t r a t i) of the collimated light of the ellipse, and converts the beam shape into a circle. The aspect ratio indicates the roundness of the ellipse. The anamorphic lens 108 converts elliptical collimated light into circular collimated light to form light having a major axis diameter and a minor axis diameter of B, that is, light having a circular beam shape. The penetrating light T b T 2 formed by separating the circular light beam by 稜鏡 103 is also a circular light beam having a major axis diameter and a minor axis diameter B. Therefore, the vertical lines of the line width B and the horizontal lines of the line width B can be obtained by the rod lenses 105 and 106. 21 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242 In addition, instead of the anamorphic lens, any other optical member that can change the circular collimation to circular collimated light can be used. FIG. 19 is a schematic explanatory view showing a line device 1 1 1 on which the above-mentioned line light generating optical system 100 is mounted. Laser line drawing device 1 1 1 Optical unit that basically generates linear light 1 0 9 Structure part 1 for horizontal holding optical system 4 1 1 Covering optical unit 1 9 9 and support mechanism 1 1 0 1 1 2 Make up. Since the support mechanism section 1 10 has the same configuration as the support mechanism section 5 of the first embodiment, description thereof will be omitted. The laser daylight device 1 1 1 according to this embodiment shows a case where nowhere is used as the light source 101. No processing laser because of its circularity. This is a beam shape that can be obtained even without the use of double-lens 107 or anamorphic lens 108. Accordingly, in the present embodiment, the optical unit 1 0 9 generates the optical system 1 0 0 (refer to FIG. 14). However, other line light generating optical systems 1 2 0 (see FIG. 16) may be used depending on the application. ) Or as shown in Figure 18). FIG. 20 is an explanatory diagram showing the configuration of the optical unit 10 (the light emitted from the laser light source 1 0 1 in a side view passes through a collimating lens 10 2 to become a collimated light of a fixed size and advancing horizontally. Next, the The collimated light is incident from the side of the top angle 10 3 d of three 103, and the reflected light R 1 and R 2 reflected on the sides 10 3 a and 10 3 b respectively travel in the vertical direction and point light. The penetrating lights T 1 and T 2 that penetrate the side surfaces 1 0 3 a and 10 3 b pass through the interior of the mirror 10 3 and are deflected by a certain angle by refraction, and the end surface 10 3 c exits. In this embodiment, The penetrating light T 2 is used for line irradiation, and the reflection mirror 104 is used to adjust the travel of the light 312 / Invention Specification (Supplement) / 92-11 / 92123417 The housing of the support machine shows that the laser is large, and it is a laser with a line to the circular 140 (see the figure). It has a triangular angle and is formed into a rounded triangular edge from the prism to the horizontal direction to 22 1238242 as the horizontal direction. Next, the penetrating light T1 and T2 are converted into linear light by the rod lenses 105 and 106. That is, the penetrating light T1 is converted into a vertical line light. The penetrating light T2 is converted into horizontal line light. According to the laser line drawing device 1 1 1 thus configured, two line lights and two dot lights can be obtained from one light source. As described above, if this embodiment is used 1 0 0, 1 2 0, or 1 4 0 can be used to easily separate a laser beam into 4 laser beams. In addition, the optical system 1 0 0, 1 2 0 or 1 4 0 When mounted on a laser daylight device 1 1 1, 4 laser beams can be easily obtained from a single light source 1 01, so it is possible to generate daylight laser light at low cost. As a result, it can provide low Laser daylight device with two linear lights and two dot lights. (Third embodiment) Hereinafter, a spectroscope according to a third embodiment of the present invention, and the mounting of the same will be described with reference to Figs. 21 to 33. The laser daylight device of the beam splitter. Fig. 21 shows the beam splitter 2 0 1 in this embodiment. The beam splitter 2 0 1 is made of glass or plastic that can transmit light. In this embodiment, it is used Β 7 of glass material (refractive index is 1.5). The beam splitter 2 Ο 1 has a rectangular parallelepiped shape. The beam splitters 2 Ο 1 face each other. The two sides have optical planes 2 0 2 and 2 0. The optical planes 2 2 and 2 4 are parallel to each other. In this example, the beam splitter 201 has a length of 20 mm, a height of 10 mm, and a depth (optical planes 202 and 2 0 The interval between 4) is 10 mm. A first light separation film (first light separation surface) 203 for separating incident light into transmitted light and reflected light is formed on a part of the optical plane 203. A second light separation film (second light separation surface) 2 0 5 is formed on a part of the optical plane 2 0 4. 23 312 / Invention (Supplement) / 92-11 / 92123417 1238242 Both the first light separation film 2 0 3 and the second light separation film 2 0 5 are the same as the light separation film 2 of the first embodiment, and are A single or multilayer film of a metal film or a dielectric film. In this example, the first light separation film 203 has a reflectance of 33% and a transmittance of 67%. The second optical separation film 205 has a reflectance of 50% and a transmittance of 50%. The first light separation film 203 and the second light separation film 205 are the same as the light separation film 2 of the first embodiment and can be formed by vapor deposition or the like. It is only necessary to form a film having a desired reflectance and transmittance. FIG. 22 shows a top view of the beam splitter 2 O 1. The incident light B 2 1 is incident on the first light separation film 203 at an angle (specifically, an incident angle of 45 °). Part of the incident light B 2 1 (in this example, 33%) is reflected and becomes reflected light R 2 1. The remaining light (67% in this example) becomes the penetrating light T 2 1 and passes through the inside of the beam splitter 2 0 1. When the transmitted light T 21 reaches the second light separation film 205, a part (50% in this example) of the transmitted light T 2 1 is reflected and becomes the reflected light R 2 2. The light R 2 2 passing through the inside of the beam splitter 2 01 is emitted from the optical plane 2 0 2 and becomes a light ray R 2 3. The remaining light (50% in this example) in T 2 1 penetrates the second light separation film 2 0 5 and becomes light T 2 2. Therefore, three separated light beams R21, R23, and T22 are obtained from the beam splitter 201. The separated lights R21, R23, and T22 have approximately the same intensity (33% = 67% X 50%). The reflectance and transmittance of the first light separation film 203 and the second light separation film 205 are not limited to the above examples. The intensity of the separation and light R 2 1, R 2 3, and T 2 2 depends on these reflectances and transmittances. Next, the principle of dividing the incident light B 2 1 into three lights R 2 1, R 2 3, and T 2 2 will be described in detail with reference to FIG. 2 3. 24 312 / Invention (Supplement) / 92-11 / 92123417 1238242 As shown in Figure 2 3, the laser light B 2 1 of the collimated light is made incident at an angle of 4 5 ° with respect to the normal of the optical plane 2 0 2 (Incidence point 0). A part of the incident light B 2 1 is reflected at an angle of 45 ° with respect to the normal of the first light separation surface 2 0 3 to become reflected light R 2 1. The remaining light T 2 1 enters the inside of the beam splitter 2 0 1 at an angle of 0 with respect to the normal. At this time, if the refractive index of the air is set to 1 and the refractive index of the spectroscope 2 0 1 is set to η, the following formula (5) can be satisfied by Snell's law.

Isin45〇=nsin0 (5) 在第2光分離面2 0 5,T 2 1的一部分以相對於法線呈0的角 度進行反射而成為反射光R 2 2,通過分光器2 Ο 1的内部後, 從光學平面2 0 2出射(光線R 2 3 )。 此時,藉由斯内爾定律,光線R23與出射面光學平面202 的法線形成4 5 °的角度。T 2 1中剩餘的光穿透第2光分離 面205而成為光線T22。藉由斯内爾定律,光線T22與第2 光分離面2 0 5的法線形成4 5 °的角度,因此,T 2 2與入射 光B 2 1成為平行。 若設定第1光分離面2 0 3的入射光B 2 1的入射點0為原 點,而入射點的法線為y軸,與y軸垂直的軸為X軸,則 光線T 2 1的直線之式成為· y = c 〇 t 0 · x (6) 在此,若設定第1光分離面2 Ο 3與第2光分離面2 Ο 5的 y軸方向的距離為d,則包含第2光分離面2 0 5的直線之式 成為: y=-d (7) 25 312/發明說明書(補件)/92-11 /92123417 1238242 光線Τ 2 1與第2光分離面2 Ο 5的交點A的座標從式(6 ) 及(7)成為 A(-dtan(9 、-d)0 線段OA的長度b成為: b=(( - dtan Θ )2 + (-d)2)1/2 = d(l+tan2 θ )1/2 (8) 因此,入射光線B 2 1與光線Τ 2 2的偏差量5則由下式表 不 . (? =bsin(45°- Θ ) = d(l + tan2 θ )1/2 · sin( 4 5 0 — 0 ) (9) 接著,若設定光學平面2 0 2之光線R 2 3的出射點為C, 線段0C的長度為L,則成為: L = b s i η θ · 2 = 2d(l+tan2 θ )1/2 · s i η (9 =2 d t a η θ (10) 因此,光線R 21與R 2 3的間隔w成為: w = Lcos45 0 =2d(l+tan20 )1/2 · sin0 cos45〇 =2 d t a η Θ .cos45〇 (11) 例如,若設定分光器2 0 1的材料的折射率為1 . 5時,藉 由式(5),即 lsin45° =1.5sin0 ,可得到 0=28° 。另外, 若設定光學平面202、204間的距離為10mm時,將0 = 2 8 °代入式(9 ),得到光線B 2 1與光線T 2 2的偏差量5,即: 5 二 10(l+tan 2 2 8 ° )1/2· sin( 4 5 0 — 2 8 ° ) = 3. 3mni 在此,第1光分離薄膜2 0 3上的入射位置0與第2光分 離薄膜205上的入射位置A的X軸方向的距離為L/2,藉 26 312/發明說明書(補件)/92-11 /92123417 1238242 由式(10),L/2=dtan0 。因此,可知第1光分離薄膜203 上的光的入射點與第2光分離薄膜2 0 5上的光的入射點的 X軸方向的距離大致為d t a η 0 。據此可知,為了於入射光 Β 2 1入射於第1光分離薄膜2 0 3時,使穿透光Τ 2 1必定到 達第2光分離薄膜2 0 5,因此,在光學平面2 0 2、2 0 4上沿 與此等光學平面2 0 2、2 0 4平行的方向,將第1光分離薄膜 2 0 3與第2光分離薄膜2 0 5形成於僅偏離距離d t a η 0的位 置即可。具體而言,在圖2 2中,只要將第1光分離薄膜 2 0 3的左右方向的略中心部與第2光分離薄膜2 0 5的左右 方向的略中心部形成於沿左右方向僅偏離距離d t a η (9的 位置即可。 相同地,光線R 21與R 2 3的間隔w成為: w = 2 · 1 0 ( 1 +tan 2 2 8 ° )1/2· sin28° cos45° =7. 5mm 藉此,根據分光器2 0 1,可簡便形成行進在平行於入射光 B 2 1的光路徑的光線T 2 2,與行進在垂直於入射光B 2 1的光 路徑的光線R 2 1與R 2 3的3條光線。 接著,參照圖2 4及圖2 5來說明本實施形態之第1變化 例的分光器3 0 1。分光器3 0 1之特徵在於可生成與入射光 線B 2 1的偏差量6為零(0 )的出射光線T 2 4。 如圖2 4所示,分光器3 0 1係將2個長方體組合構成為L 字形者。也就是說,分光器3 0 1與圖2 1之分光器2 0 1相同, 具有光學平面2 0 2與2 0 4作為其相互對向的2個側面。光 學平面202與204相互平行。分光器301另外還具有光學 平面2 0 6與2 0 7作為其相互對向的2個側面。光學平面2 0 6 27 312/發明說明書(補件)/92-11 /92123417 1238242 與207相互平行,且,與光學平面202與204垂直相交。 光學平面2 0 2、2 0 4的間隔與光學平面2 0 6、2 0 7的間隔相 等。本例中,分光器3 0 1的L字的尺寸為3 0 m m (光學平面 202、204的長度)x 25mm(光學平面206、207的長度+光 學平面2 0 2與2 0 4的間隔)。另外,分光器3 0 1的高度為 10mm,光學平面202與204的間隔為10mm,光學平面206 與2 0 7的間隔為1 0 m m。 分光器3 0 1係由可使光穿透的玻璃或塑膠所構成。本例 中,分光器3 0 1係由屬玻璃材料的BK 7 (折射率為1 . 5 )所構 成。 與圖21之分光器201相同,在光學平面2 0 2的一部分 形成第1光分離薄膜(第1光分離面)2 0 3,在光學平面2 0 4 的一部分形成第2光分離薄膜(第2光分離面)2 0 5。第1 光分離薄膜2 0 3與第2光分離薄膜2 0 5的位置關係、反射 率及穿透率均與分光器2 0 1所形成的第1光分離薄膜 2 0 3、第2光分離薄膜2 0 5相同。 如圖2 5所示,也將光線B 2 1傾斜入射於分光器3 0 1。反 射光R 2 1、R 2 2、R 2 3及穿透光T 2 1、T 2 2係與參照圖2 2說 明的分光器2 0 1的情況相同地生成。光線T 2 2係入射於光 學平面206,作為光線T23而再度通過分光器301内部, 而從光學平面2 0 7作為光線T 2 4出射。入射光線B 2 1與光 線T 2 4的偏差量5 ’成為零(0 )。 接著,參照圖2 6說明偏差量6 ’成為零(0 )的理由。 又,將第1光分離面2 0 3上的入射點(原點)0與光學平 28 312/發明說明書(補件)/92-11 /92123417 1238242 面2 Ο 6的x軸方向的距離(沿著平面2 Ο 2、2 Ο 4的距離)設為 c ° 光線T 2 2與第2光分離面2 0 5的法線形成4 5 °的角度, 且,因為通過點A(-dtan0 ,-d),因此,光線T22的直線 之式成為: y^x + dCtani1 — 1) (12) 接著,包含光學平面206的直線之式成為: x=-c (13) 光學平面206與光學平面207的間隔,和光學平面202與 光學平面204的間隔相同,均為d,因此包含光學平面207 的直線之式成為: x=-(c+d) (14) 因此,光線T 2 2與光學平面2 0 6的交點E的座標,從式(1 2 ) 及(13)成為E(-c,d(tan0 — 1) - c)。另外,光線T23因為 與光學平面2 0 6的法線形成角度0 ,因此包含光線T 2 3的 直線之式的斜率成為tan0。同時,該直線通過E(-c,d(tan 0 — 1 ) - c )點,因此其直線之式成為: y = t a η θ · x+(c + d)(tan θ — 1) (15) 包含光線Τ 2 3的直線與光學平面2 Ο 7的交點F的座標,從 式(14)及(15)成為 F(-(c + d),-(c + d))。 在此,包含入射光B21的直線之式成為: y = X (16) 若從式(1 4 )及(1 6 )求得入射光B 2 1與光學平面2 0 7的交點 F ’的座標,則成為F ’( - ( c + d ),- ( c + d ))。也就是說,F與 29 312/發明說明書(補件)/92-11 /92123417 1238242 F ’ 一致。另外,因為F點亦為光線Τ 2 4的出射點, 知入射光Β 2 1與出射光Τ 2 4係處於相同直線上。 藉由上述,為將入射光Β21與出射光Τ24位於相 上,不僅有使光學平面2 0 6與2 0 7的間隔與光學平 與2 0 4的間隔一致,使光學平面2 0 6及2 0 7和光學4 與2 0 4相互垂直配置的必要,而且還有使從入射點 至光學平面2 0 6為止的X軸方向的距離,較從入射 軸)至出射點(A )為止的X軸方向的距離大的必要。 為穿透光T22 —旦從光學平面204出射,則有再度 光學平面2 0 6的必要的緣故。 也就是說,有成為如下式的必要。 dtan0<c (17) 如此,有將第1光分離薄膜2 0 3上的入射點與光 206的平行於光學平面202、204的方向的距離設為 0大的必要。因此,分光器3 0 1只要製成為使光學耳 與第1光分離薄膜2 0 3的平行於光學平面2 0 2、2 0 4 的距離較d t a η 0大即可。例如,圖2 5中,只要將 面2 0 6與第1光分離薄膜2 0 3的左右方向的略中心 距離,於左右方向製成為較d t a η 0大即可。更佳則 學平面2 0 6與第1光分離薄膜2 0 3中左側端部(光^ 2 ◦ 6側的端部)的距離製成為較d t a η 0大。 如此,可在與入射光相同的線上形成出射光線, 有利於由雷射晝線裝置來描繪水平線及垂直線。 接著,參照圖2 7及圖2 8來說明本實施形態之第 312/發明說明書(補件)/92-11 /92123417 因此可 同直線 面202 ^ 面 202 0 ( y 軸) 點0(y 這是因 入射於 學平面 較 d t a η L 面 2 0 6 的方向 光學平 位置的 可將光 赛平面 從而更 2變化 30 1238242 例的分光器4 Ο 1。分光器4 Ο 1之特徵在於光線R 2 1之反射 光的一部分可在與該光R21相同的光路徑上返回,而再入 射於分光器4 0 1。 如圖2 7所示,分光器4 0 1係將2個長方體組合構成為L 字形者。也就是說,分光器4 0 1與圖2 1之分光器2 0 1相同, 具有光學平面2 0 2與2 0 4作為其相互對向的2個側面。光 學平面202與204相互平行。分光器401另外還具有光學 平面2 0 8與2 0 9作為其相互對向的2個側面。光學平面2 0 8 與209相互平行,且,與光學平面202與204垂直相交。 光學平面2 0 2、2 0 4的間隔與光學平面2 0 8、2 0 9的間隔相 等。本例中,分光器4 0 1的L字的尺寸為3 0 m m (光學平面 202、204的長度)x25mm(光學平面208、209的長度+光 學平面2 0 2與2 0 4的間隔)。另外,分光器4 0 1的高度為 10mm,光學平面2 0 2與2 0 4的間隔為1 Omm,光學平面208 與2 0 9的間隔為1 0 m m。 分光器4 0 1係由可使光穿透的玻璃或塑膠所構成。本例 中,分光器4 0 1係由屬玻璃材料的BK 7 (折射率為1 . 5 )所構 成。 與圖2 1之分光器2 0 1相同,在光學平面2 0 2的一部分 形成第1光分離薄膜(第1光分離面)2 0 3,在光學平面2 0 4 的一部分形成第2光分離薄膜(第2光分離面)2 0 5。第1 光分離薄膜2 0 3與第2光分離薄膜2 0 5的位置關係、反射 率及穿透率均與分光器2 0 1所形成的第1光分離薄膜 2 0 3、第2光分離薄膜2 0 5相同。 31 312/發明說明書(補件)/92-11 /92123417 1238242 如圖2 8所示,也將光線B 2 1傾斜入射於分光器4 Ο 1。反 射光R 2 1、R 2 2、R 2 3及穿透光Τ 2 1、Τ 2 2係與參照圖2 2說 明的分光器2 Ο 1的情況相同地生成。光線R 2 1係入射於光 線R 2 1的延長線上所設的未圖示的棒狀透鏡。垂直入射於 棒狀透鏡的光中的數%的光被反射,並作為光線R 2 4在與該 光線R 2 1相同的光路徑上返回。光線R 2 4係入射於第1光 分離面2 0 3,與法線形成角度0 = 2 8 °而通過分光器4 Ο 1的 内部(光線Τ 2 5 ),再從光學平面2 0 4暫以4 5 °的角度作為 光線Τ26出射。其後,入射於光學平面208而再度通過分 光器4 0 1的内部(光線Τ 2 7 )後,從光學平面2 0 9以4 5 °的 角度作為光線Τ 2 8出射。 在此,與參照圖2 6說明的分光器3 0 1相同,若光學平 面2 0 8與2 0 9的間隔與光學平面2 0 2與2 0 4的間隔一致, 光學平面208及209和光學平面202與204相互垂直,而 且,光學平面2 0 8與第1光分離薄膜2 0 3的平行於光學平 面2 0 2、2 0 4的方向的距離較d t a η 0大,則光線Τ 2 8即位 於與反射光R24相同的直線上。這是因為穿透光Τ28 —旦 從光學平面2 0 4出射後,有再度入射於光學平面2 0 8的必 要的緣故。 本變化例中,因為可形成行進與光線Β 2 1垂直之方向的 光路徑上的2條光線R 2 1、Τ 2 8,因此,在例如使用於雷射 畫線裝置的情況,更有利於水平線及垂直線的描繪。 接著,參照圖2 9及圖3 0來說明本實施形態之第3變化 例的分光器5 0 1。分光器5 0 1具有將圖2 4之分光器3 0 1與 32 312/發明說明書(補件)/92-11 /921234 Π 1238242 圖27之分光器401組合的構成,且可使出射光T24處於與 入射光B 21相同的直線上,又,使出射光T 2 8處於與反射 光R 2 4相同的直線上。 如圖2 9所示,分光器5 0 1係將3個長方體組合構成為 口字形者。也就是說,分光器501除具有光學平面202與 204外,還與分光器301相同具有光學平面206與207,又, 與分光器401相同具有光學平面208與209。另外,分光 器5 0 1係由可使光穿透的玻璃或塑膠所構成。本例中,係 使用屬玻璃材料的B K 7 (折射率為1 . 5 )。 另外,與分光器301、401相同,在光學平面202的一 部分形成第1光分離薄膜(第1光分離面)2 0 3,在光學平面 2 0 4的一部分形成第2光分離薄膜(第2光分離面)2 0 5。光 學平面 202、 204、 206、 207、 208、 209 及第 1、第 2 光分 離薄膜2 0 3、2 0 5的位置關係或第1、第2光分離膜2 0 3、 205的反射率及穿透率,與分光器301、401相同。光學平 面2 0 2、2 0 4間的距離、光學平面2 0 6、2 0 7間的距離及光 學平面2 0 8、2 0 9間的距離均相同(例如為1 0 mm )。 如圖3 0所示,穿透第2光分離薄膜2 0 5的光線T 2 2入 射於光學平面206,再通過分光器501的内部(光線T23), 而從光學平面2 0 7作為光線T 2 4出射。另外,屬光線R 2 1 的反射光的光R 2 4入射於第1光分離薄膜2 0 3,與法線形 成角度0=28°而再通過分光器501的内部(光線T25),並 從光學平面204暫以45°的角度出射而成為光線T26。光 線T 2 6入射於光學平面2 0 8,作為光線T 2 7而再度通過分 33 312/發明說明書(補件)/92-11 /92123417 1238242 光器5 Ο 1的内部後,從光學平面2 Ο 9以4 5 °的角度出射而 成為光線T 2 8。藉此,可使光線T 2 4與入射光B 2 1位於相 同直線上,並使反射光R 2 4與光線T 2 8位於相同直線上。 接著,參照圖3 1及圖3 2說明將本實施形態之分光器 2 Ο 1 (參照圖2 1 )安裝於雷射晝線裝置的形態。 如圖3 1所示,雷射晝線裝置2 1 0基本上係由產生線光 之光學系2 1 4、水平地保持光學系2 1 4用的支持機構部 2 1 5、及覆蓋光學系2 1 4與支持機構部2 1 5的殼體2 2 6所構 成。支持機構部2 1 5因為與第1實施形態說明之支持機構 部5的構成相同,故省略說明。 圖3 2為顯示線光產生光學系2 1 4的概略側視圖。 線光產生光學系2 1 4具備半導體雷射器2 1 6、準直透鏡 217、分光器201、及3個棒狀透鏡221、222、和223。 半導體雷射器2 1 6係配置為使其成為水平方向。從半導 體雷射器2 1 6出射的雷射光束,係藉由準直透鏡2 1 7而變 換為光束剖面形狀為圓形的準直光(平行光)B 2 1。本例中, 準直光B 2 1的光徑係設定為2 m m。另外,分光器2 0 1係配 置為其光學平面2 0 2的法線與半導體雷射器2 1 6的光軸形 成45°的角度。光學平面202與204的間隔為10mm,分光 器的長度為20mm,高度為10mm。 在第1光分離薄膜2 0 3中反射入射光中3 3 %的光,而穿 透6 7 %的光。據此,入射光B 2 1係由第1光分離薄膜2 0 3 反射3 3 %的光,而成為光線R 2 1。剩餘的6 7 %的光則成為穿 透光T 2 1而通過分光器2 0 1的内部。在第2光分離薄膜2 0 5 34 312/發明說明書(補件)/92-11 /92123417 1238242 中反射入射光中5 Ο %的光,而穿透5 Ο %的光。因此,在第2 光分離薄膜2 0 5中Τ 2 1的5 0 %被反射而成為反射光R 2 2,並 通過分光器2 Ο 1的内部後,從光學平面2 0 2出射(光線 R 2 3 )。Τ 2 1中剩餘的5 0 %的光則穿透第2光分離薄膜2 0 5 而成為光線Τ 2 2。光線R 2 1與R 2 3係以相對於光學平面2 0 2 的法線形成4 5 °的角度進行出射。因此,光線R 2 1與R 2 3 的出射方向成為垂直方向。 光線R 2 1與R 2 3的間隔w從式(1 1 )而成為如下: w = 2 · 10(l+tan228° )1/2· s i η 2 8 ° c o s 4 5 ° =7 . 5mm 另外,若將0 = 2 8 °代入式(9 ),得到光線Β 2 1與光線Τ 2 2 的偏差量δ ,即: 5 = 1 0 ( 1 + t a η 2 2 8 ° )丨 /2 · s i η ( 4 5 0 — 2 8 ° ) : 3 · 3 m m 棒狀透鏡2 2 1、2 2 2係配置於沿垂直方向出射的2條光 線R 2 1及R 2 3的光路徑上,將光線R 2 1及R 2 3變換為線光。 配置於光線R 2 1的光路徑上的棒狀透鏡2 2 1,其軸方向係 配置為水平、且沿與半導體雷射器2 1 6的出射方向平行的 方向。另外,配置於光線R 2 3的光路徑上的棒狀透鏡2 2 2, 其軸方向係配置為水平、且沿與棒狀透鏡2 2 1垂直的方 向。據此,從棒狀透鏡2 2 1、2 2 2出射的2條垂直線光相互 交又。 另外,棒狀透鏡2 2 3係配置於光線T 2 2的光路徑上。棒 狀透鏡2 2 3係將其軸方向配置為沿著垂直方向。因此,從 棒狀透鏡2 2 3產生的線光成為水平線光。在此,因為光線 B 2 1與光線T 2 2的偏差量5為3 . 3 m m,因此,光線T 2 2係從 35 312/發明說明書(補件)/92-11 /92123417 1238242 半導體雷射器2 1 6的出射位置而從低於3 . 3 m Hi的位置出 射。又,若取代分光器2 0 1而代之以搭載第1變化例所示 之分光器3 0 1 (圖2 5 ),可將光線B 2 1與光線T 2 2的偏差量 5定為零(0 )。由此,可使半導體雷射器2 1 6的光束出射高 度與水平線光的出射高度一致。 另外,光線R 2 1中垂直入射於棒狀透鏡2 2 1的入射面的 入射光的一部分成為反射光R 2 4,並返回與光線R 2 1相同 的光路徑上。圖3 3為顯示取代分光器2 0 1而搭載第2變化 例所示之分光器4 0 1 (圖2 8 )的線光產生光學系2 2 4的側視 圖。線光產生光學系2 2 4中,光線R 2 4與光線T 2 8係藉由 分光器4 0 1而配置於相同直線上。也就是說,由棒狀透鏡 2 2 1及2 2 2所形成的交叉線光的交點與光線T 2 8係配置於 相同的軸上。在此,若取代線光產生光學系2 1 4 (圖3 2 )而 將線光產生光學系2 2 4配置於圖3 1之雷射晝線裝置2 1 0, 即可得到將光線T 2 8保持原狀態而向著雷射晝線裝置2 1 0 的垂直向下的方向出射、即所謂的地墨點光。 相同地,在圖3 2之線光產生光學系2 1 4中,若取代分 光器2 0 1而搭載第3變化例所示之分光器5 0 1 (圖3 0 )的 話,可使半導體雷射器2 1 6的光束出射高度與線光的出射 高度一致,且,可容易得到可出射地墨點光的雷射晝線裝 置。另外,藉由使用反射鏡等的光學元件也可改變光線R 2 1 或R23的出射方向。 如上所述,若使用本實施形態的分光器2 0 1、3 0 1、4 0 1 或5 0 1,可以簡單的方法將一條雷射光束分離為複數條雷 36 312/發明說明書(補件)/92-11 /92123417 1238242 射光束。另夕卜,利用將分光器2 Ο 1、3 Ο 1、4 Ο 1或5 Ο 1搭載 於雷射晝線裝置2 1 0的光學系上,可容易從1個光源得到 複數條雷射光束,因此可以低成本產生複數條畫線用雷射 線光。其結果可提供低價的複數條線光照射用的雷射畫線 裝置。 本發明之分光器、線光產生光學系、多光束產生器、雷 射晝線裝置並不限於上述實施形態,在本發明之申請專利 範圍所記載的範圍内可作種種的變化和改良。 例如,在上述第1及第3實施形態中,作為光分離薄膜 係使用介電質薄膜,但也可使用C r、A 1等的金屬薄膜。 與第1實施形態相同,也可在第2實施形態之三角稜鏡 1 0 3的側面1 0 3 a與1 0 3 b上形成光分離薄膜2,並將反射光 R1與穿透光T 2的比例、及反射光R 2與穿透光T1的比例 調整為任意值。 分光器的尺寸並不限於實施形態中說明的數值,也可依 用途而設定為任意的值。 圖1 4中,反射鏡1 0 4係僅配置於穿透光T 2的光路徑上, 但是,相同地,也可將反射鏡設置於光T 2、R 1、R 2等的光 路徑上,而任意變更此等之光路徑。 【圖式簡單說明】 圖1為顯示本發明之第1實施形態之分光器的立體圖。 圖2為圖1之分光器的俯視圖。 圖3為顯示藉由圖1之分光器來分離光束的原理的說明 圖。 312/發明說明書(補件)/92-11 /92123417 37 1238242 圖4為顯示圖1之分光器的製造方法的說明圖,顯示形 成光分離薄膜的步驟。 圖5為顯示圖1之分光器的製造方法的說明圖,顯示接 合3個三角柱的步驟。 圖6為顯示入射於三角稜鏡的光的出射方向的說明圖。 圖7為更為詳細地說明入射於三角稜鏡的光的出射方向 的說明圖。 圖8為顯示部分入射於三角棱鏡的光的出射方向的說明 圖。 圖9為顯示本發明之第1實施形態之多光束產生器的側 視圖。 圖1 0為顯示圖9之多光束產生器的俯視圖。 圖1 1為顯示本發明之第1實施形態之雷射晝線裝置的 側視圖。 圖1 2為顯示設於圖1 1之雷射晝線裝置的線光產生光學 系的側視圖。 圖1 3為圖1 2之線光產生光學系的俯視圖。 圖1 4為顯示本發明之第2實施形態之線光產生光學系 的說明圖。 圖1 5為顯示入射於圖1 4之三角稜鏡的光的出射方向的 說明圖。 圖1 6為顯示圖1 4之線光產生光學系的變化例的說明 圖。 圖1 7 ( a )為顯示棒狀透鏡與入射光束的剖面的朝向的關 38 312/發明說明書(補件)/92-11 /92123417 1238242 係的說明圖。 圖1 7 ( b )為顯示棒狀透鏡與入射光束的剖面的朝向的另 一關係的說明圖。 圖1 7 ( c )為顯示雙稜鏡的朝向的說明圖。 圖1 8為顯示圖1 6之線光產生光學系的變化例的說明 圖。 圖1 9為顯示本發明之第2實施形態的雷射晝線裝置的 側視圖。 圖2 0為顯示搭載於圖1 9之雷射畫線裝置的光學元件的 說明圖。 圖2 1為顯示本發明之第3實施形態的分光器的立體圖。 圖2 2為顯示藉由圖2 1之分光器分離光束的原理的說明 圖。 圖2 3為更為詳細地說明藉由圖2 1之分光器分離光束的 原理的說明圖。 圖2 4為顯示第3實施形態的第1變化例的分光器的立 體圖。 圖2 5為顯示藉由圖2 4之分光器分離光束的原理的說明 圖。 圖2 6為更為詳細地說明藉由圖2 4之分光器分離光束的 原理的說明圖。 圖2 7為顯示第3實施形態的第2變化例的分光器的立 體圖。 圖2 8為顯示藉由圖2 7之分光器分離光束的原理的說明 39 312/發明說明書(補件)/92-11 /92123417 1238242 圖。 圖2 9為顯示第3實施形態的第3變化例的分光器的立 體圖。 圖3 0為顯示藉由圖2 9之分光器分離光束的原理的說明 圖。 圖3 1為顯示本發明之第3實施形態的搭載著分光器的 雷射晝線裝置的側視圖。 圖3 2為顯示使用圖2 1之分光器的線光產生光學系的側 視圖。 圖3 3為顯示使用圖2 8之分光器的線光產生光學系的側 視圖。 (元件符 號說明) B 寬 度 B1 光 束 B2 光 B3 穿 透光 B5 光 束 B6 光 束 B7 光 束 B8 光 束 B9 光 束 B1 0 光 束 B1 1 光 束 B1 2 反 射光 312/發明說明書(補件)/92-11 /92123417 40 1238242 B1 3 穿 透 光 B1 4 光 束 B1 5 光 束 B2 1 入 射 光 L 長 軸 L1 垂 直 線 光 L2 垂 直 線 光 L3 垂 直 線 光 L4 水 平 線 光 N 棒 狀 透 鏡 R1 反 射 光 R2 反 射 光 R21 分 離 光 R23 分 離 光 T1 穿 透 光 T2 穿 透 光 T22 分 離 光 T24 出 射 光 線 T28 出 射 光 W 間 隔 δ 偏 差 量 1 分 光 器 la 三 角 柱 lb 二 角 柱 312/發明說明書(補件)/92-11 /92123417 41 1238242 1 c 二 角 柱 2 光 分 離 薄 膜 3 三 角 稜 鏡 4 線 光 產 生 光 學系 5 支 持 機 構 部 6 半 導 體 雷 射 器 7 準 直 透 鏡 8 棒 狀 透 鏡 9 棒 狀 透 鏡 10 棒 狀 透 鏡 11 棒 狀 透 鏡 12 雷 射 晝 線 裝 置 20a 側 面 20b 側 面 20c 側 面 22 頂 角 23 頂 角 24 頂 角 30 頂 角 3 1 側 面 32 側 面 33 側 面 40 多 光 束 產 生 器 42 準 直 光 源 312/發明說明書(補件)/92-11 /921234 Π 42 1238242 54 殼 體 50 支 持 框 架 5 1 大 環 52 小 環 53 安 裝 台 10 0 線 光 產 生 光學系 10 1 雷 射 光 源 10 1a 雷 射 出 射 面 1 02 準 直 透 鏡 1 03 三 角 稜 鏡 1 03a 側 面 1 03b 側 面 103c 側 面 1 03d 頂 角 1 04 反 射 鏡 105 棒 狀 透 鏡 106 棒 狀 透 鏡 1 07 雙 稜 鏡 1 07a 側 面 1 07b 上 面 107c 底 面 1 07d 入 射 面 1 07e 出 射 面 1 08 歪 像 透 鏡 312/發明說明書(補件)/92-11 /92123417 43 1238242 1 09 光 學 單 元 110 支 持 機 構 部 111 雷 射 晝 線 裝 112 殼 體 120 線 光 產 生 光 140 線 光 產 生 光 20 1 分 光 器 202 光 學 平 面 203 第 1 光 分 離 204 光 學 平 面 205 第 2 光 分 離 206 光 學 平 面 207 光 學 平 面 208 光 學 平 面 209 光 學 平 面 214 線 光 產 生 光 2 16 半 導 體 雷 射 2 17 準 直 透 鏡 22 1 棒 狀 透 鏡 222 棒 狀 透 鏡 223 棒 狀 透 鏡 224 線 光 產 生 光 30 1 分 光 器 40 1 分 光 器 312/發明說明書(補件)/92-11 /92123417 置 學系 學系 薄膜(第1光分離面) 薄膜(第2光分離面) 學系 器 學系 44 1238242 50 1 分光器Isin45〇 = nsin0 (5) A part of the second light separation plane 2 05, T 2 1 is reflected at an angle of 0 with respect to the normal to become reflected light R 2 2, and passes through the inside of the beam splitter 2 0 1 Is emitted from the optical plane 2 0 2 (ray R 2 3). At this time, by Snell's law, the light ray R23 forms an angle of 45 ° with the normal of the exit plane optical plane 202. The remaining light in T 2 1 passes through the second light separation surface 205 and becomes a light ray T22. According to Snell's law, the light ray T22 forms an angle of 45 ° with the normal of the second light separation surface 205, and therefore, T 2 2 is parallel to the incident light B 2 1. If the incident point 0 of the incident light B 2 1 of the first light separation plane 2 0 3 is set as the origin, the normal of the incident point is the y-axis, and the axis perpendicular to the y-axis is the X-axis, then the ray T 2 1 The formula of the straight line is · y = c 〇t 0 · x (6) Here, if the distance in the y-axis direction between the first light separation plane 2 Ο 3 and the second light separation plane 2 〇 5 is set to d, the first The linear formula of 2 light separation surface 2 0 5 becomes: y = -d (7) 25 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242 The light ray T 2 1 and the second light separation surface 2 0 5 The coordinates of the point of intersection A from equations (6) and (7) become A (-dtan (9, -d) 0. The length b of the line segment OA becomes: b = ((-dtan Θ) 2 + (-d) 2) 1 / 2 = d (l + tan2 θ) 1/2 (8) Therefore, the deviation 5 of incident light B 2 1 from light T 2 2 is expressed by the following formula. (? = Bsin (45 °-Θ) = d (l + tan2 θ) 1/2 · sin (4 5 0 — 0) (9) Next, if the exit point of the light ray R 2 3 of the optical plane 2 2 is set to C, and the length of the line segment 0C is L, it becomes : L = bsi η θ · 2 = 2d (l + tan2 θ) 1/2 · si η (9 = 2 dta η θ (10) Therefore, the interval w between the rays R 21 and R 2 3 becomes: w = Lcos45 0 = 2d (l + tan20) 1/2 sin0 cos45〇 = 2 dta η Θ. cos45〇 (11) For example, if the refractive index of the material of the spectroscope 2 0 1 is set to 1.5, using formula (5), that is, lsin45 ° = 1.5sin0, we can get 0 = 28 °. In addition, if the distance between the optical planes 202 and 204 is set to 10 mm, 0 = 2 8 ° is substituted into equation (9) to obtain the deviation 5 between the light B 2 1 and the light T 2 2, that is: 5 10 (l + tan 2 2 8 °) 1/2 · sin (4 5 0 — 2 8 °) = 3. 3mni Here, the incident position 0 on the first light separation film 2 0 3 is separated from the second light The distance in the X-axis direction of the incident position A on the film 205 is L / 2. According to 26 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242, from the formula (10), L / 2 = dtan0. Therefore, we can know The distance in the X-axis direction between the point of incidence of light on the first light separation film 203 and the point of incidence of light on the second light separation film 205 is approximately dta η 0. From this, it can be seen that when the incident light B 2 1 is incident on the first light separation film 2 0 3, the penetrating light T 2 1 must reach the second light separation film 2 0 5. Therefore, on the optical plane 2 2 2 The first light separation film 2 0 3 and the second light separation film 2 0 5 are formed on the 2 0 4 side in a direction parallel to the optical planes 2 0 2 and 2 0 4 at a position deviated only by the distance dta η 0. can. Specifically, in FIG. 2, the left and right central portions of the first light separation film 2 0 3 and the left and right central portions of the second light separation film 2 05 may be formed so as to be shifted only in the left and right directions. The distance dta η (9 is sufficient. Similarly, the interval w between the light rays R 21 and R 2 3 becomes: w = 2 · 1 0 (1 + tan 2 2 8 °) 1/2 · sin28 ° cos45 ° = 7 5mm With this, according to the beam splitter 2 01, it is possible to easily form a light ray T 2 2 traveling in a light path parallel to the incident light B 2 1 and a light ray R 2 traveling in a light path perpendicular to the incident light B 2 1 3 rays of 1 and R 2 3. Next, the spectroscope 3 0 1 of the first modification of this embodiment will be described with reference to FIGS. 24 and 25. The spectroscope 3 0 1 is characterized in that it can generate and incident light The deviation 6 of B 2 1 is zero (0) of the outgoing light ray T 2 4. As shown in FIG. 24, the beam splitter 3 0 1 is a combination of two rectangular parallelepipeds in an L shape. That is, the beam splitter 3 0 1 is the same as the beam splitter 2 0 1 of FIG. 21, and has optical planes 2 2 and 2 0 4 as the two sides facing each other. The optical planes 202 and 204 are parallel to each other. The beam splitter 301 is additionally It has optical planes 2 0 6 and 2 7 as the two sides facing each other. The optical plane 2 0 6 27 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242 and 207 are parallel to each other and are parallel to the optical The planes 202 and 204 intersect perpendicularly. The spacing of the optical planes 2 0, 2 0 4 and the optical planes 2 0 6 and 2 7 are equal. In this example, the size of the L-shaped beam splitter 3 0 1 is 30 mm. (Length of optical planes 202 and 204) x 25mm (length of optical planes 206 and 207 + distance between optical planes 2 0 2 and 2 0 4). In addition, the beam splitter 3 0 1 has a height of 10 mm, and optical planes 202 and 204 The distance between the optical plane is 10mm, and the distance between the optical plane 206 and 207 is 10 mm. The beam splitter 3 0 1 is made of glass or plastic that can penetrate light. In this example, the beam splitter 3 0 1 is It is composed of BK 7 (refractive index of 1.5) made of glass material. Similar to the beam splitter 201 in FIG. 21, a first light separation film (first light separation surface) 2 0 3 is formed on a part of the optical plane 2 0 2, A second light separation film (second light separation surface) 2 0 5 is formed on a part of the optical plane 2 0 4. The first light separation film 2 0 3 and the second light separation film 2 0 The positional relationship, reflectance, and transmittance of 5 are all the same as the first light separation film 2 0 3 and the second light separation film 2 0 5 formed by the spectroscope 2 01. As shown in FIG. 25, the light beam B 2 1 is also incident on the beam splitter 3 0 1 obliquely. The reflected light R 2 1, R 2 2, R 2 3 and the transmitted light T 2 1, T 2 2 are generated in the same manner as in the case of the beam splitter 2 0 1 described with reference to FIG. 2. The light ray T 2 2 is incident on the optical plane 206, passes through the beam splitter 301 again as the light ray T23, and exits from the optical plane 207 as the light ray T 2 4. The deviation amount 5 'of the incident light ray B 2 1 from the light ray T 2 4 becomes zero (0). Next, the reason why the deviation amount 6 'becomes zero (0) will be described with reference to Figs. Further, the distance in the x-axis direction of the plane 2 0 6 of the incident point (origin point) 0 on the first light separation plane 2 0 3 and the optical plane 28 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242 ( The distance along the plane 2 0 2 and 2 0 4) is set to c ° The light ray T 2 2 and the normal to the second light separation plane 2 0 5 form an angle of 4 5 °, and because the point A (-dtan0, -d), so the formula of the straight line of the light ray T22 becomes: y ^ x + dCtani1 — 1) (12) Next, the formula of the straight line including the optical plane 206 becomes: x = -c (13) The optical plane 206 and the optical plane The interval of 207 is the same as that of the optical plane 202 and the optical plane 204, and both are d. Therefore, the straight line formula including the optical plane 207 becomes: x =-(c + d) (14) Therefore, the light ray T 2 2 and the optical The coordinates of the intersection point E of the plane 2 0 6 are E (-c, d (tan0 — 1)-c) from the expressions (1 2) and (13). In addition, since the light ray T23 forms an angle 0 with the normal of the optical plane 2 0 6, the slope of the straight line formula including the light ray T 2 3 becomes tan0. At the same time, the straight line passes through the point E (-c, d (tan 0 — 1)-c), so the formula of the straight line is: y = ta η θ · x + (c + d) (tan θ — 1) (15) The coordinates of the intersection point F of the line including the light ray T 2 3 and the optical plane 2 0 7 become F (-(c + d),-(c + d)) from equations (14) and (15). Here, the formula of the straight line including the incident light B21 becomes: y = X (16) If the coordinates of the intersection F ′ of the incident light B 2 1 and the optical plane 2 0 7 are obtained from the formulas (1 4) and (1 6), , It becomes F '(-(c + d),-(c + d)). That is, F is consistent with 29 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242 F '. In addition, because point F is also the exit point of the light T 2 4, it is known that the incident light B 2 1 and the outgoing light T 2 4 are on the same straight line. Based on the above, in order to locate the incident light B21 and the outgoing light T24 on the phase, not only does the interval between the optical planes 2 06 and 2 7 and the interval between the optical plane 2 0 4 make the optical planes 2 0 6 and 2 It is necessary for 0 7 and optics 4 and 2 4 to be arranged perpendicular to each other, and it is necessary to make the distance from the incident point to the optical plane 2 6 in the X-axis direction more than X from the incident axis) to the exit point (A). The distance in the axial direction is necessary. In order to penetrate the light T22-once it emerges from the optical plane 204, it is necessary to re-opt the optical plane 206. That is, it is necessary to have the following formula. dtan0 < c (17) In this way, it is necessary to set the distance between the incident point on the first light separation film 203 and the direction of the light 206 parallel to the optical planes 202 and 204 to be zero. Therefore, the beam splitter 3 0 1 may be made so that the distance between the optical ear and the first light separation film 2 0 3 parallel to the optical plane 2 0 2 and 2 0 4 is larger than d t a η 0. For example, in FIG. 25, the distance between the surface 206 and the center of the first optical separation film 203 in the left-right direction may be made larger than d t a η 0 in the left-right direction. More preferably, the distance between the learning plane 2 0 6 and the left end portion of the first optical separation film 2 0 3 (the end portion on the light side 2 ◦ 6) is made larger than d t a η 0. In this way, the outgoing light can be formed on the same line as the incident light, which is conducive to the horizontal and vertical lines drawn by the laser daylight device. Next, the 312th / Invention Specification (Supplement) / 92-11 / 92123417 of this embodiment will be described with reference to FIG. 27 and FIG. 28. Therefore, it can be the same as a straight plane 202 ^ plane 202 0 (y axis) point 0 (y this It is the beam splitter 4 Ο 1 that can change the optical race plane by 2 when the incident plane is optically flat with respect to the direction of the dta η L plane 2 0 6 30 1238242. The beam splitter 4 〇 1 is characterized by the light R 2 A part of the reflected light of 1 can return on the same optical path as the light R21, and then enters the beam splitter 4 0 1. As shown in FIG. 7, the beam splitter 4 0 1 is composed of two rectangular parallelepipeds, which is L The glyph. In other words, the beam splitter 4 0 1 is the same as the beam splitter 2 0 1 of FIG. 21, and has optical planes 2 2 and 2 0 4 as two sides facing each other. The optical planes 202 and 204 are opposite each other. Parallel. The beam splitter 401 also has optical planes 2 08 and 2 9 as two opposite sides. The optical planes 2 8 and 209 are parallel to each other and intersect perpendicularly to the optical planes 202 and 204. Optical plane The interval between 2 0 2, 2 0 4 is the same as the interval between the optical planes 2 08, 2 0. In this example, the beam splitter 4 0 1 The size of the L shape is 30 mm (the length of the optical planes 202 and 204) x 25 mm (the length of the optical planes 208 and 209 + the distance between the optical planes 2 0 2 and 2 0 4). In addition, the height of the beam splitter 4 0 1 It is 10mm, the distance between the optical planes 202 and 204 is 10 mm, and the distance between the optical planes 208 and 209 is 10 mm. The beam splitter 4 0 1 is made of glass or plastic that can transmit light. In this example, the beam splitter 40 1 is made of BK 7 (refractive index 1.5) which is a glass material. It is the same as the beam splitter 2 01 in FIG. 2 and is formed on a part of the optical plane 202 The first light separation film (first light separation surface) 2 0 3, and the second light separation film (second light separation surface) 2 0 5 is formed on a part of the optical plane 2 0 4. The first light separation film 2 0 3 and The positional relationship, reflectance, and transmittance of the second optical separation film 2 05 are the same as those of the first optical separation film 2 0 3 and the second optical separation film 2 0 5 formed by the beam splitter 2 01. 31 312 / Specification of the Invention (Supplement) / 92-11 / 92123417 1238242 As shown in Figure 2-8, the light beam B 2 1 is also incident on the beam splitter 4 Ο 1. The reflected light R 2 1, R 2 2, R 2 3 Light transmission Τ 2 1 Τ system 22 described with reference to FIG. 22 Description splitter generates the same manner as in the case of 2 Ο 1. The light ray R 2 1 is a rod lens (not shown) provided on the extension line of the light ray R 2 1. Several% of the light that is perpendicularly incident on the rod lens is reflected and returns as the light ray R 2 4 on the same light path as the light ray R 2 1. The light R 2 4 is incident on the first light separation surface 2 0 3 and forms an angle of 0 = 2 8 ° with the normal and passes through the interior of the beam splitter 4 0 1 (light T 2 5), and then temporarily from the optical plane 2 0 4 The light beam T26 is emitted at an angle of 45 °. After that, after entering the optical plane 208 and passing through the inside of the beam splitter 401 (ray T 2 7) again, it exits from the optical plane 209 at an angle of 45 ° as light T 2 8. Here, as with the beam splitter 3 0 1 described with reference to FIG. 26, if the interval between the optical planes 2 0 8 and 2 0 9 coincides with the interval between the optical planes 2 0 2 and 2 0 4, the optical planes 208 and 209 and the optical plane The planes 202 and 204 are perpendicular to each other, and the distance between the optical plane 2 0 8 and the first light separation film 2 0 3 in a direction parallel to the optical plane 2 0 2 and 2 0 4 is greater than dta η 0, and the light ray T 2 8 That is, it is located on the same straight line as the reflected light R24. This is because the penetrating light T28-once emitted from the optical plane 204, is necessary to be incident on the optical plane 208 again. In this modification, two light rays R 2 1 and T 2 8 traveling along a light path perpendicular to the light beam B 2 1 can be formed, and therefore, it is more advantageous in the case of a laser line drawing device, for example. Drawing of horizontal and vertical lines. Next, a spectroscope 501 according to a third modified example of this embodiment will be described with reference to Figs. 29 and 30. The beam splitter 5 0 1 has a structure in which the beam splitter 3 0 1 of FIG. 2 and 32 312 / Invention Specification (Supplement) / 92-11 / 921234 Π 1238242 are combined with the beam splitter 401 of FIG. It is on the same straight line as the incident light B 21, and the outgoing light T 2 8 is on the same straight line as the reflected light R 2 4. As shown in Figure 29, the beam splitter 501 is a combination of three rectangular parallelepipeds. That is, in addition to the optical planes 202 and 204, the beam splitter 501 has the same optical planes 206 and 207 as the beam splitter 301, and has the optical planes 208 and 209 the same as the beam splitter 401. In addition, the beam splitter 501 is made of glass or plastic that can transmit light. In this example, B K 7 (a refractive index of 1.5), which is a glass material, is used. In addition, similar to the beam splitters 301 and 401, a first light separation film (first light separation surface) 2 0 3 is formed on a part of the optical plane 202, and a second light separation film (second light is formed on a part of the optical plane 2 0 4). Light separation surface) 2 0 5. Optical plane 202, 204, 206, 207, 208, 209 and the positional relationship of the first and second optical separation films 2 0 3, 2 0 5 or the reflectance of the first and second optical separation films 2 0 3, 205 and The transmittance is the same as that of the beam splitters 301 and 401. The distances between the optical planes 2 0, 2 0 4 and the optical planes 2 06, 2 7 and the optical planes 2 0 8 and 2 0 9 are all the same (for example, 10 mm). As shown in FIG. 30, the light T 2 2 penetrating the second light separation film 2 05 is incident on the optical plane 206, and then passes through the inside of the beam splitter 501 (light T23), and the optical plane 2 7 is used as the light T 2 4 shots. In addition, the light R 2 4 which is a reflected light belonging to the light ray R 2 1 is incident on the first light separation film 2 0 3, forms an angle of 0 = 28 ° with the normal, and then passes through the inside of the beam splitter 501 (light T25) and The optical plane 204 is temporarily emitted at an angle of 45 ° and becomes a light ray T26. The light T 2 6 enters the optical plane 2 0 8 and passes through the optical plane 2 as the light T 2 7 and then passes through 33 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242 Ο 9 is emitted at an angle of 45 ° to become light T 2 8. Thereby, the light T 2 4 and the incident light B 2 1 can be positioned on the same straight line, and the reflected light R 2 4 and the light T 2 8 can be positioned on the same straight line. Next, a mode in which the spectroscope 2 0 1 (see FIG. 2) of this embodiment is mounted on a laser daylight device will be described with reference to FIGS. 31 and 32. As shown in FIG. 31, the laser daylight device 2 10 is basically composed of an optical system 2 1 that generates linear light, a supporting mechanism portion 2 1 5 for horizontally holding the optical system 2 1 4, and a cover optical system. 2 1 4 and the housing 2 2 6 of the support mechanism section 2 1 5. Since the support mechanism section 2 1 5 has the same configuration as the support mechanism section 5 described in the first embodiment, description thereof will be omitted. FIG. 32 is a schematic side view showing the linear light generating optical system 2 1 4. The linear light generating optical system 2 1 4 includes a semiconductor laser 2 1 6, a collimator lens 217, a beam splitter 201, and three rod lenses 221, 222, and 223. The semiconductor laser 2 1 6 is arranged so that it is horizontal. The laser beam emitted from the semiconductor laser 2 1 6 is transformed by a collimating lens 2 1 7 into a collimated light (parallel light) B 2 1 having a circular beam cross-sectional shape. In this example, the optical diameter of the collimated light B 2 1 is set to 2 mm. In addition, the spectroscope 201 is arranged so that the normal of its optical plane 202 and the optical axis of the semiconductor laser 2116 form an angle of 45 °. The distance between the optical planes 202 and 204 is 10 mm, and the beam splitter has a length of 20 mm and a height of 10 mm. The first light separation film 203 reflects 33% of the incident light and penetrates 67% of the light. Accordingly, the incident light B 2 1 is reflected by 33% of the light from the first light separation film 2 0 3 and becomes the light R 2 1. The remaining 67% of the light passes through T 2 1 and passes through the inside of the beam splitter 2 0 1. In the second light separation film 2 0 5 34 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242, 50% of the light in the incident light is reflected, and 50% of the light is transmitted. Therefore, 50% of T 2 1 in the second light separation film 205 is reflected to become reflected light R 2 2 and passes through the inside of the beam splitter 2 0 1 and exits from the optical plane 2 0 2 (ray R twenty three ). The remaining 50% of the light in T 2 1 passes through the second light separation film 2 5 and becomes light T 2 2. The light rays R 2 1 and R 2 3 are emitted at an angle of 45 ° with respect to the normal of the optical plane 2 0 2. Therefore, the emission directions of the light rays R 2 1 and R 2 3 become vertical directions. The interval w between the light rays R 2 1 and R 2 3 becomes as follows from the formula (1 1): w = 2 · 10 (l + tan228 °) 1/2 · si η 2 8 ° cos 4 5 ° = 7.5 mm If 0 = 2 8 ° is substituted into the formula (9), the deviation δ between the light B 2 1 and the light T 2 2 is obtained, that is: 5 = 1 0 (1 + ta η 2 2 8 °) 丨 / 2 · si η (4 5 0 — 2 8 °): 3 · 3 mm rod lenses 2 2 1 and 2 2 2 are arranged on the light path of two light rays R 2 1 and R 2 3 which are emitted in the vertical direction, and divide the light rays R 2 1 and R 2 3 are converted into linear light. The rod lens 2 2 1 disposed on the light path of the light ray R 2 1 has an axial direction which is horizontal and parallel to the emission direction of the semiconductor laser 2 1 6. In addition, the rod lens 2 2 2 arranged on the light path of the light ray R 2 3 has its axial direction arranged horizontally and in a direction perpendicular to the rod lens 2 2 1. Accordingly, the two vertical line lights emitted from the rod lenses 2 2 1 and 2 2 2 cross each other. The rod lens 2 2 3 is arranged on the light path of the light ray T 2 2. The rod lenses 2 2 3 are arranged so that their axial directions are along the vertical direction. Therefore, the linear light generated from the rod lens 2 2 3 becomes horizontal linear light. Here, because the deviation 5 between the light B 2 1 and the light T 2 2 is 3.3 mm, the light T 2 2 is from 35 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242 semiconductor laser Device 2 1 6 and a position below 3.3 m Hi. In addition, if the spectroscope 2 0 1 is replaced by the spectroscope 3 0 1 shown in the first modified example (FIG. 2 5), the deviation 5 between the light beam B 2 1 and the light beam T 2 2 can be set to zero. (0). This allows the height of the light beam emitted from the semiconductor laser 2 16 to be the same as the light emitted from the horizontal line. In addition, a part of the incident light that is perpendicularly incident on the incident surface of the rod lens 2 2 1 of the light ray R 2 1 becomes the reflected light R 2 4 and returns to the same optical path as the light ray R 2 1. Fig. 33 is a side view showing a line light generating optical system 2 2 4 equipped with a beam splitter 4 0 1 (Fig. 2 8) shown in the second modification instead of the beam splitter 2 01. In the linear light generating optical system 2 2 4, the light beam R 2 4 and the light beam T 2 8 are arranged on the same straight line by the beam splitter 4 0 1. That is, the intersection of the cross-line light formed by the rod lenses 2 2 1 and 2 2 2 and the light ray T 2 8 are arranged on the same axis. Here, if the line light generating optical system 2 1 4 is replaced by the line light generating optical system 2 1 4 (FIG. 3 2) and the laser daylight device 2 1 0 of FIG. 3 is provided, the light ray T 2 can be obtained. 8 In the original state, the light is emitted toward the vertical downward direction of the laser daylight device 2 1 0, that is, the so-called ground ink dot light. Similarly, in the linear light generating optical system 2 1 4 of FIG. 3, if the spectroscope 5 0 1 (FIG. 3) shown in the third modification is mounted instead of the spectroscope 2 01, a semiconductor lightning can be made. The height of the light beam emitted by the emitter 2 16 is the same as that of the linear light, and a laser daylight device capable of emitting ground dot light can be easily obtained. In addition, by using an optical element such as a mirror, the exit direction of the light rays R 2 1 or R23 can be changed. As described above, if the beam splitter 2 0 1, 3 0 1, 4 0 1 or 5 0 1 of this embodiment is used, a laser beam can be easily separated into a plurality of lasers 36 312 / Invention Specification (Supplementary Document) ) / 92-11 / 92123417 1238242 beam. In addition, by using a beam splitter 2 0 1, 3 0 1, 4 0 1 or 5 0 1 on the optical system of the laser daylight device 2 1 0, a plurality of laser beams can be easily obtained from one light source. Therefore, it is possible to generate a plurality of light rays for drawing lines at a low cost. As a result, a laser line device for irradiating a plurality of lines of light can be provided at a low price. The beam splitter, linear light generating optical system, multi-beam generator, and laser daylight device of the present invention are not limited to the above-mentioned embodiments, and various changes and improvements can be made within the scope described in the scope of the patent application of the present invention. For example, in the above-mentioned first and third embodiments, a dielectric thin film is used as the light separation film, but a metal thin film such as Cr or A1 may be used. Similar to the first embodiment, a light separation film 2 may be formed on the side surfaces 1 0 3 a and 1 0 3 b of the triangular ridge 1 0 3 of the second embodiment, and the reflected light R1 and the transmitted light T 2 may be formed. And the ratio of the reflected light R 2 and the transmitted light T 1 are adjusted to arbitrary values. The size of the spectroscope is not limited to the values described in the embodiment, and may be set to any value depending on the application. In FIG. 14, the reflecting mirror 104 is arranged only on the light path of the penetrating light T 2. However, similarly, the reflecting mirror may be provided on the light path of the light T 2, R 1, R 2 and the like. And arbitrarily change these light paths. [Brief Description of the Drawings] FIG. 1 is a perspective view showing a beam splitter according to a first embodiment of the present invention. FIG. 2 is a top view of the optical splitter of FIG. 1. FIG. FIG. 3 is an explanatory diagram showing a principle of splitting a light beam by the spectroscope of FIG. 1. FIG. 312 / Invention Specification (Supplement) / 92-11 / 92123417 37 1238242 Fig. 4 is an explanatory view showing a method of manufacturing the spectroscope shown in Fig. 1 and a step of forming a light separation film. Fig. 5 is an explanatory view showing a method of manufacturing the spectroscope of Fig. 1, showing a step of joining three triangular columns. FIG. 6 is an explanatory diagram showing an emission direction of light incident on the triangular ridge. Fig. 7 is an explanatory diagram for explaining the exit direction of light incident on the triangular triangle in more detail. Fig. 8 is an explanatory view showing a direction of emission of light partially incident on the triangular prism. Fig. 9 is a side view showing a multi-beam generator according to the first embodiment of the present invention. FIG. 10 is a top view showing the multi-beam generator of FIG. 9. Fig. 11 is a side view showing a laser daylight device according to a first embodiment of the present invention. FIG. 12 is a side view showing a line light generating optical system provided in the laser daylight device of FIG. 11. FIG. FIG. 13 is a top view of the line light generating optical system of FIG. 12. Fig. 14 is an explanatory view showing a linear light generating optical system according to a second embodiment of the present invention. FIG. 15 is an explanatory diagram showing an exit direction of light incident on the triangular ridge of FIG. 14. FIG. 16 is an explanatory diagram showing a modification example of the line light generating optical system of FIG. 14. Fig. 17 (a) is an explanatory diagram showing the relationship between the rod lens and the direction of the cross section of the incident beam 38 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242. Fig. 17 (b) is an explanatory view showing another relationship between the rod lens and the orientation of the cross section of the incident light beam. FIG. 17 (c) is an explanatory diagram showing the orientation of the double ridge. FIG. 18 is an explanatory diagram showing a modification example of the linear light generating optical system of FIG. 16. FIG. Fig. 19 is a side view showing a laser daylight device according to a second embodiment of the present invention. FIG. 20 is an explanatory diagram showing an optical element mounted on the laser line drawing device of FIG. 19. FIG. Fig. 21 is a perspective view showing a spectroscope according to a third embodiment of the present invention. Fig. 22 is an explanatory diagram showing a principle of splitting a light beam by the spectroscope of Fig. 21; Fig. 23 is an explanatory diagram explaining the principle of splitting the light beam by the beam splitter of Fig. 21 in more detail. Fig. 24 is a perspective view showing a spectroscope according to a first modification of the third embodiment. Fig. 25 is an explanatory diagram showing the principle of splitting a light beam by the beam splitter of Fig. 24. Fig. 26 is an explanatory diagram explaining the principle of splitting the light beam by the beam splitter of Fig. 24 in more detail. Fig. 27 is a perspective view showing a spectroscope according to a second modification of the third embodiment. Fig. 28 is an illustration showing the principle of splitting the light beam by the spectroscope of Fig. 27. 39 312 / Invention Specification (Supplement) / 92-11 / 92123417 1238242. Fig. 29 is a perspective view showing a spectroscope according to a third modification of the third embodiment. Fig. 30 is an explanatory diagram showing a principle of splitting a light beam by the spectroscope of Fig. 29. Fig. 31 is a side view showing a laser daylight device equipped with a spectroscope according to a third embodiment of the present invention. Fig. 32 is a side view showing a line light generating optical system using the beam splitter of Fig. 21; Fig. 33 is a side view showing a line light generating optical system using the beam splitter of Fig. 28. (Explanation of component symbols) B width B1 beam B2 beam B3 penetrating beam B5 beam B6 beam B7 beam B8 beam B9 beam B1 0 beam B1 1 beam B1 2 reflected light 312 / Instruction Manual (Supplement) / 92-11 / 92123417 40 1238242 B1 3 transmitted light B1 4 light beam B1 5 light beam B2 1 incident light L long axis L1 vertical line light L2 vertical line light L3 vertical line light L4 horizontal line light N rod lens R1 reflected light R2 reflected light R21 separated light R23 separated light T1 penetrating light T2 penetrating light T22 separated light T24 outgoing light T28 outgoing light W interval δ deviation amount 1 beam splitter la triangular column lb two-corner 312 / Invention Manual (Supplement) / 92-11 / 92123417 41 1238242 1 c two-corner 2 Light separation film 3 Triangular ridge 4 Linear light generating optics 5 Support mechanism 6 Semiconductor laser 7 Collimator lens 8 Rod lens 9 Rod lens 10 Rod lens 11 Rod lens 12 Laser daylight device 20a Side 20b side 20c side 22 top angle 23 top angle 24 top angle 30 top angle 3 1 side 32 side 33 side 40 multi-beam generator 42 collimated light source 312 / invention manual (supplement) / 92-11 / 921234 Π 42 1238242 54 Housing 50 Support frame 5 1 Large ring 52 Small ring 53 Mounting table 10 0 Line light generating optics 10 1 Laser light source 10 1a Laser exit surface 1 02 Collimating lens 1 03 Triangular ridge 1 03a Side 1 03b Side 103c Side 1 03d Vertex 1 04 Reflector 105 Rod lens 106 Rod lens 1 07 Double 稜鏡 1 07a Side 1 07b Upper 107c Bottom 1 07d Incident surface 1 07e Exit surface 1 08 Anamorphic lens 312 / Instruction manual (Supplementary) ) / 92-11 / 92123417 43 1238242 1 09 Optical unit 110 Support mechanism 111 Laser daylighting 112 Housing 120 Line light generating light 140 Line light generating light 20 1 Beam splitter 202 Optical plane 203 First light separation 20 4 Optical plane 205 Second light separation 206 Optical plane 207 Optical plane 208 Optical plane 209 Optical plane 214 Line light generates light 2 16 Semiconductor laser 2 17 Collimation lens 22 1 Rod lens 222 Rod lens 223 Rod lens 224 line Light produces light 30 1 Beamsplitter 40 1 Beamsplitter 312 / Invention Manual (Supplements) / 92-11 / 92123417 Faculty of Science Faculty Film (first light separation surface) Thin film (second light separation surface) Department 44 1238242 50 1 Beamsplitter

312/發明說明書(補件)/92-11 /92123417 45312 / Invention Specification (Supplement) / 92-11 / 92123417 45

Claims (1)

94· 4· -4 替换本 1238242 拾、申請專利範圍: 1. 一種多光束產生器,其包含有: 光源,係產生光束; 分光器,其係由至少具有2個面以入射該光束之穿透 體、形成於該至少2個面中的第1面之第1光分離部、及 形成於該至少2個面中的第2面之第2光分離部所構成; 以及94 · 4 · -4 Replacement of this 1238242 Scope of patent application: 1. A multi-beam generator including: a light source for generating a light beam; a beam splitter having at least two faces for incident penetration of the light beam A transparent body, a first light separation portion formed on a first surface of the at least two surfaces, and a second light separation portion formed on a second surface of the at least two surfaces; and 從由該第1光分離部及該第2光分離部中至少一個所分 離的光束中得到線光的線光產生光學元件。 2 .如申請專利範圍第1項之多光束產生器,其中,該分 光器係將從光源所產生的1條入射光分離為由第1光分離 部所反射的一條光、由該第2光分離部所反射的一條光、 及穿透該第1光分離部的光和穿透該第2光分離部的光所 組成的1條穿透光;A linear light generating optical element that obtains linear light from a light beam separated by at least one of the first light separating section and the second light separating section. 2. The multi-beam generator according to item 1 in the scope of the patent application, wherein the beam splitter is configured to separate one incident light generated from the light source into one light reflected by the first light separation unit, and the second light One transmitted light composed of a light reflected by the separation section and a light transmitted through the first light separation section and a light transmitted through the second light separation section; 該線光產生光學元件,係接受由該第1光分離部所反射 的反射光、由該第2光分離部所反射的反射光、及穿透該 第1光分離部的光和穿透該第2光分離部的光所組成的1 條穿透光中至少一條光,而變換為線光。 3 .如申請專利範圍第2項之多光束產生器,其中,該光 穿透體係形成為具有3側面的三角柱形狀的透明光學元 件; 在該三角柱的3側面中的2側面形成該第1光分離部及 該第2光分離部。 4 .如申請專利範圍第3項之多光束產生器,其中,該光 46 326\總檔\92\92123417\92123417(替換)_ 1 1238242 學元件係為其底面形狀為略直角等腰三角形的三角柱。 5 .如申請專利範圍第2項之多光束產生器,其中,該光 穿透體具備分別具有呈略直角等腰三角形的底面形狀的透 明三角柱的第1光學元件、第2光學元件及第3光學元件; 屬該第1光學元件的側面之該三角柱的底面形狀中包含 構成頂角的2邊的三角柱的2側面,係接合於屬該第2光 學元件及第3光學元件的側面之該三角柱的底面形狀中包 含與頂角面對的邊的三角柱的側面; 在該接合之2側面形成該第1光分離部及該第2光分離 部。 6 .如申請專利範圍第2項之多光束產生器,其中,該第 1光分離部及該第2光分離部具有約6 7 %的反射率。 7 . —種線光產生光學系,其包含有: 光源,係產生光束; 準直透鏡,係將來自該光源的出射光變換為準直光; 三角稜鏡,係為形成具有3側面的三角柱的形狀,並於 該三角柱的該3側面中的2側面形成第1光分離部及第2 光分離部的三角稜鏡,其於由該2側面所組成的頂角接受 該準直光,用以將該準直光分離為4條光束;及 線光產生光學元件,係配置於從該三角稜鏡出射的光束 的光路徑中至少一個光路徑上,並將該光束變換為線光。 8 .如申請專利範圍第7項之線光產生光學系,其中,藉 由在該三角稜鏡與該線光產生光學元件之間更設置反射從 該三角稜鏡出射的光束用的反射鏡,以改變該光束的光路 47 32 6\總檔\92\92123417\92123417(替換)-1 1238242 徑。 9 .如申請專利範圍第7項之線光產生光學系,其中,該 光源具有出射雷射光的雷射出射面; 該三角稜鏡的該頂角與該雷射出射面呈面對狀態。 1 0 .如申請專利範圍第7項之線光產生光學系,其中, 更具備將來自該準直透鏡的準直光的光束形狀設為略圓形 的光學元件。 1 1 .如申請專利範圍第1 0項之線光產生光學系,其中, 該光學元件係由改變該準直光的圓形度的歪像透鏡所構 成。 1 2 .如申請專利範圍第7項之線光產生光學系,其中, 藉由在該三角稜鏡與該線光產生光學元件之間更設置雙稜 鏡,以使光束的光束形狀旋轉。 1 3 .如申請專利範圍第7項之線光產生光學系,其中, 該第1光分離部及該第2光分離部係分別由光分離薄膜所 組成。 1 4. 一種雷射晝線裝置,其包含有: 雷射器,係產生光束;以及 分光器,其係由至少具有2個面以入射該光束之光穿透 體、形成於該至少2個面中的第1面之第1光分離部、及 係形成於該至少2個面中的第2面之第2光分離部所構成; 線光產生光學元件,係從由該第1光分離部及該第2光 分離部中至少一個光分離部所分離的光束獲得線光;以及 支持部,係支持該雷射器、該分光器及該線光產生光學 48 326\總檔\92\92123417\92123417(替換)-1 1238242 元件。 1 5 .如申請專利範圍第1 4項之雷射晝線裝置,其中,該 分光器係將從該雷射器所產生的1條入射光分離為由該第 1光分離部所反射的一條光、由該第2光分離部所反射的 一條光、及穿透該第1光分離部的光和穿透該第2光分離 部中任一者的光所組成的1條穿透光; 該線光產生光學元件係接受由該第1光分離部所反射的 反射光、由該第2光分離部所反射的反射光、及穿透該第 1光分離部的光和穿透該第2光分離部的光所組成的1條 穿透光中至少一條光,而變換為線光。 1 6 .如申請專利範圍第1 4項之雷射晝線裝置,其中,在 該第1光分離部的反射光、該第2光分離部的反射光、該 第1光分離部及第2光分離部的穿透光中至少1條之通過 路徑中,配置其他的光分離元件,以產生4條以上的光束; 該線光產生光學元件係接受該4條以上的光束中之至少 一條,而變換為線光。 1 7.如申請專利範圍第1 5項之雷射晝線裝置,其中,該 光穿透體係形成為具有3側面的三角柱形狀的透明光學元 件; 在該三角柱的該3側面中的2側面形成該第1光分離部 及該第2光分離部。 1 8 .如申請專利範圍第1 7項之雷射晝線裝置,其中,該 光學元件係為其底面形狀為略直角等腰三角形的三角柱。 1 9 .如申請專利範圍第1 5項之雷射晝線裝置,其中,該 326\總檔\92\92123417\92123417(替換)-1 49 1238242 光穿透體具備分別具有呈略直角等腰三角形的底面形狀的 透明三角柱的第1光學元件、第2光學元件及第3光學元 件; 屬該第1光學元件的側面之該三角柱的底面形狀中包含 構成頂角的2邊的三角柱的2側面,係接合於屬該第2光 學元件及該第3光學元件的側面之該三角柱的底面形狀中 包含與頂角面對的邊的三角柱的側面; 在該接合之2側面形成該第1光分離部及該第2光分離 部。 2 0 .如申請專利範圍第1 5項之雷射晝線裝置,其中,該 第1光分離部及該第2光分離部具有約6 7 %的反射率。 2 1 .如申請專利範圍第1 5項之雷射晝線裝置,其中,在 該雷射器與該分光器之間,還具備將來自該雷射器的出射 光變換為準直光的準直透鏡; 該光穿透體係由具有3側面的三角柱形狀的三角稜鏡所 構成; 該三角稜鏡係在該三角柱的該3側面中的2側面形成該 第1光分離部及該第2光分離部,在由該2側面所組成的 頂角接受該準直光,並與該第1光分離部及該第2光分離 部協動而將該準直光分離成為4條光束。 2 2 .如申請專利範圍第2 1項之雷射晝線裝置,其中,該 三角稜鏡係從與該頂角對面的1側面出射第1光束及第2 光束,從由該第1光分離部及該第2光分離部所形成的該 2側面出射第3光束及第4光束; 50 326\總檔\92\92123417\92123417(替換)-1 1238242 並具備:配置於該第1光束的光路徑上,將該第1光束 變換為線光用的第1線光產生光學元件;及 配置於該第2光束的光路徑上,將該第2光束變換為線 光用的第2線光產生光學元件。 2 3.如申請專利範圍第2 2項之雷射畫線裝置,其中,該 第1光分離部及該第2光分離部,係於相對該準直光的入 射方向略垂直的方向,出射該第3光束及該第4光束。 2 4.如申請專利範圍第2 2項之雷射晝線裝置,其中,在 該第1光束及第2光束的光路徑的至少一方,配置光路徑 改變光學元件,以光的行進方向成為水平方向的方式來改 變光路徑。 2 5 .如申請專利範圍第2 4項之雷射晝線裝置,其中,該 光路徑改變光學元件係配置於該第1光束的光路徑上; 該第1線光產生光學元件係設於該光路徑改變光學元件 的後段,以便從使行進方向成為水平方向的該第1光束產 生水平線光; 該第2線光產生光學元件係從第2光束產生垂直線光。 2 6 .如申請專利範圍第2 2項之雷射晝線裝置,其中,在 該三角稜鏡與該線光產生光學元件之間的該第1光束及該 第2光束的至少一方的光路徑上設置雙稜鏡,以使該第1 光束及該第2光束的至少一方的光束形狀旋轉。 2 7 .如申請專利範圍第2 2項之雷射晝線裝置,其中,在 該準直透鏡與該三角稜鏡之間的光路徑上設置使光束成為 略圓形用的光學元件。 51 326\總檔\92\92123417\92123417(替換)-1 1238242 2 8 .如申請專利範圍第2 1項之雷射晝線裝置,其中,藉 由在從該三角棱鏡出射的光束中至少1條的光路徑上設置 反射鏡,以改變該光束的光路徑。 2 9 .如申請專利範圍第2 1項之雷射晝線裝置,其中,該 雷射器具有出射雷射光束的雷射出射面; 該三角稜鏡的頂角與該雷射出射面係呈面對狀態。 3 0 .如申請專利範圍第2 1項之雷射晝線裝置,其中,更 具備將來自該準直透鏡的準直光的光束形狀設為圓形的光 學元件。 3 1 .如申請專利範圍第3 0項之雷射晝線裝置,其中,該 光學元件係由改變該準直光的圓形度的歪像透鏡所構成。 3 2 .如申請專利範圍第2 1項之雷射晝線裝置,其中,藉 由在從該三角稜鏡出射的4條光束中至少一條的光路徑上 設置雙稜鏡,以使至少一條的光束的光束形狀旋轉。 3 3 .如申請專利範圍第1 4項之雷射晝線裝置,其中,該 第1面及該第2面係相互平行; 該第1光分離部係將該一條入射光分離為反射光及穿透 光; 該第2光分離部係將該穿透光再分離為反射光及穿透 光。 3 4 .如申請專利範圍第3 3項之雷射晝線裝置,其中,該 一條入射光係在以相對該第1光分離部略呈4 5 °的入射角 入射的情況,將該第1光分離部入射時的折射角設為0 , 將該第1面及該第2面的間隔設為d時, 52 3 26\總檔\92\92123417\92123417(替換)-1 1238242 以屬該第1光分離部及該第2光分離部的距離之該第1 面及第2面的平行方向的距離大致成為dtan0的方式,形 成該第1光分離部及該第2光分離部。 3 5 .如申請專利範圍第3 3項之雷射晝線裝置,其中,該 光穿透體更具備使第2光分離部之穿透光依序穿透用的第 3面及第4面; 該第3面及第4面係相互平行,且與上述第1面及上述 第2面垂直相交。 3 6 .如申請專利範圍第3 5項之雷射晝線裝置,其中,該 一條入射光係在以相對該第1光分離部略呈4 5 °的入射角 入射的情況,將該第1光分離部之入射時的折射角設為 0 ,將該第1面及第2面的間隔設為d時, 屬該第1光分離部及該第3面的距離之該第1面及該第 2面的平行方向的距離係較d t a η 0大。 3 7 .如申請專利範圍第3 5項之雷射晝線裝置,其中,該 第3面及該第4面的間隔,與該第1面及該第2面的間隔 實質上相等,藉以使穿透該第4面的光的光路徑在入射光 的光路徑的延長線上一致。 3 8 .如申請專利範圍第3 5項之雷射晝線裝置,其中,該 光穿透體更具備使該第1光分離部之反射光由指定的反射 體反射而來的光依序穿透用的第5面及第6面; 該第5面及該第6面係相互平行,且與上述第1面及上 述第2面垂直相交。 3 9 .如申請專利範圍第3 8項之雷射晝線裝置,其中,該 53 3 26\總檔\92\92123417\92123417(替換)-1 1238242 第5面及該第6面的間隔,與該第1面及該第2面的間隔 實質上相等,藉以使穿透該第6面的光的光路徑在由上述 指定的反射體反射而來的光的光路徑的延長線上一致。 4 0 .如申請專利範圍第1 4項之雷射畫線裝置,其中,該 第1光分離部及該第2光分離部係分別由光分離薄膜所組 成0The linear light generating optical element receives the reflected light reflected by the first light separating section, the reflected light reflected by the second light separating section, and the light passing through the first light separating section and the light. At least one of the penetrating light composed of the light of the second light separation section is converted into linear light. 3. The multi-beam generator according to item 2 of the scope of patent application, wherein the light penetrating system is formed as a transparent optical element having a triangular prism shape with 3 sides; the first light is formed on 2 sides of the 3 sides of the triangle post. And a second light separation unit. 4. The multi-beam generator according to item 3 of the scope of patent application, wherein the light 46 326 \ total file \ 92 \ 92123417 \ 92123417 (replacement) _ 1 1238242 is based on the shape of the bottom surface of the isosceles triangle with a slightly right angle Triangular prism. 5. The multi-beam generator according to item 2 of the scope of patent application, wherein the light penetrating body includes a first optical element, a second optical element, and a third optical prism each having a transparent triangular prism with a bottom surface shape of a substantially right-angled isosceles triangle. Optical element; the bottom surface shape of the triangular column that is a side surface of the first optical element includes two sides of the triangular column that forms the two sides of the apex angle, and is connected to the triangular column that is a side surface of the second optical element and a third optical element The shape of the bottom surface includes a side surface of a triangular pillar with a side facing the top corner; and the first light separation portion and the second light separation portion are formed on the two side surfaces of the joint. 6. The multi-beam generator according to item 2 of the patent application scope, wherein the first light separating section and the second light separating section have a reflectance of about 67%. 7. A kind of linear light generating optical system, which includes: a light source, which generates a light beam; a collimating lens, which converts the outgoing light from the light source into collimated light; a triangular ridge, which forms a triangular column with 3 sides Shape, and forming a triangle ridge of the first light separation part and the second light separation part on 2 sides of the 3 sides of the triangular column, and receiving the collimated light at the vertex angle formed by the 2 sides, using The collimated light is separated into four light beams; and a linear light generating optical element is arranged on at least one light path among the light paths of the light beams emitted from the triangle beam, and converts the light beams into linear light. 8. The line-light generating optical system according to item 7 of the scope of patent application, wherein a reflector for reflecting the light beams exiting the triangle-shaped ridge is further provided between the triangle-shaped ridge and the line-light generating optical element, In order to change the light path of the beam 47 32 6 \ total file \ 92 \ 92123417 \ 92123417 (replace) -1 1238242 diameter. 9. The linear light generating optical system according to item 7 of the scope of patent application, wherein the light source has a laser exit surface for emitting laser light; the vertex angle of the triangular ridge and the laser exit surface face each other. 10. The linear light generating optical system according to item 7 of the patent application scope, further comprising an optical element that sets a beam shape of the collimated light from the collimating lens to a substantially circular shape. 1 1. The linear light generating optical system according to item 10 of the patent application scope, wherein the optical element is composed of an anamorphic lens that changes the circularity of the collimated light. 12. According to the line light generating optical system of the seventh item of the patent application scope, wherein a double prism is further provided between the triangular beam and the line light generating optical element to rotate the beam shape of the light beam. 1 3. The linear light generating optical system according to item 7 of the scope of patent application, wherein the first light separation unit and the second light separation unit are each composed of a light separation film. 1 4. A laser daylight device, comprising: a laser that generates a light beam; and a beam splitter that is formed by a light penetrating body having at least two faces to enter the light beam and formed on the at least two The first light separation portion of the first surface among the surfaces and the second light separation portion formed on the second surface of the at least two surfaces; the linear light generating optical element is separated from the first light The light beam separated by at least one of the second light separation unit and the second light separation unit obtains linear light; and a support unit that supports the laser, the beam splitter, and the line light generating optics 48 326 \ 总 段 \ 92 \ 92123417 \ 92123417 (Replace) -1 1238242 components. 15. The laser daylight device according to item 14 of the scope of patent application, wherein the beam splitter is configured to separate one incident light generated from the laser into one reflected by the first optical separation unit. 1 penetrating light consisting of light, a light reflected by the second light separating portion, and a light penetrating the first light separating portion and a light penetrating any one of the second light separating portion; The linear light generating optical element receives the reflected light reflected by the first light separation section, the reflected light reflected by the second light separation section, and the light that has passed through the first light separation section and the first light separation section. At least one of the penetrating light composed of the light in the 2 light separation section is converted into linear light. 16. The laser daylight device according to item 14 of the scope of patent application, wherein the reflected light at the first light separation section, the reflected light at the second light separation section, the first light separation section, and the second In at least one of the passing paths of the light-separating part, other light-separating elements are arranged to generate four or more light beams; the line-light generating optical element receives at least one of the four or more light beams, And converted to linear light. 1 7. The laser daylight device according to item 15 of the scope of the patent application, wherein the light penetrating system is formed as a transparent optical element having a triangular column shape with 3 sides; 2 sides of the 3 sides of the triangular column are formed The first light separation section and the second light separation section. 18. The laser daylight device according to item 17 of the scope of patent application, wherein the optical element is a triangular column whose bottom surface shape is a slightly right-angled isosceles triangle. 19. The laser daylight device according to item 15 of the scope of patent application, wherein the 326 \ total file \ 92 \ 92123417 \ 92123417 (replacement) -1 49 1238242 light penetrating bodies each have an isosceles at a slightly right angle. The first optical element, the second optical element, and the third optical element of the transparent triangular prism with a triangular bottom surface shape; the bottom surface shape of the triangular column, which is a side surface of the first optical element, includes the two sides of the triangular prism forming the two sides of the apex angle Is the side surface of the triangular prism that includes the side facing the apex angle in the bottom surface shape of the triangular prism that is attached to the side surfaces of the second optical element and the third optical element; the first optical separation is formed on the two side surfaces of the junction Section and the second light separation section. 20. The laser daylight device according to item 15 of the scope of patent application, wherein the first light separation section and the second light separation section have a reflectance of about 67%. 2 1. The laser daylight device according to item 15 of the scope of the patent application, wherein between the laser and the beam splitter, a collimator for converting the outgoing light from the laser to collimated light is also provided. Straight lens; the light transmission system is composed of triangular prisms having a triangular prism shape with 3 sides; the triangular prisms form the first light separation part and the second light on 2 sides of the 3 sides of the triangular column The separation unit receives the collimated light at an apex angle composed of the two side surfaces, and cooperates with the first light separation unit and the second light separation unit to separate the collimated light into four light beams. 2 2. The laser daylight device according to item 21 of the scope of patent application, wherein the triangular beam emits a first light beam and a second light beam from a side opposite to the vertex angle, and is separated from the first light. 3 and 4 beams emitted from the 2 sides formed by the second light separation part and the second light separation part; 50 326 \ total file \ 92 \ 92123417 \ 92123417 (replacement) -1 1238242 and having: On the optical path, the first light beam is converted into a first line light generating optical element for line light; and on the optical path of the second light beam, the second light beam is converted into a second line light for linear light. Create an optical element. 2 3. The laser line drawing device according to item 22 of the scope of patent application, wherein the first light separation part and the second light separation part are emitted in a direction slightly perpendicular to the incident direction of the collimated light, and emit The third light beam and the fourth light beam. 2 4. The laser daylight device according to item 22 of the scope of patent application, wherein an optical path changing optical element is arranged on at least one of the light paths of the first light beam and the second light beam, and the traveling direction of the light becomes horizontal. The way to change the light path. 2 5. The laser daylight device according to item 24 of the scope of patent application, wherein the optical path changing optical element is disposed on the optical path of the first light beam; the first linear light generating optical element is disposed on the The light path changes the rear stage of the optical element so as to generate horizontal line light from the first light beam whose traveling direction becomes horizontal. The second line light generating optical element generates vertical line light from the second light beam. 2 6. The laser daylight device according to item 22 of the scope of patent application, wherein at least one of the light path of the first light beam and the second light beam between the triangular beam and the line light generating optical element A double cymbal is provided to rotate the shape of at least one of the first light beam and the second light beam. 27. The laser daylight device according to item 22 of the scope of patent application, wherein an optical element for making the light beam into a substantially circular shape is provided on a light path between the collimator lens and the triangular ridge. 51 326 \ Total file \ 92 \ 92123417 \ 92123417 (replace) -1 1238242 2 8. As the laser daylight device of item 21 of the patent application, wherein at least 1 of the beams emitted from the triangular prism is used A mirror is set on the light path of the strip to change the light path of the light beam. 2 9. The laser daylight device according to item 21 of the patent application scope, wherein the laser device has a laser exit surface from which a laser beam is emitted; and the vertex angle of the triangular ridge is in line with the laser exit surface. Face state. 30. The laser daylight device according to item 21 of the scope of patent application, further comprising an optical element that sets a beam shape of the collimated light from the collimating lens to a circular shape. 31. The laser daylight device according to item 30 of the patent application scope, wherein the optical element is composed of an anamorphic lens that changes the circularity of the collimated light. 32. The laser daylight device according to item 21 of the scope of patent application, wherein a double chirp is provided on the light path of at least one of the four beams emitted from the triangular chirp, so that at least one The beam shape of the beam is rotated. 3 3. The laser daylight device according to item 14 of the scope of patent application, wherein the first surface and the second surface are parallel to each other; the first light separation unit separates the one incident light into the reflected light and Transmitted light; the second light separation unit is configured to further separate the transmitted light into reflected light and transmitted light. 34. If the laser daylight device according to item 33 of the scope of patent application, wherein the one incident light is incident at an angle of incidence of approximately 45 ° with respect to the first light separation section, the first The refraction angle at the time of incidence of the light separation part is set to 0, and when the interval between the first surface and the second surface is set to d, 52 3 26 \ total file \ 92 \ 92123417 \ 92123417 (replace) -1 1238242 belongs to this The first light separation unit and the second light separation unit are formed such that the distance in the direction parallel to the first surface and the second surface becomes dtan0, and the first light separation unit and the second light separation unit are formed. 3 5. The laser daylight device according to item 33 of the scope of patent application, wherein the light penetrating body further includes a third surface and a fourth surface for sequentially penetrating the penetrating light of the second light separation section. The third surface and the fourth surface are parallel to each other and intersect perpendicularly to the first surface and the second surface. 36. If the laser daylight device according to item 35 of the scope of patent application, wherein the one incident light is incident at an angle of incidence of approximately 45 ° with respect to the first light separation section, the first When the refraction angle at the time of incidence of the light separation section is set to 0 and the distance between the first and second surfaces is set to d, the first surface and the distance belonging to the distance between the first light separation section and the third surface The distance in the parallel direction of the second surface is larger than dta η 0. 37. The laser daylight device according to item 35 of the scope of patent application, wherein the interval between the third surface and the fourth surface is substantially equal to the interval between the first surface and the second surface, so that The light path of the light transmitted through the fourth surface is aligned on the extension line of the light path of the incident light. 38. The laser daylight device according to item 35 of the scope of patent application, wherein the light penetrating body further includes light reflected from the first reflector by the designated reflector in order to pass through. The fifth and sixth faces are transparent; the fifth and sixth faces are parallel to each other and perpendicularly intersect the first and second faces. 39. If the laser daylight device of item 38 of the scope of application for a patent, wherein the interval between the 5th surface and the 6th surface of the 53 3 26 \ total file \ 92 \ 92123417 \ 92123417 (replacement) -1 1238242, The distance between the first surface and the second surface is substantially the same, so that the light path of the light passing through the sixth surface is aligned on the extension line of the light path of the light reflected by the predetermined reflector. 40. The laser line drawing device according to item 14 of the scope of patent application, wherein the first light separation part and the second light separation part are each composed of a light separation film. 54 326\總檔\92\92123417\92123417(替換)-1 1238242 拾壹、圖式: 94· 4· -4 替换頁54 326 \ Total file \ 92 \ 92123417 \ 92123417 (Replace) -1 1238242 Pick up, Picture: 94 · 4 · -4 Replace page 326V總檔\92\92123417\92123417(替換)-1 55326V total file \ 92 \ 92123417 \ 92123417 (replace) -1 55
TW92123417A 2002-05-16 2003-08-26 Beam splitter, laser marking apparatus equipped with the beam splitter, multi-beam generator and line beam generating optical system TWI238242B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002141031A JP2003329451A (en) 2002-05-16 2002-05-16 Laser marking device
JP2002140842A JP2003329815A (en) 2002-05-16 2002-05-16 Bean splitter and multibeam optical system using the same, and laser marking device mounted therewith
JP2002245124A JP2004085784A (en) 2002-08-26 2002-08-26 Beam splitter and laser marking device mounting same

Publications (2)

Publication Number Publication Date
TW200404989A TW200404989A (en) 2004-04-01
TWI238242B true TWI238242B (en) 2005-08-21

Family

ID=37000231

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92123417A TWI238242B (en) 2002-05-16 2003-08-26 Beam splitter, laser marking apparatus equipped with the beam splitter, multi-beam generator and line beam generating optical system

Country Status (1)

Country Link
TW (1) TWI238242B (en)

Also Published As

Publication number Publication date
TW200404989A (en) 2004-04-01

Similar Documents

Publication Publication Date Title
US9086273B1 (en) Microrod compression of laser beam in combination with transmit lens
KR101680762B1 (en) Beam splitter for 3D camera and 3D image acquisition apparatus employing the same
US7413311B2 (en) Speckle reduction in laser illuminated projection displays having a one-dimensional spatial light modulator
EP2466905B1 (en) Illumination optical system and 3D image acquisition apparatus including the same
CN105093235A (en) Synchronous scanning intersection measurement fusion imaging system
EP1394507A2 (en) Beam splitter and laser marking apparatus
JPH10510933A (en) Apparatus for focusing and shaping emitted light of multiple diode laser arrays
JP2017047850A5 (en)
US20160377878A1 (en) Composite laser line projector to reduce speckle
US7440192B2 (en) Optical system providing several beams from a single source
JP2004317519A (en) Laser device for projection of light mark
US7092167B2 (en) Optical system providing four beams from a single source
TWI226429B (en) Beam splitting unit, beam-emission-angle compensating optical unit, and laser marking apparatus
TWI238242B (en) Beam splitter, laser marking apparatus equipped with the beam splitter, multi-beam generator and line beam generating optical system
TWI238886B (en) Rod lens, laser marking apparatus equipped with the rod lens and line-beam generating optical system
TWI604259B (en) Light source module
JP2003329815A (en) Bean splitter and multibeam optical system using the same, and laser marking device mounted therewith
JP2004133215A (en) Beam splitter and laser marking system carrying same
JP6982217B2 (en) How to assemble a two-lens optical system, a beam combining module, a projector, and a two-lens optical system
JP3991822B2 (en) Line generating optical element and laser marking device equipped with the same
JP4508433B2 (en) Method and apparatus for adjusting compound eye camera
JP2003329816A (en) Bean splitter and laser marking device mounted therewith
JP4306535B2 (en) Optical element and laser line display using the same
CN210534453U (en) Optical system and demarcation device
US20120300489A1 (en) Light Generator

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees