TWI237143B - Half-transmissive liquid crystal display element - Google Patents

Half-transmissive liquid crystal display element Download PDF

Info

Publication number
TWI237143B
TWI237143B TW090112286A TW90112286A TWI237143B TW I237143 B TWI237143 B TW I237143B TW 090112286 A TW090112286 A TW 090112286A TW 90112286 A TW90112286 A TW 90112286A TW I237143 B TWI237143 B TW I237143B
Authority
TW
Taiwan
Prior art keywords
light
liquid crystal
layer
crystal display
display element
Prior art date
Application number
TW090112286A
Other languages
Chinese (zh)
Inventor
Toshiya Ohtake
Yuzo Hisatake
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Application granted granted Critical
Publication of TWI237143B publication Critical patent/TWI237143B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/34Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector
    • G02F2201/343Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector cholesteric liquid crystal reflector

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The liquid crystal display element includes a polarization plate, a liquid crystal layer provided in the rear of the polarization plate, for modulating incident light in correspondence with an applied voltage, a selectively reflective layer provided behind the liquid crystal layer, for reflecting a first circular polarization component of incident light, and a back light source arranged in the rear of the selectively reflective layer, for emitting light having intensity peaks for a plurality of predetermined wavelengths. The selectively reflective layer has first reflection factors to the first polarization components of incident light falling within first small regions of visible light, including the plurality of predetermined wavelengths, and has second reflection factors to the first polarization components of incident light falling within second small regions of visible light, not including the plurality of predetermined wavelengths. The first reflection factors are smaller than the second reflection factors.

Description

1237143 A7 _______B7 五、發明説明(1 ) 【技術領域】 本發明係有關丰is過型之液晶顯示元素。 (請先閱讀背面之注意事項再填寫本頁) 【發明背景】 以往’就液晶顯示元素言,例如反射型之液晶顯示元 素係因係利用外光顯示’故有時使用環境照明不足,而使 顯示畫面變暗,尤其在暗處根本不能使用。 一方面,採用半透過反射板(half mirror)爲反射外光之 反射板,在此半透過反射板背面設置背面光源(back llght) ’以期在明亮環境能夠以反射型液晶顯示元素來使用,在 陰Η首環境能夠以透過型液晶顯示元素來使用之半透過型液 晶顯示元素正開發中。然而,半透過反射板之入射光利用 效率最大也不過50%,因此顯示畫面之亮度顯然低於透過 型液晶顯不兀素或反射型液晶顯示元素。 經濟部智慧財產局員工消費合作社印製 近年針對此課題,係設置對應於各畫素在反射板設針 孔(pin hole),並且硏究配置相對應於各針孔的微透鏡(mlcro lens)之半透過型液晶顯示元素。這種液晶顯示元素,在使 用外光時,利用以不含針孔之領域反射之外光爲光源,在 使用背面光源時,將透過針孔的光經微透鏡集光使用,以 提高光的利用效率。 但是,即使這種液晶顯示元素在使用外光時,也會產 生針孔部分的光損失。其結果,當作採用背面光源之透過 型液晶顯示元素來使用的頻度增高,以致增加電力消費。 又,備有針孔之反射板其構造複雜,故有需要作成外裝於 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -4 - 1237143 A7 _B7 五、發明説明(2 ) 液晶盤(panel)之反射板之結構,其結果,產生視差且顯著 降低顯示性能。 (請先閲讀背面之注意事項再填寫本頁) 一方面,在反射型液晶顯示元素之觀看面側配置導光 板,在此導光板側面配置線光源之所謂前光(f r ο n t 1 i g h t)方 式之顯示元素也正探討中。然而,在前光表面的表面反射 顯著,大爲降低液晶顯示元素之對比(contrast)等之顯示品 質。 【發明的揭示】 本發明有鑒於以上各點,其目的在於提供大大地提高 光利用效率,橫跨廣大視角範圍能夠實現良好顯示的半透 過型之液晶顯示元素。 經濟部智慧財產局員工消費合作社印製 爲達成上述目的,有關本發明之液晶顯示元素係具備 有:具有偏光軸,且使直線偏光沿此偏光軸透過之第1偏 光板;及配置於第1偏光板後方,相對應於外加電壓將入 射光調變之液晶層;及配置於液晶層後方,將入射光之第1 圓偏光成分選擇性反射之選擇反射層;及配置於選擇反射 層後方’能發射在複數預定波長具有強度高峰之光之背面 光源。 上述選擇反射層,當將可視光波長範圍分成複數之小 領域時,對於包含上述複數預定波長領域之上述第1圓偏 光成分之反射率,係設定成小於對於不包含上述複數預定 波長領域之上述第1圓偏光成分之反射率。 又,有關本發明之液晶顯示元素係設定成,對於包含 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -5 · 1237143 A7 _ B7_ 五、發明説明(3 ) (請先閲讀背面之注意事項再填寫本頁) 上述複數預定波長領域之上述第1圓偏光成分之反射率爲 ,對於不包含上述複數預定波長領域之上述第1圓偏光成 分之反射率之30〜70% ◦ 再者,有關本發明之液晶顯示元素,在包含上述複數 預定波長領域或在不包含上述複數預定波長領域之至少其 中之一,對領域內之上述第1圓偏光成分之反射率並不一 定。 如上述結構之液晶顯示元素,當背面光源之光在高強 度之波長領域時,上述選擇反射層讓背面光源之光透過’ 主要利用於顯示,當背面光源之光在低強度之波長領域時 ,選擇反射層主要反射從外部進入元素之光以利用於顯示 。因此能夠有效率地利用背面光源的光及外部的光。 又,有關本發明之液晶顯示元素,在包含上述複數預 定波長領域中,上述領域之中心波長大於所對應之預定波 長。 經濟部智慧財產局員工消費合作社印製 有關本發明之液晶顯示元素,上述領域之中心波長大 於所對應之預定波長〇nm〜4Onm。再者’有關本發明之液晶 顯示元素,包含上述複數預定波長領域之波段寬度各設定 爲 30nm〜80nm。 在包含上述複數預定波長領域之至少其中之一 ’對領 域內之上述第1圓偏光成分之反射率最小値’係設定於上 述預定波長以上之波長。 上述結構之液晶顯示元素,從斜向觀看液晶顯示元素 時,即使選擇反射波長偏向低波長側’也能充分確保光的 紙張尺度適用中國國家標準(CNS ) A4規格(210x297公釐] ^ 1237143 A7 _______ B7 五、發明説明(4 ) 利用效率,可獲得抑制彩色及亮度的視角變化的顯示特性 〇 有關本發明之其他液晶顯示元素具備有:具有偏光軸 ’且使直線偏光沿此偏光軸透過之第1偏光板;及配置於 第1偏光板後方,相對應於外加電壓將入射光調變之液晶 層;及配置於液晶層後方,將入射光之第1圓偏光成分選 擇性反射之選擇反射層;及配置於選擇反射層後方,能發 射在複數預定波長具有強度高峰之光之背面光源;及配置 於上述選擇反射層前方之濾色層(color filter)。 上述選擇反射層,係在將可視光波長範圍分成複數之 小領域時,對於包含上述複數預定波長領域之上述第1圓 偏光成分之反射率,小於對於不包含上述複數預定波長領 域之上述第1圓偏光成分之反射率,上述濾色層係在包含 上述複數預定波長領域至少其中之一之分光透過率小於不 包含上述複數預定波長領域之分光透過率。 上述結構之液晶顯示元素,在主要利用反射之波長領 域及主要利用透光之波長領域,可各別設定濾色層之色彩 濃度,而能夠達到色彩重現範圍更廣之優異顯示。 【圖面的簡單說明】 第1圖:本發明第1實施形態之液晶顯示元素之液晶 側外加第1電壓爲電源之狀態之模式示意圖。 第2圖:上述液晶顯示元素之剖面圖。 第3圖:上述液晶顯示元素之陣列基板放大圖。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -7 - (請先閱讀背面之注意事項再填寫本頁) 1« 訂 經濟部智慧財產局員工消費合作社印製 1237143 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(5) 第4圖:上述陣列基板槪略平面圖。 第5圖:上述液晶顯示元素之選擇反射層動作原理模 式示意圖。 第6圖:上述液晶顯示元素之液晶側外加第2電壓爲 電源之狀態之模式示意圖。 第7圖:上述液晶顯示元素之選擇反射層之反射特性 圖。 第8圖:本發明第2實施形態之液晶顯示元素之選擇 反射層之反射特性圖。 第9圖:上述液晶顯示元素採用不同選擇反射層時之 反射特性圖。 第1 0圖:本發明第3實施形態之液晶顯示元素之選擇 反射層之反射特性及濾色層之分光透過率圖。 【圖號說明】 11 偏光板(玻璃基板13側) 12 相位差板(玻璃基板1 3側) 13 玻璃基板(陣列基板) 14 玻璃基板 15 液晶層 16 畫素電極 17 相向電極 18 螺旋性液晶層(選擇反射層) 18f —主面 (請先閲讀背面之注意事項再填寫本頁) 訂 線 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -8- 237143 經濟部智慧財產局員工消費合作社印製 A7 B7 ‘明説明( 6 ) 18b 相反側主面 19 液晶分子 20 電源 21 背面光源 22 導光体 23 散亂反射層 24 線狀光源 25 相位差板(玻璃基板14側) 26 偏光板(玻璃基板14側) 31 薄膜電晶体(TFT) 32 訊號線 33 閘電極 34 掃描線 35 氧化膜 36 半導体膜 37 低電阻半導体膜 38 鈍化膜 39 汲極(drain) 40 接觸孔 41 源極(source) 42 兩基板周緣部(密封部) 43 密封材料 50 濾色層 (請先閱讀背面之注意事項再填寫本頁)1237143 A7 _______B7 V. Description of the Invention (1) [Technical Field] The present invention relates to a liquid crystal display element that is oversized. (Please read the precautions on the back before filling in this page) [Background of the Invention] In the past, 'in terms of liquid crystal display elements, for example, reflective liquid crystal display elements are displayed using external light,' sometimes the use of ambient lighting is insufficient, and The display becomes dark, especially in dark places. On the one hand, a half mirror is used as a reflection plate for reflecting external light. A back light source (back llght) is provided on the back of the half transmission reflection plate to hope that it can be used as a reflective liquid crystal display element in a bright environment. A semi-transmissive liquid crystal display element that can be used as a transmissive liquid crystal display element in a shaded environment is being developed. However, the maximum utilization efficiency of the incident light of the semi-transmitting reflector is only 50%, so the brightness of the display screen is obviously lower than that of the transmissive liquid crystal display element or the reflective liquid crystal display element. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs in recent years, in response to this problem, a pin hole is provided in the reflecting plate corresponding to each pixel, and a micro lens corresponding to each pin hole (mlcro lens) is arranged. Semi-transmissive liquid crystal display element. This liquid crystal display element uses external light reflected from areas that do not contain pinholes as the light source when using external light. When using a back light source, the light that passes through the pinholes is collected by a microlens to improve the light usage efficiency. However, even when such a liquid crystal display element uses external light, light loss occurs in the pinhole portion. As a result, the frequency of use as a transmissive liquid crystal display element using a back light source is increased, so that power consumption is increased. In addition, the reflective plate with pinholes has a complicated structure, so it is necessary to make the external surface on this paper, and apply the Chinese National Standard (CNS) A4 specification (210X 297 mm) -4-1237143 A7 _B7 V. Description of the invention (2 ) The structure of a reflective plate of a liquid crystal panel, as a result, parallax is generated and display performance is significantly reduced. (Please read the precautions on the back before filling this page) On the one hand, the so-called front light (fr ο nt 1 ight) method in which a light guide plate is arranged on the viewing surface side of the reflective liquid crystal display element and a line light source is arranged on the side of the light guide plate The display elements are also under discussion. However, the surface reflection on the front light surface is significant, which greatly reduces the display quality of liquid crystal display elements such as contrast. [Disclosure of the Invention] The present invention has been made in view of the foregoing points, and an object thereof is to provide a transflective liquid crystal display element that greatly improves light utilization efficiency and can achieve good display across a wide viewing angle range. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs to achieve the above-mentioned objective, the liquid crystal display element of the present invention includes: a first polarizing plate having a polarizing axis and allowing linearly polarized light to pass along the polarizing axis; Behind the polarizing plate, a liquid crystal layer that modulates incident light in response to an applied voltage; and a selective reflection layer disposed behind the liquid crystal layer and selectively reflecting the first circularly polarized component of the incident light; and disposed behind the selective reflection layer ' Back light source capable of emitting light having intensity peaks at a plurality of predetermined wavelengths. In the above selective reflection layer, when the visible light wavelength range is divided into a plurality of small areas, the reflectance of the first circularly polarized component including the plurality of predetermined wavelength areas is set to be smaller than that of the first circular polarization component that does not include the plurality of predetermined wavelength areas. Reflectivity of the first circularly polarized light component. In addition, the liquid crystal display element of the present invention is set to apply the Chinese National Standard (CNS) A4 specification (210X 297 mm) -5 · 1237143 A7 _ B7_ for the paper size included. V. Description of the invention (3) (please first (Please read the notes on the back and fill in this page again.) The reflectance of the first circularly polarized component in the plurality of predetermined wavelength ranges is 30 to 70% of the reflectance of the first circularly polarized component that does not include the plurality of predetermined wavelengths. ◦ Furthermore, the liquid crystal display element of the present invention does not necessarily reflect the above-mentioned first circularly polarized light component in the area including at least one of the above-mentioned plural predetermined wavelength areas or the area not including the above-mentioned plural predetermined wavelength areas. . As for the liquid crystal display element of the above structure, when the light of the back light source is in a high-intensity wavelength region, the selective reflection layer allows the light of the back light source to be transmitted. It is mainly used for display. When the light of the back light source is in a low-intensity wavelength region, The selective reflection layer mainly reflects light entering the element from the outside for use in display. Therefore, the light from the rear light source and the external light can be efficiently used. Further, in the liquid crystal display element of the present invention, in a region including the plurality of predetermined wavelengths, a center wavelength of the region is larger than a corresponding predetermined wavelength. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. With regard to the liquid crystal display element of the present invention, the center wavelength of the above field is larger than the corresponding predetermined wavelength of 0 nm to 4 nm. Furthermore, regarding the liquid crystal display element of the present invention, each of the band widths including the above-mentioned plural predetermined wavelength ranges is set to 30 nm to 80 nm. In the area including at least one of the plurality of predetermined wavelengths, the minimum reflectance 上述 of the first circularly polarized component in the pair region is set to a wavelength equal to or greater than the predetermined wavelength. When the liquid crystal display element of the above structure is viewed from an oblique direction, even if the reflection wavelength is selected to be on the low wavelength side, it can fully ensure that the paper size of the light is applicable to the Chinese National Standard (CNS) A4 specification (210x297 mm) ^ 1237143 A7 _______ B7 V. Description of the invention (4) By using efficiency, it is possible to obtain display characteristics that suppress changes in viewing angles of color and brightness. Other liquid crystal display elements related to the present invention include: having a polarizing axis and transmitting linearly polarized light along this polarizing axis. A first polarizing plate; and a liquid crystal layer disposed behind the first polarizing plate to modulate incident light in response to an applied voltage; and a selective reflection disposed behind the liquid crystal layer to selectively reflect the first circularly polarized component of incident light And a back light source disposed behind the selective reflection layer and capable of emitting light having a plurality of predetermined wavelengths with intensity peaks; and a color filter disposed in front of the selective reflection layer. The selective reflection layer is provided by When the visible light wavelength range is divided into a plurality of small areas, the first circular deviation for the above-mentioned plurality of predetermined wavelength areas is included. The reflectance of the component is smaller than the reflectance of the first circularly polarized component that does not include the above-mentioned plurality of predetermined wavelength regions. The color filter layer has a spectral transmittance less than that that does not include the above-mentioned plurality. The spectral transmittance of a predetermined wavelength range. The liquid crystal display element of the above structure can individually set the color density of the color filter layer in the wavelength range mainly using reflection and the wavelength range mainly using light transmission, so that the color reproduction range can be achieved. Wide display. [Brief description of the drawing] Figure 1: Schematic diagram of the state where the first voltage is applied to the liquid crystal side of the liquid crystal display element of the first embodiment of the present invention. Figure 2: The above-mentioned liquid crystal display element Sectional view. Figure 3: Enlarged view of the array substrate of the above-mentioned liquid crystal display elements. This paper size is applicable to China National Standard (CNS) A4 specification (210X297 mm) -7-(Please read the precautions on the back before filling this page) 1 «Order printed by the Intellectual Property Bureau of the Ministry of Economic Affairs Consumer Cooperatives 1237143 A7 B7 Consumption of employees of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the cooperative V. Description of the invention (5) Figure 4: A schematic plan view of the above array substrate. Figure 5: Schematic diagram of the principle of selective reflection layer operation of the above liquid crystal display element. Figure 6: The liquid crystal side of the above liquid crystal display element The second voltage is a schematic diagram of the state of the power supply. Figure 7: The reflection characteristics of the selective reflection layer of the above-mentioned liquid crystal display element. Figure 8: The reflection characteristics of the selective reflection layer of the liquid crystal display element of the second embodiment of the present invention. Fig. 9: Reflection characteristics of the above-mentioned liquid crystal display element when different selective reflection layers are used. Fig. 10: Reflection characteristics of the selective reflection layer of the liquid crystal display element of the third embodiment of the present invention and the spectral transmittance of the color filter layer. Figure. [Illustration of drawing number] 11 Polarizing plate (glass substrate 13 side) 12 Phase difference plate (glass substrate 1 3 side) 13 Glass substrate (array substrate) 14 Glass substrate 15 Liquid crystal layer 16 Pixel electrode 17 Opposite electrode 18 Helicity Liquid crystal layer (select reflective layer) 18f-main surface (please read the precautions on the back before filling this page) Standard (CNS) A4 specification (210X297 mm) -8- 237143 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 'Description (6) 18b Opposite side 19 Liquid crystal molecules 20 Power supply 21 Back light source 22 Light guide 23 Scattered reflection layer 24 Linear light source 25 Phase difference plate (glass substrate 14 side) 26 Polarizing plate (glass substrate 14 side) 31 Thin film transistor (TFT) 32 Signal line 33 Gate electrode 34 Scan line 35 Oxide film 36 Semiconductor film 37 Low-resistance semiconductor film 38 Passivation film 39 Drain 40 Contact hole 41 Source 42 Sealing edge of both substrates 43 Sealing material 50 Color filter (please read the precautions on the back before filling in this page)

本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) -9- 1237143 A7 B7 五、發明説明(7) 【發明的詳細說明】 以下,參考附圖詳細說明有關本發明實施形態之半透 過型之液晶顯示元素。首先說明有關本實施例之液晶顯示 元素之基本結構。 如第1圖至第4圖所示,液晶顯示元素具有,在相向 配置之2張玻璃基板1 3、1 4之間,挾持具有光相位調變功 能之垂直配向型液晶層1 5所形成之液晶元素,此顯示元素 之觀看側,亦即,在玻璃基板1 3之外面上,依序設有λ/2 相位差板1 2及偏光板1 1 ◦又,與另一方玻璃基板1 4之外 面相向,依序設有λ/4相位差板25、偏光板26、及背面光 源21。 在具有陣列基板之功能之玻璃基板1 3內面側,設有濾 色層5 0,在此濾色層上,有透明之銦錫氧化物(IΤ 0,I n d 1 u m Tin Oxide)作成之多數畫素電極16設成矩陣狀。在玻璃基 板14內面側,設有將螺旋性(cholestnc)液晶聚合体 (ρ ο 1 y m e r)化,具有選擇反射層功能之螺旋性液晶層1 8,及 相向電極1 7。 相位差板1 2作爲固定緩行器層,液晶層1 5作爲可變 緩行器層分別作用,由此等固定及可變緩行器層構成可變 緩行器。 由第2圖及第3圖可知,在玻璃基板1 3設有包含訊號 線32及閘電極33成矩陣狀之掃描線34,並且隨需要設置 未圖示之補助電容電極。又,在訊號線3 2及掃描線3 4之 交叉部設有作爲開關元素之薄膜電晶体(thin film transistor (請先閱讀背面之注意事項再填寫本頁) 零丨 、言 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210x297公釐) -10 - 1237143 Α7 Β7 五、發明説明(8) ,以下簡稱TFT)3 1,分別連接到畫素電極1 6。疊蓋訊號線 32及掃描線34作有氧化膜35。 各T F T 3 1具有,介由氧化膜3 5設在閘電極3 3上以非 晶砂(amorphous silicon,a-Si)作成之半導体旲36’介由低電 阻半導体膜37設在半導体膜36上之源極(source)41及汲極 (drain)39,以鈍化膜38被覆。 閘電極33在配置於半導体膜36之下的底閘(bottom gate)構造之TFT的情況下,從陣列基板13向TFT31射入之 外光,因受閘電極33遮斷而不會入射到半導体膜36。其結 果在室外使用顯示裝置時,可以防止肇因於由光產生之漏 光電流而來之對比率之降低。 各畫素電極16係介由形成於濾色層50約10um方角之 接觸孔(c q n t a c t h ο 1 e) 4 0連接到源極4 1。濾色層5 0配置於畫 素部全面。此濾色層50係由紅、綠、藍三原色或黃、紫紅 、青三補色之濃色層所構成,由配置成矩陣狀之畫素電極 1 6及相向電極1 7將液晶層1 5以畫素單位電解控制’進ί了 加法混色之彩色顯示。 在畫素電極1 6邊界部分’配置訊號線3 2、掃描線3 4 、補助電容線中之某一配線’於使用從背面光源2 1之透過 光時,不會有從背面光源2 1之漏光使對比率降低。 一方面,液晶元素背面側之玻璃基板14構成相向基板 。在玻璃基板1 4與畫素電極1 6相向的面’大約遍及全面 作有ΙΤ0等之透明導電膜作成之相向電極1 7。設於玻璃基 板1 4與相向電極1 7之間的選擇反射層1 8係螺旋性液晶聚 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) _ ]】- (請先閱讀背面之注意事項再填寫本頁) «1 經濟部智慧財產局員工消費合作社印製 1237143 A7 ___ B7 五、發明説明(9) 合体化而成之薄膜狀,具有半透過反射層之功能。 再者,相向電極17係以同時進行常用之被膜噴沫(mask s p u 11 e r)法來成膜及造模(p a 11 e r η 1 n g)爲宜。在此情形下,相 向電極1 7形成時,可使對螺旋性液晶層1 8的製程負荷成 爲極小。 在陣列基板1 3及相向基板1 4之與液晶層1 5相接的面 ’分別作有未予圖示之配向膜。此等配向膜分別具有使液 晶層1 5之液晶分子對基板垂直配向之配向方向。由於如此 ,在陣列基板1 3與相向基板1 4之間,形成配列成矩陣狀 的多數液晶畫素。 又,陣列基板1 3與相向基板1 4,係以密封材料43沿 兩基板周緣部(密封部)42塗佈予以互相貼合。此時,如果 密封材料43塗佈在相向基板14之選擇反射層18上,則密 封材料43的黏著性會不佳,一萬小時以上之長時間使用時 ,會有兩基板剝離等降低信賴性之虞。如果在選擇反射層 18上塗佈對密封材料43有優異黏著性的外覆(overcoat)劑 ,介由此外覆劑在選擇反射層1 8上塗佈密封材料43時, 即可避免信賴性的問題。外覆劑例如可使用一般的彩色底 片用之壓克力樹脂。 設於玻璃基板14背面側之背面光源21具備有例如壓 克力等透光性平板作成之導光体22,及配置於導光体側面 之線狀光源24,及設於導光体背面之散亂反射層23 ◦ 再者’於本實施形態,雖採用a-Si之TFT以設置驅動 液晶之開關元素,然並不限於此作法。開關元素也可使用 (請先閱讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -12- A7 1237143 _B7 五、發明説明(1〇) MIM(MetalInsulaterMetal)等之2端子元素,或採用p_ Si(Poly Silicon)之兀素。又’不限於活性矩陣(active matrix) ,也可以單純矩陣形成電極。 茲將上述液晶顯示元素更詳細之結構及其動作原理一 倂說明如下。 如第5圖所¥,由螺旋性液晶作成之選擇反射層1 8, 具有僅反射到達其一主面18f之入射光中之左圓偏光成分或 右圓偏光成分,與反射之成分逆旋之右圓偏光成分或左圓 偏光成分則讓其透過,並且僅反射到達相反側主面1 8 b之 入射光中之左圓偏光成分或右圓偏光成分,讓右圓偏光成 分或左圓偏光成分透過之功能。這種情形從一主面1 8f側來 看時,向一主面側射出的反射光與從背面側的透過光之迴 旋方向相同,向背面側射出的透過光與反射光之迴旋方向 也相同◦第5圖中所示,圓偏光LI、L2、LI’、L2’之迴旋 方向,皆爲從選擇反射層1 8之主面1 8f側觀看的狀態。 構成選擇反射層1 8之螺旋性液晶,係假定其液晶分子 1 9之旋距p乘於平均屈折率η之np値等於入射光之波長λ 。液晶分子1 9從觀看側看具有左旋之螺旋構造時,從其主 面側入射之外光中,左圓偏光成分之光在主面1 8f選擇性地 反射,其餘偏光成分透過另一方主面18b。 螺旋性液晶爲當np値等於入射光之波長λ時,理論上 雖具有可100%反射與其螺旋方向(左旋或右旋)相同方向(左 旋或右旋)之圓偏光成分的功能,惟實際上約10%會透過。 又,選擇反射層18對從另一方主面18b入射之光Lb ’也與 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ->|3 - (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 1237143 A7 經濟部智慧財產局員工消費合作社印製 B7五、發明説明(11) 上述同樣選擇性地反射左圓偏光成分。 像這樣的具備選擇反射層1 8之液晶顯示元素,如第1 圖所示,從電源20外加電壓於垂直配向型之液晶層1 5之 開機(on)狀態,正確地說’外加液晶之門檻値以上之電壓之 狀態(V ο η時),向列(n e m a 11 c)液晶分子成爲從陣列基板1 3 向相向基板1 4,平行於基板之方向配列之均質 (homogeneous)酉己向 ° 在此狀態下,從圖上方的觀看側入射之光Lf,通過偏 光板1 1及固定緩行器層之λ/4相位差板1 2,成爲右旋圓偏 光入射到可變緩行器層之液晶層1 5。然後此光由液晶層15 將其相位緩行λ/2,變換爲左旋圓偏光到達選擇反射層1 8。 因此如上所述,到達的左旋圓偏光被選擇反射層1 8反射, 再經液晶層1 5緩行其相位λ/2,變換爲右旋圓偏光輸出到觀 看側。此光再通過λ / 4相位差板1 2,沿偏光板11之偏光軸 成爲直線偏光,通過偏光板1 1輸出外部。如此獲得開機狀 態之顯示。 又,如第6圖所示,在液晶層15外加門檻値以下之電 壓之關機(Off)狀態(含零電壓)時(Voff時),液晶層15之液 晶分子對玻璃基板13、14垂直配列,成爲不會將入射光相 位調變的狀態。 在此狀態下,從圖上方入射之光,和Von時一樣,通 過偏光板1 1及λ/4相位差板1 2,成爲右旋圓偏光入射到液 晶層1 5,但不會被液晶層1 5調變相位,仍爲右旋圓偏光到 達選擇反射層1 8。因此右旋圓偏光向選擇反射層1 8背面側 (請先閲讀背面之注意事項再填寫本頁) «丨 訂 線- 本紙張尺度適用中國國家標隼(CNS ) Α4規格(210Χ 297公釐) -14- 1237143 Α7 Β7 五、發明説明(12) (請先閱讀背面之注意事項再填寫本頁) 透過,由相位差板25變換成沿偏光板26之吸收軸之振動 成分之直線偏光。其結果,入射光Lf不返回觀看面而得到 暗狀態的顯示。 以下說明啓動設於選擇反射層1 8背面側之背面光源2 1 之動作。 第1圖所示Von時’背面光源21輸出之光Lb經過偏 光板2 6及相位差板2 5變成左旋圓偏光’其中一定比率的 光(約10%)透過選擇反射層18,其餘的光被選擇反射層反 射。透過選擇反射層1 8的光受液晶層1 5調變相位,變換 成左旋圓偏光。然後,此光由於通過λ/4相位差板1 2 ’成爲 沿偏光板1 1之偏光軸之直線偏光,通過偏光板輸出觀看面 而得到明狀態的顯示。 一方面,於第6圖所示之Voff時’從背面光源21輸出 通過選擇反射層1 8之左旋圓偏光,不受液晶層1 5調變相 位直接輸出觀看側。然後,此光由於通過λ/4相位差板1 2 ’ 成爲與偏光板1 1之偏光軸直交之振動方向之直線偏光’被 偏光板1 1吸收而得到暗狀態的顯示。 經濟部智慧財產局員工消費合作社印製 依據本實施形態,在進行如上述動作之液晶顯示元素 ,構成選擇反射層1 8之螺旋性液晶層之螺旋旋距Ρ與螺旋 性液晶聚合体之平均屈折率η之乘積値ηρ ’係設定成能大 致涵蓋可視光波長領域,螺旋旋距Ρ沿螺旋性液晶層之層 厚方向變化,將左圓偏光選擇性反射。 然而,選擇反射層1 8具有讓從背面光源2 1所發出光 譜之主要3波長近旁波長域之光之一部分左圓偏光透過之 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) -15- 1237143 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(13) 螺旋構造◦從背面光源2 1所發出光譜之主要3波長約於 430nm附近、550nm附近、及610nm附近各有強度高峰。選 擇反射層18係讓以各主要3波長爲中心20〜3Onm寬(以下 稱縫寬)之3個小波長域之光透過。 第7圖表示本實施形態所採用之選擇反射層1 8對左圓 偏光成分之反射率之波長分散模式圖。欲獲得像這樣的螺 旋旋距沿層厚方向變化的螺旋性液晶層,以將不同旋距之 複數種螺旋性液晶聚合体層疊層的方法,或將螺旋性液晶 材料塗佈於基板固化之際,於塗佈後的膜表面被覆一層能 加長螺旋性液晶的螺旋旋距的添加劑,例如螺旋旋距爲無 限大之向列液晶等,之方法較合適。 上述選擇反射層1 8讓從背面光源2 1所發出光譜之主 要3波長近旁波長域之左圓偏光成分透過之比率,可隨液 晶顯示元素使用環境之照明狀況予以改變。 我們調查過各種環境之照度以及光的波長分散。然後 納入背面光源之光強度及選擇反射層反射率之波長分散, 對液晶顯示元素在各種環境之顯示性能進行模擬試驗。結 果發現對室內室外皆要使用的液晶顯示元素,選擇反射層 1 8對背面光源2 1之主要3波長近旁波長域之光之反射率爲 對其他波長域之光之反射率之30〜70%最適宜。 由於如此,能涵蓋可視光全波長域均衡利用外光和背 面光源的光,而可獲得對應各種環境下光利用效率非常高 之液晶顯示元素。據此,選擇反射層1 8之左圓偏光成分反 射率之波長分散以如第7圖所示者較佳。 (請先閲讀背面之注意事項再填寫本頁)This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) -9- 1237143 A7 B7 V. Description of the invention (7) [Detailed description of the invention] Hereinafter, the embodiments of the present invention will be described in detail with reference to the drawings Semi-transmissive liquid crystal display element. First, the basic structure of the liquid crystal display element of this embodiment will be described. As shown in FIGS. 1 to 4, the liquid crystal display element is formed by holding a vertical alignment type liquid crystal layer 15 having an optical phase modulation function between two glass substrates 1 3 and 1 4 arranged opposite to each other. The liquid crystal element, the viewing side of this display element, that is, the λ / 2 retardation plate 12 and the polarizing plate 1 1 are sequentially arranged on the outer surface of the glass substrate 1 3 ◦ and the other glass substrate 1 4 The outside faces each other, and a λ / 4 retardation plate 25, a polarizing plate 26, and a rear light source 21 are provided in this order. A color filter layer 50 is provided on the inner side of the glass substrate 13 having the function of an array substrate. On the color filter layer, transparent indium tin oxide (ITO 0, Ind 1 um Tin Oxide) is used. Many pixel electrodes 16 are provided in a matrix. On the inner surface side of the glass substrate 14, a spiral liquid crystal layer 18 having a function of a cholestnc liquid crystal polymer (ρ ο 1 y m e r) and having a function of a selective reflection layer, and a counter electrode 17 are provided. The retardation plate 12 functions as a fixed retarder layer, and the liquid crystal layer 15 functions as a variable retarder layer, so that the fixed and variable retarder layers constitute a variable retarder. As can be seen from FIGS. 2 and 3, the glass substrate 13 is provided with scanning lines 34 including a signal line 32 and a gate electrode 33 in a matrix, and an auxiliary capacitor electrode (not shown) is provided as necessary. In addition, a thin film transistor (thin film transistor (please read the precautions on the back before filling this page) as a switching element is provided at the intersection of the signal line 3 2 and the scanning line 3 4. The paper size printed by the employee's consumer cooperative is applicable to the Chinese National Standard (CNS) A4 (210x297 mm) -10-1237143 Α7 Β7 V. Description of the invention (8), hereinafter referred to as TFT) 3 1, respectively connected to the pixel electrode 1 6. The overlay signal lines 32 and the scanning lines 34 are formed with an oxide film 35. Each TFT 31 has a semiconductor 旲 36 ′ made of amorphous silicon (a-Si) provided on the gate electrode 33 through an oxide film 35 and provided on the semiconductor film 36 through a low-resistance semiconductor film 37. The source 41 and the drain 39 are covered with a passivation film 38. When the gate electrode 33 is a TFT with a bottom gate structure disposed below the semiconductor film 36, external light is emitted from the array substrate 13 to the TFT 31, and is blocked by the gate electrode 33 and does not enter the semiconductor. Film 36. As a result, when the display device is used outdoors, it is possible to prevent a decrease in the contrast ratio due to the leakage of photocurrent caused by light. Each pixel electrode 16 is connected to the source electrode 41 via a contact hole (c q n t a c t h ο 1 e) 4 0 formed in a color filter layer 50 with a square corner of about 10 μm. The color filter layer 50 is arranged in the pixel section. This color filter layer 50 is composed of three primary colors of red, green, and blue, or three complementary colors of yellow, magenta, and blue. The pixel electrodes 16 and the counter electrodes 17 are arranged in a matrix, and the liquid crystal layer 15 is The pixel unit electrolytic control 'color display with additive mixing. In the pixel electrode 16 boundary portion, 'arrange one of the signal line 3 2, the scanning line 3 4, and the auxiliary capacitor line'. When using the transmitted light from the rear light source 21, there will be no Light leakage reduces the contrast ratio. On the one hand, the glass substrate 14 on the back side of the liquid crystal element constitutes an opposing substrate. On the surface of the glass substrate 14 facing the pixel electrode 16, the opposite electrode 17 made of a transparent conductive film such as ITO is formed on the entire surface. The selective reflective layer 1 between the glass substrate 14 and the counter electrode 17 is a 8-series spiral liquid crystal polymer. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) _]]-(Please read the back first Please note this page before filling in this page) «1 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 1237143 A7 ___ B7 V. Description of the invention (9) The thin film formed by the combination has the function of a semi-transmissive reflective layer. In addition, the opposite electrode 17 is preferably formed by a common mask spray method (mask sp u 11 e r) for film formation and modeling (p a 11 e r η 1 n g). In this case, when the counter electrode 17 is formed, the process load on the spiral liquid crystal layer 18 can be made extremely small. Alignment films (not shown) are formed on the array substrate 13 and the opposing substrate 14 which are in contact with the liquid crystal layer 15 respectively. These alignment films each have an alignment direction in which the liquid crystal molecules of the liquid crystal layer 15 are vertically aligned with the substrate. Because of this, most of the liquid crystal pixels arranged in a matrix form are formed between the array substrate 13 and the opposing substrate 14. The array substrate 13 and the opposing substrate 14 are coated with a sealing material 43 along the peripheral edges (sealing portions) 42 of the two substrates and bonded to each other. At this time, if the sealing material 43 is coated on the selective reflection layer 18 of the opposing substrate 14, the adhesiveness of the sealing material 43 will be poor. When used for a long time of more than 10,000 hours, the two substrates will be peeled off and the reliability will be reduced. Risk. If an overcoat agent having excellent adhesion to the sealing material 43 is coated on the selective reflection layer 18, when the sealing material 43 is coated on the selective reflection layer 18 through this overcoat, the reliability can be avoided. problem. As the coating agent, for example, an acrylic resin for a general color film can be used. The rear light source 21 provided on the back side of the glass substrate 14 includes a light guide 22 made of a light-transmissive flat plate such as acrylic, a linear light source 24 arranged on the side of the light guide, and a light guide 24 provided on the back of the light guide. The scattered reflection layer 23 ◦ Furthermore, in this embodiment, although a-Si TFT is used to provide a switching element for driving the liquid crystal, it is not limited to this method. Switch elements can also be used (please read the notes on the back before filling out this page) Order printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Cooperatives This paper is applicable to China National Standard (CNS) A4 size (210X297 mm) -12- A7 1237143 _B7 V. Description of the invention (10) 2-terminal elements such as MIM (MetalInsulaterMetal), or p_Si (Poly Silicon) elements. It is not limited to an active matrix, and an electrode may be formed by a simple matrix. The more detailed structure and operation principle of the above-mentioned liquid crystal display elements are described below. As shown in Fig. 5, the selective reflection layer 18 made of the helical liquid crystal has a left-circular polarized component or a right-circular polarized component that reflects only incident light reaching one of its main surfaces 18f, and is counter-rotated with the reflected component. The right circularly polarized component or the left circularly polarized component allows it to pass through, and only reflects the left circularly polarized component or the right circularly polarized component of the incident light reaching the main surface 1 b on the opposite side, and the right circularly polarized component or the left circularly polarized component is reflected. Through the function. In this case, when viewed from the main surface 18f side, the reflected light emitted to the main surface side has the same rotation direction as the transmitted light from the back side, and the transmitted light and reflected light direction to the rear side are also the same. ◦As shown in Fig. 5, the rotation directions of the circularly polarized lights LI, L2, LI ', and L2' are all viewed from the main surface 18f side of the selective reflection layer 18. The helical liquid crystal constituting the selective reflection layer 18 assumes that the rotation distance p of the liquid crystal molecules 19 multiplied by the average refractive index η np 値 is equal to the wavelength λ of the incident light. When the liquid crystal molecules 19 have a left-handed spiral structure when viewed from the viewing side, the left circularly polarized light component is selectively reflected on the main surface 18f, and the remaining polarized light components are transmitted through the other main surface. 18b. Spiral liquid crystals have the function of circularly polarizing components that, when np 値 is equal to the wavelength λ of the incident light, can theoretically reflect 100% of its circular direction (left-handed or right-handed) (left-handed or right-handed). About 10% will pass. In addition, the reflective layer 18 is selected for the light Lb 'incident from the other main surface 18b. It also conforms to the Chinese paper standard (CNS) A4 specification (210X297 mm) for this paper size-> | 3-(Please read the note on the back first Please fill in this page for further information.) Order Printed by the Consumers 'Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 1237143 A7 Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs B7 V. Description of the invention (11) The same as above selectively reflects the left circular polarized component. A liquid crystal display element with a selective reflection layer 18 like this, as shown in Fig. 1, applies a voltage from the power source 20 to the ON state of the liquid crystal layer 15 of the vertical alignment type, and correctly says 'the threshold of the added liquid crystal' In the state of voltage above (at V ο η), the nematic liquid crystal molecules (nema 11 c) become homogeneous (homogeneous) aligned from the array substrate 1 3 to the opposite substrate 14 in a direction parallel to the substrate. In this state, the light Lf incident from the viewing side above the figure passes through the polarizing plate 11 and the λ / 4 retardation plate 12 of the fixed retarder layer to become a right-handed circularly polarized light incident on the liquid crystal layer of the variable retarder layer. 1 5. This light is then phase-shifted by λ / 2 by the liquid crystal layer 15 and converted into left-handed circularly polarized light to reach the selective reflection layer 18. Therefore, as described above, the arriving left-handed circularly polarized light is reflected by the selective reflection layer 18, and then its phase λ / 2 is gradually passed through the liquid crystal layer 15 to be converted into right-handed circularly polarized light and output to the viewing side. This light passes through the λ / 4 retardation plate 12 and becomes linearly polarized along the polarization axis of the polarizing plate 11, and is output to the outside through the polarizing plate 11. In this way, the display of the startup status is obtained. In addition, as shown in FIG. 6, when the liquid crystal layer 15 is placed in an off state (including zero voltage) at a voltage below the threshold 値 (including Voff), the liquid crystal molecules of the liquid crystal layer 15 are aligned vertically to the glass substrates 13 and 14. , A state in which the phase of incident light is not modulated. In this state, the light incident from the top of the figure passes through the polarizing plate 11 and the λ / 4 retardation plate 12 as in the case of Von, and becomes right-handed circularly polarized light incident on the liquid crystal layer 15, but is not affected by the liquid crystal layer. The phase is adjusted by 15 and the right-handed circularly polarized light reaches the selective reflection layer 18. Therefore, the right-handed circularly polarized light is directed toward the back side of the selective reflection layer 1 (please read the precautions on the back side before filling out this page) «丨 Thread-This paper size applies to China National Standard (CNS) Α4 size (210 × 297 mm) -14- 1237143 Α7 Β7 V. Description of the invention (12) (Please read the precautions on the back before filling in this page) Transmission, transformed by the phase difference plate 25 into linearly polarized light along the absorption axis of the polarizing plate 26. As a result, the incident light Lf does not return to the viewing surface and a dark display is obtained. The operation of activating the back light source 2 1 provided on the back side of the selective reflection layer 18 will be described below. At the time of Von shown in FIG. 1, “the light Lb output from the rear light source 21 passes through the polarizing plate 26 and the retardation plate 25 and becomes left-handed circularly polarized light”. A certain ratio of light (about 10%) passes through the selective reflection layer 18 and the remaining light Reflected by the selected reflective layer. The light transmitted through the selective reflection layer 18 is phase-shifted by the liquid crystal layer 15 and converted into left-handed circularly polarized light. Then, the light is linearly polarized along the polarization axis of the polarizing plate 11 through the λ / 4 retardation plate 1 2 ', and the viewing surface is output through the polarizing plate to obtain a bright state display. On the one hand, at Voff shown in FIG. 6 ', the light is output from the rear light source 21 by selecting the left-handed circularly polarized light of the reflective layer 18 to directly output the viewing side without being adjusted by the liquid crystal layer 15 phase. Then, this light is absorbed by the polarizing plate 11 because the linearly polarized light that passes through the λ / 4 retardation plate 1 2 'and becomes a vibration direction orthogonal to the polarization axis of the polarizing plate 11 is absorbed by the polarizing plate 11 to obtain a dark display. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs in accordance with this embodiment, the liquid crystal display elements performing the above-mentioned operations constitute the spiral pitch P of the spiral liquid crystal layer of the selective reflection layer 18 and the average inflection of the spiral liquid crystal polymer The product 値 ηρ 'of the rate η is set to approximately cover the visible light wavelength range, and the spiral pitch P changes along the thickness direction of the spiral liquid crystal layer to selectively reflect left circularly polarized light. However, the selected reflective layer 18 has a portion of the main 3-wavelength near-wavelength range of the spectrum emitted from the back-side light source 21 and the left circular polarized light is transmitted through this paper. The Chinese standard (CNS) A4 specification (210X297 mm) is applicable. -15- 1237143 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (13) Spiral structure ◦ The main 3 wavelengths of the spectrum emitted from the back light source 2 1 are around 430nm, 550nm, and 610nm. There are peaks of intensity. The reflective layer 18 is selected to allow light in three small wavelength regions with a width of 20 to 3 nm (hereinafter referred to as the slit width) to be centered on each of the three main wavelengths. Fig. 7 is a diagram showing a wavelength dispersion pattern of the reflectance of the selective reflection layer 18 to the left circularly polarized component used in this embodiment. In order to obtain a helical liquid crystal layer with a helical pitch varying along the thickness direction, a method of laminating a plurality of helical liquid crystal polymers with different helical pitches, or coating a helical liquid crystal material on a substrate for curing It is more suitable to coat the surface of the coated film with an additive that can increase the spiral pitch of the helical liquid crystal, such as nematic liquid crystal with a spiral pitch of infinite. The ratio of the above-mentioned selective reflection layer 18 to transmit the left circular polarized light component of the main 3 wavelengths near the wavelength range emitted from the back light source 21 can be changed according to the lighting conditions of the liquid crystal display element using environment. We have investigated the illuminance and wavelength dispersion of light in various environments. Then, the light intensity of the back light source and the wavelength dispersion of the reflectivity of the reflective layer are selected to simulate the display performance of the liquid crystal display element in various environments. As a result, it was found that for the liquid crystal display elements to be used indoors and outdoors, the reflective layer 18 was selected to have a reflectance of 30 to 70% of the light in the wavelength range near the main 3 wavelengths of the back light source 21 and the light in other wavelength ranges Most suitable. Because of this, it can cover the entire wavelength range of visible light and utilize external light and light from the back light source in a balanced manner, and obtain a liquid crystal display element with very high light utilization efficiency in various environments. Accordingly, it is preferable to select the wavelength dispersion of the reflectance of the left circularly polarized component of the reflective layer 18 as shown in FIG. (Please read the notes on the back before filling this page)

、1T 線 本紙張尺度適用中國國家標隼(CNS ) Α4規格(210Χ297公釐) -16- 1237143 A7 ____B7 五、發明説明(14) 以下說明有關本發明第2實施形態之液晶顯示元素。 (請先閱讀背面之注意事項再填寫本頁) 在第2實施形態,選擇反射層丨8之左圓偏光成分反射 率之波長分散如第8圖所示。亦即背面光源2 1之主要3波 長近旁之縫寬,其中心偏於主要3波長之長波長側。其他 結構則與第1實施形態相同,在此省略詳細說明。 一般利用螺旋性液晶之選擇反射層1 8,從斜向觀看比 從正面觀看時,選擇反射之波長偏於短波長側乃爲皆知之 事。從選擇反射層1 8之正面斜Θ角的方向觀看時,偏移量 △ λ以下式表示。 Δλ = ηρ( 1 -cos0) · · ·⑴ 因此,利用這種選擇反射層1 8爲液晶顯示元素時,從 正面觀看和從斜向觀看其顯示特性會變化。是故,預先將 選擇反射層1 8之反射特性設定偏於長波長側,則從斜向觀 看的機會較多時較爲有效。 經濟部智慧財產局員工消費合作社印製 例如,主要3波長爲430、550、610nm之情形下,從 對主面30°的角度觀看液晶顯示元素時,由公式(1)及史奈 爾定律(Snell’s Law)可計算選擇反射波長之偏移量。史奈爾 定律以下式表示。 η · sin0 二 η’ · sin0’ · · ·(2) 式中η及n,爲液晶層15和空氣之屈折率,θ’爲觀看液 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) -17 - 1237143 A7 _ _ B7 五、發明説明(15) 晶顯示元素的方向,Θ爲從θ’方向觀看液晶顯示元素時對選 擇反射層18之估計角度。依公式(1)及(2),可知對應之選 擇反射層1 8之反射波長分別向短波長側偏移2 4.6 n m、 3 1.5nm ' 34.9nm〇 於是’如本實施形態所設定,將選擇反射層1 8之反射 特性設定爲如第8圖所示時,從正面30°的方向觀看液晶顯 示元素,即使對背面光源2 1主要3波長之縫寬移動,也可 充分涵蓋背面光源之主要3波長而能利用於顯示。觀看液 晶顯示元素的方向大於30°的情形較多時,可以調大上述偏 移量,角度較小的情形較多時,也可以調小上述偏移量。 像這樣,第2實施形態能夠提供,不論從正面觀看或 從斜向觀看,其顯示變化皆小的液晶顯示元素。再者,爲 達到本實施形態的效果,也可將設於主要3波長近旁之縫 寬放大,設定爲30〜80nm。由於如此,能夠提供實現了光利 用效率大爲提高、視角範圍廣大、顯示良好的半透過型液 晶顯示元素。 又,如第9圖所示,也可將給予縫寬內之最小反射率 之波長,設定爲與主要3波長相同或以上。此情形下’可 以抑制由於斜向觀看時縫隙向短波長側偏移所造成背面% 源利用效率之降低。 以下說明有關本發明第3實施形態之液晶顯示元素° 第3實施形態雖有與前述第1及第2實施形態大致同之結 構,所不同者爲濾色層50之分光特性。第1〇圖表示採用 於第3實施形態之選擇反射層1 8之反射特性及對應紅(R)、 (請先閱讀背面之注意事項再填寫本頁} «1 -訂· 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -18- 1237143 Α7 Β7 經濟部智慧財產局員工消費合作社印製 五、發明説明(ie) 綠(G)、藍(B)之濾色層50之分光透過率。 如第1 0圖所示,在選擇反射層1 8之反射率低的波長 範圍,設定其濾色層5 0之透過率小於其兩側反射率高的波 長範圍。再者,上述分光透過率之設定,不一定必需對所 有〃反射率低的波長範圍」實施。 依據具備如上述結構之濾色層50之第3實施形態,在 選擇反射層1 8之反射率高的波長範圍,主要利用外光的反 射進行顯示。此時,外光於入射液晶顯示元素時及反射射 出時,兩次通過濾色層50。一方面,在選擇反射層18之反 射率低的波長範圍,主要利用背面光源之透過光進行顯示 。此時,光僅一次通過濾色層5 0。因此,欲在主要利用反 射的波長範圍,及主要利用透過的波長範圍,改善色彩濃 度的均衡,則以改變對應R、G、B之濾色層50之透過率爲 宜。 所以,採用第10圖所示具有分光特性之濾色層50,能 夠提供可實現色彩重現範圍較廣,彩色顯示優異的液晶顯 示元素。 再者,第3實施形態雖採用R、G、B加法混色系之濾 色層5 0,但採用Y、C、Μ減法混色系之濾色層時,也可設 計成具有相同的分光特性。 又,假設選擇反射層1 8之反射率高的波長範圍之濾色 層透過率爲Τ時,反射率低的波長範圍之濾色層透過率設 成Τ2(<Τ)爲宜,但大於此値亦可。亦即,可充分獲得給予 濾色層透過率的差異量的效果。 (請先閲讀背面之注意事項再填寫本頁) ,φ_ 訂 -線·----- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 1237143 A7 B7 五、發明説明(17) 本發明並不限於上述實施形態,在本發明範圍內能夠 有種種變形。例如,在上述第1、第2、第3實施形態,背 面光源21所射出光譜之主要3波長設爲430 nm、550 nm、 6 1 〇nm,對應於此將選擇反射層1 8 .之反射率設定如上述, 惟如果採用具有不同射出光譜之背面光源時,對應其光譜 來設定選擇反射層之反射率爲宜。又,雖利用主要3波長 ’必要時選擇主要1波長、或2波長、或4波長以上在選 擇反射層設縫隙也可,此情形下也可獲得與上述一樣之作 用與效果。 (請先閱讀背面之注意事項再填寫本頁) 訂 線· 經濟部智慧財產局員工消費合作社印製 -20- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)、 1T line The size of this paper is applicable to China National Standard (CNS) A4 specification (210 × 297 mm) -16-1237143 A7 ____B7 V. Description of the invention (14) The following describes the liquid crystal display element of the second embodiment of the present invention. (Please read the precautions on the back before filling in this page.) In the second embodiment, the wavelength dispersion of the reflectance of the left circularly polarized component of the reflective layer 8 is selected as shown in FIG. 8. That is, the slit width near the main 3 wavelengths of the back light source 21 is centered at the long wavelength side of the main 3 wavelengths. The other structures are the same as those of the first embodiment, and detailed description is omitted here. It is generally known to use the selective reflection layer 18 of the helical liquid crystal to select the reflection wavelength to be shorter than the short wavelength side when viewed from the oblique direction. When viewed from a direction in which the oblique angle Θ of the front surface of the reflective layer 18 is selected, the shift amount Δ λ is expressed by the following formula. Δλ = ηρ (1 -cos0) ··· ⑴ Therefore, when this selective reflection layer 18 is used as a liquid crystal display element, its display characteristics change when viewed from the front and from an oblique direction. For this reason, it is effective to set the reflection characteristics of the selective reflection layer 18 to the long wavelength side in advance, when there are many opportunities for oblique viewing. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economy Law) can calculate the offset of the selected reflection wavelength. Snell's law is expressed by the following formula. η · sin0 Two η '· sin0' · · · (2) where η and n are the inflection ratios of the liquid crystal layer 15 and the air, and θ 'is the viewing solution. The paper size applies the Chinese National Standard (CNS) A4 specification (210X297 (Mm) -17-1237143 A7 _ _ B7 V. Description of the invention (15) The direction of the crystal display element, Θ is the estimated angle for selecting the reflective layer 18 when viewing the liquid crystal display element from the θ ′ direction. According to the formulas (1) and (2), it can be seen that the reflection wavelengths of the corresponding selective reflection layers 18 are shifted to the short wavelength side by 2 4.6 nm, 3 1.5 nm '34.9 nm, so' as set in this embodiment, will be selected When the reflection characteristics of the reflective layer 18 are set as shown in FIG. 8, the liquid crystal display element is viewed from the front 30 °, and even if the width of the main 3 wavelengths of the rear light source 21 is shifted, it can fully cover the main of the rear light source. 3 wavelengths can be used for display. When viewing the liquid crystal display element more than 30 °, the above-mentioned offset can be increased, and when the angle is smaller, the above-mentioned offset can be decreased. In this manner, the second embodiment can provide a liquid crystal display element with a small change in display whether viewed from the front or obliquely. Furthermore, in order to achieve the effect of this embodiment, the slit width provided near the main three wavelengths may be enlarged and set to 30 to 80 nm. Because of this, it is possible to provide a semi-transmissive liquid crystal display element that achieves greatly improved light utilization efficiency, a wide viewing angle range, and good display. Further, as shown in Fig. 9, the wavelength giving the minimum reflectance within the slit width may be set to be the same as or longer than the main three wavelengths. In this case, it is possible to suppress a decrease in the utilization efficiency of the backside% source due to the shift of the slit to the short wavelength side when viewed obliquely. The liquid crystal display element of the third embodiment of the present invention will be described below. Although the third embodiment has substantially the same structure as the first and second embodiments described above, the difference is the spectral characteristics of the color filter layer 50. Fig. 10 shows the reflection characteristics and corresponding red (R) of the selective reflection layer 18 used in the third embodiment. (Please read the precautions on the back before filling out this page} «1 -Order · Intellectual Property Bureau, Ministry of Economic Affairs The paper size printed by the employee consumer cooperative is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) -18-1237143 Α7 Β7 Printed by the employee consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of invention (ie) Green (G), The spectral transmittance of the blue (B) color filter layer 50. As shown in Figure 10, in the wavelength range where the reflectance of the reflective layer 18 is low, the transmittance of the color filter layer 50 is set to be less than both sides The wavelength range with high reflectance. In addition, the above-mentioned setting of the spectral transmittance does not necessarily need to be implemented for all wavelength ranges with low chirp reflectance. "According to the third embodiment of the color filter layer 50 having the above-mentioned structure, the choice is made. The reflective layer 18 has a high reflectance wavelength range, and is mainly displayed by reflection of external light. At this time, external light passes through the color filter layer 50 twice when it enters the liquid crystal display element and when it is reflected out. On the one hand, in the selection Reflective layer 18 The wavelength range with low emissivity is mainly displayed by the transmitted light from the back light source. At this time, the light passes through the color filter layer 50 only once. Therefore, it is necessary to improve the wavelength range that mainly uses reflection and the wavelength range that mainly uses transmission. To balance the color density, it is better to change the transmittance of the color filter layer 50 corresponding to R, G, and B. Therefore, using the color filter layer 50 with spectral characteristics shown in FIG. 10 can provide a range of color reproduction that can be achieved Wide liquid crystal display element with excellent color display. In addition, in the third embodiment, although the color filter layer 50 of the additive color mixing system of R, G, and B is used, the color filter layer of the Y, C, and M subtractive color mixing system is used. It can also be designed to have the same spectral characteristics. In addition, if the transmittance of the filter layer in the wavelength range with a high reflectance of the reflective layer 18 is selected to be T, the transmittance of the filter layer in a wavelength range with a low reflectance is set to Τ2 (< Τ) is suitable, but it can be larger than this. That is, it can fully obtain the effect of giving the difference in transmittance of the color filter layer. (Please read the precautions on the back before filling this page), φ_ order -Line · ----- This paper size is applicable National Standard (CNS) A4 specification (210X297 mm) 1237143 A7 B7 V. Description of the invention (17) The present invention is not limited to the above embodiments, and can be variously modified within the scope of the present invention. For example, 2. In the third embodiment, the main three wavelengths of the spectrum emitted by the back-side light source 21 are set to 430 nm, 550 nm, and 6 10 nm. Correspondingly, the reflectance of the reflective layer 1 8 is selected as described above. When a back light source with a different emission spectrum is used, it is appropriate to set the reflectance of the selective reflection layer corresponding to its spectrum. Also, although the main 3 wavelengths are used, if necessary, the main 1 wavelength, 2 wavelengths, or 4 wavelengths or more are selected in the selective reflection layer. It is also possible to provide a slit, and in this case, the same functions and effects as above can be obtained. (Please read the precautions on the back before filling out this page) Ordering · Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs -20- This paper size applies to China National Standard (CNS) A4 (210X297 mm)

Claims (1)

A8 B8 C8 D8 1237143 六、申請專利範圍 第90 1 1 2286號專利申請案 中文申請專利範圍修正本 民國93年6月1〇日修正 1. 一種半透過型之液晶顯示元素,其特徵爲: 具備有: 具有偏光軸,且使直線偏光沿此偏光軸透過之第1偏光 板; 配置於上述第1偏光板後方,相對應於外加電壓將入 射光調變之光·調變層; 配置於上述光調變層後方,將入射光之第1圓偏光成 分選擇性反射之選擇反射層; 配置於上述選擇反射層後方,能發射在各個包含波段 寬度(縫寬)爲30nm〜80nm的複數預定波長的領域具有各個 強度高峰之光之背面光源, 經濟部智慧財產局員工消費合作社印製 上述選擇反射層,當將可視光波長範圍分成複數之小 領域時,對於包含上述複數預定波長領域之上述第1圓徧 光成分之反射率,係設定爲小於對於不包含上述複數预定 波長領域之上述第1圓偏光成分之反射率。 2. —種半透過型之液晶顯示元素,其特徵爲: 具備有: 具有偏光軸,且使直線偏光沿此偏光軸透過之第1偏光 板; 配置於上述第1偏光板後方,相對應於外加電壓將入 本&張尺度適用中國國家標準(CNS ) A4規格( 210 X297公釐) " ABCD 1237143 六、申請專利範圍 射光調變之光調變層; (請先聞資背面之注意事項再填寫本頁) 配置於上述光調變層後方,將入射光之第1圓偏光成 分選擇性反射之選擇反射層; 配置於上述選擇反射層後方,能發射在各個包含波段 寬度(縫寬)爲30nm〜80nm的複數預定波長的領域具有各個 強度高峰之光之背面光源, 上述選擇反射層,當將可視光波長範圍分成複數之小 領域時,對於包含上述複數預定波長領域之上述第1圓偏 光成分之反射率,係設定爲小於對於不包含上述複數預定 波長領域之上述第1圓偏光成分之反射率, 上述對包含複數預定波長領域之上述第1圓偏光成分 之反射率,係爲上述對於不包含複數預定波長領域之上述 第1圓偏光成分之反射率之3 0〜7 0%。 3·如申請專利範圍第1項之半透過型之液晶顯示元素, 其中上述包含複數預定波長領域、及上述不包含複數預定 波長領域之中至少一方,對於上述領域內之上述第1圓偏 光成分之反射率不爲一定。 經濟部智慧財產局員工消費合作社印製 4·如申請專利範圍第1項之半透過型之液晶顯示元素, 在上述包含複數預定波長領域至少其中之一,上述領域之 中心波長,係長於所對應之預定波長。 5. 如申請專利範圍第4項之半透過型之液晶顯示元素, 其中上述領域之中心波長,較所對應之預定波長更長 0 n m 〜4 0 n m 〇 6. 如申請專利範圍第4項之半透過型之液晶顯示元素, 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ) 1237143 A8 B8 C8 D8 六、申請專利範圍 在上述包含複數預定波長領域至少其中之一,對於上述領 域內之上述第1圓偏光成分之反射率之最小値,係在上述 預定波長以上之波長。 7.—種半透過型之液晶顯示元素,其特徵爲: 具備有: 具有偏光軸使直線偏光沿此偏光軸透過之第1偏光板 配置於上述第1偏光板後方,相對應於外加電壓將入 射光調變之光調變層; 配置於上述光調變層後方,將入射光之第1圓偏光成 分選擇性反射之選擇反射層; 配置於上述選擇反射層後方,能發射在複數預定波長 具有各個強度高峰之光之背面光源; 配置於上述選擇反射層前方之濾色層, 上述選擇反射層,係當將可視光波長範圍分成複數之 小領域時,對於包含上述複數預定波長領域之上述第1圓 偏光成分之反射率,係形成爲小於對於不包含上述複數預 定波長領域之上述第1圓偏光成分之反射率, 上述濾色層係設定爲:使上述包含複數預定波長領域 至少其中之一之分光透過率,小於不包含上述複數預定波 長領域之分光透過率。 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) (請先閲讀背面之注意事 項再填寫· 本頁) 經濟部智慧財產局員工消費合作社印製A8 B8 C8 D8 1237143 VI. Application for Patent Scope No. 90 1 1 2286 Chinese Patent Application for Scope Amendment June 10, 1993 Amendment 1. A transflective liquid crystal display element, which is characterized by: There are: a first polarizing plate having a polarizing axis and transmitting linearly polarized light along this polarizing axis; disposed behind the first polarizing plate, a light-modulating layer that modulates incident light in response to an applied voltage; disposed on the above Behind the light modulation layer, a selective reflection layer that selectively reflects the first circularly polarized component of incident light; disposed behind the selective reflection layer, it can emit at each of a plurality of predetermined wavelengths including a band width (slit width) of 30 nm to 80 nm In the field, there are back light sources of light with peaks of various intensities. The above-mentioned selective reflection layer is printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. When the visible light wavelength range is divided into a plurality of small areas, The reflectance of the light component per circle is set to be smaller than the above-mentioned first circular deviation for a region not including the above-mentioned plural predetermined wavelengths. Reflectivity of light components. 2. A semi-transmissive liquid crystal display element, which is characterized by: having a first polarizing plate having a polarizing axis and allowing linearly polarized light to pass along this polarizing axis; arranged behind the first polarizing plate, corresponding to The applied voltage will be entered into this & Zhang scale applicable to the Chinese National Standard (CNS) A4 specification (210 X297 mm) " ABCD 1237143 VI. Patent application scope Light modulation layer for light modulation; Please fill in this page again) Selective reflective layer that is arranged behind the above-mentioned light modulating layer and selectively reflects the first circularly polarized component of the incident light; It is arranged behind the selective reflective layer and can emit at each included band width (slit width ) Is a back-side light source of light having various intensity peaks in a region of a plurality of predetermined wavelengths of 30nm to 80nm. When the selective reflection layer divides the visible light wavelength range into a plurality of small regions, the first The reflectance of the circularly polarized light component is set to be smaller than the reflectance of the above-mentioned first circularly polarized light component that does not include the above-mentioned plural predetermined wavelength ranges. Comprising a plurality of the above-described predetermined component of the reflectance of circularly polarized light of a wavelength of a first field, lines that do not contain the above-described predetermined plurality of said first reflectance of circularly polarized light component of the field 0% 3 0 to 7 wavelengths. 3. If the semi-transmissive liquid crystal display element of item 1 of the patent application scope, wherein the above includes at least one of the plurality of predetermined wavelength areas and the above does not include the plurality of predetermined wavelength areas, for the first circularly polarized component in the above area The reflectivity is not constant. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 4. If the semi-transmissive liquid crystal display element of the first patent application scope includes at least one of the above-mentioned plural predetermined wavelength fields, the center wavelength of the above field is longer than the corresponding one Predetermined wavelength. 5. For example, the semi-transmissive liquid crystal display element of the fourth scope of the patent application, in which the center wavelength of the above field is longer than the corresponding predetermined wavelength by 0 nm to 4 0 nm. Semi-transmissive liquid crystal display element, this paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) 1237143 A8 B8 C8 D8 6. The scope of patent application is at least one of the above-mentioned areas including multiple predetermined wavelengths. The minimum value of the reflectance of the first circularly polarized light component in the field is a wavelength above the predetermined wavelength. 7. A semi-transmissive type of liquid crystal display element, which is characterized by: having: a first polarizing plate having a polarizing axis to allow linearly polarized light to transmit along this polarizing axis, arranged behind the first polarizing plate, and corresponding to an applied voltage; Light modulation layer for incident light modulation; a selective reflection layer disposed behind the light modulation layer and selectively reflecting the first circularly polarized light component of incident light; disposed behind the selective reflection layer, capable of emitting at a plurality of predetermined wavelengths A back-side light source with light of various intensity peaks; a color filter layer disposed in front of the selective reflection layer, the selective reflection layer is for the visible light wavelength range is divided into a plurality of small areas, The reflectance of the first circularly polarized component is formed to be smaller than the reflectance of the first circularly polarized component that does not include the plurality of predetermined wavelength regions, and the color filter layer is set so that at least one of the regions including the plurality of predetermined wavelengths is included. The spectral transmittance of one is smaller than the spectral transmittance which does not include the aforementioned plurality of predetermined wavelength regions. This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the cautions on the back before filling in this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs
TW090112286A 2000-05-24 2001-05-22 Half-transmissive liquid crystal display element TWI237143B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153508A JP2001337320A (en) 2000-05-24 2000-05-24 Semitransmissive liquid crystal display element

Publications (1)

Publication Number Publication Date
TWI237143B true TWI237143B (en) 2005-08-01

Family

ID=18658752

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090112286A TWI237143B (en) 2000-05-24 2001-05-22 Half-transmissive liquid crystal display element

Country Status (6)

Country Link
US (1) US6512560B2 (en)
EP (1) EP1158346B1 (en)
JP (1) JP2001337320A (en)
KR (1) KR100427881B1 (en)
DE (1) DE60121254T2 (en)
TW (1) TWI237143B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397399B1 (en) * 2001-02-22 2003-09-13 엘지.필립스 엘시디 주식회사 transflective liquid crystal display and manufacturing method thereof
US6734935B2 (en) * 2001-07-04 2004-05-11 Lg. Philips Lcd Co., Ltd. Array panel for a transflective liquid crystal display device
JP3675404B2 (en) * 2001-09-25 2005-07-27 セイコーエプソン株式会社 Transflective liquid crystal device and electronic equipment using the same
JP3675427B2 (en) * 2001-09-25 2005-07-27 セイコーエプソン株式会社 Transflective liquid crystal device and electronic equipment using the same
JP3675397B2 (en) 2001-12-07 2005-07-27 セイコーエプソン株式会社 Reflector, liquid crystal display, electronic equipment
JP4165069B2 (en) * 2002-01-10 2008-10-15 セイコーエプソン株式会社 Liquid crystal display device, electronic equipment
JP3852342B2 (en) 2002-01-28 2006-11-29 セイコーエプソン株式会社 Reflector, reflector manufacturing method, liquid crystal device, electronic device
KR100439354B1 (en) * 2002-07-08 2004-07-07 엘지.필립스 엘시디 주식회사 Transflective LCD
KR100828531B1 (en) * 2002-07-26 2008-05-13 삼성전자주식회사 Liquid crystal display
KR100439649B1 (en) * 2002-08-14 2004-07-12 엘지.필립스 엘시디 주식회사 Transflective Liquid Crystal Display Device and Method for fabricating the same
JP3815461B2 (en) * 2002-11-22 2006-08-30 セイコーエプソン株式会社 Liquid crystal display device and electronic device
JP2005173037A (en) * 2003-12-09 2005-06-30 Fujitsu Display Technologies Corp Liquid crystal display device and its manufacturing method
JP2005227708A (en) * 2004-02-16 2005-08-25 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display element
TWI296064B (en) * 2004-12-17 2008-04-21 Innolux Display Corp Glass plate and liquid crystal display and method of manufacturing the same
US7423713B2 (en) * 2005-03-28 2008-09-09 Epson Imaging Devices Corporation Liquid crystal device and electronic equipment
US7486854B2 (en) * 2006-01-24 2009-02-03 Uni-Pixel Displays, Inc. Optical microstructures for light extraction and control
TW201204062A (en) * 2010-07-15 2012-01-16 Taiwan Electrets Electronics Co Ltd Electrostatic speaker and manufacturing method thereof and conducting plate of the speaker
US10048647B2 (en) 2014-03-27 2018-08-14 Microsoft Technology Licensing, Llc Optical waveguide including spatially-varying volume hologram
US10210844B2 (en) 2015-06-29 2019-02-19 Microsoft Technology Licensing, Llc Holographic near-eye display
KR102423969B1 (en) * 2015-10-02 2022-07-21 신화인터텍 주식회사 Optical member, backlight assembly and liquid crystal display including the same
US10310335B2 (en) 2016-02-29 2019-06-04 Microsoft Technology Licensing, Llc Reducing orders of diffraction patterns
US10254542B2 (en) 2016-11-01 2019-04-09 Microsoft Technology Licensing, Llc Holographic projector for a waveguide display
US11022939B2 (en) 2017-01-03 2021-06-01 Microsoft Technology Licensing, Llc Reduced bandwidth holographic near-eye display
US10712567B2 (en) 2017-06-15 2020-07-14 Microsoft Technology Licensing, Llc Holographic display system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37377E1 (en) * 1992-10-09 2001-09-18 Asahi Glass Company, Ltd. LCD device including an illumination device having a polarized light separating sheet between a light guide and the display
JP3016107B2 (en) * 1993-02-04 2000-03-06 セイコーインスツルメンツ株式会社 Reflective liquid crystal electro-optical device
JPH0784279A (en) * 1993-09-17 1995-03-31 Sanyo Electric Co Ltd Liquid crystal display device
JP3209254B2 (en) * 1994-04-19 2001-09-17 日本電信電話株式会社 Display / recording medium and manufacturing method thereof
JPH095739A (en) * 1995-06-22 1997-01-10 Internatl Business Mach Corp <Ibm> Light guiding sheet and manufacture thereof, back light using above described light guiding sheet and liquid crystaldisplay device using above described back light
US5841494A (en) * 1996-06-26 1998-11-24 Hall; Dennis R. Transflective LCD utilizing chiral liquid crystal filter/mirrors
DE69821215T2 (en) * 1997-05-07 2004-11-11 Seiko Epson Corp. DISPLAY ELEMENT AND ELECTRONIC CLOCK
JP3539206B2 (en) * 1997-06-09 2004-07-07 セイコーエプソン株式会社 Electronic watches and liquid crystal display devices
KR100310153B1 (en) * 1998-01-10 2001-11-15 권문구 Method for manufacturing polarization film having wide band by stacking
JP2000122059A (en) * 1998-10-15 2000-04-28 Toshiba Corp Liquid crystal display element
US6727967B2 (en) * 1998-10-15 2004-04-27 Kabushiki Kaisha Toshiba Transelective lcd in which reflected light passes through color filters twice, transmitted light passes through color filter only once, but also passes through additional layer of cholesteric liquid crystal or band-pass filter
US6385139B1 (en) * 1999-01-13 2002-05-07 Seiko Epson Corporation Display device and electronic timepiece

Also Published As

Publication number Publication date
JP2001337320A (en) 2001-12-07
EP1158346A3 (en) 2004-03-17
KR20010107688A (en) 2001-12-07
US20010046014A1 (en) 2001-11-29
EP1158346A2 (en) 2001-11-28
KR100427881B1 (en) 2004-04-27
EP1158346B1 (en) 2006-07-05
DE60121254D1 (en) 2006-08-17
US6512560B2 (en) 2003-01-28
DE60121254T2 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
TWI237143B (en) Half-transmissive liquid crystal display element
US6580480B2 (en) Transflective liquid crystal display device and manufacturing method thereof
US5731858A (en) Reflection type liquid crystal display device and method of manufacturing the same
US7623206B2 (en) Liquid crystal device board, liquid crystal device, and electronic apparatus
JP3612024B2 (en) Liquid crystal display
US6300929B1 (en) Flat panel display device
KR19990083623A (en) Liquid crystal device and electronic apparatus using the same
JP3015792B1 (en) Display element
TW583452B (en) Reflector, liquid crystal display device and electronic appliance
JP3506978B2 (en) Reflective liquid crystal display
TWI447498B (en) Transflective displays
CN109828406B (en) Pixel structure, display device and projection display system
CN109143665A (en) A kind of display panel and display device
JP2005534989A (en) Reflective transmission type liquid crystal display device
TW546513B (en) Display element
TW539894B (en) Planar display device
TWI224224B (en) Color liquid-crystal display device
JP2000258760A (en) Liquid crystal display device
JP4494552B2 (en) Transmission type liquid crystal display device
JP2003195288A (en) Semi-transmission type liquid crystal display
JP2001209046A (en) Planar display device
JP4205303B2 (en) Electro-optical device and electronic apparatus
KR100302220B1 (en) Display element
JP2015161926A (en) Liquid crystal display device and electronic device
JP2000227590A (en) Display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees