1233214 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種紫外線光檢測器,特別是有關一種 使用氮化鎵系化合物半導體的紫外線光檢測器結構。 【先前技術】 目前,能將光訊號轉換為電訊號的光檢測器(PhotoDetector)的 · 習知做法有三種,分別是採用真空管的光倍增管(Photo -Multiplier,PMT)、使用矽材料的光檢測器、以及使用氮化鎵 系化合物半導體的光檢測器。 a ‘ 在适二,做法之中,光倍增管的成本高、需要高操作電壓、而 且真空官容易破碎。而矽光檢測器則具有製作容易、成本低 廉、與低操作電壓等特性。雖然,矽光檢測器對較大波長的可 ίί與紅外線光的偵測有相當優良的效能,但對較短波長的紫 ϋ則敏感度較低。相對地,以氮化鎵系化合物為材料的 Ϊ t f Ϊ因為材料可以具有較大的能隙(Band Gap), 系介人ίΐί 〇备、外線光的偵測。而且,藉著控制氮化鎵 成來改變其能隙,可以製作出針對特定波 長乾圍的紫外線光的光檢測器。 ί圖:氮c,外線光檢測器之反應曲線圖。如第 的紫外錄H e錄系紫外線光檢測器特別在300〜37〇nm 光檢測哭所益皮 =範圍有相當快速的反應,這是習知的矽 所無去達到的。因此在需要快速反應的應用環境,氮 1233214 化鎵系紫外線光檢測器正可以提供優異的表現。 H氮化鎵系半導體裝置,其常見的問題之—係相鄰 半¥體層之間的晶格常數差異過大。因為此晶格結構的 不,而造成的過大應力,常使得半導體裝置的磊晶結構 :良^進而影響其效能表現。此外,氮化鎵系紫外線光 此^ 一方面要有夠大的能隙以反應特定波長範圍的 光,而其與電極接觸之處,能隙又不能太大才能 = 。另外,如何減少紫外線光被氮化 愈“二卜線光杈測态的表面所反射、以及如何提高其光 闲π信特性,也是氮化鎵系紫外線光檢測器能否具有實 用價值所需要解決的問題。 /、$肩 【發明内容】 氮化鎵系紫外線光檢測器的結構,可以 只際解決前述相關技術中的限制及缺失。再了以 卜線光檢測器結構,從-基 層、與-觸:層、一光吸收層、一光穿透 的氮化紹鎵銦(AlaG'bli^if『體,均由具有特定組成 合物半導體材料所構成。ft1,a+bsl)的四元化 銦成份的組成,這些^導d史這些材料的鋁、鎵、 隙、載子濃产盥遴銘Φ m 9一方面可以具備所%的能 反應可以特;/靈針對特定波長的紫外線光 匹配的晶袼常數,因而可 體層得以具備 同時得到更高品質晶格結構的==, 正電極、一 光 此結構進—步包含位於Ρ型接觸層上的一 1233214 穿透歐姆接觸層、與一抗反射層,以及位於n 上的-負電極。此抗反射層對紫外線光波長 的光的反射率小於3〇%,使得絕大部份、丄艾 f透過光穿透歐姆接觸層進入氮化鎵系紫外線光檢= σσ ° 【實施方式】 第二圖係本發明之紫外線光檢測器結構第一實施例 不意圖。如第二圖所示,此實施例係以匕朽扣/ ^ RPiane或A-Plane之氧化鋁單晶(sapphire)或碳化= (SH^iC或4H-SiC)為基板10,其他可用於基板1〇的材讀 質還包括Si、ZnO、GaAs或尖晶石(MgAl2〇4),或是晶 · 格常數接近於氮化物半導體之單晶氧化物,然後在此$ 板10之一側面形成一 n型接觸層2〇,此!!型接觸層2〇係 ‘ 由有η型摻雜、具有一特定組θ成的 AlaGayni.a_bN(0^a,bSl,a+b$l)所構成、厚度介於 300〇A〜4〇〇〇〇A之間、成長溫度介於700°C〜1200°c之 間。然後,在此η型接觸層20之上形成一光吸收層32,此光 吸收層32係由未摻雜的、具有一特定組成的 AlcG/dIni_c_dN(〇Sc,c^l,c+dSl)所構成、厚度介於 ΙΟΟΑ〜10000A之間、成長溫度介於700°c〜1200°c之 餐 間、而且覆蓋部份η型接觸層20的表面。藉由調整其A1、1233214 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to an ultraviolet light detector, and more particularly to an ultraviolet light detector structure using a gallium nitride-based compound semiconductor. [Prior technology] At present, there are three known methods of PhotoDetector that can convert optical signals into electrical signals. They are Photo-Multiplier (PMT) using vacuum tubes, and light using silicon materials. A detector, and a photodetector using a gallium nitride-based compound semiconductor. a ‘In the second approach, photomultiplier tubes are costly, require high operating voltages, and the vacuum officials are easily broken. The silicon photodetector has the characteristics of easy fabrication, low cost, and low operating voltage. Although the silicon photodetector has relatively good performance in detecting larger wavelengths and infrared light, it is less sensitive to shorter wavelengths. In contrast, 镓 t f 以, which uses gallium nitride-based compounds as the material, is a material that can have a large band gap (Band Gap), which is used for detection of external light. Furthermore, by controlling the formation of gallium nitride to change its energy gap, a photodetector for ultraviolet light with a specific wavelength can be manufactured. ί Figure: Nitrogen c, the response curve of the external photodetector. Such as the first UV recording He e series UV light detector, especially in the 300 ~ 37nm light detection cries benefit range = quite fast response, which is not achieved by the conventional silicon. Therefore, in applications requiring fast response, the nitrogen 1233214 gallium-based ultraviolet photodetector is providing excellent performance. One of the common problems with H gallium nitride-based semiconductor devices is that the lattice constants between adjacent half-body layers are too large. Because of this lattice structure, the excessive stress caused often makes the epitaxial structure of the semiconductor device good: and then affects its performance. In addition, gallium nitride-based ultraviolet light requires a large enough energy gap to reflect light in a specific wavelength range, and where it contacts the electrode, the energy gap cannot be too large. In addition, how to reduce the reflection of ultraviolet light on the surface of the two-dimensional optical fiber measured by nitriding, and how to improve its optical signal characteristics, is also the solution of whether the gallium nitride-based ultraviolet light detector has practical value. / 、 $ 肩 [Summary of the Invention] The structure of the gallium nitride-based ultraviolet photodetector can only solve the limitations and defects in the foregoing related technologies. Then, with the structure of the photodetector, the basic layer and the -Touch: layers, a light absorbing layer, and a light penetrating gallium indium nitride (AlaG'bli ^ if "body, all of which are composed of semiconductor materials with a specific composition. The composition of the composition of indium, these materials are aluminum, gallium, interstitial, and carrier-concentrated materials. M m 9 On the one hand, it can have all the energy that can be reacted; / Spirit for specific wavelengths of ultraviolet light The matching crystal constants, so that the body layer can have a high-quality lattice structure ==, the positive electrode, a light this structure further-including a 1233214 penetrating ohmic contact layer on the P-type contact layer, and An anti-reflection layer, and -negative electrode on n. The reflectivity of this anti-reflection layer to light with ultraviolet light wavelength is less than 30%, so that most of Ai f passes through the ohmic contact layer and enters the gallium nitride-based ultraviolet light inspection = σσ ° [Embodiment] The second diagram is not intended for the first embodiment of the structure of the ultraviolet light detector of the present invention. As shown in the second diagram, this embodiment is made of alumina / RPiane or A-Plane alumina Single crystal (sapphire) or carbonization = (SH ^ iC or 4H-SiC) is the substrate 10, and other materials that can be used for the substrate 10 include Si, ZnO, GaAs or spinel (MgAl204), or The crystal lattice constant is close to that of a single crystal oxide of a nitride semiconductor, and then an n-type contact layer 20 is formed on one side of the plate 10, and the !!-type contact layer 20 is composed of n-type doping, AlaGayni.a_bN (0 ^ a, bSl, a + b $ l) with a specific set of theta, the thickness is between 300 and 4,000A, and the growth temperature is between 700 ° C and 1200 ° C. Then, a light absorption layer 32 is formed on the n-type contact layer 20, and the light absorption layer 32 is made of undoped AlcG / dIni_c_d with a specific composition. Meal consisting of N (〇Sc, c ^ l, c + dSl), thickness between 100A ~ 10000A, growth temperature between 700 ° c ~ 1200 ° c, and covering part of the n-type contact layer 20 Surface. By adjusting its A1,
Ga、以及in的材料組成,光吸收層32具有大於3·4電 子伏特(eV)的能隙,因此能敏銳感測位於紫外線光波 長範圍(300nm^^370nm)的光線。在η型接觸層2〇表面 未被覆蓋的部份,此實施例另外形成一由Ti與Α1合金 、 所構成的負電極30。 此實施例接著在光吸收層上形成一光穿透層40,此光穿 7 1233214 ^係?複數層㈣的疊層所構成的超晶格結構, ”,母一 ®層都包含二層、厚度均介於5〇人〜200A之 間、以^及成長溫度均介於700x〜12〇〇c>c之間的單層。 此二單層分別由具有特定組成與p型摻雜的The light absorbing layer 32 has an energy gap of more than 3.4 electron volts (eV), so it can sensitively sense light in the ultraviolet light wavelength range (300nm ^ 370nm). On the part of the n-type contact layer 20 whose surface is not covered, a negative electrode 30 composed of Ti and A1 alloy is formed in this embodiment. In this embodiment, a light-transmitting layer 40 is formed on the light-absorbing layer. This light passes through 7 1233214. A superlattice structure composed of a stack of a plurality of layers, "The mother layer ® includes two layers, each having a thickness between 50 and 200 A, and the growth temperature between 700 and 120. c > a single layer between c. These two single layers are made of p-type doped
AleGafIni_e_fN 和 AlgGahIni_g_hN(〇$e,f,g,hsl,e+执 g+ΜΙ)所構成。超晶格結構具有高载子濃度、以及高載 子遷移率,因此,本發明之紫外線光檢測器具有相當優 異的電特性。 接著位於光穿透層40上方,此實施例接著形成一 p型 =觸層50,此P型接觸層5〇係由有p型摻雜、具有一特 定組成的AliGajlmyNCOsijsi,i+jS1)所構成、成長溫度 ^於~700。(:〜1200°C之間。由於p型接觸層5〇的能隙不 能太寬以與電極形成良好之歐姆接觸,而又為避免窄能隙氮化 物^質吸,的問題,P型接觸層5〇的厚度係介於 2〇A〜2000A之間。 在P型接觸層50上方,此實施例進一步分別形成互不重疊的 一正電極60與一光穿透歐姆接觸層62。正電極6〇係由Ni與 Au。的合金所構成。光穿透歐姆接觸層62可以是一厚度介於 2〇A。〜200A之間的金屬導電層,或是一厚度介於 200A〜3000入之間透明導電氧化層。此金屬導電層可以 是由Ni/Au合金、Ni/Pt合金、Ni/Pd合金、Ni/Co合金、Pd/Au 合金、Pt/Au合金、Ti/Au合金、Cr/Au合金、Sn/Au合金、Ta/Au 合金、TiN、TiWNx(它〇)、Wsiy(於0)等其中之一、或其他類似 金屬材料所構成。此透明導電氧化層可以是由ΓΓΟ、CTO、AleGafIni_e_fN and AlgGahIni_g_hN (〇 $ e, f, g, hsl, e + g + MI). The superlattice structure has a high carrier concentration and a high carrier mobility. Therefore, the ultraviolet light detector of the present invention has quite excellent electrical characteristics. Next, it is located above the light transmission layer 40. In this embodiment, a p-type contact layer 50 is formed. The p-type contact layer 50 is composed of p-type doped AliGajlmyNCOsijsi (i + jS1). 、 Growth temperature ^ ~~ 700. (: ~ 1200 ° C. Since the energy gap of the p-type contact layer 50 cannot be too wide to form a good ohmic contact with the electrode, and to avoid the problem of narrow-band gap nitride absorption, P-type contact The thickness of the layer 50 is between 20A and 2000A. Above the P-type contact layer 50, this embodiment further forms a positive electrode 60 and a light penetrating ohmic contact layer 62 that do not overlap each other. The positive electrode The 60 series is composed of an alloy of Ni and Au. The light penetrating ohmic contact layer 62 may be a metal conductive layer having a thickness between 20A and 200A, or a thickness between 200A and 3000A. Transparent conductive oxide layer. This metal conductive layer can be made of Ni / Au alloy, Ni / Pt alloy, Ni / Pd alloy, Ni / Co alloy, Pd / Au alloy, Pt / Au alloy, Ti / Au alloy, Cr / One of Au alloy, Sn / Au alloy, Ta / Au alloy, TiN, TiWNx (it 0), Wsiy (at 0), or other similar metal materials. This transparent conductive oxide layer can be composed of ΓΓΟ, CTO ,
ZnO:Al、ZnGa2〇4、Sn02:Sb、Ga203:Sn、AgIn〇2:Sn、In2〇3:Zn、ZnO: Al, ZnGa2〇4, Sn02: Sb, Ga203: Sn, AgIn〇2: Sn, In2〇3: Zn,
CuA1〇2、LaCuOS、NiO、CuGa〇2、SrCu2〇2 等其中之一、或 其他類似材料所構成。 1233214 在光穿透歐姆接觸層62之上,此實施例接著形成一未與正電 極60重疊的抗反射層64,以避免紫外線的入射光在此檢測器 表面被反射。此抗反射層64可由Si02、SiN4、Ti02等材料 之一所構成,或是由5102/1^02的分散式布拉格反射器 (Distributed Bragg Reflector, DBR)所構成。此抗反射層 64對紫外線光波長範圍的光的反射率小於3〇%。 第f圖係本發明之紫外線光檢測器結構第二實施例之 不意圖。如第三圖所示,此實施例和第一實施例有相同 =結構與成長方式。唯一的差別是在光吸收層所用的材 質。在此實施例中,n型接觸層2〇之上形成的光吸收層34, 係由有銦摻雜、具有一特定組成的AlmGa^mNCO^i^l) 所構成。由於有銦摻雜的氮化物易使界面平整的特性,此光 34除了具有第—實施例的優點外,錢晶品質可以更 第^係^ ^之紫外、㈣檢測11結構第三實施例之 所示,此實施例和第-、第二實施例 結構、材質、^成di—的差別是在光吸收層的 超晶格結構,复ΐ收ΐ 36,係由複數層的疊層所構成的 50人〜200Α之間'、以,—疊層都包含二層、厚度均介於 之間的單戶。士 -及成長溫度均介於700〇C〜1200oC AlGaIni0N ^早層分別具有特定組成與未摻雜的 r+su)所構成。此本faJni-r-sN(0邱,叫设,ρ+杉工, 100人〜ιοοοοΑ之間收層36的整體厚度係介於 層3 6,一方面可以避^此ί施例採用超晶格結構的光吸收 避免則二實施例採用高鋁含量氮化物 1233214 的單層厚膜的裂解(Crack)問題,另一方面高鋁 物超晶格結構所能達到的更寬能隙,可對冰匕 (λ二30〇nm)的紫外線光達到快速反應的目的。丑波長 第五圖係本發明之紫外線光檢測器結構第四 示意圖。如第五圖所示,此實施例和第三實施 I = 的結構與成長方式。唯一的差別是在 同 f ^ t ^ η 係由複數層的疊層所構成的超晶格結構,苴中,曰一38β’ 層λ〗、产別由具有特定組成與有銦摻雜口 u ahN和AlwGa^NCOSi^w幻)所構成。此超 38 ^ ^十’湘有銦掺雜氮化物易使介面平整化的特 ?,來改二此氮化鋁鎵吸收層的磊晶品質,並利用高鋁含的 半導體寬能隙的特性,使檢測11對更短波長 (λ二30〇nm)的紫外線光反應快速。 長 =所述者僅為用卩解釋本發明之較佳實_,並非企 同二2對本發明作任何形式上之限制,是以,凡有在相 二明精神下所作有關本發明之任何修飾或變更,皆 乃應匕括在本發明意圖保護之範疇。 【圖式簡單說明】 ,,所顯不係提供作為具體呈現本說明書中所描述各 j成兀件之具體化實施例,並解釋本發明之主要目的以 ,進對本發明之了解。 =一圖係氮化鎵系紫外線光檢測器之反應曲線圖。 一二圖係本發明之紫外線光檢測器結構第一實施例之 不意圖。 1233214 第三圖係本發明之紫外線光檢測器結構第二實施例之 示意圖。 第四圖係本發明之紫外線光檢測器結構第三實施例之 示意圖。 第五圖係本發明之紫外線光檢測器結構第四實施例之 示意圖。 【主要元件符號說明】 10 基板 20 η型接觸層 30 負電極 32 光吸收層 34 光吸收層 36 光吸收層 38 光吸收層 40 光穿透層 50 Ρ型接觸層 60 正電極 62 光穿透歐姆接觸層 64 抗反射層One of CuA102, LaCuOS, NiO, CuGa02, SrCu202, or other similar materials. 1233214 On the light penetrating ohmic contact layer 62, this embodiment then forms an anti-reflection layer 64 that does not overlap the positive electrode 60 to prevent incident light of ultraviolet rays from being reflected on the surface of the detector. The anti-reflection layer 64 may be made of one of Si02, SiN4, Ti02 and other materials, or a 5102/1 ^ 02 distributed Bragg reflector (DBR). The reflectance of this anti-reflection layer 64 to light in the wavelength range of ultraviolet light is less than 30%. Fig. F is an illustration of the second embodiment of the structure of the ultraviolet light detector of the present invention. As shown in the third figure, this embodiment is the same as the first embodiment = structure and growth method. The only difference is the material used in the light absorbing layer. In this embodiment, the light absorption layer 34 formed on the n-type contact layer 20 is composed of AlmGa ^ mNCO ^ i ^ l) doped with indium and having a specific composition. Because the indium-doped nitride easily flattens the interface, in addition to the advantages of the first embodiment, the quality of the light 34 can be changed to the ultraviolet and thallium detection of the third embodiment. As shown, the difference between this embodiment and the first and second embodiments in structure, material, and di- is the superlattice structure in the light absorbing layer, which is 36 and is composed of a stack of multiple layers. Between 50 people ~ 200A ', so,-the stacks include a single family with two layers and a thickness between. Both the growth temperature and the growth temperature are between 700 ° C and 1200 ° C. The AlGaIniON layer has a specific composition and undoped r + su), respectively. This book faJni-r-sN (0 Qiu, call set, ρ + Shangong, 100 people ~ ιοοοο Α the overall thickness of the receiving layer 36 is between layers 36, on the one hand can avoid the use of super crystal The light absorption of the lattice structure avoids the cracking problem of the single layer thick film using the high aluminum content nitride 1233214 in the second embodiment. On the other hand, the wider energy gap that can be achieved by the high aluminum superlattice structure can be adjusted. The ultraviolet light of the ice dagger (λ230nm) achieves the purpose of rapid response. The fifth figure of the ugly wavelength is the fourth schematic diagram of the structure of the ultraviolet light detector of the present invention. As shown in the fifth figure, this embodiment and the third implementation I = structure and growth mode. The only difference is that in the same f ^ t ^ η system, a superlattice structure composed of a stack of multiple layers, in which, a 38β 'layer λ〗, and the product type has a specific The composition is composed of indium doped ports u ahN and AlwGa ^ NCOSi ^ w). This super 38 ^ ^ '' has the characteristics of indium doped nitride easy to flatten the interface, to improve the epitaxial quality of the aluminum gallium nitride absorption layer, and the use of high aluminum-containing semiconductor wide band gap characteristics , So that the detection of 11 pairs of shorter wavelengths (λ-300nm) ultraviolet light response fast. Long = The above is only used to explain the best practice of the present invention. It is not intended to restrict the present invention in any form. Any modification to the present invention made in the spirit of Xiang Erming Any change or modification should be included in the scope of the present invention. [Brief description of the drawings], what is shown is not to provide specific embodiments for concretely describing the components described in this specification, and to explain the main purpose of the present invention, in order to understand the present invention. = A picture is a reaction curve of a gallium nitride based ultraviolet light detector. The first and second figures are not intended for the first embodiment of the structure of the ultraviolet light detector of the present invention. 1233214 The third diagram is a schematic diagram of the second embodiment of the structure of the ultraviolet light detector of the present invention. The fourth figure is a schematic view of the third embodiment of the structure of the ultraviolet light detector of the present invention. The fifth diagram is a schematic diagram of the fourth embodiment of the structure of the ultraviolet light detector of the present invention. [Description of main component symbols] 10 substrate 20 n-type contact layer 30 negative electrode 32 light absorption layer 34 light absorption layer 36 light absorption layer 38 light absorption layer 40 light transmission layer 50 P-type contact layer 60 positive electrode 62 light transmission ohm Contact layer 64 Anti-reflective layer
1111