TWI237519B - Anti-lateral optical-loss substrate and organic electroluminescent apparatus thereof - Google Patents

Anti-lateral optical-loss substrate and organic electroluminescent apparatus thereof Download PDF

Info

Publication number
TWI237519B
TWI237519B TW93120408A TW93120408A TWI237519B TW I237519 B TWI237519 B TW I237519B TW 93120408 A TW93120408 A TW 93120408A TW 93120408 A TW93120408 A TW 93120408A TW I237519 B TWI237519 B TW I237519B
Authority
TW
Taiwan
Prior art keywords
substrate
patent application
item
scope
organic light
Prior art date
Application number
TW93120408A
Other languages
Chinese (zh)
Other versions
TW200603663A (en
Inventor
Jen-Yuan Chiu
Tien-Rong Lu
Original Assignee
Ritdisplay Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritdisplay Corp filed Critical Ritdisplay Corp
Priority to TW93120408A priority Critical patent/TWI237519B/en
Application granted granted Critical
Publication of TWI237519B publication Critical patent/TWI237519B/en
Publication of TW200603663A publication Critical patent/TW200603663A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes

Abstract

An anti-lateral optical-loss substrate comprises a transparent material and at least one reflective medium. The transparent material is used for accommodating an electroluminescent apparatus. The reflective medium, which is disposed inside the transparent material, is used to reflect light emitted from the electroluminescent apparatus so as to prevent light from lateral loss and enhance external quantum efficiency. An organic electroluminescent apparatus with anti-lateral optical-loss substrate comprising a transparent material and at least one reflective medium is also disclosed. The transparent material is used for accommodating at least one organic electroluminescent apparatus and the reflective medium disposed inside the transparent material. In this case, the organic electroluminescent apparatus includes a first electrode, at least one organic functional layer and a second electrode disposed above the transparent material in sequence.

Description

1237519 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種基板及其有機發光裝置,特別關於 一種可防止側向漏光並提升外部量子效率之基板及其有 機發光裝置。 【先前技術】 有機發光裝置(organic electroluminescent device)由於 技術之快速發展,已邁向實用之階段,因其具有自發光、 無視角限制、省電、製程簡易、低成本、操作溫度範圍廣、 咼應答速度以及全彩化等等的優點,使其具有極大的潛 力’可望成為下一代平面顯示器之主流。 有機發光裝置係一種利用有機官能性材料(organic functional materials)之自發光特性來達到顯示效果的裝 置’其可依照有機官能性材料的分子量不同分為小分子有 機發光裝置(small molecule OLED,SM-OLED)與高分子有 機發光裝置(polymer light_emitting device, PLED)兩大類; 請參照圖1所示,習知之有機發光裝置1包含一透明基板 U(通常為玻璃)、一透明陽極12(通常為氧化銦錫,IT0)、 一有機官能層13(通常為有機薄膜)以及一金屬陰極14(通 常為鋁、鈣或鎂鋁合金)。 對有機發光裝置1施以直流電壓時,電流通過透明陽 極12及金屬陰極14之間,使電洞和電子在有機官能層η 内再結合(recombination)而產生激子時,便可以使有機官 1237519 能層13依照其材料之特性,而產生不同顏色之放光機制。 對於有機發光裝置1而言,有機官能層13之折射率 和透明陽極12的折射率n2非常接近(ni«l.7, η2β1·8-2·0),而大於透明基板11的折射率η3 (η3«ι.5), 並且113大於空氣的折射率(《1)。由於金屬陰極μ為一反 射層,有機官能層13所發出的光線僅能朝透明基板η方 向傳出,然而依據Snell定律,光線在入射層之折射率和 入射角正弦值的乘積,相等於折射層的折射率和折射角正 弦值的乘積;因此,當光線由透明陽極12傳入透明基板 11時,當入射角大於siirYi^/nJ時,光線將會產生全反射, 並被侷限在有機官能層13和透明陽極12中傳遞而形成陽 極/有機層波導現象;而當入射角小於sin-i(n3/n2)時,光線 將會傳入透明基板11。依此類推,當光線由透明基板J J 傳出元件時,當入射角大於時,光線將會產生全 反射並被侷限在透明基板U中傳遞而形成基板波導現 象;而當入射角小於sin-i(1/n3)時,光線將會傳出元件外部。 由上面的原理可知,如圖2所示,有機發光裝置j所 發出的光線L僅有-部分的光線Li可傳出元件外部,而 -部分的紐L2會在元件内部結構巾形成波導現象,更有 -部分光線L3可能經由元件之側邊而散發出去,因此,僅 有約20%的光線可傳出有機發光裝置外部,而其餘約8〇% 的光線則在透明基板U及透明陽極12中形成波導現象以 及侧向漏光而損失掉。 因此為解決上述外部發光效率之問題,有許多研究以 1237519 可促進有機發光裝置外部量子效率 (External -Quantum—Efficiency,EQE)為目的,來提升有機 發光裝置的正向發光效率,其中包括有幾項方法:其一, 為在有機發光裝置表面蝕刻出特定的結構,方法為先於發 光表面塗佈一單層直徑為0·2 # m之聚苯乙烯 (polystyrene),之後再以乾式蝕刻之方法在發光表面蝕刻 出一深度為0.17//m的特殊結構,由理論計算所得結果顯 示,其外部量子效率將可由27.06%提高至57.69% (H.-W. Lai etc,CELO/Pacific Rim’99 (1999),ρ· 246);其二,為在 有機發光裝置中的ιτο電極導線之侧面與其餘區域鍍上金 屬反射層,此可將外部量子效率提升1-2倍;其三,為在 ΙΤ0電極和基板間插入一層Aerogel厚膜,則裝置之外部 量子效率約可提升 1 倍(H· Yokogawa etc. SID,01 (2001), ρ·405);另外,還有一種方法,為在有機發光裝置之發光 面上貼附一直徑大於發光面積的凸透鏡,此將可使外部量 子效率增加1·5倍,而若再加上使用較高折射率之基板, 則元件之外部$子效率可增加2.3倍(Lu etc. IEDM,0〇 (2000),ρ· 607) 〇 如上所述,由習知改進有機發光裝置外部量子效率之 方法顯示,即使是最有效之提升方法,仍然有約4〇%之光 線無法從正向導出,因此,如何能夠有效提升有機發光裝 置之發光效率,實乃為當前有機發光装置的重要課題之 1237519 【發明内容】 有鑑於上述課題,本發明之目的為提供一種犯夠防止 侧向漏光以及提升外部量子效率之基板及其有機發光裝 置。 緣是,為達上述目的,依據本發明之一種防止侧向漏 光之基板係包含-透明基材以及至少,反射介質’透明基 材係用以承載一發光裝置,反射介質係設置於透明基材之 内。其中,發光裝置更包含至少一發光元件。 為達上述目的,依據本發明之另一種防止侧向漏光之 基板係包含一透明基材以及至少一反射介質,透明基材係 用以承載複數個晝素,反射介質係對應畫素間隙又置於透 明基材之内。 另外,依據本發明之一種具有防止侧向漏光基板之有 機發光裝置包含一防止侧向漏光之基板以及至少有機 發光元件,其中防止侧向漏光之基板包含一透明基材以及 至少一反射介質,反射介質係設置於透明基材之内;有機 發光元件,其係設置於防止侧向漏光之基板上’有機發光 元件包含/第一電極、至少一有機官肥層及一弟一電極依 序設置於透明基材上。 承上所述,依據本發明防止側向漏光之基板及其有機 發光裝ί*係利用至少一反射介質設置於透明基材之内,用 以反射自發光裝置(例如有機發光裝置)所發出之光線,可 防止光線從發光裝置侧向漏光,而有效提升外部量子效 率。更由於本發明只需簡單的在透明基材中設置至少一反 1237519 射介質’相較於習知技術需設置複數層之抗反射膜結構或 是複雜之微透鏡陣列,在製程與結構上簡單許多,同時也 可將其結合超薄的裝置構造,應用於顯示裝置、光源或背 光源上。 【實施方式】 以下將參照相關圖式,說明依據本發明較佳實施例防 止側向漏光之基板及其有機發光裝置,其中相同的元件將 以相同的參照符號加以說明。 請參照圖3A所示,依據本發明較佳實施例之一種防 止側向漏光之基板21包含一透明基材211以及至少一反 射介質212 ;其中,透明基材211係用以承載一發光裝置 23,反射介質212係設置於透明基材211之内。 再請參照圖3B所示,依據本發明較佳實施例之另一 種防止側向漏光之基板22包含一透明基材221以及至少 一反射介質222 ;其中,透明基材221係用以承載複數個 畫素24,反射介質222係對應晝素間隙設置於透明基材 221之内。 在本實施例中,如圖3A所示,反射介質212之配置 方式可位於透明基材211内對應發光裝置23,或是如圖 3B所示,反射介質222位於透明基材221内各晝素24之 間;由此,具有反射介質212與222所構成之基板21與 22,可使用於顯示裝置(特別可應用於有機發光裝置)、光 源或背光源,且發光裝置23或各晝素24所發出之光線L, 1237519 分別經過反射介質212與222之反射,而達到防止侧向漏 光並提升外部量子效率之目的。在本實施例中,透明基材 211與 221 之材質可以是聚曱基丙烯甲酯 (Polymethylmethacrylate,PMMA)、塑勝、高分子或是破 璃,而反射介質212與222是由高反射率之材質來構成, 其材質包括有金屬(例如鋁)或合金,同時反射介質212與 222之形狀可以是板狀、片狀、線狀、棍狀、柱狀或是球 狀等。 在本實施例中,防止侧向漏光之基板21更包含一阻 隔層213,其係形成於透明基材211與發光裝置23之間(如 圖3A所示),另外,防止侧向漏光之基板22亦可更包含 一阻隔層223,其係形成於透明基材221與晝素24之間(如 圖3B所示),在本實施例中,阻隔層213與223之材料係 可為Si〇x、SiOxNy或SiNx所構成,用於阻隔透明基材211 與221之不純物質的擴散現象。 承上所述,此防止侧向漏光之基板21與22係可以分 別使用於一有機發光裝置。請參照圖4A所示,依據本發 明較佳實施例之具有防止侧向漏光基板21之有機發光裳 置3係包含一防止侧向漏光之基板21以及至少一有機發 光元件25,其中防止側向漏光之基板21包含一透明基材 211以及至少一反射介質212,透明基材211係用以承載至 少一有機發光元件25,反射介質212係設置於透明基材 211之内,且位於有機發光元件25周緣;有機發光元件 25包含一第一電極251、至少一有機官能層252及一第二 11 1237519 電極253依序設置於透明基材211上;在本實施例中,防 止側向漏光之基板21更可包含一阻隔層213,其係設置於 透明基材211與有機發光元件25之間。 另外,請參照圖4B所示,依據本發明另一較佳實施 例之具有防止側向漏光之基板22之有機發光裝置4係包 含一防止侧向漏光之基板22以及至少一有機發光元件 25,其中防止側向漏光之基板22包含透明基材221以及 至少一反射介質222,透明基材221係用以承載至少一有 機發光元件25,反射介質222係對應有機發光元件25間 隙設置於透明基材221之内;有機發光元件25包含一第 一電極251、至少一有機官能層252及一第二電極253依 序設置於透明基材221上,承上所述,防止侧向漏光之基 板22更可包含一阻隔層223,其係設置於透明基材221與 有機發光元件25之間。 綜上所述,請參照圖4A與4B所示,反射介質212 與222形成於透明基材211與221之方式,係可先於模板 上依據有機發光元件25之預定位置設置反射介質212與 222 ’之後再將透明基材211與221以塗佈或沉積等方式 形成於模板與反射介質212與222上。其中,防止侧向漏 光之基板21與22可選自剛性基板、柔性基板、玻璃基板 以及石夕基板至少其中之一,此外,透明基材211與221可 如前述之材質來構成,反射介質212與222亦可如前述之 材質以及形狀來構成,且阻隔層213與223可如前述之材 質構成,以阻隔透明基材211與221之不純物質擴散至第 12 1237519 一電極251而影響有機發光元件25。 承上所述,在本實施例中,第一電極251通常可作為 陽極,且其材質係選自透明的可導電之金屬氧化物,如氧 化I□錫(ITO)、乳化銘辞、氧化姻辞或編錫氧化物,以錢鍛 或是離子電鍍等方式形成於防止侧向漏光之基板21與22 上而構成一透明陽極;而第二電極253通常可作為陰極,1237519 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a substrate and an organic light emitting device thereof, and more particularly to a substrate and an organic light emitting device capable of preventing lateral light leakage and improving external quantum efficiency. [Previous technology] Organic electroluminescent device has entered the practical stage due to the rapid development of technology. It has self-luminescence, no viewing angle limitation, power saving, simple manufacturing process, low cost, wide operating temperature range, 咼The advantages of response speed and full-color, etc., make it have great potential. 'It is expected to become the mainstream of next-generation flat-panel displays. An organic light emitting device is a device that uses the self-luminous properties of organic functional materials to achieve a display effect. It can be divided into small molecule organic light emitting devices (small molecule OLED, SM- OLED) and polymer light emitting devices (PLEDs); please refer to FIG. 1. The conventional organic light emitting device 1 includes a transparent substrate U (usually glass) and a transparent anode 12 (usually oxidation). Indium tin (IT0), an organic functional layer 13 (usually an organic thin film), and a metal cathode 14 (usually an aluminum, calcium, or magnesium aluminum alloy). When a direct current voltage is applied to the organic light-emitting device 1, when an electric current is passed between the transparent anode 12 and the metal cathode 14, and holes and electrons are recombined in the organic functional layer η to generate excitons, the organic official can be made 1237519 The energy layer 13 generates light emitting mechanisms of different colors according to the characteristics of the material. For the organic light-emitting device 1, the refractive index of the organic functional layer 13 and the refractive index n2 of the transparent anode 12 are very close (ni «l.7, η2β1 · 8-2 · 0), and are larger than the refractive index η3 of the transparent substrate 11. (η3 «ι.5), and 113 is larger than the refractive index of air (<1). Since the metal cathode μ is a reflective layer, the light emitted by the organic functional layer 13 can only be transmitted in the direction of the transparent substrate η. However, according to Snell's law, the product of the refractive index of the light in the incident layer and the sine of the incident angle is equal to refraction. The product of the refractive index of the layer and the sinusoidal value of the refraction angle; therefore, when light enters the transparent substrate 11 from the transparent anode 12 and the incident angle is greater than siirYi ^ / nJ, the light will have total reflection and be limited to organic functions The layer 13 and the transparent anode 12 are transmitted to form an anode / organic layer waveguide phenomenon. When the incident angle is smaller than sin-i (n3 / n2), light will enter the transparent substrate 11. By analogy, when the light is transmitted from the transparent substrate JJ out of the element, when the incident angle is larger, the light will be totally reflected and transmitted in the transparent substrate U to form a substrate waveguide phenomenon; and when the incident angle is smaller than sin-i (1 / n3), the light will pass out of the component. It can be known from the above principle that, as shown in FIG. 2, only a part of the light L emitted from the organic light-emitting device j can pass out of the element, and the-part of the button L2 forms a waveguide phenomenon in the internal structure of the element. Even more-part of the light L3 may be emitted through the side of the element, so only about 20% of the light can pass out of the organic light emitting device, and the remaining about 80% of the light is on the transparent substrate U and the transparent anode 12 The waveguide phenomenon and the lateral light leakage are lost in the process. Therefore, in order to solve the above-mentioned problem of external light emitting efficiency, many studies have aimed at promoting the external quantum efficiency (External-Quantum-Efficiency, EQE) of organic light emitting devices to improve the forward light emitting efficiency of organic light emitting devices, including several Method: First, to etch a specific structure on the surface of the organic light-emitting device, the method is to apply a single layer of polystyrene (0 · 2 # m) in diameter to the light-emitting surface, and then dry-etch the surface. A special structure with a depth of 0.17 // m is etched on the light-emitting surface. The theoretical calculations show that the external quantum efficiency will be increased from 27.06% to 57.69% (H.-W. Lai etc, CELO / Pacific Rim ' 99 (1999), ρ 246); Second, a metal reflective layer is plated on the sides and other areas of the ιτο electrode lead in an organic light-emitting device, which can increase the external quantum efficiency by 1-2 times; third, it is By inserting a thick Aerogel film between the ITO electrode and the substrate, the external quantum efficiency of the device can be increased by about 1 time (H. Yokogawa etc. SID, 01 (2001), ρ · 405); there is also a method In order to attach a convex lens with a diameter larger than the light-emitting area on the light-emitting surface of the organic light-emitting device, this will increase the external quantum efficiency by 1.5 times, and if a substrate with a higher refractive index is used, the external of the component will be reduced. The sub-efficiency can be increased by 2.3 times (Lu etc. IEDM, 0〇 (2000), ρ · 607). As mentioned above, the conventional methods for improving the external quantum efficiency of organic light-emitting devices have shown that even the most effective method for improving the efficiency is still About 40% of the light cannot be derived from the forward direction. Therefore, how to effectively improve the luminous efficiency of organic light-emitting devices is really an important subject of current organic light-emitting devices. 1237519 [Summary of the Invention] In view of the above-mentioned problems, The purpose is to provide a substrate and an organic light emitting device thereof which are capable of preventing lateral light leakage and improving external quantum efficiency. The reason is that in order to achieve the above-mentioned object, a substrate for preventing lateral light leakage according to the present invention includes a transparent substrate and at least a reflective medium. The transparent substrate is used to carry a light-emitting device, and the reflective medium is provided on the transparent substrate. within. The light-emitting device further includes at least one light-emitting element. In order to achieve the above object, another substrate for preventing lateral light leakage according to the present invention includes a transparent substrate and at least one reflective medium. The transparent substrate is used to carry a plurality of daylight elements, and the reflective medium is disposed corresponding to the pixel gap. Within a transparent substrate. In addition, an organic light-emitting device having a side-light leakage prevention substrate according to the present invention includes a side-light leakage prevention substrate and at least an organic light-emitting element, wherein the side-light leakage prevention substrate includes a transparent substrate and at least one reflective medium. The medium is disposed in a transparent substrate; the organic light-emitting element is disposed on a substrate that prevents lateral light leakage. The organic light-emitting element includes / a first electrode, at least one organic fertilizer layer, and a first electrode. On a transparent substrate. As mentioned above, the substrate and the organic light emitting device for preventing lateral light leakage according to the present invention are arranged in a transparent substrate by using at least one reflective medium to reflect the light emitted from a light emitting device (such as an organic light emitting device). Light can prevent light from leaking from the side of the light emitting device, and effectively improve external quantum efficiency. Furthermore, the present invention only needs to simply set at least one anti-reflective 1237519 radiation medium in a transparent substrate. Compared with the conventional technology, multiple layers of antireflection film structures or complex microlens arrays are required, which is simple in process and structure. Many can also be combined with ultra-thin device structure and applied to display devices, light sources or backlight sources. [Embodiment] Hereinafter, a substrate for preventing lateral light leakage and an organic light emitting device thereof according to a preferred embodiment of the present invention will be described with reference to related drawings. The same elements will be described with the same reference symbols. Referring to FIG. 3A, a substrate 21 for preventing lateral light leakage according to a preferred embodiment of the present invention includes a transparent substrate 211 and at least one reflective medium 212; wherein the transparent substrate 211 is used to carry a light-emitting device 23 The reflective medium 212 is disposed within the transparent substrate 211. Referring again to FIG. 3B, another substrate 22 for preventing lateral light leakage according to a preferred embodiment of the present invention includes a transparent substrate 221 and at least one reflective medium 222; wherein the transparent substrate 221 is used to carry a plurality of The pixel 24 and the reflective medium 222 are disposed in the transparent substrate 221 corresponding to the day-to-day gap. In this embodiment, as shown in FIG. 3A, the configuration of the reflective medium 212 may be located in the transparent substrate 211 corresponding to the light-emitting device 23, or as shown in FIG. 3B, the reflective medium 222 is located in each of the daylight elements in the transparent substrate 221. 24; thus, the substrates 21 and 22 composed of the reflective media 212 and 222 can be used in a display device (especially applicable to an organic light-emitting device), a light source or a backlight, and the light-emitting device 23 or each element 24 The emitted light L, 1237519 is reflected by the reflective media 212 and 222, respectively, so as to prevent the lateral light leakage and improve the external quantum efficiency. In this embodiment, the materials of the transparent substrates 211 and 221 may be polymethylmethacrylate (PMMA), plastic, polymer or broken glass, and the reflective media 212 and 222 are made of high reflectivity. The material includes metal (such as aluminum) or an alloy, and the shapes of the reflective media 212 and 222 may be plate, sheet, wire, stick, column, or spherical. In this embodiment, the substrate 21 for preventing lateral light leakage further includes a blocking layer 213 formed between the transparent substrate 211 and the light emitting device 23 (as shown in FIG. 3A). In addition, the substrate for preventing lateral light leakage 22 may further include a barrier layer 223 formed between the transparent substrate 221 and the day element 24 (as shown in FIG. 3B). In this embodiment, the material of the barrier layers 213 and 223 may be Si. It is composed of x, SiOxNy or SiNx, and is used to block the diffusion of the impurities in the transparent substrates 211 and 221. As mentioned above, the substrates 21 and 22 for preventing lateral light leakage can be used in an organic light-emitting device, respectively. Please refer to FIG. 4A. According to a preferred embodiment of the present invention, an organic light emitting device 3 having a side-light leakage prevention substrate 21 includes a substrate 21 for preventing side-light leakage and at least one organic light-emitting element 25. The light-leaking substrate 21 includes a transparent substrate 211 and at least one reflective medium 212. The transparent substrate 211 is used to carry at least one organic light-emitting element 25. The reflective medium 212 is disposed inside the transparent substrate 211 and is located in the organic light-emitting element. 25 periphery; the organic light-emitting element 25 includes a first electrode 251, at least one organic functional layer 252, and a second 11 1237519 electrode 253 sequentially disposed on the transparent substrate 211; in this embodiment, a substrate for preventing lateral light leakage 21 may further include a barrier layer 213, which is disposed between the transparent substrate 211 and the organic light emitting element 25. In addition, please refer to FIG. 4B. According to another preferred embodiment of the present invention, the organic light emitting device 4 having a substrate 22 for preventing lateral light leakage includes a substrate 22 for preventing lateral light leakage and at least one organic light emitting element 25. The substrate 22 for preventing lateral light leakage includes a transparent substrate 221 and at least one reflective medium 222. The transparent substrate 221 is used to carry at least one organic light emitting element 25, and the reflective medium 222 is disposed on the transparent substrate corresponding to the organic light emitting element 25. 221; the organic light-emitting element 25 includes a first electrode 251, at least one organic functional layer 252, and a second electrode 253 sequentially disposed on the transparent substrate 221. As described above, the substrate 22 to prevent lateral light leakage is further modified. A barrier layer 223 may be included, which is disposed between the transparent substrate 221 and the organic light emitting element 25. In summary, please refer to FIG. 4A and FIG. 4B. The way in which the reflective media 212 and 222 are formed on the transparent substrates 211 and 221 is that the reflective media 212 and 222 can be set on the template according to the predetermined position of the organic light-emitting element 25. 'After that, the transparent substrates 211 and 221 are formed on the template and the reflective medium 212 and 222 by coating or deposition. Wherein, the substrates 21 and 22 for preventing lateral light leakage may be selected from at least one of a rigid substrate, a flexible substrate, a glass substrate, and a stone substrate. In addition, the transparent substrates 211 and 221 may be composed of the aforementioned materials, and the reflective medium 212 And 222 can also be constructed as the aforementioned materials and shapes, and the barrier layers 213 and 223 can be constructed as the aforementioned materials to block the impurities of the transparent substrates 211 and 221 from diffusing to the 12th 1237519-electrode 251 and affect the organic light-emitting element 25. As mentioned above, in this embodiment, the first electrode 251 can generally be used as an anode, and its material is selected from transparent conductive metal oxides, such as oxidized tin (ITO), emulsified inscription, and oxidized marriage. Tin oxide or tin oxide is formed on the substrates 21 and 22 to prevent lateral light leakage by means of coin forging or ion plating to form a transparent anode. The second electrode 253 can usually be used as a cathode.

且其材質可為銘、弼、鎮、銦、錫、锰、銀、金及含鎂之 合金至少其中之一,使用蒸鍍或是濺鍍等方法形成於有機 吕月匕層252上而構成一金屬陰極,且其中含鎂之合金包括 但不限疋為鎂銀合金、鎂銦合金、鎮錫合金、鎂錄合金及 鎂碲合金;至於位於兩電極之間的有機官能層252,係由 蒸鍍、旋轉塗佈、噴墨印刷、網版印刷或轉印等方式來形 成多層薄膜結構,通常可包含一電洞注入層、一電洞傳遞 層、一發光層、一電子傳遞層、一電子注入層及其組合。In addition, the material can be at least one of indium, osmium, town, indium, tin, manganese, silver, gold, and magnesium-containing alloy. It is formed on the organic lunar layer 252 by evaporation or sputtering to form a metal. The cathode, and the magnesium-containing alloys include, but are not limited to, a magnesium-silver alloy, a magnesium-indium alloy, a tin alloy, a magnesium alloy, and a magnesium-tellurium alloy; as for the organic functional layer 252 between the two electrodes, which is formed by evaporation , Spin coating, inkjet printing, screen printing or transfer to form a multi-layer thin film structure, which can generally include a hole injection layer, a hole transfer layer, a light emitting layer, an electron transfer layer, and an electron injection Layers and their combinations.

綜合上述,依據本發明較佳實施例防止側向漏光之美 板及其有機發光裝置係利用設置有至少一反射介質之^ 明基材來構成一防止側向漏光之基板,且其可應用於顯八 裝置、光源或背光源’反射介質之設置方式係可對應發: 装置或晝素設置於周緣或是各畫素之間,因此能防止^ 漏光’進而有效提升正向發光效率;同時本發明更 習知技術多層反射膜或微透鏡陣列之繁雜製程,I免除 單化同時達到增加外部量子效率之目的。 ' ί 以上所述僅為舉例性,而非為限制性者。 本發明之精神與範疇,而對其進行之等效修改未脫翱 13 1237519 應包含於後附之申請專利範圍中。 【圖式簡單說明】 圖1為一示意圖,顯示習知的有機發光裝置的示意圖; 圖2為一示意圖,顯示習知的有機發光裝置發光耗損 之示意圖; 圖3A與3B為示意圖,顯示依本發明較佳實施例之防 止侧向漏光之基板的示意圖;以及 圖4A與4B為示意圖,顯示依本發明較佳實施例之有 機發光裝置的示意圖。 元件符號說明: I 習知之有機發光裝置 II 透明基板 12 透明陽極 13 有機官能層 14 金屬陰極 L 光線 L1 光線 L2 光線 L3 光線 21 防止側向漏光之基板 211 透明基材 反射介質 14 212 1237519 213 阻隔層 22 防止側向漏光之基板 221 透明基材 222 反射介質 223 阻隔層 23 發光裝置 231 第一電極 232 有機官能層To sum up, according to a preferred embodiment of the present invention, a beautiful board for preventing lateral light leakage and its organic light emitting device use a light-emitting substrate provided with at least one reflective medium to form a substrate for preventing lateral light leakage, and it can be applied to display The arrangement of the device, light source or backlight 'reflective medium can correspond to the following: the device or daylight is placed on the periphery or between pixels, so it can prevent ^ light leakage' and thus effectively improve the forward light emission efficiency; The complicated process of the multi-layer reflective film or micro-lens array of the conventional technology eliminates singulation and achieves the purpose of increasing external quantum efficiency. 'ί The above is illustrative only and not restrictive. The spirit and scope of the present invention, and equivalent modifications made thereto are not excluded. 13 1237519 should be included in the scope of the attached patent application. [Brief description of the drawings] FIG. 1 is a schematic diagram showing a conventional organic light emitting device; FIG. 2 is a schematic diagram showing a conventional organic light emitting device; A schematic view of a substrate for preventing light leakage in a lateral direction according to a preferred embodiment of the present invention; and FIGS. 4A and 4B are schematic views showing a schematic view of an organic light emitting device according to a preferred embodiment of the present invention. Description of component symbols: I Conventional organic light-emitting device II Transparent substrate 12 Transparent anode 13 Organic functional layer 14 Metal cathode L light L1 light L2 light L3 light 21 Substrate to prevent side light leakage 211 Transparent substrate reflection medium 14 212 1237519 213 Barrier layer 22 Substrate to prevent lateral light leakage 221 Transparent substrate 222 Reflective medium 223 Barrier layer 23 Light-emitting device 231 First electrode 232 Organic functional layer

233 第二電極 24 晝素 25 有機發光元件 251 第一電極 252 有機官能層 253 第二電極 3 有機發光裝置233 second electrode 24 day element 25 organic light emitting element 251 first electrode 252 organic functional layer 253 second electrode 3 organic light emitting device

4 有機發光裝置 154 Organic light emitting device 15

Claims (1)

1237519 L 442湘日 备:飞- -r* j丨Ά _1上一 /午、 十、申請專利範圍: 1、 一種防止側向漏光之基板,包含: 一透明基材,其係用以承載一發光裝置,發光裝置係包含 至少一發光元件;以及 至少一反射介質,其係設置於透明基材之内。 2、 如申請專利範圍第1項所述之防止侧向漏光之基板, 其中反射介質之形狀係為板狀、片狀、線狀、棍狀、柱狀 或球狀。 3、 如申請專利範圍第1項所述之防止側向漏光之基板, 其中反射介質之材料係具有大於等於50%之反射率。 4、 如申請專利範圍第3項所述之防止側向漏光之基板, 其中反射介質之材料係為金屬或合金。 5、 如申請專利範圍第1項所述之防止側向漏光之基板, 其中透明基材之材料係為PMMA、塑膠、高分子或玻璃。 6、 如申請專利範圍第1項所述之防止侧向漏光之基板, 更包含: 一阻隔層,其係設置於透明基材與發光裝置之間。 7、 如申請專利範圍第6項所述之防止侧向漏光之基板’ 16 1237519 其中阻隔層之材料係為SiOx、SiOxNy或SiNx。 8、 一種防止側向漏光之基板’包含: 一透明基材,其係用以承載複數個晝素;以及 至少一反射介質,其係對應晝素間隙設置於透明基材之 内。 9、 如申請專利範圍第8項所述之防止側向漏光之基板, 其中反射介質之形狀係為板狀、片狀、線狀、棍狀、柱狀 或球狀。 10、 如申請專利範圍第8項所述之防止側向漏光之基板, 其中反射介質之材料係具有大於等於50%之反射率。 11、 如申請專利範圍第10項所述之防止側向漏光之基板, 其中反射介質之材料係為金屬或合金。 12、 如申請專利範圍第8項所述之防止侧向漏光之基板, 其中透明基材之材料係為PMMA、塑膠、高分子或玻璃。 13、 如申請專利範圍第8項所述之防止側向漏光之基板, 更包含: 一阻隔層,其係設置於透明基材與晝素之間。 17 1237519 14、如申請專利範圍第13頊所述之防止侧向漏光之基板 其中阻隔層之材料係為SiOx、Si〇xNy或siNx。 15、一種有機發光裝置,包含: 一防止側向漏光之基板,包含一透明基材以及至少— 久射 介質,反射介質係設置於透明基材之内;以及 至少一有機發光元件,其係設置於防止側向漏光之烏板 上’有機發光元件包含一第一電極、至少一^有機官居 及一第二電極依序設置於透明基材上。 曰 如申請專利範圍第Μ項所述之有機發光装置,其 反射介質對應設置於有機發光元件周緣。 17、 如申請專利範圍第15項所述之有機發光裝置,其中 反射介質對應設置於有機發光元件之間。 18、 如申請專利範圍第15項所述之有機發光裝置,其中 反射介質之形狀係為板狀、片狀、線狀、棍狀、柱狀或球 狀0 19、 如申睛專利範圍第15項所述之有機發光裝置,其中 反射介質之材料係具有大於等於5〇%之反射率。 20、 如申請專利範圍第19項所述之有機發光裝置,其中 18 1237519 反射介質之材料係為金屬或合金。 21、 如申請專利範圍第15項所述之有機發光裝置,其中 透明基材之材料係為PMMA、塑膠、高分子或玻璃。 22、 如申請專利範圍第15項所述之有機發光裝置,更包 含·· 一阻隔層,其係設置於透明基材與有機發光元件之間。 23、 如申請專利範圍第22項所述之有機發光裝置,其中 阻隔層之材料係為Si〇x、SiOxNy或SiNx。 24、 如申請專利範圍第15項所述之有機發光裝置,其中 防止側向漏光之基板係選自剛性基板、柔性基板、玻璃基 板以及矽基板至少其中之一。 25、 如申請專利範圍第15項所述之有機發光裝置,其中 第一電極的材質係選自導電之金屬氧化物。 26、 如申請專利範圍第25項所述之有機發光裝置,其中 導電之金屬氧化物的材寶係選自氧化銦錫、氧化鋁鋅、氧 化銦鋅及鎘錫氧化物至少其中之一。 27、 如申請專利範圍第15項所述之有機發光裝置,其中 19 1237519 第二電極的材質係選自銘、i弓、鎂、銦、錫、锰、銀、金 及含鎂之合金至少其中之一。 28、如申請專利範圍第27項所述之有機發光裝置,其中 含鎮之合金包括但不限定為鎂銀合金、鎂銦合金、鎂錫合 金、鎮銻合金及鎂蹄合金。1237519 L 442 Hunan Daily Preparation: Fly--r * j 丨 _1 _1Last / Noon, X. Patent application scope: 1. A substrate to prevent lateral light leakage, including: a transparent substrate, which is used to carry a The light-emitting device includes at least one light-emitting element; and at least one reflective medium, which is disposed in a transparent substrate. 2. The substrate for preventing lateral light leakage as described in item 1 of the scope of the patent application, wherein the shape of the reflective medium is plate, sheet, line, stick, column, or spherical. 3. The substrate for preventing lateral light leakage as described in item 1 of the scope of patent application, wherein the material of the reflective medium has a reflectance of 50% or more. 4. The substrate for preventing lateral light leakage as described in item 3 of the scope of the patent application, wherein the material of the reflective medium is a metal or an alloy. 5. The substrate for preventing lateral light leakage as described in item 1 of the scope of patent application, wherein the material of the transparent substrate is PMMA, plastic, polymer or glass. 6. The substrate for preventing lateral light leakage as described in item 1 of the scope of patent application, further comprising: a barrier layer, which is disposed between the transparent substrate and the light-emitting device. 7. The substrate for preventing lateral light leakage as described in item 6 of the scope of the patent application. 16 1237519 wherein the material of the barrier layer is SiOx, SiOxNy or SiNx. 8. A substrate for preventing lateral light leakage 'includes: a transparent substrate for carrying a plurality of daylight; and at least one reflective medium disposed in the transparent substrate corresponding to the daylight gap. 9. The substrate for preventing lateral light leakage as described in item 8 of the scope of the patent application, wherein the shape of the reflective medium is plate-like, sheet-like, linear, stick-like, column-like, or spherical. 10. The substrate for preventing lateral light leakage as described in item 8 of the scope of patent application, wherein the material of the reflective medium has a reflectance of 50% or more. 11. The substrate for preventing lateral light leakage as described in item 10 of the scope of patent application, wherein the material of the reflective medium is a metal or an alloy. 12. The substrate for preventing lateral light leakage as described in item 8 of the scope of patent application, wherein the material of the transparent substrate is PMMA, plastic, polymer or glass. 13. The substrate for preventing lateral light leakage as described in item 8 of the scope of patent application, further comprising: a barrier layer, which is disposed between the transparent substrate and the day element. 17 1237519 14. The substrate for preventing lateral light leakage as described in claim 13 of the scope of patent application, wherein the material of the barrier layer is SiOx, SiOxNy or siNx. 15. An organic light-emitting device comprising: a substrate for preventing lateral light leakage, comprising a transparent substrate and at least a long-lasting medium, and the reflective medium is disposed within the transparent substrate; and at least one organic light-emitting element, which is disposed The organic light-emitting element on the U-shaped board that prevents lateral light leakage includes a first electrode, at least one organic compound, and a second electrode sequentially disposed on the transparent substrate. That is, the organic light-emitting device described in item M of the scope of the patent application, the reflection medium is correspondingly provided on the periphery of the organic light-emitting element. 17. The organic light-emitting device according to item 15 of the scope of patent application, wherein the reflective medium is correspondingly disposed between the organic light-emitting elements. 18. The organic light-emitting device as described in item 15 of the scope of patent application, wherein the shape of the reflective medium is plate, sheet, line, stick, column or spherical shape. The organic light-emitting device according to the item, wherein the material of the reflective medium has a reflectance of 50% or more. 20. The organic light-emitting device as described in item 19 of the scope of patent application, wherein the material of the reflective medium is a metal or an alloy. 21. The organic light-emitting device according to item 15 of the scope of patent application, wherein the material of the transparent substrate is PMMA, plastic, polymer or glass. 22. The organic light emitting device as described in item 15 of the scope of patent application, further comprising a barrier layer, which is disposed between the transparent substrate and the organic light emitting element. 23. The organic light-emitting device according to item 22 of the scope of patent application, wherein the material of the barrier layer is SiOx, SiOxNy, or SiNx. 24. The organic light-emitting device according to item 15 of the scope of patent application, wherein the substrate for preventing lateral light leakage is selected from at least one of a rigid substrate, a flexible substrate, a glass substrate, and a silicon substrate. 25. The organic light-emitting device according to item 15 of the scope of patent application, wherein the material of the first electrode is selected from conductive metal oxides. 26. The organic light-emitting device according to item 25 of the scope of patent application, wherein the material of the conductive metal oxide is at least one selected from the group consisting of indium tin oxide, zinc aluminum oxide, indium zinc oxide, and cadmium tin oxide. 27. The organic light-emitting device according to item 15 of the scope of patent application, wherein 19 1237519 the material of the second electrode is selected from at least one of Ming, i-bow, magnesium, indium, tin, manganese, silver, gold, and an alloy containing magnesium one. 28. The organic light-emitting device according to item 27 of the scope of the patent application, wherein the town-containing alloy includes, but is not limited to, a magnesium silver alloy, a magnesium indium alloy, a magnesium tin alloy, an antimony alloy, and a magnesium shoe alloy. 2020
TW93120408A 2004-07-07 2004-07-07 Anti-lateral optical-loss substrate and organic electroluminescent apparatus thereof TWI237519B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93120408A TWI237519B (en) 2004-07-07 2004-07-07 Anti-lateral optical-loss substrate and organic electroluminescent apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93120408A TWI237519B (en) 2004-07-07 2004-07-07 Anti-lateral optical-loss substrate and organic electroluminescent apparatus thereof

Publications (2)

Publication Number Publication Date
TWI237519B true TWI237519B (en) 2005-08-01
TW200603663A TW200603663A (en) 2006-01-16

Family

ID=36821477

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93120408A TWI237519B (en) 2004-07-07 2004-07-07 Anti-lateral optical-loss substrate and organic electroluminescent apparatus thereof

Country Status (1)

Country Link
TW (1) TWI237519B (en)

Also Published As

Publication number Publication date
TW200603663A (en) 2006-01-16

Similar Documents

Publication Publication Date Title
US7982396B2 (en) Light-emitting device with light-scattering particles and method of making the same
WO2018113019A1 (en) Oled display panel and manufacturing method therefor
US7012363B2 (en) OLEDs having increased external electroluminescence quantum efficiencies
WO2018113018A1 (en) Oled display panel and manufacturing method therefor
US20190165323A1 (en) Electroluminescent display device
US7825570B2 (en) LED device having improved contrast
TWI401992B (en) Image displaying device, image displaying system, and methods for fabricating the same
US20090152533A1 (en) Increasing the external efficiency of light emitting diodes
TW200412191A (en) Manufacturing method of organic light emitting diode for reducing reflection of external light
JP2011048937A (en) Organic el light-emitting element
KR101654360B1 (en) Substrate for oled and method for fabricating thereof
TW202125868A (en) Organic light-emitting diode (oled) display devices with uv-cured filler
TW200536431A (en) Organic light-emitting diode and method of fabricating the same
TWI298003B (en) Top emission light emitting display with reflection layer
CN106654051B (en) A kind of OLED and OLED luminaire taking out structure with light
US20090153029A1 (en) Light emitting diodes, including high-efficiency outcoupling oled utilizing two-dimensional grating
US20030117067A1 (en) OLED having improved light extraction efficiency
JP5566069B2 (en) Organic electroluminescence display
TWI252716B (en) Organic LED with brightness enhancer
TWI237519B (en) Anti-lateral optical-loss substrate and organic electroluminescent apparatus thereof
KR20130008754A (en) Organic light emitting display device and method for fabricating the same
US20130270542A1 (en) Method for producing an optoelectronic component and optoelectronic component
KR101604495B1 (en) Organic light emitting diode display device and method of manufacturing the same
CN113871542B (en) Light-emitting diode device, preparation method thereof and display panel
CN109273613A (en) OLED device and preparation method thereof, display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees