TWI234891B - Structure of Gallium-Nitride light-emitting diode - Google Patents

Structure of Gallium-Nitride light-emitting diode Download PDF

Info

Publication number
TWI234891B
TWI234891B TW93122931A TW93122931A TWI234891B TW I234891 B TWI234891 B TW I234891B TW 93122931 A TW93122931 A TW 93122931A TW 93122931 A TW93122931 A TW 93122931A TW I234891 B TWI234891 B TW I234891B
Authority
TW
Taiwan
Prior art keywords
layer
emitting diode
nial
base layer
diode structure
Prior art date
Application number
TW93122931A
Other languages
Chinese (zh)
Other versions
TW200605388A (en
Inventor
Ru-Chin Tu
Liang-Wen Wu
Jeng-Jang You
Tz-Ji Wen
Feng-Ren Jian
Original Assignee
Formosa Epitaxy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Formosa Epitaxy Inc filed Critical Formosa Epitaxy Inc
Priority to TW93122931A priority Critical patent/TWI234891B/en
Application granted granted Critical
Publication of TWI234891B publication Critical patent/TWI234891B/en
Publication of TW200605388A publication Critical patent/TW200605388A/en

Links

Abstract

The present invention relates to a structure of Gallium-Nitride (GaN) light-emitting diode containing short-cycle, super-lattice digital contacting layer, which includes a substrate, a double buffer layer, an n-type GaN layer, a short-cycle, super-lattice digital contacting layer, an active light-emitting layer, a p-type cladding layer, and a contacting layer. The advantage of the disclosed structure lies in the manufacture of a thick n-type GaN contacting layer with highly doped concentration (n > 1x10<19> cm<-3>) and low resistance without simultaneously generating crack or pin hole in the thick n-type GaN contacting layer, thereby enabling to maintain the quality of heavily-doped GaN contacting layer. Secondly, by means of a short-period, heavily-doped silicon AlGaInN (n<++>-Al1-x-yGaxInyN), a super lattice structure can be grown to the super-lattice digital contacting layer being a n-type contacting layer having a low resistance value in an InGaN/GaN multi-quantum well LED. The later steps facilitate the manufacture of n-type ohmic contact-electrolyte layer and lower the operational voltage of whole device due to better electric properties as a whole.

Description

1234891 九、發明說明: 【發明所屬之技術領域】 本發明係關於發光二極體之結構,特別係具有 低電阻的厚η型氮化鎵系接觸層之氮化鎵系發光二 極體結構。 — 【先前技術】 習知技藝氮化銦鎵/氮化鎵(InGaN/GaN)多量 子井結構(1111111:丨9113111;11111%^11,^1^^)發光二極體, 是利用η型氮化鎵(GaN)作為n型—接觸層 (Contacting layer)。但如果想利用高摻雜濃度 (n&gt;lxl〇19Cnr3)的矽,製造低電阻的厚n型 = 觸層,在實際製造過程中發現,在氮化鎵層内部, 往往會因矽(Si)重摻雜的結果而導致易 ί;?;”象。此等現象’不僅影響氮化鎵2 /^質本纟且因為龜裂或甚至斷裂的現象,增加 ,其後一步驟,於其上方製作η型歐姆接觸電極声 。困^塑:f整體電特性變差或導電不良成為i °口:衫響所及,會必須增加整個元件的操 ?仵,巧時消耗之電功率增加,或是製造的良率 厚η型氮化鎵接觸層 =流產生使得整體二極體特性變差。因 前揭問題。 要種新的結構以解決 1234891 【發明内容】 1對前揭.習知技藝氮化鎵系、多量子井結構發光二極 =題’本發明,目的’係提供一種具有短週期超 B曰才σ數位接觸層之氮化鎵系發光二極體之結構。 本發明再一目的係於製造高摻雜濃度(n&gt;lxl〇19cm_3) 且低電阻的厚Π型氮化鎵接觸層之同時,但不會發生習 知技藝於厚Π型氮化鎵層内,因為重摻雜矽而龜裂 ,斷裂現象,得以維持重摻雜氮化鎵接觸層之品質,其 猎由短週期重摻雜矽之氮化鋁鎵銦(n + + _Ah &quot;GaxiWN) 成長超晶格結構,為具有短週期超晶格數位接觸層,以 :乍,免電阻值之n型接觸層(c〇ntacting於氮化 鎵/氮化鎵夕重里子井結構發光二極體(InGaN/GaN μ LEDs) ° 本發明又一目的係提供其後步驟,製作n型歐姆接 觸電極層的簡便性,並使得整體電特性變好,降低整體 兀件的操作電壓,其運作時消耗之電功率減低,及提高 生產良率。 土發,之目的及諸多優點將藉由下列具體實施例之 詳細5兒明’及參照所附圖示,而被完全揭露。 【實施方式】 —^ 一圖係根據本發明氮化鎵系發光二極體結構之第 一實施例。本發明氮化鎵系發光二極體結構的第一實施 例’其包含··基板11,雙重緩衝層(d〇uble buffer layer)12, n型氮化鎵((^…層13,短週期超晶格數位 接觸層14,活性發光層15, p型被覆層16,及接觸層 17。 基板11的材質係氧化銘單晶(Sapphire)。位於基板 11上的雙重緩衝層12,其包含:第一緩衝層(first 1234891 buffer layer)121 與第二緩衝層(sec〇nd buffer layer)122。位於基板n上的第一缓衝層12卜材質係氮 化鋁鎵銦(Ah-x—yGaxInyN),其中 〇$χ&lt;1,〇gY&lt;1。位於 第一緩衝層121上的第二緩衝層122,材質係氮化矽、 .(S i ^)。η型氮化鎵((jaN )層13位於雙重緩衝層12上。 第二圖係根據本發明氮化鎵系發光二極體結構第一 實施例之短週期超晶格數位接觸層示意圖。位於η型氮 化鎵(GaN)層13上的短週期超晶格數位接觸層14,並包 含:位於η型氮化鎵((^们層13上之複數個基礎層14\, 可重覆相疊,-般而言’其相疊個數不少於5。基礎層 141包含:第一基層1411與第二基層141^第一基層 14+1+1,其材質係矽(Si)重摻雜之η型氮化鋁鎵銦 (n -Alh—yGaxInj),重摻雜濃度不小於每立方公 ls 個(n&gt;lxl019cm-3),且其中 〇$χ&lt;1,〇$γ&lt;1。第一基層 MU 的厚度&quot;於5埃到50埃’成長溫度介於攝氏6〇〇度到 =〇度。位於第一基層H11上的第二基層⑷2,其材 質係氣化梦(SlN)。第二基層1412的厚度介於2埃到1〇 埃,成長溫度介於攝氏6〇〇度到12〇〇度。因此,第一美 m在n型氮化鎵(GaN)層13或經重覆相疊後二 位在第一基層1412上。 位於短週期超晶格數位接觸層14上的活性發光層 15,其材質係氮化銦鎵(InGaN)。位於活性發光層π曰上 被广,16 ’其材質係鎮推雜dd〇Ped)氮化銘鎵 钔(Ah-x-yGaxInyN) ’ 其中 〇$χ&lt;1 ’ 〇$γ&lt;1。位於 覆層16上的接觸層17,其材質係鎂摻雜 型氮化銘鎵銦⑴卜&quot;GaxInyN),其中βχ&lt;,,心巧, 本發明氮化鎵系發光二極體結構的第一實施例,進 數18’其位於接觸層17或短週期超晶格 數位接觸層14上,且其可形成良好歐姆接觸。電極層18 1234891 包含 Ti/AL· Cr/Au,Cr/A卜 Cr/Pt/Au,Ti/Pt/Au,Cr/Pd/Au, Ti/Pd/Au,Ti/Al/Ti/Au, Ti/Al/Pt/Au,Ti/Al/Ni/Au, Ti/Al/Pd/Au,Ti/Al/Cr/Au,Ti/Al/Co/Au,Cr/Al/Cr/Au, Cr/Al/Pt/Au,Cr/Al/Pd/Au,Cr/Al/Ti/Au,Cr/Al/Co/Au, Cr/Al/Ni/Au,Pd/Al/Ti/Au,Pd/Al/Pt/Au,Pd/Al/Ni/Au, Pd/Al/Pd/Au,Pd/Al/Cr/Au,Pd/Al/Co/Au,Nd/Al/Pt/Au, Nd/Al/Ti/Au,Nd/Al/Ni/Au,Nd/Al/Cr/Au,Nd/Al/Co/Au, Hf/Al/Ti/Au,Hf/AI/Pt/Au,Hf/Al/Ni/Au,Hf/Al/Pd/Au, Hf/Al/Cr/Au,Hf/Al/Co/Au,Zr/Al/Ti/Au,Zr/Al/Pt/Au, Zr/Al/Ni/Au,Zr/Al/Pd/Au,Zr/Al/Cr/Au,Zr/Al/Co/Au, TiNx/Ti/Au,TiNx/Pt/Au,TiNx/Ni/Au,TiNx/Pd/Au, TiNx/Cr/Au,TiNx/Co/Au,TiWNx/Ti/Au,TiWNx/Pt/Au, TiWNx/Ni/Au,TiWNx/Pd/Au,TiWNx/Cr/Au, TiWNx/Co/Au,NiAl/Pt/Au,NiAl/Cr/Au,NiAl/Ni/Au, NiAl/Ti/Au,Ti/NiAl/Pt/Au,Ti/NiAl/Ti/Au, Ti/NiAl/Ni/Au,Ti/NiAl/Cr/Au,或任何其他上述材料形 成之化合物。 第三圖係根據本發明氮化鎵系發光二極體結構之第 二實施例。本發明氮化鎵系發光二極體結構的第二實施 例,其包含:基板21,雙重緩衝層(double buffer layer)22,η型氮化鎵(GaN)層23,短週期超晶格數位接 觸層24,活性發光層25,p型被覆層26,及接觸層27。 基板21之材質係氧化鋁單晶(Sapphire)。位於基板 21上的雙重缓衝層(double buff er layer) 22,包含:第 一缓衝層(first buffer layer)221與第二缓衝層 (second buffer layer)222。位於基板 21 上的第一缓 衝層(first buffer layer)221,其材質係氮化紹鎵銦 (Ali-x-yGaxInyN),其中 0SX&lt;1,0$ Y&lt;1。位於第一缓衝 層 221 的第二緩衝層(second buffer layer)222,其 1234891 材質係氮化矽(SiN)。η型氮化鎵(GaN)層23,係位於訾 重缓衝層22上。 ' 第四圖係根據本發明氮化鎵系發光二極體結構第二 實,例之短週期超晶格數位接觸層示意圖。位於 化鎵(GaN)層23上之短週期超晶格數位接觸層24,包 含··位於η型氮化鎵(GaN)層23上之複數個基礎層24〇。 基礎層240可重覆相疊,一般而言,其相疊個數不少於 5:基礎層240包含:第一基層2401,與第二基層24〇2。 第:基層2401,其材質係矽(Si)重摻雜n型氮化鋁鎵銦 (n -AlityGaxInyN),其中 〇$χ&lt;ι,〇$γ&lt;ι。第一基層 24〇1 的重摻雜濃度不小於每立方公分1〇!9個(n&gt;lxl〇19cm_3)。 第一基層2401的厚度介於5埃到5〇埃。第一基層24〇1 的成長溫度介於攝氏600度到1200度。 曰 位於第一基層2401上之第二基層2402,其材質係未 摻雜(undoped)氮化銦鎵(iniLGauN),其中u q。第二 基層2402的厚度介於5埃到50埃。第二基層24〇2的成 長溫度介於攝氏600度到1 200度。第一基層24〇1可位 在η型氮化鎵(GaN)層23上,或經重覆相疊後,位在签 二基層2402上。 位於短週期超晶格數位接觸層24上活性發光層 25,其材質係氮化銦鎵(inGaN)。 曰 =於活性發光層25上之p型被覆層26,兵材質係鎂摻雜 (Mg - doped)氮化鋁鎵銦(Alh-yGaxInyN),其中 〇$χ〈卜 〇$Υ&lt;1。位於p型被覆層26上之接觸層其^質係鎬 摻雜(Mg-doped) p型氮化鋁鎵銦(All_x_yGaxIny 豆、 OgXd,〇$ Yd。 本發明氮化鎵系發光二極體結構的第二實施例,達 一步地包含電極層28,其可位於接觸層27或短週期超曰E 格數位接觸層24上,且其可形成良好歐姆接觸。電極^ 1234891 28 包含 Ti/Al,Cr/Au,Cr/A卜 Cr/Pt/Au,Ti/Pt/Au, Cr/Pd/Au,Ti/Pd/Au,Ti/Al/Ti/Au,Ti/Al/Pt/Au, Ti/Al/Ni/Au,Ti/Al/Pd/Au,Ti/Al/Cr/Au,Ti/Al/Co/Au, Cr/Al/Cr/Au,Cr/Al/Pt/Au,Cr/Al/Pd/Au,Cr/Al/Ti/Au, Cr/Al/Co/Au,Cr/Al/Ni/Au,Pd/Al/Ti/Au,Pd/Al/Pt/Au, Pd/Al/Ni/Au,Pd/Al/Pd/Au,Pd/Al/Cr/Au,Pd/Al/Co/Au, Nd/Al/Pt/Au,Nd/Al/Ti/Au,Nd/Al/Ni/Au,Nd/Al/Cr/Au, Nd/Al/Co/Au,Hf/Al/Ti/Au,Hf/AI/Pt/Au,Hf/Al/Ni/Au, Hf/Al/Pd/Au,Hf/Al/Cr/Au,Hf/Al/Co/Au,Zr/Al/Ti/Au, Zr/Al/Pt/Au,Zr/Al/Ni/Au,Zr/Al/Pd/Au,Zr/Al/Cr/Au, Zr/Al/Co/Au,TiNx/Ti/Au,TiNx/Pt/Au, TiNx/Ni/Au, TiNx/Pd/Au,TiNx/Cr/Au,TiNx/Co/Au,TiWNx/Ti/Au, TiWNx/Pt/Au,TiWNx/Ni/Au,TiWNx/Pd/Au, TiWNx/Cr/Au,TiWNx/Co/Au,NiAl/Pt/Au,NiAl/Cr/Au, NiAl/Ni/Au,NiAl/Ti/Au,Ti/NiAl/Pt/Au,Ti/NiAl/Ti/Au, Ti/NiAl/Ni/Au,Ti/NiAl/Cr/Au,或任何其他上述材料形 成之化合物。 本文以上所述僅為本發明之較佳實施例而已,並非 用以限定本發明之申請專利範圍,任何其它凡不脫離本 發明所揭示精神而完成的改變或修飾,均應屬本發明之 申請專利範圍。 【圖式簡單說明】 第一圖係根據本發明氮化鎵系發光二極體結構之第 一實施例。 第二圖係根據本發明氮化鎵系發光二極體結構第一 實施例之短週期超晶格數位接觸層示意圖。 第三圖係根據本發明氮化鎵系發光二極體結構之第 二實施例。 1234891 第四圖係根據本發明氮化鎵系發光二極體結構第二 實施例之短週期超晶格數位接觸層示意圖。 【主要元件符號說明】 11 基板 12 雙重緩衝層 121 第一緩衝層 122 第二缓衝層1234891 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to the structure of a light emitting diode, and particularly to a gallium nitride based light emitting diode structure having a low-resistance thick n-type gallium nitride based contact layer. — [Prior art] Known technology InGaN / GaN multi-quantum well structure (1111111: 丨 91113111; 11111% ^ 11, ^ 1 ^^) light-emitting diode, which uses η-type Gallium nitride (GaN) is used as an n-type-contacting layer. However, if you want to use silicon with a high doping concentration (n &gt; lx1019Cnr3) to produce a low-resistance thick n-type contact layer, it is found in the actual manufacturing process that the silicon nitride (Si) is often caused by silicon (Si) in the gallium nitride layer. As a result of the heavy doping, it is easy to make "?"; Such phenomena. These phenomena 'not only affect the quality of gallium nitride 2 / ^, but also increase due to cracking or even fracture, the next step, above it Making η-type ohmic contact electrode sound. Sleepy plastic: f the overall electrical characteristics become worse or poor conductivity becomes i ° mouth: as far as the shirt is concerned, it will have to increase the operation of the entire component, the electrical power consumed by coincidence will increase, or The manufacturing yield of thick η-type GaN contact layer = current generation makes the overall diode characteristics worse. Because of the problem of the previous disclosure. A new structure is needed to solve 1234891 [Summary of the invention] 1 pair of previous disclosure. Known technology nitrogen A gallium-based, multi-quantum-well structure light-emitting diode = titled "Invention, Purpose" is to provide a structure of a gallium nitride-based light-emitting diode with a short-period super-b σ digital contact layer. Another object of the present invention Based on manufacturing high doping concentration (n &gt; lxl019cm_3) and low resistance At the same time as the gallium nitride contact layer, the conventional technique does not occur in the thick Π-type gallium nitride layer. The phenomenon of cracking and fracture due to heavily doped silicon can maintain the quality of the heavily doped gallium nitride contact layer. It hunts short-period heavily doped silicon aluminum gallium indium (n + + _Ah &quot; GaxiWN) to grow a superlattice structure. It is a digital contact layer with a short-period superlattice. Type contact layer (conntacting on gallium nitride / gallium nitride burial structure light-emitting diodes (InGaN / GaN μ LEDs) ° Another object of the present invention is to provide a subsequent step to fabricate an n-type ohmic contact electrode layer Simplicity, and make the overall electrical characteristics better, reduce the operating voltage of the overall components, reduce the power consumed during operation, and improve production yield. The purpose and many advantages of the land development will be achieved by the following specific embodiments The details are described in detail below and with reference to the accompanying drawings, and are fully disclosed. [Embodiment] — ^ A figure is a first embodiment of a gallium nitride based light emitting diode structure according to the present invention. The gallium nitride based First embodiment of a light-emitting diode structure ·· Substrate 11, double buffer layer 12, n-type gallium nitride ((^ ... layer 13, short-period superlattice digital contact layer 14, active light-emitting layer 15, p-type cladding layer 16, And contact layer 17. The material of the substrate 11 is Sapphire. The double buffer layer 12 on the substrate 11 includes: a first 1234891 buffer layer 121 and a second buffer layer (sec. nd buffer layer) 122. The first buffer layer 12 on the substrate n is made of aluminum gallium indium nitride (Ah-x-yGaxInyN), where 〇 $ χ &lt; 1, 〇gY &lt; 1. The second buffer layer 122 located on the first buffer layer 121 is made of silicon nitride, (S i ^). An n-type gallium nitride (jaN) layer 13 is located on the double buffer layer 12. The second figure is a schematic diagram of a short-period superlattice digital contact layer according to the first embodiment of the gallium nitride-based light emitting diode structure according to the present invention. The short-period superlattice digital contact layer 14 on the n-type gallium nitride (GaN) layer 13 includes: a plurality of base layers 14 on the n-type gallium nitride (three layers 13), which can repeat the phase Stacked,-generally 'the number of overlapping is not less than 5. The base layer 141 includes: a first base layer 1411 and a second base layer 141 ^ the first base layer 14 + 1 + 1, and its material is silicon (Si) re-doped The hetero-n-type aluminum gallium indium nitride (n-Alh-yGaxInj) has a heavy doping concentration of not less than ls per cubic cubic (n &gt; lxl019cm-3), and among them, 〇 $ χ &lt; 1, 〇 $ γ &lt; 1. The thickness of the first base layer MU is between 5 angstroms and 50 angstroms. The growth temperature is between 600 degrees Celsius and 0 degrees Celsius. The second base layer ⑷2 on the first base layer H11 is made of a gasification dream (SlN). The thickness of the second base layer 1412 is between 2 angstroms and 10 angstroms, and the growth temperature is between 600 degrees and 12,000 degrees Celsius. Therefore, the first beautiful layer 14 is formed in the n-type gallium nitride (GaN) layer 13 or After overlapping On the first base layer 1412. The active light-emitting layer 15 on the short-period superlattice digital contact layer 14 is made of indium gallium nitride (InGaN). It is located on the active light-emitting layer π, and its material is 16 Doped with dd〇Ped) Gallium nitride gallium nitride (Ah-x-yGaxInyN) 'Among them 〇 $ χ &lt; 1' 〇 $ γ &lt; 1. The contact layer 17 on the cladding layer 16 is made of magnesium-doped nitrogen GaInInN (GaXInyN), where βχ &lt; ,, is ingenious, the first embodiment of the gallium nitride-based light emitting diode structure of the present invention is advanced to 18 ′, which is located in the contact layer 17 or a short-period supercrystal The grid digital contact layer 14 can form a good ohmic contact. The electrode layer 18 1234891 contains Ti / AL · Cr / Au, Cr / A and Cr / Pt / Au, Ti / Pt / Au, Cr / Pd / Au, Ti / Pd / Au, Ti / Al / Ti / Au, Ti / Al / Pt / Au, Ti / Al / Ni / Au, Ti / Al / Pd / Au, Ti / Al / Cr / Au, Ti / Al / Co / Au, Cr / Al / Cr / Au, Cr / Al / Pt / Au, Cr / Al / Pd / Au, Cr / Al / Ti / Au, Cr / Al / Co / Au, Cr / Al / Ni / Au, Pd / Al / Ti / Au, Pd / Al / Pt / Au, Pd / Al / Ni / Au, Pd / Al / Pd / Au, Pd / Al / Cr / Au, Pd / Al / Co / Au, Nd / Al / Pt / Au, Nd / Al / Ti / Au, Nd / Al / Ni / Au, Nd / Al / Cr / Au, Nd / Al / C o / Au, Hf / Al / Ti / Au, Hf / AI / Pt / Au, Hf / Al / Ni / Au, Hf / Al / Pd / Au, Hf / Al / Cr / Au, Hf / Al / Co / Au, Zr / Al / Ti / Au, Zr / Al / Pt / Au, Zr / Al / Ni / Au, Zr / Al / Pd / Au, Zr / Al / Cr / Au, Zr / Al / Co / Au, TiNx / Ti / Au, TiNx / Pt / Au, TiNx / Ni / Au, TiNx / Pd / Au, TiNx / Cr / Au, TiNx / Co / Au, TiWNx / Ti / Au, TiWNx / Pt / Au, TiWNx / Ni / Au, TiWNx / Pd / Au, TiWNx / Cr / Au, TiWNx / Co / Au, NiAl / Pt / Au, NiAl / Cr / Au, NiAl / Ni / Au, NiAl / Ti / Au, Ti / NiAl / Pt / Au, Ti / NiAl / Ti / Au, Ti / NiAl / Ni / Au, Ti / NiAl / Cr / Au, or any other compound of these materials. The third figure is a second embodiment of a GaN-based light emitting diode structure according to the present invention. The second embodiment of the gallium nitride-based light emitting diode structure of the present invention includes a substrate 21, a double buffer layer 22, an n-type gallium nitride (GaN) layer 23, and a short-period superlattice digit. The contact layer 24, the active light emitting layer 25, the p-type coating layer 26, and the contact layer 27. The material of the substrate 21 is an alumina single crystal (Sapphire). The double buffer layer 22 on the substrate 21 includes a first buffer layer 221 and a second buffer layer 222. A first buffer layer 221 on the substrate 21 is made of indium gallium indium nitride (Ali-x-yGaxInyN), where 0SX &lt; 1, 0 $ Y &lt; 1. A second buffer layer 222 located on the first buffer layer 221 is made of 1234891 silicon nitride (SiN). The n-type gallium nitride (GaN) layer 23 is located on the heavy buffer layer 22. 'The fourth figure is a schematic view of a short-period superlattice digital contact layer according to the second embodiment of the gallium nitride-based light emitting diode structure according to the present invention. The short-period superlattice digital contact layer 24 on the gallium nitride (GaN) layer 23 includes a plurality of base layers 24 on the n-type gallium nitride (GaN) layer 23. The base layer 240 may overlap each other. Generally, the number of the base layer 240 is not less than 5: The base layer 240 includes: a first base layer 2401 and a second base layer 2402. First: the base layer 2401, whose material is silicon (Si) heavily doped n-type aluminum gallium indium nitride (n-AlityGaxInyN), where 〇 $ χ &lt; ι, 〇 $ γ &lt; ι. The heavily doped concentration of the first base layer 2401 is not less than 100.9 cm3 (n &gt; lx1019cm_3). The thickness of the first base layer 2401 is between 5 angstroms and 50 angstroms. The growth temperature of the first base layer 2401 is between 600 ° C and 1200 ° C. The second base layer 2402 on the first base layer 2401 is made of undoped indium gallium nitride (iniLGauN), where u q. The thickness of the second base layer 2402 is between 5 and 50 angstroms. The second substrate layer 2402 has a growth temperature between 600 ° C and 1200 ° C. The first base layer 2401 may be located on the n-type gallium nitride (GaN) layer 23, or may be located on the second base layer 2402 after overlapping and overlapping. The active light emitting layer 25 located on the short-period superlattice digital contact layer 24 is made of indium gallium nitride (inGaN). = = P-type coating layer 26 on the active light-emitting layer 25. The material is magnesium-doped (Mg-doped) aluminum gallium indium nitride (Alh-yGaxInyN), of which 〇 $ χ 〈卜 〇 $ Υ &lt; 1. The contact layer on the p-type cladding layer 26 has a Mg-doped p-type aluminum gallium indium nitride (All_x_yGaxIny bean, OgXd, 0 $ Yd.) The gallium nitride-based light emitting diode structure of the present invention The second embodiment of the invention further includes an electrode layer 28, which can be located on the contact layer 27 or the short-period E-grid digital contact layer 24, and which can form a good ohmic contact. The electrode ^ 1234891 28 includes Ti / Al, Cr / Au, Cr / A, Cr / Pt / Au, Ti / Pt / Au, Cr / Pd / Au, Ti / Pd / Au, Ti / Al / Ti / Au, Ti / Al / Pt / Au, Ti / Al / Ni / Au, Ti / Al / Pd / Au, Ti / Al / Cr / Au, Ti / Al / Co / Au, Cr / Al / Cr / Au, Cr / Al / Pt / Au, Cr / Al / Pd / Au, Cr / Al / Ti / Au, Cr / Al / Co / Au, Cr / Al / Ni / Au, Pd / Al / Ti / Au, Pd / Al / Pt / Au, Pd / Al / Ni / Au, Pd / Al / Pd / Au, Pd / Al / Cr / Au, Pd / Al / Co / Au, Nd / Al / Pt / Au, Nd / Al / Ti / Au, Nd / Al / Ni / Au, Nd / Al / Cr / Au, Nd / Al / Co / Au, Hf / Al / Ti / Au, Hf / AI / Pt / Au, Hf / Al / Ni / Au, Hf / Al / Pd / Au, Hf / Al / Cr / Au, Hf / Al / Co / Au, Zr / Al / Ti / Au, Zr / Al / Pt / Au, Zr / Al / Ni / Au, Zr / Al / Pd / Au, Zr / Al / Cr / Au, Zr / Al / Co / Au, TiNx / Ti / Au, TiNx / Pt / Au, TiNx / Ni / Au, TiNx / Pd / Au, TiNx / Cr / Au, TiNx / Co / Au , TiWNx / Ti / Au, TiWNx / Pt / Au, TiWNx / Ni / Au, TiWNx / Pd / Au, TiWNx / Cr / Au, TiWNx / Co / Au, NiAl / Pt / Au, NiAl / Cr / Au, NiAl / Ni / Au, NiAl / Ti / Au, Ti / NiAl / Pt / Au, Ti / NiAl / Ti / Au, Ti / NiAl / Ni / Au, Ti / NiAl / Cr / Au, or any of the above materials The compounds described above are only the preferred embodiments of the present invention, and are not intended to limit the scope of patent application of the present invention. Any other changes or modifications made without departing from the spirit disclosed by the present invention shall belong to the present invention. The scope of patent application. [Brief description of the drawings] The first diagram is a first embodiment of a gallium nitride-based light emitting diode structure according to the present invention. The second figure is a schematic diagram of a short-period superlattice digital contact layer according to the first embodiment of the gallium nitride-based light emitting diode structure according to the present invention. The third figure is a second embodiment of a GaN-based light emitting diode structure according to the present invention. 1234891 The fourth diagram is a schematic diagram of a short-period superlattice digital contact layer according to the second embodiment of the gallium nitride-based light emitting diode structure according to the present invention. [Description of main component symbols] 11 Substrate 12 Double buffer layer 121 First buffer layer 122 Second buffer layer

13 η型氮化鎵層 14 短週期超晶格數位接觸層 141 基礎層 1411 第一基層 1412 第二基層 15 活性發光層 16 ρ型被覆層 17 接觸層 18 電極層 21 基板13 η-type gallium nitride layer 14 Short-period superlattice digital contact layer 141 Base layer 1411 First base layer 1412 Second base layer 15 Active light emitting layer 16 R-type coating layer 17 Contact layer 18 Electrode layer 21 Substrate

22 雙重緩衝層 221 第一緩衝層 222 第二緩衝層 23 η型氮化鎵層 24 短週期超晶格數位接觸層 240 基礎層 2401 第一基層 2402 第二基層 25 活性發光層 26 ρ型被覆層 11 1234891 27 28 接觸層 電極層22 double buffer layer 221 first buffer layer 222 second buffer layer 23 n-type gallium nitride layer 24 short-period superlattice digital contact layer 240 base layer 2401 first base layer 2402 second base layer 25 active light emitting layer 26 p-type coating layer 11 1234891 27 28 Contact layer electrode layer

Claims (1)

1234891 十、申請專利範圍: 1 · 種鼠化知糸發光二極體結構,其包含: 基板,其材夤係氧化I呂單晶(Sapphire); 一雙重緩衝層(double buffer layer),位於該基板 上,其包含·· ^ 苐一緩衝層(first buffer layer),其材質 係氮化紹鎵銦(Ah—x-yGaxInyN),其中 〇$χ&lt;ΐ,〇$γ&lt;ι, 位於該基板上; _ $ 一 緩衝層(second buffer layer),其材質 係氮化矽(S i N ),位於該第一緩衝層上; 一 η型氮化鎵(GaN)層,係位於該雙重緩衝層上; 一短週期超晶格數位接觸層,係位於該η型氮化鎵(GaN) 層上,其包含: 複數個基礎層’係位於該η型氮化鎵((jaN)層上, 該基礎層包含: 一第一基層,其材質係矽(Si)重摻雜之n型 氣化链鎵銦(n++一 AlinGaxInyN),其中 〇$Χ〈1,〇$γ&lt;ι ; 及 一第二基層,位於該第一基層上,其材質係 氮化矽(SiN); 一「活性發光層,其材質係氮化銦鎵(InGaN),係位於該 短週期超晶格數位接觸層上; P型被覆層’其材質係鎂摻雜(Mg-d〇ped)氮化銘鎵 鋼(Ah-x”GaxInyN),其中 〇 $ χ&lt;ι,〇 $ γ〈ι,且位於該活 性發光層上;及 一接觸層’其材質係鎂摻雜(Mg-doped) p型氮化鋁鎵 鋼(Ah-x-yGaxInyN),其中 〇^χ&lt;ι,Y&lt;1,係位於該 p 型被覆層上。 2·如申請專利範圍第1項之發光二極體結構,該第一基 13 1234891 層可位在該η型氮化鎵(GaN)層或該第二基層上。 3 ·如申請專利範圍第1項之發光二極體結構,該第一基 層的厚度介於5埃到50埃。 4·如申請專利範圍第1項之發光二極體結構,該第一基 層的成長溫度介於攝氏600度到1200度。 5 ·如申請專利範圍第1項之發光二極體結構,該第一 基層的重摻雜濃度不小於每立方公分1〇19個 (n&gt;lxl 019cnT3)。 6 ·如申請專利範圍第1項之發光二極體結構,該第二 基層的厚度介於2埃到10埃。 7·如申請專利範圍第1項之發光二極體結構,該第二基 層的成長溫度介於攝氏600度到1200度。 8·如申請專利範圍第1項之發光二極體結構,該基礎層 的個數不少於5。 9·如申請專利範圍第1項之發光二極體結構,進一步地 包含一電極層,其位於該接觸層或該短週期超晶格數位 接觸層上,且其可形成良好歐姆接觸,該電極層包含 Ti/Al,Cr/Au,Cr/Al,Cr/Pt/Au,Ti/Pt/Au,Cr/Pd/Au, Ti/Pd/Au,Ti/Al/Ti/Au,Ti/Al/Pt/Au,Ti/Al/Ni/Au, Ti/Al/Pd/Au,Ti/Al/Cr/Au,Ti/Al/Co/Au,Cr/Al/Cr/Au, Cr/Al/Pt/Au,Cr/Al/Pd/Au,Cr/Al/Ti/Au,Cr/Al/Co/Au, Cr/Al/Ni/Au,Pd/Al/Ti/Au, Pd/Al/Pt/Au,Pd/Al/Ni/Au, Pd/Al/Pd/Au,Pd/Al/Cr/Au,Pd/Al/Co/Au,Nd/Al/Pt/Au, Nd/Al/Ti/Au,Nd/Al/Ni/Au,Nd/Al/Cr/Au,Nd/Al/Co/Au, Hf/Al/Ti/Au,Hf/AI/Pt/Au,Hf/Al/Ni/Au,Hf/Al/Pd/Au, Hf/Al/Cr/Au,Hf/Al/Co/Au,Zr/Al/Ti/Au,Zr/Al/Pt/Au, Zr/Al/Ni/Au,Zr/Al/Pd/Au,Zr/Al/Cr/Au,Zr/Al/Co/Au, TiNx/Ti/Au,TiNx/Pt/Au,TiNx/Ni/Au,TiNx/Pd/Au, TiNx/Cr/Au,TiNx/Co/Au,TiWNx/Ti/Au,TiWNx/Pt/Au, 14 1234891 TiWNx/Ni/Au,TiWNx/Pd/Au,TiWNx/Cr/Au, TiWNx/Co/Au,NiAl/Pt/Au,NiAl/Cr/Au,NiAl/Ni/Au, NiAl/Ti/Au,Ti/NiAl/Pt/Au,Ti/NiAl/Ti/Au, Ti/NiAl/Ni/Au,Ti/NiAl/Cr/Au,或任何其他上述材料形 成之化合物。 10· —種氮化鎵系發光二極體結構,其包含: 一基板,其材質係氧化|呂單晶(Sapphire); 一雙重緩衝層(double buffer layer),位於該基板 上,其包含·· 一第一緩衝層(first buffer layer),其材質 係氮化鋁鎵銦(Ali-x-yGaxInyN),其中 0$ X&lt;1,〇$ γ&lt;ι, 位於該基板上; 一第二緩衝層(second buffer layer),其材質 係氮化矽(S i N ),位於該第一緩衝層上; 一 η型氮化鎵(GaN)層,係位於該雙重缓衝層上; 一短週期超晶格數位接觸層,係位於該η型氮化鎵 (GaN)層上,其包含·· 複數個基礎層,係位於該n型氮化鎵(GaN)層 上’該基礎層包含: ^ 一第一基層,其材質係矽(Si)重摻雜η型 氮化紹鎵銦(n++—Ali-x-yGaxInyN),其中 〇$χ&lt;ΐ,〇$γ&lt;ι ; 及 ^ 第一基層’位於該第一基層上,其材質 係未摻雜(undoped)氮化銦鎵(IruGauN),其中u &lt;1 ; 二_「活性發光層,其材質係氮化銦鎵(InGaN),係位於 该短週期超晶格數位接觸層上; — p型被覆層’其材質係鎂摻雜(Mg-doped)氮化銘 錄鋼(AhuGaJnyN),其中〇^χ&lt;ι,〇^γ&lt;1,且位於該 活性發光層上;及 15 1234891 一接觸層,其材質係鎮摻雜(Mg-doped) p型氮化I呂 鎵銦(AlmGaxInyN),其中 0$ X&lt;1,OS YC1,係位於該 p 型被覆層上。 11·如申請專利範圍第10項之發光二極體結構,該第一 基層可位在該n型氮化鎵(GaN)層或該第二基層上。 12·如申請專利範圍第1〇項之發光二極體結構,該第一 基層的厚度介於5埃到50埃。 1 3·如申請專利範圍第1 〇項之發光二極體結構,該第一 基層的成長溫度介於攝氏600度到1 200度。 14 ·如申請專利範圍第1 〇項之發光二極體結構,該第 一基層的重摻雜濃度不小於每立方公分1〇19個 (n&gt;lxl019cnT3)。 1 5 ·如申請專利範圍第1 〇項之發光二極體結構,該第 二基層的厚度介於5埃到50埃。 16·如申請專利範圍第1〇項之發光二極體結構,該第二 基層的成長溫度介於攝氏600度到1200度。 1 7·如申請專利範圍第10項之發光二極體結構,該基礎 層的個數不少於5。 18.如申請專利範圍第1 〇項之發光二極體結構,進一 步地包含一電極層,其位於該接觸層或該短週期超晶 格數位接觸層上,且其可形成良好歐姆接觸,該電極 層包含 Ti/Al,Cr/Au,Cr/Al,Cr/Pt/Au,Ti/Pt/Au, Cr/Pd/Au,Ti/Pd/Au,Ti/Al/Ti/Au,Ti/Al/Pt/Au, Ti/Al/Ni/Au,Ti/Al/Pd/Au,Ti/Al/Cr/Au,Ti/Al/Co/Au, Cr/Al/Cr/Au , Cr/Al/Pt/Au , Cr/Al/Pd/Au , Cr/Al/Ti/Au,Cr/Al/Co/Au,Cr/Al/Ni/Au,Pd/Al/Ti/Au, Pd/Al/Pt/Au , Pd/Al/Ni/Au , Pd/Al/Pd/Au , Pd/Al/Cr/Au , Pd/Al/Co/Au , Nd/Al/Pt/Au , Nd/Al/Ti/Au , Nd/Al/Ni/Au , Nd/Al/Cr/Au , 16 1234891 Nd/Al/Co/Au , Hf/Al/Ti/Au , Hf/AI/Pt/Au , Hf/Al/Ni/Au , Hf/Al/Pd/Au , Hf/Al/Cr/Au , Hf/Al/Co/Au , Zr/Al/Ti/Au , Zr/Al/Pt/Au , Zr/Al/Ni/Au,Zr/Al/Pd/Au,Zr/Al/Cr/Au,Zr/Al/Co/Au, TiNx/Ti/Au,TiNx/Pt/Au, TiNx/Ni/Au,TiNx/Pd/Au, TiNx/Cr/Au , TiNx/Co/Au , TiWNx/Ti/Au , TiWNx/Pt/Au , TiWNx/Ni/Au , TiWNx/Pd/Au , TiWNx/Cr/Au , TiWNx/Co/Au ,NiAl/Pt/Au , NiAl/Cr/Au,NiAl/Ni/Au,NiAl/Ti/Au,Ti/NiAl/Pt/Au, Ti/NiAl/Ti/Au,Ti/NiAl/Ni/Au,Ti/NiAl/Cr/Au,或任 何其他上述材料形成之化合物。 171234891 10. Scope of patent application: 1 · Kind of phosphine emitting light emitting diode structure, which includes: a substrate, the material of which is an oxide I Lu single crystal (Sapphire); a double buffer layer on the substrate It includes a first buffer layer (Ah-x-yGaxInyN) whose material is 〇 $ χ &lt; ΐ, 〇 $ γ &lt; ι, located on the substrate; _ $ A second buffer layer, whose material is silicon nitride (S i N), is located on the first buffer layer; an n-type gallium nitride (GaN) layer, which is located on the double buffer layer; A short-period superlattice digital contact layer is located on the n-type gallium nitride (GaN) layer, and includes: a plurality of foundation layers' located on the n-type gallium nitride ((jaN) layer, the foundation layer) It comprises: a first base layer, the material of which is n-type gasified chain gallium indium (n ++-AlinGaxInyN) heavily doped with silicon (Si), wherein 〇 $ × <1, 〇 $ γ &lt;ι; and a second base layer, Located on the first base layer, the material of which is silicon nitride (SiN); Indium gallium (InGaN) is located on the short-period superlattice digital contact layer; the P-type coating layer 'is made of magnesium-doped (Mg-doped) nitride gallium steel (Ah-x "GaxInyN), 〇 $ χ &lt; ι, 〇 $ γ <ι and located on the active light-emitting layer; and a contact layer 'whose material is magnesium-doped p-type aluminum gallium nitride steel (Ah-x-yGaxInyN ), Where 0 ^ χ &lt; ι, Y &lt; 1, are located on the p-type coating layer. 2. If the light-emitting diode structure of the first scope of the patent application, the first base 13 1234891 layer may be located on the η Type gallium nitride (GaN) layer or the second base layer. 3 · If the light-emitting diode structure of the first scope of the patent application, the thickness of the first base layer is between 5 angstroms and 50 angstroms. The light emitting diode structure of the first item in the range, the growth temperature of the first base layer is between 600 ° C and 1200 degrees Celsius. 5 · If the light emitting diode structure of the first item in the patent application, the first base layer is re-doped The impurity concentration is not less than 1019 pieces per cubic centimeter (n &gt; lxl 019cnT3). 6 · If the light emitting diode structure of the first scope of the patent application, the second base layer The thickness is between 2 angstroms and 10 angstroms. 7. If the light emitting diode structure of the first patent application range, the growth temperature of the second base layer is between 600 degrees and 1200 degrees Celsius. The light emitting diode structure of the item, the number of the base layer is not less than 5. 9. The light-emitting diode structure according to item 1 of the patent application scope, further comprising an electrode layer, which is located on the contact layer or the short-period superlattice digital contact layer, and which can form a good ohmic contact. The electrode Layers include Ti / Al, Cr / Au, Cr / Al, Cr / Pt / Au, Ti / Pt / Au, Cr / Pd / Au, Ti / Pd / Au, Ti / Al / Ti / Au, Ti / Al / Pt / Au, Ti / Al / Ni / Au, Ti / Al / Pd / Au, Ti / Al / Cr / Au, Ti / Al / Co / Au, Cr / Al / Cr / Au, Cr / Al / Pt / Au, Cr / Al / Pd / Au, Cr / Al / Ti / Au, Cr / Al / Co / Au, Cr / Al / Ni / Au, Pd / Al / Ti / Au, Pd / Al / Pt / Au, Pd / Al / Ni / Au, Pd / Al / Pd / Au, Pd / Al / Cr / Au, Pd / Al / Co / Au, Nd / Al / Pt / Au, Nd / Al / Ti / Au, Nd / Al / Ni / Au, Nd / Al / Cr / Au, Nd / Al / Co / Au, Hf / Al / Ti / Au, Hf / AI / Pt / Au, Hf / Al / Ni / Au, Hf / Al / Pd / Au, Hf / Al / Cr / Au, Hf / Al / Co / Au, Zr / Al / Ti / Au, Zr / Al / Pt / Au, Zr / Al / Ni / Au, Zr / Al / Pd / Au, Zr / Al / Cr / Au, Zr / Al / Co / Au, TiNx / Ti / Au, TiNx / Pt / Au, TiNx / Ni / Au, TiNx / Pd / Au, TiNx / Cr / Au, TiNx / Co / Au, TiWNx / Ti / Au, TiWNx / Pt / Au, 14 1234891 TiWNx / Ni / Au, TiWNx / Pd / Au, TiWNx / Cr / Au, TiWNx / Co / Au, NiAl / Pt / Au, NiAl / Cr / Au, NiAl / Ni / Au, NiAl / Ti / Au, Ti / NiAl / Pt / Au, Ti / NiAl / Ti / Au, Ti / NiAl / Ni / Au, Ti / NiAl / Cr / Au, or any other compound of these materials . 10 · —a gallium nitride-based light-emitting diode structure, including: a substrate, the material of which is an oxide | Lu single crystal (Sapphire); a double buffer layer (double buffer layer) on the substrate, which contains ... The first buffer layer is made of aluminum-gallium-indium-nitride (Ali-x-yGaxInyN), where 0 $ X &lt; 1,0 $ γ &lt; ι, is located on the substrate; a second buffer layer ( second buffer layer), whose material is silicon nitride (S i N), is located on the first buffer layer; an n-type gallium nitride (GaN) layer, which is located on the double buffer layer; a short-period supercrystal The grid digital contact layer is located on the n-type gallium nitride (GaN) layer and includes a plurality of base layers located on the n-type gallium nitride (GaN) layer. The base layer includes: ^ A base layer whose material is silicon (Si) heavily doped n-type gallium indium nitride (n ++-Ali-x-yGaxInyN), where 〇 $ χ &lt; ΐ, 〇 $ γ &lt;ι; and ^ The first base layer is located at On the first base layer, the material is undoped indium gallium nitride (IruGauN), where u &lt;1; Indium gallium nitride (InGaN) is located on the short-period superlattice digital contact layer;-p-type coating 'its material is magnesium doped (Mg-doped) nitride inscribed steel (AhuGaJnyN), where 〇 ^ χ &lt; ι, 〇 ^ γ &lt; 1, and located on the active light-emitting layer; and 15 1234891 a contact layer, the material of which is ball-doped (Mg-doped) p-type nitride I Lu gallium (AlmGaxInyN), of which 0 $ X &lt; 1, OS YC1, is located on the p-type coating layer. 11. If the light-emitting diode structure of the tenth patent application scope, the first base layer may be located on the n-type gallium nitride (GaN) layer Or on the second base layer. 12. If the light emitting diode structure of the patent application scope item 10, the thickness of the first base layer is between 5 angstroms and 50 angstroms. For a light-emitting diode structure, the growth temperature of the first base layer is between 600 ° C. and 1 200 ° C. 14 · For a light-emitting diode structure having a patent scope of item 10, the heavily doped concentration of the first base layer does not Less than 1019 pieces per cubic centimeter (n &gt; lxl019cnT3). 1 5 · The structure of the light-emitting diode as described in the scope of patent application No. 10 The thickness of the second base layer is between 5 angstroms and 50 angstroms. 16. If the light emitting diode structure of the patent application scope item 10, the growth temperature of the second base layer is between 600 ° C and 1200 ° C. 17. If the light-emitting diode structure of item 10 of the patent application scope, the number of the base layers is not less than 5. 18. The light-emitting diode structure of claim 10, further comprising an electrode layer, which is located on the contact layer or the short-period superlattice digital contact layer, and which can form a good ohmic contact. The electrode layer contains Ti / Al, Cr / Au, Cr / Al, Cr / Pt / Au, Ti / Pt / Au, Cr / Pd / Au, Ti / Pd / Au, Ti / Al / Ti / Au, Ti / Al / Pt / Au, Ti / Al / Ni / Au, Ti / Al / Pd / Au, Ti / Al / Cr / Au, Ti / Al / Co / Au, Cr / Al / Cr / Au, Cr / Al / Pt / Au, Cr / Al / Pd / Au, Cr / Al / Ti / Au, Cr / Al / Co / Au, Cr / Al / Ni / Au, Pd / Al / Ti / Au, Pd / Al / Pt / Au , Pd / Al / Ni / Au, Pd / Al / Pd / Au, Pd / Al / Cr / Au, Pd / Al / Co / Au, Nd / Al / Pt / Au, Nd / Al / Ti / Au, Nd / Al / Ni / Au, Nd / Al / Cr / Au, 16 1234891 Nd / Al / Co / Au, Hf / Al / Ti / Au, Hf / AI / Pt / Au, Hf / Al / Ni / Au, Hf / Al / Pd / Au, Hf / Al / Cr / Au, Hf / Al / Co / Au, Zr / Al / Ti / Au, Zr / Al / Pt / Au, Zr / Al / Ni / Au, Zr / Al / Pd / Au, Zr / Al / Cr / Au, Zr / Al / Co / Au, TiNx / Ti / Au, TiNx / Pt / Au, TiNx / Ni / Au, TiNx / Pd / Au, TiNx / Cr / Au , TiNx / Co / Au, TiWNx / Ti / Au, TiWNx / Pt / Au, TiWNx / Ni / Au, TiWNx / Pd / Au, TiWNx / Cr / Au, TiWNx / Co / Au, NiAl / Pt / Au, NiAl / Cr / Au, NiAl / Ni / Au, NiAl / Ti / Au, Ti / NiAl / Pt / Au, Ti / NiAl / Ti / Au , Ti / NiAl / Ni / Au, Ti / NiAl / Cr / Au, or any other compound formed from the above materials. 17
TW93122931A 2004-07-30 2004-07-30 Structure of Gallium-Nitride light-emitting diode TWI234891B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93122931A TWI234891B (en) 2004-07-30 2004-07-30 Structure of Gallium-Nitride light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93122931A TWI234891B (en) 2004-07-30 2004-07-30 Structure of Gallium-Nitride light-emitting diode

Publications (2)

Publication Number Publication Date
TWI234891B true TWI234891B (en) 2005-06-21
TW200605388A TW200605388A (en) 2006-02-01

Family

ID=36597981

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93122931A TWI234891B (en) 2004-07-30 2004-07-30 Structure of Gallium-Nitride light-emitting diode

Country Status (1)

Country Link
TW (1) TWI234891B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5996846B2 (en) 2011-06-30 2016-09-21 シャープ株式会社 Nitride semiconductor light emitting device and manufacturing method thereof
TWI480928B (en) * 2012-05-22 2015-04-11 Nat Univ Chung Hsing The manufacturing method of the semiconductor element and the epitaxial substrate used in the manufacturing method and the semi-finished product of the semiconductor device

Also Published As

Publication number Publication date
TW200605388A (en) 2006-02-01

Similar Documents

Publication Publication Date Title
US7148519B2 (en) Structure of GaN light-emitting diode
CN100563033C (en) III A nitride semiconductor devices with Low ESR ohmic contact
TW544952B (en) Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
JP5084837B2 (en) Deep ultraviolet light emitting device and method for manufacturing the same
US10263147B2 (en) Light emitting diode and fabrication method thereof
TWI415287B (en) A structure of light emitting device
TWI359506B (en) Light-emitting device and manufacturing method the
JP2004319912A (en) Semiconductor light emitting device
JP2008526013A (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP2008545266A (en) Nitride semiconductor LED and manufacturing method thereof
TW565957B (en) Light-emitting diode and the manufacturing method thereof
US8138494B2 (en) GaN series light-emitting diode structure
CN109075226A (en) Group III-nitride laminated body and group III-nitride light-emitting component
JPWO2012090252A1 (en) Semiconductor device and manufacturing method thereof
JP2013058786A (en) Nitride semiconductor light-emitting element
TW201006009A (en) Light emitting diodes and manufacture thereof
TW200541107A (en) Ⅲ-Nitride semiconductor light emitting device
CN101931036A (en) Gallium nitride luminous diode
CN100369276C (en) LED structure
TWI278126B (en) GaN series light emitting diode structure of p-type contacting layer with low-temperature growth low resistivity
TWI234891B (en) Structure of Gallium-Nitride light-emitting diode
TW201232824A (en) Transparent thin film, light emitting device comprising the same, and methods for preparing the same
JP4676736B2 (en) Gallium nitride light emitting diode
TW591808B (en) Light-emitting diode with sapphire substrate
TW201248690A (en) Semiconductor laminate and process for production thereof, and semiconductor element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees