TWI234942B - An adaptive air interface waveform - Google Patents
An adaptive air interface waveform Download PDFInfo
- Publication number
- TWI234942B TWI234942B TW92109587A TW92109587A TWI234942B TW I234942 B TWI234942 B TW I234942B TW 92109587 A TW92109587 A TW 92109587A TW 92109587 A TW92109587 A TW 92109587A TW I234942 B TWI234942 B TW I234942B
- Authority
- TW
- Taiwan
- Prior art keywords
- waveform
- modulation
- frequency
- code
- patent application
- Prior art date
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
Description
1234942 玖、發明說明: 【發明戶斤屬之技術領織】 發明領域 本發明係有關無線通訊,特別係有關適應性空氣介面 5 波形。 L Jttr Ji 發明背景 目前無線通訊系統無法對電磁頻譜的動態變化作適當 調整。結果無線通訊系統提供的服務品質相當低。隨著古 10 頻寬服務需求的增高,此項問題可能變得更為惡化。 先前嘗試改良無線通訊系統對電磁頻譜動態變化作調 整之能力,該先前嘗試的焦點集中於於特定時間點可利用 的維度子集的調整。資料速率及處理增益經過修改而適應 特定波形(例如展頻調變信號)至特殊通訊鏈路條件。具有各 15種不同參數之多種錯誤修正編碼技術應用於特殊頻率的指 定。頻率適應技術曾經祕高頻(HF)範圍。料適應技術 也用於通訊系統例如無線區域網路(WLANs),其中於開放 頻率相對緩慢定位之後選定一種開放頻率。 蜂巢式行動通訊系統典型係於指定的頻道頻率操作。 2〇緩慢指定可使用分頻多向近接(FDMA)技術。也曾經研究適 應性調變技術,但適應性調變技術或多或少限於改變特定 調變架構中的一或多項參數。全球頻譜的使用可能有相當 大改變,經常需要複雜的頻譜指定處理。隨著商業無線市 %增長結果重新配置頻寬,於未來將需要甚至又更複雜的 1234942 頻瑨私定分派處理。於目前的無線通訊系統中,一或多個 頻率以統4方式指定分派給一家通訊及感應器系統⑼如 雷達系統),而該通訊及感應器系統與一或多家其它通訊及 感應器系統間並無頻率重疊,該通訊及感應器系統與一或 5夕豕其匕通汛及感應器系統間有大量空間分隔,來防止其 間之不利干擾。 【項h明内容】 發明概要 本發明之特殊具體實施例可減少或消除傳統上與無線 10 通訊相關的缺點及問題。 本發明之-具體實施例中,一種產生適應性空氣介面 波形之方法包括產生-種波形,其包括一可變栽波頻率及 可變頻寬信號。該可變頻寬信號包括一或多個副栽波,該 副載波可動態置於-定頻率範圍,各副載波係根據直接= 15序(DS)展頻(ss)技術分開調變。波形具有嵌置先導載波疒 號,其可用於最佳化該波形之-或多種頻譜效率。 的波形之調變信號線圖、碼速率及碼長度可根據可利用的 頻譜以及一或多種副載波條件調整。 可變資料速率、可變 本發明之特定具體實施例提供—或多項優點。特定且 20體實施例中,多項參數之動態調整可對無線通訊系: -或多項舰_。特定緒實㈣巾, 間的調整、功率的調整、可變頻寬 調變與編碼及空間適應。 ’該波形可於可利用 特殊具體實施例提供一種波形 之 1234942 信號空間之多項維度而調整適應環境。特定具體實施例中 舉例言之,該信號空間包括頻率、時間、功率、調變、碼 及空間領域。特定具體實施例提供一種波形及一項機構供 選擇一或多個波形參數,且改變波形俾適應一或多種通訊 5 網路、一或多種通訊鏈路或一或多項使用者需求。特定具 體實施例提供智慧型選擇調適空間之多重維度,該等維度 包括頻率、調變架構及相關參數、編碼架構及相關參數以 及資料速率。特定具體實施例可提供一種波形,該波形已 經根據一或多種鏈路條件調整為最佳化。特定具體實施例 10 中,調變架構可形成多種信號線圖,且於空間上適應發射 時間。特定具體實施例中,調變係使用一種多載波劃碼多 向近接(MC-CDMA)架構,根據該架構一或多個各別載波係 根據各別載波之適應於一或多個鏈路而各自獨立調變及編 碼。特定具體實施例中適應一種通訊鏈路或多或少須配合 15 隨著時間的經過因資料速率及頻率變化造成的相關需求。 特定具體實施例中,一或多項頻率可經過遮斷或強調(有效 提供於各頻率之功率控制),因而可使用非連續頻率子頻 帶。特定具體實施例中,對一特定子頻帶選擇一種特殊調 變及編碼架構。特定具體實施例中,非均勻型態波形可對 20 一或多種無線通訊資源(例如一或多種頻帶)定形。特定具體 實施例中,頻率、調變類型及相關參數、編碼類型及相關 參數、時間、空間、功率、頻寬及處理經分析而提供相對 快速地適應時間改變的頻道條件。 特定具體實施例對多重無線應用用途提供適應性波 1234942 形,該等無線應用用途例如選擇多種適應空間維度之應 用途,以及估計頻道特性之應用用途。特殊具體實施例中, t率係以波形之頻率控制。特定具體實施例中,產生非連 $績頻率子頻帶。特定具體實施例中,較佳頻道組織經識別 且經選定。特定具體實施例中,較佳調變及編碼技術係根 據一或多項資料速率及服務品質等相關需求作選擇。 特定具體實施例中,頻譜知曉非均勻型態波形,該波 形動態適應而使用頻率、空間及時間定義之頻譜中可利用 1 =孔洞,該波形可允許共用共通頻譜。特定具體實施例中, 〇多項波形參數之同時適應將或多或少保證通訊,同時可抑 制彼此不利的干擾。特定具體實施例提供動態頻譜指定分 派技術,該項技術可提高頻譜利用率達2〇之因數。 特定具體實施例提供使用一或多項適當可利用之頻率 作快速反應適應性多載波重新組織。特定具體實施例提供 15 一種信號設計,該信號設計包括一先導載波信號用於實時 刎載波頻道估計,俾或多或少最佳化波形參數,以及包括 供叢發發射用之快速信號獲得。特定具體實施例提供一或 多種適應性頻寬有效碼調變架構,對多重副載波而言,或 多或少有同時多維變化能力。特定具體實施例提供快速反 2〇應能力,俾快速釋放通道的使用,以及動態重新組配混成 多向近接技術。 特疋具體實施例提供可於多重應用用途例如Wlan及 蜂巢式行動網路應用用途之單一適應性波形。特定具體實 施例提供有用的空氣介面,該空氣介面可於非均勻網路工 9 1234942 作,且可以约100 Mbps至1咖之資料速率操作。網路产 境包括蜂巢式巨觀環境、微-微蜂巢式環境、WLAN等環境, 網路環境包括一或多種彈性架構例如蜂巢式架構、集中式 架構、特用式架構及混成架構。特定具體實施例支援具有 相對尚速資料傳輸速率之服務及應用程式。特定具體實施 例可自動於頻譜之間隙(或孔洞)操作。孔洞包括多維,例如 包括時間、頻率及空間。 圖式簡單說明 為求更完整了解本發明及其特色及優點,將參照後文 10 說明結合附圖解說本發明,附圖中: 第1圖為根據本發明於下一代(XG)應用程式之一種非 均勻型態波形函數之方塊圖; 第2圖為適合填補時間-頻率頻譜間隙之頻率機動性非 均勻型態波形之說明圖; 15 第3圖為適應多重變數讓頻譜效率最佳化之非均勻型 態波形之說明圖; 第4圖為讓頻道估計資料變最佳化之多重載波組織、發 訊及多階頻寬有效編碼及調變; 第5圖為根據本發明之非均勻波形之頻率/時間/編碼之 20 代表圖;以及 第6圖為以LDPC為主之編碼調變架構來辅助碼參數快 速適應之多階組態之方塊圖說明。1234942 发明 Description of the invention: [Inventor's technical collar weaving] Field of the invention The present invention relates to wireless communication, and particularly to the waveform of the adaptive air interface 5. L Jttr Ji BACKGROUND OF THE INVENTION Currently wireless communication systems cannot properly adjust the dynamic changes of the electromagnetic spectrum. As a result, the quality of service provided by the wireless communication system is quite low. As the demand for Ancient 10 bandwidth services increases, this problem may worsen. Previous attempts to improve the ability of wireless communication systems to adjust the dynamic changes in the electromagnetic spectrum have focused on the adjustment of a subset of the dimensions available at a particular point in time. The data rate and processing gain are modified to adapt to specific waveforms (such as spread spectrum modulated signals) to special communication link conditions. A variety of error correction coding techniques with 15 different parameters each are used to specify specific frequencies. Frequency adaptation technology used to be in the high frequency (HF) range. Material adaptation technology is also used in communication systems such as wireless local area networks (WLANs), where an open frequency is selected after relatively slow positioning of the open frequency. Cellular mobile communication systems typically operate on a specified channel frequency. 20 Slow designation can use frequency division multidirectional proximity (FDMA) technology. Adaptive modulation techniques have also been studied, but adaptive modulation techniques are more or less limited to changing one or more parameters in a particular modulation architecture. The use of global spectrum can change considerably, often requiring complex spectrum assignments. As the commercial wireless market grows as a result of the reconfiguration of bandwidth, an even more complex 1234942 frequency band private assignment process will be needed in the future. In current wireless communication systems, one or more frequencies are assigned to a communication and sensor system (such as a radar system) in a unified manner, and the communication and sensor system is associated with one or more other communication and sensor systems. There is no frequency overlap between the two. The communication and sensor system is separated from the sensor system and the sensor system by a large amount of space to prevent adverse interference. [Item h Description] Summary of the invention A specific embodiment of the present invention can reduce or eliminate the disadvantages and problems traditionally associated with wireless communication. In a specific embodiment of the present invention, a method for generating an adaptive air interface waveform includes generating a waveform including a variable carrier frequency and a variable frequency wide signal. The variable frequency wide signal includes one or more subcarriers. The subcarriers can be dynamically placed in a fixed frequency range. Each subcarrier is modulated separately according to the direct = 15 sequence (DS) spread spectrum (SS) technique. The waveform has an embedded pilot carrier number, which can be used to optimize one or more of the spectral efficiencies of the waveform. The modulation signal line diagram, code rate and code length of the waveform can be adjusted according to the available frequency spectrum and one or more subcarrier conditions. Variable data rate, variable Specific embodiments of the invention provide—or multiple advantages. In a specific and 20-body embodiment, the dynamic adjustment of a number of parameters can be made to the wireless communication system:-or a number of ships. Specific adjustments, adjustments, power adjustments, variable bandwidth modulation, coding, and space adaptation. ’This waveform can be adjusted to suit the environment by using multiple dimensions of the 1234942 signal space of a waveform that can be provided by a particular embodiment. In the specific embodiment, for example, the signal space includes frequency, time, power, modulation, code, and space fields. A specific embodiment provides a waveform and a mechanism for selecting one or more waveform parameters, and changing the waveform to meet one or more communication networks, one or more communication links, or one or more user needs. Specific specific embodiments provide intelligent selection of multiple dimensions of the adaptation space. These dimensions include frequency, modulation architecture and related parameters, coding architecture and related parameters, and data rate. Certain embodiments may provide a waveform that has been optimized for one or more link conditions. In the specific embodiment 10, the modulation architecture can form a variety of signal line diagrams, and can adapt to the transmission time in space. In a specific embodiment, the modulation system uses a multi-carrier coded multi-directional proximity (MC-CDMA) architecture according to which one or more individual carriers are adapted to one or more links according to the adaptation of the respective carriers Independent modulation and coding. In a specific embodiment, adapting a communication link to more or less must cooperate with the related requirements caused by data rate and frequency changes over time. In a specific embodiment, one or more frequencies may be blocked or emphasized (effectively providing power control for each frequency), so discontinuous frequency sub-bands may be used. In a specific embodiment, a special modulation and coding architecture is selected for a specific sub-band. In a specific embodiment, the non-uniform waveform may shape 20 or more wireless communication resources (for example, one or more frequency bands). In a specific embodiment, the frequency, modulation type and related parameters, encoding type and related parameters, time, space, power, bandwidth, and processing are analyzed to provide channel conditions that are relatively quickly adapted to time changes. A specific embodiment provides adaptive waveforms 1234942 for multiple wireless applications, such as selecting multiple applications that adapt to the spatial dimension, and application applications that estimate channel characteristics. In a specific embodiment, the t rate is controlled by the frequency of the waveform. In a specific embodiment, a non-continuous frequency sub-band is generated. In particular embodiments, preferred channel organizations are identified and selected. In a specific embodiment, the preferred modulation and coding technology is selected based on one or more related requirements such as data rate and service quality. In a specific embodiment, the spectrum is aware of a non-uniform waveform, and the waveform is dynamically adapted to use a frequency, space, and time defined in the frequency spectrum. 1 = hole, which can allow a common frequency spectrum to be shared. In a specific embodiment, the simultaneous adaptation of a plurality of waveform parameters will more or less guarantee communication, and at the same time, it can suppress adverse interference with each other. A specific embodiment provides a dynamic spectrum assignment technology, which can improve the spectrum utilization factor by a factor of 20. Certain embodiments provide adaptive multi-carrier reorganization using one or more appropriately available frequencies for fast response. Specific embodiments provide a signal design that includes a pilot carrier signal for real-time carrier channel estimation, more or less optimized waveform parameters, and fast signal acquisition for burst transmission. Certain specific embodiments provide one or more adaptive bandwidth effective code modulation architectures. For multiple subcarriers, they have more or less ability to simultaneously multi-dimensionally change. Specific embodiments provide rapid response capabilities, the use of rapid release channels, and dynamic re-assembly to multi-directional proximity technology. Specific embodiments provide a single adaptive waveform that can be used in multiple applications such as Wlan and cellular mobile network applications. Certain specific embodiments provide a useful air interface that can operate in non-uniform network operations, and can operate at data rates of about 100 Mbps to 1 Mbps. The network environment includes a honeycomb macro view environment, a micro-micro honeycomb environment, and a WLAN environment. The network environment includes one or more flexible architectures such as a honeycomb architecture, a centralized architecture, a special-purpose architecture, and a hybrid architecture. Certain embodiments support services and applications with relatively fast data transfer rates. Certain embodiments may operate automatically between gaps (or holes) in the spectrum. Holes include multiple dimensions, including time, frequency, and space. Brief Description of the Drawings For a more complete understanding of the present invention and its features and advantages, the present invention will be explained with reference to the following description with reference to the following 10 drawings. In the drawings: FIG. A block diagram of a non-uniform waveform function; Figure 2 is an explanatory diagram of a non-uniform waveform of frequency mobility suitable for filling the time-frequency spectrum gap; 15 Figure 3 is to adapt multiple variables to optimize spectrum efficiency Explanation of non-uniform waveforms; Figure 4 is a multi-carrier organization, signaling and multi-band bandwidth effective coding and modulation to optimize channel estimation data; Figure 5 is a non-uniform waveform according to the present invention The 20 representative diagrams of frequency / time / encoding; and Fig. 6 is a block diagram illustration of a multi-level configuration in which the LDPC-based encoding modulation architecture assists the rapid adaptation of code parameters.
【實施方式;J 較佳實施例之詳細說明 1234942 本發明為一種動態適應頻率、時間、調變'密碼、資 料速率、功率、發訊及多重載波組織之非均句波形。該波 形經由可對頻譜作有效、機會性及協力利用因而可提高頻 譜效率。該波形經由把握時間/頻率/空間「孔洞」,以及使 5用與非干涉性通訊符合-致的最有效編碼、調變、發訊及 副載波組織而與隨時間而變更之頻道條件及使用條件產生 交互作用。本發明之非均勻波形可再分成兩大成分如後: •適應性多重載波組織與發訊,其將依可變載波頻率 及可變頻寬信號組配成為一或多個副載波,其動態置於高 10達25〇 MHz之跨距上,以防止或減少與原有頻譜使用者的 發射產生干擾。各個副載波係藉直接順序展頻(DS ss)分開 調變用於對協力信號、非協力信號及威脅信號之可變展頻 及編碼增益獲得獨立調變。時間/碼組合先導信號欲入波形 内俾基於副載波頻道估值獲得最佳化。波形支援寬廣範圍 之適應性/混成多向近接架構,包括CDMA、TDMA、FDMA 與FHMA的組合。 •適應性多階頻寬有效編碼與調變(BECM),提供—家 族BECM架構,結合多重信號線圖調變及前傳錯誤修正編碼 二者。經過低密度同位檢查碼(LDPC)編碼之調變家族可用 20 於改善業界現況之頻寬效率及適應能力。調變信號線圖、 碼速率及碼長度調整匹配可利用之頻譜及副載波條件將獲 得最大頻譜效率,同時滿足服務品質(Q〇S)及資料速率需 求。 總頻譜效率係依據頻譜使用之頻率、空間及時間效率 1234942 的組合決定。由於此等因素間彼此有緊密交互相依性,因 此改良一區的效率將降低另一區效率。 •降低每次呼叫/連結的頻譜使用 -提高調變效率(位元/秒/赫茲) 5 -改良錯誤修正編碼效率 -壓縮來源資訊 -使用具有「軟性」能力極限之適應性(亦即混成) 多向近接技術(當FDMA/CDMA為可能時,使用[Embodiment; detailed description of J preferred embodiment 1234942 The present invention is a non-uniform sentence waveform that dynamically adapts to frequency, time, modulation 'password, data rate, power, signaling, and multi-carrier organization. The waveform can effectively, opportunistically and cooperatively use the spectrum, thereby improving the spectral efficiency. This waveform is based on the time / frequency / spatial "holes" and the most effective coding, modulation, signaling, and subcarrier organization that are compatible with the five applications and non-interfering communication, and the channel conditions and use that change over time. Conditions interact. The non-uniform waveform of the present invention can be further divided into two major components as follows: • Adaptive multi-carrier organization and signaling, which will be assembled into one or more sub-carriers based on a variable carrier frequency and a variable frequency wide signal, and its dynamic settings In the span of 10 to 25MHz, to prevent or reduce interference with the emission of the original spectrum user. Each sub-carrier is separately modulated by direct sequence spread spectrum (DS ss) to obtain independent modulation for variable spread spectrum and coding gain of cooperative signals, non-cooperative signals and threat signals. The time / code combination pilot signal is intended to be waveform-internally optimized based on the subcarrier channel estimate. The waveform supports a wide range of adaptive / hybrid multi-directional proximity architectures, including combinations of CDMA, TDMA, FDMA and FHMA. • Adaptive Multi-Order Bandwidth Effective Coding and Modulation (BECM), which provides a family BECM architecture that combines both multi-signal line modulation and front-end error correction coding. The low-density parity check code (LDPC) coded modulation family can be used to improve the bandwidth efficiency and adaptability of the current industry situation. Modulate the signal line diagram, code rate and code length adjustment to match the available spectrum and subcarrier conditions to obtain the maximum spectrum efficiency, while meeting the quality of service (QoS) and data rate requirements. Total spectral efficiency is determined based on a combination of frequency, space and time efficiency 1234942 of spectrum use. Since these factors have a close interaction with each other, improving the efficiency of one zone will reduce the efficiency of the other zone. • Reduce spectrum usage per call / link-improve modulation efficiency (bits / second / hertz) 5-improve error correction coding efficiency-compress source information-use adaptability (ie hybrid) with "soft" capability limits Multidirectional proximity technology (when FDMA / CDMA is possible, use
mc_cdma) 10 •增加頻寬之空間再利用 -提高調變功率效率(最小Eb/NQ來達成足夠BER) -功率控制上使用快速適應 -藉波形設計降低對干擾的機動性 -發射更加「干擾友善的」波形 15 -較寬廣頻寬的展頻信號資訊mc_cdma) 10 • Increase the bandwidth and reuse the space-improve the modulation power efficiency (minimum Eb / NQ to achieve sufficient BER)-use fast adaptation in power control-reduce the mobility of interference by waveform design-more interference-friendly emission "Waveform 15"-Broadband signal information
-增加頻寬之方向性共享 •增加頻寬之時間分享 -頻譜之協調時間使用(例如透過多向近接技術協調 頻譜之時間使用) 20 -當孔洞變成可利用時把握時間「孔洞」於頻譜之 用途(例如快速信號取得、逐一叢發脈衝調整) 此等策略中有多項策略彼此交互矛盾,亦即提高調變 效率將造成功率效率的降低。準確存取整體頻譜利用效率 需要考慮電磁頻譜之頻率/時間/空間再度使用間複雜的交 12 1234942 互作用。 參照第1圖,顯示一種非均勻形狀波形函數,其動態「變 形」,填補未使用的頻譜「孔洞」,俾動態提高頻譜利用性。 整體波形適應性可考慮成可決定最終發射波形之「内部」 5 及「外部」函數、特色及參數集合的階層式組合。「外部」 集合提供頻率機會及時間機會連同其它環境特性之定義。 「内部」集合定義修改波形如何於其頻寬跨距以内「反應」 俾執行該等策略,讓波形參數最佳化供達成符合局部頻道 條件、避免交互干擾以及LPI/LPD要求的最大頻譜效率。-Increase the directional sharing of the bandwidth • Increase the time sharing of the bandwidth-Coordinated time usage of the spectrum (eg, coordinate time usage of the spectrum through multi-directional proximity technology) 20-Grasp the time when the holes become available "holes" in the spectrum Uses (such as fast signal acquisition, burst-by-burst adjustment) There are multiple strategies in these strategies that conflict with each other, that is, increasing the modulation efficiency will cause a reduction in power efficiency. Accurate access to the overall spectrum utilization efficiency requires complex interactions between frequency / time / space reuse of the electromagnetic spectrum. 12 1234942 Referring to Figure 1, a non-uniform shape waveform function is shown. Its dynamic "deformation" fills unused spectrum "holes" and dynamically improves spectrum availability. The overall waveform adaptability can be considered as a hierarchical combination that determines the "internal" 5 and "external" functions, features, and parameter sets of the final transmitted waveform. The "external" collection provides definitions of frequency and time opportunities along with other environmental characteristics. The “internal” set defines how the modified waveform “reacts” within its bandwidth span. 俾 Implement these strategies to optimize waveform parameters to achieve maximum spectral efficiency that meets local channel conditions, avoids cross-interference, and LPI / LPD requirements.
10 本發明之波形為一種多載波直接順序展頻(MC-DS SS)、多重速率、信號線圖複合頻寬波形,可於時間、頻率、 功率、調變類型、速率、編碼、多重載波組織及近接方法 快速適應。適應性介面允許多種近接及控制技術,適應於 相同頻率配置頻帶及實體空間的網路,以及適應時間改變 15 頻道條件、威脅及使用者的需求。波形以封包為基準使用 可利用的短時間(毫秒時間)時間節段,當網路變激活時釋放 頻道給其它網路,且基於預測利用性取得其它頻道。 可以數種方式達成頻道機動性。第一波形之中心頻率 及射頻頻寬隨著頻道使用時間的改變而改變佔有不同頻率 20 頻道。顯示於第2圖,此乃四頻率頻道呈時間之函數之頻譜 利用代表圖。原有使用者區指示來自原有非XG使用者之傳 輸;空白頻譜區指示時間_頻率頻譜使用上的r孔洞」。利 用頻率頻道F1上的第一可利用「間隙」考慮所示xG發射。 於點A,波形驗證巨觀頻率機動性,於再度變形至頻道F2 13 1234942 之前’波形「變形」中心頻率及頻寬跨距而減短佔有二頻 率頻道F1及F2。於點B,非XG及XG發射佔據頻率頻道F2。 非XG發射只佔據部分頻率頻道F2。於XG發射之完整頻寬 跨距以内,波形組織其副載波而佔據某些全跨距子集。如 5此波形佔據的頻寬將小於或等於全頻寬跨距。此種微觀頻 率機動性用來避開頻率頻道之由非XG信號佔據部分。無功 率、或非XG信號之可接受之SIR值以内的功率係於此等未 經使用的副載波發射,以防干擾其它發射。此種巨觀及微 觀頻率機動性的組合將XG頻譜效率最大化,該組合取得頻 1〇率/跨距/時間可利用的間隙,釋放出所需頻譜用於通訊以及 感應器(例如雷射)等功能。 參照第3圖,顯示2-D波形於左側以及3-D波形於右側之 代表圖圖中央的圖說強調非展頻基於Qam調變、空白頻 譜、排除頻譜及基於DS_SS調變區。排除頻譜表示無法利用 15於波形使用之時間-頻率孔洞組合,如同於XG無線由外部控 制功能所提供的頻譜。波形圖驗證微觀頻率機動性,且組 織信號能防止排除區段動態「變形」,俾獲得3-D(頻率、時 間、功率)的改變形狀。注意排除區段於3_D呈現被顯示為 被遮蓋」,於該等時間_頻率組合未發射任何功率。於其 2〇它副載波,波形圖利用基於QAM之調變與下述的組合,單 載波及多栽波直接順序展頻於時間上並存於不同頻率副載 波,於一指定副載波上有時間改變調變。頻寬有效編碼及 凋隻(BECM)架構以及副載波組織也連續調整俾最大化總 頻譜利用效率。基於信號最佳化及資料速率的需求,xG8 1234942 形可選擇將右干可利用的時間-頻率孔洞保留空白。 波形構造被分隔成為兩大功能成分,說明如後。 •適應性多重載波組織及發訊··將高達25〇 mHz頻寬 跨距的頻道組配成為一或多個可變寬度副載波,其係藉直 5接順序展頻(DS-SS)獨立調變俾獲得可變編碼增益。波形可 支援多種多向近接技術包括CDMA、TDMA、FDMA、 FHMA、CSMA/CA及RTS/CTS。複數個使用者於高達25〇 MHz頻寬跨距所含的複數個副載波同時獨特地以變化資料 率接受服務。10 The waveform of the present invention is a multi-carrier direct sequence spread spectrum (MC-DS SS), multiple rate, and signal line diagram compound bandwidth waveform. It can be organized in time, frequency, power, modulation type, rate, coding, and multiple carriers. And proximity methods quickly adapt. The adaptive interface allows multiple proximity and control technologies to adapt to networks with the same frequency allocation bands and physical space, as well as adapt to time-varying 15 channel conditions, threats, and user needs. The waveform uses the packet as a reference. The available short time period (millisecond time), when the network becomes active, releases the channel to other networks, and obtains other channels based on the predicted availability. Channel mobility can be achieved in several ways. The center frequency and radio frequency bandwidth of the first waveform change as the channel usage time changes to occupy 20 channels of different frequencies. Shown in Figure 2, this is a representative diagram of the frequency utilization of the four frequency channels as a function of time. The original user area indicates the transmission from the original non-XG user; the blank spectrum area indicates the r-hole in time_frequency spectrum use ". Use the first available "gap" on frequency channel F1 to consider the xG transmission shown. At point A, the waveform verifies the flexibility of the macroscopic frequency. Before the waveform is deformed again to the channel F2 13 1234942, the waveform “deforms” the center frequency and the bandwidth span to shorten the occupied two-frequency channels F1 and F2. At point B, non-XG and XG transmissions occupy frequency channel F2. Non-XG transmissions only occupy part of the frequency channel F2. Within the full bandwidth span of the XG emission, the waveform organizes its subcarriers and occupies some full-span subsets. For example, the bandwidth occupied by this waveform will be less than or equal to the full bandwidth span. This micro-frequency mobility is used to avoid the frequency channel being occupied by non-XG signals. Reactive power, or power within the acceptable SIR value of non-XG signals, is transmitted on these unused subcarriers to prevent interference with other transmissions. This combination of macroscopic and micro-frequency mobility maximizes the efficiency of the XG spectrum. The combination obtains a gap of 10 frequencies / span / time available and releases the required spectrum for communication and sensors (such as lasers). ) And other functions. Refer to Figure 3, which shows the 2-D waveform on the left and 3-D waveform on the right. The legend in the center of the figure emphasizes non-spread spectrum based on Qam modulation, blank spectrum, excluded spectrum, and DS_SS modulation area. Excluding the spectrum indicates that the time-frequency hole combination used in the waveform cannot be used, just like the spectrum provided by XG wireless by external control functions. The waveform diagram verifies the micro-frequency mobility, and the tissue signal can prevent the dynamic “distortion” of the excluded section, and obtain a 3-D (frequency, time, power) changing shape. Note that the excluded section is shown as obscured in 3_D rendering, "and no power was transmitted during these time_frequency combinations. For its 20 subcarriers, the waveform diagram uses a combination of QAM-based modulation and the following. Single carrier and multiple waves are directly spread in time and stored in different frequency subcarriers. There is time on a designated subcarrier. Change modulation. The bandwidth efficient coding and BECM architecture and subcarrier organization are also continuously adjusted to maximize the overall spectrum utilization efficiency. Based on the requirements of signal optimization and data rate, the xG8 1234942 shape can choose to leave the time-frequency hole available for the right trunk blank. The waveform structure is divided into two major functional components, as explained later. • Adaptive multi-carrier organization and signaling · Group channels with a bandwidth of up to 25mHz into one or more variable-width subcarriers, which are independent by DS-SS Modulate 俾 to obtain a variable coding gain. The waveform can support multiple multi-directional proximity technologies including CDMA, TDMA, FDMA, FHMA, CSMA / CA and RTS / CTS. Multiple users receive services at varying data rates at the same time with multiple subcarriers contained in bandwidth spans up to 25 MHz.
10 •適應性多階頻寬有效編碼與調變(BECM)提供BECM 架構族群,結合對副載波條件為最佳化的多重信號線圖調 變以及多階前傳錯誤修正編碼。基準線設計使用較低密度 同位檢查碼(LDPC)(目前為BECM研究中較偏好使用者)作 為編碼調變技術基礎。 15 要求多維適應,利用頻率/空間/時間間隙來實現頻譜效 率的改良。非均勻型態波形跨多個不同維同時調整,摘述 於表1。載波頻率、頻寬跨距、及佔據的頻寬經改變而獲得 XG發射,此乃由一頻道「跳」至另一頻道所需巨觀頻率機 動性。適應性多重載波組織及發訊能力將高達250 MHz頻 20寬跨距結構化成為一或多個可變寬度副載波,俾支援微觀 頻率機動性,且避免於波形頻寬以内的發射。結果佔據的 頻寬將依據使用者資料速率需求、副載波條件及XG平台的 處理能力的組合決定。適應性多階頻寬有效編碼及調變 (BECM)利用由嵌置於波形的先導符號元件致能之XG頻道 1234942 估。十’來4擇錯雜正碼及觀錢波形圖俾最佳化跨各 副載波的能力。除了用來最小化多向近階干擾之功率控制 架構外’波形有叢發逐叢發「快速適應」功率控制能力, 俾快速釋出各別副概或整個被佔據頻寬的使用,如外部 控制信號回應於侧得時間/頻率/空間ί合之非XG信號指 示〇 表1 非均勻塑維機適應俾提㈣·用效率 適應能力 載波頻率 頻寬跨距10 • Adaptive Multi-Order Bandwidth Efficient Coding and Modulation (BECM) provides a family of BECM architectures, combining multiple signal line graph adjustments optimized for subcarrier conditions and multi-stage front-pass error correction coding. The baseline design uses a lower density parity check code (LDPC) (currently the preferred user in BECM research) as the basis for the coding modulation technique. 15 Requires multidimensional adaptation, using frequency / space / time gaps to achieve improvements in spectral efficiency. Non-uniform waveforms are adjusted simultaneously across multiple different dimensions, as summarized in Table 1. The carrier frequency, bandwidth span, and occupied bandwidth are changed to obtain XG transmission. This is the macroscopic frequency mobility required to "jump" from one channel to another. Adaptive multi-carrier organization and signaling capabilities structure up to 250 MHz and 20 wide spans into one or more variable-width subcarriers, which support micro-frequency mobility and avoid transmissions within the waveform bandwidth. The resulting occupied bandwidth will be determined based on the combination of user data rate requirements, subcarrier conditions, and the processing capabilities of the XG platform. Adaptive Multi-Order Bandwidth Efficient Coding and Modulation (BECM) uses the XG channel 1234942 estimate enabled by the pilot symbol element embedded in the waveform. Ten's and four's select miscellaneous positive codes and watch money waveforms to optimize the ability to cross each subcarrier. In addition to the power control architecture used to minimize multi-directional near-order interference, the waveform has burst-to-burst “quick adaptation” power control capabilities, which can quickly release the use of individual profiles or the entire occupied bandwidth, such as external The control signal responds to the time / frequency / space non-XG signal indication. Table 1 Adaptation of non-uniform plastic maintenance machine
副載波頻寬有效編碼與 調變(BECM) 動機 巨觀頻率機動性 巨觀頻率機動性 —----- 微觀頻率機動性 子頻道最佳化資料速率 討論 令許使用頻率/空間/時間 間隙」跨完整操作頻帶 用不同頻率/空間/ 時間「間隙 Ί 避免干擾與壅塞 --—--- XG容量匹配頻道條件 功率效率 快速取帶釋魏頻道估計 快速適應功率控制 快速獲得/先導載波信號 符號 降低對其它使用者的干 擾而促進空間的再使用 雜的辭/時間/ 10 參照第4圖,顯示一種駐在XG無線之波形適應功能。 適應性多重載波組織與發訊扇區定義前同步信號符號及先 導載波h號符號’指疋副載波位置及容量,應用任何所需 PN展頻、時間多樣化及頻道化至使用者資料。適應性多階 頻寬有效編碼及調變扇區編碼且映射經過編碼的資料至被 15 分配指定的副載波。然後信號接受適應性功率控制,結果 獲得高達250 MHz之完全非均勻型態波形頻寬。接收得的 16 1234942 資料之頻道估計係藉下述方式進行,經由使用嵌置於各次 發射波形之雙向先導載波信號符號來估計於各對XG節點 間有寬廣改變之副載波特性。經解碼的前同步信號含有來 自鏈路另一端的頻道估值資訊。頻道估計資料送至各適應 5 性區塊俾最適化副載波容量。藉此方式,頻道估值驅動多 重載波組織與發訊的適應性、以及多階頻寬有效編碼與調 變之適應性。頻道估計之先導載波信號符號設計討論如後。 非均勻波形之多重載波結構,允許空間處理技術獨立 外加跨不同子頻帶。如此波形不僅與目前與未來的空間處 10理相容,同時比較對全頻寬可獲得一項解決之道之技術, 將獲付性能的改良。此種技術包括射束及無效成形以及空 間/路徑多樣化處理系統,增強干擾壓抑的槓桿效果,且提 高跨複數個技術區所能達成之資料速率發射增益,俾提高 頻譜效率。 15 參照第5圖,顯示複數個3-D頻率/時間/功率之波形代表 圖。較左圖之x-y平面允許波形之時間·頻率映射。使用者資 料fK個多重可變頻寬子頻帶映射。多重副載波可聚集而形 ,二射軸寬以内之可變寬度子頻帶。基於FFT之實作係以 \ w ’分時間利用。各個副載波呈頻率及時間之函數 2° =率位準可調整為任意小數值,以防重疊環境中的其它 變格式攻形同時支援於不同副載波的複數個展頻寬度及調 之方之額顯示波形透過CDMA支援複數個使用者 J之代表圖。圖中-個副誠係由單—使用者所專 17 1234942 用紅由對錢用者指定單一較短的p N展頻石馬來加快資料 速率,而於其它副载波,複數個可變速率使用者以不同長 度的PN縣存取該頻道。如此進_步顯示於說關中標示 為「CDMA模式」,使用者Ca、Cb及Cc碼功率組合而形成聚 5集力率另外使用者將其資料集中,使用基於扁 之調變^佔據整個副載波。波形圖也支援混成模式,此處 使用者資料不’分被編碼成不同_變格式,如第5圖左 下角所示。考慮佔據頻帶上部及下部之非XG發射。 基於波形所提供之頻道估值,所示發射現在映射至二 10部分。第1部分將使用者資料展頻跨完整頻寬,俾降低功率 頻譜密度低於對非XG發射有害的程度;第2部分將其餘資 料集中於未被佔據的頻寬。 跨寬頻#號之頻寬,若干頻率接觸強力頻道增益,而 ,、匕頻率則經歷深度頻道衰減。單一載波及ss可對 15抗因無線頻道之多重路徑傳播所引發的窄頻干擾以及時間 變化頻率選擇性衰減。用於單一載波案例,當載波頻寬超 過頻道的相干性頻寬(Bc)時,需要多重搜索接收器「指」 來解析各別多重路徑成分,以及捕捉可達成的多樣化增 益。可被解析的成分數目,以及所需搜索接收器數目為載 〇波頻寬對相干性頻寬之比。另一項辦法係將總頻寬B劃分為 N個較窄頻寬副載波(b=B/N),各自粗略等於相干性頻寬 (b%Bc)。使用多重載波,經由多樣化組合頻率領域之複數 個獨立載波,替代於時間領域之單一載波之多重搜索指, 可保有原先寬頻寬之頻率多樣性。於此型波形設計中頻率 1234942 多樣化增益量可對資料速率折衷,其折衷方式係發射指定 資料符號跨多重副載波(亦即頻率展頻),且組合來自該等副 載波之試驗統計學,隨後對資料作出最後決定。當各個副 載波係藉與其它副載波無關的資料調變時,總發射率最大 5 化,各個符號被發射而無頻率多樣化。 業已顯示帶有搜索接收器之單一載波DS SS效能與相 當設計之MC-DSSS波形效能類似。 當可利用之頻寬(及資料速率)係遠大於相干性頻寬 時’當需要更大數目之搜索指時,接收器複雜度顯著增高 10替代N個(=B/BC)指對單一載波DS SS各自處理頻寬B信 號’ MC-DS SS波形需要N指(每個副載波一指),各指各自 處理一個頻寬b(=B/N)之信號,結果獲得複雜度較低的接收 器。其原因為副載波上的晶片持續時間比單一載波系統之 晶片時間長Μ倍,減少成功地解調信號所需的運算數目。 15當需要多於三至四個搜索指時,多重載波實作較為有效。 多重載波調變之實作優點於存在有窄頻干擾器時更為 明顯,原因在於多重載波系統無需連續頻寬之故。用於XG 系統之應用用途,多重載波重疊於原有窄頻信號集合上, 單純於多重副載波位置留下適當間隙。可達成副載波位置 20 之適應性「重新路由」避開干涉器',而相對於有相等總佔 據頻寬之連續副載波,功率並無耗損。單一載波信號須實 作適應性凹部濾波器,該濾波器可達成的凹部深度及凹部 頻寬之複雜度相關。 MC-DS SS波形彈性優點係使用不同資料速率於部分 19 1234942 或全部副載波,俾發送更多資料於「強」_波,同時發 射較少的資料於「弱」副載波。投資於此種彈性能力係依 據系統可如何準確的估計不同副載波的衰減狀 態決定。先 導載波信號進行此種頻道估計,準確估計衰減能力係依據 多項系統參數決定,㈣參數包㈣訊比(snr)、信號/干 擾比(SIR)、都卜勒展頻以及前傳錯誤修正。 10 15 20 本發明波形結合通道估計能力來指導多重載波組織與 發訊的調整適應、収㈣魏為基準之頻寬有效編碼及 調變俾最佳化頻譜利用效率。頻道估計基礎為混成 CDMA/TDMA先V載波#號’其係由—展頻碼欲置於資料 叢發脈衝之前同步信號組成。此等先導載波信號符號對適 應性等效H而f,賴上係與娜序㈣效。使用先導載 波信號,允許相依性解調,改進功率效率。先導載波信號 展頻,降低彳貞測與搁#。抗干擾抗性係藉下述方式提 供,確疋先導載波信號展頻程度至少如同資料,故干擾器 不容易單純集中於先導載波信號而破壞波形。 使用先導載波信號也提供副載波衰減的「快照」,該快 照可用來估計頻道之相干性頻寬。此項估值係用作為受到 頻4間隙利用性之約束,調整副載波寬度及位置的基礎。 k如同田彳載波寬度受到頻道相干性頻寬的驅策,衰減變化 率也受頻道相干性時間驅策。相干性時間提供頻道估值維 持有效時間的測量值,且係與都卜勒位移成反比。例如以 每小時50哩速度移動且於頻率2·5 GHz通訊之車輛具有都 卜勒位移186 Hz,指示頻道估值以及隨後之多重隨機變量 20 1234942 之調整適應須以每5.4毫秒之程度更新。當頻道估值無法取 得,或頻道估值時間已經超過頻道的相干性時間時,資料 必須於各副載波以相等速率發送。 使用MC信號作為多重載波組織及發訊的基礎,獲得寬 5 廣設計折衷方式來最大化頻譜效率。不同波形參數之多重 組合提供等效使用者有效負載資料率。多重變數之調整適 應功效包括下列: •改變頻寬跨距及被佔據頻寬,允許波形匹配可利用 的頻寬。較寬頻寬提供較大量原始容量,而可獲得多樣化、 鲁 10 編碼、展頻增益等。較窄的頻寬提供一種結構,該結構允 許可利用小量頻譜時之波形操作。 •可變之副載波數目:經由改變副載波數目,可利用 之頻寬可組織而防止於選定副載波的窄頻干涉/干擾。若只 使用一種副載波,則波形「變形」成單一載波波形(例如Ds 15 SS,習知qpsk等)。 •可變副載波組織:映射使用者資料至不同副載波的 組合,允許不同類型系統增益外加至信號來對抗衰減與干 鲁 涉。展頻增益以及頻率多樣化增益可跨毗鄰副載波施加, 經由映射資料跨非連續㈣波可達成可變量之干涉平均。 2〇 •可變副載波資料率:經由監視各個副載波狀態,以 及使用頻道條件容許的較高階調變,可讓各副載波 率最佳化。 一 /可變頻率多樣化:經由於不同副載波平行發射多位 兀(夕重載波負載分享),資料率可交換成為頻率的多樣化。 21 1234942 因任何DSSS系統對遠近問題特別敏感,故系統設計上 需要有-或多項緩和問題的手段。用於指定無線系統,基 地台源起功率控制之商用蜂巢式CDMA解決之道需要全部 發射器作集中式控制。提升對遠近干擾之波形之取代之道 5 包括下列辦法: • XG可「變形」信號之頻率/空間/時間本身,提供若 干對遠近干擾特有的抗性。多重載波組織與發訊以及頻寬 有效編碼與機之適應性策略,考慮遠近多向近接干擾 (MAI)的影響。 10 •為了獲得及釋放頻譜機會,資料經組織成為可變長 度封包。如此當然可獲得使用者基於封包到達時間之多工 化能力。如此TDMA可藉波形支援用於指定行動網路。 •副載波狹縫可排列而支援具有近正交頻率交換(fh) 樣式之FHMA,故遠近信號典型係於時間上的任何瞬間伯 15 據不同的副載波。 •於指定網路内部使用者群集將其本身配置成子網 路,改良標準功率控制效率。 •當無需LPI時,可採用基於接收器之單一使用者mai 抑制技術,設計用來最小化均方錯誤。此種接收器極為適 2〇合指定網路,原因在於此種接收器無需事先了解系統任何 使用者的參數。但使用短展頻順序(亦即該順序時間係等於 一資料符號時間)。 •當空間處理可利用時,空間處理係以適當射束成形 而提供額外遠近抗性。特別預期子頻帶射束成形可提供較 22 1234942 大量遠近干擾抑制效果。 此處所述非均句型態波形允許經由適應性頻率及/或 時間配置、頻率交換、功率控制或空間陣列等數項技術的 組合來獲得遠近問題解決之道。如此波形將與tdma、 5 TSMA、FDMA、CDMA、FHMA以及其它常用之補充控制 技術(例如CSMA/CA及RTS/CTS)相容。為了整合成為補綴 解決之道,若有所需波形利用基本無線系統之多向近接架 構,或於允許調整時調整多向近接架構。可使用混成多向 近接架構’該架構動態匹配多向近接格式至局部頻譜利用 1〇特性,結果導致頻譜利用性之更進一步升高。 眾所周知錯誤修正碼可對頻寬效率之小量(或無)降低 提供顯著增高之功率效率而犧牲複雜度的提高。基準線錯 誤修正編碼及調變設計係基於適應性低密度同位檢查編碼 (LDPC)調變碼族群,該種設計極為適合用於又〇系統。 15 LDPG碼為線性二進制區塊碼,其同位_檢查矩具有Subcarrier Bandwidth Effective Coding and Modulation (BECM) Motivation Macroscopic Frequency Mobility Macroscopic Frequency Mobility —----- Micro Frequency Mobility Subchannel Optimized Data Rate Discussion Allows Use of Frequency / Space / Time Gap " Use different frequencies / spaces / times across the full operating frequency band to avoid interference and congestion ------- XG capacity matching channel conditions power efficiency fast fetch band release channel estimation fast adaptation power control fast acquisition / pilot carrier signal sign reduction Interference with other users to promote space reuse Miscellaneous words / time / 10 Refer to Figure 4 for a waveform adaptation function residing in XG wireless. Adaptive multi-carrier organization and signaling sector define preamble symbol and Pilot carrier h number symbol 'refers to the position and capacity of the subcarrier, applying any required PN spread spectrum, time diversification and channelization to user data. Adaptive multi-level bandwidth effective coding and modulation sector coding and mapping process The encoded data is assigned to the assigned subcarrier by 15. Then the signal is subjected to adaptive power control, resulting in a completely non-signal up to 250 MHz The bandwidth of the homogeneous waveform. The channel estimation of the received 16 1234942 data is performed in the following way, by using the two-way pilot carrier signal symbol embedded in each transmission waveform to estimate a wide change between each pair of XG nodes Subcarrier characteristics. The decoded preamble signal contains channel estimation information from the other end of the link. Channel estimation data is sent to each adaptive 5 block to optimize subcarrier capacity. In this way, channel estimation drives multiple carriers The adaptability of organization and transmission, and the adaptability of multi-level bandwidth efficient coding and modulation. The design of the pilot carrier signal symbol for channel estimation is discussed later. The multi-carrier structure of non-uniform waveforms allows space processing technology to be independent and across different Sub-band. This waveform is not only compatible with current and future spatial processing, but also compares the technology that can be solved for full bandwidth, and will improve the performance. This technology includes beam and invalid shaping And a space / path diversification processing system, enhancing the leverage of interference suppression, and improving what can be achieved across multiple technology zones Material rate emission gain, which can improve the spectral efficiency. 15 Refer to Figure 5 to display multiple 3-D frequency / time / power waveform representations. The time and frequency mapping of the waveform is allowed on the xy plane from the left. User profile fK Multiple variable frequency wide sub-band mappings. Multiple sub-carriers can be aggregated and shaped, and variable-width sub-bands within the two-radius axis width. The implementation based on FFT is used in \ w 'time. Each sub-carrier is frequency and time Function 2 ° = The rate level can be adjusted to any decimal value to prevent other variants in overlapping environments. At the same time, it supports multiple sub-carriers with multiple spread widths and modulations. The display waveform supports multiple through CDMA. User J's representative picture. In the picture, one vice-department is designated by the user-user. 17 1234942 Red is used to designate a single shorter p N spread spectrum stone horse to speed up the data rate. Carrier, multiple variable rate users access the channel in PN counties of different lengths. In this way, it is displayed as "CDMA Mode" in the said Guan, the user Ca, Cb, and Cc code power combination to form a concentration of 5 concentration. In addition, the user concentrates his data and uses the flat-based modulation ^ to occupy the entire vice Carrier. The waveform graph also supports the blending mode, where user data is encoded into different formats, as shown in the lower left corner of Figure 5. Consider non-XG emissions occupying the upper and lower bands. Based on the channel estimates provided by the waveform, the emissions shown are now mapped to Section 10. Part 1 spreads user data across the full bandwidth to reduce power. Spectral density is lower than that harmful to non-XG emissions. Part 2 focuses the remaining data on unoccupied bandwidth. Across the wide bandwidth #, a number of frequencies contact the powerful channel gain, and the frequencies of the frequency and frequency experience deep channel attenuation. A single carrier and ss can resist 15-band narrow-band interference and time-varying frequency selective attenuation caused by multiple paths of wireless channels. For the case of a single carrier, when the carrier bandwidth exceeds the coherent bandwidth (Bc) of the channel, multiple search receiver “fingers” are required to analyze the individual multipath components and capture the achievable diversified gains. The number of components that can be resolved and the number of search receivers required are the ratio of the carrier wave bandwidth to the coherence bandwidth. Another approach is to divide the total bandwidth B into N narrower bandwidth subcarriers (b = B / N), each roughly equal to the coherence bandwidth (b% Bc). Using multiple carriers, multiple multiple independent carriers in the frequency domain are combined to replace the multiple search fingers of a single carrier in the time domain, which can maintain the frequency diversity of the original wide bandwidth. In this type of waveform design, the frequency of 1234942 diversified gains can compromise the data rate. The compromise is to transmit the specified data symbols across multiple subcarriers (that is, frequency spreading), and combine experimental statistics from these subcarriers. A final decision is then made on the information. When each subcarrier is modulated with data that is not related to other subcarriers, the total transmission rate is maximized, and each symbol is transmitted without frequency diversification. The performance of a single carrier DS SS with a search receiver has been shown to be similar to that of an appropriately designed MC-DSSS waveform. When the available bandwidth (and data rate) is much larger than the coherent bandwidth, 'when a larger number of search fingers are needed, the receiver complexity increases significantly. 10 instead of N (= B / BC) refers to a single carrier DS SS processes bandwidth B signals individually. MC-DS SS waveforms require N fingers (one finger for each subcarrier), and each finger processes a signal with a bandwidth b (= B / N), resulting in a lower complexity. receiver. The reason is that the duration of the chip on the subcarrier is M times longer than that of a single carrier system, reducing the number of operations required to successfully demodulate the signal. 15 Multi-carrier implementation is more effective when more than three to four search fingers are required. The practical advantages of multi-carrier modulation are even more apparent in the presence of narrow-band jammers, because multi-carrier systems do not require continuous bandwidth. For the application of XG system, multiple carriers are superimposed on the original narrowband signal set, leaving only appropriate gaps at multiple subcarrier positions. The adaptive "rerouting" of the subcarrier position 20 can be achieved to avoid the interferometer ', and there is no power loss compared to continuous subcarriers with equal total occupied bandwidth. A single carrier signal must implement an adaptive recess filter, which can achieve a correlation between the depth of the recess and the complexity of the bandwidth of the recess. The advantage of MC-DS SS waveform flexibility is to use different data rates on some 19 1234942 or all subcarriers, and send more data to the "strong" wave, while transmitting less data to the "weak" subcarrier. Investing in this flexibility is determined by how accurately the system can estimate the attenuation state of different subcarriers. The pilot carrier signal is used to perform such channel estimation, and the accurate estimation of the attenuation capability is determined based on a number of system parameters, including parameters such as snr, signal / interference ratio (SIR), Doppler spread spectrum and fronthaul error correction. 10 15 20 The waveform of the present invention combines the channel estimation capability to guide the adjustment and adaptation of multi-carrier organization and transmission, the effective bandwidth coding and modulation based on receiving Wei, and optimization of spectrum utilization efficiency. The channel estimation is based on the mixed CDMA / TDMA first V carrier # number, which is composed of the spreading code to be placed in the data before the burst signal synchronization signal. The adaptability of these pilot carrier signal symbols is equivalent to H and f. Using pilot carrier signals allows dependency demodulation and improves power efficiency. The pilot carrier signal spreads the frequency and reduces the frequency measurement and delay. The anti-jamming resistance is provided by the following methods to ensure that the pilot carrier signal spreads at least as much as the data, so the jammer cannot easily concentrate on the pilot carrier signal and destroy the waveform. Using a pilot carrier signal also provides a “snapshot” of the subcarrier attenuation, which can be used to estimate the coherence bandwidth of the channel. This estimate is used as a basis for adjusting the width and position of the subcarriers subject to the availability of frequency 4 gaps. Like the field coherence, k is driven by channel coherence bandwidth, and the rate of attenuation change is also driven by channel coherence time. The coherence time provides a measure of the effective time of the channel estimate and is inversely proportional to the Doppler shift. For example, a vehicle moving at a speed of 50 miles per hour and communicating at a frequency of 2.5 GHz has a Doppler shift of 186 Hz, indicating that the channel estimate and subsequent adjustment of multiple random variables 20 1234942 must be updated every 5.4 milliseconds. When a channel estimate cannot be obtained, or the channel estimate time has exceeded the channel's coherence time, data must be sent at the same rate on each subcarrier. Use MC signals as the basis for multi-carrier organization and signaling, and get a broad design compromise to maximize spectral efficiency. Multiple combinations of different waveform parameters provide equivalent user payload data rates. The multi-variable adjustment and adaptation effects include the following: • Changing the bandwidth span and occupied bandwidth allows the waveform to match the available bandwidth. A wider bandwidth provides a larger amount of raw capacity, and can obtain diversification, Lu 10 encoding, spread-spectrum gain, and so on. The narrower bandwidth provides a structure that allows waveform operation when using a small amount of spectrum. • Variable number of subcarriers: By changing the number of subcarriers, the available bandwidth can be organized to prevent narrow-band interference / interference from the selected subcarriers. If only one kind of subcarrier is used, the waveform is “deformed” into a single carrier waveform (for example, Ds 15 SS, conventional qpsk, etc.). • Variable subcarrier organization: Map user data to a combination of different subcarriers, allowing different types of system gain to be added to the signal to counteract attenuation and interference. Spread spectrum gain and frequency diversification gain can be applied across adjacent subcarriers, and variable interference averages can be achieved across non-continuous chirped waves by mapping data. 20 • Variable subcarrier data rate: Each subcarrier rate can be optimized by monitoring the status of each subcarrier and using higher order modulations that are allowed by channel conditions. I. Variable frequency diversification: By transmitting multiple bits in parallel with different subcarriers (even heavy carrier load sharing), the data rate can be exchanged for frequency diversification. 21 1234942 As any DSSS system is particularly sensitive to near and far problems, the system design needs-or multiple means to mitigate the problem. The commercial honeycomb CDMA solution for power control of specified wireless systems and base stations requires centralized control of all transmitters. Alternatives to improve the waveform of near-far interference 5 include the following methods: • XG can “distorte” the frequency / space / time of the signal, providing some of the specific resistance to near-far interference. Multi-carrier organization and transmission and adaptive strategies for efficient coding and bandwidth, considering the effects of near-distance and multi-direction proximity interference (MAI). 10 • In order to acquire and release spectrum opportunities, data is organized into variable-length packets. In this way, it is of course possible to obtain the user's multi-process capability based on the packet arrival time. In this way, TDMA can be used to designate mobile networks with waveform support. • The subcarrier slits can be arranged to support FHMA with near-orthogonal frequency exchange (fh) pattern, so the near and far signals are typically at any instant in time. According to different subcarriers. • Configure itself as a sub-network within a cluster of users within a given network to improve standard power control efficiency. • When LPI is not required, receiver-based single-user mai suppression technology can be used, designed to minimize mean square error. This type of receiver is very suitable for the designated network, because the receiver does not need to know the parameters of any user of the system in advance. However, a short spreading sequence is used (that is, the sequence time is equal to one data symbol time). • When spatial processing is available, the spatial processing provides additional near and far resistance with proper beam shaping. It is particularly expected that sub-band beamforming can provide a large number of near and far interference suppression effects compared to 22 1234942. The non-uniform sentence waveforms described here allow the solution of near and far problems to be obtained through a combination of several techniques such as adaptive frequency and / or time configuration, frequency switching, power control, or spatial array. This waveform will be compatible with tdma, 5 TSMA, FDMA, CDMA, FHMA and other commonly used complementary control technologies (such as CSMA / CA and RTS / CTS). In order to integrate into a patchwork solution, if there is a required waveform, the multidirectional proximity architecture of the basic wireless system is used, or the multidirectional proximity architecture is adjusted when adjustment is allowed. A hybrid multi-directional proximity architecture can be used. This architecture dynamically matches the multi-directional proximity format to local spectrum utilization 10 characteristics, resulting in a further increase in spectrum utilization. It is well known that error correction codes can provide a significant increase in power efficiency at the expense of a small (or none) reduction in bandwidth efficiency at the expense of increased complexity. The baseline error correction coding and modulation design is based on a family of adaptive low-density parity check coding (LDPC) modulation codes. This design is very suitable for use in systems. 15 LDPG code is a linear binary block code, and its parity_check moment has
低密度的1(亦即矩陣Η大部分係由〇組成)。此等特性讓碼具 有改良之加權範圍及簡單接近最佳的解碼演繹法則。解碼 演繹法則為迭代,相當類似袼狀渦輪解碼演繹法則,但 LDPC演繹法則係於一圖迭代,而非於二格子間迭代。注意 20隨後對TTCM而言二格子可配置成圖形,但該圖遠比LDPC 圖更複雜。所述LDPC調變家族可藉下列技術而更快速調整 適應。 •使用多階編碼結構,其為多速率編碼之天然架構 •經由使用循環LDPC碼以及仿循環LDPC碼,透過簡 23 1234942 單位移-暫存器電路,進行簡單元件編碼器實作 本發明之非均句形狀波形將結合一定範圍之碼長度及 碼速率來基於頻譜利用性以及副裁波頻道條件將性能^ 為最佳化。 5 #照第6圖’顯示二進制LDPC碼排列成為多階組態, 但LDPC碼係由N成分竭及映射器(調變器)組成。藉^辦 法’經由改變成分碼之碼速率及/或映射器之信號㈣大 小,頻寬效率(及頻寬)可有寬廣變化。此種多階组態提供接 近容量的效能。通常係匹配信號線圖大小。對一個2N 10次方的信號線圖而言,將有N個編碼器。環狀LDpc碼之編 碼器可使用用來編碼BCH碼之眾所周知的位移·暫存器電 路組成。標稱碼字長度為n,標稱資料字長度為k,獲得標 稱碼速率=k/n ’此等參數容易被修改。低延遲之調整需要 一定範圍之碼長度。 15 ^LDPC碼家族作為頻寬有效編碼及難的基礎,獲 得寬廣折衷來最大化頻譜效率。調變信號線圖與碼速率之 多重組合將提供相等使用者有效負載資料率,碼長度也將 影響誤差性能。於多重變數之調整效果包括下列: •調變信號線圖:改變調變信號_可讓原始資料率 20與功率效率作折衷。小型調變信號線圖允許於較低接收功 率位準操作,俾健涵蓋範15。較大觀信號_ (高達64 QAM)提供1¾:大原始容量’隨後可換成編碼增益來匹配副載 波頻道條件。 •碼速率·改變碼速率,提供碼強度匹配局部頻道條 24 1234942 件的額外自由度。低速率碼輔助延伸碼邊際,以及高速率 碼將傳遞適量碼增益,同時最大化使用者資料率。 •碼長度:需要可變碼長度來將使用者資料有效映射 於寬廣副載波容量範圍。當頻譜之長時間「間隔」可供利 5 用時,長碼將用來操作至接近容量極限。短碼將用來符合 低延遲需求,提供快速調整適應,以及允許波形取得短/小 頻譜間隙。 •多階編碼:使用多階編碼可簡化編碼及解碼架構, 經由「預先填補」多重使用者資料區塊可自然支援適應性 10 編碼策略,故一旦頻道估計資料可用於指導碼的選擇,則 可立刻發射。 寬頻MC-DS SS波形結構(其可動態改變載波頻率、頻 寬及副載波組織與發訊)與頻寬有效編碼及調變的組合用 來形成非均勻型態波形。波形架構經結構化,而創新超越 15 無線通訊及資訊理論研究的業界現況。本發明擴展其邊 界,本發明經由調整而填補可利用的頻譜「孔洞」,以及使 用同時多重隨機變因調整波形參數而最佳化可利用之副載 波的使用者資料速率。 雖然已經於附圖及前文說明中舉例說明本發明,但須了解 20 本發明絕非限於揭示之具體實施例,反而可未悖離本發明 之精髓對零組件及元件做出多項重排及修改。 【圖式簡單說明】 第1圖為根據本發明於下一代(XG)應用程式之一種非 均勻型態波形函數之方塊圖; 25 1234942 第2圖為適合填補時間-頻率頻譜間隙之頻率機動性非 均勻型態波形之說明圖; 第3圖為適應多重變數讓頻譜效率最佳化之非均勻型 態波形之說明圖; 5 第4圖為讓頻道估計資料變最佳化之多重載波組織、發 訊及多階頻寬有效編碼及調變; 第5圖為根據本發明之非均勻波形之頻率/時間/編碼之 代表圖;以及 第6圖為以LDPC為主之編碼調變架構來輔助碼參數快 10 速適應之多階組態之方塊圖說明。 【圖式之主要元件代表符號表】 (無) 26Low-density 1 (that is, the matrix Η is mostly composed of 0). These characteristics allow the code to have an improved weighting range and a simple close to optimal decoding deduction rule. The decoding deduction rule is iterative, which is quite similar to the 袼 -shaped turbo decoding deduction rule, but the LDPC deduction rule is based on one picture iteration, rather than iterating between two cells. Note 20 The two lattices can then be configured as a graph for TTCM, but the graph is far more complex than the LDPC graph. The LDPC modulation family can adjust and adapt more quickly by the following techniques. • Uses a multi-level encoding structure, which is a natural architecture of multi-rate encoding. • By using cyclic LDPC codes and pseudo-cyclic LDPC codes, through simple 23 1234942 single-shift-register circuit, a simple element encoder is implemented to implement the non-function of the invention The average sentence shape waveform will combine a certain range of code lengths and code rates to optimize performance based on spectrum availability and sub-clipping channel conditions ^. 5 # According to FIG. 6 ′, the binary LDPC code is arranged into a multi-level configuration, but the LDPC code is composed of N components and a mapper (modulator). By the method ^ By changing the code rate of the component code and / or the size of the signal of the mapper, the bandwidth efficiency (and bandwidth) can be widely changed. This multi-stage configuration provides performance close to capacity. It usually matches the size of the signal line graph. For a 2N 10th power signal line graph, there will be N encoders. The encoder of the ring LDpc code can be composed of a well-known shift register circuit for encoding a BCH code. The nominal codeword length is n and the nominal data word length is k. Obtaining the nominal code rate = k / n 'These parameters are easy to modify. Low-latency adjustments require a range of code lengths. The 15 ^ LDPC code family serves as the basis for efficient bandwidth coding and difficulty, and obtains a broad compromise to maximize spectral efficiency. Multiple combinations of modulation signal line diagram and code rate will provide equal user payload data rate, and code length will also affect error performance. The adjustment effects on multiple variables include the following: • Modulation signal line diagram: Changing the modulation signal can allow the original data rate 20 to be compromised with power efficiency. The small modulation signal line diagram allows operation at a lower receiving power level, and the health coverage covers range 15. The larger view signal (up to 64 QAM) provides 1¾: large original capacity, which can then be replaced with coding gain to match the subcarrier channel conditions. • Code rate · Change the code rate to provide additional freedom in terms of code strength matching the local channel strip 24 1234942 pieces. The low-rate code assists the spreading code margin, and the high-rate code will pass a modest code gain while maximizing the user data rate. • Code length: Variable code length is required to effectively map user data to a wide range of subcarrier capacity. When the long “interval” of the spectrum is available for use, the long code will be used to operate close to the capacity limit. Short codes will be used to meet low-latency requirements, provide fast adjustment adaptation, and allow waveforms to achieve short / small spectral gaps. • Multi-level coding: The use of multi-level coding can simplify the coding and decoding architecture. Through the "pre-filling" of multiple user data blocks, adaptive 10 coding strategies can be naturally supported, so once channel estimation data can be used to guide code selection, it Launch immediately. The combination of the wideband MC-DS SS waveform structure (which can dynamically change the carrier frequency, bandwidth, and subcarrier organization and signaling) and effective bandwidth coding and modulation is used to form non-uniform waveforms. The waveform architecture is structured, and innovation exceeds the current state of the industry in wireless communication and information theory research. The invention expands its boundaries. The invention fills the available "holes" in the frequency spectrum through adjustment, and uses the simultaneous multiple random variables to adjust the waveform parameters to optimize the user data rate of the available side carrier. Although the present invention has been exemplified in the drawings and the foregoing description, it must be understood that the present invention is by no means limited to the specific embodiments disclosed, but instead can make multiple rearrangements and modifications to components and components without departing from the essence of the present invention . [Schematic description] Figure 1 is a block diagram of a non-uniform waveform function in a next-generation (XG) application according to the present invention; 25 1234942 Figure 2 is a frequency mobility suitable for filling time-frequency spectral gaps Explanation of non-uniform waveforms; Figure 3 is an illustration of non-uniform waveforms that are optimized for multiple variables to optimize spectral efficiency; Figure 5 is a multi-carrier organization that optimizes channel estimation data. Signaling and multi-level bandwidth efficient coding and modulation; Figure 5 is a representative diagram of the frequency / time / coding of a non-uniform waveform according to the present invention; and Figure 6 is an LDPC-based coding modulation architecture to assist Block diagram description of multi-level configuration with code parameters fast and 10-speed adaptation. [Representative symbol table for main elements of the diagram] (None) 26
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37585502P | 2002-04-25 | 2002-04-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200401515A TW200401515A (en) | 2004-01-16 |
TWI234942B true TWI234942B (en) | 2005-06-21 |
Family
ID=36597997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92109587A TWI234942B (en) | 2002-04-25 | 2003-04-24 | An adaptive air interface waveform |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI234942B (en) |
-
2003
- 2003-04-24 TW TW92109587A patent/TWI234942B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200401515A (en) | 2004-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100934302B1 (en) | Adaptive Air Interface Waveforms | |
US7551546B2 (en) | Dual-mode shared OFDM methods/transmitters, receivers and systems | |
JP5113085B2 (en) | Method and apparatus for supporting multiple multiplexing scheme for wireless communication | |
CN101310454B (en) | Method and apparatus for pilot communication in a multi-antenna wireless communication system | |
US7957327B2 (en) | Efficient support for TDD beamforming via constrained hopping and on-demand pilot | |
KR101239514B1 (en) | Base station apparatus, mobile station apparatus, method for setting block, data receiving method and integrated circuit | |
EP1908200B1 (en) | Sdma for wcdma with increased capacity by use of multiple scrambling codes | |
CN110226306A (en) | The broadcast control channel of shared frequency spectrum | |
JP4865536B2 (en) | Dynamic spatial frequency division multiplexing communication system and method | |
US20100165926A1 (en) | Wireless communication base station apparatus and wireless communication method in multicarrier communication | |
US8094547B2 (en) | Orthogonal frequency and code hopping multiplexing communications method | |
KR20050040058A (en) | Apparatus for transmitting/receiving pilot pattern set for distinguish base station in communication system using orthogonal frequency division multiplexing scheme and method thereof | |
WO2006137495A1 (en) | Radio communication base station device and radio communication method in multi-carrier communications | |
TWI234942B (en) | An adaptive air interface waveform | |
KR100810900B1 (en) | Dynamic restrictive reuse scheduler | |
WO2007145640A1 (en) | Time domain interference averaging with multiuser diversity in ofdma systems | |
Nguyen et al. | Short packet communications: a physical layer comparison for block-fading channels | |
Jiménez et al. | Bit-Loading in Hybrid OFDM (H-OFDM) | |
Hu et al. | On the comparisons of system performance and capacity of asynchronous STBC MC‐CDMA multirate access schemes | |
Osipov et al. | Multiple Access Methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |