TWI226635B - Magnetic access memory cell and array and method for programming the cell - Google Patents

Magnetic access memory cell and array and method for programming the cell Download PDF

Info

Publication number
TWI226635B
TWI226635B TW92133292A TW92133292A TWI226635B TW I226635 B TWI226635 B TW I226635B TW 92133292 A TW92133292 A TW 92133292A TW 92133292 A TW92133292 A TW 92133292A TW I226635 B TWI226635 B TW I226635B
Authority
TW
Taiwan
Prior art keywords
access memory
random access
magnetic
magnetic random
bit line
Prior art date
Application number
TW92133292A
Other languages
Chinese (zh)
Other versions
TW200518090A (en
Inventor
Chia-Hua Ho
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW92133292A priority Critical patent/TWI226635B/en
Application granted granted Critical
Publication of TWI226635B publication Critical patent/TWI226635B/en
Publication of TW200518090A publication Critical patent/TW200518090A/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

A magnetic random access memory (MRAM) cell includes a first wordline and a first bitline perpendicular to the wordline. Disposed at an intersection of the first wordline and the first bitline is an MTJ device having a perpendicular magnetic orientation. To program the MRAM cell, current is driven through the two bitlines and two wordlines that are adjacent to the memory cell. As a result, the MRAM cell has a high magnetic transition and low programming current.

Description

1226635 11016twf.doc/006 玖、發明說明: 【發明所屬之技術領域】 本發明是有關於一種電腦儲存器,且特別是有關於一 種具有高磁轉變且低程式化電流的垂直磁性隨機存取記憶 If (magnetic random access memory 5 MRAM) ° 【先前技術】 磁性隨機存取記憶體爲一種非揮發性記憶體,用於長 期資料儲存。磁性隨機存取記憶體元件的讀寫功能,速度 比一般長期儲存元件較快,例如與硬式磁碟機比較。此外, 磁性隨機存取記憶體元件比其他一般長期儲存元件更精巧 且低能耗。 一種磁性隨機存取記憶胞主要爲磁性隧道連結 (magnetic tunnel junction,MTJ)元件,它有兩個強磁性層, 藉由一薄絕緣阻障隧道將兩個強磁性層分開。傳導電子的 一旋轉-極化隧道介於兩個強磁性層之間,主要爲兩個強 磁性層的磁力矩方向定位,作爲一磁性隧道連結的抗磁 場。一典型磁性隨機存取記憶體元件包括一記憶胞陣列。 字元線沿著記憶胞的列,以及位元線沿著記憶胞的行。 每一記憶胞位於每一字元線與位元線的交叉點,以磁化的 方向儲存位元資料。在任何時間,每一記憶胞的磁化方向, 爲兩個穩定方向的其中之一。這些兩個穩定方向,爲平行 以及逆平行,代表邏輯値ΠΓ與。對在記憶胞交叉的一 字元線以及一位元線提供電流,藉由兩個垂直磁場改變記 憶胞的磁化方向,當磁場合倂時,將記憶胞的磁化方向從 平行轉到逆平行,或由逆平行轉到平行。 1226635 11016twf.doc/006 然而,在極小元件區,由於磁性隨機存取記憶體的超 順磁-強磁性轉換點,使記憶胞的轉換並非經常穩定。有 時,合倂的磁場可能無法將一記憶胞從平行轉到逆平行’ 或逆平行轉到平行。因此,需要在沒有增加轉換電流之下’ 改良磁性隨機存取記憶體記憶胞元件的再生性或穩定性。 【發明內容】 本發明的目的就是在提供一種磁性隨機存取記憶胞’ 在沒有增加轉變電流之下,改良磁性隨機存取記憶體元件 的再生性或穩定性,以解決習知磁性隨機存取記憶體的高 磁場-強磁性轉換點,使記憶胞的轉換並非經常穩定。 本發明的再一目的是在提供一種磁性隨機存取記憶胞 程式化的方法,可大幅降低習知的磁性隨機存取記憶胞元 件使用的程式化電流。 本發明的另一目的是在提供一種磁性隨機存取記憶體 陣列,使在極小元件區的磁性隨機存取記憶體具有高磁性 穩定,以解決習知磁性隨機存取記憶體元件的高磁場-強 磁性轉變點問題。 大體上說,本發明較佳實施例,提出一種使用垂直磁 性方向磁性隧道連結元件的磁性隨機存取記憶胞,來達到 前述需求。這一個實例中,以一種磁性隨機存取記憶胞來 說明。一種磁性隨機存取記憶胞,包括:一第一字元線, 第一位元線垂直於第一字元線,以及具有一垂直磁性方向 的一磁性隧道連結元件,位於第一字元線與第一位元線的 交叉處。磁性隧道連結元件包括一自由層以及一稍層,自 由層比稍層更接近第一位元線。還可以選擇於磁性隧道連 1226635 11016twf.doc/006 結元件之下配置一二極體,這個二極體與第一字元線及稍 層有電的交流。一第二位元線與一第三位元線接近並位於 第一位兀線的各一側邊,以及第二字兀線與一第三字兀線 接近並位於第一字元線的各一側邊。爲程式化磁性隨機存 取記憶胞,電流可被驅動而穿過第二位元線與第三位元 線,以及第二字元線與第三字元線。在本實施例中,其中 穿過位元線的電流以及穿過字元線的電流是在一相對方 向。 依照本發明的較佳實施例,說明磁性隨機存取記憶胞 程式化的方法,此磁性隨機存取記憶胞具有一垂直磁性方 向的磁性隧道連結元件。在第一方向驅動穿過第一位元線 的電流,其中第一位元線接近於一第二位元線,且此第二 位元線與被程式化的磁性隨機存取記憶胞有電的交流。同 樣的,在第二方向驅動穿過第三位元線的電流,其中第三 位元線接近於第二位元線,以及在相對於第一位元線的一 邊,其中第二方向相對於第一方向。在這樣的情況之下, 磁性隨機存取記憶胞被程式化成爲具有第一磁化方向,可 以表示一個“Γ或“0” 。程式化磁性隨機存取記憶胞成 爲具有一第二磁化方向,其中驅動在第二方向穿過第一位 元線的電流,以及在第一方向穿過第三位元線的電流。除 這些位元線之外,驅動在第三方向穿過第一字元線,第一 字元線接近於第二字元線,第二字元線與磁性隨機存取記 憶胞有電的交流。驅動在一第四方向穿過第三字元線的電 流,第三字元線接近於第二字元線,以及相對於第一字元 線的一邊。如前述,以程式化磁性隨機存取記憶胞成爲具 1226635 11016twf.doc/006 有第二磁化方向,且驅動在第四方向穿過第一字元線的電 流,以及驅動在第三方向穿過第三字元線的電流。磁性隨 機存取記憶胞是藉著驅動穿過第二位元線的電流與驅動穿 過第二字元線的電流而被讀取。 本發明的另一較佳實例更公開揭露一種磁性隨機存取 記憶體陣列。這種磁性隨機存取記憶體陣列包括數個平行 字元線與數個平行位元線,每一位元線垂直於字元線。具 有一垂直磁性方向的一磁性隧道連結元件位於一字元線與 位元線的一交叉處。如前述,每一磁性隧道連結元件包括 自由層與稍層,自由層較稍層靠近字元線。每一磁性隧道 連結元件與位於磁性隧道連結元件下方一二極體有電的交 流,每一二極體與一字元線以及磁性隧道連結元件的稍層 有電的交流。 本發明能夠處理傳統磁性隨機存取記憶體元件的高磁 場-強磁性(superparamagnetic-ferromagnetic)轉變點問題。 當使用本發明時,由於垂直型非等性能量控制,在極小元 件區的高磁場-強磁性轉變點問題不再發生。而且,本發 明與傳統磁性隨機存取記憶體構造比較,可大幅降低習知 的磁性隨機存取記憶胞元件使用的程式化電流。另外,本 發明在沒有增加轉變電流之下,能夠改良傳統磁性隨機存 取記憶體元件的再生性或穩定性。 爲讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉一較佳實施例,並配合所附圖式,作詳細 說明如下。 【實施方式】 1226635 11016twf.doc/006 本發明是一種磁性隨機存取記憶體創新的製造方法, 有高磁轉變穩定且低程式化電流之特性。本發明一較佳實 施例使用有一垂直磁場方向的磁性隧道連結元件。因此, 本發明在極小元件區域有高穩定磁性。此外’使用多位元 線來程式化,本發明之較佳實施例,相較於傳統的磁性隨 機存取記憶體元件大幅降低使用的電流。在下列的描述, 很多特殊的細節是爲了能徹底了解本發明。顯而易見的, 對熟悉這些技術的人,在沒有部份或全部的詳細描述之 下,仍然可以實作本發明。另一方面,爲了不要對本發明 產生不必要的混淆,習知的步驟不加以說明。 請參照第1圖,其繪示依照本發明一較佳實施例單 位胞1〇〇的一種圖。本實施例單位胞10〇包括置於兩金屬 間隔物104中間的一磁性隧道連結元件106以及兩-金屬 區102。磁性隧道連結元件106包含由一隔離區112分隔 的自由層108與稍層110。如接下來的第2圖所示,多個 單位胞100形成磁性隨機存取記憶體的記憶胞,並且使用 多個位元線與字元線存取單位胞^00。 接著第2圖是繪示依照本發明較佳實施例,有MOS 控制的一磁性隨機存取記憶胞陣列2〇〇的一部分。磁性隨 機存取記憶胞陣列200包括藉由位元線202與字元線204 結合在一起的多個單位胞1〇〇。電晶體示意圖206說明在 磁性隨機存取記憶胞陣列200中形成的記憶胞。除一 MOS 控制記憶胞陣列之外,本發明之較佳實施例也能用來生產 二極體控制記憶胞陣列,其說明參考第3圖。 第3圖是本發明之較佳實施例,有二極體控制的一磁 1226635 11016twf.doc/006 性隨機存取記憶胞陣列300。如前述,磁性隨機存取記憶 胞陣列300包括多數單位胞100,經由多數個位元線202 以及多數個字元線204結合在一起。不過,磁性隨機存取 記憶胞陣列300包括數個二極體302,置於相關的單位胞 1〇〇以及字位元204之間。 本發明較佳實施例,如第2圖以及第3圖所敘,使用 具有垂直磁性方位磁性隧道連結元件,使在極小元件區的 磁性隨機存取記憶體具有高磁性穩定態。有用的是,本發 明較佳實施例能夠處理傳統磁性隨機存取記憶體元件的高 磁場-強磁性轉變點問題。當使用本發明時,由於垂直型 非等性能量控制,在極小元件區的高磁場-強磁性轉變點 問題不再發生。因此,在本發明的較佳實例中,基礎的交 換聯結長度決定強磁性尺寸的限制,大約是nm。 第4A圖是磁性隨機存取記憶胞陣列200,說明程式 化單位胞1〇〇’,以儲存一邏輯値〇的方法。這單位胞1〇〇’ 是由位元線B2與字元線W2結合。如第4A圖所示,位元 線B1與B3鄰接位元線B2,位元線B2與單位胞1〇〇’接合。 除此之外,字元線W1與W3鄰接字元線W2,字元線W2 也與單位胞l〇〇f接合。當程式化單位胞100’以儲存一邏輯 値〇時,位元線B1與B3通電,電流方向如第4A圖所示, 兩個電流方向彼此相對。除此之外,字元線W1與W3通 電,電流方向如第4A圖所示,兩個電流方向彼此相對。 第4B圖是磁性隨機存取記憶胞陣列200的槪要圖, 說明程式化單位胞1〇〇’,以儲存一邏輯値1的方法。程式 單位胞100’以儲存一邏輯値1時,將位元線B1與B3通電, 1226635 11016twf.doc/006 電流方向如第4B圖所示,兩個電流方向彼此相對,除此 之外,字元線W1與W3通電,電流方向如第4A圖所示, 兩個電流方向彼此相對。特別注意,程式化一邏輯値1時, 位元線202與字元線204的電流方向,與程式化一邏輯値 〇時,位元線202與字元線204的電流方向彼此相對。1226635 11016twf.doc / 006 发明, Description of the invention: [Technical field to which the invention belongs] The present invention relates to a computer memory, and more particularly to a vertical magnetic random access memory with high magnetic transition and low stylized current. If (magnetic random access memory 5 MRAM) ° [Prior art] Magnetic random access memory is a non-volatile memory used for long-term data storage. The read and write functions of magnetic random access memory devices are faster than general long-term storage devices, such as compared with hard disk drives. In addition, magnetic random access memory devices are more compact and consume less power than other general long-term storage devices. A magnetic random access memory cell is mainly a magnetic tunnel junction (MTJ) element. It has two ferromagnetic layers, and the two ferromagnetic layers are separated by a thin insulating barrier tunnel. A rotating-polarizing tunnel of conducting electrons is located between two ferromagnetic layers, which are mainly oriented in the direction of the magnetic moment of the two ferromagnetic layers, and serve as a diamagnetic field connected by a magnetic tunnel. A typical magnetic random access memory device includes a memory cell array. Word lines follow the columns of memory cells, and bit lines follow the rows of memory cells. Each memory cell is located at the intersection of each word line and bit line, and stores bit data in the direction of magnetization. At any time, the direction of magnetization of each memory cell is one of two stable directions. These two stable directions, parallel and antiparallel, represent the logic 値 ΠΓand. Provide a current to a word line and a bit line crossing the memory cell, and change the magnetization direction of the memory cell by two perpendicular magnetic fields. When the magnetic field is combined, change the magnetization direction of the memory cell from parallel to antiparallel Or from antiparallel to parallel. 1226635 11016twf.doc / 006 However, in extremely small component areas, the conversion of memory cells is not always stable due to the superparamagnetic-ferromagnetic transition points of magnetic random access memory. Sometimes, the combined magnetic field may not be able to turn a memory cell from parallel to antiparallel 'or antiparallel to parallel. Therefore, it is necessary to improve the reproducibility or stability of the magnetic random access memory memory cell element without increasing the switching current. [Summary of the Invention] The object of the present invention is to provide a magnetic random access memory cell to improve the reproducibility or stability of the magnetic random access memory element without increasing the transition current to solve the conventional magnetic random access memory. The high magnetic-strong magnetic switching point of the memory makes the conversion of the memory cells not always stable. Another object of the present invention is to provide a method for programming magnetic random access memory cells, which can greatly reduce the programming current used by conventional magnetic random access memory cells. Another object of the present invention is to provide a magnetic random access memory array, so that the magnetic random access memory in a very small device region has high magnetic stability, so as to solve the high magnetic field of the conventional magnetic random access memory device. Strong magnetic transition point. Generally speaking, a preferred embodiment of the present invention proposes a magnetic random access memory cell using a perpendicular magnetic direction magnetic tunnel connection element to meet the aforementioned needs. In this example, a magnetic random access memory cell is used for illustration. A magnetic random access memory cell includes: a first word line, a first bit line perpendicular to the first word line, and a magnetic tunnel connection element having a vertical magnetic direction, located between the first word line and the The intersection of the first bit line. The magnetic tunnel connection element includes a free layer and a slightly more layer, and the free layer is closer to the first bit line than the slightly more layer. You can also choose to place a diode under the magnetic tunnel connection 1226635 11016twf.doc / 006 junction element. This diode has electrical communication with the first word line and a little more. A second bit line is close to a third bit line and is located on each side of the first bit line, and a second word line is close to a third word line and is located at each side of the first word line. To one side. To program the magnetic random access memory cells, current can be driven through the second and third bit lines, and the second and third word lines. In this embodiment, the current passing through the bit line and the current passing through the word line are in opposite directions. According to a preferred embodiment of the present invention, a method for programming a magnetic random access memory cell is described. The magnetic random access memory cell has a magnetic tunnel connection element with a perpendicular magnetic direction. Drive the current through the first bit line in a first direction, where the first bit line is close to a second bit line, and this second bit line is electrically connected to the programmed magnetic random access memory cell Communication. Similarly, the current is driven through the third bit line in the second direction, where the third bit line is close to the second bit line, and on the side opposite to the first bit line, where the second direction is relative to First direction. Under such circumstances, the magnetic random access memory cell is programmed to have a first magnetization direction, which can represent a "Γ or" 0 ". The stylized magnetic random access memory cell becomes to have a second magnetization direction, where Drive current passing through the first bit line in the second direction and current passing through the third bit line in the first direction. In addition to these bit lines, drive through the first word line in the third direction The first word line is close to the second word line. The second word line and the magnetic random access memory cell are in electrical communication. The current passing through the third word line in a fourth direction drives the third word line. The meta line is close to the second character line and one side opposite to the first character line. As mentioned earlier, the stylized magnetic random access memory cell becomes 1226635 11016twf.doc / 006 and has a second magnetization direction and is driven at The current passing through the first word line in the fourth direction and the current driving the third word line in the third direction. The magnetic random access memory cell is driven by the current and drive through the second bit line. Is read by the current passing through the second word line Another preferred embodiment of the present invention discloses a magnetic random access memory array. The magnetic random access memory array includes a plurality of parallel word lines and a plurality of parallel bit lines, and each bit line Perpendicular to the word line. A magnetic tunnel connection element with a perpendicular magnetic direction is located at the intersection of a word line and a bit line. As mentioned above, each magnetic tunnel connection element includes a free layer and a slightly more free layer. Slightly close to the word line. Each magnetic tunnel connection element is in electrical communication with a diode located below the magnetic tunnel connection element. Each diode is electrically connected to a word line and a slight layer of the magnetic tunnel connection element. AC. The invention can handle the high magnetic field-ferromagnetic (superparamagnetic-ferromagnetic) transition point of traditional magnetic random access memory devices. When using the invention, due to the vertical non-equivalence control, the high The problem of the magnetic field-ferromagnetic transition point no longer occurs. Moreover, compared with the conventional magnetic random access memory structure, the present invention can greatly reduce the conventional magnetic properties. The programmed current used by the computer to access the memory cell element. In addition, the present invention can improve the reproducibility or stability of the conventional magnetic random access memory element without increasing the transition current. In order to make the above and other objects of the present invention Features, advantages and advantages can be more obvious and easy to understand, a preferred embodiment will be given below in conjunction with the accompanying drawings to explain in detail as follows. [Embodiment] 1226635 11016twf.doc / 006 The present invention is a magnetic random access memory The innovative manufacturing method has the characteristics of stable high magnetic transition and low stylized current. A preferred embodiment of the present invention uses a magnetic tunnel connection element with a perpendicular magnetic field direction. Therefore, the present invention has high stable magnetism in a very small element area. In addition, using multi-bit lines for programming, the preferred embodiment of the present invention significantly reduces the current used compared to conventional magnetic random access memory devices. In the following description, many specific details are provided for a thorough understanding of the present invention. Obviously, those skilled in the art can still implement the present invention without some or all detailed descriptions. On the other hand, in order not to unnecessarily obscure the present invention, conventional steps are not explained. Please refer to FIG. 1, which shows a diagram of a unit cell 100 according to a preferred embodiment of the present invention. The unit cell 100 of this embodiment includes a magnetic tunnel connection element 106 and a two-metal region 102 disposed between two metal spacers 104. The magnetic tunnel connection element 106 includes a free layer 108 and a slightly layer 110 separated by an isolation region 112. As shown in FIG. 2 below, the plurality of unit cells 100 form a memory cell of a magnetic random access memory, and the unit cells are accessed using a plurality of bit lines and word lines. Next, FIG. 2 shows a part of a magnetic random access memory cell array 200 controlled by MOS according to a preferred embodiment of the present invention. The magnetic random access memory cell array 200 includes a plurality of unit cells 100 combined by a bit line 202 and a word line 204. The transistor schematic 206 illustrates the memory cells formed in the magnetic random access memory cell array 200. In addition to a MOS control memory cell array, the preferred embodiment of the present invention can also be used to produce a diode control memory cell array. For a description thereof, refer to FIG. 3. FIG. 3 is a preferred embodiment of the present invention. A magnetic field controlled by a diode is 1226635 11016twf.doc / 006. As described above, the magnetic random access memory cell array 300 includes a plurality of unit cells 100, which are combined together via a plurality of bit lines 202 and a plurality of word lines 204. However, the magnetic random access memory cell array 300 includes a plurality of diodes 302 disposed between the relevant unit cell 100 and the word bit 204. In the preferred embodiment of the present invention, as described in FIG. 2 and FIG. 3, a magnetic tunnel connection element having a vertical magnetic orientation is used, so that the magnetic random access memory in the extremely small element region has a high magnetic stable state. Usefully, the preferred embodiment of the present invention is capable of handling the high magnetic field-ferromagnetic transition point of conventional magnetic random access memory elements. When the present invention is used, the problem of the high magnetic field-ferromagnetic transition point in the extremely small element region no longer occurs due to the vertical-type non-equivalence energy control. Therefore, in the preferred embodiment of the present invention, the fundamental exchange coupling length determines the limit of the ferromagnetic size, which is about nm. Fig. 4A is a magnetic random access memory cell array 200, illustrating a method of programming a unit cell 100 'to store a logical cell. This unit cell 100 'is combined by a bit line B2 and a word line W2. As shown in Fig. 4A, bit lines B1 and B3 are adjacent to bit line B2, and bit line B2 is joined to the unit cell 100 '. In addition, the character lines W1 and W3 are adjacent to the character line W2, and the character line W2 is also joined to the unit cell 10f. When the unit cell 100 'is programmed to store a logic 値 0, the bit lines B1 and B3 are energized, and the current directions are as shown in FIG. 4A, and the two current directions are opposite to each other. In addition, the word lines W1 and W3 are powered on, and the current directions are as shown in FIG. 4A, and the two current directions are opposite to each other. FIG. 4B is a schematic diagram of a magnetic random access memory cell array 200, illustrating a method of programming a unit cell 100 ′ to store a logical cell 1. When a unit cell of 100 'is stored to store a logic unit 1, the bit lines B1 and B3 are energized. The current direction is shown in Figure 4B. The two current directions are opposite to each other. In addition, the word The element wires W1 and W3 are energized, and the current directions are as shown in FIG. 4A, and the two current directions are opposite to each other. In particular, when a logic 値 1 is programmed, the current direction of the bit line 202 and the word line 204 is opposite to the current direction of the bit line 202 and the word line 204 when the logic 〇0 is programmed.

第5圖是磁性隨機存取記憶胞陣列200的槪要圖,說明 讀取單位胞100’的方法。當讀取單位胞1〇〇,時,位元線B2 與字元線W2通電,兩者與單位胞1〇〇’連結在一起。如第 5圖說明,當讀一單位胞,不需要多個的位元線。然而, 一般字元線W2較位元線B2使用較高電壓。Fig. 5 is a schematic diagram of a magnetic random access memory cell array 200, illustrating a method of reading a unit cell 100 '. When the unit cell 100 is read, the bit line B2 and the word line W2 are energized, and the two are connected to the unit cell 100 '. As shown in Figure 5, when reading a unit cell, multiple bit lines are not required. However, the general word line W2 uses a higher voltage than the bit line B2.

第6圖是一鄰接單位胞100的圖,說明當程式化單 位胞100’時,磁場的分配。爲程式化單位胞1〇〇’,電流以 相對方向穿過位元線202’以及位元線202”,如第6圖說明。 因此,電流穿過位元線202’以及202"產生相反的磁場。也 就是,電流穿過位元線202’產生磁場602與電流穿過位元 線202”產生磁場604。因此,磁場602與磁場604的內平 面場(in-plane field)元件彼此互抵。因此,內平面場噪音 不干擾單位胞1〇〇’的記憶胞狀態。另外,磁場602與磁場 604的外平面場(out-plane field)元件,由於磁場的建構, 產生雙倍的磁場。因此,爲維持磁場強度,將位元線的程 式化電流減半。 請參照第7圖,其繪示依照本發明一較佳實施例的 一種垂直磁性隨機存取記憶體的特性曲線700。稍層,例 如是底下的層,有一在磁場循環下不會改變的固定磁矩。 自由層的磁矩由磁場所控制,並有一遲滯性質(hysteresis •·< λ tyai 11 1226635 11016twf.doc/006 property)。由於自旋從屬穿隧效應(spin-dependent tunneling effect),在稍層與自由層之間,有不同相對力矩方向,表 現出不同的穿隧阻力(tunneling resistance),因此,有不同 的輸出電壓或輸出電流。Figure 6 is a diagram of an adjacent unit cell 100, illustrating the distribution of the magnetic field when the unit cell 100 'is stylized. For the stylized unit cell 100 ′, the current passes through the bit line 202 ′ and the bit line 202 ″ in opposite directions, as illustrated in FIG. 6. Therefore, the current passing through the bit line 202 ′ and 202 " produces the opposite Magnetic field. That is, a current through the bit line 202 'generates a magnetic field 602 and a current through the bit line 202 "generates a magnetic field 604. Therefore, the in-plane field elements of the magnetic field 602 and the magnetic field 604 cancel each other. Therefore, the in-plane field noise does not disturb the memory cell state of the unit cell 100 '. In addition, the out-plane field elements of the magnetic field 602 and the magnetic field 604 generate a double magnetic field due to the construction of the magnetic field. Therefore, in order to maintain the magnetic field strength, the programming current of the bit line is halved. Please refer to FIG. 7, which illustrates a characteristic curve 700 of a vertical magnetic random access memory according to a preferred embodiment of the present invention. The lower layer, for example the bottom layer, has a fixed magnetic moment that does not change under magnetic field cycling. The magnetic moment of the free layer is controlled by a magnetic field and has a hysteresis property (hysteresis • λ tyai 11 1226635 11016twf.doc / 006 property). Due to the spin-dependent tunneling effect, there are different relative moment directions between the slightly layer and the free layer, which show different tunneling resistance. Therefore, there are different output voltages or Output current.

請參照第8圖,其繪示依照本發明一較佳實施例的一 種非等向性誘發穩定形曲線圖800。如曲線圖800,當強 磁性層的展弦比(aspect ratio)增加,在強磁性層的消磁性 場降低,因此,強磁性層有一更穩定磁性對準。方程式(1) 闡明消磁性場: NM N 是消磁係數(demagnetization coefficient),Ms 是自 由層的磁化作用。 例如:N= 10·1 (桿形的展弦比〜2·5), Ms = 1000 G,以 及m = 20,則Hd= 50e,比50 Oe的一 He還要更小。Please refer to FIG. 8, which illustrates a non-isotropically induced stability curve 800 according to a preferred embodiment of the present invention. As shown in the graph 800, as the aspect ratio of the ferromagnetic layer increases, the demagnetizing field in the ferromagnetic layer decreases, so the ferromagnetic layer has a more stable magnetic alignment. Equation (1) illustrates the demagnetization field: NM N is the demagnetization coefficient, and Ms is the magnetization of the free layer. For example: N = 10 · 1 (rod aspect ratio ~ 2.5), Ms = 1000 G, and m = 20, then Hd = 50e, which is smaller than a He of 50 Oe.

請參照第9A與9B圖說明的磁性隧道連結元件。第 9A圖其繪示依照本發明一較佳實施例的一種垂直假自旋 閥(spin-valve)磁性隧道連結900圖。垂直假自旋閥磁性 隧道連結900,包括一軟磁鐵(soft-magnet)904,也被當作一 自由層,以及一硬磁鐵鐵(hard-magnet)908。此外,一絕 緣體906形成於軟磁鐵904及硬磁鐵鐵908之間。第9B 圖其繪示依照本發明較佳一實施例的一種垂直自旋閥磁性 隧道連結902。垂直自旋閥磁性隧道連結902圖,包括 一軟磁鐵904,一稍磁鐵910,以及一稍層912,其中軟磁 鐵904也被當作一自由層。一絕緣體906形成於軟磁鐵904 以及稍磁鐵910之間。 12 1226635 11016twf.doc/006 垂直假自旋閥磁性隧道連結900的自由層904與垂直 自旋閥磁性隧道連結902可以是一稀土族-3d(rare-earth-3d)過渡化合物,例如:GdFe、CoPt、FePt、偏向z結晶 的厚Co、極薄(接近二維,一般比1 nm更薄)的Fe、Co以 及Ni與它們的合金,例如是c〇Fe。Please refer to the magnetic tunnel connection element illustrated in FIGS. 9A and 9B. FIG. 9A is a diagram illustrating a vertical tunnel spin-valve magnetic tunnel connection 900 according to a preferred embodiment of the present invention. The vertical pseudo-spin valve magnetic tunnel link 900, which includes a soft-magnet 904, is also used as a free layer, and a hard-magnet 908. In addition, an insulator 906 is formed between the soft magnet 904 and the hard magnet iron 908. Figure 9B illustrates a magnetic tunnel connection 902 for a vertical spin valve according to a preferred embodiment of the present invention. The vertical spin valve magnetic tunnel connection 902 diagram includes a soft magnet 904, a slightly magnet 910, and a slightly layer 912. The soft magnet 904 is also used as a free layer. An insulator 906 is formed between the soft magnet 904 and the slightly magnet 910. 12 1226635 11016twf.doc / 006 The free layer 904 of the vertical spin valve magnetic tunnel connection 900 and the vertical spin valve magnetic tunnel connection 902 may be a rare-earth-3d transition compound, such as GdFe, CoPt, FePt, z-oriented thick Co, extremely thin (nearly two-dimensional, generally thinner than 1 nm) Fe, Co, and Ni and their alloys, such as coFe.

垂直假自旋閥磁性隧道連結900的絕緣體906以及垂 直自旋閥磁性隧道連結902可以是一薄氧化物或氮化物, 便!ί如是 Al2〇3、AIN、A10N、Ga203、Hf02、ST0 等等。 其厚度小於3 nm。垂直自旋閥磁性隧道連結902的稍層 912可以是合成反鐵磁性複合層(Saf),例如是(自由層/Ru (0·7〜0_8 nm)/自由層)等,或有垂直定位磁化的反鐵磁性物 質’例如是IrMn、FeMn、PtMn等,或頑磁化(remnant magnet),例如是 SmCo 等。The insulator 906 of the vertical dummy spin valve magnetic tunnel connection 900 and the vertical spin valve magnetic tunnel connection 902 can be a thin oxide or nitride, such as Al203, AIN, A10N, Ga203, Hf02, ST0, etc. . Its thickness is less than 3 nm. The slightly layer 912 of the vertical spin valve magnetic tunnel connection 902 may be a synthetic antiferromagnetic composite layer (Saf), such as (free layer / Ru (0 · 7 ~ 0_8 nm) / free layer), etc., or it may have vertical positioning magnetization. The antiferromagnetic substance is, for example, IrMn, FeMn, PtMn, or the like, or a remnant magnet, such as SmCo.

使用本發明一較佳實施例,由於金屬隔離物(metal spacer)的厚度較小,以及一高滲透性金屬能簡單地轉換自 由層904的磁力矩,使寫入的電流更小。降低寫入的電流 主要藉由沉積技術,並非經由照相技術。金屬隔離物可以 是非磁性(non-magnetic)傳導金屬,例如是Ta、A卜W、Cu、 Pt等,也能同時形成磁性隧道連結的緩衝或頂蓋層。 寫入磁可以是一尚導磁合金(permalloy)或高磁化合金 (supermalloy)的軟磁鐵,例如是 NiFe、NiFeMo、NiFeCu、 NiFeCr、NiFeCuMo 或 Fe-TM-B 體系(TM = IV〜VIII 族過 渡金屬)’如 Fe-Co-Ni-Zr-Ta-B 或 or Fe-(A1、Ga)-(P、C、 B、Si)或 Fe-(Co、Ni)-Zr-B 或 Fe-(Co、Ni)-(Zr、Nb)-B 或 Fe-(Co、Ni)-(Mo、W)-B 或 Fe-Si-B 或 Fe-Si-B-Nb-Cu 或 13 1226635 11016twf.doc/006With a preferred embodiment of the present invention, since the thickness of the metal spacer is small and a highly permeable metal can simply convert the magnetic moment of the free layer 904, the writing current is smaller. The write current is reduced mainly by deposition techniques, not by photographic techniques. The metal spacer can be a non-magnetic conductive metal, such as Ta, AW, Cu, Pt, etc., and can also form a buffer or cap layer for magnetic tunnel connection at the same time. The write magnetism can be a soft magnetic of permalloy or supermalloy, such as NiFe, NiFeMo, NiFeCu, NiFeCr, NiFeCuMo or Fe-TM-B system (TM = IV ~ VIII transition Metal) 'such as Fe-Co-Ni-Zr-Ta-B or or Fe- (A1, Ga)-(P, C, B, Si) or Fe- (Co, Ni) -Zr-B or Fe- ( Co, Ni)-(Zr, Nb) -B or Fe- (Co, Ni)-(Mo, W) -B or Fe-Si-B or Fe-Si-B-Nb-Cu or 13 1226635 11016twf.doc / 006

Fe_Si-B-Nb 或 Fe-Al_Ga-P-C-B-Si 或 Fe-Co-Si,B-Cu-Nb 或Fe_Si-B-Nb or Fe-Al_Ga-P-C-B-Si or Fe-Co-Si, B-Cu-Nb or

Fe-Co- Ni-S、Co_Nb-Zr、Fe-Zr-Nb-B 或 Hiper50 或 sendust 或FeTaC或Fe-Ta-N-C等。磁合金有1〜O.OOlOe的高壓性 (coercivity)以及 1000〜1〇〇〇,〇〇〇 的滲透性(permeaility)。 請參照第10圖,其繪示依照本發明的一較佳實施例之 磁性隨機存取記憶胞的典型的特性。方程式P)描述第10 圖的關係: Η (2) y > 、i + H +5 a2+b2 4 -χΧχ 2 ( d)2 " [r -Ij f d) l 2j 2 a2^b2 4- 卞 4 一 (〇e) 2π S{lx^l ——x 25 fd \2 d r + — 2 例如,當-金屬(=10,000)有4000A厚度以及0.1 m的尺 寸,在記憶胞間的隔離物(spacer)爲0.1 m,r = 0.3 m,t = 0.4 m,以及自由層的高壓場是50 Oe,則在一列需要的電流 是8 A,總需求電流(x4)是32 A。當程式化時,金屬線的 電流密度爲2x104 A/cm2。根據-金屬値,本發明一較佳實 施例與傳統磁性隨機存取記憶體構造比較,改良後電流密 度降低約爲4的數量級(order of magnitude)。 請參照第11A圖,其繪示依照本發明一較佳實施例具 有一磁遮罩(shielding magnet) 1102的一磁性隨機存取記憶 體陣列1100的三維圖。請參照第11B圖,本發明一較佳 實施例具有一磁遮罩(shielding magnet) 1102的一磁性隨機 存取記憶體陣列1100的一種側視圖。當程式化單位胞時, 1226635 11016twf.doc/006 磁遮罩1102防止來自環境的磁噪音,以及緩衝-金屬的磁 通量(magnetic flux)。磁遮罩1102是一磁性的陶瓷物質 (magnetic ceramic material),例如是(Mn0)(Fe203)、 (Zn0)(Fe203)、(MnO)(ZnO)(Fe203)等。磁性的陶瓷物質是 一絕緣體矩陣(insulator matrix),電阻率一般是在1013 W-cm 的範圍。這些物質的滲透性範圍在數千個之間。例如,若 是(MnCOdZnCOiKFeA:^,當低於200〇C時,m的範圍爲 1000〜2000 。Fe-Co- Ni-S, Co_Nb-Zr, Fe-Zr-Nb-B or Hiper50 or sendust or FeTaC or Fe-Ta-N-C etc. The magnetic alloy has a high coercivity of 1 to 10,000 lOe and a permeaility of 1,000 to 10,000. Please refer to FIG. 10, which illustrates typical characteristics of a magnetic random access memory cell according to a preferred embodiment of the present invention. Equation P) describes the relationship of Fig. 10: Η (2) y >, i + H +5 a2 + b2 4 -χχχ 2 (d) 2 " [r -Ij fd) l 2j 2 a2 ^ b2 4-卞 4 一 (〇e) 2π S {lx ^ l ——x 25 fd \ 2 dr + — 2 For example, when -metal (= 10,000) has a thickness of 4000A and a size of 0.1 m, the spacer between the memory cells ( spacer) is 0.1 m, r = 0.3 m, t = 0.4 m, and the high-voltage field of the free layer is 50 Oe, then the required current in a column is 8 A, and the total demand current (x4) is 32 A. When stylized, the current density of the metal wire is 2x104 A / cm2. According to -metal rhenium, compared with a conventional magnetic random access memory structure in a preferred embodiment of the present invention, the improved current density is reduced by about 4 orders of magnitude. Please refer to FIG. 11A, which shows a three-dimensional view of a magnetic random access memory array 1100 having a magnetic shielding 1102 according to a preferred embodiment of the present invention. Referring to FIG. 11B, a side view of a magnetic random access memory array 1100 with a shielding magnet 1102 according to a preferred embodiment of the present invention. When unit cells are stylized, 1226635 11016twf.doc / 006 magnetic shield 1102 prevents magnetic noise from the environment, and buffer-metal magnetic flux. The magnetic shield 1102 is a magnetic ceramic material, such as (Mn0) (Fe203), (Zn0) (Fe203), (MnO) (ZnO) (Fe203), and the like. The magnetic ceramic material is an insulator matrix, and the resistivity is generally in the range of 1013 W-cm. The permeability of these substances ranges between thousands. For example, if (MnCOdZnCOiKFeA: ^), when it is lower than 200 ° C, the range of m is 1000 ~ 2000.

在製造期間,磁性的陶瓷物質一直在添加氧原子的〇2 環繞下直接沉積,然後完成一回火製程。在之後,使用一 水熱法(hydrothermal method)混合Ζη、Μη與Fe的硝酸鹽 溶液,在之後,調好鹼濃度之後以15〇°C加熱0.5〜16小時’ 再以氨水完成沉澱。最後,使用一檸檬酸前置法’檸檬酸 加入Fe、Μη或Zn的氨水,由NH4OH調整pH値。加入 乙二醇並加熱至80°C之後,酯化產生固體。在350°C時獲 得結晶質MnFe204。During manufacturing, magnetic ceramic materials have been directly deposited under the presence of oxygen atoms and surrounded by O2, and then a tempering process is completed. After that, a nitrate solution of Zn, Mn, and Fe was mixed using a hydrothermal method, and after adjusting the alkali concentration, the mixture was heated at 15 ° C for 0.5 to 16 hours' and then precipitated with ammonia. Finally, a citric acid pre-method, citric acid, was added to the ammonia water of Fe, Mn or Zn, and the pH was adjusted by NH4OH. After adding ethylene glycol and heating to 80 ° C, the esterification produced a solid. Crystalline MnFe204 was obtained at 350 ° C.

雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍內,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者爲準。 【圖式簡單說明】 第1圖是依照本發明一較佳實施例的單位胞圖。 第2圖是依照本發明一較佳實施例一具有MOS控制 的一部份磁性隨機存取記憶胞陣列圖。 第3圖是依照本發明一較佳實施例之具有二極體控制 ·〆.Λ ^ 15 1226635 11016twf.doc/006 的磁性隨機存取記憶胞陣列圖。 第4A圖是磁性隨機存取記憶胞陣列的槪要圖,說明 程式化單位胞以儲存一邏輯値0的方法。 第4B圖是磁性隨機存取記憶胞陣列的槪要圖,說明 程式化單位胞以儲存一邏輯値1的方法。 第5圖是磁性隨機存取記億胞陣列的槪要圖,說明讀 取單位胞的方法。Although the present invention has been disclosed in the preferred embodiment as above, it is not intended to limit the present invention. Any person skilled in the art can make some modifications and retouching without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be determined by the scope of the attached patent application. [Brief Description of the Drawings] FIG. 1 is a unit cell diagram according to a preferred embodiment of the present invention. Figure 2 is a diagram of a portion of a magnetic random access memory cell array with MOS control according to a preferred embodiment of the present invention. Figure 3 is a diagram of a magnetic random access memory cell array with diode control according to a preferred embodiment of the present invention. 〆.Λ ^ 15 1226635 11016twf.doc / 006. Figure 4A is a schematic diagram of a magnetic random access memory cell array, illustrating a method of programming a unit cell to store a logical unit. FIG. 4B is a schematic diagram of a magnetic random access memory cell array, illustrating a method of programming a unit cell to store a logical cell 1. Figure 5 is a schematic diagram of a magnetic random access memory cell array, illustrating the method of reading a unit cell.

第6圖是相鄰單位胞圖,說明當單位胞程式化時,磁 場的分佈。 第7圖是依照本發明一較佳實施例之一垂直磁性隨機 存取記憶體的特性曲線說明圖。 第8圖是依照本發明一較佳實施例之形成非等向性誘 導穩定曲線圖。 第9A圖是依照本發明一較佳實施例之一垂直假自旋 値MT J圖。 第9B圖是依照本發明一較佳實施例之一垂直自旋値 MT J 圖。Figure 6 is a diagram of adjacent unit cells, illustrating the distribution of the magnetic field when the unit cells are stylized. FIG. 7 is an explanatory diagram of a characteristic curve of a vertical magnetic random access memory according to a preferred embodiment of the present invention. Fig. 8 is a graph showing the formation of an anisotropic induction stability curve according to a preferred embodiment of the present invention. FIG. 9A is a vertical pseudo-spin 値 MT J diagram according to a preferred embodiment of the present invention. FIG. 9B is a vertical spin 値 MT J diagram according to a preferred embodiment of the present invention.

第10圖繪示依照本發明一較佳實施例之磁性隨機存耳又 記憶胞的性質示範圖。 第11A圖繪示依照本發明一較佳實施例之一具有磁遮 罩磁性隨機存取記憶體陣列的三維圖。 第11B圖繪示依照本發明一較佳實施例之一具有^兹^ 罩磁性隨機存取記憶體陣列的側視圖。 【圖式標示說明】 100 :單位記憶胞 16 64/ 1226635 11016twf.doc/006 100’ :程式化單位記憶胞 102 :金屬區 104 :金屬間隔物 106 : MT J 元件 108 :自由層 110、912 :稍層 112、906 :隔離區 200、300 :磁性隨機存取記憶胞陣列FIG. 10 is an exemplary diagram showing the properties of a magnetic random ear and memory cell according to a preferred embodiment of the present invention. FIG. 11A shows a three-dimensional view of a magnetic random access memory array with a magnetic mask according to a preferred embodiment of the present invention. FIG. 11B illustrates a side view of a magnetic random access memory array having a cover according to a preferred embodiment of the present invention. [Schematic description] 100: unit memory cell 16 64/1226635 11016twf.doc / 006 100 ': stylized unit memory cell 102: metal area 104: metal spacer 106: MT J element 108: free layer 110, 912: Layer 112, 906: Isolation zone 200, 300: Magnetic random access memory cell array

202、202’、202":位元線 204 :字元線 206 :電晶體圖 302 :二極體 600、602、604 :磁場 700 ··曲線 800 :曲線圖202, 202 ’, 202 ": bit line 204: word line 206: transistor graph 302: diode 600, 602, 604: magnetic field 700 · curve 800: graph

900 :垂直假自旋磁性隧道連結 902 :垂直自旋磁性隧道連結 904 :軟磁鐵 908 :硬磁鐵 910 :稍磁 1100 :磁性隨機存取記憶體陣列 1102 :磁遮罩 r:4〇 17900: vertical spin magnetic tunnel connection 902: vertical spin magnetic tunnel connection 904: soft magnet 908: hard magnet 910: slightly magnetic 1100: magnetic random access memory array 1102: magnetic mask r: 4〇 17

Claims (1)

1226635 11016twf.doc/006 拾、申請專利範圍: 1.一種磁性隨機存取記憶(MRAM)胞,包括: 一第一字兀線; 一第一位兀線,垂直於該第一字兀線;以及 一磁性隧道連結(MTJ)元件,位於該第一字元線與 該第一位元線的一交叉處,該磁性隧道連結元件具有一垂 直磁場方向。1226635 11016twf.doc / 006 Patent application scope: 1. A magnetic random access memory (MRAM) cell, including: a first word line; a first word line, perpendicular to the first word line; A magnetic tunnel junction (MTJ) element is located at an intersection of the first word line and the first bit line. The magnetic tunnel junction element has a vertical magnetic field direction. 2. 如申請專利範圍第1項所述之磁性隨機存取記憶胞, 其中該磁性隧道連結元件包括一自由層以及一稍層,該自 由層比該稍層更接近於該第一位元線。 3. 如申請專利範圍第2項所述之磁性隨機存取記憶胞, 更包括一二極體位於該磁性隧道連結元件之下,該二極體 與該第一字元線及該稍層有電的交流。 4. 如申請專利範圍第1項所述之磁性隨機存取記憶胞, 其中一第二位元線與一第三位元線接近並位於該第一位元 線的各一側邊,以及一第二字元線與一第三字元線接近並 位於該第一字位元的各一側邊。2. The magnetic random access memory cell according to item 1 of the scope of the patent application, wherein the magnetic tunnel connection element includes a free layer and a slight layer, and the free layer is closer to the first bit line than the slightly layer. . 3. The magnetic random access memory cell described in item 2 of the scope of the patent application, further comprising a diode under the magnetic tunnel connection element, the diode and the first word line and the slight layer have Electricity exchange. 4. The magnetic random access memory cell described in item 1 of the scope of patent application, wherein a second bit line is close to a third bit line and located on each side of the first bit line, and a The second word line is close to a third word line and is located on each side of the first word bit. 5. 如申請專利範圍第4項所述之磁性隨機存取記憶胞, 是藉著驅動電流穿過該第二位元線與該第三位元線,以及 該第二字元線與該第三字元線而被程式化。 6. 如申請專利範圍第5項所述之磁性隨機存取記憶胞, 其中穿過該第二位元線的電流與穿過該第三位元線的電流 是在一相對方向。 7. 如申請專利範圍第6項所述之磁性隨機存取記憶胞, 其中穿過該第二字元線的電流與穿過該第三字元線的電流 18 1226635 11016twf.doc/006 是在一相對方向。 8.—種磁性隨機存取記憶胞程式化的方法,適於具有 順著一垂直磁性方向的一磁性隧道連結元件的一磁性隨機 存取記憶胞,其步驟包括: 驅動在一第一方向穿過一第一位元線的電流,該第一 位元線接近於一第二位元線,該第二位元線與該磁性隨機 存取記憶胞有電的交流;以及 驅動在一第二方向穿過一第三位元線的電流,該第三 位元線接近於該第二位元線,以及在相對於該第一位元線 的一邊’其中該第二方向相對於該第一方向。 其中該磁性隨機存取記憶胞被程式化成爲具有一第一 磁力方向。 9·如申請專利範圍第8項所述之磁性隨機存取記憶胞 程式化的方法,其中驅動在該第二方向穿過該第一位元線 的電流以及驅動在該第一方向穿過該第三位元線的電流, 以程式化該磁性隨機存取記憶胞成爲具有一第二磁化方 向。 10·如申請專利範圍第8項所述之磁性隨機存取記憶胞 程式化的方法,更包括: 驅動在一第三方向穿過一第一字元線的電流,該第一 字元線接近於一第二字元線,該第二字元線與該磁性隨機 存取記憶胞有電的交流;以及 驅動在一第四方向穿過一第三字元線的電流,該第三 字元線接近於該第二字元線,以及相對於該第一字元線的 一邊,其中該第四方向與該第一方向相對, 1226635 11016twf.doc/006 其中該磁性隨機存取記憶胞被程式化成爲具有該第一 磁化方向。 11. 如申請專利範圍第10項所述之磁性隨機存取記憶 胞程式化的方法,更包括驅動在該第四方向穿過該第一字 元線的電流以及驅動在該第三方向穿過該第三字元線的電 流,以程式化該磁性隨機存取記憶胞成爲具有該第二磁化 方向。 12. 如申請專利範圍第8項所述之磁性隨機存取記憶胞 程式化的方法,其中該磁性隨機存取記憶胞是藉著驅動穿 過該第二位元線的電流與驅動穿過該第二字元線的電流而 被讀取。 13. 如申請專利範圍第8項所述之磁性隨機存取記憶 胞程式化的方法,其中流過該第一位元線的該第一方向的 電流產生具有一第一內平面分力的一磁性場,以及其中流 過該第二位元線的第二方向的電流產生具有一第二內平面 分力的一磁性場。 靑專利範圍第13項所述之磁性隨機存取記憶 呈式;彳匕0勺方法,其中該第一內平面分力抵消該第二內平 面分力。 15·:種磁性隨機存取記憶體陣列,包括·· 平多數個字元線與平行的多數個位元線,每一該 些位元線垂直於該些字元線; 多_個15兹性隧道連結元件,每一該些磁性隧道連結元 件{ai h 子冗線與一位元線的一交叉處,其中每一該些磁 性隧道連結元件具有一垂直磁性方向。 1226635 ^ 11016twf.doc/006 16. 如申請專利範圍第15項所述之磁性隨機存取記憶 體陣列,其中每一該些磁性隧道連結元件包括一自由層與 一稍層,該自由層比該稍層更接近於該些位元線。 17. 如申請專利範圍第15項所述之磁性隨機存取記憶 體陣列,其中每一該些磁性隧道連結元件與位於其下方的 一二極體有電的交流,該二極體與一字元線以及每一該些 磁性隧道連結元件的該稍層有電的交流。 18. 如申請專利範圍第15項所述之磁性隨機存取記憶 體陣列,其中每一該些磁性隧道連結元件是藉由驅動穿過 兩接近的位元線與兩接近的字元線的電流而被程式化。 19. 如申請專利範圍第17項所述之磁性隨機存取記憶 體陣列,其中被驅動的電流以相對方向穿過接近的該些位 元線。 20. 如申請專利範圍第18項所述之磁性隨機存取記憶 體陣列,其中被驅動的電流以相對方向穿過該些接近的字 元線。 215. The magnetic random access memory cell described in item 4 of the scope of the patent application is driven by a current through the second bit line and the third bit line, and the second word line and the third bit line The three-character line is stylized. 6. The magnetic random access memory cell according to item 5 of the scope of the patent application, wherein the current passing through the second bit line and the current passing through the third bit line are in opposite directions. 7. The magnetic random access memory cell described in item 6 of the scope of patent application, wherein the current passing through the second word line and the current passing through the third word line 18 1226635 11016twf.doc / 006 A relative direction. 8. A method for programming a magnetic random access memory cell, suitable for a magnetic random access memory cell having a magnetic tunnel connection element along a perpendicular magnetic direction, the steps include: driving in a first direction to pass through A current passing through a first bit line, the first bit line is close to a second bit line, and the second bit line is in electrical communication with the magnetic random access memory cell; and Current passing through a third bit line in a direction, the third bit line is close to the second bit line, and on a side relative to the first bit line, where the second direction is relative to the first bit line direction. The magnetic random access memory cell is programmed to have a first magnetic force direction. 9. The magnetic random access memory cell stylization method as described in item 8 of the scope of patent application, wherein a current driven through the first bit line in the second direction and a drive through the first direction in the first direction The current of the third bit line to program the magnetic random access memory cell to have a second magnetization direction. 10. The magnetic random access memory cell stylization method according to item 8 of the scope of patent application, further comprising: driving a current passing through a first word line in a third direction, the first word line being close to On a second word line, the second word line has electrical communication with the magnetic random access memory cell; and a current driven in a fourth direction through a third word line, the third word Line is close to the second word line, and one side opposite to the first word line, wherein the fourth direction is opposite to the first direction, 1226635 11016twf.doc / 006 where the magnetic random access memory cell is programmed To become the first magnetization direction. 11. The method for stylizing a magnetic random access memory cell as described in item 10 of the scope of patent application, further comprising driving a current passing through the first word line in the fourth direction and driving passing through the third direction. The current of the third word line is used to program the magnetic random access memory cell to have the second magnetization direction. 12. The magnetic random access memory cell stylization method as described in item 8 of the scope of patent application, wherein the magnetic random access memory cell is driven by driving a current through the second bit line and driving through the second bit line. The current of the second word line is read. 13. The magnetic random access memory cell stylization method according to item 8 of the scope of patent application, wherein a current flowing in the first direction through the first bit line generates a component having a first internal plane component force. A magnetic field, and a current flowing in the second direction through the second bit line generates a magnetic field having a second internal plane component force.磁性 The magnetic random access memory expression described in item 13 of the patent scope; 00 spoon method, wherein the first inner plane component cancels the second inner plane component. 15 ·: a kind of magnetic random access memory array, including ··· a plurality of word lines and a plurality of parallel bit lines, each of the bit lines being perpendicular to the word lines; more than 15 words A magnetic tunnel connection element, each intersection of the magnetic tunnel connection elements {ai h subredundant lines and a bit line, wherein each of the magnetic tunnel connection elements has a vertical magnetic direction. 1226635 ^ 11016twf.doc / 006 16. The magnetic random access memory array described in item 15 of the scope of the patent application, wherein each of the magnetic tunnel connection elements includes a free layer and a slight layer, and the free layer is smaller than the Slightly closer to the bit lines. 17. The magnetic random access memory array according to item 15 of the scope of patent application, wherein each of the magnetic tunnel connection elements is in electrical communication with a diode located below the magnetic tunnel connection element, and the diode and the word The element wires and each of the magnetic tunnel connection elements have a slightly alternating current in this layer. 18. The magnetic random access memory array according to item 15 of the scope of patent application, wherein each of these magnetic tunnel connection elements is driven by a current passing through two adjacent bit lines and two adjacent word lines While being stylized. 19. The magnetic random access memory array according to item 17 of the scope of patent application, wherein the driven current passes through the approaching bit lines in opposite directions. 20. The magnetic random access memory array as described in claim 18 of the scope of patent application, wherein the driven current passes through the adjacent word lines in opposite directions. twenty one
TW92133292A 2003-11-27 2003-11-27 Magnetic access memory cell and array and method for programming the cell TWI226635B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92133292A TWI226635B (en) 2003-11-27 2003-11-27 Magnetic access memory cell and array and method for programming the cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92133292A TWI226635B (en) 2003-11-27 2003-11-27 Magnetic access memory cell and array and method for programming the cell

Publications (2)

Publication Number Publication Date
TWI226635B true TWI226635B (en) 2005-01-11
TW200518090A TW200518090A (en) 2005-06-01

Family

ID=35634273

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92133292A TWI226635B (en) 2003-11-27 2003-11-27 Magnetic access memory cell and array and method for programming the cell

Country Status (1)

Country Link
TW (1) TWI226635B (en)

Also Published As

Publication number Publication date
TW200518090A (en) 2005-06-01

Similar Documents

Publication Publication Date Title
US9419210B2 (en) Spin-transfer torque magnetic random access memory with perpendicular magnetic anisotropy multilayers
US8331141B2 (en) Multibit cell of magnetic random access memory with perpendicular magnetization
US8456898B2 (en) Magnetic element having perpendicular anisotropy with enhanced efficiency
US8988934B2 (en) Multibit cell of magnetic random access memory with perpendicular magnetization
JP6244617B2 (en) Storage element, storage device, magnetic head
CN105684178B (en) Magnetic random access reservoir (STT-MRAM) and magnetic head based on spinning moment transfer
US20220068538A1 (en) Dipole-coupled spin-orbit torque structure
JP2013115401A (en) Storage element, storage device
CN104662654B (en) Memory cell, storage device and magnetic head
JP2013115413A (en) Storage element, storage device
WO2014050379A1 (en) Storage element, storage device, and magnetic head
JP2007080952A (en) Multi-level recording spin injection inverted magnetization element and device using the same
WO2013080436A1 (en) Storage element, and storage device
WO2012004883A1 (en) Magnetoresistive effect element and random access memory using same
JP7169683B2 (en) Magnetoresistive element and magnetic memory
JP2020524397A (en) Magnetic tunnel junction memory device with magnetic exchange coupling free layer
CN103137853A (en) Memory element and memory apparatus
US20100032737A1 (en) Nano-magnetic memory device and method of manufacturing the device
JP2013115412A (en) Storage element, storage device
TWI231936B (en) Magneto-resistive element and magnetic memory device
CN110366756A (en) Magnetic memory, semiconductor device, electronic equipment and the method for reading magnetic memory
TW200418168A (en) Magnetic random access memory
TWI226635B (en) Magnetic access memory cell and array and method for programming the cell
JPWO2020026637A1 (en) Magnetoresistive element and magnetic memory
US20050105328A1 (en) Perpendicular MRAM with high magnetic transition and low programming current

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent