TWI232031B - Quadrature gain and phase imbalance correction in a receiver - Google Patents

Quadrature gain and phase imbalance correction in a receiver Download PDF

Info

Publication number
TWI232031B
TWI232031B TW92127804A TW92127804A TWI232031B TW I232031 B TWI232031 B TW I232031B TW 92127804 A TW92127804 A TW 92127804A TW 92127804 A TW92127804 A TW 92127804A TW I232031 B TWI232031 B TW I232031B
Authority
TW
Taiwan
Prior art keywords
phase
signal
patent application
scope
gain
Prior art date
Application number
TW92127804A
Other languages
Chinese (zh)
Other versions
TW200408204A (en
Inventor
Rishi Mohindra
Original Assignee
Maxim Integrated Products
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/285,151 external-priority patent/US7035341B2/en
Application filed by Maxim Integrated Products filed Critical Maxim Integrated Products
Publication of TW200408204A publication Critical patent/TW200408204A/en
Application granted granted Critical
Publication of TWI232031B publication Critical patent/TWI232031B/en

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

The present invention offers a low cost, reliable, on chip implementation that takes advantage of circuitry already present in receivers to calibrate and correct for gain and phase errors in a transceiver device. The present invention employs a digital signal processor along with multiple phase shifters and all pass networks to ensure proper levels of quadrature signals within the transceiver. An internally generated double sideband suppressed carrier signal is created to produce the calibration signals used by the digital signal processor.

Description

Ι23203ΪΙ23203Ϊ

五、發明說明(1) 1 ·發明所屬之技術領域 法供改正一接收機 本發明係有關於一種方 路徑之增益及相位。 2 ·先前技術 隹無線m 被用 小化通信所需之頻譜因而極大化通信系統之通話容量。V. Description of the invention (1) 1. The technical field to which the invention belongs A method for correcting a receiver The present invention relates to the gain and phase of a square path. 2 · Prior technology 隹 Wireless m is used to reduce the frequency spectrum required for communication and thus maximize the communication capacity of the communication system.

=之調變方法通常包含通信訊號轉變為分離的形式,而 付之調變訊號典型地為降低之頻譜。 以分離的形式傳送通信訊號之一種方法係經由使用正 交調變(quadrature modulati〇n)。在正交調變中,編碼 之通k訊號之二進資料流(binary data stream)係區分為 位元對(bi t pai rs )。此種位元對係用於使Rp載波訊號之 相位移根據編碼訊號之個別位元對之值,以增加或減少例 如加減7Γ /4徑度或加減3 7Γ / 4徑度。 相位移以使用包含位元對之二進位資料流於一對混波 電路而達成。一載波訊號之正弦成分係加至一第一混波電 路之輸入,而一載波訊號之餘弦成分係加至一第二混波電 路之輸入,載波訊號之正弦及餘弦成分具有彼此間9 0度之 相位關係’或稱為相位正交(phase quadrature)。一正父The modulation method usually involves the conversion of the communication signal into a separate form, while the modulation signal is typically a reduced frequency spectrum. One method of transmitting communication signals in a separated form is through the use of quadrature modulation. In quadrature modulation, the binary data stream of the encoded k signal is divided into bit pairs (bits). This kind of bit pair is used to make the phase shift of the Rp carrier signal according to the value of the individual bit pair of the coded signal to increase or decrease, for example, plus or minus 7Γ / 4 diameter or plus or minus 7Γ / 4 diameter. The phase shift is achieved using a binary data stream containing bit pairs in a pair of mixing circuits. The sine component of a carrier signal is added to the input of a first mixing circuit, and the cosine component of a carrier signal is added to the input of a second mixing circuit. The sine and cosine components of the carrier signal have 90 degrees to each other. The phase relationship 'is also called phase quadrature. A father

第5頁 1232031 五、發明說明(2) 產生器係用以產生並將載波訊號之正弦及餘弦成分分別加 至混波電路對之第一及第二混波電路。此產生所謂同相位 (inphase)’’I”信號及正交(qUadratlιre)"Q"訊號。此I及Q 訊號然後滤波並調整增益且最後傳送給一數位訊號處理器 晶片以取出通信資料。 I及Q訊號誤差在此型接收機有二種來源,第一,I及 Q增益及相位誤差由降頻轉換器至基頻或中頻〖F形成,係 導因於混波電路。第二,頻率相關之I及Q增益及相位誤差 變化導因於頻道濾波器之通帶(pass band)内。此型式之 誤差係由於增益及相位於降頻變換後在二正交接收器之間 之不匹配(例如:在I及q之低通濾波器之間及在丨及q增益 控制區塊之間)。因此需要調整及改正之丨Q誤差為:( IQ增益誤差(結合系統的及頻率相關的),(b)系統’的IQ相 位誤差,及(c)頻率相關之iq相位誤差。 先前技術曾利用高度容許之組件企圖避免在丨及〇組件 之間之相位及/或峰值不平衡(imbalance)。此種方案且 有很大的成本衝擊且仍可能未正確定位問題。里他先前技 術方案試圖以預計及移除此誤差以對付不平衡。 此種方案之一係敘述在美國專利案號第5,3 96,656號 案,於1995年5月7日頒予Jasper等人,題為「一種方法供 決定正交調變之訊號之所要成分」。此係顯示於此先前技Page 5 1232031 V. Description of the invention (2) The generator is used to generate and add the sine and cosine components of the carrier signal to the first and second mixing circuits of the mixing circuit pair, respectively. This generates a so-called inphase (I) signal and a quadrature (QUadratlre) " Q " signal. The I and Q signals are then filtered and adjusted for gain, and finally transmitted to a digital signal processor chip to retrieve communication data. There are two sources of I and Q signal errors in this type of receiver. First, I and Q gain and phase errors are formed by the down-converter to the fundamental or intermediate frequency [F], which is due to the mixing circuit. The variation of the frequency-dependent I and Q gains and phase errors is due to the pass band of the channel filter. The error of this type is because the gain and phase are located between two orthogonal receivers after the down-conversion. Mismatch (for example: between the low-pass filters of I and q and between the gain control block of q). Therefore, the Q error that needs to be adjusted and corrected is: (IQ gain error (combined with the system and frequency (Relevant), (b) system's IQ phase error, and (c) frequency-dependent iq phase error. Previous techniques have used highly tolerable components in an attempt to avoid phase and / or peak imbalances between 丨 and 〇 components. (Imbalance). This scheme and There is a large cost impact and the problem may still not be positioned correctly. Li's previous technical solutions attempted to counteract the imbalance by predicting and removing this error. One of such solutions is described in US Patent No. 5,3 96,656. The case was awarded to Jasper et al. On May 7, 1995, entitled "A Method for Determining the Required Components of a Signal for Quadrature Modulation." This is shown in this prior art

第6頁 1232031 五、發明說明(3) 術之第1圖。在其中,一閉路回授技術被用以繼續不斷用 更新一不平衡成分之預估而決定一誤差訊號直至誤差訊號 之大小(magnitude)可忽略。此種先前技術之電路包含標 準之組件如天線3〇1、一混波電路30 2、一 A/D轉換器30 3、 及一數位訊號處理晶片(DSP) 304。DSP304包括混波電路 30 5及3 0 6及一相移器307。此訊號然後由一加法器3 08相 加,然後由組件30 9做低通濾波。訊號然後由取樣器31 〇取 樣’其中成分之大小係預估,而I及q訊號之不平衡係由組 件31卜314決定。最後之誤差改正程序再由用在與Dsp相連 之所望成分決定器3 1 5完成。此技術之缺點為所有之回授 組件3 1 0〜3 1 5必須在I及Q接收器内必需之組件之外增加額 外組件。此不利為影響成本.及增加此裝置之複雜度。而 且’即使有了此全部額外電路組件,合乎需要的誤差補償 仍未完全實現。 因此’傳統之I及Q改正電路依賴提供額外的組件供極 小化誤差。其他改正之裝置如一分離之pLL及vc〇太昂貴以 額外提供。因此需要一解決方案,計入前述所提問題及限 制之正交不平衡改正電路且不需要額外昂貴之電路。 3.發明内容 …本,明產生一接收器校準信號用以測量此常見於丨Q接 收裔之誤差。本發明然後改正在校準模式之誤差。特別Page 6 1232031 V. Description of the Invention (3) The first picture of the technique. Among them, a closed-loop feedback technique is used to continuously update the estimation of an unbalanced component to determine an error signal until the magnitude of the error signal is negligible. This prior art circuit includes standard components such as an antenna 301, a mixing circuit 302, an A / D converter 303, and a digital signal processing chip (DSP) 304. The DSP 304 includes mixing circuits 305 and 306 and a phase shifter 307. This signal is then added by an adder 3 08 and then low-pass filtered by components 30 9. The signal is then sampled by the sampler 31. The size of the components is estimated, and the imbalance of the I and q signals is determined by components 31 and 314. The final error correction procedure is completed by the desired component determiner 3 1 5 connected to Dsp. The disadvantage of this technology is that all the feedback components 3 1 0 ~ 3 1 5 must add additional components in addition to the necessary components in the I and Q receivers. This adversely affects the cost and increases the complexity of the device. And even with all this extra circuit components, the desired error compensation has not been fully realized. So 'traditional I and Q correction circuits rely on providing additional components to minimize errors. Other correction devices such as a separate pLL and vc are too expensive to provide in addition. Therefore, a solution is needed that takes into account the aforementioned problems and limitations of the quadrature imbalance correction circuit and does not require additional expensive circuits. 3. DISCLOSURE OF THE INVENTION ... This invention clearly generates a receiver calibration signal for measuring the errors commonly found in Q receivers. The invention then corrects the errors in the calibration mode. particular

•第7頁 1232031• Page 7 1232031

改正。I及Q分路之系統 關之相位誤差被校準並 疋,1及〇汛號之增益誤差被校準並 相位誤差被校準及改正。且頻率相 改正。 衫進ίί成=上目& ’本發明利用—數位訊號處理器控制 二-〗t序。本發明之—實施例包括-IQ電路所含之 HL、ί 及增益控制裝置。此實施例進-步包括乘 ^ ^移器與DSP併用以決定在⑻組件間之相位誤 。彳明進一步提供幾種實施例給每一型之誤差校準及 改=。例如,系統相位誤差可利用對照表(l〇〇k_up table)改正或由數位訊號處理器試誤(iterativeiy)改 正頻率相關之相位誤差亦可利用相移器或一全通(a丨i _ pass)電路改正。 ,此本發明提供一低價、可靠、在晶片上(on chip) 之方取現有已存在之電路之優點以偵測並改正所有各 種不同型式發現在IQ正交接收器電路内之誤差。 4 ·實施方式 第2圖顯示本發明之一較佳實施例。第2圖顯示通信裝 置1 〇適用於接收並改正!及(2 (同相位及正交相位)訊號。裝 置10有二個主要部分,接收之訊號之路徑及用於與接收之 訊號此波用之訊號之訊號路徑。於此實施例,接收之訊號correct. The phase errors of the system of I and Q shunts are calibrated and corrected, and the gain errors of 1 and 0 are calibrated and the phase errors are calibrated and corrected. And the frequency phase is corrected.进 进 ίί 成 = 上 目 & ′ The present invention utilizes a digital signal processor to control the second order. An embodiment of the present invention includes HL, I and gain control devices included in the IQ circuit. This embodiment further includes a multiplier and a DSP and is used to determine a phase error between the chirped components. Tong Ming further provided several embodiments for the error calibration and correction of each type. For example, the system phase error can be corrected using a comparison table (100k_up table) or a digital signal processor trialer (iterativeiy) to correct the frequency-dependent phase error. A phase shifter or an all-pass (a 丨 i_pass) can also be used. ) Circuit correction. This invention provides a low-cost, reliable, on-chip method to take advantage of existing existing circuits to detect and correct all kinds of errors found in IQ quadrature receiver circuits. 4. Embodiment Figure 2 shows a preferred embodiment of the present invention. Figure 2 shows the communication device 1 〇 suitable for receiving and correcting! And (2 (in-phase and quadrature-phase) signals. The device 10 has two main parts, the path of the received signal and the signal path of the signal used for the received signal. In this embodiment, the received signal

—«32031— «32031

$控包含一低雜訊放大器丨丨,二個混波器丨2及丨3、二個輕 :電谷器14及15及二個濾波器16及17。最後訊號路徑包含 增益放大器1 8及1 9,在接收之訊號輸入至A/D轉換器2〇及 2 〇之刖供數位訊號處理器2 2處理。混波訊號係利用局部振 盘器23及24,一鎖相迴路25及26、一相移器27及一混波 28產生。 ^ 在接收之訊號路徑,LNA1( 11)係一低雜訊放大器,通 常用於放大低功率高頻以訊號。進來之射頻訊號進、LNA1 係來自一天線(未圖示)。接收之訊號將利用混波電路Μ工 (12)及M2( 13)及相位調整電路?1 (29)被分開為正交成 为。Ml及M2之輸出將成為基頻(base band)訊號。例如, 若進來之訊號有20MHz之頻寬,每一 I及Q分路將是iomHz頻 寬之訊號,如在傳統之正交電路内者,電容sC1&C2(14 及1 5 )係用以阻斷任何接收之訊號直流成分,而f 1及F 2 (j 6 及1 7)係用以進一步濾除不要之訊號。在任何正交調變執 行之前,重要的是接收器要精確地校準。 為在混波訊號路徑中產生一可靠的校準基調(t〇ne), 局α卩振盪器l 1 (2 3 )係與一由L 2 (2 4 )產生之低頻基頻混波。 此頻率之一例應為L1置於5GHz(Gigahertz),而L2置於 5MHz。局部振盪器L1亦與一鎖相迴路PLL1 (25)及一濾波器 F3(26)併用。此二訊號為一混波電路M4(28)相乘。此形成 之二不同頻率之正弦波相乘之結果為產生兩種訊號,其中The $ control includes a low noise amplifier, two mixers, two and three, and two light amplifiers: valleyrs 14 and 15, and two filters 16 and 17. The final signal path includes gain amplifiers 18 and 19, and the received signals are input to the A / D converters 20 and 20 for processing by the digital signal processor 22. The mixed wave signal is generated by using the local oscillators 23 and 24, a phase locked loop 25 and 26, a phase shifter 27, and a mixed wave 28. ^ In the received signal path, LNA1 (11) is a low noise amplifier, usually used to amplify low power high frequency signals. The incoming RF signal and LNA1 come from an antenna (not shown). The received signal will use the mixing circuit M (12) and M2 (13) and the phase adjustment circuit? 1 (29) is divided into orthogonal formations. The outputs of Ml and M2 will become base band signals. For example, if the incoming signal has a bandwidth of 20MHz, each I and Q branch will be a signal with a bandwidth of 10mHz. For example, in a traditional orthogonal circuit, the capacitor sC1 & C2 (14 and 15) is used for The DC component of any received signal is blocked, and f 1 and F 2 (j 6 and 17) are used to further filter out unwanted signals. Before any quadrature modulation is performed, it is important that the receiver is accurately calibrated. To generate a reliable calibration tone (tone) in the mixed signal path, the local α 卩 oscillator l 1 (2 3) is mixed with a low-frequency fundamental frequency generated by L 2 (2 4). An example of this frequency would be L1 at 5GHz (Gigahertz) and L2 at 5MHz. The local oscillator L1 is also used in combination with a phase-locked loop PLL1 (25) and a filter F3 (26). These two signals are multiplied by a mixing circuit M4 (28). The resulting multiplication of two sine waves of different frequencies results in two signals, where

Ϊ232031 五、發明說明(6) 形成之正弦波係在不同頻率。例如c〇s(A)x c〇s(b) 2+B^+C〇S(^ B\。目此混波器M4產生二種訊號供校準 處理程序。如前所述,务箭姑分-并 λ ^ ^ ^ ^ 无則技術並不使用此種電路或訊號 供杈準讯唬產生盗,標準之先前技術方法僅使用一種基頻 供板準之目的,然而本發明使用二種基頻。於此例,頻率 為5GHZ + 5MHZ及5GHZ-5MHZ。宜注意此雙侧頻(d〇uble side-band)壓縮載波訊號(DSBSC)可在LNA之輸入或lna之 輸出與接收器之RF耦合。Ϊ232031 V. Description of the invention (6) The sine waves formed are at different frequencies. For example, cos (A) x cos (b) 2 + B ^ + C0S (^ B \. At this point, the mixer M4 generates two types of signals for calibration processing procedures. As mentioned earlier, it is important to distinguish -And λ ^ ^ ^ ^ No technology does not use this kind of circuit or signal for the purpose of generating signals. The standard prior art method uses only one base frequency for board alignment purposes, but the present invention uses two base frequencies. In this example, the frequency is 5GHZ + 5MHZ and 5GHZ-5MHZ. It should be noted that the dual side-band compressed carrier signal (DSBSC) can be coupled at the input of the LNA or the output of the lna to the RF of the receiver. .

此二種校準基頻被饋送至混波器M1及…供正交處理程 序。利用二基頻供校準,會為先前技術之電路呈現一問 ,。在此方法,同相位分路將是清淅的訊號但正交相位將 是零。為了克服此一困難,一相移器P2被利用。相移器p2 增加一角度0給校準基頻訊號之頻率。例如,當P2置於These two kinds of calibration fundamental frequencies are fed to the mixers M1 and ... for orthogonal processing procedures. The use of two fundamental frequencies for calibration will present a problem for the prior art circuits. In this method, the in-phase shunt will be a clear signal but the quadrature phase will be zero. To overcome this difficulty, a phase shifter P2 is used. The phase shifter p2 adds an angle of 0 to the frequency of the calibration baseband signal. For example, when P2 is placed

零’VI(t)為Cos(ot)而VQ(t)為零,當P2置於90度,VI (t)訊號係不存在而VQ(t)為⑶以ω1;)。 、 校準程序利用相移器P2(27)將係如下述。P2被調整以 在VI (t)分路獲得訊號之極大值。P2之調整係由數位訊號 處理器晶片(22)執行。極大值訊號水準係由基頻(base band)處理器晶片22測量並儲存。Q分路之極大值水準亦於 基頻處理器晶片22測量並儲存。一旦此等每一分路之極大 值已知,基頻處理器晶片即執行一增益不平衡校準。此增 益不平衡校準可由放大器G1及G2( 18及19)執行或在基頻處Zero 'VI (t) is Cos (ot) and VQ (t) is zero. When P2 is set at 90 degrees, the VI (t) signal is not present and VQ (t) is ⑶ with ω1;). The calibration procedure using the phase shifter P2 (27) will be as follows. P2 is adjusted to obtain the maximum value of the signal at the VI (t) branch. The adjustment of P2 is performed by the digital signal processor chip (22). The maximum signal level is measured and stored by a base band processor chip 22. The maximum level of the Q branch is also measured and stored in the baseband processor chip 22. Once the maximum value of each of these shunts is known, the baseband processor chip performs a gain imbalance calibration. This gain imbalance calibration can be performed by amplifiers G1 and G2 (18 and 19) or at the fundamental frequency

第10頁 1232031 五、發明說明(7) 理器22内之類比至數位訊號轉換器(A/D)執行。宜注意G1 及G2可一併為接收器執行增益調整。亦應注意者,G1及〇2 係一起控制(與分開控制相反)。I及Q增益係因此成為相等 以避免任何側頻產生及所要之訊號之畸變。本發明亦允許 增益不平衡校準由調整G1及G2在任何水準之增益下執行。 有關IQ相位誤差之校準,P 2宜置於一值以簡單地將二 個訊號乘在一起使吾人可偵測I及Q分路之相對相位。此正 弦及餘弦訊號之乘積宜成為零。混波電路jj3(31 )完成I及Q 訊號之相乘並輸出此訊號至濾波器F 4 ( 3 0 )。若非如此,設 想I及Q分路不是正好9 0度如所想的不同相位,一相位誤差 即產生。此訊號經由一放大器及濾波器EF被回授至相移器 P1,相移器將補償其誤差。理想上在I及Q分路之間之相位 差應為90度。因此,以適當的增益控制調整P2外加調整 P 1,可得一極佳化之相位不平衡之處理。宜注意p 1若想 要,可在RF射頻路徑内,以取代在局部振盪器徑路内。 於一第二實施例,相移器P2可用於上述方式之另一方 式。於此實施例,相移器係定量改變相移角度,例如,Θ 角自零開始並定量增加,當相位移之量變化,同相位及正 交訊號將在大小(amp 1 i t ude )上變化,於某一 0值,雨種 訊號皆存在6而其他0值形成僅有二種訊號之一存在。如 在前述之實施例,每一同相位及正交訊號之峰值大小係由 DSP晶方22所測量。此允許另一方法偵測需用在增益補償Page 10 1232031 V. Description of the invention (7) The analog to digital signal converter (A / D) in the processor 22 is implemented. It should be noted that G1 and G2 can perform gain adjustment for the receiver together. It should also be noted that G1 and 〇2 are controlled together (as opposed to separate control). The I and Q gains are therefore made equal to avoid any sideband and distortion of the desired signal. The invention also allows the gain imbalance calibration to be performed by adjusting G1 and G2 at any level of gain. Regarding the calibration of the IQ phase error, P 2 should be set to a value to simply multiply the two signals together so that we can detect the relative phase of the I and Q branches. The product of this sine and cosine signals should be zero. The mixing circuit jj3 (31) completes the multiplication of the I and Q signals and outputs this signal to the filter F 4 (30). If this is not the case, it is assumed that the I and Q branches are not exactly 90 degrees as different phases as expected, and a phase error will occur. This signal is fed back to the phase shifter P1 via an amplifier and filter EF, and the phase shifter will compensate its error. Ideally, the phase difference between the I and Q branches should be 90 degrees. Therefore, with appropriate gain control adjustment P2 and adjustment P 1, an optimal phase imbalance treatment can be obtained. It should be noted that if p 1 is desired, it may be in the RF path instead of the local oscillator path. In a second embodiment, the phase shifter P2 can be used in another way of the above. In this embodiment, the phase shifter changes the phase shift angle quantitatively. For example, the angle Θ starts from zero and increases quantitatively. When the amount of phase shift changes, the in-phase and quadrature signals will change in magnitude (amp 1 it ude). At a certain 0 value, the rain signal all exists 6 and the other 0 values form only one of the two signals. As in the aforementioned embodiment, the peak value of each in-phase and quadrature signal is measured by the DSP crystal 22. This allows another method to detect the need for gain compensation

1232031 ----- 五、發明說明(8) 之極大值大小。 本發明之第3圖顯示相移器27(如第2圖所示)可如何利 之一實施例。除實際之相移裝置32之外,此放大視野之 器27包含以下之組件:一放大器33、一反饋回路包含 :力,偵檢器34、一迴路濾波器35及一增益放大㈣。若 Λ號之大小在校準程序中係關鍵性的,重要的是P2在 f相2並不修正訊號之強度。因此必需保證在任何移相 一,範圍内將不提供增益或損失。於本發明,以之輸出有 一定之大小,與相移無關。一有限制或自動增益控制裝置 γ用於保證其定值輸出電壓水準。第3圖顯示一功率偵測 ,(3 4 )之使用,用以決定校準訊號之功率。此偵測之功率 係與一設定值比較。若此訊號有某種離 準,-誤差訊號即產生以補償此一事實一回路遽波;^ 及:回路增益放大器36協助為所有相移保持電路之輸出為 一定。此允許P2如所望輸出一定值之訊號大小而不致不利 的影響校準程序。 於本發明之另一較佳實施例,系統的及頻率相關的在 接收窃内之I Q增益及相位誤差係利用如第4圖所示之電路 予以校準。 第4_圖之無線收發機與第2圖所示者相似,有兩個接收 訊號路徑及一混波/校準訊號產生路徑。於接收訊號路1232031 ----- 5. The maximum value of invention description (8). Fig. 3 of the present invention shows how an embodiment of the phase shifter 27 (as shown in Fig. 2) can be used. In addition to the actual phase shifting device 32, the device 27 for magnifying the field of view includes the following components: an amplifier 33, a feedback loop including: a force, a detector 34, a loop filter 35, and a gain amplifier. If the magnitude of Λ is critical in the calibration procedure, it is important that P2 does not modify the signal strength in phase f2. It must therefore be guaranteed that no gain or loss will be provided within any phase shifted one. In the present invention, the output has a certain size regardless of the phase shift. A limited or automatic gain control device γ is used to ensure its constant output voltage level. Figure 3 shows the use of a power detection (3 4) to determine the power of the calibration signal. The detected power is compared with a set value. If this signal has some kind of misalignment, an error signal is generated to compensate for this fact, a loop wave; ^ and: the loop gain amplifier 36 assists in keeping the output of all phase shift circuits constant. This allows P2 to output a signal value of a certain value as expected without adversely affecting the calibration process. In another preferred embodiment of the present invention, the systematic and frequency-dependent I Q gain and phase error within the receiver are calibrated using a circuit as shown in FIG. 4. The wireless transceiver in Fig. 4_ is similar to the one shown in Fig. 2 with two receiving signal paths and a mixing / calibration signal generating path. Receiving signal

第12頁 1232031Page 12 1232031

五、發明說明(9) 徑,訊號先經由一低雜訊放大器(LNA)59送出。於經過該 LNA後,訊號由開關5 7耦合至帶通濾波器58。降頻器64 = 65如傳統方式進一步處理訊號以產生I及Q分路。!及卩$號 然後由組件66、67、70及71被濾波及放大。可變電容°器^ 及69以所習知之接收器之自動增益控制部份作為訊號 耦合。全通網路(a 11-pass)72及74被來自DSP之一訊%虎73 所调整以保證在I及Q分路之間正確之相位關係。相位誤差 改正方法及裝置之全通網路之例示實施例之操作及控制將 在以下作細節之說明。 為了校準程序,一RF基調(tone)於發射機之路徑上之 DSP40產生在接收機之通帶(pass band)之頻率中央。此由 自產生器44供應一DC訊號給發射機之基頻I及q之調頻輸入 而達成。此RF基頻係通過一帶通濾波器51、一可程式相移 器53,然後為一在一低頻Fbb乘法器55内之正弦波所^。此 產生一DSB-SC (double side band, suppressed carrier)調變訊號。fbb係所要之基頻頻率,於此,接收機 之頻率相關之IQ誤差校準被完成。對於頻率相關之1(3誤 差,FBB在一IEEE80 2.Ua WLAN無線收發機為自〇Hz至大約 8· 5MHz之範圍。RF相移器53可視為一”DSB 一 sc相移器”,由 其有效地改變DSB-SC調變訊號抑制載波之相位。一可變增 益控制放大器5 4保證相位調整電路5 3不改變其信號強度。 由DSP產生之DSB-SC校準訊號然後被一耦合開關5了麵5. Description of the invention (9). The signal is sent through a low noise amplifier (LNA) 59 first. After passing through the LNA, the signal is coupled to the band-pass filter 58 by the switch 57. The downconverter 64 = 65 further processes the signal in the conventional manner to generate I and Q shunts. !! And 卩 $ are then filtered and amplified by components 66, 67, 70, and 71. The variable capacitors ^ and 69 are coupled with a conventional automatic gain control part of a receiver as a signal. All-pass network (a 11-pass) 72 and 74 are adjusted by one of the DSPs% Tiger 73 to ensure the correct phase relationship between the I and Q branches. The operation and control of an exemplary embodiment of an all-pass network of a phase error correction method and device will be described in detail below. For calibration procedures, a DSP 40 with an RF tone on the path of the transmitter is generated in the center of the receiver's pass band frequency. This is achieved by supplying a DC signal from the generator 44 to the FM inputs of the fundamental frequencies I and q of the transmitter. This RF fundamental frequency passes through a band-pass filter 51, a programmable phase shifter 53, and is then applied to a sine wave in a low-frequency Fbb multiplier 55. This generates a DSB-SC (double side band, suppressed carrier) modulation signal. fbb is the desired fundamental frequency, where the frequency-dependent IQ error calibration of the receiver is completed. For frequency-dependent 1 (3 errors, FBB is in an IEEE80 2. Ua WLAN wireless transceiver is in the range from 0Hz to about 8.5MHz. RF phase shifter 53 can be regarded as a "DSB-sc phase shifter", by It effectively changes the phase of the DSB-SC modulation signal to suppress the carrier. A variable gain control amplifier 5 4 ensures that the phase adjustment circuit 5 3 does not change its signal strength. The DSB-SC calibration signal generated by the DSP is then coupled by a coupling switch 5 Face

第13頁 五、發明說明(10) 合進入S降頻前之#收機㈣。纟降頻至基頻頻率後 且低通濾波後,接收機之ί及^輸出訊號係在‘之頻此 係因為供發射器及接收器之局部振盪器頻率係保持相等。 ▲、發射器RF基頻為5ίη(ωκι?1:)且其係與一基頻調變之基 凋為Sin( 6;BBt)。在混波器55内相乘之後,DSB —%調變之 訊號Sin( 0RFt) Sin( ωΒΒΐ)。在此之後,DSB — SC 訊號 開關57注入接收器RF分路,降頻至1及(3基頻頻率,低 波,然後帶著所有前面提到之J Q誤差出現在接收器之輸出 端。公式1及2敘述在第4圖之電路找到之j 分路 帶著所得之誤差在内。 〜 I(t) =A(1 + AG/2)Sin( ωΒΒΐ + Δ ^BB/2)Cos( 6>RF) (1) Q(t) =Α(1 - AG/2)Sin( ωΒΒΐ- Δ ^>BB/2)Sin( ^RF Δ ^RF) A =常數 △ G —在接收器内於fbb (包含系統的及頻率相關一 者)IQ增益不平衡 ~ 誤1 0ΒΒ =在接收器内於頻率Fbb之頻率相關之基頻IQ頻率 0RF —在注入接收機前在校準基調路徑内之全 整)RF相位誤差 、」嗎 I2320TT 五、發明說明(11) △ 9 RF =接收機内系統的I Q相位誤差 ωΒΒ = 2 7Γ Fbb 右接收器基頻IQ輸出為DC耦合至])sp晶方4〇之A/D,DC f位誤差亦需予以移除。此此誤差可由在恰為1/FBB之整倍 之週期内將I及Q訊號平均。當校準時使用AC耦合,_3dB 車父=頻率係保持在至少小於、1〇倍以保證任何在〗及〇路徑 =^頻率移開(r〇1 i—〇f f )之不對稱不致衝擊IQ增益誤差。 # 丄為了實現其他隨後敘述之本發明之實施例,一DC誤 '、而在進行I Q增益誤差校準之前予以移除。 序。Df^^n將利、用*上列之公式1及2以實現其誤I改正程 差杧準益不平衡校準,參考第7圖,第7圖係增益誤 1分又路/最\\$於步驟7〇2,DSP4〇調整DSB — SC相移器53使 二:η Λ 於此情形,c〇s)=ι,亦即, 於步驟706 ;,分路精確量測—訊號值之後,Page 13 V. Description of the invention (10) # ㈣ 机 before entering S frequency reduction.纟 After the frequency is reduced to the base frequency and the low-pass filtering is performed, the ί and ^ output signals of the receiver are at the ‘frequency’ because the local oscillator frequencies for the transmitter and receiver remain the same. ▲, the RF fundamental frequency of the transmitter is 5ίη (ωκι? 1 :), and the basis of the modulation with a fundamental frequency is Sin (6; BBT). After multiplication in the mixer 55, the signal of the DSB —% modulation Sin (0RFt) Sin (ωΒΒΐ). After that, the DSB-SC signal switch 57 is injected into the receiver's RF shunt, reduced to 1 and (3 fundamental frequency, low wave, and then appears at the output of the receiver with all the aforementioned JQ errors. Formula 1 and 2 describe the j-branch found in the circuit in Figure 4 with the error included. ~ I (t) = A (1 + AG / 2) Sin (ωΒΒΐ + Δ ^ BB / 2) Cos (6 > RF) (1) Q (t) = Α (1-AG / 2) Sin (ωΒΒΐ- Δ ^ > BB / 2) Sin (^ RF Δ ^ RF) A = constant △ G — fbb (including system and frequency dependent) IQ gain imbalance ~ error 1 0 ΒΒ = frequency-dependent fundamental frequency IQ frequency 0RF in the receiver at frequency Fbb — full integration in the calibration key path before injection into the receiver ) RF phase error, "? I2320TT V. Description of the invention (11) △ 9 RF = IQ phase error of the system in the receiver ωΒ = 2 7Γ Fbb The right receiver fundamental frequency IQ output is DC coupled to]) sp crystal square 4〇 之A / D, DC f-bit errors also need to be removed. This error can be averaged over the I and Q signals over a period exactly 1 / FBB. Use AC coupling when calibrating, _3dB car parent = the frequency is kept at least less than 10 times to ensure that any asymmetry and 0 path = ^ frequency shift away (r〇1 i-〇ff) asymmetry does not impact the IQ gain error. # 丄 In order to implement other embodiments of the present invention described later, a DC error 'is removed before the I Q gain error calibration is performed. sequence. Df ^^ n will use the formulas 1 and 2 listed above to realize its error I correction range error quasi-benefit imbalance calibration, refer to Figure 7, Figure 7 shows a gain error of 1 point and the way / the most \\ At step 702, DSP4 adjusts the DSB-SC phase shifter 53 so that: η Λ in this case, c0s) = ι, that is, at step 706; after the precise measurement of the branch-signal value ,

〜)=1,亦即二=在此情形,Sin(‘ 分路之訊號然後由DSP4〇R^旦7" /RF 。於步驟710,Q 為此二個rms訊號水準之=在Fbb之相對IQ增益不平衡 =2的IQ增益不平衡可由^^“以保 之值而2:測。於某此拌 于頭羊FBB於甚小 千二清形,經過通頻(例如,iEEE8〇2 ]la 第15頁 1232031 五、發明說明(12) 經過0至8MHz)之平均增益不平衡亦可 2, IQ增益不平衡係在DSP盖^於A/D變換之=。t。此择 由相對地在時域(time d〇main)縮小j ^即日、 、雨 頻頻率無關)。在此改正之後,在八4^達成( 可忽略。 长匕改正之後在公式1及2之Μ項變成 肉泰t因增益而顯著改變時在接收器之整個增益範圍 内需做IQ增益誤差棱車。兔了;^蚀& ^ ^ncR or ^ 旱為了不使接收器超負荷,注入接 之電壓水準必需隨基頻增益控制增加之 二==減y。因此需要一可程式衰減器75在“8_託訊號之 ϊΐ二^可在_率達成,但較佳仍在基頻,亦即’基 ==訊號Cos( WBBt)或Sin( 之大小(ampiitude)可 η、然而,當此大小變得很小時’通過混波器之未調 之基頻之直流漏電可能變得顯著且甚至大於DSB-SC訊 J 好’在接收器以AC耦合(電容器68及69),此未調變 基頻變得降頻變換至0Hz,已被移除。此保證接收器之基 頻分路不是超負荷或飽和。 ^ 因此一旦增益被校準並由DSP40改正,系統的1〇相位 誤差校準可在本發明之另一實施例執行。 、利用以下技術,IQ系統的相位誤差校準不為在通頻之 k之選擇所影響,亦即,FBB不需要靠近OHz。適當之Fbb係 由DSP4 0選擇(譬如說在低通濾波器66及67之最高通頻頻率~) = 1, that is, two = In this case, the signal of Sin ('is then divided by DSP4R ^ D7 " / RF. At step 710, Q is the level of the two rms signals = relative to Fbb IQ gain imbalance = 2 IQ gain imbalance can be measured by ^^ "to ensure the value of 2: here and then mixed with the head sheep FBB in very small thousand two clear shape, after passing the frequency (for example, iEEE8〇2] la Page 151232031 V. Explanation of the invention (12) The average gain imbalance after passing 0 to 8MHz can also be 2. The IQ gain imbalance is covered by the DSP ^ A / D conversion =. T. This choice is relatively The time domain (time domain) is reduced by j ^ today, irrelevant to the frequency of the rain frequency. After this correction, it is reached at 8 4 ^ (negligible. After the long dagger correction, the M term of formulas 1 and 2 becomes meaty t When the gain is significantly changed, the IQ gain error prism needs to be made in the entire gain range of the receiver. Rabbits; ^ etch & ^ ncR or ^ In order not to overload the receiver, the voltage level of the injection must be adjusted with the base Increase of the frequency gain control === decrease y. Therefore, a programmable attenuator 75 is required to achieve the 2nd of the 8_Tor signal ^ can be achieved at the _ rate, but the better is still at the base Frequency, that is, 'base == signal Cos (WBBt) or Sin (the magnitude (ampiitude) can be η, however, when this magnitude becomes very small', the DC leakage current through the mixer's unadjusted fundamental frequency may become Significant and even larger than DSB-SC. J Good 'When the receiver is AC-coupled (capacitors 68 and 69), this unmodulated fundamental frequency becomes down-converted to 0Hz and has been removed. This guarantees the fundamental frequency of the receiver The shunt is not overloaded or saturated. ^ Once the gain is calibrated and corrected by the DSP 40, the 10 phase error calibration of the system can be performed in another embodiment of the present invention. Using the following techniques, the phase error calibration of the IQ system is not The choice of k in the pass frequency, that is, FBB does not need to be close to OHz. The appropriate Fbb is selected by DSP4 0 (such as the highest pass frequency of the low-pass filters 66 and 67)

第16頁 1232031 五、發明說明(13) 之半),而I Q增益校準係利用前述方法之頻率先做完。 IQ增益校準訊號為: I(t) =Sin( ωΒΒΐ + A qBB/2)Cos( 0RF) Q(t) =Sin( ωΒΒΐ - Δ (pBB/2)Sin( 0RF - Δ φπ) 參考第8圖(A),第8圖(A)係IQ相位誤差校準流程圖。 於步驟802,完成增益校準,於步驟804,變換0RF (用DSB-SC移相器53)於大於7Γ/2之範圍並紀錄在此0RF之範圍内最 大I及Q之rms電壓水準。Page 16 1232031 V. Invention description (half of (13)), and I Q gain calibration is done first using the frequency of the previous method. The IQ gain calibration signal is: I (t) = Sin (ωΒΒΐ + A qBB / 2) Cos (0RF) Q (t) = Sin (ωΒΒΐ-Δ (pBB / 2) Sin (0RF-Δ φπ) Refer to Figure 8 (A), Figure 8 (A) is the IQ phase error calibration flow chart. At step 802, the gain calibration is completed. At step 804, the 0RF (using the DSB-SC phase shifter 53) is converted to a range greater than 7Γ / 2 and Record the maximum I and Q rms voltage levels within this 0RF range.

LaxO^iASirK ωΒΒΐ+ △ φΒΒ/2)於 <9rf = 0 QmaxCt ) = ASin( ωΒΒΐ- Δ φ^/2)LaxO ^ iASirK ωΒΒΐ + △ φΒΒ / 2) and < 9rf = 0 QmaxCt) = ASin (ωΒΒΐ- Δ φ ^ / 2)

於 0RF=7r/2+A pRF 在增益校準之後二者應相等,亦即Imax(rms) = Qraax (rms) = A / /"2 於步驟806,調整DSB-SC相移器53使I及Q之rms訊號水 準在同一時間恰等並量測其對應之rms電壓水準。After 0RF = 7r / 2 + A pRF, the two should be equal after gain calibration, that is, Imax (rms) = Qraax (rms) = A / / " 2 In step 806, adjust the DSB-SC phase shifter 53 so that I And the rms signal level of Q is equal at the same time and the corresponding rms voltage level is measured.

Cos( 0rf)-Sin( 9rf)- ΑΔ Prf (3)Cos (0rf) -Sin (9rf)-ΑΔ Prf (3)

第.17頁 1232031 五、發明說明(14) 於步驟8 08,DSP然後應以最大rms水準imax(rms)及(^ (rms),亦 gp A//"2 常化(normai ize) 及 q·。P.171232031 V. Description of the invention (14) In step 8 08, the DSP should then use the maximum rms levels imax (rms) and (^ (rms), also gp A // " 2 normalization (normai ize) and q ·.

Inns/UxUmsXosC 0RF) ΑΔ 0RFInns / UxUmsXosC 0RF) ΑΔ 0RF

QnnS/Qmax(rms) = Sin( <9rf - △〜)=α △ pRF 於步驟810,DSP利用常化水準a △仏f以在對照表找出 相應之IQ相位誤差,對照表基本上列出公式(3 )之解並應 儲存在DSP40之内部記憶中。於步驟812,判斷Imajrms) 〜Qmax(rms)是否等於A/ /~2 ?若否,回到步驟5〇4,調整 Θ RF ’重複校準程序。若是,校準完成。 另一不同之方案及實施例在下面敘述以第8圖(Β)達成 系統相位誤差之改正。 對此改正,接收器4 1應允許系統相位誤差a pRF被調 整至零(IQ相對相位在RF路徑或在局部振盪器路徑内調 整)。當系統相位誤差被移除,△ p rf = 〇,而由公式(3) C〇s( <9RF) - Sin( <9RF - △ pRF) = a △ pRF = 1 / /"2 (正 好地)。 △ PRF及0RF二者被DSP重複調整以獲得由公式(3)之極QnnS / Qmax (rms) = Sin (< 9rf-△ ~) = α △ pRF At step 810, the DSP uses the normalization level a △ 仏 f to find the corresponding IQ phase error in the comparison table. The comparison table is basically listed The solution of formula (3) should be stored in the internal memory of DSP40. In step 812, it is determined whether Imajrms) ~ Qmax (rms) is equal to A // ~ 2. If not, go back to step 504, adjust Θ RF ′ and repeat the calibration procedure. If yes, the calibration is complete. Another different scheme and embodiment are described below to achieve the correction of the system phase error by using Fig. 8 (B). To correct this, the receiver 41 should allow the system phase error a pRF to be adjusted to zero (the relative phase of the IQ is adjusted in the RF path or in the local oscillator path). When the system phase error is removed, △ p rf = 〇, and by formula (3) C 〇s (< 9RF)-Sin (< 9RF-△ pRF) = a △ pRF = 1 / / " 2 ( Exactly). △ Both PRF and 0RF are repeatedly adjusted by the DSP to obtain the pole by formula (3)

第18頁 Ϊ232031 、、 、 五、發明說明(15) "~" 一 佳化A △ pRF = 1/ /~2 (正好地)之結果。 因此,對於△ pRF之開始設定,首先,於步驟814,先 完成增益校準,於步驟816,調整DSB-SC相移器53之校標 準基調(9RF使1及Q之rms水準相等並於步驟81 8,檢查公式 (3)是否正好 ΑΔφκρ = 1 / /2,若 驟820,小幅度改換△ pRF之值並調整DSB —sc相移器&增 益使I及Q之rms水準相等。最後,於步驟822,檢查公RF式曰 (3)看看是否正好A △ pRF = 1 / /2。若否,重複此程序 直至正好ΑΔρι^ = 1 / 2為止。 利用此方法,系統的IQ相位誤差可由DSP4〇獨立於頻 率相關之IQ相位誤差被校準。 ' 如發明背景所述,頻率相關之I Q相位誤差亦必須校準 並改正。由本發明之另一實施例所實現者,頻率相關之j Q 相位誤差可用第8圖(C)之方式校準。 由於在基頻路徑6 6及6 7之濾波器誤差之ϊ q相位誤差在 頻率FBB被計算。對於在發射器中之基頻校準基調s i n (ωΒΒΐ),相對之接收訊號為 ISin(t)=A(l+ AG/2)Sin( ωΒΒΐ+ Δ (pBB/2)Cos( 0RF) QSin(t)=A(l~ AG/2)Sin( ωΒΒΐ- Δ <pBB/2)Sin( 0Rp-Page 18 Ϊ232031 、、 、 V. Description of the invention (15) " ~ "-Optimize the result of A △ pRF = 1 / / ~ 2 (exactly). Therefore, for the initial setting of △ pRF, first, in step 814, complete the gain calibration, and in step 816, adjust the standard tone of the DSB-SC phase shifter 53 (9RF makes the rms levels of 1 and Q equal and goes to step 81 8. Check whether formula (3) is exactly ΔΔφκρ = 1 / / 2. If step 820, change the value of ΔpRF in small steps and adjust DSB-sc phase shifter & gain to make the rms levels of I and Q equal. Finally, Step 822, check the public RF formula (3) to see if it is exactly A △ pRF = 1 / / 2. If not, repeat this procedure until exactly ΔΔρι ^ = 1 / 2. Using this method, the IQ phase error of the system can be determined by DSP40 is calibrated independently of the frequency-dependent IQ phase error. '' As described in the background of the invention, the frequency-dependent IQ phase error must also be calibrated and corrected. As implemented by another embodiment of the present invention, the frequency-dependent j Q phase error It can be calibrated in the way shown in Figure 8 (C). Since the filter error in the fundamental frequency paths 6 6 and 6 7 ϊ q phase error is calculated at the frequency FBB. For the fundamental frequency calibration in the transmitter sin (ωΒΒΐ) , In contrast, the received signal is ISin (t) = A (l + A G / 2) Sin (ωΒΒΐ + Δ (pBB / 2) Cos (0RF) QSin (t) = A (l ~ AG / 2) Sin (ωΒΒΐ- Δ < pBB / 2) Sin (0Rp-

I23203T 五、發明說明(16) 其中: A=常數 △ G=在接收器内之JQ增益不平衡 △ PBB=於ωΒΒ之接收器内頻率相關之基頻IQ相位誤差 0RF =在校準基頻路徑之全部(可調整)RF相位移 △ PRF二接收器内之系統的I q相位誤差 對於在發射器之基頻校準基調之C〇s( t),對應之 接收器訊號為: IC0S(t) = A(l+ AG/2)Cos( ωΒΒΐ+ Δ <^BB/2)Cos( 0RF) Qc〇s^t)~A(l- AG/2)Cos( ωΒΒΐ- Δ ^BB/2)Sin( 0RF- Δ φ^) 校準步驟830 ’首先完成增益校準,於步驟832,由 DSP40開始調整使接近7Γ / 4,於步驟83 4,使得I23203T V. Description of the invention (16) Where: A = constant △ G = unbalanced JQ gain in the receiver △ PBB = frequency-dependent fundamental frequency IQ phase error in receiver of ωΒΒ 0RF = in the calibration fundamental frequency path All (adjustable) RF phase shifts △ IRF phase error of the system in the PRF two receivers For Cos (t) of the fundamental tone of the transmitter's fundamental frequency calibration, the corresponding receiver signal is: IC0S (t) = A (l + AG / 2) Cos (ωΒΒΐ + Δ < ^ BB / 2) Cos (0RF) Qc〇s ^ t) ~ A (l- AG / 2) Cos (ωΒΒΐ- Δ ^ BB / 2) Sin ( 0RF- Δ φ ^) Calibration step 830 'First complete the gain calibration. In step 832, the DSP40 starts to adjust to approximately 7Γ / 4, and in step 83 4 so that

Cos( 与Sin( △〜)%1/ (亦即j及^訊號係 大小概略相等)。 一旦此步驟完成’於步驟836,一訊號,3111((^〇在 發射器内以基頻校準基調傳送。於步驟838,Dsp然後捕獲 相對之IQ§fl號為Isin(t)及Qsin(t)。然後於步驟,dsp送 出Cos( wBBt)在發射機内作為基頻校準基調,並捕獲相對Cos (and Sin (△ ~)% 1 / (that is, j and ^ signals are roughly equal in size). Once this step is completed ', at step 836, a signal, 3111 ((^ 〇 calibrates the tone with the fundamental frequency in the transmitter) Transmission. At step 838, Dsp then captures the relative IQ §fl numbers as Isin (t) and Qsin (t). Then at step, dsp sends Cos (wBBt) as the fundamental frequency calibration tone in the transmitter and captures the relative

1232031 五、發明說明(17) -- 之I及Q訊號分別為Ic〇s(t)及Qc〇s(t),而保持為常數(於 接近7Γ /4 )。時間(t)對此二種情形係在不同架構下量測, 且t = 0,亦即開始捕獲係在許多週期之發射基頻頻調Sin (ωΒΒΐ)或Cos( ωΒΒΐ)之後使在發射器及接收器二者之低通 濾波器^内任何暫態干擾已經顯著地衰減。由捕獲之訊號 DSP計算Isin (t) Qcqs (t ) - IC()S (t ) Qsin (t)最好經過數個週期之 ωΒΒ以期平均掉任何雜訊,下述之公式(4)代表此誤差: ^sin ( ^ ) Qc〇s ( t ) - Ic〇s ( t ) Qsin ( t )1232031 V. Description of the invention (17)-The I and Q signals are Icos (t) and Qcos (t), respectively, and remain constant (at approximately 7Γ / 4). Time (t) for these two cases is measured under different architectures, and t = 0, that is, the acquisition is started after the transmission fundamental frequency tone Sin (ωΒΒΐ) or Cos (ωΒΒΐ) in many cycles. Any transient interference in the receiver's low-pass filter ^ has been significantly attenuated. Calculate Isin (t) Qcqs (t)-IC () S (t) Qsin (t) by the captured signal DSP. It is better to pass any period of ωΒΒ to average out any noise. The following formula (4) represents this Error: ^ sin (^) Qc〇s (t)-Ic〇s (t) Qsin (t)

-Kl[Sin( ωΒΒΐ+ △ pBB/2)Cos(wBBt- Δ ρΒΒ/2) -Cos( ωΒΒΐ+ Δ (/>BB/2)Sin( ωΒΒΐ- Δ>ΒΒ/2)] [Cos( ^RF)Sin( Δ φκρ)] = K2Sin( Δ 9BB)[Cos( 0RF)Sin( 0RF- Δ φκρ)] = K3Sin( Δ φΒΒ) 亦即為常數且與△ pBB有關(4) DSP40然後於步驟844,調整在接收器内之△ pBB並極 小化由捕獲資料計算過的|Isin(t)Qc〇s(t) _ Ic〇s(t)Qsin(t) 卜-Kl [Sin (ωΒΒΐ + △ pBB / 2) Cos (wBBt- Δ ρΒΒ / 2) -Cos (ωΒΒΐ + Δ (/ > BB / 2) Sin (ωΒΒΐ- Δ > Β / 2/2)] [Cos (^ RF) Sin (Δ φκρ)] = K2Sin (Δ 9BB) [Cos (0RF) Sin (0RF- Δ φκρ)] = K3Sin (Δ φΒΒ) which is constant and related to Δ pBB (4) DSP40 then step 844 , Adjust the Δ pBB in the receiver and minimize the | Isin (t) Qc〇s (t) _ Ic〇s (t) Qsin (t) calculated from the captured data.

因此一旦頻率相關之誤差被校準,它們可被改正。通 常頻率相關之IQ相位誤差隨頻率而線性改變,開始於〇度 於0Hz,並可能達到在頻端(band edge)幾度。此係大部分 由於在I及Q低通濾、波器之截止頻率之間不匹配。頻率相關 IQ相位誤差係被重疊可調之在I及q基頻訊號路徑内之全通So once the frequency dependent errors are calibrated, they can be corrected. Normally the frequency-dependent IQ phase error changes linearly with frequency, starting at 0 degrees at 0 Hz, and may reach a few degrees at the band edge. Most of this is due to the mismatch between the I and Q low-pass filters and the cutoff frequencies of the wave filter. Frequency dependent IQ phase error is fully adjustable in the I and q fundamental frequency signal path

第21頁 1232031Page 12 1232031

網路72及74所改正。此全通網路將在DSp4〇之控制之下。 全通網路之一例係示於第5圖,此網路包含電阻ri、 R2、R3及R4,W及一電容器C1及一運算放大器。此型之全 ,網路通過所有頻率之訊號而無增益改變。雖然利用電容 器C1確然在訊號輸出引入少許相位移。此係所願的。因之 一相對相位不匹配,在二個此類電路之間可經由設定此網 路於彼此間稍微不同之頻率而引入。此網路之頻率(f 〇 — MHz)係定義為= ,其中R1為歐姆而〇 為微法拉。在全通網路之間產生一相位不匹配允許IQ相位 誤差補償,如下文所述。 在一個此種網路之間之相對相位不匹配效應係顯示於 第6圖,以各種相對頻率不匹配而顯示。此圖顯示以一常 化值2 0MHz為中心之網路。例如,在二電路之間丨〇%之不匹 配暗不常化f 〇_MHz值對二個網路分別為19 & 21MHz。每一 j路之R1及/或C 1係調整以引入一相對頻率不匹配在一特 定之FBB (見第6圖)形成一特定之△ 丨q相位不匹 配。DSP40調整在接收器之全通網路内之R1及/或[丨並極小 化由捕獲之資料計算之丨Isin(t)Qcos(t) - lc〇s(t)Qsin(t) | 之值。在此情形,頻率相關IQ相對相位誤差在發射器内被 改正。大部分涵蓋頻率範圍之線性變化之誤差允許I及卩相 位誤差被改正。例如,若I及q分路為離開相位8 5度,全通 、、周路頻率係由D S P 4 0調整以提供一額外5度之移位以提供真Network 72 and 74 corrections. This all-pass network will be under the control of DSp40. An example of an all-pass network is shown in Figure 5. This network includes resistors ri, R2, R3, and R4, W, a capacitor C1, and an operational amplifier. With this model, the network passes signals at all frequencies without gain changes. Although the use of capacitor C1 does introduce a slight phase shift at the signal output. This is what you want. Because of a relative phase mismatch, two such circuits can be introduced by setting the network at slightly different frequencies from each other. The frequency of this network (f 0-MHz) is defined as =, where R1 is ohm and 0 is microfarad. Creating a phase mismatch between all-pass networks allows IQ phase error compensation, as described below. The relative phase mismatch effects between such a network are shown in Figure 6 and are shown with various relative frequency mismatches. This figure shows a network centered at a normal value of 20 MHz. For example, between the two circuits, the mismatched dark frequency f 0_MHz value is 19 & 21MHz for the two networks. R1 and / or C1 of each j channel is adjusted to introduce a relative frequency mismatch at a particular FBB (see Figure 6) to form a specific Δ 丨 q phase mismatch. DSP40 adjusts the value of R1 and / or [丨 and minimizing the calculated from captured data in the receiver ’s all-pass network] Isin (t) Qcos (t)-lc〇s (t) Qsin (t) | . In this case, the frequency-dependent IQ relative phase error is corrected in the transmitter. Most errors that cover linear changes in the frequency range allow I and 卩 phase errors to be corrected. For example, if the I and q branches are 85 degrees out of phase, the all-pass, and cycle frequencies are adjusted by D S P 4 0 to provide an extra 5 degrees shift to provide true

1232031 五、發明說明(19) 正的正交訊號(即分間9〇戶 一 作,此自然保證相位钽又。而且,當在此基頻頻率FBB操 邪位衩差在較低頻率下將更小。 择兴利L王通周路之優點為它們不致引人任何頻率相關1 Q 印座不平衡而為其他電路如低通濾波器等所具有的。因此 任何在RF路徑產生之相位誤差可由DSP40全通電路72及74 之頻率調整而被補償。 本發明因而皆自動決定及改正系統增益及相位誤差, 及共通於IQ正交犁無線收發機之頻率相關相位誤差。由於 本發明在不脫離其精義或其中之重要特性下可用許多方式 予以實現,且亦應瞭解上述實施例不為任何上述之細節所 限制,而應在其精義及視野内予廣義解釋如申請專利範圍 所定義,因而所有落入申請專利範圍之界限内之改變及修 飾,或界限内i等效置換皆應包含在本發明之申請專利範 圍内。1232031 V. Description of the invention (19) Positive orthogonal signal (that is, 90 divisions of one work, this naturally guarantees phase tantalum again. Moreover, when the fundamental frequency FBB operates at a lower frequency, the difference will be smaller at lower frequencies. The advantage of Zexingli L Wangtong Zhoulu is that they do not attract any frequency-dependent 1 Q imprint imbalances and are possessed by other circuits such as low-pass filters. Therefore, any phase error generated in the RF path can be fully pass by DSP40. The frequency adjustment of the circuits 72 and 74 is compensated. Therefore, the present invention automatically determines and corrects the system gain and phase error, and the frequency-dependent phase error common to the IQ orthogonal plough wireless transceiver. Because the present invention does not depart from its essence or The important features can be realized in many ways, and it should also be understood that the above embodiments are not limited by any of the above details, but should be broadly interpreted in their essence and field of vision as defined by the scope of patent applications, so all fall into the application Changes and modifications within the limits of the patent scope, or equivalent substitutions within the boundaries should be included in the scope of patent application of the present invention.

第23頁 圖式簡單說明 5 ·圖式簡單說明·· 第1圖(先前技術)顯示一正交不平衡改正電路。 第2圖顯示本發明之一種電路。 第3圖顯示如第2圖所示之相移器Ρ2。 第4圖顯示本發明之另一實施例。 第5圖顯示可用於本發明之一較佳實施例之全通網路。 第6圖顯示此全通網路之相位角對頻 第7圖係增益誤差校準流程圖。 ® 第8圖係I Q相位誤差校準流程圖。 符號說明: 1 〇通信裝置 1 2,1 3混波器 16,17濾波器 20, 21 A/D轉換器 23,24局部振盘器 2 6濾波器 28混波器 30濾波器F4 32相移裝置 34功率偵檢器 36增益放大器 11 低雜訊放大器 W,15耦合電容 1 8,1 9增益放大器 22數位信號處理器 25 鎖相回路 Μ相移器 29 相位調整電路pi 31混波電路M3 3 3放大器 35迴路濾波器 4〇 DSP晶方Page 23 Brief Description of Drawings 5 · Brief Description of Drawings · Figure 1 (prior art) shows a quadrature imbalance correction circuit. Figure 2 shows a circuit of the present invention. Figure 3 shows the phase shifter P2 as shown in Figure 2. FIG. 4 shows another embodiment of the present invention. Figure 5 shows an all-pass network that can be used in a preferred embodiment of the present invention. Figure 6 shows the phase-to-frequency comparison of this all-pass network. Figure 7 is the gain error calibration flowchart. ® Figure 8 is the I Q phase error calibration flowchart. Explanation of symbols: 1 〇 communication device 1 2, 1 3 mixer 16, 17 filter 20, 21 A / D converter 23, 24 local vibrator 2 6 filter 28 mixer 30 filter F4 32 phase shift Device 34 Power detector 36 Gain amplifier 11 Low noise amplifier W, 15 Coupling capacitor 1 8, 1 9 Gain amplifier 22 Digital signal processor 25 Phase-locked loop M phase shifter 29 Phase adjustment circuit pi 31 Mixing circuit M3 3 3 amplifiers 35 loop filters 4 DSP cubes

1232031^1232031 ^

圖式簡單說明 41接收器 43 D/A 4 5低通渡波器 47開關 48混波器 5 0 混波器 52 VGA + PA 驅動 5 4 可變增益控制放大器 5 7開關 58 帶通濾波器 60 PLL 62振盪器 64 降頻器 6 6低通滤波器 68 可變電容器 70放大器 72 全通網路(all-pass) 74 全通網路(all-pass) 300 先前技術之電路 3 0 1天線 303 A/D轉換器 3 0 5,3 0 6 混波電路 3 0 8加法器 3 1 0 取樣器Brief description of the diagram 41 receiver 43 D / A 4 5 low-pass crossing wave 47 switch 48 mixer 5 0 mixer 52 VGA + PA drive 5 4 variable gain control amplifier 5 7 switch 58 band-pass filter 60 PLL 62 oscillator 64 downconverter 6 6 low-pass filter 68 variable capacitor 70 amplifier 72 all-pass 74 all-pass 300 prior art circuit 3 0 1 antenna 303 A / D converter 3 0 5, 3 0 6 mixer circuit 3 0 8 adder 3 1 0 sampler

42 A/D 44 DC訊號產生器 4 6 低通渡波器 4 9 9 0 °相移器 5 1 帶通滤波器 5 3 可程式相移器 5 5 低頻FBB乘法器 59 低雜訊放大器(LNA) 61 低通濾波器 63調整器 6 5 降頻器 6 7 低通遽波器 69 可變電容器 71 放大器 73 調整 75 衰減器 3 0 2 混波電路 3 0 4 數位信號處理器晶片 307相移器 3 0 9 低通濾波器 311 衰減成分預估器42 A / D 44 DC signal generator 4 6 Low-pass crossover 4 9 9 0 0 Phase shifter 5 1 Bandpass filter 5 3 Programmable phase shifter 5 5 Low-frequency FBB multiplier 59 Low noise amplifier (LNA) 61 Low-pass filter 63 Adjuster 6 5 Downconverter 6 7 Low-pass chirp 69 Variable capacitor 71 Amplifier 73 Adjust 75 Attenuator 3 0 2 Mixing circuit 3 0 4 Digital signal processor chip 307 Phase shifter 3 0 9 Low-pass filter 311 Attenuation component estimator

第25頁 1232031 圖式簡單說明 312相配成分預估器 313第一欲取決定器 314不均衡預估器 315 欲取成分決定器Page 25 1232031 Brief description of the diagram 312 Matching component estimator 313 First desired determiner 314 Unbalanced estimator 315 Desired component determiner

I11B1 第26頁I11B1 Page 26

Claims (1)

1232031 六、申請專利範圍 1· 一種供改正在同相位(in_phase)及正交 (guadrature)成分之接收之訊號之相位誤差不羊衡 方 法,至少包含下列動作: 調整接收之訊號之同相位成分之相位角以決定一峰值 大小(amplitude); 小; ”周整接收之訊號之正乂成分相位角以決定一峰值大 調整接收之訊號之同相位及正交成分之相位角以設定 大小值; 調整第 >一相位角因而使接收夕却咕 y 文按收之訊唬之同相位及正交成 分係呈90度相位差。 ^ 1 & X Μ 2·如申請專利範圍第丨項之方法,其中該第二相位角 係由利用一對照表(l〇ok —up table)調整。 3·如申請專利範圍第2頊 公式之數學解。 員之方法,其中對照表包含一 4·如申請專利範圍第3項 係由一數位訊號處理器晶片書、其中該第一相位 w日曰月重覆調整。 5·如申請專利範圍第3 雜訊放大器之輸入端麵合、之方去’進一步包含於一低 之RF路徑之動作。 雙旁▼抑制栽波訊號至一接收機1232031 VI. Scope of patent application 1. A method for changing the phase error of signals received in the in-phase and quadrature components, including at least the following actions: Adjusting the in-phase components of the received signals The phase angle determines the amplitude of a peak (small); the phase angle of the positive component of the received signal is determined to adjust the phase angle of the in-phase and quadrature components of the received signal to set a large value; adjustment The first phase angle thus makes the received phase of the received phase of the yoke yue y in the same phase and quadrature components are 90 degrees out of phase. ^ 1 & X Μ 2 · As the method of the scope of the patent application Wherein, the second phase angle is adjusted by using a look-up table (10k-up table). 3. The mathematical solution of the formula (2) of the patent application scope. The third item of the patent scope is a digital signal processor chip book, in which the first phase w day and month is repeatedly adjusted. 5. If the input end face of the third patented noise amplifier of the patent scope is combined, the Fang Qu ’further includes the action on a low RF path. Double-sided ▼ Suppresses the plant wave signal to a receiver 第27·頁 1232031 六、申請專利範圍 6· —種供改正在同相及正交成分之訊號之間之不平衡 之通信裝置,至少包含: 一第一混波器(m 1 xer)供將一低頻訊號及高頻訊號相 乘以產生一雙旁帶(side-band)抑制載波訊號; 一第二及第三混波器供自雙旁帶抑制載波訊號產生接 收訊號之同相位及正交成分;及 一數位訊號處理器控制校準(cal ibrati〇n)及改正 (correction)模式二者供決定並改正該通信裝置内之訊號 路徑之相位誤差。 7 ·如申請專利範圍第6項之通信裝置,進一步包含一 手段以在一低雜訊放大器之輸入端耦合雙旁帶抑制訊號至 該通信裝置之RF路徑。 8.如申請專利範圍第6項之通信裝置 ^ ^ Se) &Q((luadrature)信號之相位以決 疋一增益調整。 9 ·如申請專利範圍第8 處理器改變I及Q分路之訊號 1 0 ·如申請專利範圍第9 處理器在校準模式之後用作 項之通信裝置,其中數位訊號 水準使其互相相等。 項之通信裝置,其中數位訊號 改正模式。Page 27 · 1232031 VI. Scope of Patent Application 6 · —A communication device for correcting the imbalance between signals in the same phase and quadrature, at least: a first mixer (m 1 xer) for Multiplying the low frequency signal and high frequency signal to generate a side-band suppression carrier signal; a second and third mixer for generating in-phase and quadrature components of the received signal from the double sideband suppression carrier signal ; And a digital signal processor controls both cal ibration and correction modes for determining and correcting phase errors of signal paths within the communication device. 7. The communication device according to item 6 of the patent application scope, further comprising a means for coupling a double-sideband suppression signal to the RF path of the communication device at the input of a low-noise amplifier. 8. If the communication device of the patent application item 6 ^ ^ Se) & Q ((luadrature) signal phase is adjusted by a gain. 9 · If the patent application scope of the 8th processor changes the I and Q branch Signal 10 · If the ninth processor of the patent application scope is used as the communication device of the item after the calibration mode, the digital signal level is equal to each other. The communication device of the item, wherein the digital signal correction mode. ^23^31 六、申請專利範圍 "— π ·如申請專利範圍第1 0項之通信裝置,其中數位訊 號處理器存取一對照表在I及Q分路訊號改正相位誤差不平 衡。 、 1 2 ·如申請專利範圍第1 0項之通信裝置,其中數位訊 號處理器試誤地(i terat i ve ly)在I及Q分路訊號之間調整 相位差直至沒有相位誤差。^ 23 ^ 31 VI. Scope of patent application " — π · If the communication device of the scope of patent application item 10, the digital signal processor accesses a lookup table to correct the phase error imbalance between the I and Q branch signals. 1 2 · If the communication device of the scope of patent application No. 10, the digital signal processor adjusts the phase difference between the I and Q branch signals trial and error until there is no phase error. 13· 種在 接收之訊5虎之同相位及正交成分之間改 正不平衡之方法,至少包含下列動作: 產生I及Q分路校準訊號,其中I分路訊號係由 I(t) = A(l+ AGmSinC ωΒΒΪ+ △ ^/2)(:〇3( ‘)代表,而Q 分路訊號由 Q(t)=A(l_ Δ0/2)3ίη( ωΒΒί- △ hB/2)Sin(〜厂△〜)代 表; 改變I及Q分路之增益直至△〇 = 〇 ; 在大於;r /2之範圍改變0rf並在此θκρ之範圍内紀錄最 大I及Q之訊號水準;13. · A method for correcting the imbalance between the in-phase and quadrature components of the received message 5 tiger, including at least the following actions: Generate I and Q branch calibration signals, where the I branch signal is determined by I (t) = A (l + AGmSinC ωΒΒΪ + △ ^ / 2) (: 〇3 ('), and the Q branch signal is represented by Q (t) = A (l_ Δ0 / 2) 3ίη (ωΒΒί- △ hB / 2) Sin (~ Factory △ ~) represents; Change the gain of I and Q branches until △ 〇 = 〇; Change 0rf in the range greater than; r / 2 and record the maximum I and Q signal levels within this range of θκρ; 調整DSB-SC相移使! 訊號水準於同時間正好相等並 測量其相應之均方根(rms)水準使c〇s( ~) = sin(心广 Δ ΦρΡ)=ΑΔ ^>RF ’ 對照表内找出對應之J Q 利用測量之A △ pRF之水準在一 之相位誤差△ PRF ;及Adjust the DSB-SC phase shift so! The signal level is exactly equal at the same time and the corresponding root mean square (rms) level is measured so that c0s (~) = sin (心 广 Δ Φρρ) = ΑΔ ^ > RF 'Look up the corresponding JQ in the table Phase error of measured A △ pRF △ PRF; and 第29頁 1212031 - 六、申請專利範圍 在接收之訊號之同相位及正交成分 為90度,此由基於儲存在對照表 多動相對相位 里馮整相位誤差。 1 4 ·如申請專利範圍第1 3項之方法,其中 訊號係由校準基調(tone)例如一雙旁帶抑 M h刀路 suppressed)載波訊號產生。 i e band 15·如申請專利範圍第13項之方法,盆 處理器改變I及Q分路之增益。 ,、數位訊唬 \6·如申請專利範圍第13項之方法,其中一數位訊號 處理器控制一相移器以改變θκρ 〇 如申請專利範圍第16項之方法,其中一數位訊號 處理益控制一第二相移器由對照表所決定之量以調整 △ Μ 。 18 · —種無線收發機,至少包含·· 一天線; 一正父接收器供接收訊號並轉換該接收之訊號為同相 位基頻(base band)及一正交基頻訊號; 一數位訊號處理器供執行下列任務; 決定在該正交接收器中在不同條件下測試訊號之同相 位及正交訊號之間之不平衡; 1232031 六、申請專利範圍 產生一改正因子(factor)給至少一些改變條件;及將 一或多個改正因子加至後續接收之間相位及正交基頻訊 號,根據一現行條件以極小化在後續接收之同相位及正交 基頻訊號之間之不平衡。 1 9.如申請專利範圍第1 8項之無線收發機,其中改變 條件之一為一基頻訊號之改變增益。Page 29 1212031-VI. Patent Application Range The received signal has the same phase and quadrature component of 90 degrees. This is based on the phase error in the relative phase of the multi-movement relative phase stored in the lookup table. 14 · The method according to item 13 of the scope of patent application, wherein the signal is generated by a calibration tone (for example, a pair of sideband suppression M h knife path suppressed) carrier signal. i e band 15 · As in the method of claim 13 of the scope of patent application, the basin processor changes the gain of the I and Q branches. Digital signal bluffing \ 6. If the method of the scope of the patent application is No. 13, one of the digital signal processors controls a phase shifter to change θκρ 〇 As the method of the scope of the patent application No. 16, one of the digital signal processing benefits A second phase shifter is adjusted by the amount determined by the lookup table to adjust ΔM. 18 · —A kind of wireless transceiver, including at least an antenna; a positive father receiver for receiving a signal and converting the received signal into an in-phase base band and an orthogonal base frequency signal; a digital signal processing The device is used to perform the following tasks; decide to test the signal in-phase and the imbalance between the quadrature signals under different conditions in the quadrature receiver; Conditions; and adding one or more correction factors to the phase and quadrature fundamental frequency signals between subsequent receptions to minimize the imbalance between the subsequent phase reception and quadrature fundamental frequency signals according to a current condition. 19. The wireless transceiver of item 18 in the scope of patent application, wherein one of the changing conditions is a changing gain of a baseband signal. 2 0.如申請專利範圍第1 9項之無線收發機,其中改變 條件之一為在基頻訊號之間改變相位關係。20. The wireless transceiver according to item 19 of the patent application scope, wherein one of the changing conditions is changing the phase relationship between the fundamental frequency signals. 第31頁Page 31
TW92127804A 2002-11-01 2003-10-07 Quadrature gain and phase imbalance correction in a receiver TWI232031B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/285,151 US7035341B2 (en) 2001-08-10 2002-11-01 Quadrature gain and phase imbalance correction in a receiver

Publications (2)

Publication Number Publication Date
TW200408204A TW200408204A (en) 2004-05-16
TWI232031B true TWI232031B (en) 2005-05-01

Family

ID=36251125

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92127804A TWI232031B (en) 2002-11-01 2003-10-07 Quadrature gain and phase imbalance correction in a receiver

Country Status (1)

Country Link
TW (1) TWI232031B (en)

Also Published As

Publication number Publication date
TW200408204A (en) 2004-05-16

Similar Documents

Publication Publication Date Title
US7035341B2 (en) Quadrature gain and phase imbalance correction in a receiver
CA2583654C (en) A receiver architecture with digitally generated intermediate frequency
US7346313B2 (en) Calibration of I-Q balance in transceivers
US20090310711A1 (en) Transmitter and receiver capable of reducing in-phase/quadrature-phase (I/Q) mismatch and an adjusting method thereof
US8411730B2 (en) Semiconductor integrated communication circuit and operation method thereof
JP4464194B2 (en) Communication receiver and transmitter
US7184740B2 (en) Direct conversion receiver for calibrating phase and gain mismatch
US20030165203A1 (en) Quadrature gain and phase imbalance correction in a receiver
US20080232447A1 (en) Method and system for calibration in an fm transceiver system
TW200924391A (en) Method of estimating I/Q phase mismatch in a receiver, integrated circuit capable of compensating I/Q phase mismatch and apparatus capable of compensating I/Q phase mismatch of a local oscillation signal
EP0883242A2 (en) Radio receiver and method of operation
US8867596B2 (en) Methods and apparatuses of calibrating I/Q mismatch in communication circuit
MXPA04007040A (en) System and method for i-q mismatch compensation in a low if or zero if receiver.
CN101355343A (en) Quadrature modulator and calibration method
US8406357B2 (en) Filter circuit
TWI385913B (en) Method and apparatus for signal reception
CN103124201A (en) On-chip radio calibration
CN101552754B (en) Carrier leakage corrective system for radio frequency transceiver
US20090040393A1 (en) Quadrature correction method for analog television reception using direct-conversion tuners
Khandelwal et al. A novel gain, phase and offset calibration scheme for wideband direct-conversion transmitters
US20060062331A1 (en) Demodulator for use in wireless communications and receiver, method and terminal using it
US8085863B2 (en) Radio receiver or transmitter and method for reducing an IQ gain imbalance
US20030031273A1 (en) Quadrature gain and phase imbalance correction in a receiver
EP0883237A1 (en) Radio receiver and method of operation
TWI232031B (en) Quadrature gain and phase imbalance correction in a receiver

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees