TWI237436B - Switching DC-to-DC converter with multiple output voltages - Google Patents

Switching DC-to-DC converter with multiple output voltages Download PDF

Info

Publication number
TWI237436B
TWI237436B TW92128073A TW92128073A TWI237436B TW I237436 B TWI237436 B TW I237436B TW 92128073 A TW92128073 A TW 92128073A TW 92128073 A TW92128073 A TW 92128073A TW I237436 B TWI237436 B TW I237436B
Authority
TW
Taiwan
Prior art keywords
signal
switching
output
voltage
patent application
Prior art date
Application number
TW92128073A
Other languages
Chinese (zh)
Other versions
TW200514339A (en
Inventor
Guang-Nan Tzeng
Tien-Tzu Chen
Chi-Yang Chen
Original Assignee
Aimtron Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aimtron Technology Corp filed Critical Aimtron Technology Corp
Priority to TW92128073A priority Critical patent/TWI237436B/en
Publication of TW200514339A publication Critical patent/TW200514339A/en
Application granted granted Critical
Publication of TWI237436B publication Critical patent/TWI237436B/en

Links

Abstract

A switching DC-to-DC converter includes multiple power supply channels, coupled in parallel between a DC voltage source and a ground, for converting the DC voltage source into multiple DC output voltages that are separate from each other. An oscillator outputs multiple oscillating signals to render at least one switching transition of each of the multiple power supply channels occur differently in time from those of others of the multiple power supply channels, thereby improving transient noise. The multiple oscillating signals include two triangular wave oscillating signals with a phase difference of 180 degrees and two pulse oscillating signals with a phase difference of 180 degrees. Rising edges of the two pulse oscillating signals occur simultaneously with either a peak or a valley of the two triangular wave oscillating signals, respectively.

Description

1237436 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種切換式直流至直流轉換器,尤其關 於一種切換式直流至直流轉換器,設有多重電源供應通道 以提供夕重輸出電壓,可改善功率切換電晶體所造成的瞬 變雜訊(Transient N〇ise),其中該多重電源供應通道可全部 才木用電壓杈式回授控制或者一部分通道採用電壓模式回 授控制而其餘部分通道採用電流模式回授控制。 【先前技術】 典型上,切換式直流至直流轉換器藉由適當地控制功 率刀換电日日體之工作循裱而達成將直流電壓源調節成具 有所期望的電壓位準之直流輸㈣壓。在直流輸出電壓之 電壓位準大於直流電壓源之電壓位準之情況中,此等切換 =直流至直流轉換器得統稱為升壓轉換器或升壓調節 器另方面,在直流輸出電壓之電壓位準小於直流電壓 源之電壓位準之情況中,此等切換式直流至直流轉換写得 統稱為降壓轉換器或降壓調節器。為了確保直流輸出電壓 之穩定性,切換式直流至直流轉換器通常設有回授電路, 其典型上區分為電壓模式u ^ 很八口杈及電流模式回授。在電壓模 式回授中,回授電路擷取吉法 、 电峪碉取直机輪出電壓之一定比率,用以 產生回授信號。在電流模式於 、 电误式回杈中,回授電路則利用串聯 電阻感測電感電流之大小,葬 精以產生回授信號。此外,電 流模式回授電路亦得擷取直流輪出電壓之一定比率,用以 1237436 進行斜率補償之功能。 在現今大多數的電子系統產品中, — 各樣的功能模組(Funetl嶋1 MGdule)吊”、、且5各式 性操作與結果。舉例而言,數位相)機\達成—整全的系統 器、背光模組、影像感測器、數:處:里;—, ^ , 处理荔、與記憶體等許 像之且合而成的電子系統產品,藉以達成數位影 二攝取、與儲存。在數位相機之例子中,液晶顯 " 月光模組、影像感測器、數位虛^ . 兩I吉士+ 数位處理态、與記憶體皆 :::電源供應方能執行所期望的操作與功能 上’電子系統產品中之各放久媒 雷、7?徂_ # 弋各樣的功此楔組所需要的直流 並不相^亦即各自設計成操作於不㈣直流電 2電壓下。由於電子系統產品通常僅有單-個直流電 .. 徒(、的電壓,故必須使用複數個切換式 二至:·轉換态以便供應複數個彼此不同的直流輸出 :堊習知上’稷數個切換式直流至直流轉換器係整合於 单-積體電路晶片巾,藉以減少封裝與配線製程,以達成 低成本/J、尺寸、並降低寄生電容與電感之優IS Hit 原先複數個切換式直流至直流轉換器轉變成此整合 後的單一積體電路晶片中之複數個電源供應通道。此複數 個電源供應通道係並聯於共同的直流電麼源與地面間,並 且/、有各自刀離的輸出終端’用以供應複數個彼此不同的 直流輸出電壓。 ® 1(a)顯示習知的具有多重輸出電壓之切換式直流至 直轉換器10之電路區塊圖。參照圖^⑷’切換式直流 1237436 至直流轉換器10具有四個電源供應通道11A至UD,用 以將單一的直流電壓源VSQurce(顯示於圖Vb)中)分別轉換 成四個直流輸出電壓V()utl至VQut4。電源供應通道丨丨A包 含一切換控制器12A、一轉換電路13A,設有一功率切換 電晶體15A、以及一回授電路14A。功率切換電晶體15八 係由切換控制器12A所輸出的脈衝寬度調變 (Pulse-Width-Modulated,PWM)控制信號 PWM1 所驅動。 PWM控制信號PWM1之工作循環決定了直流電壓源 vs〇urce與直流輸出電壓V(>utl間之電壓位準轉換關係。換言 之,在固定的直流電壓源乂__之條件下,藉由適當地; 整PWM控制信號PWM1之工作循環可獲得各種不同的直 流輸出電壓vQutl。此外,切換控制器12A接收從回授電 路14A所產生之回授信號Fm,而調整pwM控制信號 PWMi之玉作循環,使直流輸出錢%維持於穩定的u 值0 电妳伢應通道 路13Β’設有一功率切換電晶冑15Β、以及一回授電路 14Β。功率切換電晶體⑽係由切換控制胃咖所輸出的 PWM控制信號PWM2所驅動。pwM控制信號請⑽之工 作循環決定了直流電_ V—與直流輸出㈣V_2間 之電麼位準轉換關係。切換控制ϋ咖#收從回授電路 _所產生之回授信號FB2,而調整聰控制信號, 之工作循環’使直流輪出電$ V_2維持於穩定的值。電 源供應通道11C包含—切換控制器以、—轉換電路Be, 1237436 設有-功率切換電晶體15C、以及一回授電路度。功率 」奐電曰曰M 15C係由切換控制器、12c所輸出的pwM控制 =號PWM3所驅動。pWM控制信號pwM3之工作循環決 疋了直*電壓源Vs〇urce與直流輸出電壓間之電壓位 準轉換關係。切換控制器、12C接收從回授電路Μ。所產生 =回授信號FB3,而調整pWM控制信號pwM3之工作循 …使直*輸出電壓VeUt3維持於穩定的值。電源供應通 ^ Β匕a切換控制器12D、一轉換電路丨3D,設有一 =率刀換電曰曰體15D、以及一回授電路。功率切換電 曰體15D係由切換控制器、12D所輸出的PWM控制信號 PW^4所驅動。PWM控制信號PWM4之工作循環決定了 直流電壓源Vsource與直流輸出電壓V—間之電壓位準轉 換關係切換控制器丨2D接收從回授電路1所產生之回 才又佗唬FB4,而調整pWM控制信號pwM4之工作循環, 使直流輸出電壓v〇ut4維持於穩定的值。 振盈器16輸出脈衝信號pULSE1與斜波信號RAMpi =切換控制器12A。脈衝信號PULSE1之上升邊緣與斜波 ° P 1之下降邊緣係同時發生。脈衝信號PULs1 置定(S叫切換控制器、12A,使之產生PWM控制信號PWM1 之j升邊緣,進而導通(Turn On)功率切換電晶體15A。斜 波^號RAMP1與回授信號FBI決S PWM控制信號PWM1 之下降邊緣之發生,進而關閉(Turn Off)功率切換電晶體 15A振盪恭16更輸出脈衝信號PULSE2與斜波信號 RAMP2至切換控制器12B。脈衝信號puLSE2之上升邊緣 1237436 與斜波信號RAMP2之下降邊緣係同時發生。脈衝信號 PULSE2置定切換控制器12B,使之產生PWM控制信號 PWM2之上升邊緣,進而導通功率切換電晶體15B。斜波 信號RAMP2與回授信號FB2決定PWM控制信號PWM2 之下降邊緣之發生,進而關閉功率切換電晶體1 5B。振盪 器16又更輸出脈衝信號PULSE3與斜波信號RAMP3至切 換控制器12C。脈衝信號PULSE3之上升邊緣與斜波信號 RAMP3之下降邊緣係同時發生。脈衝信號PULSES置定切 換控制器12C,使之產生PWM控制信號PWM3之上升邊 緣,進而導通功率切換電晶體15C。斜波信號RAMP3與 回授信號FB3決定PWM控制信號PWM3之下降邊緣之發 生,進而關閉功率切換電晶體1 5C。振盪器1 6再更輸出脈 衝信號PULSE4與斜波信號RAMP4至切換控制器12D。 脈衝信號PULSE4之上升邊緣與斜波信號RAMP4之下降 邊緣係同時發生。脈衝信號PULSE4置定切換控制器 12D,使之產生PWM控制信號PWM4之上升邊緣,進而 導通功率切換電晶體15D。斜波信號RAMP4與回授信號 FB4決定PWM控制信號PWM4之下降邊緣之發生,進而 關閉功率切換電晶體15D。 參照圖1(b),電源供應通道11A至11D係彼此並聯於 直流電壓源VSQUrce與地面間。具體而言,電源供應通道11A 至11D經由連接配線並聯於直流電壓源VSQUrce與地面間。 結果,在直流電壓源VSQUree與電源供應通道11A至1 1D間 分別存在有連接配線所造成的寄生電感Lw。同樣地,在電 1237436 源供應通道1 1 A至1 1 D與地面間亦分別存在有連接配線所 造成的寄生電感Lw。在電源供應通道丨丨a至π d之操作 中,轉換電路13A至13D中之功率切換電晶體15A至15D 係週期性地切換,藉以達成電壓轉換之功能。由於寄生電 感Lw之存在,每當功率切換電晶體15A至15D之任一個 進行切換變遷時,即產生由瞬變尖波(Transient Spike)所造 成之雜訊。 圖1(c)顯示習知振盪器16所產生之脈衝信號PULSE1 至PULSE4與斜波信號RAMP1至RAMP4之波形時序圖。 如圖1(c)所示,脈衝信號puLSE1至puLSE4彼此具有相 同的波形與相位,並且斜波信號RAMpi至RAMp4彼此具 有相同的波形與相位。因此,振盪器16實際上僅需產^ 單-個脈衝信號與單一個斜波信號,隨後同時供應給四個 電源供應通道11A至UD之切換控制器12A至ud即可。 在此先則技藝中,振盪器丨6之電路組態得相當簡單,具 有小尺寸與低成本之優點。然而,同相位的脈衝信號 PULSE1至PULSE4同時置定切換控制器12A至丨扣,使 侍功率切換電晶體丨5 A至丨5B同時發生切換變遷。結果, 功,切換電晶體15A至15B之每一個所造成的瞬變^波相 互疊加。因此,直流電壓源乂咖…與地面間存在有相當大 =瞬變雜訊,使直流輸出電壓v〇uti至ν_4之品質惡:且 容易造成電源供應通道11Α至11D之毀損。 “ 【發明内容】 9 1237436 有馨於前述問題,本發明之一目的在於提供—種 式直μ至直流轉換器,具有多重輸出電壓,可避免多、 源供應通道所造成的瞬變尖波相互疊加,而達成相對低: 瞬變雜訊之操作。 了低的 j發明之另一目的在於提供一種切換式直流至直流 轉換器,具有多重輸出電壓,可藉由使用組態 : 器,以達成小尺寸與低成本之優點。 搌逢 ^依據本發明之一態樣,提供一種切換式直流至直流轉 換為’包含:—第一電源供應通道,耗合於一直流電壓源 =地=1以轉換該直流電壓源成為一第一直流輸出 ^ 一電源供應通道,耦合於該直流電壓源與該地 面,-用以轉換該直流電壓源成為—第二直流輸出電壓, 邊弟一直流輸出電壓係分離於該第一直流輸出電壓;以及 =盛二用以輸出具有一第—週期的一第一振盈信號至 ‘一::供應通道,並且用以輸出具有-第二週期的— 卜 该苐一電源供應通道,其中:在該第一週 期之母:週期中,該第一 _號具有一波峰、一波谷、 、上:广:刀’從該波谷逐漸增加至該波峰、以及一下降部 二t峰逐漸減少至該波谷,使得該第-電源供應通 二八盘:一切換變遷係發生於該第-振盪信號之該上升 =1降部分兩者所涵蓋的時間範圍内;並且在4 一週期之每一调t 不 邊緣,兮瞬門。弟二振盪信號具有一瞬間變遷的 邊緣a亥瞬間受遷的邊 該波谷兩者其中$_〜 弟振盈说之该波峰及 同%發生,使得該第二電源供應通道 10 I237436 切換變,係與該瞬間變遷的邊緣同時發生。 〜个,J Q寸赞生。 較佳地,該第一電源供應通道屬 應通道,並且該第-電呢供雍、… 拉式電源供 應通道。弟-電源供應通道屬於-電流模式電源供 :::地,該第—振盪信號係一三角波振盪信號。 父佳地’該第二振盪信號係-脈衝振盪信號:在 一週期之每一週期 在孩弟 $ 工方迻緣、一脈衝官疮 „ -下降邊緣,並且該第二„信號之 ::、與 指其之該上升邊緣。 間&遷的邊緣係 較佳地,該振盈器更輸出一第一辅助信號至 源供應通道,J:巾 > 筮,. /第一電 有-上升部分與一下降邊緣,使得該下降邊緣::::具 振盪信號之該瞬間變遷的邊緣同時發生。 '、’〜、μ第一 行電:Γ=第二電源供應通道藉由該第-輔助信號進 仃電/瓜杈式回授控制之斜率補償。 車乂佳地,切換式直流至直流轉換器,更包含·· 一 # 一 電源供應通道,耦合於該直流電壓弟二 換該直流電壓源成Α帛一古、… 地面間,用以轉 出電壓係分離於㈣—料第山4第二直流輸 …亥第與及弟-直流輸出電壓,其中 振i益更輸出具有一第三週期的一 二雷、、馬征旛、s 币—振盛仏號至該第 -電源t、應通道;在該第三週期之每_週期中, 盪信號具有一波峰、一波谷、一上 /人一振 增加至哕、座珞 u刀,從該波谷逐漸 、/、 q 以及一下降部分,從該波峰逐漸減少至兮 波谷’使得該第三振盪信號之該波峰係與該第一振盪信 11 1237436 之/波:同日守發生’且該第三振盪信號之該波谷係與該第 振盪u之4波峰同時發生;並且該第三電源供應通道 至/ 士刀才奐虼遷係發生於該第三振盪信號之該上升部 分與該下降部分兩者所涵蓋的時間範圍内。 較# & ’该第三振盛信號係該第一振盈信號之反相信 、 刀換式直流至直流轉換器更包含:一第四電 μ I C耦合於该直流電壓源與該地面間,用以轉換 :直抓電壓源成為一第四直流輸出電壓,該第四直流輸出 電,係分離於該第一與該第二直流輸出電壓,其中:該振 盈器更輸出具有—篦叩彳两甘从 ^ 弟四週期的一第四振盪信號至該第四 電源供應通道;在該第四週期之每-週期巾,該第四振盈 ”虎具有-瞬間變遷的邊緣,其中該瞬間變遷的邊緣係與 4第一振盪信號之該波峰及該波谷兩者其中之一同時發 σ /第四振盪彳5唬之該瞬間變遷的邊緣與該第二振盪信 :4瞬間紇遷的邊緣間存在有一預定的時間偏移;並且 :第四電源供應通道之至少一切換變遷係與該第四振盪 。就之該瞬間變遷的邊緣同時發生。 較佳地,該預定的時間偏移係該第二週期之一半。 車乂佳地’ 5亥第四振盪信號係一脈衝振盡信號,在該第 :週期之每—週期中’具有一上升邊緣、-脈衝寬度、與 降邊、緣n亥第四振盪信號之該瞬間變遷的邊緣係 夺曰其之該上升邊緣。 ’、 較佳地,該振盈器更輸出一第二辅助信號至該第四電 12 1237436 :、供應通道,其中該第二輔助信號係 與一下降邊緣,使得該下降邊緣二四 ;l號之5亥瞬間變遷的邊緣同時發生。 八 較佳地’該第四電源供應通道藉由該第二 仃黾流模式回授控制之斜率補償。 Q &進 ”依1虞本發明之另-態樣,提供-種振羞器,包含:― 衣置,用讀出具有-第—週期的_第_ —裝置,用以輸出具有-第二週期的—第二^/及 中:在該第一週期之每一週期中,該第二·^,其 波峰、一波谷、一上八n丄、 \盪h號具有一 以及-下降邻八:<°亥波夺逐漸增加至該波峰、 弟一週期之母一週期中,該第二㈣ 在该 的邊緣,其中該_f1 _ 1Μ A σ I/、有一瞬間變遷 波峰及該波谷兩者其中之—同時發生。振妇…姨 較佳地,該第一振盪信號係一 _、較佳地,該第二振盈信號係一脈:號在 -週期之每一週期中,具有一上升邊緣、在该第 :下降邊緣,並且該第二振盪信號之該:==、與 才曰其之該上升邊緣。 1交遷的邊緣係 較佳地,該振盪器更包含:一裝置 輔助信號,其中該第一輔用以輸出-第- —上升部分與-下降邊緣,=該下降=振盪信號’具有 盪信號之該瞬間變遷的邊緣同時發生。緣係與該第二振 較佳地’該振盡器更包含:一装置,用以輸出具有— 13 1237436 弟二週期的-第三振i信號,其中:在該第三 週期中,㉟第三振^信號具有一波峰、一波谷、二之母: 分,從該波谷逐漸增加至該波峰、以及一下降部八上:= 波峰逐漸減少至該波谷,使得該第三攸忒 叙呤钕t 名11口观之该波峰係 ”:弟-振盪信號之該波谷同時發生,且該第三振盈㈣ 之忒波合係與該第一振盪信號之該波峰同時發生。 號。“地’忒第二振盪信號係該第-振盪信號之反相信 #較佳地,該振盪器更包含:一褒置,用以輸出具有一 弟四週期的一第四振盈信號,其中:在該第四週期之每一 週期中’該第四振盪信號具有一瞬間變遷的邊緣 节 瞬間變遷的邊緣係與該第—振盪信號之該波峰及該波: 兩者其中之一同時發生,並且該第振 二 I彳5就之該瞬間變 、邊緣與該第二振盪信號之該瞬間變遷的邊緣間存在 有一預定的時間偏移。 較佳地,該第四振盡信號係一脈衝振盪信號,在該第 :週期之每一週期中,具有一上升邊緣、—脈衝寬度、與 二下降邊緣,並且該第四振I信號之該瞬間變遷的邊緣係 指其之該上升邊緣。 較佳地,該振盈器更包含:一襄置,用以輸出一第二 輔助信號’其中該第二辅助信號係—斜波振盪信號,具有 -上升部分與-下降邊緣,使得該下降邊緣係與該第四振 盪信號之該瞬間變遷的邊緣同時發生。 在依據本發明之具有多重輸出電壓之切換式直流至 14 1237436 直流轉換器中,該第一至該第四電源供應通道之該至少一 切換變遷在時間上係彼此分離地發生,可避免瞬變尖波相 互疊加,而達成相對低的瞬變雜訊之操作狀態。此外,依 據本發明之具有多重輸出電壓之切換式直流至直流轉換 器採用使用組怨簡單之振盈器,產生多相位多波形同步信 號,因而達成小尺寸與低成本之優點。應注意依據本發明 之具有多重輸出電壓之切換式直流至直流轉換器得應用 於具有任意數目的電源供應通道。 【實施方式】 下文中之說明與附圖將使本發明之前述與其他目 的、特徵、與優點更明顯。茲將參照圖式詳細說明依據本 發明之較佳實施例。 在詳細說明依據本發明之實施例之前,為了使本發明 之技術特徵更谷易被瞭解,首先說明本發明與先前技藝之 區別。依據本發明之具有多重輸出電壓之切換式直流至直 流轉換器與美國專利第5,959,441號、第6,137,274號、第 6,144,194號、與第6,246,222號等先前技藝中所描述的多 相位(Multiphase or Polyphase)切換式直流至直流轉換器 並不相同。具體而言,先前技藝多相位切換式直流至直流 轉換器僅設有單一的輸出端以供應單一個調節後的輸出 電壓,然而依據本發明之切換式直流至直流轉換器則設有 複數個輸出‘,彼此分離,藉以分別供應複數個調節後的 輸出電壓。再者,先前技藝多相位切換式直流至直流轉換 15 1237436 器必須致力於維持複數個電源供應通道彼此間流通的電 流均勻,以避免「熱通道(HotChannel)」現象發生。然而% 在依據本發明之切換式直流至直流轉換器中,複數個電源 供應通道係分離地供應複數個調節後的輸出電壓。此外, 先前f藝多相位切換式直流至直流轉換器中之振盪器僅 限於提供具有相同波形(可能具有不同相位)的脈衝信號與 斜波信號。然❿,在依據本發明之切換式直&纟直流轉換 器:,振盪器輸出不同波形不同相位的振盪信號至彼此獨 立操作的各電源供應通道。更且,先前技藝多相位切換式 直流至直流轉換器中之各個電源供應通道必須採用相同 的回授控制模式。然而,在依據本發明之切換式直流至直 轉換中各個電源供應通道可使用不同的回授控制模 式。 ' 下文將參照圖2(a)與2(b)以及圖3詳細說明依據本發 明之改善具有多重輸出電壓之切換式直流至直流轉換器 20之瞬變雜訊之方法。 圖2(a)顯示依據本發明之具有多重輸出電壓之切換式 直"IL至直流轉換器20之電路區塊圖。為了防止圖式過度 複雜且使本發明之技術特徵更容易被瞭解,圖2(a)以及下 文之說明與其他參照的圖式僅顯示具有四個輸出電壓之 切換式直流至直流轉換器20,作為本發明之一實施例。應 /主思本發明不限於此實施例,而得應用於具有任意數目的 輸出電壓之切換式直流至直流轉換器。下文中將詳細說明 圖2(a)所示的依據本發明之切換式直流至直流轉換器2〇 16 1237436 不同於圖1(a)所示的先前技藝之處。 參照圖2(a),切換式直流至直流轉換器20不同於圖 1(a)所示的切換式直流至直流轉換器10之處在於切換式 直流至直流轉換20設有一多相位多波形同步振盪器 26,藉以取代先前技藝之振盪器16。具體而言,多相位多 波形同步振盪器26得產生複數個不同相位且不同波形的 同步振盪信號。在圖2(a)所示的實施例中,多相位多波形 同步振盈器26輸出同步的第一至第四振盈信號tri、 TR2、PC1、與PC2,其具有不同的相位且不同的波形,分 別傳送至電源供應通道2 1A至2 1D之切換控制器2 2 A至 22D。此外,第一辅助信號RM1亦伴隨著第三振盪信號 輸入切換控制器22C,而第二辅助信號RM2亦伴隨著第四 振盪信號PC2輸入切換控制器22D。藉著同步的第一至# 四振蘯信e TR1、TR2、PC1、與PC2之相位差異: 差異,切換控制器22Ai 22D得在不同的時間點使^ 換電晶體25A至25D發生切拖辩、矣w I 刀 毛生切換變遷,猎而避免瞬變尖波相 互豐加。 m 圖2(b)顯示第一至第四振盪信號TRb tr2 PC2以及第一盎黛一結咕 1、與 弟/、第一辅助化唬RM1與RM2之時序圖, 以清楚說明苴你屮μ 4 , 1=1 用 間之相位關係與波形特徵。參昭H 2(b),第-振盈信號TR1係〜圖 於V r辎4 A %貝W 一角波,其振幅變化 、蠢 、峰值)與VL(稱之為谷值)間。同樣地,第- # Μ號TR2係另一連續的 弟—振 v鬥。去 /、振巾田亦k化於νΗ血 L 0 ’、’、了方便描述第一與第二振盪信號TR1與TR2 : 17 1237436 波形,「波峰」係指振幅等於♦值%,「波 於谷值vL,「卜弁都八〆& 伯派中田寺 、 °卩刀」係扣振幅從谷值Vl逐漸增加至峰 H ’並:「下降部分」係指振幅從峰值VH逐漸減少至 〇 L。弟-振盪信號TR1與第二振盪信號τ Π,相位卻相差叫使得第-振盈信號; … ¥間上對準第二振盪信號TR2之波谷,且第一振 虎TR1之波谷在時間上對準第二振盪信號TR2之波 峰。換言之,第一與第二振盪㈣τ : 分彼此在時間上錯開,不互相重叠。同樣地,第二^部 振蘯信號TR1肖TR2之下降部分彼此在時間上錯開弟= 互=重疊。請注意,雖然在圖2(b)所示的實施例中,第— ^振盪纟TR1肖TR2具有相同大小的峰值與相同 中小:二:但本發明不限於此。在本發明之另—實施例 弟—振盛信號TR1與TR2得具有不同大小的 或不同大小的谷值,但彼此間仍需維持相同的週期盘 -度之相位差。再者,雖然在圖2(b)所示的實施例;^ 二:㈣…為上升部分所佔時間 ”下降h所佔時間彼此相等之等邊三角波,但 限於此’而得應用於第一與第二振S信號TR1斑TR2比 為上升部分所佔時間與下降部分所佔時間彼此不相等: 二角波。再者’雖然在圖2⑻所示的實施例中第 二振盪信號TR1與TR2之上升部分皆為線性增 Π旦本發明不限於此,而得應用於第一與 -與-之上升部分皆為非線性增加。再者,雖 18 1237436 2(b)所示的實施例中,第—盥第- 一乐一振盪k就TR1與TR2之 下降部分皆為線性減少,作太恭3日 — W仁本發明不限於此,而得應用於 弟一與弟一振盪信號TR1血TR2之下p乞加\ 〃 1 KZ之下降部分皆為非線性 減少。 弟二振盪信號PC1係一脈衝信號,其中每一脈衝係由 從謂瞬間變MHIGH的上升邊緣、維持於mGH的脈 =寬度 '與從LOW瞬間變遷至HIGH的下降邊緣所組成。 ,-輔助信號RM1係-連續的斜波,由從q逐漸增加至 最大值vmax的上升部分與從最大值Vmax瞬間變遷至〇的_ 下降邊緣所組成。第三振盪信號PC1之上升邊緣盘第一輔 助信號觀之下降邊緣係同時發生。第四振盈信號⑽. 係-個脈衝信號’纟中每一脈衝係由從L〇w瞬間變遷至 HIGH的上升邊緣、維持於HIGH的脈衝寬度、與從[㈣ 瞬間變遷至犯仙的下降邊緣所組成。第二辅助信號彻 係一連續的斜波,由從〇逐漸增加至最大值Vmax的上升部 刀與從最大值Vmax瞬間變遷至0的下降邊緣所組成。第四 振盪信號PC2之上升邊緣與第二辅助信號RM2之下降邊鲁 緣係同時發生。此外,如圖2(b)所示,第三與第四振盪信 號PC 1與PC2具有相同的週期但相位卻相差1 8〇度。請注 意’雖然在圖2(b)所示的實施例中,第三與第四振堡信號 PC1與PC2具有相同大小的最大值Vmax,但本發明不限於 此。在本發明之另一實施例中,第三與第四振盪信號pc i 與PC2得具有不同大小的最大值,但彼此間仍需維持相同 的週期與180度之相位差。 19 1237436 在圖2(b)所示的實施例中,峰值vH約為〇·8伏特,而 谷值VL約為〇·3伏特。第一至第四振盪信號TRi、、 PCI、與PC2以及第一與第二輔助信號RM1與rm2之週 期皆約為1微秒(micr〇second)。第三與第四振盪信號pc工 與PC2之脈衝的寬度約為100毫微秒(nanosec〇nd),且狀 態HIGH約為2.2伏特而狀態L0W約為〇伏特。第一與第 二輔助信號RM1與RM2之振幅最大值Vmax約為〇·8伏特。 從圖2(b)清楚可見,第一振盪信號TR1之波谷、第二 振盪信號TR2之波峰、第三振盪信號pc丨之上升邊緣、與 第一輔助信號RM1之下降邊緣係同時發生。再者,第一 振盪信號TR1之波峰、第二振盪信號TR2之波谷、第四 振盪信號PC2之上升邊緣、與第二輔助信號RM2之下降 邊緣係同時發生。 圖3顯示依據本發明之電源供應通道2丨a至2丨〇之詳 細電路圖。參照圖3,電源供應通道21A係採用電壓模式 回授控制’回應於第一振盪信號TR1而操作,用以轉換直 流電壓源VSQuree成為直流輸出電壓vQUtl。電源供應通道 21A包含一切換控制器22A、一轉換電路23A、以及一回 授電路24A。轉換電路23A係一降壓轉換電路,具有功率 切換電晶體25A,電感L1、電容ci、與二極體D1,如圖 式般耦合。回授電路24A係由電阻Ra 1與Rb 1所組成的分 壓電路’提供一指示直流輸出電壓V()Utl的回授信號FB1。 回授信號FBI輸入切換控制器22A中之誤差放大器eai, 使之比較於參考電壓Vrefl。隨後,pwM比較器PA1將第 20 1237436 -振盛信冑TR1與誤差放大器EA1所輪出的誤差電壓之 比較結果輪出至驅動n DR1,藉以產生pwm控制作號1237436 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a switching DC-to-DC converter, and more particularly to a switching DC-to-DC converter, which is provided with multiple power supply channels to provide evening output voltage. It can improve the transient noise caused by power switching transistors. The multiple power supply channels can all use voltage branch feedback control or some channels use voltage mode feedback control and the other channels. Adopt current mode feedback control. [Previous technology] Typically, switching DC-DC converters adjust the DC voltage source to a DC input voltage with the desired voltage level by appropriately controlling the work cycle of the power knife for the sun and the sun. . In the case where the voltage level of the DC output voltage is greater than the voltage level of the DC voltage source, these switches = DC to DC converters may be collectively referred to as boost converters or boost regulators. In cases where the level is lower than the voltage level of the DC voltage source, these switching DC-to-DC conversions are collectively referred to as a buck converter or a buck regulator. In order to ensure the stability of the DC output voltage, the switching DC-DC converter is usually provided with a feedback circuit, which is typically divided into a voltage mode u ^ 8 and a current mode feedback. In the voltage mode feedback, the feedback circuit captures a certain ratio of the output voltage of the gaffa and the electric straight line to generate the feedback signal. In the current mode and the electrical error type, the feedback circuit uses a series resistor to sense the magnitude of the inductor current and bury it to generate a feedback signal. In addition, the current mode feedback circuit can also capture a certain ratio of the DC wheel output voltage for 1237436 to perform the slope compensation function. In most of today's electronic system products, — a variety of functional modules (Funetl 1 MGdule) hanging ”, and 5 various operations and results. For example, digital phase) machine System device, backlight module, image sensor, number: place: li;-, ^, electronic system products that process the combined image of Li, memory, etc. to achieve digital image capture, storage In the example of a digital camera, the liquid crystal display " moonlight module, image sensor, digital virtual ^. Two Ikis + digital processing state, and memory are all ::: power supply can perform the desired operation It is not the same as the functional long-distance medium lightning in the electronic system products, 7? __ # 弋 various functions of the wedge group required DC is not the same ^ that is, each is designed to operate under the direct current 2 voltage. Because electronic system products usually only have a single DC voltage .. (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, must ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, to: • Switch states in order to supply a plurality of DC outputs, which are different from each other: Switching DC-DC converter integrated in single-chip Wafers are used to reduce packaging and wiring processes to achieve low cost / J, size, and reduce parasitic capacitance and inductance. IS Hit The original multiple switch DC-DC converters have been converted into this integrated single integrated circuit chip. There are a plurality of power supply channels. The plurality of power supply channels are connected in parallel between a common DC power source and the ground, and / or have separate output terminals' for supplying a plurality of mutually different DC output voltages. ® 1 (a) shows a circuit block diagram of a conventional switched DC-to-DC converter 10 with multiple output voltages. Refer to the figure ^ ⑷ 'switched DC 1237436 to DC converter 10 with four power supply channels 11A to UD To convert a single DC voltage source VSQurce (shown in Figure Vb) into four DC output voltages V () utl to VQut4. The power supply channel 丨 A includes a switching controller 12A and a conversion circuit 13A A power switching transistor 15A and a feedback circuit 14A are provided. The power switching transistor 15A is a pulse width modulation (Pulse-Wi) output by the switching controller 12A. dth-Modulated (PWM) control signal PWM1 is driven. The duty cycle of the PWM control signal PWM1 determines the voltage level conversion relationship between the DC voltage source vs〇urce and the DC output voltage V (> utl. In other words, at a fixed Under the condition of the voltage source __, various DC output voltages vQutl can be obtained by appropriately adjusting the duty cycle of the PWM control signal PWM1. In addition, the switching controller 12A receives the feedback signal generated from the feedback circuit 14A Fm, and adjust the pwM control signal PWMi to make the jade loop, so that the DC output% is maintained at a stable u value. 0 The power supply channel 13B 'is provided with a power switching transistor 15B and a feedback circuit 14B. The power switching transistor is driven by a PWM control signal PWM2 output from the switching control stomach. The working cycle of the pwM control signal request determines the level conversion relationship between DC_V—and DC output V_2. The switching control ϋCa # receives the feedback signal FB2 generated from the feedback circuit _, and adjusts the control signal of Satoshi, and the working cycle ′ keeps the DC wheel output $ V_2 at a stable value. The power supply channel 11C includes a switching controller and a conversion circuit Be. 1237436 is provided with a power switching transistor 15C and a feedback circuit degree. Power "M15C" is driven by switching pwM control = No. PWM3 output by switching controller, 12c. The duty cycle of the pWM control signal pwM3 determines the voltage level conversion relationship between the direct voltage source Vsource and the DC output voltage. The switching controller 12C receives the slave feedback circuit M. The generated = feedback signal FB3, and the working cycle of adjusting the pWM control signal pwM3… keeps the direct output voltage VeUt3 at a stable value. The power supply is connected to the switching controller 12D, a conversion circuit 丨 3D, which is provided with a 15D rate changer and a feedback circuit. The power switching circuit 15D is driven by the PWM control signal PW ^ 4 output by the switching controller and 12D. The duty cycle of the PWM control signal PWM4 determines the switching relationship between the voltage level between the DC voltage source Vsource and the DC output voltage V— Switching controller 丨 2D receives the feedback from the feedback circuit 1 and then bluffs FB4, and adjusts pWM The duty cycle of the control signal pwM4 maintains the DC output voltage v0ut4 at a stable value. The oscillator 16 outputs a pulse signal pULSE1 and a ramp signal RAMpi = the switching controller 12A. The rising edge of the pulse signal PULSE1 and the falling edge of the ramp wave P 1 occur simultaneously. The pulse signal PULs1 is set (S is called the switching controller, 12A, which causes it to generate the j-rising edge of the PWM control signal PWM1, and then turns on the power switching transistor 15A. The ramp signal RAMP1 and the feedback signal FBI determine the S The occurrence of the falling edge of the PWM control signal PWM1, and then turn off (Turn Off) the power switching transistor 15A oscillates 16 and outputs the pulse signal PULSE2 and the ramp signal RAMP2 to the switching controller 12B. The rising edge of the pulse signal puLSE2 1237436 and the ramp The falling edges of the signal RAMP2 occur simultaneously. The pulse signal PULSE2 sets the switching controller 12B to generate the rising edge of the PWM control signal PWM2, and then turns on the power switching transistor 15B. The ramp signal RAMP2 and the feedback signal FB2 determine the PWM control The falling edge of the signal PWM2 occurs, and the power switching transistor 1 5B is turned off. The oscillator 16 outputs the pulse signal PULSE3 and the ramp signal RAMP3 to the switching controller 12C. The rising edge of the pulse signal PULSE3 and the ramp signal RAMP3 fall The edges occur simultaneously. The pulse signal PULSES sets the switching controller 12C so that it generates the rising edge of the PWM control signal PWM3, Then the power switching transistor 15C is turned on. The ramp signal RAMP3 and the feedback signal FB3 determine the occurrence of the falling edge of the PWM control signal PWM3, and then the power switching transistor 15C is turned off. The oscillator 16 outputs the pulse signal PULSE4 and the ramp wave. The signal RAMP4 goes to the switching controller 12D. The rising edge of the pulse signal PULSE4 and the falling edge of the ramp signal RAMP4 occur at the same time. The pulse signal PULSE4 sets the switching controller 12D to cause the rising edge of the PWM control signal PWM4 to turn on the power The switching transistor 15D. The ramp signal RAMP4 and the feedback signal FB4 determine the occurrence of the falling edge of the PWM control signal PWM4, and then the power switching transistor 15D is turned off. Referring to FIG. 1 (b), the power supply channels 11A to 11D are connected in parallel with each other. The DC voltage source VSQUrce is connected to the ground. Specifically, the power supply channels 11A to 11D are connected in parallel between the DC voltage source VSQUrce and the ground through the connection wiring. As a result, there are DC voltage source VSQUree and the power supply channels 11A to 11D respectively. Connect the parasitic inductance Lw caused by the wiring. Similarly, in the 1237436 source supply channel 1 1 A to 1 1 D and ground There are also parasitic inductances Lw caused by the connection wiring between the surfaces. In the operation of the power supply channels 丨 丨 a to π d, the power switching transistors 15A to 15D in the conversion circuits 13A to 13D are periodically switched, thereby The voltage conversion function is achieved. Due to the presence of the parasitic inductance Lw, whenever any of the power switching transistors 15A to 15D performs a switching transition, noise caused by a transient spike (Transient Spike) is generated. FIG. 1 (c) shows waveform timing diagrams of the pulse signals PULSE1 to PULSE4 and the ramp signals RAMP1 to RAMP4 generated by the conventional oscillator 16. As shown in Fig. 1 (c), the pulse signals puLSE1 to puLSE4 have the same waveform and phase with each other, and the ramp signals RAMpi to RAMp4 have the same waveform and phase with each other. Therefore, the oscillator 16 actually only needs to produce a single pulse signal and a single ramp signal, and then supply them to the switching controllers 12A to ud of the four power supply channels 11A to UD at the same time. In this prior art, the circuit configuration of the oscillator 6 is quite simple, with the advantages of small size and low cost. However, the pulse signals PULSE1 to PULSE4 in the same phase set the switching controllers 12A to 丨 at the same time, so that the power switching transistors 丨 5A to 丨 5B are switched at the same time. As a result, the transients caused by the work and switching transistors 15A to 15B are superimposed on each other. Therefore, there is a considerable = transient noise between the DC voltage source and the ground, which makes the quality of the DC output voltages v0uti to v_4 bad: and it is easy to cause damage to the power supply channels 11A to 11D. "[Summary of the Invention] 9 1237436 has the above-mentioned problems. One of the objectives of the present invention is to provide a type of straight μ to DC converter with multiple output voltages, which can avoid transient spikes caused by multiple and source supply channels. Superimposed to achieve relatively low: the operation of transient noise. Another object of the invention is to provide a switching DC-DC converter with multiple output voltages, which can be achieved by using a configuration device: The advantages of small size and low cost. According to one aspect of the present invention, a switching DC to DC conversion is provided to include:-the first power supply channel, which is consumed by the DC voltage source = ground = 1 to The DC voltage source is converted into a first DC output ^ a power supply channel, which is coupled to the DC voltage source and the ground,-for converting the DC voltage source into-a second DC output voltage, and the side output DC voltage Is separated from the first DC output voltage; and = Shenger is used to output a first vibration surplus signal with a first period to 'a :: supply channel, and is used to output With-the second period-Bu Qiu a power supply channel, where: in the mother of the first period: the period, the first _ number has a wave peak, a wave valley,, up: wide: knife 'from the wave valley Gradually increasing to the peak, and a decreasing part of the second t peak gradually reducing to the trough, so that the first power supply through the second and eighth disk: a switching transition occurs between the first rising part of the first oscillation signal and the falling part Within the range of time covered; and at each of the 4 cycles, t does not have edges, but instantaneous gates. The second oscillation signal has the edge of a momentary transition, and the edge of the trough is temporarily moved. Zhenying said that the wave peak and the same% occur, which makes the second power supply channel 10 I237436 switching change occur at the same time as the edge of the instantaneous change. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The channel belongs to the corresponding channel, and the first electric power supply channel is a pull-type power supply channel. The younger-power supply channel belongs to the current-mode power supply: ::: ground, and the first-oscillation signal is a triangular-wave oscillation signal. Ground 'the second oscillating signal -Pulsing oscillation signal: each period of a cycle is shifted at the child's labor, a pulse sore „-falling edge, and the second„ signal ::, and refers to the rising edge. && amp The moving edge system preferably outputs the first auxiliary signal to the source supply channel, J: & > 筮,. / The first electric-rising part and a falling edge, so that the falling edge :::: The edges of the instantaneous transition with oscillating signals occur at the same time. ',' ~, Μ The first line of electricity: Γ = The second power supply channel uses the -secondary signal to perform electrical / melon feedback. Compensation for the slope of the control. The car is a good, switchable DC to DC converter, and also includes a # 1 power supply channel, coupled to the DC voltage, and the DC voltage source is changed to Α 帛 一 古, ... The voltage used to transfer the voltage is separated from the second direct current output of 料 —material Dishan 4 ... Hildi and the direct output voltage, among which Zhenyi Yi output more than one thunder, Ma Zhengyi with a third cycle , S coin-Zhensheng No. to the first-power supply t, should pass; in the first In each period of the cycle, the oscillating signal has a crest, a trough, a top / per person, and the vibration increases to 哕, 珞, and gradually decreases from the trough, /, q, and a falling portion from the peak to Xi valley 'causes the peak system of the third oscillation signal and the / wave of the first oscillation signal 11 1237436 to occur on the same date; and the valley system of the third oscillation signal occurs simultaneously with the 4 peaks of the third oscillation u; And the migration of the third power supply channel to / swordsmanship occurs within the time range covered by both the rising portion and the falling portion of the third oscillating signal. Compared with the "the third vibration signal is the anti-belief of the first vibration signal, the blade-changing DC-DC converter further includes: a fourth electric μ IC is coupled between the DC voltage source and the ground, Used for conversion: The direct voltage source becomes a fourth DC output voltage, and the fourth DC output power is separated from the first and the second DC output voltages, wherein the output of the vibrator is-篦 叩 彳Liang Gan from the fourth cycle of a fourth oscillation signal to the fourth power supply channel; at each period of the fourth cycle, the fourth vibration surplus tiger has the edge of a momentary transition, in which the momentary transition The edge system of 4 and one of the peak and the valley of the first oscillation signal simultaneously send σ / fourth oscillation. 5 The edge of the transient transition and the second oscillation signal: 4 between the edge of the transient transition. There is a predetermined time offset; and: at least one switching transition of the fourth power supply channel and the fourth oscillation. The edge of the instantaneous transition occurs simultaneously. Preferably, the predetermined time offset is the first Half of the second cycle. The 5th oscillating signal is a pulse exhaustion signal. In each period of the first: period, it has a rising edge, -pulse width, and falling edge, edge n. The edge is the rising edge. ', Preferably, the vibrator further outputs a second auxiliary signal to the fourth electric 12 1237436 :, a supply channel, wherein the second auxiliary signal is connected to a falling edge. So that the edge of the falling edge two to four; the edge of the instantaneous change of the 5th of l occurs simultaneously. Eighth preferably, the fourth power supply channel is compensated by the slope of the second flow mode feedback control. Q & According to another aspect of the present invention, a "shock device" is provided, including:-a device for reading out a device having a -first period of the _first_ period, for outputting a device having the second period —Second ^ / and Medium: In each of the first cycle, the second ^, its peak, one trough, one up to eight n 丄, \ swing h has one, and -decreasing neighboring eight: & lt °° The wave gradually increases to the crest, the mother-cycle of the brother-cycle, and the second Edge, wherein the _f1 _ 1Μ A σ I /, a moment changes both the peaks and the troughs of which - occur simultaneously. Zhenfu ... Auntie, preferably, the first oscillating signal is a _, preferably, the second oscillating signal is a pulse: the number is in each period of the-cycle, with a rising edge, at the first: The falling edge and the second oscillating signal should be: ==, and the rising edge should be the same. 1 The edge system of the transition is preferably, the oscillator further comprises: a device auxiliary signal, wherein the first auxiliary is used to output-the first-rising part and-the falling edge, = the falling = oscillating signal has an oscillating signal The edges of this instantaneous change occur simultaneously. The relationship between the fate and the second oscillator is better. The exhaustor further includes: a device for outputting a third oscillator i signal having a second period of-13 1237436, wherein: in the third period, the first The triple vibration signal has a wave crest, a wave trough, and the mother of two: minutes, gradually increasing from the wave trough to the wave crest, and a falling part eight: = the wave crest gradually decreases to the wave trough, making the third dysprosium neodymium "The peak system of 11 names": the wave valley of the di-oscillation signal occurs at the same time, and the oscillating wave system of the third vibration signal and the wave peak of the first oscillation signal occur simultaneously. No. "Earth"忒 The second oscillating signal is the anti-belief of the -oscillating signal # Preferably, the oscillator further includes: a set for outputting a fourth oscillating surplus signal having a period of four cycles, wherein: in the first In each of the four cycles, 'the fourth oscillation signal has a transient transition of the edge node and the transient transition of the edge system and the peak and the wave of the first oscillation signal: one of the two occurs simultaneously, and the first oscillation The second I 彳 5 is the instantaneous change, the edge and the second oscillation Between the edge of the instantaneous number of changes there is a predetermined time offset. Preferably, the fourth vibration exhaust signal is a pulse oscillation signal. In each period of the first period, it has a rising edge, a pulse width, and two falling edges. The transient edge refers to the rising edge. Preferably, the vibrator further includes: a device for outputting a second auxiliary signal, wherein the second auxiliary signal is a ramp oscillation signal, and has a rising edge and a falling edge, so that the falling edge It occurs at the same time as the edge of the instantaneous transition of the fourth oscillation signal. In the switching DC to 14 1237436 DC converter with multiple output voltages according to the present invention, the at least one switching transition of the first to the fourth power supply channels occurs separately from each other in time, which can avoid transients. The spikes are superimposed on each other to achieve a relatively low transient noise operating state. In addition, the switchable DC-DC converter with multiple output voltages according to the present invention uses a simple gain amplifier to generate a multi-phase and multi-waveform synchronization signal, thereby achieving the advantages of small size and low cost. It should be noted that a switching DC-DC converter with multiple output voltages according to the present invention can be applied to an arbitrary number of power supply channels. [Embodiment] The following description and drawings will make the foregoing and other objects, features, and advantages of the present invention more apparent. A preferred embodiment according to the present invention will be described in detail with reference to the drawings. Before explaining the embodiments according to the present invention in detail, in order to make the technical features of the present invention more understandable, the differences between the present invention and the prior art are explained first. The switching DC-DC converter with multiple output voltages according to the present invention and the multi-phase (Multiphase or Polyphase) described in the prior arts such as U.S. Patent Nos. 5,959,441, 6,137,274, 6,144,194, and 6,246,222, etc. ) Switching DC-DC converters are not the same. Specifically, the prior art multi-phase switching DC-DC converter has only a single output terminal to supply a single adjusted output voltage, but the switching DC-DC converter according to the present invention has a plurality of outputs ', Separated from each other, thereby supplying a plurality of adjusted output voltages. Furthermore, the prior art multi-phase switching DC-to-DC converter 15 1237436 device must be dedicated to maintaining a uniform current flow between the plurality of power supply channels to avoid a “hot channel” phenomenon. However, in the switching DC-DC converter according to the present invention, a plurality of power supply channels separately supply a plurality of adjusted output voltages. In addition, the oscillators in the previous multi-phase switching DC-DC converters were limited to providing pulse signals and ramp signals with the same waveform (possibly with different phases). However, in the switching type & DC converter according to the present invention: the oscillator outputs oscillating signals with different waveforms and different phases to the power supply channels operating independently of each other. Moreover, the prior art multi-phase switching DC-to-DC converters must use the same feedback control mode for each power supply channel. However, in the switching DC-to-DC converter according to the present invention, each power supply channel can use a different feedback control mode. '' A method for improving the transient noise of the switching DC-DC converter 20 with multiple output voltages according to the present invention will be described in detail below with reference to FIGS. 2 (a) and 2 (b) and FIG. 3. FIG. 2 (a) shows a circuit block diagram of a switching DC-to-DC converter 20 with multiple output voltages according to the present invention. In order to prevent the drawings from being too complicated and make the technical features of the present invention easier to understand, FIG. 2 (a) and the following descriptions and other reference drawings only show a switched DC-DC converter 20 with four output voltages, As one embodiment of the present invention. The present invention is not limited to this embodiment, but can be applied to a switched DC-DC converter having an arbitrary number of output voltages. Hereinafter, the switching DC-to-DC converter 2016 1237436 according to the present invention shown in FIG. 2 (a) will be described in detail. The difference from the prior art shown in FIG. 1 (a). Referring to FIG. 2 (a), the switched DC-DC converter 20 is different from the switched DC-DC converter 10 shown in FIG. 1 (a) in that the switched DC-DC converter 20 is provided with a multi-phase multi-waveform The synchronous oscillator 26 replaces the oscillator 16 of the prior art. Specifically, the multi-phase and multi-waveform synchronous oscillator 26 may generate a plurality of synchronous oscillating signals with different phases and different waveforms. In the embodiment shown in FIG. 2 (a), the multi-phase and multi-waveform synchronous oscillator 26 outputs the first to fourth synchronous oscillator signals tri, TR2, PC1, and PC2, which have different phases and different The waveforms are transmitted to the switching controllers 2 2 A to 22D of the power supply channels 2 1A to 2 1D, respectively. In addition, the first auxiliary signal RM1 is also input to the switching controller 22C along with the third oscillation signal, and the second auxiliary signal RM2 is also input to the switching controller 22D along with the fourth oscillation signal PC2. By synchronizing the first to #three vibration signals e TR1, TR2, PC1, and PC2 phase difference: Difference, the switching controller 22Ai 22D has to make ^ switch crystals 25A to 25D cut off at different points in time , 矣 w I The change of scalpel hair is changed, hunting and avoiding transient spikes mutually enriching. m Figure 2 (b) shows the timing diagrams of the first to fourth oscillation signals TRb tr2 PC2 and the first ounce of a knot, 1, and brother /, and the first auxiliary RM1 and RM2, to clearly explain 苴 你 屮 μ 4, 1 = 1 The phase relationship and waveform characteristics between the applications. Refer to H 2 (b), the first vibration signal TR1 is shown in the figure. It is shown in V r 辎 4 A% W angular wave, its amplitude change, stupidity, peak value) and VL (called valley value). Similarly, No.-#M TR2 is another consecutive brother-Zhen vdou. To /, Zhen Jintian also converted to νΗ 血 L 0 ',', to conveniently describe the waveforms of the first and second oscillation signals TR1 and TR2: 17 1237436, "peak" means the amplitude is equal to the value%, "wave in The valley value vL, the "buhudu hachi" & Bopa Nakata-ji, ° 卩 刀 "buckle amplitude gradually increases from the valley value Vl to the peak H 'and:" falling part "means that the amplitude gradually decreases from the peak value VH to 〇 L. The phase difference between the oscillating signal TR1 and the second oscillating signal τ Π is called the first vibration signal;… ¥ is aligned with the trough of the second oscillating signal TR2, and the trough of the first oscillating tiger TR1 is opposite in time. The peak of the quasi-second oscillation signal TR2. In other words, the first and second oscillations ㈣τ: points are staggered in time from each other and do not overlap each other. Similarly, the falling parts of the second vibration signal TR1 and TR2 are staggered in time from each other = mutual = overlap. Please note that, although in the embodiment shown in FIG. 2 (b), the ^^ 纟 1 TR1 and the TR2 have the same peak value and the same small and medium: two: but the present invention is not limited to this. In another embodiment of the present invention, the brilliance signals TR1 and TR2 may have valleys of different sizes or different sizes, but still need to maintain the same periodic disc-degree phase difference between each other. Furthermore, although in the embodiment shown in FIG. 2 (b); ^ 2: ㈣ ... is the time occupied by the rising part "equal triangle waves occupied by the falling h are equal to each other, but it is limited to this and can be applied to the first The ratio of the spot TR2 to the second oscillation S signal TR1 is that the time occupied by the rising portion and the time occupied by the falling portion are not equal to each other: a dihedral wave. Furthermore, although the second oscillation signals TR1 and TR2 are shown in the embodiment shown in FIG. The rising parts are all linear increases. The present invention is not limited to this, but can be applied to the first and -and- the rising parts are non-linear increasing. Furthermore, although the embodiment shown in 18 1237436 2 (b) The first—the first one—the one-kill oscillation k decreases linearly in both TR1 and TR2. To be respectful on the 3rd—The present invention is not limited to this, but can be applied to the first and the first-oscillation signal TR1 blood. Below TR2, the decrease of p 乞 \\ 1 KZ is a non-linear decrease. The second oscillation signal PC1 is a pulse signal, where each pulse is a rising edge that changes from predicate to MHIGH instantaneously and is maintained at mGH pulse = Width 'and the falling edge of the transient transition from LOW to HIGH., -Auxiliary signal RM1 -Continuous ramp, consisting of a rising portion that gradually increases from q to the maximum value vmax and a falling edge of _ that changes instantaneously from the maximum value Vmax to 0. The rising edge of the third oscillating signal PC1 decreases the first auxiliary signal view of the disk The edge system occurs at the same time. The fourth vibration signal ⑽. System-a pulse signal '纟 each pulse system changes from L0w to HIGH rising edge, the pulse width maintained at HIGH, and from [从 instantaneous transition The second auxiliary signal is a continuous ramp wave consisting of a rising knife that gradually increases from 0 to the maximum value Vmax and a falling edge that changes instantaneously from the maximum value Vmax to 0. The rising edge of the four oscillation signals PC2 and the falling edge of the second auxiliary signal RM2 occur simultaneously. In addition, as shown in FIG. 2 (b), the third and fourth oscillation signals PC1 and PC2 have the same period but phase However, the difference is 180 degrees. Please note that “In the embodiment shown in FIG. 2 (b), the third and fourth vibration signals PC1 and PC2 have the same maximum value Vmax, but the present invention is not limited thereto. In another embodiment of the invention The third and fourth oscillating signals pc i and PC2 must have different maximum values, but still need to maintain the same period and a phase difference of 180 degrees with each other. 19 1237436 In the embodiment shown in FIG. 2 (b) The peak value vH is about 0.8 volts and the valley value VL is about 0.3 volts. The periods of the first to fourth oscillation signals TRi, PCI, and PC2 and the first and second auxiliary signals RM1 and rm2 are all about 1 microsecond (micr0second). The pulse width of the third and fourth oscillating signals pc and PC2 is about 100 nanoseconds, and the state HIGH is about 2.2 volts and the state L0W is about 0. volt. The maximum amplitude Vmax of the first and second auxiliary signals RM1 and RM2 is about 0.8V. It is clear from Fig. 2 (b) that the trough of the first oscillation signal TR1, the peak of the second oscillation signal TR2, the rising edge of the third oscillation signal pc 丨, and the falling edge of the first auxiliary signal RM1 occur simultaneously. Furthermore, the peak of the first oscillation signal TR1, the valley of the second oscillation signal TR2, the rising edge of the fourth oscillation signal PC2, and the falling edge of the second auxiliary signal RM2 occur simultaneously. FIG. 3 shows a detailed circuit diagram of the power supply channels 2 丨 a to 2 丨 0 according to the present invention. Referring to FIG. 3, the power supply channel 21A adopts a voltage mode feedback control operation in response to the first oscillating signal TR1 to convert the DC voltage source VSQuree into a DC output voltage vQUtl. The power supply channel 21A includes a switching controller 22A, a conversion circuit 23A, and a feedback circuit 24A. The conversion circuit 23A is a step-down conversion circuit having a power switching transistor 25A, an inductor L1, a capacitor ci, and a diode D1, which are coupled as shown in the figure. The feedback circuit 24A is a voltage divider circuit 'composed of resistors Ra 1 and Rb 1 to provide a feedback signal FB1 indicating a DC output voltage V () Utl. The feedback signal FBI is input to the error amplifier eai in the switching controller 22A to be compared with the reference voltage Vrefl. Subsequently, the pwM comparator PA1 rounds out the comparison result between the 20th 1237436-Zhenshengxin 胄 TR1 and the error voltage rounded out by the error amplifier EA1 to drive n DR1 to generate the pwm control number

pwm ’用以驅動& NMOS電晶體Qi戶斤實施的功率切換 電晶體25A。具體而言,當第—振盞信號tri從峰值逐漸 減少至等於誤差電壓之時刻,PWM比較器pAi使驅動考 DR1所輪出的PWM控制信號PWM1變遷為賦能狀態(在本 2施例中為HIGH),以導通NM〇s電晶體Qi。隨後,當 第一振盪信號TR1從谷值逐漸增加至再次等於誤差電壓 之時刻’ PWM比較器PA1使驅動器DR1所輸出的pwM 控制信號PWM1變遷為不賦能狀態(在本實施例中為 LOW),以關閉NMOS電晶體Q1。 卜電源供應通道21B係採用電壓模式回授控制,回應於 第二振盪信號TR2而操作,用以轉換直流電壓源… 成為直流輸出電壓ν_2。電源供應通道21B包含一切換控 制器22B、一轉換電路23B、以及一回授電路24β。轉換 電路23B係一降壓轉換電路,具有功率切換電晶體UR、 電感L2、電容C2、與二極體D2,如圖式般耦合。回授電 路24B係由電阻Ra2與Rb2所組成的分壓電路,提供一指 示直流輸出電壓V〇ut2的回授信號FB2。回授信號FB2輸 入切換控制器22B中之誤差放大器EA2,使之比較於參考 電壓Vref2。隨後,PWM比較器pA2將第二振盪信號tr2 與a吳差放大器EA2所輸出的誤差電壓之比較結果輸出至 驅動器DR2,藉以產生PWM控制信號ΡλνΜ2,用以驅動 由NMOS電晶體Q2所實施的功率切換電晶體25B。具體 21 J237436 而言,當第二振盪信號TR2從峰值逐漸減少至等於誤差電 壓之時刻,PWM比較器PA2使驅動器DR2所輸出的pWM 控制信號PWM2變遷為賦能狀態(在本實施例中為 HIGH),以導通NM0S電晶體Q2。隨後,當第二振盪信號 TR2從谷值逐漸增加至再次等於誤差電壓之時刻卟……比 較器PA2使驅動器DR2所輸出的pWM控制信號pwM2 k:遷為不賦能狀態(在本實施例中為L〇w),以關閉nm〇s 電晶體Q2。 電源供應通道21C係採用電壓模式回授控制’回應於 第三振S信號PC1與第-辅助信號RM1而操作,用以轉 換直流電壓源Vs()uree成為直流輸出電麼V。…。電源供應通 道2 1 C包3切換控制器22c、一轉換電路。。、以及一 回授電路2 4 C。轉換雷政9 2 # ΤΤΛΤ BS- W谈电路23C係一降壓轉換電路,具有功 率切換電晶體25C、電感L3、電容C3、與二極體D3,如 圖式般耗合。回授電路24C係由電阻Ra3貞則所組成的 分麼電路,提供一指示直流輪出電壓v一的回授信號 觸。回授信號FB3輸人切換控制器μ中之誤差放大器 EA3 ’使之比較於參考雷懕v ref3而輸出一誤差電壓至pwM 比較器PA3。具體而古,筮—化、 ^ ° 弟二振盪信號PC 1係用以置定閂 鎖益LA1 ’使驅動益DR3所輪出的pwM控制信號請旧 變遷為賦能狀態(在本實施例中為mGH),以導通 電㈣Q3所實施的功率切換電晶體況。另一方面因 為弟-辅助㈣RM1之下降邊緣係與第三振 之上升邊緣同時發生,所以第—輔助信號麗之下降邊 22 1237436 緣亦與NMOS電晶體Q3之導通同時發生。隨後,當第一 輔助信號RM 1之上升部分逐漸增加至等於誤差電壓之時 刻,PWM比較器PA3重置閂鎖器LA1,使驅動器DR3所 輸出的PWM控制信號PWM3變遷為不賦能狀態(在本實施 例中為LOW),以關閉NMOS電晶體Q3。 電源供應通道2 1D係採用電流模式回授控制,回應於 第四振盪信號PC2與第二輔助信號RM2而操作,用以轉 換直流電壓源VS()uree成為直流輸出電壓ν_4。電源供應通 道21D包含一切換控制器22D、一轉換電路23D、以及一 回授電路24D。轉換電路23D係一降壓轉換電路,具有功 率切換電晶體25D、電感L4、串聯電阻Rs、電容C4、與 二極體D4,如圖式般耦合。回授電路24D包含一電流感 測放大器CA,用以提供回授信號FB4,其指示由電感電 流過串聯電阻Rs所造成的電位差。此外,為了進行電流 模式回授控制之斜率補償,回授電路24D得更包含有係一 由電阻Ra4與Rb4所組成的分壓電路,提供一指示直流輸 出電壓VQUt4的信號至誤差放大器EA4,使之比較於參考 電壓Vref4。藉由類比運算電路AD,誤差放大器EA4所輸 出的誤差電壓減去第二輔助信號RM2後,輸入PWM比較 器PA4之反相端。回授信號FB4輸入PWM比較器PA4之 非反相端。第四振盪信號PC2係用以置定閂鎖器LA2,使 驅動器DR4所輸出的PWM控制信號PWM4變遷為賦能狀 態(在本實施例中為HIGH),以導通由NMOS電晶體Q4所 實施的功率切換電晶體25D。因為第二輔助信號RM2之下 23 1237436 :邊緣係與第四振盪信號pC2之上升邊緣同時發生,所以 第二輔助信號RM2之下降邊緣亦與NM〇s電晶體Q4之導 2同時發生。在NMOS電晶體Q4導通的期間中,電感電 机線性地增加導致電流感測放大器ca所輸出的回授信號 FB4線性地增加。當回授信號fb4增加至等於類比運算電 路所輸出的電壓之時刻,PWM比較器pA4重置閂鎖器 LA2,使驅動器DR4所輸出的pwM控制信號pwM4變遷 為不賦旎狀悲(在本實施例中為L〇w),以關閉NM〇s電晶 體Q4 〇 乂别文之說明可知,功率切換電晶體25a從關閉變遷 至導通之時間點係位於第一振盪信號TR1之下降部分 而力率切換電晶體25B從關閉變遷至導通之時間點則 位於第二振盪信號TR2之下降部分内。因為第一與第二振 盛k波TR1與TR2之下降部分彼此於時間上互不重疊, 如圖2(b)所示’故有效地防止功率切換電晶體25a與25B 同4 k關閉變遷至導通。結果,功率切換電晶體25A與25B 所造成的瞬變尖波不會相互疊加。 另一方面’功率切換電晶體25C從關閉變遷至導通係 與第二振盈信號PC 1之上升邊緣同時發生,而功率切換電 曰曰體25D從關閉變遷至導通則與第四振盪信號pC2之上升 邊緣同時發生。因為第三與第四振盪信號PC 1與PC2之上 升邊緣彼此於時間上互不重疊,如圖2(b)所示,故有效地 防止功率切換電晶體25C與25D同時從關閉變遷至導通。 結果’功率切換電晶體25C與25D所造成的瞬變尖波不會 24 1237436 相互疊加。 此外’從圖2(b)清楚可見,既然第三振盪信號pc 1之 上升邊緣係與第一振盪信號TR1之波谷以及第二振盈信 TR2之波峰同時發生,故第三振盪信號pc 1之上升邊緣 不位於第一與第二振盪信號TR1與TR2兩者各自的下降 部分内。結果,功率切換電晶體25C從關閉變遷至導通之 時間點不同於功率切換電晶體25A與25B從關閉變遷至導 通之時間點。同樣地,既然第四振盪信號PC2之上升邊緣 係與第一振盪信號TR1之波峰以及第二振盪信號TR2之 波谷同時發生,故第四振盪信號pc2之上升邊緣不位於第 1與第二振盪信號TR1與TR2兩者各自的下降部分内。 釔果,功率切換電晶體25D從關閉變遷至導通之時間點不 同於功率切換電晶體25A與25B從關閉變遷至導通之時間 點。因而,在依據本發明之切換式直流至直流轉換器、2曰〇 中’:力率切換電晶體25A與25D所造成的瞬變尖波不會相 請注意,雖然在圖3所示的實施例中,電源供應通道 21A至21C皆為電壓模式回授控制而電源供應通道21D為 電流回授控制,但本發明不限於此,而得應 通道W至仙皆為電壓模式回授控制之情_者電^ 應通道21A請為電壓模式回授控制而電源供岸通道 2 1C與2 1D為電流回授控制之情況。 應通道 請注意,雖然在圖3所示的實_ + y 體25A與加從關閉變遷至導通之時間點互不重^ = 25 1237436 發明不限於此,而得應用於功率切換電晶體25A與25d從 導通變遷至關閉之時間點互不重疊。換言之,依據本發 明,功率切換電晶體25A與25D之至少一切換變遷在時間 上互不重$,其中切換變遷係指從關閉變遷至導通或從導 通變遷至關閉。 圖4顯示依據本發明之多相位多波形同步振盪器% 之電路區塊圖。參照圖4,多相位多波形同步振盪器26包 含一個振盛信號產生器4 1、一反相器42、以及一輔助信 號產生器43。具體而言,振盪信號產生器41產生第一振 盪信號TR1。隨後,第二振盪信號TR2係藉由經由反相器 42而從第一振盪信號TR1所獲得。結果,第一振盪信號 TR1與第二振盪信號TR2之相位相差ι8〇度。除了第一振 盪信號TR1以外,振盪信號產生器41更產生兩個相位相 差180度之第三與第四振盪信號pci與pC2。最後,回應 於第三與第四振盪信號PC1與PC2,辅助信號產生器43 輸出第一與第二輔助信號RM1與RM2。既然第一至第四 振盪信號TR1、TR2、PC1、與PC2以及第一與第二輔助 信號RM 1與RM2之波形特徵已經於前文詳細說明過,故 此處省略其說明。 圖5顯示依據本發明之多相位多波形同步振盪器% 之第一例子之詳細電路圖。參照圖5,多相位多波形同步 振盪器26包含一個振盪信號產生器41、一反相器42、以 及一輔助#號產生器43。振盈信號產生器41包含一峰值 比較器411、一谷值比較器412、一閂鎖器413、三個反相 26 1237436 器414、419S、與419R、一開關裝置415、一第一電流源 416、一第二電流源417、以及一電容418。峰值比較器 之非反相端(以符號“ +,,標示)係耦合於一峰值設定Π電壓 VH’而谷值比較器412之反相端(以符號“—,,標示)則耦合 於一谷值設定電壓vL。峰值比較器411之反相端與谷值2 較器4丨2之非反相端彼此耦合於一起,並且耦合於輸出端 NTR1。峰值比較器411之輸出端耦合於閂鎖器413之置定 輸入(Setting mputW,而谷值比較器412之輸出端則耦= 於閃鎖器413之重置輸入(Resetting —⑽。第一電流源 4丄6連接於直流電壓源Vs〇urce與輸出端^以間,而第二電 流源4Π則經由開關裝£415而連接於輸出端^與地面 間。在圖5所示的實施例中’第二電流源417所供應的電 流值為第一電流源416所供應的電流值之兩倍。在此情兄 下,振盈信號產生H 41所產生的三角波為上升部分所佔 時間與下降部分所佔時間彼此相等之等邊三心皮。請注意 本發明不限於此,而得應用於任何 " 八饮彳可涡足第一電流源41 7所 供應的電流值大於第一電流诉41 你416所供應的電流值之條件 (關於此點,隨後將有詳細的# 扪說明)之情況。亦即,依據本pwm 'is used to drive a power switching transistor 25A implemented by & NMOS transistor Qi. Specifically, when the first vibration signal tri gradually decreases from the peak value to the time equal to the error voltage, the PWM comparator pAi changes the PWM control signal PWM1 driven by the driving test DR1 to an enabled state (in this embodiment 2 HIGH) to turn on the NMOS transistor Qi. Subsequently, when the first oscillating signal TR1 gradually increases from the valley value to the time when it is equal to the error voltage again ', the PWM comparator PA1 causes the pwM control signal PWM1 output by the driver DR1 to transition to the non-enabled state (LOW in this embodiment) To turn off the NMOS transistor Q1. The power supply channel 21B adopts voltage mode feedback control and operates in response to the second oscillating signal TR2 to convert a DC voltage source ... to a DC output voltage ν_2. The power supply channel 21B includes a switching controller 22B, a conversion circuit 23B, and a feedback circuit 24β. The conversion circuit 23B is a step-down conversion circuit having a power switching transistor UR, an inductor L2, a capacitor C2, and a diode D2, which are coupled as shown in the figure. The feedback circuit 24B is a voltage dividing circuit composed of resistors Ra2 and Rb2, and provides a feedback signal FB2 indicating a DC output voltage Vout2. The feedback signal FB2 is input to the error amplifier EA2 in the switching controller 22B to be compared with the reference voltage Vref2. Subsequently, the PWM comparator pA2 outputs the comparison result between the second oscillation signal tr2 and the error voltage output from the a-difference amplifier EA2 to the driver DR2, thereby generating a PWM control signal PλνM2 to drive the power implemented by the NMOS transistor Q2. The transistor 25B is switched. Specifically, as for J237436, when the second oscillation signal TR2 gradually decreases from the peak value to the time when the error voltage equals, the PWM comparator PA2 changes the pWM control signal PWM2 output by the driver DR2 to an enabled state (HIGH in this embodiment) ) To turn on the NMOS transistor Q2. Subsequently, when the second oscillating signal TR2 gradually increases from the valley value to the moment when it is equal to the error voltage again ... the comparator PA2 causes the pWM control signal pwM2 output by the driver DR2 to move to the non-enabled state (in this embodiment L0w) to turn off nmos transistor Q2. The power supply channel 21C is operated in response to the third mode S signal PC1 and the first auxiliary signal RM1 using a voltage mode feedback control to convert the DC voltage source Vs () uree into a DC output voltage V. …. The power supply channel 2 1 C includes 3 switching controllers 22c and a switching circuit. . And a feedback circuit 2 4 C. Conversion Leizheng 9 2 # ΤΤΛΤ BS-W Talk Circuit 23C is a step-down conversion circuit with power switching transistor 25C, inductor L3, capacitor C3, and diode D3, as shown in the figure. The feedback circuit 24C is a sub-circuit composed of a resistor Ra3 and provides a feedback signal indicating the DC wheel output voltage v-. The feedback signal FB3 is input to the error amplifier EA3 ′ in the switching controller μ, which is compared with the reference voltage 懕 v ref3 and outputs an error voltage to the pwM comparator PA3. Specifically, the second and second oscillation signal PC 1 is used to set the latching benefit LA1 'to drive the pwM control signal driven by DR3. Please change the old to the enabled state (in this embodiment) MGH), the transistor condition is switched with the power implemented by the conduction ㈣Q3. On the other hand, because the falling edge of the brother-auxiliary ㈣RM1 occurs simultaneously with the rising edge of the third oscillator, the falling edge of the first-assistance signal 22 1237436 also occurs simultaneously with the conduction of the NMOS transistor Q3. Subsequently, when the rising portion of the first auxiliary signal RM 1 gradually increases to the time equal to the error voltage, the PWM comparator PA3 resets the latch LA1, so that the PWM control signal PWM3 output by the driver DR3 changes to the non-enabled state (at LOW in this embodiment) to turn off the NMOS transistor Q3. The power supply channel 2 1D adopts current mode feedback control, and operates in response to the fourth oscillation signal PC2 and the second auxiliary signal RM2 to convert the DC voltage source VS () uree into a DC output voltage ν_4. The power supply channel 21D includes a switching controller 22D, a conversion circuit 23D, and a feedback circuit 24D. The conversion circuit 23D is a step-down conversion circuit, which has a power switching transistor 25D, an inductor L4, a series resistor Rs, a capacitor C4, and a diode D4, which are coupled as shown in the figure. The feedback circuit 24D includes a current sense amplifier CA for providing a feedback signal FB4, which indicates a potential difference caused by the inductor current flowing through the series resistor Rs. In addition, in order to perform slope compensation of the current mode feedback control, the feedback circuit 24D must further include a voltage dividing circuit composed of resistors Ra4 and Rb4, and provide a signal indicating the DC output voltage VQUt4 to the error amplifier EA4, This is compared with the reference voltage Vref4. Through the analog operation circuit AD, the error voltage output from the error amplifier EA4 is subtracted from the second auxiliary signal RM2 and input to the inverting terminal of the PWM comparator PA4. The feedback signal FB4 is input to the non-inverting terminal of the PWM comparator PA4. The fourth oscillation signal PC2 is used to set the latch LA2, so that the PWM control signal PWM4 output by the driver DR4 changes to an enabled state (HIGH in this embodiment) to turn on the NMOS transistor Q4. Power switching transistor 25D. Since the second auxiliary signal RM2 23 1237436: the edge occurs simultaneously with the rising edge of the fourth oscillating signal pC2, the falling edge of the second auxiliary signal RM2 also occurs simultaneously with the derivative 2 of the NMOS transistor Q4. During the period during which the NMOS transistor Q4 is on, the linear increase of the inductor motor causes the feedback signal FB4 output by the current sense amplifier ca to linearly increase. When the feedback signal fb4 increases to be equal to the voltage output by the analog operation circuit, the PWM comparator pA4 resets the latch LA2, so that the pwM control signal pwM4 output by the driver DR4 changes to a state of no pity (in this implementation In the example, it is L0w). According to the description of turning off the NMOS transistor Q4 and other explanations, it can be seen that the time point when the power switching transistor 25a changes from off to on is at the falling part of the first oscillation signal TR1 and the power rate. The point in time when the switching transistor 25B changes from off to on is within the falling portion of the second oscillating signal TR2. Because the falling portions of the first and second vibrating k-waves TR1 and TR2 do not overlap with each other in time, as shown in FIG. 2 (b), the power switching transistors 25a and 25B are effectively prevented from changing to 4k when they are turned off. Continuity. As a result, the transient spikes caused by the power switching transistors 25A and 25B do not overlap each other. On the other hand, the transition of the power switching transistor 25C from the off to the conduction system and the rising edge of the second vibration signal PC 1 occur at the same time, while the transition of the power switching transistor 25D from the off to the conduction and the fourth oscillation signal pC2 occurs simultaneously. The rising edges occur simultaneously. Because the rising edges of the third and fourth oscillation signals PC1 and PC2 do not overlap each other in time, as shown in FIG. 2 (b), it is effective to prevent the power switching transistors 25C and 25D from changing from off to on simultaneously. As a result, the transient spikes caused by the 25C and 25D power switching transistors do not overlap with each other. In addition, it is clear from FIG. 2 (b) that since the rising edge of the third oscillation signal pc 1 occurs simultaneously with the trough of the first oscillation signal TR1 and the peak of the second oscillation signal TR2, the third oscillation signal pc 1 The rising edges are not located in the respective falling portions of both the first and second oscillation signals TR1 and TR2. As a result, the time point when the power switching transistor 25C transitions from off to on is different from the time point when the power switching transistors 25A and 25B transition from off to on. Similarly, since the rising edge of the fourth oscillation signal PC2 occurs simultaneously with the peak of the first oscillation signal TR1 and the valley of the second oscillation signal TR2, the rising edge of the fourth oscillation signal pc2 is not located in the first and second oscillation signals. Both TR1 and TR2 are within their respective falling portions. The time when the power switching transistor 25D changes from off to on is different from the time when the power switching transistors 25A and 25B change from off to on. Therefore, in the switching DC-DC converter according to the present invention, 2′0 ′: the transient spikes caused by the power rate switching transistors 25A and 25D will not be related. Please note that although the implementation shown in FIG. 3 In the example, the power supply channels 21A to 21C are voltage mode feedback control and the power supply channel 21D is current feedback control. However, the present invention is not limited to this, and the channels W to Sin are voltage mode feedback control. _ 者 电 ^ In response to channel 21A, please use voltage mode feedback control while power supply shore channels 2 1C and 21 1D are current feedback control. It should be noted that, although the point in time when the real y + y body 25A and the transition from off to on are shown in FIG. 3 ^ = 25 1237436 The invention is not limited to this, but can be applied to the power switching transistor 25A and The time points from 25d transition from on to off do not overlap each other. In other words, according to the present invention, at least one switching transition of the power switching transistors 25A and 25D is mutually independent in time, and the switching transition refers to transition from off to on or from on to off. FIG. 4 shows a circuit block diagram of a multi-phase multi-wave synchronous oscillator according to the present invention. Referring to Fig. 4, the multi-phase multi-waveform synchronous oscillator 26 includes a boosting signal generator 41, an inverter 42, and an auxiliary signal generator 43. Specifically, the oscillation signal generator 41 generates a first oscillation signal TR1. Subsequently, the second oscillation signal TR2 is obtained from the first oscillation signal TR1 through the inverter 42. As a result, the phases of the first oscillating signal TR1 and the second oscillating signal TR2 differ by 80 degrees. In addition to the first oscillating signal TR1, the oscillating signal generator 41 generates two third and fourth oscillating signals pci and pC2 which are 180 degrees out of phase with each other. Finally, in response to the third and fourth oscillation signals PC1 and PC2, the auxiliary signal generator 43 outputs the first and second auxiliary signals RM1 and RM2. Since the waveform characteristics of the first to fourth oscillating signals TR1, TR2, PC1, and PC2 and the first and second auxiliary signals RM1 and RM2 have been described in detail above, their descriptions are omitted here. FIG. 5 shows a detailed circuit diagram of a first example of a multi-phase multi-waveform synchronous oscillator according to the present invention. Referring to Fig. 5, the multi-phase and multi-waveform synchronous oscillator 26 includes an oscillation signal generator 41, an inverter 42, and an auxiliary # generator 43. The vibration surplus signal generator 41 includes a peak comparator 411, a valley comparator 412, a latch 413, three inverters 26 1237436, 414, 419S, and 419R, a switching device 415, and a first current source. 416, a second current source 417, and a capacitor 418. The non-inverting terminal of the peak comparator (indicated by the symbol "+,") is coupled to a peak setting voltage VH 'and the inverting terminal of the valley comparator 412 (indicated by the symbol "-,," is coupled to a The bottom value sets the voltage vL. The inverting terminal of the peak comparator 411 and the non-inverting terminal of the valley 2 comparator 4 丨 2 are coupled to each other, and are coupled to the output terminal NTR1. The output of the peak comparator 411 is coupled to the setting input of the latch 413 (Setting mputW, and the output of the valley comparator 412 is coupled to the reset input of the flash lock 413 (Resetting —setting. First current The source 4 丄 6 is connected between the DC voltage source Vsource and the output terminal ^, and the second current source 4Π is connected between the output terminal ^ and the ground via the switch device £ 415. In the embodiment shown in FIG. 5 'The current supplied by the second current source 417 is twice the current supplied by the first current source 416. In this case, the triangle wave generated by the vibration signal H 41 is the rising time and the fall Partially occupied equilateral triple carpels of equal time. Please note that the present invention is not limited to this, but can be applied to any " Eight Drinks Can Vortex Foot First Current Source 41 7 The current value supplied is greater than the first current v. 41 The condition of the value of the current you 416 supplies (about this, there will be a detailed # 扪 description later). That is, according to this

發明之振盪信號產生器41亦搵* a L 為41亦侍產生上升部分所佔時間與 下降部分所佔時間彼此不相等 、 哥之非專邊二角波。開關裝置 4 1 5係由問鎖器4 1 3之一輪出位& _ 韻出4戒所控制。在圖5所示的 貫施例中,閂鎖器413之正常鈐 ㊉輸出(Normal 〇utput)g經由 反相器414而控制開關裝置 415。睛注意由於閂鎖器413 之反相輸出(Inverted 〇utput)& UP為正韦輸出0之反相信 27 1237436 號故在本發明之另一實施例中,開關裝置4! 5得直接輕 合於⑽器、413之反相輪出㊁,同樣可獲得圖5所示的實 細例之相同控制效果。在本發明+,開關裝置4 i 5得由一 開關電晶體所形成,例如NM〇s電晶體、pM〇s電晶體、 或雙,子電晶體。電容418連接於輸出端I與地面間。 炫將參照圖5與圖2(b)詳細說明振盪信號產生器41 如何產生第一振盪信號TRi以及第二與第三振盪信號pd ” PC2。畐輸出端Ntri處之電壓小於谷值設定電壓&時, 置疋輸入S為HIGH且重置輸入及為L〇w,導致正常輸出 2為HIGH。此時,反相器414輸出l〇w至開關裝置415, 使之不導通。結果,第二電流源4】7關閉不通,而第一電 流源416對電容418充電,使得輸出端Ntri處之電壓上 升。當輸出端NTR1處之電壓上升至大於谷值設定電壓% 但仍小於峰值設定電壓¥11時,置定輸入S為high且重 置輸入及為HIGH,導致正常輸出^為mGH。此時,反 相器414輸出LOW至開關裝置415,使之不導通。結果, 第二電流源417仍維持關閉不通,而第一電流源416繼續 對電容418充電,使得輸出端Ntri處之電壓繼續上升。當 輸出端ntr1處之電壓上升至大於峰值設定電壓時,置 定輸入5為LOW且重置輸入及為HIGH,導致正常輸出g 為LOW。此時,反相器414輸出HIGH至開關裝置415, 使之導通。結果,第二電流源417導通。因為第二電流源 417所供應的電流值大於第一電流源4丨6所供應的電流 值,所以電容41 8經由第二電流源41 7放電至地面,使得 28 1237436 輸出端NTR1處之電壓下降。在圖5所示的實施例中,第二 電流源417所供應的電流值為第一電流源416所供應的電 流值之兩倍。在此情況下,因為電容418之放電電流值剛 好等於第一電流源416所供應的電流值,所以在本操作階 段中電容418之放電速率等於先前操作階段中電容418之 充電速率,導致等邊三角波之產生。當輸出端Ντμ處之電 壓下降至小於峰值设定電壓VH但仍大於谷值設定電壓 日守,置疋輸入5為high且重置輸入及為high,導致正 常輸出ρ為LOW。此時,反相器414輸出HIGH至開關裝 置41 5,使之導通。結果,第二電流源4丨7仍維持導通, 使得電容418繼續經由第二電流源417放電至地面,造成 輸出端ntr1處之電壓繼續下降。當輸出端Ntri處之電壓 下降至小於谷值設定電壓Vl時,振盪信號產生器41即重 複前述之操作。因而,從輸出端Ntri處即可獲得所期望的 第一振盪信號TR1。 第一脈衝信號PC 1係藉由反相器4丨9R使重置輸入及 反相而獲得。同樣地,第二脈衝信號PC2係藉由反相器 419S使置定輸入S反相而獲得。 再次參照圖5 ’輔助信號產生器43係由兩個斜波產生 器43a與43b所組成,分別產生第—與第:辅助信號觀 與RM2。斜波產生器43a包含一抽樣保持放大器 (Sample-And-Hold AmPlifier)431a、一 抽樣保持電容 432a、一電壓至電流轉換器433a、一輸出電容434a、以及 一開關裝置435a。抽樣保持放大器431a之非反相端係耦 29 1237436 合於-參考電壓vrefa,且其輸出端耗合於電壓至電流轉 換器43\之電壓輸入端。抽樣保持電容432a連接於抽樣 保持放大益43 la之輸出端與地面間。㈣至電流轉換器 仙之電流輸出端係輕合於—輸出端N則。輸出電容434a 與開關裝置435a係並聯於輸出端u地面間。輸出端 NRM1更麵合於抽樣保持放大器4仏之反相端,形成一回 授迴路。另-方面,斜波產生器州包含一抽樣保持放大 器㈣、-抽樣保持電容他、一電堡至電流轉換器 433b、-輪出電容434b、以及_開關裝置仙。抽樣保 持放大益43ib之非反相端係福合於另—參考電屋 且其輸出端搞合於電麼至電流轉換器43补之電麼輸入 端。抽樣保持電容432b連接於抽樣保持放A||侧之輸 出端與地面間。電壓至電流轉換器儀之電流輸出端係 柄合於另—輸出端Nrm2。輸出電容侧與開關裝置他 if ST輪出端Ν_與地面間。輸出端NRM2更耦合於抽 樣保持放大器43 11)之反相端’形成一回授迴路。 盪r : t二號產生器41之反相器41 9 S之輸出(亦即第四振 Μ號PC2)係心控制抽樣保持放大器仙與開關裝置 435b。另一方面,振盪信號產生器“之反相器4i9R之輸 出(亦即第三振盈信號PC1)係用以控制抽樣保持哭 =與開_置435a。在本發明中,開關裝置4仏與_ 仔分別由—開關電晶體所形成,例如NMOS電晶體、p 電晶體、或雙載子電晶體。 兹將參照圖5與圖2⑻詳細說明辅助信號產生器43 30 1237436 如何產生第一與第二輔助信號RM 1與RM2。首先說明藉 由第三與第四振盪信號PC 1與PC2控制斜波產生器43 a 以產生第一輔助信號RM1之方法。當第三與第四振蘯信 號PC 1與PC2皆為LOW時,抽樣保持放大器43 la與開關 裝置43 5a皆關閉不導通。在此情況下,抽樣保持電容432a 所保持的固定電壓經由電壓至電流轉換器433a而轉換成 固定電流,用以對輪出電容434a充電。結果,輸出端Nrmi 處之電壓上升。當第三振蘆信號PCI為HIGH且第四振盪 信號PC2為LOW時,開關裝置435a導通。在此情況下, 輸出電容434a經由導通的開關裝置435&而放電至地面且 輸出^ NRM!經由導通的開關裝置43 5a而連接於地面。結 果輸出知Nrmi處之電壓瞬間減少至地面電位。因而, 從輸出端nrm1處即可獲得所期望的第一輔助信號RM1。 為了增進所獲得的第一輔助信號RM1之穩定性,當第三 振盈j口號PC 1為LOW且第四振盡信號PC2為HIGH時, 抽樣保持放大器431a導通而經由回授迴路比較輸出端 NRM1處之電壓與參考電壓Vrefa,藉以輸出一誤差電壓, 對於由抽樣保持電容432a所保持的電壓進行回授控制。 因為抽樣保持電容432a所保持的電壓係經由電壓至電流 轉換器433a而轉換成電流,該電流係決定輸出端Nr⑷處 之電壓上升速率,所以從輸出端Nrmi處所獲得的第一輔 助信號RM1因回授控制而提高穩定性。在圖5與圖以… 所不的貫施例中,既然第四振盪信號PC2變為HIGH之時 間點係位於第_辅助信號RM1之二分之一週期處,故參 31 1237436 考電壓Vrefa得選定為第一輔助信號RM1之最大值vmax 的二分之一。請注意本發明不限於此,而得基於第四振盪 信號PC2變為HIGH之時間點以及抽樣保持放大器43 la 之非反相端所接收之回授電壓與輸出端NRMi處之電壓間 之比例關係’選定適當的參考電壓Vrefa,以達成所期望 的回授控制。 繼而說明藉由第三與第四振盪信 波產生器43b以產生第二辅助信號rm2之方法。當第一 與第四振盪信號PC 1與PC2皆為LOW時,抽樣保持放大 器43 lb與開關裝置435b皆關閉不導通。在此情況下,抽 樣保持電谷432b所保持的固定電壓經由電壓至電流轉換 為43 3b而轉換成固定電流,用以對輸出電容434b充電。 結果,輸出端nRM2處之電壓上升。當第一脈衝信號pci 為low且第二脈衝信號PC2a HIGH時,開關裝置43% 導通。在此情況下,輸出電容434b經由導通的開關裝置 435b而放電至地面且輸出端NrM2經由導通的開關裝置 435b而連接於地面。結果,輸出端NrM2處之電壓瞬間減 V至地面電位。因而’從輸出端Ν_處即可獲得所期望 的第二輔助㈣則。為了增進所獲得的第二輔助信號 RM2之穩定性,當第三振M信號⑽為η·且第四振盡 信號PC2為LOW時,抽樣保持放大器㈣導通而經由回 授迴路比較輸出端NRM2處之電壓與參考電壓… 輸出一誤差電壓,對於由抽揭仅杜+ 曰 壓進行回授控制。因為抽樣彳 兔 豫保持電容432b所保持的電壓 32 1237436 係經由電壓至電流轉換器433b而轉換成電流,該電流係 決定輸出端NRM2處之電壓上升速率,所以從輸出端Nrm2 處所獲得的弟一輔助信號RM2因回授控制而提高穩定 性。在圖5與2(b)所示的實施例中,既然第三振盪信號pc i 變為HIGH之時間點係位於第二辅助信號RM2之二分之— 週期處,故參考電壓Vrefb得選定為第二輔助信號RM2之 最大值Vmax的二分之一。請注意本發明不限於此,而得基 於第三振盪信號PC 1變為HIGH之時間點以及抽樣保持放 大器431b之非反相端所接收之回授電壓與輸出端Nrm2處 之電壓間之比例關係,選定適當的參考電壓Vrefb,以達 成所期望的回授控制。 圖6顯示依據本發明之多相位多波形同步振盈器2 6 之第二例子之詳細電路圖。除了對於用以產生第三與第四 振盈信號PC1與PC2之電路與方法進行修改變化以外,圖 6所示的第二例子係相同於圖5所示的第一例子。因而, 圖6所示的電路元件中相似於圖5之部份係使用相似於圖 5之參考符號來標示。為了簡化說明起見,下文僅詳細說 明第二例子不同於第一例子之處。 如圖6所示,第二例子 ,、个 r•奴度王、 (One Shot Generat〇r)6U與612取代圖5所示的第—例 之j相器419R與419S。具體而言,第—單發產生器& 係上升邊緣單發產生器,其輸入端耦合於閂鎖器413」 每當第一單發產生器611偵測到正常輪出- 上升邊緣時,第一單發產生器611即 |询出一具有預定€ 33 1237436 -又歹I如100毫微秒(Nan〇sec〇nd)的脈衝。既然正常輸出 _ :邊緣係發生於#第—振i信號TR1到達波谷時, :早發產生器611產生所期望的第三振盪信號PC1。 μ :面帛—單發產生器612係-下降邊緣單發產生 為、、輸入端輕合於閃鎖器413之正常輸出心每當第二 早發產生器612 _到正常輸出2之下降邊緣時,第二單 發產生器612即輸出—具有預定的寬度例#⑽毫微秒的 财衝既然正;ϋ輸出ρ之下降邊緣係發生於當第一振盪信 :虎tri到達波峰時,故第—單發產生器612產生所期望的 第四振盪信號PC2。 …圖6所不的第二例子提供一額外的優點如下所述。因 為第三與第四振盪信號pci與pc2係藉由分別使用第一與 第二單發產生器611與612所產生,所以第三與第四振盪 信號PC1與PC2分別具有岐寬度的脈衝。如前所述,既 然第三與第四振盪信號pci與pC2分別控制開關裝置 435a與435b,故固定寬度的脈衝確保輸出電容43物與 434b之放電時間固定,因而充電時間也固定。結果,第一 與第二輔助信號RM丨與RM2之振幅穩定性更加獲得改善。 在本發明之一實施例中,切換控制器22A至22D、回 授電路24A至24D、與多相位多波形振盪器26係整合於 單一積體電路晶片中。轉換電路23A至23D則形成為該單 一積體電路晶片之外部電路,可實施成降壓轉換電路或升 壓轉換電路,通常依據應用需求而設計。在本發明之另一 實施例中,轉換電路23A至23D中之功率切換電晶體ΜΑ 34 1237436 至25D亦得與切換控制器22A至22D、回授電路24A至 24D、以及多相位多波形振盪器26整合於單一積體電路晶 片中使知僅轉換電路23A至23D之其餘部分形成為該單 積體電路晶片之外部電路。 再者夕相位多波形同步振盪器2 6亦得分離地形成 一獨立的積體電路晶片,隨後經由配線耦合於包含有電源 供應通道22A至22D 形同步振盪器26亦; 獨立封裝的單一電源供應通道之積體電路晶片。 2D之積體電路晶片。此外,多相位多波 亦得輸出複數個振盪信號給複數個具有 雖然本發明業已藉由較佳實施例作為例示加以說 明’應瞭解者為:本發明不限於此被揭露的實施例。相反The oscillating signal generator 41 of the invention also has a * A L of 41, which also generates a non-exclusive dihedral wave for the time occupied by the rising part and the time occupied by the falling part. The switching device 4 1 5 is controlled by one of the lockout positions 4 1 3 & In the embodiment shown in FIG. 5, the normal output of the latch 413 (Normal output) g controls the switching device 415 via the inverter 414. Note that because the inverted output of the latch 413 (Inverted 〇utput) & UP is a positive Wei output 0 and the opposite is believed to be 27 1237436, so in another embodiment of the present invention, the switching device 4! 5 is directly closed. The same control effect can be obtained in the actual detailed example shown in FIG. 5 by using the reverse rotation wheel of the gear and 413. In the present invention, the switching device 4 i 5 must be formed by a switching transistor, such as a NMOS transistor, a pMos transistor, or a bi-electron transistor. The capacitor 418 is connected between the output terminal I and the ground. Hyun will explain in detail how the oscillation signal generator 41 generates the first oscillation signal TRi and the second and third oscillation signals pd ”PC2 with reference to FIGS. 5 and 2 (b). The voltage at the output terminal Ntri is less than the valley setting voltage & When the input S is set to HIGH and the reset input and L0w are set, the normal output 2 is HIGH. At this time, the inverter 414 outputs 10w to the switching device 415 to make it non-conductive. As a result, the The two current sources 4] 7 are off, and the first current source 416 charges the capacitor 418, which causes the voltage at the output terminal Ntri to rise. When the voltage at the output terminal NTR1 rises to be greater than the valley setting voltage% but still less than the peak setting voltage At ¥ 11, the set input S is high and the reset input and HIGH are high, which results in a normal output of mGH. At this time, the inverter 414 outputs LOW to the switching device 415 to make it non-conductive. As a result, the second current source 417 remains closed, and the first current source 416 continues to charge the capacitor 418, so that the voltage at the output terminal Ntri continues to rise. When the voltage at the output terminal ntr1 rises above the peak setting voltage, the input 5 is set to LOW and Reset input and HIGH, guide The normal output g is LOW. At this time, the inverter 414 outputs HIGH to the switching device 415 to turn it on. As a result, the second current source 417 is turned on. Because the current value supplied by the second current source 417 is greater than the first current source The current value supplied by 4 丨 6, so the capacitor 41 8 is discharged to the ground through the second current source 41 7, which causes the voltage at the output terminal NTR1 of 28 1237436 to drop. In the embodiment shown in FIG. 5, the second current source 417 The current value supplied is twice the current value provided by the first current source 416. In this case, because the discharge current value of the capacitor 418 is exactly equal to the current value provided by the first current source 416, so at this stage of operation The discharge rate of the medium capacitor 418 is equal to the charge rate of the capacitor 418 in the previous operation stage, which results in the generation of an equilateral triangle wave. When the voltage at the output terminal Nτμ drops below the peak setting voltage VH but is still greater than the valley setting voltage,疋 Input 5 is high and reset input and high, which causes the normal output ρ to be LOW. At this time, the inverter 414 outputs HIGH to the switching device 41 5 to turn it on. As a result, the second current source 4 丨 7 is still dimensional. Turn on, so that the capacitor 418 continues to discharge to the ground through the second current source 417, causing the voltage at the output terminal ntr1 to continue to drop. When the voltage at the output terminal Ntri drops below the valley setting voltage Vl, the oscillating signal generator 41 repeats The foregoing operation. Therefore, the desired first oscillation signal TR1 can be obtained from the output terminal Ntri. The first pulse signal PC1 is obtained by inverting the reset input and inverting the inverter 4 丨 9R. Similarly, The second pulse signal PC2 is obtained by inverting the set input S through an inverter 419S. Referring again to FIG. 5 ', the auxiliary signal generator 43 is composed of two ramp wave generators 43a and 43b, which respectively generate the first and the second: the auxiliary signal view and RM2. The ramp generator 43a includes a Sample-And-Hold AmPlifier 431a, a sample-and-hold capacitor 432a, a voltage-to-current converter 433a, an output capacitor 434a, and a switching device 435a. The non-inverting terminal of the sample-and-hold amplifier 431a is coupled to 1237436 at the reference voltage vrefa, and its output terminal is consumed by the voltage input terminal of the voltage-to-current converter 43 \. The sample-and-hold capacitor 432a is connected between the output terminal of the sample-and-hold amplifier 43a and the ground. ㈣ to current converter Sin's current output terminal is lightly connected-the output terminal N is. The output capacitor 434a and the switching device 435a are connected in parallel between the output terminal u and the ground. The output terminal NRM1 is further connected to the inverting terminal of the sample-and-hold amplifier 4 仏 to form a feedback loop. On the other hand, the ramp generator state includes a sample-and-hold amplifier ㈣, a sample-and-hold capacitor 堡, an electric castle-to-current converter 433b, a wheel-out capacitor 434b, and a switching device sen. The non-inverting terminal of the sample holding amplifier 43ib is fortunate to another—refer to the electric house and its output terminal is connected to the input terminal of the current converter 43. The sample-and-hold capacitor 432b is connected between the output terminal of the sample-and-hold A || side and the ground. The current output terminal of the voltage-to-current converter is connected to the other output terminal Nrm2. The output capacitor side and the switching device are between the ST output terminal N_ and the ground. The output terminal NRM2 is further coupled to the inverting terminal 'of the sample-and-hold amplifier 43 11) to form a feedback loop. Swing r: The output of the inverter 41 9 S of the t-th generator 41 (that is, the fourth oscillation M number PC2) is a core-controlled sample-and-hold amplifier and switching device 435b. On the other hand, the output of the inverter 4i9R of the oscillating signal generator (ie, the third vibration surplus signal PC1) is used to control the sample hold cry = and open_set 435a. In the present invention, the switching device 4 仏 and _ Azimuth is formed by a switching transistor, such as an NMOS transistor, a p-transistor, or a bipolar transistor. The auxiliary signal generator 43 30 1237436 will be described in detail with reference to FIGS. 5 and 2. Two auxiliary signals RM 1 and RM2. First, a method for controlling the ramp generator 43 a to generate the first auxiliary signal RM1 by the third and fourth oscillation signals PC 1 and PC 2 will be described. When the third and fourth oscillation signals PC When both 1 and PC2 are LOW, the sample-and-hold amplifier 43a and the switching device 435a are both turned off and non-conductive. In this case, the fixed voltage held by the sample-and-hold capacitor 432a is converted into a fixed current through a voltage-to-current converter 433a, It is used to charge the wheel output capacitor 434a. As a result, the voltage at the output terminal Nrmi rises. When the third oscillation signal PCI is HIGH and the fourth oscillation signal PC2 is LOW, the switching device 435a is turned on. In this case, the output capacitor 434a via The on-off switching device 435 & discharges to the ground and outputs ^ NRM! Connected to the ground via the on-off switching device 43 5a. As a result, the voltage at the output knows that the voltage at Nrmi is instantly reduced to the ground potential. Therefore, it can be obtained from the output terminal nrm1. The desired first auxiliary signal RM1. In order to improve the stability of the obtained first auxiliary signal RM1, when the third vibrating j slogan PC1 is LOW and the fourth exhausting signal PC2 is HIGH, the sample-and-hold amplifier 431a is turned on The feedback circuit compares the voltage at the output terminal NRM1 with the reference voltage Vrefa, thereby outputting an error voltage, and performing feedback control on the voltage held by the sample-and-hold capacitor 432a. Because the voltage held by the sample-and-hold capacitor 432a is via voltage The current is converted to current by the current converter 433a, which determines the rate of voltage rise at the output terminal Nr ,, so the first auxiliary signal RM1 obtained from the output terminal Nrmi improves stability due to feedback control. In FIG. 5 and FIG. Take… In the embodiment, since the time point when the fourth oscillation signal PC2 becomes HIGH is located in the ½ period of the _ auxiliary signal RM1 Therefore, refer to 31 1237436. The test voltage Vrefa can be selected as one half of the maximum value vmax of the first auxiliary signal RM1. Please note that the present invention is not limited to this, but can be based on the time point and sampling of the fourth oscillation signal PC2 becoming HIGH. Maintain the proportional relationship between the feedback voltage received at the non-inverting terminal of the amplifier 43la and the voltage at the output terminal NRMi 'to select an appropriate reference voltage Vrefa to achieve the desired feedback control. Then, the third and The fourth oscillating signal wave generator 43b generates a second auxiliary signal rm2. When the first and fourth oscillation signals PC1 and PC2 are both LOW, the sample-and-hold amplifier 43 lb and the switching device 435b are both turned off and non-conductive. In this case, the fixed voltage held by the sampling and holding valley 432b is converted into a fixed current through voltage-to-current conversion to 43 3b to charge the output capacitor 434b. As a result, the voltage at the output terminal nRM2 rises. When the first pulse signal pci is low and the second pulse signal PC2a HIGH, the switching device 43% is turned on. In this case, the output capacitor 434b is discharged to the ground via the conductive switching device 435b, and the output terminal NrM2 is connected to the ground via the conductive switching device 435b. As a result, the voltage at the output terminal NrM2 is instantly reduced to V to the ground potential. Therefore, 'the desired second auxiliary rule can be obtained from the output terminal N_. In order to improve the stability of the obtained second auxiliary signal RM2, when the third oscillation M signal ⑽ is η · and the fourth exhaustion signal PC2 is LOW, the sample-and-hold amplifier ㈣ is turned on and the output terminal NRM2 is compared via the feedback loop. The voltage and reference voltage ... Output an error voltage, and perform feedback control for the extraction only. Because the voltage held by the sampling capacitor 432b 32 1237436 is converted into a current through a voltage-to-current converter 433b, the current determines the rate of voltage rise at the output terminal NRM2, so the first obtained from the output terminal Nrm2 The auxiliary signal RM2 improves stability due to feedback control. In the embodiment shown in FIGS. 5 and 2 (b), since the time point when the third oscillating signal pc i becomes HIGH is located at two-half of the period of the second auxiliary signal RM2, the reference voltage Vrefb must be selected as the first One half of the maximum value Vmax of the two auxiliary signals RM2. Please note that the present invention is not limited to this, but can be based on the proportional relationship between the point in time when the third oscillation signal PC1 becomes HIGH and the feedback voltage received by the non-inverting terminal of the sample-and-hold amplifier 431b and the voltage at the output terminal Nrm2. , Select an appropriate reference voltage Vrefb to achieve the desired feedback control. FIG. 6 shows a detailed circuit diagram of a second example of a multi-phase and multi-waveform synchronous resonator 26 according to the present invention. The second example shown in FIG. 6 is the same as the first example shown in FIG. 5 except that the circuits and methods for generating the third and fourth vibrating signals PC1 and PC2 are modified. Therefore, portions of the circuit element shown in FIG. 6 similar to those in FIG. 5 are designated by reference symbols similar to those in FIG. 5. To simplify the description, only the second example is different from the first example in detail below. As shown in FIG. 6, the second example, a r. Slaver, (One Shot Generator) 6U and 612 replace the j-phase devices 419R and 419S of the first example shown in FIG. 5. Specifically, the first single-shot generator & is a rising-edge single-shot generator whose input is coupled to the latch 413. "Whenever the first single-shot generator 611 detects a normal round-out-rising edge, The first single-shot generator 611 | queries out a pulse with a predetermined € 33 1237436-again, such as 100 nanoseconds. Since the normal output _: the edge occurs when the # th—vibration i signal TR1 reaches the trough, the: early generator 611 generates the desired third oscillation signal PC1. μ: Face 帛 —Single-shot generator 612 series-Single-shot single-shot generator is, and the input end is lightly connected to the normal output of the flash locker 413. Whenever the second early-shot generator 612 _ to the falling edge of normal output 2 At the time, the second single-shot generator 612 is output—with a predetermined width. Example # ⑽nanoseconds of financial impulse is positive; the falling edge of the output ρ occurs when the first oscillating letter: Tiger tri reaches the peak, The first-single-shot generator 612 generates a desired fourth oscillation signal PC2. ... The second example shown in Figure 6 provides an additional advantage as described below. Since the third and fourth oscillation signals pci and pc2 are generated by using the first and second single-shot generators 611 and 612, respectively, the third and fourth oscillation signals PC1 and PC2 have pulses with different widths, respectively. As mentioned earlier, since the third and fourth oscillation signals pci and pC2 control the switching devices 435a and 435b, respectively, a fixed-width pulse ensures that the discharge time of the output capacitors 43 and 434b is fixed, so the charging time is also fixed. As a result, the amplitude stability of the first and second auxiliary signals RM1 and RM2 is further improved. In one embodiment of the present invention, the switching controllers 22A to 22D, the feedback circuits 24A to 24D, and the multi-phase multi-waveform oscillator 26 are integrated into a single integrated circuit chip. The conversion circuits 23A to 23D are formed as external circuits of the single integrated circuit chip, and can be implemented as a step-down conversion circuit or a step-up conversion circuit, and are usually designed according to application requirements. In another embodiment of the present invention, the power switching transistors MA 34 1237436 to 25D in the conversion circuits 23A to 23D are also connected to the switching controllers 22A to 22D, the feedback circuits 24A to 24D, and the multi-phase multi-waveform oscillator. 26 is integrated into a single integrated circuit chip so that only the rest of the conversion circuits 23A to 23D are formed as external circuits of the single integrated circuit chip. In addition, the multiphase waveform synchronous oscillator 26 must be separately formed into an independent integrated circuit chip, and then coupled to the synchronous oscillator 26 including the power supply channels 22A to 22D via wiring; a single power supply in an independent package Integrated circuit chip of the channel. 2D integrated circuit chip. In addition, multiple phases and multiple waves may also output a plurality of oscillating signals to a plurality of devices. Although the present invention has been explained by taking preferred embodiments as examples, it should be understood that the present invention is not limited to the disclosed embodiments. in contrast

,, …〇分厂/丨另凡頰修?又興相似配置。 【圖式簡單說明】 圖1(a)顯示習知的具有多重輸出電壓之切換式直流至 直流轉換器之電路區塊圖。 圖1(b)顯示直流電壓源和地面間之連接配線所造成的 寄生電感。 圖1(0顯示習知振盪器所產生的信號之波形時序圖。 圖2(a)顯示依據本發明之具有多重輸出電壓之切換式 直流至直流轉換器之電路區塊圖。 圖2(b)顯示依據本發明之多相位多波形同步振盪器所 35 1237436 輸出的信號之時序圖。 圖3顯不依據本發明之多重電源供應通道之詳細電路 圖〇 圖4顯不依據本發明之多相位多波形同步振盪器心 路區塊圖。 弘 圖5顯不依據本發明之多相位多波形同步振盪器之第 一例子之詳細電路圖。 二例子之詳細 1電路圖。 元件符號說明 :: 10 切換式直流至直流轉換 11A〜 11D 電源供應通道 12A〜 12D 切換控制器 13A〜 13D 轉換電路 14A〜 14D 回授電路 15A〜 15D 功率切換電晶體 16 振盪器 20 切換式直流至直流轉換 21A〜 21D 電源供應通道 22A〜 22D 切換控制器 23A〜 23D 轉換電路 24A〜 24D 回授電路 25A〜 25D 功率切換電晶體 圖6顯示依據本發明之多相位多波形同步振盪器之第 36 1237436 26 多相位多波形同步振盪器 41 振盪信號產生器 411 峰值比較器 412 谷值比較器 413 閂鎖器 414, 419R,419S 反相器 415 開關裝置 416 第一電流源 417 第二電流源 418 電容 42 反相器 43 輔助信號產生器 431a,431b 432a, 432b 433a, 433b 434a, 434b 435a, 435b 43a,43b 611,612 FBI 〜FB4 抽樣保持放大為 抽樣保持電容 電壓至電流轉換器 輸出電容 開關裝置 斜波產生器 單發產生器 回授信號 PULSE1〜PULSE4 脈衝信號 PWM1〜PWM4 PWM控制信號 RAMP1〜PAMP4 斜波信號,,… 〇 Branch / 丨 Other Cheek Repairs? Another similar configuration. [Brief description of the diagram] Fig. 1 (a) shows a circuit block diagram of a conventional switching DC-DC converter with multiple output voltages. Figure 1 (b) shows the parasitic inductance caused by the connection wiring between the DC voltage source and the ground. Fig. 1 (0 shows a waveform timing diagram of a signal generated by a conventional oscillator. Fig. 2 (a) shows a circuit block diagram of a switching DC-DC converter with multiple output voltages according to the present invention. Fig. 2 (b ) Shows a timing diagram of the signals output by the multi-phase multi-waveform synchronous oscillator 35 1237436 according to the present invention. FIG. 3 shows a detailed circuit diagram of the multiple power supply channels according to the present invention. FIG. 4 shows a multi-phase multi-phase according to the present invention. Block diagram of the heart of a waveform synchronous oscillator. Figure 5 shows a detailed circuit diagram of the first example of a multi-phase multi-waveform synchronous oscillator that is not in accordance with the present invention. Detailed 1 circuit diagram of the second example. Symbol description: 10 Switching DC to DC conversion 11A ~ 11D power supply channel 12A ~ 12D switching controller 13A ~ 13D conversion circuit 14A ~ 14D feedback circuit 15A ~ 15D power switching transistor 16 oscillator 20 switching DC to DC conversion 21A ~ 21D power supply channel 22A ~ 22D switching controller 23A ~ 23D conversion circuit 24A ~ 24D feedback circuit 25A ~ 25D power switching transistor Figure 6 shows Number 36 of the multi-phase multi-wave synchronous oscillator 41 1237436 26 Multi-phase multi-wave synchronous oscillator 41 Oscillation signal generator 411 Peak comparator 412 Valley comparator 413 Latcher 414, 419R, 419S Inverter 415 Switching device 416 First current source 417 Second current source 418 Capacitor 42 Inverter 43 Auxiliary signal generator 431a, 431b 432a, 432b 433a, 433b 434a, 434b 435a, 435b 43a, 43b 611,612 FBI ~ FB4 Sampling and holding is amplified to the sampling and holding capacitor voltage To current converter output capacitor switching device ramp generator single-shot generator feedback signal PULSE1 ~ PULSE4 pulse signal PWM1 ~ PWM4 PWM control signal RAMP1 ~ PAMP4 ramp signal

Vsource 直流電壓源 37 1237436 〜VQUt4 直流輸出電壓 Cl〜C4 電容 CA 電流感測放大器 D1〜D4 二極體 DR1〜DR4 驅動器 EA1〜EA4 誤差放大器 L1〜L4 電感 LA1〜LA2 閂鎖器 NtRI,NrmI,Nrm2 輸出端 PA1〜PA4 PWM比較器 TR1,TR2, PCI,PC2 振盪信號 Q1〜Q4 NMOS電晶體 RM1,RM2 輔助信號 Ral 〜Ra4, Rbl 〜Rb2, Rs 電阻 Vrefl 〜vref4, vrefa,vrefb 參考電壓 Vh 峰值Vsource DC voltage source 37 1237436 to VQUt4 DC output voltage Cl to C4 Capacitance CA Current sense amplifiers D1 to D4 Diodes DR1 to DR4 Drivers EA1 to EA4 Error amplifiers L1 to L4 Inductors LA1 to LA2 Latches NtRI, NrmI, Nrm2 Outputs PA1 ~ PA4 PWM comparators TR1, TR2, PCI, PC2 Oscillation signals Q1 ~ Q4 NMOS transistors RM1, RM2 Auxiliary signals Ral ~ Ra4, Rbl ~ Rb2, Rs Resistors Vrefl ~ vref4, vrefa, vrefb Reference voltage Vh Peak

Vl 谷值 vmax 最大值 38Vl trough vmax max 38

Claims (1)

1237436 第〇92128〇73號專利申請窭 拾、申請專利範圍: 1 · 一種切換式直流至直流轉換器,包含: 間 —第一電源供應通道,耦合於一直流電壓源蛊一地面 用以轉換該直流電壓源成為一第-直流輸出電壓; 間 -第二電源供應通道,麵合於該直流電壓源與該 用以轉換該直流電壓源成為一第- ° 筮-士 乐—直流輪出電壓,今 m輸出電壓係分離於該第一直流輪出電壓 - -振盪器,用以輸出具有_第 號至該第一雷、、盾糾處、χ & 弟一振盪信 的-二=道’並且用以輸出具有-第二週期 、唬至5亥第一電源供應通道,其中. 波峰在一該第週期每一週期中,該第—振盪信號具有— 以及-下降部::二部分,從該波谷逐漸增加至該波峰、 -電源供::;之 信號之該上升部分*c係發生於該第-振還 内;並且 人降。卩分兩者所涵蓋的時間範園 在該第二週期之每— 瞬間變遷的邊、緣,哕睡門、'月中’該第二振盪信號具有- 之該波谷同時發生:使:變遷的邊緣係與該第-振盪信號 換變遷係與該瞬間變邊;該第二電源供應通道之至少一切 ’文遷的邊緣同時發生。 2.如申請專利範圍第1 中: 3之切換式直流至直流轉換器,其 該第一電源供應通 道屬於一電壓模式電源供應通 39 1237436 第092128073號裏利由I 道,並且 該第二電 專利範園替梅本 源供應通道屬^ ^ ;一電流模式電源供應通道 中:申月專利轭圍第1項之切換式直流至直流轉換器,其 週期 該第一週期等於該第 4中如申請專利範圍第1項之切換式直流至直流轉換器,其 。亥苐一振盈信號之兮u 加的 泥之為上升部分係線性增 中:巾月專^圍第1項之切換式直流至直流轉換器,其 線性減少的。 該第-振盪信號之該下降部分係 流轉換器,其 6中如申請專利範圍第1項之切換式直流至直 角波振盪信號 該第一振盪信號係 流轉換器,其 7中如申請專利範圍第!項之切換式直流至直 每振盪信號係—脈衝振盪信號’在該第二週期之 緣,具有一上升邊緣、一脈衝寬度、與一下降邊 緣,並且該第-挺、、基产咕 牛适 一振盪彳a戒之該瞬間變遷的邊緣係指其之該 40 1237436 年6月9日修正後無劃線之申請專利範圍替換本 第〇92128〇73號惠刺申請寧 上升邊緣。 8·如申請專利範圍第1項之切換式直流至直流轉換器,其 中: 該振盪器包含·· 一谷值比較器,用以比較該第一振盪信號與一谷 值設定電壓;以及 一反相’其輪入端係耦合於該谷值比較器之一 輸出端’用以產生該第二振盪信號。 9·如申請專利範圍帛1項之切換式直流至直流轉換器,其 中: 該振盈器包含: 一峰值比較,用以比較該第一振盪信號與一峰 值設定電壓; 一谷值比較器,用以比較該第一振盪信號與一谷 值設定電壓; ° 一問鎖ϋ ’其置;t輸人端㈣合於該峰值比較器 之-輸出4,其重置輸人端係_合於該谷值比較器之一輪 出端,用以產生一正常輸出;以及 上升邊緣單發產生器,用以回應於該正常輸出 而產生該第二振盪信號。 41 1 〇·如申請專利範圍第i頊 貝之切換式直至直流轉換器, 1237436 层厘逆垄i月9曰修正後無劃線之申胃声專利碎圍替換本 第092128073號專利申諝窭 其中: 該振盈器更輸出一第一辅助信號至該第二電源供應 通道,其中該第一輔助信號係一斜波振盪信號,具有一上 升部分與一下降邊緣,使得該下降邊緣係與該第二振盪信 號之該瞬間變遷的邊緣同時發生。 11·如申請專利範圍第10項之切換式直流至直流轉換 器,其中: 該第二電源供應通道藉由該第一輔助信號進行電流 模式回授控制之斜率補償。 12·如申請專利範圍第10項之切換式直流至直流轉換 器,其中: 該振盪器包含: 一峰值比較器,用以比較該第一振盪信號與一峰 值設定電壓; 一谷值比較器,用以比較該第一振盪信號與一谷 值設定電壓; 一第一反相器’其輸入端係耦合於該谷值比較器 之一輸出端,用以產生該第二振盪信號; 一第二反相器’其輸入端係耦合於該峰值比較器 之一輸出端; 一輔助輸出端,用以輸出該第一輔助信號; 一抽樣保持放大器,由該第二反相器所控制,用 42 1237436 第092128073號裏利E 申請專利範圍替換本 以比較該第一輔助信號與一參考電壓; —㈣料電容,合於該抽樣保持放大器之一 輸出端與該地面間; -電壓至電流轉換器,其電壓輸入端係輕合於該 抽樣保持放大器之該輸出端,且其電流輸出端係麵合 於該輔助輸出端; 一輸出電容,叙合於該輔助輸出端與該地; 以及 ^切換裝f,麵纟於該輔助輸出端與該地面間, 由該第一反相器所控制。 二:申請專利範圍第12項之切換式直流至直流轉換 裔,其中: 該參考電壓係該第一辅助信號之振幅最大值之一半。 :。4·如申請專利範圍第10項之切換式直流至直流轉換 裔’其中: 該振盪器包含: —峰值比較器,用以比較該第一振盪信號與一 值設定電壓; 一谷值比較器,用以比較該第一振盪信號與一谷 值設定電壓; 一問鎖器,其置定輸入端係耦合於該峰值比較器 之輸出端’其重置輸入端係耦合於該谷值比較器之一輸 43 1237436 民麗94年6也日修正後無變j線之申請專利箭圄替柙 第092128073號裏利申請室 出^ ’用以產生一正常輸出; 上升邊緣單發產生器,用以回應於該正常輸出 而產生該第二振盪信號; 下降邊緣單發產生器,用以接收該正常輸出; 一輔助輸出端,用以輸出該第一輔助信號; 一抽樣保持放大器,由該下降邊緣單發產生器所 控制,用以比較該第一輔助信號與一參考電壓;^ 一抽樣保持電容,耦合於該抽樣保持放大器之一 輸出端與該地面間; -電壓至電流轉換器,其電壓輸入端係耦合於該 抽樣保持放大器之該輸出端,且其電流輸出端係輛合 於该輔助輸出端; 一輸出電容,耦合於該輔助輸出端與該地面間; 以及 ▲切換裝置’耦合於該輔助輸出端與該地面間, 由邊上升邊緣單發產生器所控制。 14項之切換式直流至直流轉換 15·如申請專利範圍第 器,其中: 該參考電壓係該第一 16·如申請專利範圍第1 更包含: 弟二電源供應通道 面 輔助信號之振幅最大值之一半 項之切換式直流至直流轉換器 ’輕合於該直流電壓源與該地 44 1237436 日修正後無劃線之申請專利範圍替換本 第〇92128〇73號專利由辦宰 間:用以轉換該直流電壓源成為一第三直流輸出電壓,該 第三直流輸出電壓係分離於該第一與該第二直流輸出電 壓,其中: 違振盡裔更輸出具有—第三週期的-第三振i信號 至該第三電源供應通道; 在忒第二週期之每一週期中,該第三振盪信號具有一 波峰、一波谷、一上升部分,從該波谷逐漸增加至該波峰、 以及-下降部分’從該波峰逐漸減少至該波谷,使得該第 :振盪信號之該波峰係與該第一 #盪信冑之該波谷同時 發生,且該第i振盤信?虎之該&谷係與該第一振盛信號之 該波峰同時發生;並且 A 一該第三電源供應通道之至少一切換變遷係發生於該 第二振盈信號之該上升部分與該τ降部分兩者所涵 時間範圍内。 如申明專利範圍第16項之切換式直流至直流 器,其中: 該第三振盪信號係該第一振盪信號之反相信號。 18.如申請專利範圍第1項之切換式直流至直流轉換器, 更包含: " 一第四電源供應通道,耦合於該直流電壓源與該地面 1用X轉換s亥直流電壓源成為一第四直流輸出電壓,該 第四直流輸出電壓係分離於該第一與該第二直流輪出= 45 1237436 第092128073號專利申請案 胃月9日修正後無劃線之申請專利範圍替換本 壓,其中: 該振盪器更輸出具有一第四週期的一第四振盪信號 至該第四電源供應通道; 在該第四週期之每_ ;闲1 μ 义,月中’該弟四振盪信號具有一 瞬間變遷的邊緣,JL中#说日日^ /、 μ啤間變遷的邊緣係與該第一振盪 信號之該波峰同時發生; 該第四振靈信號之今㈣叫 ^ ☆ μ瞬間蜒遷的邊緣與該第二振盪 4吕5虎之该瞬間變遷的邊续pq七 的邊緣間存在有—預定的時間偏移;並 且 該第四電源供應通道 k之至 > 一切換變遷係盥該第四 振盪信號之該瞬間變邊的、息从 心你/、為矛四 π U文遷的邊緣同時發生。 19 ·如申請專利範圍第i 8 器,其中: 該預定的時間偏移係該第二 項之切換式直流至直流轉換 週期之一半 :,:申中請專利範圍第18項之切換式直流至直流轉換 該第四週期等於該第 週期 21·如申請專利範圍第18項之 器,其中: 、 切換式直流至直流轉換 吞亥第四振摄及 每一週期中,=係一脈衝振盈信號,在該第四週期之 上升邊緣、一脈衝寬度、與一下降邊 46 1237436 H 092128073 緣並且该弟四振盈信號之该瞬間變遷的邊緣係指甘之^ 上升邊緣。 22·如申請專利範圍第18項之切換式直流至直法 器’其中: ",L W ^ 該振盪器更輸出一第二辅助信號至該第四電源供庶 通道’其中該第二輔助信號係一斜波振盤信號,具有 ^ 升部分與一下降邊緣,使得該下降邊緣係與該第^振 就之該瞬間變遷的邊緣同時發生。 2·如申請專利範圍第22項之切換式直流至直流轉換 裔,其中: 該第四電源供應通道藉由該第二輔助信號進行電流 杈式回授控制之斜率補償。 Ϊ。4·如申請專利範圍第22項之切換式直流至直流轉換 裔,其中: 而實施 邊仁:第幸甫助^唬之該輪出係該振盪器使用該第二振 盪k唬與該第四振盪信鱿 25. 器 如申請專利範圍第 換 π 〃項之切換式直流至J: W 其中: 該振盪器包含: 用以輪出該第二輔助信號 一輔助輪出端, 47 1237436 思國94年6目9 _______ ” 一抽樣保持放大哭士 #结 用mm货± to由该弟二振盪信號所控制, 用以比較该第二輔助信號與一參考電壓·, 樣保持放大器 之 一抽樣保持電容,耦合於該抽 輸出端與該地面間; 一電壓至電流轉換考,苴 ^ Μ ^ ii ^ 4. … /、電壓輪入端係耦合於該 於該輔助輸出端,· ^且其電流輸出端係麵合 、-輸出電容,耦合於該輔助輸出端與該地面間; 以及 ▲切換裝置,#合於該辅助輸出端與該地面間, 由該第四振盪信號所控制。 26· —種切換式直流至直流轉換器,包含: 複數個電源供應通道,並聯於一直流電壓源盘一地面 間; … 一振盪信號產生器,包含: 一振盪輸出端,耦合於該複數個電源供應通道中 之一第一電源供應通道; 峰值比較器’其非反相端係搞合於一峰值設定 電壓且其反相端係耦合於該振盪輸出端; 一谷值比較器,其反相端係耦合於一谷值設定電 壓且其非反相端係搞合於該振盪輸出端; 一閂鎖器’其置定輸入端係耗合於該峰值比較器 之一輸出端且其重置輸入端係耦合於該谷值比較器之 48 1237436 第092128073號專利申請案 潮啦6月9曰修正後無劃線^ 一輸出端; 一第一反相器,其輸入端係耦合於該閂鎖器之一 正常輸出端; 一第一切換裝置,由該第一反相器所控制; 一第一電流源,用以從該直流電壓源供應一第一 電流至該振盪輸出端; 一第二電流源,由該第一切換裝置所控制,使一 第一電流從該振盪輸出端流至該地面;以及 第一輸出電容,耦合於該振盪輸出端與該地面 間;以及 一補助信號產生器,包含·· -辅助輸出4 ’耦合於該複數個電源供應通道中 之一第二電源供應通道; 一抽樣保持放大写,由兮括、、基 裔由4振盪^唬產生器所控 制,並且其非反相端俏鉍人 々曰鳊係耦合於一參考電壓 係耦合於該辅助輸出端; 反相鳊 T抽縣持電容1合於該抽樣料放大器之一 輸出端與該地面間; σ 電壓至電流轉換写,盆 抽樣伴持放大@ > 八電壓輸入端係耦合於該 像保持放大益之該輸出端,且 於該輔助輸出端; 八電机輸出端係耦合 一第二輸出電容,鉍人 間;以及 口 ;以輔助輸出端與該地面 一弟二切換裝置 輕合於該輔助輸出 端與該地面 49 1237436 第092128073號麵细^ 民國_9土年6月9日修』^劃線之申請專利範圍替換本 間’由該振盪信號產生器所控制。 27.如申請專利範圍第26項之切換式直流至直流轉換 器,更包含: 上升邊緣單發產生器,其輸入端係耦合於該閂鎖器 之該正常輸出端;以及 降邊緣單發產生器,其輸入端係耗合於該閂鎖器 之该正常輪出端,其中: /抽樣保持放大為係由該上升邊緣單發產生器與該 下降邊緣早發產生器中之—個所控制,並且該第二切換裝 ^係由該上升邊緣單發產生器與該下降邊緣單發產生器 中之另一個所控制。 26項之切換式直流至直流轉換 28·如申請專利範圍第 器,更包含: 一第二反相器 輸入端;以及 一第三反相器 輸入端,其中: 其輸入端係耦合於該閂鎖器之該重置 其輸入端係耦合於該閂鎖器之該置定 議抽樣保持放大器係由該第二反 -a 不 一 /5^ Λ 該第二反 個所控制’並且該第二切換裝置係 裔與。亥第二反相器中 τ ^ ^ 個所控制。 29·如申請專利範圍第 26項之切換式直流至直流轉換 50 1237436 號專利申請宰 為’更包含·· 一反相裝置,其輸入端係耦合於該振I輸出端, 輸出端係耦合於該複數個電源供應通道中之 且其 供應通道 第 電溽 種切換式直流至直流轉換器,包含: -第一電源供應通道,耦合於一直流f 30. 間 壓源與— 間 二,轉換該直流電壓源成為一第一直流輸出電髮面 -第二電源供應通道,輕合於該直流電壓源與士 用以轉換該直流電壓源成為一第二直流輸出電墨面 第一直流輸出電壓係分離於該第一直流輸出電壓该 —振盪器,用以輸出具有一第一週期的—及 號至該第-電源供應通道,並且用以輸出具有:虚信 的第一振里信號至該第二電源供應通道,其中:逍期 在該第一週期之每一週期中,該第一 波峰、一、、古欠 f f 讓1 1口現具有〜 / σ、一上升部分,從該波谷逐漸增加至該波峰、 ―:下降部分,從該波峰逐漸減少至該波谷,使得該第 一電源供應通道之至少一切換變遷係發生於該第一振盪 &之„亥上升部分與該下降部分兩者所涵蓋的時間範園 内;並且 瞬間變遷的邊:』之母—週期中’該第二振里信號具有〆 遷的邊緣,該瞬間變遷的邊緣係與該第一振盪信號 之該波峰同時發生,使得該第二電源供應通道之至少一切 換變遷係與該瞬間變遷的邊緣同時發生。 51 1237436 第092128073號專利申請案 民國94年6月9日修正後無劃線之申請專利範圍替換本 3 1.如申請專利範圍第30項之切換式直流至直流轉換 器,其中: 該第一電源供應通道屬於一電壓模式電源供應通 道,並且 該第二電源供應通道屬於一電流模式電源供應通道。 32. 如申請專利範圍第30項之切換式直流至直流轉換 器,其中: 該第一週期等於該第二週期。 33. 如申請專利範圍第30項之切換式直流至直流轉換 器,其中: 該第一振盪信號之該上升部分係線性增加的。 34. 如申請專利範圍第30項之切換式直流至直流轉換 器,其中: 該第一振盪信號之該下降部分係線性減少的。 35. 如申請專利範圍第30項之切換式直流至直流轉換 器,其中: 該第一振盪信號係一三角波振盪信號。 3 6.如申請專利範圍第30項之切換式直流至直流轉換 52 1237436 第〇92128〇73號惠利申請寧 胃後無劃線之申請專通範圍1237436 No. 092128〇73 patent application, patent application scope: 1 · A switching DC-DC converter, including:-the first power supply channel, coupled to a DC voltage source, a ground to convert the The DC voltage source becomes a first-DC output voltage; the intermediate-second power supply channel is connected to the DC voltage source and the DC voltage source is used to convert the DC voltage source into a first-degree 士 -Shile-DC wheel output voltage, The current output voltage is separated from the first DC wheel output voltage-oscillator, and is used to output the signal having the number from the first thunder, the shield correction, the χ & 'And used to output a first power supply channel with a second period and a frequency of 5 to 5, where the peak is in each period of the second period, the first oscillation signal has-and-the falling part: two parts, Gradually increasing from the trough to the crest,-the rising part of the signal for the power supply ::; * c occurs within the -resonance; and the person descends. In the time period covered by the two, in each of the second cycle, the edge and edge of the instantaneous transition, the dormant gate, and the 'mid-month', the second oscillation signal has-the trough occurs simultaneously: The edge system and the first-oscillation signal change transition system and the instantaneous edge transition; at least all the edges of the second power supply channel's cultural transition occur simultaneously. 2. As in the scope of patent application No. 1: the switching DC-to-DC converter of 3, the first power supply channel belongs to a voltage mode power supply channel 39 1237436 No. 092128073 Lilly Road I, and the second power supply channel Patent Fan Yuan substitutes plum source supply channel ^ ^; in a current mode power supply channel: Shenyue's patented yoke surrounds the first switching DC-DC converter, the period of which is equal to the period of the fourth period as applied The scope of patent No. 1 is a switching DC to DC converter. The increase in the signal of the oscillating surplus signal is linearly increasing in the rising part. The switching DC-DC converter of the first item of the line is reduced linearly. The falling part of the first oscillating signal is a dc converter, 6 of which is the switching DC to right-angle oscillating signal of the first scope of the patent application. Number! The switching DC-to-oscillation signal system—pulse oscillation signal 'has a rising edge, a pulse width, and a falling edge at the edge of the second period. The edge of a momentary change of a oscillating 彳 a or ring refers to the scope of the patent application for which there is no underline after the amendment on June 9, 1237436, replacing the No. 092128〇73 Huishui application Ning rising edge. 8. The switching DC-DC converter according to item 1 of the patent application scope, wherein: the oscillator includes a valley comparator for comparing the first oscillation signal with a valley setting voltage; and an inverse The phase 'its round-in terminal is coupled to an output terminal of the valley comparator' for generating the second oscillating signal. 9. The switching DC-to-DC converter according to the scope of the patent application: item 1, wherein: the oscillator includes: a peak comparison for comparing the first oscillation signal with a peak set voltage; a valley comparator, Used to compare the first oscillating signal with a valley setting voltage; ° Ask the lock 其 its position; t input terminal is combined with-output 4 of the peak comparator, which resets the input terminal system _ combined with One output terminal of the valley comparator is used to generate a normal output; and the rising edge single-shot generator is used to generate the second oscillating signal in response to the normal output. 41 1 〇 · If the switching range of the patent application scope is up to the DC converter, 1237436 layers of inverse ridge i month 9th amended without the line of the application of the appetite for stomach sound patent replaces this patent application No. 092128073 Wherein: the oscillator further outputs a first auxiliary signal to the second power supply channel, wherein the first auxiliary signal is a ramp wave oscillating signal with a rising portion and a falling edge, so that the falling edge is related to the The edges of the instantaneous transition of the second oscillating signal occur simultaneously. 11. The switching DC-DC converter according to item 10 of the patent application scope, wherein: the second power supply channel performs slope compensation of current mode feedback control by the first auxiliary signal. 12. The switching DC-DC converter according to item 10 of the patent application scope, wherein: the oscillator includes: a peak comparator for comparing the first oscillating signal with a peak set voltage; a valley comparator, Used to compare the first oscillating signal with a valley setting voltage; an input terminal of a first inverter 'is coupled to an output terminal of the valley comparator to generate the second oscillating signal; a second The input terminal of the inverter is coupled to an output terminal of the peak comparator; an auxiliary output terminal is used to output the first auxiliary signal; a sample-and-hold amplifier is controlled by the second inverter, and 42 1237436 No. 092128073 Lilly E. Patent Application Replacement to compare the first auxiliary signal with a reference voltage;-A capacitor is connected between the output of the sample-and-hold amplifier and the ground;-Voltage to current converter , Its voltage input terminal is lightly connected to the output terminal of the sample-and-hold amplifier, and its current output terminal is connected to the auxiliary output terminal; an output capacitor is connected to the auxiliary The output terminal; and a switching means F ^, Si surface in between the output terminal and the auxiliary ground, controlled by the first inverter. 2: The switching DC-DC converter of the 12th scope of the patent application, wherein: the reference voltage is a half of the maximum amplitude of the first auxiliary signal. :. 4. If the switching DC-DC converter of item 10 of the patent application is used, wherein: the oscillator includes: a peak comparator for comparing the first oscillating signal with a value set voltage; a valley comparator, It is used to compare the first oscillation signal with a valley setting voltage. An interlocking device whose setting input terminal is coupled to the output terminal of the peak comparator. Its reset input terminal is coupled to the valley comparator. A lose 43 1237436 Minli was also amended on June 6, 1994. The patent application for the arrow line has not been changed. The Riley application room No. 092128073 is issued by the Lily application room ^ 'for generating a normal output; a rising edge single-shot generator for Generating the second oscillating signal in response to the normal output; a falling edge single-shot generator for receiving the normal output; an auxiliary output terminal for outputting the first auxiliary signal; a sample-and-hold amplifier from the falling edge Controlled by a single-shot generator to compare the first auxiliary signal with a reference voltage; ^ a sample-and-hold capacitor coupled between an output terminal of the sample-and-hold amplifier and the ground; A voltage-to-current converter whose voltage input terminal is coupled to the output terminal of the sample-and-hold amplifier, and whose current output terminal is coupled to the auxiliary output terminal; an output capacitor is coupled to the auxiliary output terminal and the ground And ▲ switching device 'is coupled between the auxiliary output and the ground, and is controlled by a single-edge generator. 14 items of switching DC to DC conversion 15. If the scope of the patent application is applied, where: the reference voltage is the first 16. If the scope of the patent application is the first, it further includes: the maximum amplitude of the auxiliary signal of the second power supply channel surface One-half of the switching DC-DC converter 'lights on the DC voltage source and the ground 44 1237436 amended without the line of the patent application. Replaces this patent No. 092128〇73 by the office: used to The DC voltage source is converted into a third DC output voltage, and the third DC output voltage is separated from the first and the second DC output voltages. Oscillating i signal to the third power supply channel; in each period of the second cycle, the third oscillating signal has a wave peak, a wave trough, and a rising portion, and gradually increases from the wave trough to the wave peak, and-drops Partially decreases from the crest to the trough, so that the crest of the first: oscillating signal and the trough of the first #oscillation signal occur simultaneously, and the i-th vibration plate ? The tiger & valley system and the peak of the first vibration signal occur simultaneously; and A-at least one switching transition of the third power supply channel occurs between the rising portion of the second vibration signal and the τ Within the time range covered by both. For example, the switching type DC to DC converter of item 16 of the patent scope is declared, wherein: the third oscillating signal is an inverted signal of the first oscillating signal. 18. The switching DC-to-DC converter according to item 1 of the scope of patent application, further comprising: " a fourth power supply channel, coupled to the DC voltage source and the ground 1 with an X-conversion DC voltage source to become a The fourth DC output voltage, which is separated from the first and the second DC wheel output = 45 1237436 Patent No. 092128073 Patent Application No revised line of the patent application after the amended date replaces this voltage , Where: the oscillator further outputs a fourth oscillation signal with a fourth period to the fourth power supply channel; every _ in the fourth period; idle 1 μ meaning, the mid-month 'the brother's four oscillation signal has The edge of the momentary change, # 说 日 日 ^ / in μL, the edge of the transition between beer and the peak of the first oscillation signal occurs simultaneously; the current howl of the fourth vibration signal is called ^ ☆ There is a predetermined time offset between the edge of the second oscillation 4 and the edge of the instantaneous transition pq7; and the fourth power supply channel k > a switching transition is Of the fourth oscillation signal Instant change sides, you rate / occur simultaneously from the heart to move text π U lance four edges. 19 · If the patent application scope i 8 device, where: the predetermined time offset is one and a half of the switching DC to DC conversion cycle of the second item:,: The application claims the switching DC to The fourth period of the DC conversion is equal to the 21st period. For example, the device in the 18th scope of the patent application, where: 、 Switching DC to DC conversion, the fourth vibration and each period, = a pulse vibration signal In the fourth cycle, the rising edge, a pulse width, and a falling edge of 46 1237436 H 092128073 and the instantaneous change of the fourth vibration signal of the brother are the rising edges of Gan Zhi ^. 22. · If the switching DC to DC converter of item 18 of the patent application 'Among them: ", LW ^ The oscillator further outputs a second auxiliary signal to the fourth power supply channel, where the second auxiliary signal It is a ramp wave plate signal, which has a rising part and a falling edge, so that the falling edge occurs at the same time as the edge of the first vibration. 2. The switching DC to DC converter according to item 22 of the patent application scope, wherein: the fourth power supply channel performs slope compensation of the current branch feedback control by the second auxiliary signal. Alas. 4. If the switching DC-DC conversion method of item 22 of the patent application scope, among which: and implement the frontier: the second out of the second line is the oscillator using the second oscillation k and the fourth Oscillation letter 25. For example, the switchable DC to J: W of item π 〃 of the patent application scope, where: the oscillator includes: an auxiliary wheel output terminal for rotating the second auxiliary signal, 47 1237436 思 国 94 Year 6 mesh 9 _______ ”A sample hold amplifier crying ## mmmm ±± is controlled by the second oscillator signal to compare the second auxiliary signal with a reference voltage. One of the sample and hold amplifiers is a sample and hold capacitor. , Coupled between the pumping output and the ground; a voltage-to-current conversion test, 苴 ^ Μ ^ ii ^ 4.… /, the voltage wheel input terminal is coupled to the auxiliary output terminal, and its current output The end-to-end output capacitor is coupled between the auxiliary output terminal and the ground; and the ▲ switching device, #closed between the auxiliary output terminal and the ground, is controlled by the fourth oscillation signal. Switching DC to A current converter includes: a plurality of power supply channels connected in parallel between a DC voltage source plate and a ground; ... an oscillating signal generator including: an oscillating output terminal coupled to one of the plurality of power supply channels first Power supply channel; the peak comparator 'its non-inverting terminal is coupled to a peak set voltage and its inverting terminal is coupled to the oscillating output; a valley comparator whose inverting terminal is coupled to a valley A set voltage and its non-inverting terminal are connected to the oscillating output terminal; a latch 'whose setting input terminal is consumed by an output terminal of the peak comparator and its reset input terminal is coupled to the valley 48 1237436 Patent Application No. 092128073 of the value comparator. No correction after the correction on June 9 ^ an output terminal; a first inverter whose input terminal is coupled to a normal output terminal of the latch A first switching device controlled by the first inverter; a first current source for supplying a first current from the DC voltage source to the oscillation output terminal; a second current source by the first A switching device Control so that a first current flows from the oscillation output to the ground; and a first output capacitor is coupled between the oscillation output and the ground; and an auxiliary signal generator including an auxiliary output 4 ′ coupling A second power supply channel in one of the plurality of power supply channels; a sample-hold magnification write, which is controlled by a four-oscillator generator, and its non-inverting terminal Is coupled to a reference voltage; is coupled to the auxiliary output; an inverting 鳊 T pumping capacitor 1 is connected between an output of the sample amplifier and the ground; σ voltage-to-current conversion write, basin sampling with amplification @ > The eight-voltage input terminal is coupled to the output terminal of the image holding amplifier, and to the auxiliary output terminal; The eight-motor output terminal is coupled to a second output capacitor, bismuth earth; and the port; to the auxiliary output terminal It is lightly connected with the ground and the second switching device on the auxiliary output and the ground. 49 1237436 No. 092128073 surface details The replacement time is controlled by the oscillating signal generator. 27. The switching DC to DC converter according to item 26 of the patent application scope, further comprising: a rising-edge single-shot generator whose input terminal is coupled to the normal output terminal of the latch; and a falling-edge single-shot generator The input end of the generator is consumed by the normal wheel output end of the latch, wherein: / Sample hold amplification is controlled by one of the rising edge single shot generator and the falling edge early shot generator, And the second switching device is controlled by the other of the rising edge single-shot generator and the falling edge single-shot generator. 26 items of switching DC to DC conversion 28. If the scope of the patent application is applied, it further includes: a second inverter input terminal; and a third inverter input terminal, wherein: its input terminal is coupled to the latch The reset of the latch, the input end of which is coupled to the settling sample-and-hold amplifier of the latch, is controlled by the second anti-a not a / 5 ^ Λ the second anti, and the second switching Device family and. Τ ^ ^ in the second inverter is controlled. 29. For example, the switching DC-to-DC conversion 50 of the 26th patent application No. 1237436 patent application is described as' more inclusive ... An inverter device whose input terminal is coupled to the output terminal of the oscillator I, and the output terminal is coupled to Among the plurality of power supply channels and the supply channel is an electric switching DC-DC converter, including:-a first power supply channel, coupled to a direct current f 30. an intermediate voltage source and- The DC voltage source becomes a first DC output power generating surface-second power supply channel, which is lightly connected to the DC voltage source and is used to convert the DC voltage source into a second DC output electric ink surface. The voltage is separated from the first DC output voltage and the oscillator is used to output the first and last numbers to the first power supply channel, and is used to output the first vibration signal with: To the second power supply channel, wherein: in each period of the first period, the first peak, first, and last ff let 11 1 ports now have ~ / σ, a rising portion, from wave Gradually increase to the peak, ―: the decline, and gradually decrease from the peak to the valley, so that at least one switching transition of the first power supply channel occurs in the first oscillation & the rising portion and the falling portion Within the time range covered by the two; and the edge of the instantaneous transition: "Mother-period" The second oscillation signal has an edge of transition, and the edge of the instantaneous transition is at the same time as the peak of the first oscillation signal Occurs, causing at least one switching transition of the second power supply channel to occur at the same time as the edge of the instantaneous transition. 51 1237436 Patent Application No. 092128073 Patent Application of the Republic of China on June 9, 1994. 3 1. The switching DC-DC converter according to item 30 of the patent application scope, wherein: the first power supply channel belongs to a voltage mode power supply channel, and the second power supply channel belongs to a current mode power supply channel. 32. The switching DC-DC converter according to item 30 of the patent application, wherein: the first period is equal to the second 33. For example, the switching DC-to-DC converter in item 30 of the scope of patent application, wherein: the rising part of the first oscillating signal increases linearly. 34. In the switching-type DC to, area of the patent application scope 30 DC converter, wherein: the falling part of the first oscillating signal is linearly reduced. 35. The switching DC-DC converter according to item 30 of the patent application scope, wherein: the first oscillating signal is a triangular wave oscillating signal 3 6. If switching to DC-to-DC conversion in item 30 of the scope of patent application 52 1237436 No. 092128〇73 Huili apply for the scope of application of Ningwei without line 器,其中: —該第二振盈信號係一脈衝振盈信號,在該第二週期之 每-週期中,*有一上升邊緣、—脈衝寬度、與一下降邊 緣,並且該第二振盪信號之該瞬間變遷的邊緣係指其之該 上升邊緣。 3J·如申睛專利範圍第3〇項之切換式直流至直流轉換 器,其中: 該振盪器包含: 一合值比杈器,用以比較該第一振盪信號與一谷 值設定電壓;以及 一反相器’其輸入端係耦合於該谷值比較器之一 輸出端,用以產生該第二振盪信號。 3 8.如申請專利範圍第3〇項之切換式直流至直流轉換 器,其中: 該振盪器包含: 峰值比較益’用以比較該第一振蘯信號與一峰 值設定電壓; 一谷值比較器,用以比較該第一振盪信號與一谷 值設定電壓; 一閂鎖器’其置定輸入端係耦合於該峰值比較器 之一輸出端,其重置輸入端係耦合於該谷值比較器之一輸 出端,用以產生一正常輪出;以及 53 1237436 第092128073號專利申讅宰 94 gg 9日修正後無劃線之申請專利範圍替換本 一上升邊緣單發產生器,用以回應於該正常輸出 而產生遠弟二振盈信號。 39·如申請專利範圍第3〇項之切換式直流至直流轉換 器,其中: 該振盪器更輸出一第一輔助信號至該第二電源供應 通道’其中該第一輔助信號係一斜波振盪信號,具有一上 升部分與一下降邊緣,使得該下降邊緣係與該第二振盛信 號之該瞬間變遷的邊緣同時發生。 4〇·如申請專利範圍第39項之切換式直流至直流轉換 器,其中: 違第二電源供應通道藉由該第一輔助信號進行電流 模式回授控制之斜率補償。 41·如申請專利範圍第39項之切換式直流至直流轉換 器,其中: 該振盪器包含: 一峰值比較器,用以比較該第一振盪信號與一峰 值設定電壓; 一谷值比較器,用以比較該第一振盪信號與一欠 值設定電壓; ° 一第一反相器,其輸入端係耦合於該谷值比較器 之一輸出端,用以產生該第二振盪信號; 54 1237436 第哕2128〇73__^利申請塞 範圍替換本 一第二反相器,其輸入端係耦合於該峰值比較器 之一輸出端; σσ 一輔助輸出端,用以輸出該第一輔助信號; 一抽樣保持放大器,由該第二反相器所控制,用 以比較該第一辅助信號與一參考電壓; 出端與該 一電壓至電流轉換器, 抽樣保持放大器之該輸出端 於該輔助輸出端; 其電壓輸入端係麵合於該 ’且其電流輸出端係耦合 以及 輸出電谷,耦合於該輔助輸出端與該地面間; 切換裝置,轉合於該辅助輸出端與該地面間 该弟一反相器所控制 42·如申請專利範圍第 器’其中: 41項之切換式直流至直流轉換 該參考電壓係該第 一辅助信號之振幅最大值之一半 43.如申請專利範圍第 器’其中: 3 9項之切換式直流至直流轉換 該振盪器包含: 一峰值比較器 值設定電壓; 用以比較該第一振蘯信號與一峰 55 1237436Device, wherein:-the second oscillating signal is a pulse oscillating signal, in each of the second period, * a rising edge, -pulse width, and a falling edge, and The transient edge refers to the rising edge. 3J · The switching DC-to-DC converter of item 30 in the patent scope, wherein: the oscillator includes: a composite ratio device for comparing the first oscillating signal with a valley setting voltage; and An inverter 'has an input terminal coupled to an output terminal of the valley comparator for generating the second oscillating signal. 3 8. The switching DC-DC converter according to item 30 of the scope of patent application, wherein: the oscillator includes: a peak comparison benefit used to compare the first oscillation signal with a peak set voltage; a valley value comparison A latch for comparing the first oscillating signal with a valley setting voltage; a latch 'whose setting input is coupled to an output of the peak comparator, and its reset input is coupled to the valley An output terminal of a comparator, used to generate a normal rotation; and 53 1237436 Patent No. 092128073 Patent Application 94 gg 9th revised amended underlined patent application scope replaces this rising edge single-shot generator for In response to this normal output, the second brother's second vibrating signal is generated. 39. The switching DC-DC converter according to item 30 of the patent application scope, wherein: the oscillator further outputs a first auxiliary signal to the second power supply channel, wherein the first auxiliary signal is a ramp wave oscillation The signal has a rising part and a falling edge, so that the falling edge occurs simultaneously with the edge of the instantaneous transition of the second vibrating signal. 40. The switching DC to DC converter according to item 39 of the patent application scope, wherein: the slope compensation of the current mode feedback control is performed by the first auxiliary signal in violation of the second power supply channel. 41. The switching DC-DC converter according to item 39 of the patent application scope, wherein: the oscillator comprises: a peak comparator for comparing the first oscillation signal with a peak set voltage; a valley comparator, Used to compare the first oscillating signal with an under-set voltage; ° a first inverter whose input terminal is coupled to an output of the valley comparator to generate the second oscillating signal; 54 1237436哕 2128〇73 __ ^ Applying a plug range to replace the second inverter, its input terminal is coupled to one of the output terminals of the peak comparator; σσ an auxiliary output terminal for outputting the first auxiliary signal; A sample-and-hold amplifier controlled by the second inverter to compare the first auxiliary signal with a reference voltage; an output terminal and the voltage-to-current converter; the output of the sample-and-hold amplifier is at the auxiliary output terminal ; Its voltage input terminal is connected to the surface, and its current output terminal is coupled to the output valley, coupled between the auxiliary output terminal and the ground; the switching device is connected to the Controlled by an inverter between the auxiliary output terminal and the ground 42. As in the patent application No. 'of which: 41 of the switching DC-DC conversion, the reference voltage is half of the maximum amplitude of the first auxiliary signal 43. According to the scope of the patent application, where: 3 to 9 switching DC to DC conversion, the oscillator includes: a peak comparator value setting voltage; used to compare the first oscillator signal with a peak 55 1237436 一谷值比較器,用以比較該第一振盪信號與一谷 值設定電壓; 一閃鎖器’其置定輸入端係耦合於該峰值比較器 之一輸出端’其重置輸入端係耦合於該谷值比較器之一輸 出‘ ’用以產生一正常輸出; 上升邊緣單發產生器,用以回應於該正常輸出 而產生該第二振盪信號; 一下降邊緣單發產生器,用以接收該正常輸出; 一輔助輸出端,用以輸出該第一輔助信號; 一抽樣保持放大器,由該下降邊緣單發產生器所 控制,用以比較該第一輔助信號與一參考電壓; 一抽樣保持電容,耦合於該抽樣保持放大器之一 輸出端與該地面間; 一電壓至電流轉換器 抽樣保持放大器之該輸出 於該辅助輸出端; ’其電壓輸入端係麵合於該 知’且其電流輸出端係麵合 一輸出電容,耦合於該輔助輸出端與該地面間; 以及 士刀換裝置,#合於該辅助輸出端與該地面間, δ亥上升邊緣單發產生器所控制。 44 ·如 辅助信號之振幅最大值之 •如申請專利範圍第43 器’其中: 該參考電壓係該第一辅 項之切換式直流至直流轉換 56 1237436 第092128073號專利_ ^申請專利 45.如申請專利範圍第30項之切換式直流至直流 器,更包含: W ^ 一第三電源供應通道,耦合於該直流電壓源與該地 間,用以轉換該直流電壓源成為一第三直流輸出電壓,^ 第三直流輸出電壓係分離於該第—與該第二直雷乂 壓,其中: ^ ^ 該振I器更輸出具有-第三週期的一 至該第三電源供應通道; “免 在:第三週期之每一週期中,該第三_號具有— =1—波谷、—上升部分,從該波谷逐漸增加至該波峰、 1 一下降部分’從該波♦逐漸減少至該波谷,使得 ::盛信號,該波夸係與該第一振盪信號之該波谷;時 X ,且5亥第二振盪信號之該波谷 該波峰同時發生;並且 X第振Μ遗之 =4源供應通道之至少_切換變遷係發生於該 時間範圍内。 …亥下降部分兩者所涵蓋的 項之切換式直流至直流轉換 46·如申請專利範圍第45 器,其中: 該第三振盈信號係該第一振盈信號之反相信號 47·如申請專利範圍第30 項之切換式直流至直流轉 換 57 昆阈94年6月9日修正後無劃線之申請專利節圍替摔本 1237436 箆〇92128〇73號專利申f 器,更包含: 一第四電源供應通道,耦合於該直流電壓源與該地面 間,用以轉換該直流電麋源成為一第四直流輸出電壓,該 第四直流輸出電壓係分離於該第一與該第二直流輸出電 壓,其中: 該振盪器更輸出具有一第四週期的一第四振盪信號 至該第四電源供應通道; 在該第四週期之每一週期中,該第四振盪信號具有一 瞬間變遷的邊緣,其中該瞬間變遷的邊緣係與該第H 信號之該波谷同時發生; ::四振盪信號之該瞬間變遷的邊緣與該第二振盪 ^虎之_間變遷的邊緣間存在有1定的時間偏移;並 振=二電源Γ通道之至少一切換變遷係與該第四 Π乙旒之該瞬間變遷的邊緣同時發生。 48. 如申請專利範圍第47項之切 器,其中·· 巧直凌至直流轉換 該預定的時間偏移係該第二 千0 49. 如申請專利範圍第47項之 器,其中: 式直凌至直流轉換 週期 該第四週期等於該第 58 1237436 第092128073^麵9日修正後纏[|線之申請裏利範圍替換本 50.如申凊專利範圍第47項之切換式直流至直流轉換 器,其中: 该第四振盪信號係一脈衝振盪信號,在該第四週期之 每一週期中,具有一上升邊緣、一脈衝寬度、與一下降邊 緣’並且該第四振盪信號之該瞬間變遷的邊緣係指其之該 上升邊緣。 5 1 ·如申請專利範圍第47項之切換式直流至直流轉換 器’其中: 該振盪器更輸出一第二輔助信號至該第四電源供應 通道’其中該第二輔助信號係一斜波振盪信號,具有一上 升部分與一下降邊緣,使得該下降邊緣係與該第四振盪信 號之該瞬間變遷的邊緣同時發生。 52·如申請專利範圍第5 1項之切換式直流至直流轉換 器,其中: 該第四電源供應通道藉由該第二輔助信號進行電流 模式回授控制之斜率補償。 53·如申請專利範圍第5 1項之切換式直流至直流轉換 器,其中: 該第二辅助信號之該輸出係該振盪器使用該第二振 盈k號與該第四振盪信號而實施。 59 1237436 患092128073號專利申請案 民國94年6月9曰j1^7^後無劃線之申證專手_圍替換本 54·如申請專利範圍第5 1項之切換式直流至直流轉換 器,其中: 該振盪器包含: 一輔助輸出端,用以輸出該第二輔助信號; 一抽樣保持放大器,由該第二振盪信號所控制, 用以比較該第二輔助信號與一參考電壓; 一抽樣保持電容,耦合於該抽樣保持放大器之一 輸出端與該地面間; 一電壓至電流轉換器,其電壓輸入端係耦合於該 抽樣保持放大写夕兮认 裔之该輸出端,且其電流輸出端係耦合 於該辅助輸出端; 、 輸出電谷,耦合於該辅助輸出端與該地面間; 一切換裝置,耦合於該輔助 振盪信號所控制。 輪出 端與該地面間, 由該第四 60 1237436 民國94年1月7日修正之圖式替換頁 拾壹、圖式: 10 11A PULSE1 JLUUL、ΛΑΑΑ/ RAMP1 12A 電源供應通道 轉換電路 切換控制器 PWM1 FBI 14A 功率切換 電晶體 15A Voutl 回授電路 振 盪 器 11B X. PULSE2 JUULJLx ΪΑΛλΖ RAMP2A valley comparator for comparing the first oscillating signal with a valley setting voltage; a flash latch 'its setting input is coupled to an output of the peak comparator' and its reset input is coupled to An output of the valley comparator is used to generate a normal output; a rising edge single-shot generator is used to generate the second oscillation signal in response to the normal output; a falling edge single-shot generator is used to receive The normal output; an auxiliary output terminal for outputting the first auxiliary signal; a sample-and-hold amplifier controlled by the falling-edge single-shot generator to compare the first auxiliary signal with a reference voltage; a sample-and-hold A capacitor is coupled between an output terminal of the sample-and-hold amplifier and the ground; the output of a voltage-to-current converter sample-and-hold amplifier is at the auxiliary output; 'the voltage input terminal is connected to the sensor' and its current The output end is integrated with an output capacitor, and is coupled between the auxiliary output end and the ground; and a sword changing device, #combined between the auxiliary output end and the ground , Δ Hai single rising edge generator is controlled. 44 · such as the maximum amplitude of the auxiliary signal · such as the 43rd device in the scope of patent application'where: the reference voltage is the switched DC-to-DC conversion of the first auxiliary item 56 1237436 patent 092128073_ ^ application patent 45. The switching DC-to-DC converter according to item 30 of the patent application, further includes: W ^ a third power supply channel coupled between the DC voltage source and the ground for converting the DC voltage source into a third DC output Voltage, ^ the third DC output voltage is separated from the first and the second direct thunder voltage, where: ^ ^ the vibrator output from one to the third power supply channel with a third period; : In each cycle of the third cycle, the third _ number has — = 1 — trough, — rising portion, which gradually increases from the trough to the peak, and 1 — a falling portion 'gradually decreases from the wave to the trough, Make :: Sheng signal, the wave quake is the wave valley of the first oscillation signal; hour X, and the wave peak of the wave valley of the second oscillation signal occurs at the same time; and the Xth vibration oscillating wave = 4 source supply channel Of Less_Switching transition occurs within this time range.… The switching DC to DC conversion of the items covered by the two in the falling part 46 · For example, the 45th device in the scope of patent application, where: The third vibration signal is the first Inverted signal of a vibrating signal 47. For example, the switching DC-DC conversion of item 30 in the scope of patent application 57 Kun threshold Threshold of the patent application without correction after the correction on June 9, 1994 1237436 箆 〇92128 〇73 patent application device further includes: a fourth power supply channel, coupled between the DC voltage source and the ground, for converting the DC power source into a fourth DC output voltage, the fourth DC output voltage Is separated from the first and the second DC output voltage, wherein: the oscillator further outputs a fourth oscillation signal having a fourth period to the fourth power supply channel; in each of the fourth period , The fourth oscillating signal has a transient transition edge, wherein the transient transition edge occurs simultaneously with the trough of the Hth signal; :: the four transient oscillation edge of the transient transition There is a certain time offset between the edges of the second oscillation and the transition between the two tigers; at least one switching transition of the two power source Γ channels and the edge of the fourth transient transition occur simultaneously. 48. If the device of the 47th scope of the patent application is applied, among them, the predetermined time offset of Qiaozhi Ling to DC conversion is the 20000. 49. The device of the 47th scope of the patent application, of which: Straight-to-DC conversion cycle This fourth cycle is equal to the 58th 1237436th 092128073 ^ 9-day correction after the winding [| line of the application Leeley range to replace the 50. Such as the application of the 47th patent scope of switching DC to DC A converter, wherein: the fourth oscillating signal is a pulse oscillating signal, and each of the fourth period has a rising edge, a pulse width, and a falling edge; and the instant of the fourth oscillating signal The edge of change is the rising edge. 5 1 · If the switching DC-DC converter of item 47 of the patent application 'wherein: the oscillator further outputs a second auxiliary signal to the fourth power supply channel' wherein the second auxiliary signal is a ramp wave oscillation The signal has a rising portion and a falling edge, so that the falling edge occurs simultaneously with the edge of the instantaneous transition of the fourth oscillating signal. 52. The switching DC to DC converter according to item 51 of the patent application scope, wherein: the fourth power supply channel performs slope compensation of current mode feedback control by the second auxiliary signal. 53. The switching DC-to-DC converter according to item 51 of the patent application scope, wherein: the output of the second auxiliary signal is implemented by the oscillator using the second vibration k number and the fourth oscillation signal. 59 1237436 Suffering from Patent Application No. 092128073, the Republic of China, June 9, 1994, J1 ^ 7 ^ Unlined Application Specialist for the Application _Replacement Wherein, the oscillator includes: an auxiliary output terminal for outputting the second auxiliary signal; a sample-and-hold amplifier controlled by the second oscillating signal for comparing the second auxiliary signal with a reference voltage; A sample-and-hold capacitor is coupled between an output terminal of the sample-and-hold amplifier and the ground; a voltage-to-current converter whose voltage input terminal is coupled to the output terminal of the sample-and-hold amplifier, and its current The output terminal is coupled to the auxiliary output terminal; an output valley is coupled between the auxiliary output terminal and the ground; a switching device is coupled to be controlled by the auxiliary oscillation signal. Between the exit of the wheel and the ground, the fourth 601237436 revised page replaced by the diagram on January 7, 1994, picture: 10 11A PULSE1 JLUUL, ΛΑΑΑ / RAMP1 12A power supply channel conversion circuit switching controller PWM1 FBI 14A Power Switching Transistor 15A Voutl Feedback Circuit Oscillator 11B X. PULSE2 JUULJLx ΪΑΛλZ RAMP2 Yout2 11、C PULSE3ULfULJU^\ΔΑΑ7 RAMP3 12C 電源供應通道 13C 轉換電路 切換控制器 PWM3 FB3 14C 功率切換 電晶體 15C Vout3 回授電路 11D^ PULSE4JULfUU RAMP4 12u D 電源供應通道 切換控制器 PWM4 FB4 圖1⑻ 14DYout2 11, C PULSE3ULfULJU ^ \ ΔΑΑ7 RAMP3 12C power supply channel 13C conversion circuit switching controller PWM3 FB3 14C power switching transistor 15C Vout3 feedback circuit 11D ^ PULSE4JULfUU RAMP4 12u D power supply channel switching controller PWM4 FB4 Figure 1⑻ 14D 回授電路 Vout4Feedback circuit Vout4
TW92128073A 2003-10-09 2003-10-09 Switching DC-to-DC converter with multiple output voltages TWI237436B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92128073A TWI237436B (en) 2003-10-09 2003-10-09 Switching DC-to-DC converter with multiple output voltages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92128073A TWI237436B (en) 2003-10-09 2003-10-09 Switching DC-to-DC converter with multiple output voltages

Publications (2)

Publication Number Publication Date
TW200514339A TW200514339A (en) 2005-04-16
TWI237436B true TWI237436B (en) 2005-08-01

Family

ID=36821453

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92128073A TWI237436B (en) 2003-10-09 2003-10-09 Switching DC-to-DC converter with multiple output voltages

Country Status (1)

Country Link
TW (1) TWI237436B (en)

Also Published As

Publication number Publication date
TW200514339A (en) 2005-04-16

Similar Documents

Publication Publication Date Title
US8493044B2 (en) Multi-phase DC-to-DC converter with daisy chained pulse width modulation generators
TWI763720B (en) Power converter and method for converting an input voltage into an output voltage
JP2006246598A (en) Dc-dc converter, its controller, power supply, electronic device and control method of dc-dc converter
US10116155B2 (en) Battery charging circuit with high capacity, control circuit and associated control method
JP6336294B2 (en) Control device used in switching power supply system
US10643678B2 (en) Clock generation circuit, switching power supply device, and semiconductor device
US8164315B2 (en) Power supply circuit
JP2003284329A (en) Power source circuit and pwm circuit
Su et al. Component-efficient multiphase switched-capacitor DC–DC converter with configurable conversion ratios for LCD driver applications
TW200947842A (en) Method for regulating an output voltage
US10367484B2 (en) Ramp based clock synchronization for stackable circuits
AU2005335243B2 (en) Step-down voltage converter
US6744647B2 (en) Parallel connected converters apparatus and methods using switching cycle with energy holding state
JP2004096816A (en) Multi-output dc-dc converter
US20110285373A1 (en) Pulse generating circuit and pulse width modulator
Liu et al. A 12V/24V-to-1V PWM-controlled DSD converter with delay-insensitive and dual-phase charging techniques for fast transient responses
JP2004282352A (en) Saw-tooth wave generator circuit
WO2016203900A1 (en) Step-up/step-down dc/dc converter
TWI237436B (en) Switching DC-to-DC converter with multiple output voltages
CN110086329B (en) Phase adjustment device and system
US11588404B2 (en) Semiconductor device and step-down multi-phase DC/DC converter
JP2009100515A (en) Power unit and method of controlling that power unit
Di Lorenzo et al. 1MHz Gate Driver in Power Technology for Fast Switching Applications
TWI236203B (en) Method of improving transient noise of a switching DC-to-DC converter with multiple output voltages
US11664732B2 (en) Synchronous clock generator circuit for multiphase DC-DC converter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees