TWI236532B - Multichannel polynucleotide molecule sequencing method - Google Patents

Multichannel polynucleotide molecule sequencing method Download PDF

Info

Publication number
TWI236532B
TWI236532B TW90121104A TW90121104A TWI236532B TW I236532 B TWI236532 B TW I236532B TW 90121104 A TW90121104 A TW 90121104A TW 90121104 A TW90121104 A TW 90121104A TW I236532 B TWI236532 B TW I236532B
Authority
TW
Taiwan
Prior art keywords
channel
ion
polynucleotide molecules
cavity
sequencing
Prior art date
Application number
TW90121104A
Other languages
Chinese (zh)
Inventor
Jung-Tang Huang
Shao-Chang Cheng
Chii-Dong Chen
Original Assignee
Chien Hui Chuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chien Hui Chuan filed Critical Chien Hui Chuan
Priority to TW90121104A priority Critical patent/TWI236532B/en
Application granted granted Critical
Publication of TWI236532B publication Critical patent/TWI236532B/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

This invention relates to a multichannel polynucleotide molecule sequencing method. It comprises the following procedures: firstly, it fabricates a thin film on a chip by microfabrication technology. Secondly, it sets a plurality of nano-scaled apertures on the thin film as ion channel. Furthermore, for each aperture, it installs a set of sub-pico ampere ion current measuring circuit, an independent ion channel electric field, and a set of controllers. The controller measures the ion current of each base of the polynucleotide jammed by the aperture. Moreover, it transforms the current into base sequence. Finally, it records and compares the sequence in a polynucleotide molecule database.

Description

1236532 五、發明說明(1) 聚核Η酸分子包括去氧核糖核酸(D N A )與核糖核酸 (RiboNucleic Acid, RNA)等,本發明以下說明,僅以DNA 來說明。 要執行分析,首先D N A要從細胞核淬取出來並純化,程 序為1 ·泡在清洗劑 (d e t e r g e n t)中,將細胞膜破壞 2 .離 心去除細胞屑(debr i s)蛋白質酵素,只剩DNA於溶液中。 D N A分析’ 一般分為兩部分:一為診斷,僅檢出特定驗 基對是否存在;二為定序,產生真正的鹼基對順序。 一般分析有五個基本的化學程序,例如C. H. Mast rang el 〇, M.A.Burns,and D. T. Burke Microfabricated Devices for Genetic Diagnostics," Proceedings of the IEEE, Vol· 86, No. 80, 1998, Aug.所述: 一、 化學放大,雙股片段首先加熱使分離成個別的兩個單 股,利用酵素(e n z y m e )多聚酶將單股合成雙股,此程序稱 之為多聚 I每鏈鎖反應 PCR (ploymerase chain reaction) 典型的放大程序使用耐高溫 (high-temperature resistant ) Taq多聚酶酵素淬取自耐熱的微生物The r mu s aquat f eus ,並與未知的DNA樣版 (t emp 1 a t e ),充足計量 的核糖 nucleotides ( d N T P ’ s )與決定複製起點的引子 (pr i mer s )混合。 二、 加入螢光染料於DNA片段。 三、 使用限制酵素(restriction enzyme)作分段 (fragmentation or digestion) ° 四、 分離 (s e p a r a t i ο n),目前較常用的方法,如電泳法1236532 V. Description of the invention (1) Polynucleic acid molecules include DNA (Rna) and RiboNucleic Acid (RNA), etc. The following description of the present invention is only described by DNA. To perform the analysis, the DNA is first quenched from the cell nucleus and purified. The procedure is: 1. Soak in a detergent to destroy the cell membrane. 2. Centrifuge to remove the debr is protein enzymes, leaving only the DNA in the solution. . The DNA analysis is generally divided into two parts: one is diagnosis, which detects only the existence of a specific test base pair; the other is sequencing, which generates a true base pair sequence. There are five basic chemical procedures for general analysis, such as those described in CH Mast rang el 〇, MA Burns, and DT Burke Microfabricated Devices for Genetic Diagnostics, " Proceedings of the IEEE, Vol. 86, No. 80, 1998, Aug. : 1. Chemical amplification. The double-stranded fragment is first heated to separate into two single-stranded strands, and the single-stranded strands are synthesized into double strands using an enzyme polymerase. This procedure is called poly I per chain reaction PCR (ploymerase chain). reaction) A typical amplification procedure uses high-temperature resistant Taq polymerase enzyme quenched from the heat-resistant microorganism The r mu s aquat f eus, and with an unknown DNA template (t emp 1 ate), a sufficient amount of ribose The nucleotides (d NTP 's) are mixed with primers (pr i mer s) that determine the origin of replication. 2. Add fluorescent dye to DNA fragments. 3. Use restriction enzymes for fragmentation or digestion ° 4. Separation (s e p a r a t i ο n), currently more commonly used methods, such as electrophoresis

第4頁 1236532 五、發明說明(2) (electrophoretic ),如毛細電泳(CE , capillary electrophoresis),主要是將不同長度的DN A片段分離出 來。 五、序列讀取’有兩種常見的方法 A. Sanger定序法(Sanger sequencing scheme):主要是放 入小量ddNTP’s(ddA,ddC,ddG,or ddT),使聚合的動作 不完整,而停止於ddNTP’ s處,接著利用毛細電泳,再用 螢光顯微鏡等光學方式讀取。 B·另一方法:則是利用固定的DNA探針陣列,以達到雜交 的程序。 以上習知的做法,耗時又花錢,使用的酵素、樣品劑 量多而貴,多聚I每鏈鎖反應(P C R )、DN A探針等製作複雜 而昂貴。 運用離子通道於基因序列的定序,有美國專利1186093571 主要是運用生化薄膜,如雙脂層薄膜(lipid bi layer membrane ),嵌入通道蛋白質(Channel Protein )如 m a 11 ο ρ o r i η ( L a m B ) p 〇 r e 或 b a c t e r i a 1 ρ 〇 r e - f o r m i n g 蛋Page 4 1236532 V. Description of the invention (2) (electrophoretic), such as capillary electrophoresis (CE), mainly separates DNA fragments of different lengths. Five, there are two common methods of sequence reading. A. Sanger sequencing scheme (Sanger sequencing scheme): mainly put a small amount of ddNTP's (ddA, ddC, ddG, or ddT), making the aggregation action incomplete, and Stop at ddNTP's, then use capillary electrophoresis, and then read optically with a fluorescent microscope. B. Another method: a procedure using a fixed DNA probe array to achieve hybridization. The above-mentioned conventional methods are time-consuming and expensive. The enzymes and sample dosages used are large and expensive. The production of poly I per chain reaction (P C R), DNA probes, etc. is complicated and expensive. The use of ion channels for the sequencing of gene sequences. There is US patent 1186095357 which mainly uses biochemical films, such as lipid bi layer membrane, and channel proteins such as ma 11 ο ρ ori η (L am B ) p 〇re or bacteria 1 ρ 〇 re-forming eggs

白質等等,其主要的缺點是不能做成多個通道,同時進行 基因序列的讀取’並且不易結合讀取電路與控制電路於一 體;此外因離子通道並非使用半導體製程,與微機電製程 來完成,故不易製作,通道大小、長度、與位置安排變化 的彈性也很少。再者也缺少較簡單便宜且真正有效的方 法,使DNA在進入通道之前,能有效拉直,俾能一個鹼基 接著一個鹼基經過通道,使DNA序列清楚可辨。另外,此The main disadvantages of white matter, etc., are that it cannot be made into multiple channels and read the gene sequence at the same time, and it is not easy to combine the reading circuit with the control circuit; in addition, the ion channel does not use semiconductor processes, and it is not compatible with micro-electromechanical processes. Completed, so it is not easy to make, and there is little flexibility in changing the size, length, and location of the channel. Furthermore, there is a lack of a simpler, cheaper, and truly effective method that allows DNA to be effectively straightened before entering the channel, so that one base can pass through the channel, making the DNA sequence clear and legible. In addition, this

1236532 五、發明說明(3) 專利也不能僅靠電場作用及積體電路讀出每一個鹼基。 [技術目的] 本發明的目的之一,提供基因序列讀取的有效方法,主要 係利用多個離子通道機制,使序列讀取的速度加快。 本發明的目的之二,減少使用多聚酶鏈鎖反應 PCR或使用 電泳法及其他需要使用生化材料的程序,以降低成本。 本發明的目的之三,提供依次讀取較長序列的方法,而不 必像雜交方法,只能用短的Μ A探針。 || 本發明的目的之四,提供一種簡單便宜且真正有效的方 法,使 DN A在進入通道之前,能有效拉直,俾能一個驗基 接著一個鹼基經過通道,使DNA序列清楚可辨。 本發明的目的之五,提供一種一次可讀取多種 DNA的方法 而不必將D N A單一化。 本發明的目的之六,提供一種可整合成晶片形式的讀取裝 置,使用半導體製程,與微機電製程來完成。 綜上所述,本發明之主要目的,係提供基因定序的有效方 法,係利用多個離子通道機制,使用半導體製程,與微機 電製程#合,使定序的速度加快。為求清楚描述本發明的 4 方法及其裝置,因此發明人佐以圖示、圖號、詳細說明如 下: [圖示]1236532 V. Explanation of the invention (3) The patent can not only read every base by the action of electric field and integrated circuit. [Technical objective] One of the objectives of the present invention is to provide an effective method for reading a gene sequence, which mainly uses a plurality of ion channel mechanisms to accelerate the speed of sequence reading. Another object of the present invention is to reduce the cost by using polymerase chain reaction PCR or using electrophoresis and other procedures that require the use of biochemical materials. A third object of the present invention is to provide a method for sequentially reading a longer sequence, and it is not necessary to use a short MA probe like a hybridization method. The fourth objective of the present invention is to provide a simple, cheap and truly effective method to make DN A straighten effectively before entering the channel, so that one test base and one base can pass through the channel to make the DNA sequence clear and distinguishable. . A fifth object of the present invention is to provide a method for reading a plurality of types of DNA at a time without having to singularize DNA. A sixth object of the present invention is to provide a reading device that can be integrated into a wafer form, which is completed using a semiconductor process and a micro-electro-mechanical process. In summary, the main purpose of the present invention is to provide an efficient method for gene sequencing, which uses multiple ion channel mechanisms, uses a semiconductor process, and combines it with a microcomputer and electrical process to increase the speed of sequencing. In order to clearly describe the 4 methods and the device of the present invention, the inventors have provided illustrations, figure numbers, and detailed descriptions as follows: [Illustration]

1236532 五、發明說明(4) 圖一為本發明所使用的多離子通道定序基因的裝置示意 圖 圖二整個完整的基因定序的流程 圖三為本發明方法的DNA拉直示意圖 圖四為本發明方法的電子電路 圖五為本發明所使用的電流電壓轉換器電路 圖六為本發明所使用的離子通道製作的實施例 圖七為本發明所使用的離子通道製作的實施例配置的上 視圖 圖八為使用本發明的離子通道讀出DNA序列示意圖 圖號 1多離子通道定序基因的裝置 3奈米通道 5離子流 7第二凹穴 1 1過程一 1 3過程三 1 5過程五 2 0電極系統 2 2基板&1236532 5. Description of the invention (4) Figure 1 is a schematic diagram of a device for sequencing genes of a polyion channel used in the present invention. Figure 2 is a flow chart of a complete gene sequencing. 3 is a schematic diagram of DNA straightening in the method of the present invention. Figure 4 is The electronic circuit of the inventive method. FIG. 5 is a current-voltage converter circuit used in the present invention. FIG. 6 is an embodiment of the ion channel used in the present invention. FIG. 7 is a top view of the embodiment configuration of the ion channel used in the invention. Schematic diagram for reading the DNA sequence using the ion channel of the present invention Figure No. 1 Device for sequencing genes in a polyion channel 3 Nano channel 5 Ion current 7 Second cavity 1 1 process 1 1 3 process three 1 5 process five 2 0 electrode System 2 2 substrate &

2 4第一電極 26拉直的DNA 2單股DNA 4每一驗基 6第一凹穴 1 2過程二 1 4過程四 19薄膜 21第二電極2 4 First electrode 26 Straightened DNA 2 Single-stranded DNA 4 Each test base 6 First pocket 1 2 Process 2 1 4 Process 4 19 Thin film 21 Second electrode

2 3直流電極/訊號輸入線 25未拉直的DNA 3 0 P i c 〇安培電流量測電 1236532 五、發明說明(5) 子電路 3 2高速類比數位轉換器 34顯示器(LCD) 3 6記憶體 3 8直流電場電壓 10 0第一基材 1 0 2 5 4. 7 4度斜角的淺槽 10 4第一基材上層 1 0 6碗狀的奈米通道 201—層金(Au) 流道層 3 0 3二十個奈米通道 311第一級放大電路 3 1 3第三級放大電路 31電流/電壓轉換器 3 3微控制器 3 5外界的電腦 37RS-2 3 2的通訊協定 3 9交流電場電壓 10 1氮化矽(Si 3N 4)薄膜 1 0 3—層金(Au ) 105第一基材下層 2 0 0弟二基材 料或矽的 3 0 1玻璃材質或高分子材 3 0 2注入口 3〇1場控制與電流檢出電路 3 1 2弟一級放大電路 [基因讀取的機制] 的F 3 ,二所# ’為本發明所使用的多離子通道讀取基因 二'V…運用多個奈米通道3的-侧所形成 斑ΜΑ將!^入氣化鉀(KC1)或氯化鈉等氣化鹽的溶液 側所形成的第二凹穴7,由於單賴"上的驗2 3 DC electrode / signal input line 25 Unstraightened DNA 3 0 P ic ampere current measurement electricity 1236532 V. Description of the invention (5) Sub-circuit 3 2 High-speed analog digital converter 34 Display (LCD) 3 6 Memory 3 8 DC electric field voltage 10 0 First substrate 1 0 2 5 4. 7 Shallow groove with 4 degree oblique angle 10 4 Upper layer of first substrate 1 0 6 Bowl-shaped nano channel 201—Layered gold (Au) runner Layer 3 0 3 Twenty nano channels 311 First-stage amplifier circuit 3 1 3 Third-stage amplifier circuit 31 Current / voltage converter 3 3 Microcontroller 3 5 External computer 37 RS-2 3 2 Communication protocol 3 9 AC electric field voltage 10 1 Silicon nitride (Si 3N 4) thin film 1 0 3—Layer of gold (Au) 105 Lower layer of the first substrate 2 0 0 Di-based material or silicon 3 0 1 Glass material or polymer material 3 0 2Injection port 301 Field control and current detection circuit 3 1 2 First stage amplification circuit [Mechanism of gene reading] F 3, Ersuo # 'is a multi-ion channel reading gene II'V used in the present invention … Using the spot MA formed on the negative side of multiple nanochannels 3 will be inserted into the second cavity 7 formed on the solution side of a gasified salt such as potassium gas (KC1) or sodium chloride. t;

1236532 五、發明說明(6) 不同,而奈米通道的長度約為0. 5-1 nm,其孔徑約4nm以 下,所以每一鹼基4恰可依其大小對通道有不同程度阻塞 ,致使鉀離子流經通道的頻率,即離子流 5,有所不同, 因而可以對應讀出 D N A序列。本發明讀取的對象可以為 DN A或信使(message ) RNA , 因為 D ΝΑ包括基因與基因 相間的區域(intergenic regions ), 信使RNA屬於 基因碼,故讀取他們更直接。 由以上的概述可知D N A序列經過通道的基本概念是要達成: 1. A、 G、 C、 T四個鹼基,阻塞通道的程度明顯不同 而且可辨識,不太受通道大小變異的影響。 2. D N A經過通道,應確保由5 ’帶頭穿過通道,而非阻塞 。 3. DN A經過通道的速度應不受DNA長短或其序列組合而影 響,亦即每一鹼基過洞的時間相同,單位時間經過通道的 鹼基數固定,至少應確保連續五至六個相同鹼基,可清楚 辨識。 4. 多個通道可同時進行讀取DNA序列的動作,不論 DNA長 短及種類,以增加讀取DNA序列的速度。 [達成的對策] 整個完整的基因讀取的流程,如圖二所示,說明如下: 過程一 1 1 使用習知的方法將要讀取其序列的單種或多種 DNA萃取, 置入已放有適當濃度氯化鹽等的溶液中。1236532 V. Description of the invention (6) Different, and the length of the nano channel is about 0.5-1 nm, and its pore diameter is less than about 4 nm, so each base 4 can block the channel to different degrees according to its size, resulting in The frequency of potassium ions flowing through the channel, that is, ion current 5, is different, so the DNA sequence can be read correspondingly. The object read by the present invention can be DNA or message RNA, because DNA includes genes and intergenic regions, and messenger RNA belongs to the gene code, so reading them is more direct. From the above overview, we know that the basic concept of the D N A sequence passing through the channel is to achieve: 1. Four bases, A, G, C, and T. The degree of blocking the channel is significantly different and identifiable, and it is not affected by the channel size variation. 2. D N A passes through the channel, it should be ensured that the 5 'lead leads through the channel, not blocking. 3. The speed at which DN A passes through the channel should not be affected by the length of the DNA or its sequence combination, that is, the time for each base to pass through the hole is the same, and the number of bases passing through the channel per unit time is fixed, and at least five to six consecutive Identical bases can be clearly identified. 4. Multiple channels can simultaneously read DNA sequences, regardless of the length and type of DNA, to increase the speed of reading DNA sequences. [Agreed countermeasures] The entire process of gene reading, as shown in Figure 2, is explained as follows: Process 1 1 1 Use conventional methods to extract single or multiple types of DNA from which the sequence is to be read. An appropriate concentration of a solution such as a chloride salt.

第9頁 1236532 五、發明ft明(7) 過程二1 2 加溫至7 0 - 9 5°C,使DNA或信使 RNA維持單股的狀態,不會 有二次結構 (secondary structure )。不提高溶液的PH 值,維持約 7 - 8,使單股 D N A帶負電,相鄰驗基會互相排 斥,使單股的DNA或信使RNA可維持接近直線的狀態。若是 讀取信使RNA,因為信使 RNA的最大長度,最多不會超過 1 0 K b p ’要維持南溫 (9 5 C ) ’才不會被限制酶破壞。此 過程所需的加溫需求,可由外設的加熱器提供溫度控制, 或以微加工技術設置一微加熱器於凹穴内提供溫度控制。 過程三1 3 如圖三所示,電極系統2 0是在形成第一凹穴6的基板 22 上,真空蒸鍍第一(金)電極2 4,在薄膜1 9上真空蒸鍍第二 (金)電極21,將含有DNA溶液置入兩電極之間的第一凹穴6 之中,此時DNA隨意的捲成一團201,當施加lMV/m, 1 MHz 的電場於兩電極之間,D N A會被拉直2 0 2,(此部份參考S. Suzuki, e t. a 1. , "Quantitative Ana lysis of DNA Orientation in Stationary AC Electric Fields Using Fluorescence Anisotropy, n IEEE Trans. Industry Applications Vol. 34, NO. 1, Jan/Feb, 1998, PP7 5 - 8 3 ),本發明並在第二電極端21另設一直流電極 / 訊號輸入線23 ,加上DC偏壓,吸引帶負電的 DNA朝向第 二電極2 1,使拉直的DNA經過薄膜1 9上設置的通道3。Page 9 1236532 V. Inventing ft. (7) Process 2 12 Warm to 7 0-9 5 ° C, so that the DNA or messenger RNA maintains a single strand state, there will be no secondary structure. Without increasing the pH of the solution, maintain about 7-8, make the single strand of D N A negatively charged, and the adjacent test groups will repel each other, so that the single strand of DNA or messenger RNA can maintain a state close to a straight line. If the messenger RNA is read, because the maximum length of the messenger RNA will not exceed 10 K b p ’, it must be maintained at South temperature (9 5 C)’ so as not to be destroyed by restriction enzymes. The heating requirements required in this process can be provided by a heater of an external device, or a micro-heater can be provided in the cavity to provide temperature control by micro-processing technology. Process III 1 3 As shown in FIG. 3, the electrode system 20 is vacuum-deposited the first (gold) electrode 2 4 on the substrate 22 forming the first cavity 6, and the second ( Gold) electrode 21, put the solution containing DNA into the first cavity 6 between the two electrodes, at this time the DNA is randomly rolled into a ball 201, when an electric field of 1 MV / m, 1 MHz is applied between the two electrodes, DNA will be straightened 202 (refer to S. Suzuki, e t. A 1., " Quantitative Ana lysis of DNA Orientation in Stationary AC Electric Fields Using Fluorescence Anisotropy, n IEEE Trans. Industry Applications Vol. 34, NO. 1, Jan / Feb, 1998, PP7 5-8 3), in the present invention, a DC electrode / signal input line 23 is additionally provided at the second electrode terminal 21, and a DC bias is added to attract negatively charged DNA Toward the second electrode 21, the straightened DNA passes through the channel 3 provided on the thin film 19.

第10頁 1236532 五、發明說明(8) 兩電極之間距離較佳為大於 D N A長度的兩倍以上,電極的 位置在通道下方的第一電極24面積較大,佈滿第一凹穴( 的底面,設定為負端;第二電極2 1在薄膜1 9上方,其面積 較小,且可以恰當設計,使拉直 D N A的區域有所限制,由 於第二電極2 1藉由通道薄膜1 9 (非導體)的隔絕,使拉直的 D N A不會吸附固定於第二電極2卜 過程四1 4 阻塞離子電流的讀取 拉直的 DNA每次僅有一條經過奈米通孔,每個鹼基在奈米 孔中停留一段可控的時間,鉀離子或納離子等會在有鹼基 阻塞情況下,通過奈米孔,此離子電流可經由電流/電壓轉 換電路加以讀取。 過程五1 5 基因序列轉換判讀DNA序列 一般而言,鹼基阻塞後的離子電流與未阻塞前的離子電流 相比,依GATC順序逐漸變大,而有明顯的階級差異,參考 圖八,因此可運用三位元的類比數位轉換器,來加以轉換 成AGCT序列,並將此序列儲存於微控制器的記憶體内,作 為後續的其他用途。 〇 [離子通道的電子電路] 離子流過通道的電流,電流大小約次 p i c 〇到數百P i c〇( 1 0 —12 )安培,習知的技術是使用大型的儀器或電子電路, 為了能將其縮小並整合於晶片之上,本發明將其重新設計Page 10 1236532 5. Description of the invention (8) The distance between the two electrodes is preferably more than twice the length of the DNA. The position of the electrode below the channel is larger than that of the first electrode 24, which is covered with the first cavity ( The bottom surface is set as the negative end; the second electrode 21 is above the thin film 19, and its area is small, and it can be properly designed to restrict the area of the straightened DNA. Since the second electrode 21 is passed through the thin film 19, (Non-conductor) isolation, so that the straightened DNA will not be adsorbed and fixed on the second electrode 2 process 4 1 4 blocking the reading of the ionic current Only one straight DNA passes through the nano-hole, each alkali The base stays in the nanopore for a controlled period of time, and potassium ions or nano ions will pass through the nanopore when the base is blocked, and the ion current can be read by the current / voltage conversion circuit. Process 5 1 5 Interpretation of DNA sequence by gene sequence conversion Generally speaking, the ion current after base blocking is larger than that before non-blocking in GATC order, and there are obvious class differences. Refer to Figure 8, so you can use three Bit Analogy A bit converter is used to convert the sequence into an AGCT sequence and store the sequence in the memory of the microcontroller for other subsequent uses. 〇 [Electronic circuit of the ion channel] The current flowing through the channel of the ion, the current is about twice pic 〇 to hundreds of Pic 0 (10-12) amps. The conventional technology is to use large-scale instruments or electronic circuits. In order to reduce and integrate them on the chip, the present invention redesigns them.

第11頁 1236532 五、發明說明(9) ---- 成、積體電路,說明於下: 爹考四’ P 1 co安培電流量測電子電路3 〇可概分成五個獨 立的次電路’包括丨.電流/電壓轉換器(I-V converter) 9夜流電場電壓 ^ _ • •父流電場電壓 4.三位元高速類比 數位轉換器5 ·微控制器等。 電一流、’電壓轉換器所用的低雜訊運算放大器、,參考圖 五’由二#個、運异放大器所組成,其輸入的偏流等於〇. 03pA, 輸入電合等於2pF,電壓雜訊密度在0.1MHz為15xl0—17 VVHz,增益頻寬乘積為1〇〇MHz。 由於所使用的電流/電壓轉換器3 1,目的在將1 PA的電 流轉成1 OmV ’故習知的電路所需的電阻需達1 歐姆,以 CMOS製私之多晶石夕(p〇lysilic〇n) N-well來製作, 都可能造成太大的電路面積。因此採用分段完成,第一級 運算放大斋3 1 1使用回饋電阻丨〇 〇 M歐姆,將1 p a電流轉 成0 · 1 mVt^壓」第二級3丨2則使用一個電壓隨耦器做為緩 衝之用,第三級3 1 3為一個差分放大器,放大倍數為丨〇 〇, 故三級總合起來的放大增益是1 〇 ! Q V 〇 1 t / A。 三位元高速類比數位轉換器32,目的在將dnA的四個 驗基所相對應的四個電壓位準以及一參考位準,未阻塞時 的電壓位準共六個,所以需要轉成三位元,基本架構為快 閃式(flash)電路(參考 D. Α· J〇hns and K. Martin, 1997, Analog Integrated Circuit Design, pp.507-513 ),位準之間的電阻,因應四個鹼基以及未阻塞時電壓位 準的不同而調整之,其轉換速度為1〇〇MHz —5〇〇MHz,可使Page 11 1236532 V. Description of the invention (9) ---- Integrated and integrated circuits, described below: Daddy test 'P 1 co Ampere current measurement electronic circuit 3 〇 It can be roughly divided into five independent sub-circuits' Including 丨 current converter (IV converter) 9 night current electric field voltage ^ _ • • parent current electric field voltage 4. three-bit high-speed analog digital converter 5 · microcontroller and so on. The first-class, low-noise operational amplifier used in voltage converters, referring to Figure 5 ', is composed of two #differential amplifiers. The input bias current is equal to 0.03pA, the input voltage is equal to 2pF, and the voltage noise density is It is 15xl0-17 VVHz at 0.1MHz, and the gain-bandwidth product is 100MHz. Because the current / voltage converter 31 is used, the purpose is to convert the current of 1 PA to 1 OmV. Therefore, the required resistance of the conventional circuit needs to be 1 ohm. lysilic〇n) N-well, may cause too much circuit area. Therefore, it is completed in sections. The first stage of operational amplification 3 1 1 uses a feedback resistor 丨 〇〇ohm ohms to convert 1 pa current to 0 · 1 mVt ^ voltage. The second stage 3 丨 2 uses a voltage follower As a buffer, the third stage 3 1 3 is a differential amplifier with an amplification factor of 丨 〇〇, so the combined amplification gain of the three stages is 1 〇! QV 〇1 t / A. The three-bit high-speed analog digital converter 32 aims to set the four voltage levels corresponding to the four test bases of dnA and a reference level. There are six voltage levels when unblocked, so it needs to be converted into three. Bit, the basic structure is a flash circuit (refer to D. Α · Johns and K. Martin, 1997, Analog Integrated Circuit Design, pp.507-513), the resistance between the levels, corresponding to four It can be adjusted according to the difference of the base level and the voltage level when it is not blocked. Its conversion speed is 100MHz-500MHz, which can make

1236532 五、發明說明(ίο) 用多工方式讀取多個通道。 交流電場電壓3 9 ’目的在施加1 μ V / m, 1 Μ Η z的電場於 兩電極之間’使D N A被拉直。 直流電場電壓3 8,目的在配合交流電場電壓的拉直作 用’並在其中之一的電極加上直流偏壓,使拍^直的j)NA經 過電極上設置的通道,為了減少雜訊的影響(參考 Hami J i et. al., 1981, Pfluegers Arch. Eur. J. Physiol 3 9 1 : 8 5 - 1 0 0 ),提供一個降低DNA通過奈米孔的速度,使 每一鹼基能暫停於奈米孔之中,不受擴散的影響,有時間 讓離子可通過’基本上將取樣時間控制在〇 · 5〜2微秒,其 直流偏壓位準約為零至負壓,而導通的直流暫停偏壓位準 約為 60-150mV。 此直流電場偏壓可經由圖五的電流電壓轉換器3丨來施 加,亦即在第一級放大器的正端輸入V c m d,藉由虛擬零電 位差,轉移至負端,透過電流訊號端I去產生局部電場電 壓’而在弟一級放大裔’由差分放大器加以減除,只取出 離子電流I的放大值。 微控制器3 3的功能包括:調整交流電場電壓的電壓位 準與頻率’直流電場電壓的位準、驅動DNA訊號的導通時 間與暫停時間長度,與三位元高速類比數位轉換器的溝 通,基因序列碼的轉換與儲存,或與記憶體3 6儲存已知疾 病的基因序列比對,並顯示於顯示器(LCD)34,或暫存基 因序列碼,透過RS- 2 3 2的通訊協定3 7,轉存至外界的電 腦3 5。 微控制器也可選用市售的產品,而内建的記憶體1236532 V. Description of the Invention (ίο) Multiple channels are used to read multiple channels. The purpose of the AC electric field voltage 3 9 ′ is to apply an electric field of 1 μV / m, 1 M Η z between the two electrodes, to straighten the D N A. The DC electric field voltage is 38, the purpose is to match the straightening effect of the AC electric field voltage, and apply a DC bias voltage to one of the electrodes to make the straight j) NA pass through the channel provided on the electrode, in order to reduce noise Impact (refer to Hami J i et. Al., 1981, Pfluegers Arch. Eur. J. Physiol 3 9 1: 8 5-1 0 0), provide a way to reduce the speed of DNA through the nanopore, so that each base can Suspended in the nanopore, without the influence of diffusion, there is time for the ions to pass through, basically controlling the sampling time to 0.5 ~ 2 microseconds, and its DC bias level is about zero to negative pressure, and The turn-on DC pause bias level is approximately 60-150mV. This DC electric field bias voltage can be applied through the current-to-voltage converter 3 丨 shown in Figure 5, that is, input V cmd at the positive terminal of the first-stage amplifier, transfer to the negative terminal through the virtual zero potential difference, and go through the current signal terminal I. The local electric field voltage is generated, and the amplification at the first stage is subtracted by the differential amplifier, and only the amplified value of the ion current I is taken out. The functions of the microcontroller 33 include: adjusting the voltage level and frequency of the AC electric field voltage, the level of the DC electric field voltage, the on-time and pause time of the driving DNA signal, and the communication with the three-bit high-speed analog digital converter. Conversion and storage of gene sequence code, or comparison with the gene sequence of memory 3 6 for known diseases, and display on the display (LCD) 34, or temporary gene sequence code, through RS- 2 3 2 communication protocol 3 7. Transfer to external computer 3 5. The microcontroller can also use commercially available products, and the built-in memory

1236532 五、發明說明(11) 36也可另以外加的記憶體擴充之,使本發明可讀取的通 道數目與每通道讀取的DNA長度可以更長。 [離子通道製作] 離子通道的製作是以下列的微加工技術來完成: 步驟一,參考圖六(a) ’首先選用 P-Type (100)的單晶 矽作為第一基材1 0 0,接著在第一基材1 0 0上以低壓化學氣 相沉積(LPCVD)的方武在第一基材 1〇〇雙面沉積一層 50nm-10 0nm的氮化矽(si心)薄膜1〇1 ; 步驟二,參考圖六(b)’利用光微影姓刻技術對基材的下 半平面以乾式蝕刻的方式餘刻出圖案,接著將第一基材1 0 〇 置於85。 C的氫氧化鉀(K0H)中一邊攪拌一邊蝕刻,利 用單晶矽基材的特性蝕刻出5 4 · 7 4度斜角的淺槽1 〇 2 ; 步驟三,參考圖六 (c ) ’ 接著作光微影並利用濺鍍機 (sputter)在基材的上爭平面錢艘上一層鉻(Cr)再濺鍵一 層金(Au ) 1 〇 3 ,並利用剝離(L丨f ΐ 〇 f f )製程將所需要的 圖形留下,以作為第二電極2 1與提供直流電極/訊號輸入 線2 3之用,其中鉻金屬層主要的作用在於增加金與矽基材 f 的附著力,所以並不需要太厚; 步驟四,參考圖六(d ),然後對第一基材上層1 0 4與第一 基材下層1 0 5同樣利用微影蝕刻的技術以反應離子蝕刻機1236532 V. Description of the invention (11) 36 can also be expanded by additional memory, so that the number of channels readable by the present invention and the length of DNA read by each channel can be longer. [Ion channel fabrication] The fabrication of ion channels is completed by the following micromachining techniques: Step one, refer to Figure 6 (a) 'Firstly select P-Type (100) single crystal silicon as the first substrate 100, Then, on the first substrate 100, a low-pressure chemical vapor deposition (LPCVD) Fang Wu was deposited on both sides of the first substrate 100 to form a 50nm-10 0nm silicon nitride (Si core) film 101 on both sides. Step two, referring to FIG. 6 (b), using a photolithographic surname engraving technique to pattern the lower half of the substrate by dry etching, and then placing the first substrate 100 at 85. Etching while stirring in potassium hydroxide (K0H) of C, and using the characteristics of the single crystal silicon substrate to etch a shallow groove 1 0 2 of 5 4 · 7 4 degree oblique angle; Step 3, refer to FIG. 6 (c). Works on light lithography and uses a sputter to compete for a layer of chromium (Cr) on the substrate and a layer of gold (Au) 1 〇3, and uses peeling (L 丨 f 〇 ff) The required pattern is left in the process for the second electrode 21 and the DC electrode / signal input line 2 3. The chromium metal layer mainly functions to increase the adhesion between the gold and the silicon substrate f, so It is not necessary to be too thick; step four, referring to FIG. 6 (d), and then using the photolithography technique to react the ion etching machine to the upper layer 104 of the first substrate and the lower layer 105 of the first substrate

第14頁 1236532 五、發明說明(12) (R I E )’將氮化石夕I虫刻出窗來,並將基材置於8 5。 c的氫 氧化鉀(K 0 Η )中一邊攪拌一邊蝕刻一段時間,直到1 〇 4與 1 0 5處的第一基材穿透成為注入孔;Page 14 1236532 V. Description of the invention (12) (R I E) 'Carve a nitride stone I insect out of the window, and place the substrate at 8 5. etch in potassium hydroxide (K 0 Η) of c while stirring for a period of time until the first substrate at 104 and 105 penetrates into the injection hole;

步驟五’參考圖六(e ),接著在上層氮化矽薄膜的背面利 用光阻塗佈機塗佈一層約1 〇〇nm的光阻(PMMA),經由適 當劑量的電子束曝光,在顯影後用反應離子蝕刻機對氮化 矽薄膜1 0 1作乾式I虫刻,藉由控制蝕刻的時間或利用回饋 機制(Jiali Li et. al. M Ion-beam sculpting at nanometer length scales M, Nature, Vol. 412, July 2001,pp. 166-169)可以得到一碗狀(b〇wi-shaped)的通Step 5 'Referring to FIG. 6 (e), a photoresist coater is used to coat a layer of about 1000 nm photoresist (PMMA) on the back of the upper silicon nitride film, and then exposed to an appropriate dose of electron beam. The silicon nitride thin film 1 01 was then dry-etched with a reactive ion etcher by controlling the etching time or using a feedback mechanism (Jiali Li et. Al. M Ion-beam sculpting at nanometer length scales M, Nature, Vol. 412, July 2001, pp. 166-169) can obtain a bowl-shaped communication

道1 0 6,其中此通道的最小孔徑依照需求可控制於0 . 5 — 4 nm 。若是以作為只允許一條單股DNA流動的微小通道而 言’其孔徑可設定於0. 5 - 2 n m ;此外,亦可採用蒸錄或 濺鍵氧化物如S i 0毒的方式來控制此一通道孔徑的大小與 厚度,接著將第一基材置於85° C的氫氧化鉀(K0H)中一 邊攪拌一邊蝕刻,直到接觸氮化矽(S i A 〇薄膜1 0 1即停 止;有關奈米級開孔遮罩製作所需的裝置與條件如下:電 子束系統Elionix ELS-3300,最大加速電壓30kV ,電子 束直徑6nm-lum依電流而定,例如7nm at 7pA;最大曝光 面積 field size 500um or 200um ; SAL601負光阻,光阻 厚度應降至最低,以減少漫射 (s c a 11 e r i n g )效應,例如 SAL601-SR7 以 Μ ICROPOS I T thinner稀釋,比例為 2:3 6000rijm,達到lOOnm的厚度。Channel 10, where the minimum aperture of this channel can be controlled at 0.5 to 4 nm as required. If it is a tiny channel that allows only a single strand of DNA to flow, its pore diameter can be set to 0.5-2 nm; in addition, it can also be controlled by steaming or splashing key oxides such as Si 0 The size and thickness of a channel aperture, and then the first substrate was etched while being stirred in potassium hydroxide (K0H) at 85 ° C., and stopped until it contacted the silicon nitride (S i A 〇 film 1 01); related The equipment and conditions required for making nano-scale aperture masks are as follows: Electron beam system Elionix ELS-3300, maximum acceleration voltage 30kV, electron beam diameter 6nm-lum depends on current, such as 7nm at 7pA; maximum exposure area field size 500um or 200um; SAL601 negative photoresistor, the photoresist thickness should be minimized to reduce the sca 11 ering effect. For example, SAL601-SR7 is diluted with MICROPOS IT thinner at a ratio of 2: 3 6000rijm to a thickness of 100nm. .

第15頁 1236532 五、發明說明(13) 步驟六,參考圖六(f),接著再取一塊 P-Type (100)的 單晶矽作為第二基材 2 0 0,並利用光微影蝕刻的技術蝕刻 氮化矽; 步驟七,參考圖六(g ),再利用8 5°C的氫氧化鉀 (Κ Ο Η )|虫 刻出所需要的形狀; 步驟八,參考圖六(h ),接著再利用濺鍍機在第二基材的 · 上半平面先濺鍍上一層鉻(Cr),再濺鍍一層金(Au)201, | 以作為提供電場及量測訊號的第二電極2 4之用; 步驟九,參考圖六(i ),將第一基材1 0 0與第二基材2 0 0加 熱至3 9 0°C 進行矽/金/石夕共晶合金的接合或膠合或共融合 金的方式接合,其中可以藉由設計氮化矽圖案來控制兩層 基材的間距與通道的大小; 步驟十,參考圖六(j ),最後將一層玻璃材質或高分子材 料或矽的流道層3 0 1與這圖六(i )的兩層基材接合,如此便 完成DNA序列讀取元件的結構圖; φ 此外,亦可以在玻璃層中設計一些微幫浦以輔助 D N A 與緩衝液(B u f f e r )在流道中流動。 參考圖七,是本發明的實施例之一的配置上視圖。包含有Page 15 1236532 V. Description of the invention (13) Step 6, refer to FIG. 6 (f), then take a piece of P-Type (100) single crystal silicon as the second substrate 2 0 0, and use photolithography to etch Technology to etch silicon nitride; Step 7, refer to Figure 6 (g), and then use potassium hydroxide (K Η) at 85 ° C to etch the desired shape; Step 8, refer to Figure 6 (h), Then use a sputtering machine to sputter a layer of chromium (Cr) and then a layer of gold (Au) 201 on the upper half plane of the second substrate as a second electrode 2 that provides an electric field and a measurement signal 2 Step 9: Referring to FIG. 6 (i), the first substrate 100 and the second substrate 2000 are heated to 390 ° C to perform the bonding of the silicon / gold / stone evening eutectic alloy or Adhesive or co-fusion gold bonding, in which the distance between the two substrates and the size of the channel can be controlled by designing a silicon nitride pattern; Step 10, refer to Figure 6 (j), and finally a layer of glass or polymer material Or the flow channel layer 3 0 1 of silicon is bonded to the two-layer substrate of FIG. 6 (i), thus completing the structural diagram of the DNA sequence reading element; φ In addition It is also possible to design some micropumps in the glass layer to assist D N A and buffer solution (B u f f r r) in the flow channel. Referring to FIG. 7, it is a configuration top view of one embodiment of the present invention. Contains

第16頁 !236532 五、發明說明(14) 個注入口 3 0 2提供含有D N A的溶液,二十個奈米通道3 〇 3, 由四組電場控制與電流檢出電路3 0 4加以作動。電場控制 與電流檢出電路304可於第一基材100上,先以積體電路 製程完成,而奈米離子通道3 0 3的製作,則以上述的微加 作為積體電路製程的後製程(post processing)來 達成。 貫施例_Page 16! 236532 V. Description of the invention (14) The injection port 3 0 2 provides a solution containing D N A, and 20 nano-channels 3 0 3 are actuated by four sets of electric field control and current detection circuits 3 0 4. The electric field control and current detection circuit 304 can be completed on the first substrate 100 by the integrated circuit manufacturing process, and the fabrication of the nano-ion channel 3 03 is based on the above micro-addition as the post-processing of the integrated circuit manufacturing process. (Post processing).实施 例 _ Implementation examples _

使用 L P C V D所沉積出來的1 0 0 n m氮化石夕,其電阻率為 1016〜4x10 16歐姆-公分,經封裝後,如圖六(j)所示,其 上蓋形成凹穴,可等效成滴管(pipette)(參考 et* al., 1981, Pfluegers Arch. Eur. J. Physiol 3 9 1 : 8 5 - 1 〇 〇 ),故整體而言,本發明能達到的效果,不但 有膜片吸取(patch cl amp)的特性,更因微加工製成的氮 化石夕薄膜有更好的電阻率,且讀取電路直接製作 蚀北曰 「々、曰曰月上, 便月景雜訊更小。The resistivity of 100 nm nitride stone deposited by LPCVD is 1016 ~ 4x10 16 ohm-cm. After packaging, as shown in Figure 6 (j), the upper cover forms a cavity, which can be equivalent to a drop. Pipette (refer to et * al., 1981, Pfluegers Arch. Eur. J. Physiol 3 9 1: 8 5-1 〇〇), so the overall effect of the present invention, not only has the film suction (Patch cl amp), because the micro-fabricated nitride nitride film has better resistivity, and the read circuit is directly fabricated to etch the north and south, and the noise of the moon is smaller. .

基本上’奈米孔的電導’在任何給定的時間,可夢由 離子通過奈米孔的電阻,以及離子離開或進入奈米孔^電 5 來決定。在 1M NaC1, i〇mM Tris PH7.4 l2〇mV , 2m ,長度lnm奈米孔的條件下,未阻塞的電流約為 二PA,每個驗基通過奈米孔的時間約為5. 3 us ,欲使放 =器與類比數位轉換器(ADC)降低響應速度與低雜^的要 需要讓每個鹼基通過奈米孔的速度放慢,這可以藉由 以下方式來達成,例如增加溶液黏度,或降低直流偏壓大Basically, the "conductance of the nanopore" at any given time is determined by the resistance of the ions through the nanopore, and the ions leaving or entering the nanopore. Under the conditions of 1M NaC1, 10mM Tris PH7.4 l20mV, 2m, 1nm nanometer pore length, the unblocked current is about two PA, and the time for each test group to pass through the nanopore is about 5.3. us, in order to reduce the response speed and low noise of the amplifier and analog digital converter (ADC), it is necessary to slow down the speed of each base through the nanopore, which can be achieved by the following methods, such as increasing Solution viscosity, or lower DC bias

第17頁 1236532 五、發明說明(15) 小,或使直流偏壓具備同步訊號,約 2 0 0 KHz或更低,施 加正電與負電的時間比例,約為 1 : 1到1 : 1 0 ,電壓大小 的比例則為1 0 : 1到1 : 1。圖八是使用本發明的離子通道讀 出DNA序列的示意圖。 為了避免同一時刻有多個鹼基存於奈米孔之中,而因 此不能辨認出單一鹼基,最好的方法是奈米孔的長度要接 近單一驗基的長度(pitch)約為0.4 nm。恰好如前所述的 奈米穿孔製作時使用離子反應蝕刻,使穿孔形成碗狀形, 其底部最小的厚度可達0 . 4 nm。 · 因為雙股DNA電性結構的對稱性,施加靜電後,產生 g 的方向有兩種可能,兩種順序恰好相反;若使用單股 DNA, 其電性結構的對稱性不再存在,只要令 5 ’頭有較大的電 荷,可利用施加交變電場與否,與直流偏壓來達成5 ’頭先 行通過奈米孔;此外也可靠序列讀取後作一資料比對處理 而得到正確的序列。 綜上所述,本發明結合半導體製程,與微機電製程的 設計與製作多個離子通道機制,確能使序列讀取的速度加 快而且有效,爰依法提出發明專利申請。而根據以上所述 的内容,所作其他相關的改變,只要不脫離本發明之精 神,均應包含於申請發明專利範圍之内。Page 17 1236532 V. Description of the invention (15) Small, or make the DC bias voltage have a synchronization signal, about 200 KHz or lower, the time ratio of applying positive and negative electricity is about 1: 1 to 1:10 , The ratio of the voltage magnitude is 1 0: 1 to 1: 1. Fig. 8 is a schematic diagram for reading a DNA sequence using the ion channel of the present invention. In order to avoid having multiple bases in the nanopore at the same time, and therefore cannot recognize a single base, the best way is to make the length of the nanopore close to the length of a single test base (pitch) is about 0.4 nm . Just as mentioned before, the nano-perforation is manufactured by using ion reactive etching to make the perforation into a bowl shape, and the minimum thickness of the bottom can reach 0.4 nm. · Due to the symmetry of the electrical structure of the double-stranded DNA, there are two possible directions for generating g after the application of static electricity, and the two orders are exactly opposite. If a single-stranded DNA is used, the symmetry of the electrical structure no longer exists. The 5 'head has a large electric charge, and it can be achieved by applying an alternating electric field or not, and a DC bias voltage. The 5' head passes through the nanopore first. In addition, it can also be read by a reliable sequence and compared with the data to get the correct result. the sequence of. In summary, the present invention combines the semiconductor manufacturing process with the design and fabrication of multiple ion channel mechanisms of the micro-electro-mechanical manufacturing process, which can indeed make the sequence reading speed faster and more effective. Therefore, an invention patent application has been filed according to law. According to the content described above, other related changes should be included in the scope of applying for an invention patent as long as they do not depart from the spirit of the present invention.

第18頁 1236532 圖式簡單說明 [圖不] 圖一為本發明所使用的多離子通道定序基因的裝置示意 圖 整個完整的基因定序的流程 為本發明方法的DNA拉直示意圖 為本發明方法的電子電路 為本發明所使用的電流電壓轉換器電路 為本發明所使用的離子通道製作的實施例 為本發明所使用的離子通道製作的實施例配置的上 圖二 圖三 圖四 圖五 圖六 圖七 視圖 圖八為使用本發明的離子通道讀出DNA序列示意圖 圖號 2單股DNA 4每一鹼基 6第一凹穴Page 1236532 Brief description of the diagram [Figure not] Figure 1 is a schematic diagram of a device for sequencing genes of a multi-ion channel used in the present invention. The entire sequence of gene sequencing is a schematic diagram of DNA straightening in the method of the present invention. The electronic circuit is a current-voltage converter circuit used in the present invention. An example of the ion channel used in the present invention is made of the embodiment of the present invention. The above configuration is shown in FIG. Figure 6 View 7 Figure 8 is a schematic diagram of the DNA sequence read using the ion channel of the present invention Figure No. 2 Single strand DNA 4 Each base 6 First pocket

1 2過程二 1 4過程四 19薄膜 21第二電極 2 3直流電極/訊號輸入線 2 5未拉直的D N A 1多離子通道定序基因的裝置 3奈米通道 5離子流 7第二凹穴 1 1過程一 1 3過程三 1 5過程五 2 0電極糸統 2 2基板 24第一電極1 2 process two 1 4 process four 19 thin film 21 second electrode 2 3 DC electrode / signal input line 2 5 unstraightened DNA 1 polyion channel sequencing gene device 3 nano channel 5 ion flow 7 second cavity 1 1 process 1 3 process 3 1 5 process 5 2 0 electrode system 2 2 substrate 24 first electrode

第19頁 1236532Page 12 1236532

圖式簡單說明 26拉直的DNA 31電流/電壓轉換器 3 3微控制器 3 5外界的電腦 37RS- 2 3 2的通訊協定 3 9交流電場電壓 10 1氮化矽(Si 3N4)薄膜 3 0 P i c 〇安培電流量測電 子電路 3 2高速類比數位轉換器 34顯示器(LCD) 3 6記憶體 3 8直流電場電壓 10 0第一基材 1 0 2 5 4 . 7 4度斜角的淺 槽 上層 1 0 3—層金(A u ) 10 5第一基材下層 10 4第一基材 106 碗狀的奈米通道 201—層金(Au) 的流道層 3 0 3二十個奈米通道 3 1 1第一級放大電路 3 1 3第三級放大電路 2 0 0第二基材 3 0 1玻璃材質或高分子材料或矽 3 0 2注入口 3 0 4電場控制與電流檢出電路 3 12第二級放大電路Schematic description 26 Straightened DNA 31 Current / voltage converter 3 3 Microcontroller 3 5 External computer 37 RS- 2 3 2 Communication protocol 3 9 AC electric field voltage 10 1 Silicon nitride (Si 3N4) film 3 0 Pic 〇 Amp current measurement electronic circuit 3 2 High-speed analog digital converter 34 Display (LCD) 3 6 Memory 3 8 DC electric field voltage 10 0 First substrate 1 0 2 5 4. 7 4 degree shallow groove Upper layer 1 0 3—Layer of gold (A u) 10 5 First substrate lower layer 10 4 First substrate 106 Bowl-shaped nano channel 201—Layer channel layer of gold (Au) 3 0 3 Twenty nanometers Channel 3 1 1 First-stage amplifier circuit 3 1 3 Third-stage amplifier circuit 2 0 0 Second substrate 3 0 1 Glass material or polymer material or silicon 3 0 2 Injection port 3 0 4 Electric field control and current detection circuit 3 12 Second stage amplifier circuit

第20頁Page 20

Claims (1)

023^532^公.暫本 上』暴專雕si 1. 一種多通道聚核 定序的方法,其方 -使用微加工的技 米級穿孔,作為離 穴之間,將單種或 子溶液的第一凹穴 -針對每一穿孔, 道交流電場,讓第 膜互相垂直,又設 Η酸分子經過薄膜 組次p A (1 0 _1安培) 分子各鹼基經過穿 -設置一套控制器 與方向,離子通道 子電流的量測值做 或進一步與聚核Η g 酉曼分子 (polynuleotide molecules 法包括在晶片上 術製作一薄膜,並於薄膜上開設多個奈 子通道,使薄膜介於第一凹穴與第二凹 多種聚核苷酸分子,置入已放有適當離 y 使用積體電路製程設置一獨立的離子通 一凹穴的聚核苷酸分子拉直,方向與薄 置一離子通道直流偏壓,使拉直的聚核 上設置的穿孔到達第二凹穴,再設置一 的離子電流量測電路,量測聚核苷酸 孔時阻塞穿孔的離子電流; ,用來控制離子通道的直流偏壓的大小 交流電場的電壓大小與頻率,以及對離 訊號處理,轉換成鹼基序列,並記錄, 酸分子資料庫比對。 2.如申請專利範圍第1項所述的聚核苷酸分子定序的方法, 其中所謂的離子通道交流電場,主要係適當配置第一電極 於第一凹穴未與薄膜接觸的一側,第二電極於第二凹穴與 薄膜接觸的一側,並界定其作用範圍,當含有聚核苷酸分 子溶液置入兩電極之間的凹穴之中,原來隨意捲成一團的 聚核苷酸分子,會因施加適當的電壓大小與頻率,如 lMV/m,1MHz的電場於兩電極之間,而被拉直,不會有二023 ^ 532 ^ 公. Temporal engraving 『Beauty Carvings si 1. A multi-channel polynuclear sequencing method, which uses micro-machined technical rice-level perforations, as a single or sub-solution between the acupoints. The first cavity-for each perforation, an alternating electric field is made so that the first and second films are perpendicular to each other, and the acid molecule is passed through the film group p A (1 0 _1 amps). Each base of the molecule is passed through-a set of controllers and Direction, the measured value of the ion channel sub-current is further or further compared with polynucleotide molecules (polynuleotide molecules method includes the fabrication of a thin film on a wafer, and the creation of a plurality of nano-channels on the thin film, so that the thin film is between the first Dimples and dimples of various polynucleotide molecules are placed in a cavity that has been placed properly. Use an integrated circuit process to set a separate ion through the pocket. Straighten the polynucleotide molecules in the direction and thinly place an ion. The DC bias voltage of the channel makes the perforation provided on the straightened nuclei reach the second cavity, and an ion current measurement circuit is set to measure the ion current blocking the perforation when the polynucleotide hole is used to control the ions. Large DC bias of the channel The magnitude and frequency of the AC electric field, and the processing of the ion signal, conversion into a base sequence, and recording, the acid molecular database alignment. 2. The sequence of the polynucleotide molecules as described in the first patent application scope The method, the so-called AC electric field of the ion channel, mainly consists of appropriately disposing the first electrode on the side where the first cavity is not in contact with the film, and the second electrode on the side where the second cavity is in contact with the film, and defining its scope of action. When the solution containing the polynucleotide molecule is placed in the cavity between the two electrodes, the polynucleotide molecules that were randomly rolled into a group will be subject to the appropriate voltage and frequency, such as lMV / m, 1MHz. The electric field is between the two electrodes and it is straightened without two 第21頁 1236532 六、申請專利範圍 次結構。 3. 如申請專利範圍第1項所述的聚核苷酸分子定序的方法, 其中所謂的離子通道直流偏壓,主要係利用在第二凹穴處 的薄膜上的第二電極端另設一直流電極/訊號輸入線於穿 孔附近,加上直流偏壓,吸引帶負電的聚核苷酸分子朝穿 孔方向移動,進而使拉直的聚核苷酸分子經過薄膜上設置 的穿孔,或間歇改變直流偏壓方向,使聚合苷酸分子間歇 停留於穿孔。 4. 如申請專利範圍第1項所述的聚核苷酸分子定序的方法, 其中所謂的多個奈米級穿孔,是指其孔徑大小與形狀、數 目多寡、穿孔最小孔徑處的厚度,可依需要由微加工技術 完成。 5. 如申請專利範圍第1項所述的聚核苷酸分子定序的方法, 其中的凹穴内之溶液可依需要,由外設的加熱器提供溫度 控制,或以微加工技術設置一微加熱器於凹穴内提供溫度 控制。 6. 如申請專利範圍第1項所述的聚核苷酸分子定序的方法, 其中所謂的多通道定序,是指多個奈米級穿孔配合對應的 控制電場與讀取電路可以同時各自定序一串聚核苷酸分 子。Page 21 1236532 6. Scope of Patent Application Sub-structure. 3. The method for sequencing polynucleotide molecules according to item 1 in the scope of the patent application, wherein the so-called DC bias of the ion channel is mainly provided by using a second electrode terminal on the thin film at the second cavity. A DC electrode / signal input line is near the perforation, and a DC bias voltage is applied to attract negatively charged polynucleotide molecules to move toward the perforation direction, so that the straightened polynucleotide molecules pass through the perforations provided on the film, or intermittently. Change the direction of the DC bias, so that the polyglycolic acid molecules stay in the perforation intermittently. 4. The method for sequencing polynucleotide molecules according to item 1 of the scope of patent application, wherein the so-called multiple nano-scale perforations refer to the pore size and shape, the number of pores, and the thickness at the minimum pore diameter, Can be completed by micro-processing technology as required. 5. The method for sequencing a polynucleotide molecule as described in item 1 of the scope of the patent application, wherein the solution in the cavity can be provided with temperature control by an external heater as required, or a micro-processing technology can be used to set a micro- The heater provides temperature control in the recess. 6. The method for sequencing polynucleotide molecules according to item 1 of the scope of the patent application, wherein the so-called multi-channel sequencing refers to that multiple nano-scale perforations with corresponding control electric fields and read circuits can each be simultaneously Sequencing a string of polynucleotide molecules. 第22頁 1236532Page 12 1253632 第23頁Page 23
TW90121104A 2001-08-28 2001-08-28 Multichannel polynucleotide molecule sequencing method TWI236532B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90121104A TWI236532B (en) 2001-08-28 2001-08-28 Multichannel polynucleotide molecule sequencing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90121104A TWI236532B (en) 2001-08-28 2001-08-28 Multichannel polynucleotide molecule sequencing method

Publications (1)

Publication Number Publication Date
TWI236532B true TWI236532B (en) 2005-07-21

Family

ID=36674941

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90121104A TWI236532B (en) 2001-08-28 2001-08-28 Multichannel polynucleotide molecule sequencing method

Country Status (1)

Country Link
TW (1) TWI236532B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235224A (en) * 2020-01-14 2020-06-05 广东工业大学 Accurate biomolecule modification method and device based on magnetophoretic separation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235224A (en) * 2020-01-14 2020-06-05 广东工业大学 Accurate biomolecule modification method and device based on magnetophoretic separation
CN111235224B (en) * 2020-01-14 2023-06-20 广东工业大学 Accurate biomolecule modification method and device based on magnetophoresis separation

Similar Documents

Publication Publication Date Title
AU2019222673B2 (en) Device for sequencing
JP7254366B2 (en) Nanopore device and manufacturing method thereof
EP2342362B1 (en) Use of longitudinally displaced nanoscale electrodes for voltage sensing of biomolecules and other analytes in fluidic channels
US8246799B2 (en) Devices and methods for analyzing biomolecules and probes bound thereto
US8500979B2 (en) Nanogap chemical and biochemical sensors
US7347921B2 (en) Apparatus and method for threading a biopolymer through a nanopore
EP2411536B1 (en) Methods for analyzing biomolecules and probes bound thereto
KR101904248B1 (en) Method and apparatus for the analysis and identification of molecules
CN104011866B (en) For the nanopore sensor that biomolecule is characterized
TWI287041B (en) An ultra-rapid DNA sequencing method with nano-transistors array based devices
JP2001507441A (en) Microelectrophoresis chip for moving and separating nucleic acids and other charged molecules
CN111512156B (en) Electrochemical sequencing of DNA using edge electrodes
CN108368466B (en) Biomolecule measuring device
US9650668B2 (en) Use of longitudinally displaced nanoscale electrodes for voltage sensing of biomolecules and other analytes in fluidic channels
TW201636613A (en) Single molecule detection
CN106916737A (en) A kind of method of nanometer pore single-molecule sensor and manufacture nanohole array
JP2023012466A (en) Method and apparatus for analysis and identification of molecules
TWI236532B (en) Multichannel polynucleotide molecule sequencing method
US8273242B2 (en) Nanofabricated structures for electric field-assisted nucleic acid extraction
US9914966B1 (en) Apparatus and methods for analysis of biomolecules using high frequency alternating current excitation
Hannes et al. The etching of glass patterned by microcontact printing with application to microfluidics and electrophoresis
CN116867906A (en) Semiconductor nanosensor device with multi-layered graphene sheets for sequencing or sensing nucleic acids
Lee Nanoelectrode-gated detection of individual molecules with potential for rapid DNA sequencing
Yemenicioglu Stability and bandwidth investigation of alternative structures for nanopore sensors
KR20130082319A (en) Probe composition comprising a probe having nucleic acid structure and use thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees