TWI226682B - Method for forming dual-port DRAM and the memory cell layout - Google Patents

Method for forming dual-port DRAM and the memory cell layout Download PDF

Info

Publication number
TWI226682B
TWI226682B TW091132949A TW91132949A TWI226682B TW I226682 B TWI226682 B TW I226682B TW 091132949 A TW091132949 A TW 091132949A TW 91132949 A TW91132949 A TW 91132949A TW I226682 B TWI226682 B TW I226682B
Authority
TW
Taiwan
Prior art keywords
shallow trench
oxide layer
scope
patent application
dual
Prior art date
Application number
TW091132949A
Other languages
Chinese (zh)
Other versions
TW200408065A (en
Inventor
Guo-Chiuan Tzeng
Wen-Chiuan Jiang
Min-Shiung Jiang
Dennis J Sinitsky
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW091132949A priority Critical patent/TWI226682B/en
Publication of TW200408065A publication Critical patent/TW200408065A/en
Application granted granted Critical
Publication of TWI226682B publication Critical patent/TWI226682B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

The present invention provides a process for dual-port DRAM, which uses the chemical mechanical polishing process (CMP) for shallow trench isolation (STI) on the wafer substrate in normal logic process, and then keep the hydride layer on the wafer to add an additional crown mask step for producing the embedded DRAM with shortened random cycle time. Moreover, the present invention provides two innovative dual-port DRAM memory cell layout methods, which uses the design rule of logic process to produce the dual-port DRAM with the smallest unit memory cell area.

Description

1226682 五、發明說明(1) 發明領域: 本發明係有關於一種半導體記憶體之製程,尤指一種 以邏輯製程為主之嵌入式動態隨機存取記憶體(DRAM)的 形成方法和雙輸出端(d u a 1 - ρ 〇 r t)記憶胞佈局方式,此 佈局方式是以邏輯製程的設計原則(d e s i g n r u 1 e)來製 作具有最小單位記憶胞面積之雙輸出端DRAM記憶體。 發明背景: 電腦和電子工業不僅要求增加其整體之性能表現並且 也必須考量製造整體積體電路之成本的降低。就電腦而 言,無疑地,配備之記憶體大小,不但會影響電腦的表 現,而記憶體單價高低,也同時影響電腦之售價。在揮發 性記憶體的種類中,由於動態隨機存取記憶體(DRAM)的 密度(單位面積下的RAM數目)高、容量大,因此市場使 用量極大。近年來,隨著積體電路積集密度的快速增加及 元件體積的大幅縮小,許多相關領域的研究人員不斷對 DRAM和其製程加以改進或更新,以便提高元件電性動作速 度及產品的良率而降低其生產成本。 在製作動態隨機存取記憶體(DRAM)時,係包含電晶體 與電容器的製程,藉著使電容器與電晶體的源/汲極產生 電性接觸,而將數位資訊儲存在電容器中。再藉由電晶1226682 V. Description of the invention (1) Field of the invention: The present invention relates to a semiconductor memory process, especially a method for forming an embedded dynamic random access memory (DRAM) and a dual output terminal based on a logic process. (Dua 1-ρ rt) memory cell layout method, this layout method is based on the design principle of the logic process (designru 1 e) to produce a dual output DRAM memory with a minimum unit memory cell area. BACKGROUND OF THE INVENTION The computer and electronics industries not only require an increase in their overall performance, but also must consider the reduction in the cost of manufacturing integrated circuits. As far as computers are concerned, undoubtedly, the size of the equipped memory will not only affect the performance of the computer, but also the unit price of the memory will also affect the price of the computer. Among the types of volatile memory, due to the high density (the number of RAMs per unit area) and the large capacity of dynamic random access memory (DRAM), the market has greatly used it. In recent years, with the rapid increase of the accumulation density of integrated circuits and the significant reduction in component volume, researchers in many related fields have continuously improved or updated DRAM and its processes in order to improve the electrical operation speed of components and the yield of products. And reduce its production costs. When manufacturing dynamic random access memory (DRAM), a process including transistors and capacitors is used to store the digital information in the capacitors by making the capacitors make electrical contact with the source / drain of the transistors. And then by the transistor

1226682 五、發明說明(2) 字語線(word 1 i ne)陣 列來 體、位元線(b i t 1 i ne) 存取電容器之數位資料。 圖一係顯示兩種D R A Μ記憶胞(m e m 〇 r y c e 1 1)和其位 元線運作(b i 11 i n e 〇p e r a t i οn)情形,其中,圖一 a係為 傳統之單一輸出端(single - port) DRA M記憶體,即一 個記憶胞由一個電晶體和一個電容器所組成,其讀、寫或 再新(refresh)動作(active)和預充電(precharge) 的運作係藉由一個位元線之輪次(turns)來執行,而圖 一 B則為一雙輸出端(dUa 1 -port) DRAM記憶體,即一個記 憶胞由兩個電晶體和一個電容器所組成,其兩個電晶體分 別連接至兩個位元線(BLa/BLb)和兩個字語線 (WLa/WLb) °在雙輪出端DRAte憶體中,由於記憶胞之 兩個位元線可根據運作之命令來進行交錯存取,例如,如 圖一 B所示’當a輸出端之位元線動作時,b輸出端之位元 線就在預充電,而當b輸出端之位元線動作時,a輸出端之 位元線就在預充電,於是,此雙輸出端DRAM記憶體之隨機 循環時間(random cycle time)縮短成只有該傳統之單 一輸出端DRAM記憶體的隨機循環時間的一半,因此,雙輸 出端DRAM記憶體之速度就變快。1226682 V. Description of the invention (2) Word word line (word 1 i ne) array and bit line (b i t 1 i ne) access the capacitor's digital data. Figure 1 shows two types of DRA M memory cells (mem ryce 1 1) and their bit line operation (bi 11 ine 〇perati οn). Among them, Figure 1 a is a traditional single-port. DRA M memory, that is, a memory cell is composed of a transistor and a capacitor, and its read, write, or refresh action (active) and precharge (precharge) operate through a bit line wheel Figure 1B shows a dual-output (dUa 1 -port) DRAM memory, that is, a memory cell is composed of two transistors and a capacitor, and the two transistors are connected to Two bit lines (BLa / BLb) and two word lines (WLa / WLb) ° In the DRAte memory of the double-wheeled output, the two bit lines of the memory cell can be staggered according to the operation command Take, for example, as shown in FIG. 1B, 'When the bit line of the a output terminal is operating, the bit line of the b output terminal is precharged, and when the bit line of the b output terminal is operating, the The bit line is pre-charged, so when the dual output DRAM (Random cycle time) shortened to only half of the tradition single random cycle time of an output of DRAM, and therefore, the output speed of the dual-end of DRAM memory becomes faster.

1226682 五、發明說明(3) 關,愈大的電容,再新時間可愈長,但相對地將會佔用愈 多的矽基板面積,而降低元件聚集度。因此,如何以最小 的單位面積來產生最大的電容,一直都是業界所追求的目 標。此外,將記憶胞和邏輯電路製作在同一晶片的嵌入式 (embedded)記憶胞製程的相容性也是必須加以考慮的關 鍵,因為其關係著製程的複雜度,換言之即成本的高低。 然而,習知DRAM記憶體的製造方法,不論是具溝渠式 電容或傳統堆疊式電容之DRAM記憶體,與一般邏輯製程不 完全相容,以致若欲將DRAM記憶胞和邏輯電路製作在同一 晶片上’無疑地,製程步驟會出現繁複而成本高昂的問 通。所以’如何改進、更新目前有關嵌入式DRAM記憶體之 製程’以能有效解決上述的問題並同時製作出具有較短的 隨機循環時間(random cycle time)的後入式DRAM,以 適用在現代多媒體應用軟體、個人電腦、3D圖像和網路應 用軟體,便成為一個重要的課題。 發明概述: 本發明之主要目的,即是在提供一種嵌入(embed) DRAM記憶體,特別是雙輸出端(dual -port) DRAM記憶 體’於一邏輯製程(logic process)的新穎製程方法, 以製作具有快速的隨機循環時間(r and〇m cy c 1 e t i m e) 的嵌入式DRAM。1226682 V. Description of the invention (3) Off, the larger the capacitance, the longer the renewal time will be, but relatively it will occupy more silicon substrate area and reduce the degree of component aggregation. Therefore, how to generate the largest capacitance with the smallest unit area has always been the goal pursued by the industry. In addition, the compatibility of the embedded memory cell process in which the memory cell and the logic circuit are fabricated on the same chip is also a key consideration, because it is related to the complexity of the process, in other words, the cost. However, the conventional manufacturing method of DRAM memory, whether it is a DRAM memory with trench capacitors or traditional stacked capacitors, is not completely compatible with general logic processes, so that if the DRAM memory cells and logic circuits are to be fabricated on the same chip There is no doubt that the process steps will be complicated and costly. Therefore, 'how to improve and update the current process of embedded DRAM memory' can effectively solve the above problems and simultaneously produce a post-entry DRAM with a short random cycle time, which is suitable for modern multimedia Applications, personal computers, 3D graphics, and web applications have become an important topic. Summary of the invention: The main purpose of the present invention is to provide a novel process method for embedding DRAM memory, especially dual-port DRAM memory, in a logic process. Make an embedded DRAM with fast random cycle time (r and 0m cy c 1 etime).

1226682 五、發明說明(4) 本發明之另一目的,即是在提供一種藉由在一邏輯製 程增加一額外的冠狀(crown)光罩步驟,來製作嵌入式 (embedded)雙輸出端(dual - port) DRAM記憶體的製 程0 本發明之又一目的,即是在提供一種使用氮氣、氬氣 或其他鈍氣在欲作為DRAM記憶體淺溝渠電容(shal low trench capacitor)之溝渠側壁(trench side wall)進 行離子佈植的步驟,或者在溝渠側壁使用啟始電壓離子佈 植(Vt i mp 1 an tat i on)的步驟,以便形成電性均勻的 DRAM記憶體淺溝渠電容。 本發明之再一目的,即是在提供以邏輯製程的設計原 則(design rule)所製作的兩種雙輸出端(dual - port) DRAM記憶體的記憶胞佈局(cell layout)。 本發明係揭示一種雙輸出端(dual-port) DRA Μ記憶 體的形成方法。 在本發明的第一實施態樣中,首先,依序沈積一氧化 層墊和一氮化層在一半導體基板上;之後,形成複數個淺 溝渠隔離(STI)於該半導體基板内,並定義出元件主動 區域;接著,進行一化學機械研磨程序(CMP),將該等1226682 V. Description of the invention (4) Another object of the present invention is to provide an embedded dual output terminal by adding an additional crown mask step in a logic process. -port) DRAM memory manufacturing process 0 Another object of the present invention is to provide a trench side wall (srench low trench capacitor) of a DRAM memory using nitrogen, argon or other inert gas. side wall) performing an ion implantation step, or using a step of initial voltage ion implantation (Vt i mp 1 an tat on) on the side wall of the trench to form a shallow trench capacitance of the DRAM memory with uniform electrical properties. Another object of the present invention is to provide two types of dual-port cell layouts of dual-port DRAM memory manufactured by a design rule of a logic process. The invention discloses a method for forming a dual-port DRA M memory. In a first embodiment of the present invention, first, an oxide layer pad and a nitride layer are sequentially deposited on a semiconductor substrate; then, a plurality of shallow trench isolations (STIs) are formed in the semiconductor substrate and defined. Out of the active area of the component; then, a chemical mechanical polishing process (CMP)

12266821226682

五、發明說明(5) 複數個淺溝渠隔離的表面磨平,並裸露該氮化層於該半導 體基板上;然後,對該等複數個淺溝渠隔離之一進行一冠 狀微影蝕刻(croWn photo/crown etch)步驟,以作為琴 雙輸出端DRAM記憶體之一預定淺溝渠電容。之後才依序^ 去該氮化層和該氧化層墊;再形成一犧牲氧化層,並對該 半導體基板進行一 N型井和/或P型井的植入步驟;然後除 去該犧牲氧化層;接著,形成一氧化層,以作為電晶體間 氧化層和該預定淺溝渠電容之介電層;然後,同步^成^ 數個電晶體閘極和該預定淺溝渠電容之上極板,其^,在 該預定淺溝渠電容的左右兩側各有該等複數個電晶體之 再者,本發明又揭示一種雙輸出端DRAM記憶體的形成 方法的第二實施態樣。首先,依序沈積一氧化層墊和一氮 化層在一半導體基板上;之後,形成複數個淺溝渠隔離 (STI)於該半導體基板内,並定義出元件主動區域;接 著,進行一化學機械研磨程序(CMP),將該等複數個淺 溝渠隔離的表面磨平,並裸露該氮化層於該半導體基板 上,然後’對咸專衩數個淺溝渠隔離之一進行一冠狀微影 I虫刻(crown photo/crown etch)步驟,以作為該雙輸出 端DRAM記憶體之一預定淺溝渠電容。之後才依序除去該氮 化層和該氧化層墊;再形成一犧牲氧化層,並對該半導體 基板進行一 N型井和/或P型井的植入步驟;然後除去該犧 牲氧化層;接著,形成一氧化層,以作為電晶體閘氧化層V. Description of the invention (5) The surface of the plurality of shallow trench isolations is ground flat, and the nitride layer is exposed on the semiconductor substrate; then, one of the plurality of shallow trench isolations is subjected to a crown lithographic etching (croWn photo). / crown etch) step to predetermine a shallow trench capacitance as one of the dual output DRAM memories. After that, the nitride layer and the oxide layer pad are sequentially removed; a sacrificial oxide layer is formed; and an N-type well and / or a P-well implantation step is performed on the semiconductor substrate; and then the sacrificial oxide layer is removed. Then, an oxide layer is formed to serve as a dielectric layer between the transistor oxide layer and the predetermined shallow trench capacitor; then, a plurality of transistor gates and the predetermined shallow trench capacitor upper plate are synchronized to form ^ ^ In addition to the plurality of transistors on the left and right sides of the predetermined shallow trench capacitor, the present invention also discloses a second embodiment of a method for forming a dual output DRAM memory. First, an oxide pad and a nitride layer are sequentially deposited on a semiconductor substrate; then, a plurality of shallow trench isolations (STI) are formed in the semiconductor substrate, and an active area of the element is defined; then, a chemical mechanical process is performed. A grinding process (CMP), smoothing the surfaces of the plurality of shallow trench isolations, and exposing the nitride layer on the semiconductor substrate, and then performing a crown lithography on one of the plurality of shallow trench isolations. A crown photo / crown etch step is used to predetermine a shallow trench capacitance as one of the dual output DRAM memories. After that, the nitride layer and the oxide layer pad are sequentially removed; a sacrificial oxide layer is formed, and an N-type well and / or a P-type implantation step is performed on the semiconductor substrate; and then the sacrificial oxide layer is removed; Next, an oxide layer is formed as a transistor gate oxide layer.

第10頁 1226682Page 10 1226682

和該預定淺溝渠電容之介電層;然後,同步形成複數個電 晶體閘極和該預定淺溝渠電容之上極板,其中,在該預定 淺溝渠電容的一側前後端各有該等複數個電晶體之一。 發明之詳細說明: 有鑑於習知技術將D R A Μ記憶胞和邏輯電路製作在同一 曰曰片上,會出現製程步驟繁複而導致成本高昂的問題,為 =、,本發明提出一新穎之方法製程,即僅需在一般邏輯製 転進行淺溝渠隔離(STI)之CMP後,保留晶圓上之氮化層 並增加一額外的冠狀(crown)光罩步驟,就可達到使 DRAM記憶體製程與邏輯製程相容之目的。 再者’本發明提出兩種新穎的雙輸出端(dual -= 〇rt) DRAM記憶胞佈局方式,此佈局方式是以邏輯製程的 设計原則(design rule)來製作具有最小單位記憶胞面 積之雙輸出端DRAM記憶體。 〜晴參見圖二至圖十二,其等係為本發明之一實施例在 料亍以作CMOS之邏輯製程為主的嵌入式(embedded)雙 則出蠕(dua卜port) DRAM記憶體的步驟剖面示意圖。 型、首先,如圖二所示,準備一 p型半導體基板1 〇,將該p 半導體基板1 〇分隔成一邏輯核心區1 〇丨、一 DRAM記憶胞And the predetermined shallow trench capacitor dielectric layer; then, a plurality of transistor gates and the predetermined shallow trench capacitor upper plate are formed simultaneously, wherein each of the plurality of front and rear sides of the predetermined shallow trench capacitor has the plurality of One of the transistors. Detailed description of the invention: In view of the fact that the conventional technology makes DRA M memory cells and logic circuits on the same chip, there will be a problem that the process steps are complicated and the cost is high. For the purpose of this invention, a novel method process is proposed. That is, after performing shallow trench isolation (STI) CMP in general logic systems, the nitride layer on the wafer is retained and an additional crown mask step is added to achieve the DRAM memory system process and logic. Purpose of process compatibility. Furthermore, the present invention proposes two novel dual-output (dual-= 0rt) DRAM memory cell layout methods. This layout method is based on the design rule of a logic process to produce a device with a minimum unit memory cell area. Dual output DRAM memory. See Figures 2 to 12 for details. This is an example of an embedded dual dua port DRAM memory that is mainly based on a CMOS logic process. Step cross-section diagram. First, as shown in FIG. 2, a p-type semiconductor substrate 10 is prepared, and the p semiconductor substrate 10 is divided into a logic core region 10 and a DRAM memory cell.

1226682 五、發明說明(7) 區102和一 I/O區103,並形成淺溝渠隔離區(STI) 2卜22 和2 3於該P型半導體基板1 0内,以定義出元件主動區域。 一般,淺溝渠的形成,是利用微影及蝕刻方式形成溝 渠於晶圓基板之中,再以化學氣相沈積之氧化層回填進入 淺溝渠中。在形成淺溝渠隔離區之前,先在該P型半導體 基板1 0上分別沈積一厚度約1 00埃之氧化層墊(pad ox i de) 11和一厚度約1800-150 0埃之氮化層(nitride) 1 2,之後再進行蝕刻、沈積和化學機械研磨程序(CMP) 以形成該淺溝渠隔離區2卜2 2和2 3,其中,經過ST I的 CΜ P步驟之後,該氮化層(n i t r i d e) 1 2的厚度變成約 1 0 0 0-8 0 0埃,在接下來所進行之一冠狀微影蝕刻(crown photo/crown etch)步驟時,作為該基板1 〇的屏障。 接著,於該DRAM記憶胞區1 0 2進行該冠狀微影敍刻 (crown photo/ crown etch)步驟。如圖三所示,除了 在該DRAM記憶胞區1 0 2預定作為記憶胞淺溝渠電容之該淺 溝渠隔離區2 2和其附近周圍外,其他該p型半導體基板丄〇 的表面處皆以一光阻3 0覆蓋,此即該冠狀微影步驟。之 後’再利用蝕刻選擇特性(即只蝕刻氧化物,對氮化物無 作用)’將該淺溝渠隔離區22内的氧化物蝕刻去除,如圖' 四之22a所示。由於在該淺溝渠隔離區22附近周圍的表°面 係為邊氣化層(nitride)丨2所覆盖,因此只有今* :冷、莫竿 隔離區22内的氧化物被除去,使其他裸露之p型^ $體^1226682 V. Description of the invention (7) The region 102 and an I / O region 103 form a shallow trench isolation region (STI) 2 22 and 23 in the P-type semiconductor substrate 10 to define an active region of the element. Generally, shallow trenches are formed by using lithography and etching to form trenches in a wafer substrate, and then backfilling the shallow trenches with a chemical vapor deposition oxide layer. Before forming a shallow trench isolation region, an oxide layer pad (pad ox i de) 11 and a nitride layer with a thickness of about 1800-150 angstroms are deposited on the P-type semiconductor substrate 10 respectively. (Nitride) 12, followed by etching, deposition, and chemical mechanical polishing (CMP) procedures to form the shallow trench isolation regions 22, 22, and 23, wherein after the CMP step of ST I, the nitrided layer (Nitride) 12 has a thickness of about 100-800 angstroms, and acts as a barrier for the substrate 10 during a subsequent crown photo / crown etch step. Then, perform the crown photo / crown etch step in the DRAM memory cell area 102. As shown in FIG. 3, except for the shallow trench isolation region 22, which is intended to be a shallow trench capacitor of the memory cell, and the vicinity of the vicinity of the DRAM memory cell region 102, the surface of the p-type semiconductor substrate 丄 is marked with A photoresist 30 is covered, this is the corona lithography step. After that, 'the etching selection characteristic is used again (that is, only the oxide is etched, and no effect on the nitride is used)', and the oxide in the shallow trench isolation region 22 is etched and removed, as shown in FIG. Because the surface around the shallow trench isolation zone 22 is covered by the edge gasification layer 2, only the oxides in the present *: cold and Mogan isolation zone 22 are removed, leaving other exposed The p-type ^ $ 体 ^

1226682 五、發明說明(8) 板10避免損毀’因而可降低節點接面漏電流(n〇de junction leakage)。此時,該淺溝渠隔離區22a之溝渠 周圍頂面、漢渠底面和溝渠側壁的所有面積,都可用作為 記憶胞淺溝渠電容之下極板,如此3 D空間的電容結構,乃 有助於大幅降低記憶胞尺寸。 然後’為了形成電性均勻的DRAM記憶體淺溝渠電容, 可選擇性地(optionally)在該光阻3〇剝除之前(未顯 不)或之後(如圖五所示),於預定作為該記憶胞淺溝渠 電容之該淺溝渠隔離區2 2 a,進行一自我對準溝渠側壁 (self-align trench side wall)的離子佈植步驟。此 自我對準溝渠側壁的離子佈植步驟,可以有以下兩種方 式: 〆、(1)在該淺溝渠隔離區22a之溝渠側壁進行氮氣、氬 氣或其他鈍氣的離子佈植,可抑制氧化層在溝渠側壁上的 長成速率,使得後續在該淺溝渠隔離區2 2 a之溝渠側壁、 溝渠底面和溝渠周圍頂面的電容氧化層生成厚度一致均 勻,即,此方式適用在製作深度冠狀電容(deep cr〇wn depth)而尺寸極小之記憶胞時,或者, (2)在该淺溝渠隔離區22a之溝渠側壁上,進行記憶 胞啟始電壓離子佈植(cell Vt implantati〇n),以便調 整該溝渠側壁(其電容氧化層生成厚度較厚)的啟始電壓1226682 V. Description of the invention (8) The board 10 is prevented from being damaged 'so that the junction junction leakage current can be reduced. At this time, the entire area around the top of the trench, the bottom of the Han trench, and the side wall of the trench in the shallow trench isolation zone 22a can be used as the electrode plate under the shallow trench capacitance of the memory cell. This 3D space capacitor structure is helpful Dramatically reduce memory cell size. Then, in order to form a shallow trench capacitor with uniform electrical DRAM memory, it may optionally be before (not shown) or after the photoresist 30 is stripped (as shown in Fig. 5), which is scheduled as the The shallow trench isolation region 22a of the memory cell shallow trench capacitance is subjected to an ion implantation step of a self-align trench side wall. This self-aligned ion implantation step can have the following two methods: (1) Ion implantation of nitrogen, argon, or other inert gas on the side wall of the trench in the shallow trench isolation zone 22a, which can suppress The growth rate of the oxide layer on the side wall of the trench makes the subsequent thickness of the capacitor oxide layer on the side wall of the trench, the bottom surface of the trench, and the top surface around the trench uniform and uniform, that is, this method is suitable for the production depth With a deep cr0wn depth and a very small memory cell, or (2) performing a cell Vt implantation on the sidewall of the trench in the shallow trench isolation area 22a In order to adjust the starting voltage of the trench sidewall (its capacitive oxide layer is thicker)

第13頁 1226682 五、發明說明(9) 值,使其與該溝渠底面和該溝渠周圍頂面的啟始電壓值相 同。再者,在此自我對準溝渠側壁的離子佈植步驟中,因 為該氮化層1 2仍然存留在該p型半導體基板1 0的表面上, 因此即使該光阻3 0已剝除’並不需要另外添加光罩步驟來 進行此自我對準溝渠側壁的離子佈植。 接著,才依序將如圖五所示之該氮化層1 2和該氧化層 墊11除去,然後再在該p梨半導體基板1 〇的矽表面上(stI 區除外),長成一厚度約Μ0 — 1 5〇埃的犧牲氧化層(SAC οX i d e) 1 3,以作為接下來在邊P型半導體基板1 0形成N井 及/或P井所進行之離子佈植步驟的緩衝層。視實際所需之 MOS的種類,在該邏輯核心區1 0 1、 該DRAM記憶胞區1 〇 2和 該I/O區103形成N井(如圖六所示)4卜42和43及/或P井 (未顯示)之後,即除去該犧牲氧化層1 3,並進行電晶體 之閘氧化層和記憶胞之電容介電層的形成。 在此較佳實施態樣中,係以分別在三個區域(即該邏 輯核心區101、 該DRAM記憶胞區102和該I/O區103)形成 不同厚度的氧化層來例示說明。 首先,在該邏輯核心區1 0 1、 該DRAM記憶胞區1 0 2和 該I/O區1 0 3上,沈積生成一厚度為tl的第一氧化層0X1, 如圖七所示。接著,在該邏輯核心區1 0 1和該I / 0區1 0 3上 覆蓋一光阻,並除去在該DRAM記憶胞區102的第一氧化層Page 13 1226682 V. Description of the invention (9) The value should be the same as the starting voltage value of the bottom surface of the trench and the top surface around the trench. Moreover, in the ion implantation step of the self-aligned trench sidewall, the nitride layer 12 remains on the surface of the p-type semiconductor substrate 10, so even if the photoresist 30 is stripped 'and No additional masking step is required for this self-aligned ditch sidewall implantation. Then, the nitride layer 12 and the oxide layer pad 11 are sequentially removed as shown in FIG. 5, and then grown on the silicon surface (except the stI region) of the p-type semiconductor substrate 10 to a thickness of about The M0—150 Å sacrificial oxide layer (SAC ο X ide) 13 is used as a buffer layer for the ion implantation step performed next to the formation of N wells and / or P wells on the side P-type semiconductor substrate 10. Depending on the type of MOS actually needed, N wells are formed in the logic core area 101, the DRAM memory cell area 102, and the I / O area 103 (as shown in Figure 6) 4b 42 and 43 and / After the P well (not shown), the sacrificial oxide layer 13 is removed, and the gate oxide layer of the transistor and the capacitor dielectric layer of the memory cell are formed. In this preferred embodiment, an example is described in which oxide layers of different thicknesses are formed in three regions (ie, the logic core region 101, the DRAM memory cell region 102, and the I / O region 103). First, on the logic core region 101, the DRAM memory cell region 102, and the I / O region 103, a first oxide layer 0X1 having a thickness of t1 is deposited and formed, as shown in FIG. Next, a photoresist is covered on the logic core area 101 and the I / 0 area 103, and the first oxide layer in the DRAM memory cell area 102 is removed.

第14頁 1226682 五、發明說明(ίο) 0 X1,再剝除該光阻,並在該三個區域沈積生成一厚度為 ΐ 2的第二氧化層0X2,如圖八所示。之後,在該dr AM記憶 胞區1 0 2和該I / 0區1 0 3上覆蓋一光阻,並除去在該邏輯核 心區101的第一和第二氧化層0X1+ 0X2,再剝除該光阻, 並在該三個區域沈積生成一厚度為13的第三氧化層〇χ3, 如圖九所示,於是就分別在該邏輯核心區1 〇 1、 該DRAM記 憶胞區1 0 2和該I / 0區1 0 3形成三種不同厚度的氧化層,以 作為電晶體之閘氧化層和記憶胞之電容介電層。 然後,如圖十所示,進行多晶石夕沈積、微影和|虫刻 (poly deposition/photo/etch)步驟,以形成電晶體之 閘極6 1、6 2 a、6 2 b和6 3和記憶胞之電容上極板7 0。於此 時’雙輸出端(dual-port) DRA Μ記憶體的兩個電晶體之 閘極62a和62b以及一個淺溝渠電容62c已經形成。 之後,可選擇性地分別對該邏輯核心區1 〇 1、 該D r A Μ 記憶胞區1 0 2和該I /〇區1 〇 3進行輕摻雜汲極(LDD)植入步 驟’圖^ 係顯示對該DRAM記憶胞區1 02進行一 LDD植入步 驟’而該邏輯核心區1 〇 1和該I / 〇區1 〇 3則以一光阻8 〇覆 蓋’再接著在電晶體之閘極6 、6 2 a、6 2 b和6 3兩側形成間 隙壁(spacer),然後,在該邏輯核心區101、 該DRAM記 憶胞區102和該1/〇區1〇3進行一般之邏輯製程的其他步 驟,如形成源極/汲極(S/D)、自動對準矽化金屬物 (salicide)、内金屬介電層(IMD)和内連線金屬層Page 14 1226682 V. Description of the invention (0) X1, strip the photoresist, and deposit a second oxide layer 0X2 with a thickness of ΐ 2 in the three areas, as shown in Figure 8. After that, a photoresist is covered on the dr AM memory cell region 102 and the I / 0 region 103, and the first and second oxide layers 0X1 + 0X2 in the logic core region 101 are removed, and then the strip is removed. Photoresist, and a third oxide layer χ3 with a thickness of 13 is deposited on the three areas, as shown in FIG. 9, then in the logic core area 101, the DRAM memory cell area 102, and The I / 0 region 1 0 3 forms three oxide layers with different thicknesses to serve as the gate oxide layer of the transistor and the capacitor dielectric layer of the memory cell. Then, as shown in FIG. 10, polycrystalline stone deposition, lithography, and poly deposition / photo / etch steps are performed to form the gate electrodes 6 1, 6 2 a, 6 2 b, and 6 of the transistor. 3 and the upper plate of the memory cell 7 0. At this time, the gates 62a and 62b of the two transistors of the dual-port DRA M memory and a shallow trench capacitor 62c have been formed. Afterwards, lightly doped drain (LDD) implantation steps can be performed on the logic core region 101, the D r AM memory cell region 102, and the I / 〇 region 103 separately. ^ It is shown that an LDD implantation step is performed on the DRAM memory cell region 102, and the logic core region 101 and the I / 〇 region 1 03 are covered with a photoresistor 80, and then are placed in the transistor. A spacer is formed on both sides of the gates 6, 6 2 a, 6 2 b, and 63. Then, the logic core region 101, the DRAM memory cell region 102, and the 1/0 region 10 are subjected to general Other steps in the logic process, such as forming source / drain (S / D), auto-aligned salicide, internal metal dielectric (IMD), and interconnect metal layers

第15頁 1226682 五、發明說明(11) 等。圖十二係顯示該邏輯核心區1 〇丨、該DR AM記憶胞區 10 2和該I/O區1〇 3完成源極/汲極(s/D)後的剖面示意 圖。 再者’圖十三和圖十四係顯示本發明以邏輯製程的設 計原則(design rule) 一—即最小主動區距離和多晶矽閘 極距離’來製作具有最小單位記憶胞(un丨t ce 1 1)面積 之兩種雙輸出端(dual〜port) dr AM記憶胞佈局平面圖 (cel 1 layout top view),圖十三之雙輸出端DRAM記憶 胞佈局,乃易於電路的運作控制,而圖十四之雙輸出端 DRAM記憶胞佈局,則適於字語線之多晶矽製程的邊界製作 (poly process margin)。在圖十三中,顯示四個單位 記憶胞(u n i t c e 1 1) 2 0 0的電路佈局,其中,該雙輸出端 DRAM單位記憶胞2 0 0之兩個電晶體201和2 0 2 (相對應於圖 十二之元件標號6 2 a和6 2 b所構成的電晶體)係分別位於該 淺溝渠電容2 0 3 (相對應於圖十二之元件標號62c)之左右 兩對角線側,該淺溝渠電容2 0 3的左右兩端分別與該等電 晶體201和2 0 2之汲極D相連,兩個字語線WL1和WL2分別接 連至或延伸自該等電晶體2 0 1和2 0 2之閘極6 2 a和6 2 b,而該 等閘極62a和62 b係分別位於主動區2 0 5和2 0 5’上,該等電 晶體2 0 1和2 0 2之源極S則分別藉由接觸窗(c ο n t a c t window) 2 0 4和2 0 4’與位元線BL1和BL2 (如圖十二所示) 相連。Page 15 1226682 V. Description of Invention (11) and so on. Figure 12 shows a schematic cross-sectional view of the logic core region 10, the DR AM memory cell region 102, and the I / O region 103 after the source / drain (s / D) is completed. Furthermore, Fig. 13 and Fig. 14 show that the present invention uses a design rule of a logic process to design a minimum active area distance and a polysilicon gate distance to produce a unit cell with a minimum unit (un 丨 t ce 1 1) The area of two dual output ports (dual ~ port) dr AM memory cell layout plan (cel 1 layout top view). Figure 13 The dual output DRAM memory cell layout is easy to control the operation of the circuit, and Figure 10 The layout of the dual-output DRAM memory cells is suitable for the poly process margin of the polysilicon process. In FIG. 13, a circuit layout of four unit memory cells (unitce 1 1) 2 0 0 is shown, in which the two transistors 201 and 2 0 2 (corresponding to the two output DRAM unit memory cells 2 0 2 (corresponding to The transistors formed by the component numbers 6 2 a and 6 2 b in FIG. 12 are respectively located on the two diagonal sides of the shallow trench capacitor 2 0 3 (corresponding to the component number 62 c in FIG. 12). The left and right ends of the shallow trench capacitor 203 are connected to the drains D of the transistors 201 and 202 respectively, and the two word lines WL1 and WL2 are connected to or extend from the transistors 201 and 1 respectively. 2 0 2 gates 6 2 a and 6 2 b, and the gates 62 a and 62 b are respectively located on the active area 2 05 and 2 5 5 ′, and the transistors 2 0 1 and 2 0 2 are The source S is connected to the bit lines BL1 and BL2 (as shown in Fig. 12) through contact windows (c ο ntact window) 2 0 4 and 2 0 4 ', respectively.

第16頁 1226682 五、發明說明(12) 在圖十四中,亦顯示四個單位記憶胞(u n i t c e 1 1) 3 0 0的電路佈局,其中,該雙輸出端D R A M單位記憶胞3 0 0之 兩個電晶體3 0 1和3 0 2係皆位於該淺溝渠電容3 0 3之一侧且 呈前後對齊排列,該淺溝渠電容2 0 3的前後兩端分別與該 等電晶體3 0 1和3 0 2之汲極D相連,兩個字語線WL 1 ’和 WL2’係共用同一條導線並連接該等電晶體301和3 0 2之閘極 6 2a’和6 2b’係,而該等閘極62a’和6 2b’係分別位於主動 區3 0 5和3 0 5’上,該等電晶體301和3 0 2之源極S則分別藉由 接觸窗((:〇11七3(^〜111(1(^) 3 0 4和3 0 4’與位元線6[1和儿2 (未顯示)相連。 以上所述’係利用一較佳實施例詳細說明本發明,而 非限制本發明之範圍,而且熟知此類技藝人士皆能明瞭, 適當而作些微的改變及調整,仍將不失本發明之要義所 在’亦不脫離本發明之精神和範圍。Page 161226682 V. Description of the invention (12) In Fig. 14, the circuit layout of four unit memory cells (unitce 1 1) 3 0 0 is also shown. Among them, the dual output end DRAM unit memory cells 3 0 0 The two transistors 3 0 1 and 3 0 2 are located on one side of the shallow trench capacitor 3 0 3 and are aligned in front and back. The front and back ends of the shallow trench capacitor 2 0 3 are respectively connected to the transistor 3 0 1. Is connected to the drain D of 3 02, the two word lines WL1 'and WL2' share the same wire and are connected to the gates 6 2a 'and 6 2b' of the transistors 301 and 3 02, and The gates 62a 'and 6 2b' are located on the active regions 305 and 3 05 ', respectively, and the sources S of the transistors 301 and 30 2 are respectively provided through contact windows ((: 〇11 七3 (^ ~ 111 (1 (^) 3 0 4 and 3 0 4 'are connected to the bit line 6 [1 and 2 (not shown). The above description uses a preferred embodiment to describe the present invention in detail, Rather than limiting the scope of the invention, and those skilled in the art will understand that appropriate changes and adjustments will still be made without departing from the spirit of the invention and without departing from the spirit and scope of the invention. Wai.

第17頁 1226682 圖式簡單說明 圖式之簡單說明: 藉由以下詳細之描述結合所附圖式,將可輕易地了解上述 之技術内容及本發明之諸多優點,其中: 圖一 A和圖一 B,係顯示兩種D R A Μ記憶胞(memory cell) 和其位元線運作(b i 11 i n e o p e r a t i ο η)情形; 圖二至圖十二,係為本發明之一實施例在進行以製作邏輯 製程為主的嵌入式(embedded)雙輸出端(dua 1-port) DR AM記憶體的步驟剖面示意圖;以及 圖十三和圖十四係顯示本發明以邏輯製程的設計原則 (design rule),來製作具有最小單位記憶胞(unit cel 1)面積之兩種雙輪出端(duai-p〇rt) DR AM記憶胞佈 局平面圖(cell layout top view)。 圖號說明: 半導體基板1〇 邏輯核心區1 0 1 DRAM記憶胞區102 I/O區 103 氧化層墊11 氮化層1 2Page 171226682 Schematic illustrations of the diagrams: The above-mentioned technical content and many advantages of the present invention can be easily understood through the following detailed description in conjunction with the accompanying drawings, of which: Figure 1A and Figure 1 B, which shows two kinds of DRA MM memory cells and their bit line operation (bi 11 ineoperati ο η); Figures 2 to 12 are diagrams of a logical process performed by an embodiment of the present invention The schematic diagram of the steps of the embedded dual-port (DRA) 1-port DR AM memory; and Figures 13 and 14 show the design rule of the logical process of the present invention. Two types of dual-wheel-out DR (memory) DR AM memory cell layout top views were produced with the smallest unit memory area (unit cel 1). Description of drawing number: semiconductor substrate 10 logic core area 1 0 1 DRAM memory cell area 102 I / O area 103 oxide layer pad 11 nitride layer 1 2

第18頁 1226682 圖式簡單說明 光阻30, 80 犧牲氧化層13 淺溝渠隔離區21,22,23 N井4 1,4 2,4 3 厚度tl,t2,t3 27光阻罩幕 第一氧化層0X1 第二氧化層0X2 閘極 61, 62a, 62b, 63, 62a’ , 62b’ 淺溝渠電容6 2 c 單位記憶胞2 0 0,3 0 0 電晶體 201,202, 301,302 溝渠電容 203,303 字語線 WL1,WL2, WLa,WLb,WL1’,WL2’ 主動區 205, 205’ , 305, 305’ 接觸窗 204, 204’,304, 304’ 位元線 BL 1,BL2,BLa,BLb 記憶胞之電容上極板7 0Page 181226682 Schematic illustration of photoresist 30, 80 sacrificial oxide layer 13 Shallow trench isolation area 21, 22, 23 N well 4 1, 4 2, 4 3 Thickness t1, t2, t3 27 Photoresist mask first oxidation Layer 0X1 Second oxide layer 0X2 Gate 61, 62a, 62b, 63, 62a ', 62b' Shallow trench capacitance 6 2 c Unit memory cell 2 0 0, 3 0 0 Transistor 201, 202, 301, 302 Drain capacitance 203,303 Word line WL1, WL2, WLa, WLb, WL1 ', WL2' active area 205, 205 ', 305, 305' contact window 204, 204 ', 304, 304' bit line BL 1, BL2, BLa, BLb memory Cell capacitor upper plate 7 0

第19頁Page 19

Claims (1)

1226682 六、申請專利範圍 1· 一種形成一雙輸出端(dual-port) DRAM記憶體的方 法,包括以下步驟: a.依序沈積一氧化層墊和一氮化層在一半導體基板上; b·形成複數個淺溝渠隔離(STI)於該半導體基板内,並 定義出元件主動區域; c. 進行一化學機械研磨程序(CMP),將該等複數個淺溝 渠隔離的表面磨平,並裸露該氮化層於該半導體基板上; d. 對該等複數個淺溝渠隔離之一進行一冠狀微影蝕刻 (crown photo/crown etch)步驟,以作為該雙輸出端 DRAM記憶體之一預定淺溝渠電容,其中,該冠狀微影蝕刻 步驟係將該淺溝渠隔離内的絕緣物移除; e. 對該半導體基板進行一 N型井和/或P型井的植入步驟; f. 形成一氧化層,以作為電晶體閘氧化層和該預定淺溝渠 電容之介電層;以及 g. 同步形成複數個電晶體閘極和該預定淺溝渠電容之上極 板,其中,在該預定淺溝渠電容的左右兩側各有該等複數 個電晶體之一。1226682 6. Scope of patent application 1. A method for forming a dual-port DRAM memory, including the following steps: a. Sequentially depositing an oxide layer pad and a nitride layer on a semiconductor substrate; b Forming a plurality of shallow trench isolation (STI) in the semiconductor substrate, and defining the active area of the component; c. Performing a chemical mechanical polishing process (CMP), smoothing the surfaces of the plurality of shallow trench isolations and exposing them The nitride layer is on the semiconductor substrate; d. Performing a crown photo / crown etch step on one of the plurality of shallow trench isolations, as a predetermined shallow one of the dual-output DRAM memory; Trench capacitor, wherein the corona lithography etching step removes the insulation in the shallow trench isolation; e. Performing an N-type and / or P-type implantation step on the semiconductor substrate; f. Forming a An oxide layer as a dielectric layer of the transistor gate oxide layer and the predetermined shallow trench capacitor; and g. Forming a plurality of transistor gates and the predetermined shallow trench capacitor plate simultaneously, wherein Left and right sides of each of such plurality of capacitor canal one electrical crystals. 1226682 六、申請專利範圍 2 ·如申請專利範圍第1項所述之方法,其中,在上述步驟d 之後,對該預定淺溝渠電容之溝渠側壁進行一自我對準的 離子佈植步驟,以使該預定淺溝渠電容之電性均勻。 3 ·如申請專利範圍第2項所述之方法,其中,該自我對準 的離子佈植的摻質,是使用選自由氮氣、氬氣或其他鈍氣 所組成之組群。 4.如申請專利範圍第2項所述之方法,其中,該自我對準 的離子佈植,係為一啟始電壓離子佈植。 5 .如申請專利範圍第1項所述之方法,其中,該預定淺溝 渠電容的表面積包括該溝渠側壁、該溝渠底面和該溝渠周 圍頂面。 6. 如申請專利範圍第1項所述之方法,其中,在上述步驟d 之後,才依序除去該氮化層和該氧化層墊。 7. 如申請專利範圍第6項所述之方法,其中,在除去該氮 化層和該氧化層塾之後,形成一犧牲氧化層,並在進行該 N型井和/或P型井的植入步驟之後,除去該犧牲氧化層。 8·—種形成一雙輸出端(dual-port) DRAM記憶體的方1226682 6. Application for Patent Scope 2 · The method as described in item 1 of the patent application scope, wherein, after the above step d, a self-aligned ion implantation step is performed on the trench side wall of the predetermined shallow trench capacitor so that The predetermined shallow trench capacitance has uniform electrical properties. 3. The method according to item 2 of the scope of patent application, wherein the self-aligned ion implanted dopant is selected from the group consisting of nitrogen, argon or other inert gas. 4. The method according to item 2 of the scope of patent application, wherein the self-aligned ion implantation is an initial voltage ion implantation. 5. The method according to item 1 of the scope of patent application, wherein the surface area of the predetermined shallow trench capacitor includes the trench side wall, the trench bottom surface and the trench surrounding top surface. 6. The method according to item 1 of the scope of patent application, wherein after the above step d, the nitrided layer and the oxide layer pad are sequentially removed. 7. The method according to item 6 of the scope of patent application, wherein after removing the nitride layer and the oxide layer 塾, a sacrificial oxide layer is formed, and the N-type well and / or the P-type well are implanted. After the step, the sacrificial oxide layer is removed. 8 · —A way to form a dual-port DRAM memory 第21頁 !226682Page 21! 226682 去’包括以下步驟: a •依序沈積一氧化層墊和一氮化層在一半導體基板上; ^形成複數個淺溝渠隔離(STI)於該半導體基板内,並 定義出元件主動區域; C·進行一化學機械研磨程序(CMP),將該等複數個淺溝 渠隔離的表面磨平,並裸露該氮化層於該半導體基板上/ · d ·對該等複數個淺溝渠隔離之一進行一冠狀微影餘刻 (crown Ph〇t〇/crown etch)步驟,以作為該雙輸^ DRAM記憶體之-預;t淺溝渠電容,其中,該冠狀微影 步驟係將該淺溝渠隔離内的絕緣物移除; ^ e·對該半導體基板進行一 N型井和型井的植入步驟; f ·形成一氧化層,以作為電 電容之介電層;以及 晶體閘氧化層和該 預定淺溝渠 g·同步形成複數個電晶體閘極和命 ^ 邊預定漤澧涅 板,其中,在該預定淺溝渠電容的一 ,木電各之上極 數個電晶體之一。 則後端各有該等複Going through includes the following steps: a • sequentially depositing an oxide pad and a nitride layer on a semiconductor substrate; ^ forming a plurality of shallow trench isolation (STI) in the semiconductor substrate, and defining the active area of the device; C · Perform a chemical mechanical polishing process (CMP), smooth the surface of the plurality of shallow trench isolations, and expose the nitride layer on the semiconductor substrate / · d · Perform one of the plurality of shallow trench isolations A crown lithography / crown etch step is used as a pre-prediction of the dual-input ^ DRAM memory; t shallow trench capacitance, wherein the crown lithography step is to isolate the shallow trench Removing the insulator; ^ e. Performing an N-well and a well-implanting step on the semiconductor substrate; f. Forming an oxide layer as a dielectric layer of the capacitor; and a gate oxide layer and the predetermined The shallow trench g · synchronously forms a plurality of transistor gates and a predetermined predetermined niobium plate, in which one of the predetermined shallow trench capacitors and one of the plurality of transistors are each on the wood. Each of these 1226682 六、申請專利範圍 9 ·如申請專利範圍第8項所述之方法,其中,在步驟d之 後,對該預定淺溝渠電容之溝渠側壁進行一自我對準的離 子佈植步驟,以使該預定淺溝渠電容之電性均勻。 1 0 ·如申請專利範圍第9項所述之方法,其中,該自我對準 的離子佈植的摻質,是使用選自由氮氣、氬氣或其他鈍氣 所組成之組群。 1 1 ·如申請專利範圍第9項所述之方法,其中,該自我對準 的離子佈植,係為一啟始電壓離子佈植。 1 2 .如申請專利範圍第8項所述之方法,其中,該預定淺溝 渠電容的表面積包括該溝渠側壁、該溝渠底面和該溝渠周 圍頂面。 1 3.如申請專利範圍第8項所述之方法,其中,在上述步驟 d之後,才依序除去該氮化層和該氧化層墊。 1 4.如申請專利範圍第1 3項所述之方法,其中,在除去該 氮化層和該氧化層塾之後,形成一犧牲氧化層,並在進行 該N型井和/或P型井的植入步驟之後,除去該犧牲氧化 層。 15.—種雙輸出端(dua卜port) DRAM記憶體佈局結構,其1226682 6. Application for Patent Scope 9 · The method as described in item 8 of the patent application scope, wherein, after step d, a self-aligned ion implantation step is performed on the trench side wall of the predetermined shallow trench capacitor to make the The electrical properties of the shallow trench capacitors are expected to be uniform. 1 0. The method according to item 9 of the scope of the patent application, wherein the self-aligned ion implanted dopant is selected from the group consisting of nitrogen, argon, or other inert gas. 1 1 · The method according to item 9 of the scope of patent application, wherein the self-aligned ion implantation is an initial voltage ion implantation. 12. The method according to item 8 of the scope of patent application, wherein the surface area of the predetermined shallow trench capacitor includes the trench side wall, the trench bottom surface, and the trench surrounding top surface. 1 3. The method according to item 8 of the scope of patent application, wherein the nitrided layer and the oxide layer pad are sequentially removed after step d above. 14. The method according to item 13 of the scope of patent application, wherein after removing the nitride layer and the oxide layer 塾, a sacrificial oxide layer is formed, and the N-type well and / or P-type well are performed After the implantation step, the sacrificial oxide layer is removed. 15.—a dual output port (dua port) DRAM memory layout structure, which 第23頁 1226682 六、申請專利範圍 係包括複數個記憶胞,其中,該雙輸出端DRAM單位記憶胞 係以一邏輯製程製得並包含: 一淺溝渠電容; 兩個電晶體,係分別位於該淺溝渠電容之左右兩對角線 側,且該等電晶體之汲極分別與該淺溝渠電容的左右兩端 相連; 兩個字語線(word 1 i ne),分別自該等電晶體之閘極延 伸出;和 兩個位元線(b i t 1 i ne),分別與該等電晶體之源極相 連。 16.—種雙輸出端(dual-port) DRAM記憶體佈局結構,其 係包括複數個記憶胞,其中,該雙輸出端DRAM單位記憶胞 係以一邏輯製程製得並包含:Page 231226682 6. The scope of patent application includes a plurality of memory cells. Among them, the dual-output DRAM unit memory cell is made by a logic process and includes: a shallow trench capacitor; two transistors, which are respectively located in the The left and right diagonal sides of the shallow trench capacitor, and the drains of the transistors are connected to the left and right ends of the shallow trench capacitor respectively; two word lines (word 1 i ne) are respectively from the transistors The gate extends; and two bit lines (bit 1 in) are connected to the sources of the transistors, respectively. 16. A dual-port DRAM memory layout structure, which includes a plurality of memory cells, wherein the dual-output DRAM unit memory cell is made by a logical process and includes: 第24頁Page 24
TW091132949A 2002-11-08 2002-11-08 Method for forming dual-port DRAM and the memory cell layout TWI226682B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW091132949A TWI226682B (en) 2002-11-08 2002-11-08 Method for forming dual-port DRAM and the memory cell layout

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW091132949A TWI226682B (en) 2002-11-08 2002-11-08 Method for forming dual-port DRAM and the memory cell layout

Publications (2)

Publication Number Publication Date
TW200408065A TW200408065A (en) 2004-05-16
TWI226682B true TWI226682B (en) 2005-01-11

Family

ID=35634288

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091132949A TWI226682B (en) 2002-11-08 2002-11-08 Method for forming dual-port DRAM and the memory cell layout

Country Status (1)

Country Link
TW (1) TWI226682B (en)

Also Published As

Publication number Publication date
TW200408065A (en) 2004-05-16

Similar Documents

Publication Publication Date Title
CN103681804B (en) Semiconductor devices, its manufacturing method and the component with the device and system
US10347634B2 (en) Apparatuses including buried digit lines
JP4860022B2 (en) Manufacturing method of semiconductor integrated circuit device
TWI384586B (en) Memory having a vertical access device
US8278182B2 (en) Isolation structure for a memory cell using Al1O3 dielectric
US20080093645A1 (en) Fabrication Process For Increased Capacitance In An Embedded DRAM Memory
US6794254B1 (en) Embedded dual-port DRAM process
US8797787B2 (en) Semiconductor manufacturing method
US20040007764A1 (en) Semiconductor memory devices including different thickness dielectric layers for the cell transistors and refresh transistors thereof, and methods for fabricating same
TW200419729A (en) Novel one-transistor RAM approach for high density memory application
JP2003158195A (en) Manufacturing method for semiconductor integrated circuit device
JPS61174670A (en) Dram cell and making thereof
US7208799B2 (en) Floating body cell dynamic random access memory with optimized body geometry
TWI226682B (en) Method for forming dual-port DRAM and the memory cell layout
US11373696B1 (en) FFT-dram
US6849495B2 (en) Selective silicidation scheme for memory devices
US5744388A (en) Process of making a storage capacitor for dram memory cell
JP2005236135A (en) Method for manufacturing semiconductor device
WO2014108065A1 (en) Planar channel semiconductor device and manufacturing method therefor
US20240079048A1 (en) Memory array circuit
JP2003332463A (en) Semiconductor memory device and method of manufacturing the same
JP2000174232A (en) Semiconductor integrated circuit device and manufacture thereof
CN117412592A (en) Semiconductor memory structure
TWI245373B (en) A method for improving resistance value of bit line contact
TW201021162A (en) Inverter structure and method for fabricating the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees