1225189 ⑴ 玖、發明說明 【發明所屬之技術領域】 本發明係關於預測系統,其包含預測模型,用於自然 現象、人造現象之線上預測,舉例而言,雨水流入污水廠 的速率預測、流入品質的預測、河水水位預測、水壩蓄水 量的預測及水、天然氣及電力之需求預測。 【先前技術】 預測技術是主要應用於公用事業領域之重要的基本技 術之一,用於預測水的需求及預測雨水流入污水廠的流速 、用於預測電力需求之電力領域,用於輥鋼製程之預測控 制、以及用於預測股價之經濟領域。 一般而言,藉由處理某些處理的啓始預測時(此後稱 爲「目前時間」)可取得的資料,以取得預測。典型的預 測方法使用某些預測模型以預測。預測方法槪略地分爲使 用包含以物理及化學定律爲基礎之數値等式(白箱近似法 )的預測模型、以及使用以真實資料爲基礎而經由統計處 理、例如神經網路學習等學習、或系統識別(黑箱近似法 )而構成之預測模型。 前一預測方法之優點在於由於使用物理(或化學)定 律,所以可以作出符合(未抵觸)物理(或化學)定律之 預測,以及,由於在大部份的情形中,參數具有物理及化 學意義,所以,可以相當容易地調整模型參數。另一方面 ,前一預測方法之缺點在於當有很多參數要決定時,難以 -5- (2) (2)1225189 決定參數決定指南,亦即,用於決定用於調整的參數的優 先次序指南,結果,無法作出準確的預測。前一預測方法 之另一缺點是表示原因及效果的關係之變數淸楚地分成原 因變數(輸入)及結果變數(輸出),以及由於在大部份 的情形中未使用有關結果變數之以往資訊,所以,預測準 確度會降低。 後一預測方法係根據預定的演繹法或識別演繹法以建 構模型,以致於模型符合真實資料。因此,模型至少適合 用於準確地識別或學習之資料,以及在資料未用於學習或 識別之大部份的情形下,仍能作出準確的預測。另一方面 ,後一方法的缺點在於當希望改變(調整)參數値以增進 對應於特定輸入資料之特定輸入資料的預測準確度時,無 法調整或微調根據預定的演繹法經由學習或識別而決定的 參數値,由於參數未具有物理及化學意義以及有關調整參 數的指南是未知的,所以,重新調整或是微調是不可能的 ,以及預測結果會抵觸自然法則上必須符合的物理(或化 學)定律。違反物理原理中例如質量守恒或能量守恒定理 之守恒定理之預測是否定黑箱近似法的預測之因素之一。 習知的預測技術認知到白箱近似法及黑箱近似法之優 點及缺點並視情形而選擇性地使用白箱近似法及黑箱近似 本發明的發明人在日本專利申請號1 3 2 9 9 8 / 2 0 0 1「 Apparatus for Adjusting Parameters of Process Model,and Apparatus and Method of Assisting Adjustment」之參數調 (3) (3)1225189 整方法中提出解決白箱近似法的缺點之一的關於參數調 整指南的不淸楚所造成的問題。這先前提出的參數調整方 法係根據參數的靈敏度之分析以調整參數。導因於未使用 與結果變數有關之以往資訊之令人不滿意的預測準確度 ’可以藉由根據與結果變數有關之以往資料以校正預測値 ’而獲得改進。舉例而言,當以微分方程式描述預測模式 時: χ = /(χ,θ,υ) .......... (1) y = 1ι(χ,θ,ν) .......... (2) 藉由設置適當的觀測者,可以校正預測値,以及藉由使用 關於結果變數(y )之以往資訊,可以作成預測。在表示 式(1 )及(2 )中,X,Θ,u,y,f及h分別是模型的狀態 變數,參數、輸入(原因變數)、輸出(結果變數)、( 非線性)向量坦及(非線性)輸出函數。在以白箱近似法 建構預模型時,已嘗試以上述方法克服白箱近似法的缺點 〇 很多情形要求以黑箱近似法建構預測模型。在大部份 的情形中,難以將白箱近似法應用至(預測)系統的具體 預測,在系統中,例如階段、流量及水量等需要被預測的 結果變數,以及例如雨量等原因變數在某些程度上是淸楚 的’但是,例如雨水的流出處理等內部結構卻是相當不淸 楚。在此情形中,較佳的是以黑箱近似法建構預測模型。 特別地,考慮大量的時間序列資料儲存在資料伺服器或類 似者中時,爲了有效利用資料,使用黑箱模型的預測是更 加確定的。從此觀點而言,本發明的發明人在日本專利申 -7- (4) (4)1225189 請號 61866 / 1990「Apparatus for Prediction Amount of Inflowing Rainwater,and Method of Predicting Amount of Inflowing Rainwater」、日本專利申請號 224 7 6 6/1998「 Apparatus for Prediction Amount of Inflowing Rainwater, and Method of Predicting Amount of Inflowing Rainwater 」、及日本專利申請號 2423 1 / 2002「Apparatus for Predicting River Stage」中提出一些使用黑箱模型的預測 方法。這些預測方法具有特徵點並且實際上能夠提供高度 準確的預測。但是,這些方法並無法免於上述黑箱近似法 的上述缺點。因此,當這些方法無法取得準確的預測時或 當其需要改進與特定的輸入資料有關之特定輸出資料的預 測準確度時,用於經過識別的參數之讀取調整的指南是不 淸楚的,且預測不符合守恒定律所代表之物理(化學)定 律是可能的。 【發明內容】 慮及上述情形而達成本發明,因此,本發明的目的是 在以典型上爲黑箱近似法之使用離散時間系統模型之系統 識別方法作預測時,提供預測系統,其能夠建構以白箱近 似法考慮物理定律(守恒定律)之預測模型。 根據本發明,用於預測預測標的之預測系統包括··預 測模型形成單元,用於預測預測標的,包含具有多個參數 之預測模型;參數値儲存單元,用於儲存多個參數値;輸 入及輸出資料儲存機構,用於儲存用於預測之時間序列輸 -8- (5) (5)1225189 入及輸出資料;靜態參數識別機構,假定對於固定輸入的 靜態回應(輸出)、或是根據對應於固定的輸入資料之靜 態輸出資料,決定要加諸於參數之限制條件;及動態參數 識別機構,根據儲存在輸入及輸出資料儲存機構中的非靜 態輸入資料及輸出資料,決定符合靜態參數識別機構所決 定的限制條件之範圍內的參數値,並將參數値傳送給參數 値儲存機構。 不同於直接識別動態參數之習知方法,本發明使用靜 態參數識別機構,其會將穩態的物理限制條件列入考慮, 將限制加諸於參數,並且能夠預測,以致於穩態的預測準 確度不會降低。由於穩態的輸入及輸出之間的關係對應於 物理守恒定律或者在大部份的情形中在預測系統中是如此 ,所以,可以構成間接考慮物理定律的預測模型。因此, 即使在非穩定狀態下,仍能夠避免作出守恒定律相抵觸的 預測,以及確保取得物理上可接受的預測。 在根據本發明的預測系統中,預測模型形成單元包含 對於時間序列輸出資料線性地作用之預測模型的係數參數 部(自動回歸部)及對時間序列輸入資料線性地作用之係 數參數部(移動平均部)·,及靜態參數識別機構,將限制 條件施加於參數値,以致於bb / aa之比例是固定的,其 中,aa是自動回歸部的係數値之總合,bb是移動平均部 的係數値之總合。 根據本發明,要由符合質量守恒的預測模型滿足的必 要條件可以藉由使用離散時間線性轉換函數模型以非常簡 -9- (6) 1225189 單的指數(限制條件)表示,此限制條件係參數値 之間的比例是固定的,離散時間線性轉換函數模 ARX模型、ARMAX模型及BJ模型且比較上主要 用墨箱模型的預測模型。因此,能夠藉由調整參數 參數値的總合之間的比例固定之限制條件,可以以 似法建構符合物理的預測。當需要時可以根據簡單 ’容易地改變預測模型的被調整參數之値。 在根據本發明的預測系統中,靜態參數識別機 加限制條件,以致於自動回歸部的參數値的總數a 常接近零的固定正値且以aa= ε表示,0 < ε <<1。 根據本發明,參數可以被調整,以致於自動回 參數値之總合與移動平均部的參數値之總合保持固 可以取得非常有希望的調整。此外,可以作成預測 於即使固定的或非常緩慢的變化物質作用在預測系 ,預測的準確度可以限定在最小的不可避免之程度 滿意的預測結果可以給予經過偏調的預測系統,以 使對預測系統的輸入爲零時,輸出不會降至零。 在根據本發明的預測系統中,動態參數決定機 限定條件以識別參數値,限制條件係要求先前由靜 識別機構所決定的自動回歸部及移動平均部的參數 分別藉由使用選加的最佳機構及使用儲存於輸入及 料儲存機構中的非固定式輸入及輸出資料而被固定 根據本發明,首先決定在任何情形中應被滿足 條件,而非習知的黑箱近似法所採用的動態參數直 的總合 型包含 作爲使 以滿足 黑箱近 的指數 構會施 a是非 歸部的 定,且 ’以致 統上時 。令人 致於即 構根據 態參數 値總合 輸出資 〇 的限制 接識別 -10- (7) (7)1225189 ,限制條件會被儲存且參數會被識別以符合輸入及輸出的 動態資料。因此,可以防止識別的準確度降低。結果,即 使在一般的識別方法會造成參數値的數値發散之不佳條件 下,仍可取得識別,藉以增進預測的堅固性。舉例而言, 當使用以順序最小平方爲代表的習知之適應識別方法以順 序地改進預測的準確性時,則要被識別的參數値可能發散 且假使識別資料包含不正常資料時,無法作出令人滿意的 預測。當根據本發明的方法用於適應性預測時,由於會對 參數値總合施加限制,因此可以抑制此現象,所以,可以 構成對不正常資料具有堅強耐受性的預測裝置。雖然在預 測諸如河水水位及污水流速等自然現象時,大部份的情形 下無法取得充份的資料,但是,對於這些情形,仍然可以 構成某種程度上可靠的預測裝置。 根據本發明,用於預測預測標的之預測系統包括:預 測模型形成單元,用於預測預測標的,包含具有多個參數 的預測模型;參數値儲存單元,用於儲存多個參數値;輸 入及輸出資料儲存機構,用於儲存以預定的預測時段收集 之時間序列輸入及輸出資料;第一動態參數識別機構,用 於根據儲存於輸入及輸出資料儲存機構中的非固定輸入及 輸出資料以決定參數値;靜態參數識別機構,用於根據靜 態的輸入及輸出資料以決定要對參數施加之限制條件;及 第二動態參數識別機構,根據儲存在輸入及輸出資料儲存 機構中的非靜態輸入及輸出資料,調整第一動態參數識別 機構所決定的參數値,以致於參數値是在符合靜態參數識 • 11 - (8) (8)1225189 別機構所決定的限制條件之範圍內,以及將參數値_送給 參數値儲存機構。 根據本發明,使用第二動態參數識別機構會改進特別 部份的輸出之預測準確度並能夠作成更精密的預測。 預測系統又包括顯示裝置,用於同時顯示儲存於輸入 及輸出資料儲存機構中的輸入及輸出資料及對應於輸入及 輸出資料且由預測模型形成單元所提供之預測資料;及標 示裝置,用於標示降低預測誤差所需的預測模型之部份、 以及被視爲造成誤差的原因變數;其中,第二動態參數識 別機構再識別標示裝置所標示的原因變數之參數,以降低 標示裝置所標示的部份之預測誤差。 根據本發明,預測値與真實輸出之間的差異可以以視 覺辨識,且可以取得精密的預測,在視覺上可以辨視預測 準確度要被改進的部份之預測準確度改進的程度。 預測系統又包括顯示裝置,用於同時顯示儲存在輸入 及輸出資料儲存機構中的輸入及輸出資料以及對應於輸入 及輸出資料及由預測模型形成單元所提供的的預測資料; 及可調整的參數標示及顯示裝置,用於標示預測模型的部 份以及用於選取用於手調的原因變數之至少二參數,對該 標示預測模型的部份而言,需要減少相對於顯示裝置所顯 示的資料之預測誤差、以及被視爲誤差原因的原因變數。 根據本發明,需要減少預測誤差的部份之預測準確度 可以手動地調整,視覺上可以辨視預測値與真實輸出之間 的差異程度。特別地,由於在可調整的參數選擇裝置選擇 -12- (9) (9)1225189 参數之後,僅有一參數需要被改變,所以,可以很簡單地 取得調整’及導因於調整的預測結果在視覺上是可以辨識 的。 【實施方式】 第一實施例 將參考附圖,說明根據本發明的第一實施例之預測系 統。 圖1係顯示應用於流入污水場的流入量預測之根據本 發明的預測系統之基本配置。値得一提,流入量預測是預 測系統的操作之具體實施例且下述說明的內容可以應用至 任何預測系統。 參考圖1 ’應用於污水場流入系統1之預測系統包含 雨水量測裝置1 1、流入量量測裝置1 2及雨水流入量處理 1 3 ’雨水流入量處理丨3代表降雨量觀測場及流入量觀測 場之間的流出與流入的通過。 降雨量量測裝置1 1會連續地或以預定週期量測包含 於污水場流入系統1中的污水場中多個流入位置處的降雨 量。 流入量量測裝置1 2會連續地或以預定週期量測流入 包含於污水場流入系統1中的污水場的流入量。 如圖1所示,本發明的預測系統包括預測模型裝置2 、及輸入及輸出資料儲存機構3,預測模型裝置2包含預 測模型形成單元2 1及參數値儲存單元22,預測模型形成 -13- (10) (10) 1225189 單元2 1包含預測模型、用於輸入資料至預測模型中的輸 入裝置、及用於提供預測模型所提供的資料之輸出裝置, 參數値儲存單元22用於儲存預測模型形成單元2 1的預測 模型之參數値,輸入及輸出資料儲存機構3用於儲存藉由 以預定週期收集降雨量量測裝置1 1所提供的降雨量資料 以及流入量量測裝置1 2所提供的流入量資料而取得的時 間序列資料。 輸入及輸出資料儲存機構3連接至靜態參數識別機構 4’藉由使用儲存在輸入及輸出資料儲存機構3中的資料 及檢查污水場流入系統1的特徵,以決定要施加於儲存在 預測模型裝置2的參數値儲存單元22中的參數値之限制 條件’以及連接至經過識別的參數數目決定機構5,用於 決定預測模型形成單元2 2的參數數目。 動態參數識別機構6連接至輸入及輸出資料儲存機構 3 °動態參數識別機構6連接至輸入及輸出資料儲存機構 3 °動態參數識別機構6決定預測模型形成單元22的參數 値’以藉由使用儲存在輸入及輸出資料儲存機構3中的降 雨量資料與流入量資料,準確地決定污水廠流入系統1所 提供的降雨量資料與流入量資料之間的動態關係。 輸入及輸出資料儲存機構3具有識別/確認資料儲存 機構3 1以及預測資料儲存機構32。識別/證明資料儲存 機構3 1會識別用於構成預測模型的參數以及確認預測準 確度。預測資料儲存機構3 2會儲存真實線上預測所需的 預測點與預定的通過點之間的通過時段中所取得的通過資 -14- (11) (11)1225189 料。 將說明第一實施例的操作。 由降雨量量測裝置1 1及流入量量測裝置1 2,在預定 時段分別量測降雨量資料及流入量資料會儲存在輸入及輸 出資料儲存機構3作爲時間序列資料。由於在—*開始時並 未建構任何預測模型,所以,在一開始時,降雨量資料及 流入量資料會儲存在識別/確認資料儲存機構3 1中。 接著,靜態參數識別機構4使用儲存在識別/確認資 料儲存機構31中的時間序列資料以計算限制條件。本發 明與根據系統識別之習知的預測模型建構方法之顯著差異 在於使用靜態參數識別機構4,靜態參數識別機構4是本 發明的最重要構件。 將具體說明靜態參數識別機構的操作。 將說明用於決定要施加於預測流入量的預測模型之參 數上的限制條件所需的有效降雨量及流出量係數。有效降 雨量是真正地流入污水場之降雨量,等於總降雨量扣除滲 入地表的降雨量之餘數。有效的總降雨量對總降雨量之比 例將稱爲流出量係數。假設流出量係數k是固定的,則降 雨量R ( t )與流入量Q ( t )之間的關係以式(3 )表示 t-tf t-t.f |;Q(t)-k^R(t) (3) t«0 t«o 其中,t是代表時間之參數,tf是當雨停止時的時間。 由於降雨量被視爲有效降雨量(流入量)與滲入地表 的降雨量之總合,所以,式(3 )被視爲表示水量守恒定 律之表示式。因此,取得正確的有效降雨量預測之能力顯 -15- (12) 1225189 然是可接受的預測模型之必要條件。 將說明包含離散時間系統的轉換函數模型之預測模型 形成單元2 1所作的流入量預測。降雨量r ( t )與流入量 Q ( t )之間的關係以表示式(4 ) 、( 5 )及(6 )表示。 自動回歸部 A(q'1)=l+aiq-1+a2q"2^...+anq-n …(5) 移動平均部 B (q-1) ==biqel+b2q*2+...+binq",n …(6) 其中,是表示時間落後一步驟之移位運算子。假設 R ( t) Q ( t) R〇 (定量),亦即,連續的固定雨量,則流入量 Q〇 (定量)以式(7)表示£ \ +b2 + Q「_SR〔 + a! +a2 + ". + an -R〇 (7) 假使固定雨量一直繼續,則從式(3 )知道固定降雨 量Qo以表示式(8)表示。 Q〇 = k. R〇 · . · (θ) 因此, h +b2 + .“ + bm (9) l + ax +a2 +--- + an 式(9 )表示限制條件:移動平均部的參數値之總合 相對於自動回歸部的參數値之總合的比例必須與流出量係 數k相符。由於藉由使用儲存在識別/確認資料儲存機構 31中的資料,可以檢查流出量係數k,所以,可以決定移 -16- (13) (13)1225189 動平均部的參數値的總合相對於自動回歸部的參數値的總 合之比例的適當値。 靜態參數識別機構4如此決定要施加於參數上的限制 條件,且動態參數識別機構6決定符合限制條件的範圍中 的參數値。一般而言,雖然限制條件不便於動態參數値的 識別,但是,只要滿足限制條件,流出量係數可以視爲標 示水量守恒定律。因此,使用此限制條件下決定的任何參 數,由選加的預測裝置所預測的預測値不會與質量守恒定 律相抵觸。因此,雖然離散時間系統的轉換函數,亦即, 模型,看起來類似黑箱,但是,限制條件仍能表示質量守 雖然,此處假設流出量係數是固定的,但是,在某些 情形中,流出量係數是取決於真實流入量預測中的降雨量 強度以及降雨量。在此情形中,無法滿足式(9 )且得知 使用線性轉換函數模型是不適當的。 在此情形中,藉由使用非線性模型以設定用於不同的 降雨量強度之不同的固定値,可以決定這些參數的限制條 件,舉例而言,非線性模型可爲日本專利申請號G 1 866/ 1 9 9 9 、、 Rainwater Inflow Predicting Apparatus and1225189 玖 发明, description of the invention [Technical field to which the invention belongs] The present invention relates to a prediction system, which includes a prediction model for online prediction of natural phenomena and man-made phenomena. For example, the prediction of the rate of rainwater flowing into a sewage plant and the quality Forecast, river water level forecast, dam water storage forecast, and water, natural gas and electricity demand forecast. [Previous technology] Forecasting technology is one of the important basic technologies mainly used in the field of utilities. It is used to predict the demand for water and the flow rate of rainwater into sewage plants. Predictive control, and economic sectors used to predict stock prices. In general, forecasts are obtained by processing the data available at the start of some processing (hereafter referred to as "current time"). Typical prediction methods use some prediction models to make predictions. Prediction methods are roughly divided into the use of prediction models including numerical equations (white box approximation) based on laws of physics and chemistry, and the use of statistical processing based on real data, such as neural network learning, etc. , Or a prediction model constructed by system identification (black box approximation). The advantage of the former prediction method is that because of using the laws of physics (or chemistry), it is possible to make predictions that conform to (not conflict with) the laws of physics (or chemistry), and because in most cases the parameters have physical and chemical meanings So, you can adjust the model parameters quite easily. On the other hand, the disadvantage of the previous prediction method is that it is difficult to determine a parameter determination guideline when there are many parameters to be determined, that is, a priority guideline for determining parameters for adjustment. As a result, accurate predictions cannot be made. Another disadvantage of the previous prediction method is that the variables representing the relationship between cause and effect are neatly divided into cause variables (inputs) and result variables (outputs), and because in most cases no previous information about the result variables is used Therefore, the prediction accuracy will be reduced. The latter prediction method is to construct a model based on a predetermined deductive method or identification deductive method so that the model conforms to real data. Therefore, the model is at least suitable for accurate identification or learning of data, and can make accurate predictions even when the data is not used for most of the learning or identification. On the other hand, the disadvantage of the latter method is that when it is desired to change (adjust) the parameters to improve the prediction accuracy of the specific input data corresponding to the specific input data, it is impossible to adjust or fine-tune the decision through learning or recognition based on a predetermined deductive method. Parameters, because the parameters do not have physical and chemical significance and the guidelines for adjusting the parameters are unknown, readjustment or fine-tuning is not possible, and the predicted results will contradict the physical (or chemical) laws that must be met in accordance with the laws of nature. law. Prediction that violates the laws of physics such as conservation of mass or conservation of energy is one of the factors that predicts the black box approximation. The conventional prediction technology recognizes the advantages and disadvantages of the white box approximation method and the black box approximation method and selectively uses the white box approximation method and the black box approximation method according to the situation. The inventor of the present invention has a Japanese patent application number of 1 3 2 9 9 8 / 2 0 0 1 Parameter adjustment of "Apparatus for Adjusting Parameters of Process Model, and Apparatus and Method of Assisting Adjustment" (3) (3) 1225189 The entire method proposes a guide on parameter adjustment that addresses one of the shortcomings of the white box approximation method. The problem caused by the unscrupulous. This previously proposed method of parameter adjustment is based on the analysis of the sensitivity of the parameters to adjust the parameters. Unsatisfactory prediction accuracy due to unused past information related to outcome variables can be improved by correcting predictions based on past data related to outcome variables. For example, when the prediction mode is described by a differential equation: χ = / (χ, θ, υ) .......... (1) y = 1ι (χ, θ, ν) .... ...... (2) By setting appropriate observers, predictions can be corrected, and predictions can be made by using past information about the result variable (y). In the expressions (1) and (2), X, Θ, u, y, f, and h are the state variables of the model, parameters, input (cause variable), output (result variable), and (non-linear) vector. And (non-linear) output functions. When constructing the pre-model by white-box approximation, we have tried to overcome the shortcomings of the white-box approximation by the methods described above. Many situations require the prediction model to be constructed by the black-box approximation. In most cases, it is difficult to apply the white box approximation to the specific forecast of the (forecast) system. In the system, for example, the outcome variables that need to be predicted, such as stage, flow, and water volume, and the reason variables such as rainfall are To a certain extent, it is very unsophisticated ', but internal structures such as rainwater outflow treatment are quite unsophisticated. In this case, it is preferable to construct a prediction model by a black box approximation. In particular, when considering a large amount of time series data stored in a data server or the like, in order to effectively use the data, the prediction using a black box model is more certain. From this point of view, the inventor of the present invention in Japanese Patent Application No. 7- (4) (4) 1225189 please apply for 61866/1990 "Apparatus for Prediction Amount of Inflowing Rainwater, and Method of Predicting Amount of Inflowing Rainwater", Japanese Patent Application No. 224 7 6 6/1998 `` Apparatus for Prediction Amount of Inflowing Rainwater, and Method of Predicting Amount of Inflowing Rainwater '', and Japanese Patent Application No. 2423 1/2002 `` Apparatus for Predicting River Stage '' proposed some use of the black box model method of prediction. These prediction methods have feature points and can actually provide highly accurate predictions. However, these methods are not free from the above disadvantages of the black box approximation. Therefore, when these methods cannot obtain accurate predictions or when they need to improve the prediction accuracy of specific output data related to specific input data, the guidelines for reading and adjusting the identified parameters are not good, And it is possible to predict that it does not conform to the laws of physics (chemistry) represented by the law of conservation. [Summary of the Invention] The present invention has been made in consideration of the above circumstances. Therefore, an object of the present invention is to provide a prediction system when a system identification method using a discrete-time system model, which is typically a black box approximation method, is provided. The white box approximation considers a prediction model of the laws of physics (the law of conservation). According to the present invention, a prediction system for predicting a prediction target includes a prediction model forming unit for predicting the prediction target, including a prediction model having a plurality of parameters; a parameter 値 storage unit for storing a plurality of parameters 値; an input and Output data storage mechanism for storing time-series input and output data for prediction. (5) (5) 1225189 Input and output data; static parameter identification mechanism, which assumes a static response (output) to a fixed input, or The static output data of the fixed input data determines the restriction conditions to be imposed on the parameters; and the dynamic parameter identification mechanism determines the compliance with the static parameter identification based on the non-static input data and output data stored in the input and output data storage mechanism. The parameter 内 is within the limits determined by the institution, and the parameter 値 is transmitted to the parameter 値 storage institution. Unlike the conventional method of directly identifying dynamic parameters, the present invention uses a static parameter identification mechanism that takes into account the physical constraints of the steady state, puts constraints on the parameters, and can predict so that the steady state prediction is accurate The degree will not decrease. Since the relationship between the steady-state input and output corresponds to the law of physical conservation or in most cases in prediction systems, it can constitute a prediction model that considers the laws of physics indirectly. Therefore, even in an unstable state, it is possible to avoid making predictions that conflict with the law of conservation, and to ensure that a physically acceptable prediction is obtained. In the prediction system according to the present invention, the prediction model forming unit includes a coefficient parameter section (automatic regression section) of a prediction model that works linearly on time series output data and a coefficient parameter section (moving average) that works linearly on time series input data ), And the static parameter identification mechanism, which applies constraints to the parameter 値 so that the ratio bb / aa is fixed, where aa is the sum of the coefficients 自动 of the automatic regression section, and bb is the coefficient of the moving average section The sum of 値. According to the present invention, the necessary conditions to be satisfied by the prediction model conforming to the conservation of quality can be expressed by a very simple -9- (6) 1225189 single exponent (restriction condition) by using a discrete-time linear transfer function model. This restriction condition is a parameter The ratio between 値 is fixed. The discrete-time linear transfer function modules ARX model, ARMAX model, and BJ model are compared with the prediction model of the ink tank model. Therefore, by adjusting the constraint condition that the ratio between the sum of the parameters 固定 is fixed, it is possible to construct a physical prediction in a similar way. When needed, one of the adjusted parameters of the prediction model can be easily changed according to simple ′. In the prediction system according to the present invention, the static parameter recognition machine imposes restrictions such that the total number a of the parameter 自动 of the automatic regression unit is usually a fixed positive 値 which is close to zero and expressed as aa = ε, 0 < ε < < 1. According to the present invention, the parameters can be adjusted so that the sum of the parameters 自动 of the automatic return and the sum of the parameters of the moving average section remains fixed, and a very promising adjustment can be achieved. In addition, predictions can be made even if fixed or very slowly changing substances act on the prediction system. The accuracy of the prediction can be limited to the smallest unavoidable degree. The satisfactory prediction result can be given to the biased prediction system to make the prediction When the input to the system is zero, the output does not fall to zero. In the prediction system according to the present invention, the dynamic parameter decision machine restricts the conditions to identify the parameters 値, and the restriction conditions require that the parameters of the automatic regression section and the moving average section previously determined by the static identification mechanism are respectively selected by using the optimal Mechanism and fixed using non-stationary input and output data stored in the input and material storage mechanism According to the present invention, first determine the conditions that should be met in any situation, rather than the dynamic parameters used by the conventional black box approximation The straight aggregate type includes the determination of whether a is non-returning to the index structure that satisfies the black box near, and 'so that it is unified. It is very easy to construct a limitation based on the state parameter 値 total output capital 〇 Recognition -10- (7) (7) 1225189, the restriction conditions will be stored and the parameters will be identified to meet the dynamic data of input and output. Therefore, it is possible to prevent the accuracy of recognition from being lowered. As a result, the identification can be obtained even under the condition that the general identification method will cause the number of parameters to diverge, thereby improving the robustness of the prediction. For example, when the conventional adaptive identification method represented by sequential least squares is used to sequentially improve the accuracy of predictions, the parameters to be identified may diverge and if the identification data contains abnormal data, no order can be made. Satisfactory forecast. When the method according to the present invention is used for adaptive prediction, since a limitation is imposed on the parameter 値 total, this phenomenon can be suppressed, and thus a prediction device having strong tolerance to abnormal data can be constructed. Although sufficient data cannot be obtained in most cases when predicting natural phenomena such as river water levels and sewage flow rates, these situations can still constitute a certain degree of reliable prediction device. According to the present invention, a prediction system for predicting a prediction target includes: a prediction model forming unit for predicting the prediction target, including a prediction model having a plurality of parameters; a parameter 参数 storage unit for storing a plurality of parameters 値; input and output A data storage mechanism for storing time series input and output data collected at a predetermined prediction period; a first dynamic parameter identification mechanism for determining parameters based on non-fixed input and output data stored in the input and output data storage mechanism値; static parameter identification mechanism for determining the constraints to be imposed on parameters based on static input and output data; and a second dynamic parameter identification mechanism, based on non-static input and output stored in the input and output data storage mechanism Data, adjust the parameter 値 determined by the first dynamic parameter identification mechanism so that the parameter 値 is within the limits of the static parameter identification • 11-(8) (8) 1225189, and the parameter 値_Send to parameter 値 storage mechanism. According to the present invention, the use of the second dynamic parameter identification mechanism improves the prediction accuracy of a particular part of the output and enables more precise prediction. The prediction system further includes a display device for simultaneously displaying the input and output data stored in the input and output data storage mechanism and the prediction data corresponding to the input and output data and provided by the prediction model forming unit; and a marking device for The part of the prediction model required to reduce the prediction error and the cause variable that is considered to cause the error are marked; among them, the second dynamic parameter identification mechanism identifies the parameter of the cause variable marked by the labeling device to reduce the Some prediction errors. According to the present invention, the difference between the prediction 値 and the real output can be visually recognized, and a precise prediction can be obtained, and the degree of improvement in the prediction accuracy of the part whose prediction accuracy is to be improved can be visually recognized. The prediction system further includes a display device for simultaneously displaying the input and output data stored in the input and output data storage mechanism and the corresponding input and output data and the prediction data provided by the prediction model forming unit; and adjustable parameters Marking and display device, which is used to mark the prediction model and at least two parameters for selecting the cause variables for manual tuning. For the part of the prediction model, the data displayed relative to the display device needs to be reduced. Predictive errors, and causal variables that are considered to be the cause of the errors. According to the present invention, the prediction accuracy of the part that needs to reduce the prediction error can be manually adjusted, and the degree of difference between the prediction 値 and the real output can be visually recognized. In particular, after the -12- (9) (9) 1225189 parameter is selected by the adjustable parameter selection device, only one parameter needs to be changed, so the adjustment can be easily obtained and the prediction result due to the adjustment is in Visually recognizable. [Embodiment] First Embodiment A prediction system according to a first embodiment of the present invention will be described with reference to the drawings. Fig. 1 shows the basic configuration of the prediction system according to the present invention applied to the prediction of the inflow amount into the sewage field. It is mentioned that the inflow prediction is a specific embodiment of the operation of the prediction system and the contents described below can be applied to any prediction system. Refer to Figure 1 'The forecasting system applied to the sewage system inflow system 1 includes rainwater measurement device 1 1, inflow measurement device 12 and rainwater inflow processing 1 3' rainwater inflow processing 丨 3 represents the rainfall observation field and inflow Measure the passage of outflows and inflows between observation fields. The rainfall measuring device 11 continuously or at predetermined intervals measures the rainfall amount at a plurality of inflow locations in the sewage field included in the sewage system inflow system 1. The inflow measuring device 12 measures the inflow into the sewage field included in the sewage field inflow system 1 continuously or at a predetermined period. As shown in FIG. 1, the prediction system of the present invention includes a prediction model device 2 and an input and output data storage mechanism 3. The prediction model device 2 includes a prediction model formation unit 21 and a parameter / storage storage unit 22, and the prediction model is formed -13- (10) (10) 1225189 Unit 21 includes a prediction model, an input device for inputting data into the prediction model, and an output device for providing the data provided by the prediction model. The parameter / storage unit 22 is used to store the prediction model. The parameters 値 of the prediction model of the forming unit 21, and the input and output data storage mechanism 3 are used to store the rainfall data provided by collecting the rainfall measurement device 11 at a predetermined cycle and the inflow measurement device 12 Time-series data obtained from the inflow data. The input and output data storage mechanism 3 is connected to the static parameter identification mechanism 4 'by using the data stored in the input and output data storage mechanism 3 and checking the characteristics of the sewage field inflow system 1 to determine the device to be applied to the prediction model device. The parameter "limitation condition of parameter" in the storage unit 22 'and the parameter number determination mechanism 5 connected to the identified parameter number 5 are used to determine the number of parameters of the prediction model forming unit 22. The dynamic parameter identification mechanism 6 is connected to the input and output data storage mechanism 3 ° The dynamic parameter identification mechanism 6 is connected to the input and output data storage mechanism 3 ° The dynamic parameter identification mechanism 6 determines the parameters of the prediction model forming unit 22 to be used by storing The rainfall data and inflow data in the input and output data storage mechanism 3 accurately determine the dynamic relationship between the rainfall data and the inflow data provided by the inflow system 1 of the sewage plant. The input and output data storage mechanism 3 includes an identification / confirmation data storage mechanism 31 and a prediction data storage mechanism 32. Identification / certification data storage unit 31 will identify the parameters used to construct the prediction model and confirm the accuracy of the prediction. The prediction data storage mechanism 32 stores the passing data obtained in the passing period between the predicted point required for the real online prediction and the predetermined passing point. -14- (11) (11) 1225189. The operation of the first embodiment will be explained. The rainfall measurement device 11 and the inflow measurement device 12 respectively measure rainfall data and inflow data in a predetermined period of time and store them in the input and output data storage mechanism 3 as time series data. Since no prediction model was constructed at the beginning of *, at the beginning, rainfall data and inflow data will be stored in the identification / confirmation data storage mechanism 31. Next, the static parameter identification mechanism 4 uses the time-series data stored in the identification / confirmation data storage mechanism 31 to calculate a restriction condition. A significant difference between the present invention and the conventional prediction model construction method based on system recognition lies in the use of a static parameter identification mechanism 4, which is the most important component of the present invention. The operation of the static parameter identification mechanism will be specifically explained. The effective rainfall and outflow coefficients required to determine the constraints to be imposed on the parameters of the prediction model for predicting the inflow will be explained. The effective rainfall is the rainfall that actually flows into the sewage field, which is equal to the total rainfall minus the rainfall infiltration into the surface. The ratio of effective total rainfall to total rainfall will be called the outflow coefficient. Assuming the outflow coefficient k is fixed, the relationship between rainfall R (t) and inflow Q (t) is expressed by equation (3) as t-tf tt.f |; Q (t) -k ^ R ( t) (3) t «0 t« o where t is a parameter representing time and tf is the time when the rain stops. Since rainfall is regarded as the sum of effective rainfall (inflow) and rainfall infiltration into the surface, equation (3) is regarded as an expression representing the law of conservation of water. Therefore, the ability to obtain correct and effective rainfall prediction is obviously -15- (12) 1225189 is a necessary condition for an acceptable prediction model. The inflow amount prediction made by the prediction model forming unit 21 including the transfer function model of the discrete-time system will be explained. The relationship between rainfall r (t) and inflow Q (t) is expressed by expressions (4), (5), and (6). Automatic regression part A (q'1) = l + aiq-1 + a2q " 2 ^ ... + anq-n… (5) Moving average part B (q-1) == biqel + b2q * 2 + .. . + binq ", n… (6) Among them, it is a shift operator that indicates that the time is one step behind. Assuming R (t) Q (t) R0 (quantitative), that is, continuous fixed rainfall, the inflow Qo (quantitative) is expressed by equation (7) £ \ + b2 + Q 「_SR 〔+ a! + a2 + ". + an -R〇 (7) If the constant rainfall continues, then we know from formula (3) that the fixed rainfall Qo is expressed by formula (8). Q〇 = k. R〇 ·. · (θ ) Therefore, h + b2 +. "+ Bm (9) l + ax + a2 + --- + an Equation (9) represents the limiting condition: the sum of the parameters 移动 of the moving average part relative to the parameters of the automatic regression part 値The combined ratio must match the outflow coefficient k. Since the outflow coefficient k can be checked by using the data stored in the identification / confirmation data storage mechanism 31, it is possible to determine the sum of the parameters 値 of the moving average section -16- (13) (13) 1225189 relative to The ratio of the sum of the parameters of the automatic regression section is appropriate. In this way, the static parameter identification mechanism 4 determines the restriction conditions to be imposed on the parameters, and the dynamic parameter identification mechanism 6 determines the parameters 値 in a range that meets the limitation conditions. In general, although the restriction conditions are not convenient for the identification of the dynamic parameter 値, as long as the restriction conditions are met, the outflow coefficient can be regarded as the indicator of the conservation of water quantity. Therefore, using any parameter determined under this restriction, the prediction 値 predicted by the optional prediction device will not conflict with the law of conservation of mass. Therefore, although the transfer function of the discrete-time system, that is, the model, looks similar to a black box, the constraints can still indicate the quality. Although it is assumed here that the outflow coefficient is fixed, in some cases, outflow The quantity coefficient depends on the rainfall intensity and rainfall in the true inflow forecast. In this case, Equation (9) cannot be satisfied and it is learned that using a linear transfer function model is not appropriate. In this case, by using a non-linear model to set different fixed chirps for different rainfall intensities, constraints on these parameters can be determined. For example, the non-linear model can be Japanese Patent Application No. G 1 866 / 1 9 9 9 、 Rainwater Inflow Predicting Apparatus and
Rainwater Inflow Predicting Method ” 中所述的 Hammer stein模型。舉例而言,假使流出量係數可以以二 次多項式近似降雨量強度,則可以藉由在輸入處考慮具有 二次多項式的Hammerst e in模型的固定値,以使靜態參數 識別機構4執行。用於此情形的條件與移動平均部的參數 •17· (14) (14)1225189 値的總合相對於自動回歸部的參數値之總合的比例是固定 的簡單限制條件不同,其有點複雜。 上述操作是靜態参數識別機構4的操作實施例。動態 參數識別機構6可以容易地執行,而且,當靜態參數識別 機構4以下述方式操作時,仍可取得當有一些干擾時仍然 不會降低預測準確度的堅固預測。 在靜態參數識別機構4中,式(4 )可以在不使用移 位運算子的時區中’以式(1〇)表示。 Q (t)=-aiQ (t-1) -a2Q (t-2) -anQ (t-n) +biR (t-1) +b2R (t-2) bmR(t-m) (10) 假定天氣良好且R(t) = 0。一般而言,由於大部份 的污水場是混合式污水系統,以及包含家庭廢水及工業廢 水之污水即使無降雨量時仍然會流入污水場。對此情形而 言,可從式(10 )取得式(1 1 )。 Q (t) --aiQ (t-1) ^a2Q (t-2) ^-...-anQ (t-n) (11) 實際上,污水流入量適度地變化。但是,爲了簡化起 見’假定污水流入量爲固定流入量qg。然後,表示式( 1 1 )可以寫成:The Hammer stein model described in "Rainwater Inflow Predicting Method". For example, if the outflow coefficient can be approximated by a quadratic polynomial, the intensity of the Hammerst e in model with a quadratic polynomial can be considered at the input値 for the static parameter identification mechanism 4. The conditions used in this case and the parameters of the moving average section • 17 · (14) (14) 1225189 比例 The ratio of the sum of the 値 to the sum of the parameters 値 of the automatic regression section It is fixed and simple. The restrictions are different, which is a bit complicated. The above operation is an operation example of the static parameter identification mechanism 4. The dynamic parameter identification mechanism 6 can be easily performed, and when the static parameter identification mechanism 4 operates in the following manner, It is possible to obtain a robust prediction that does not reduce the accuracy of the prediction when there is some interference. In the static parameter identification mechanism 4, equation (4) can be expressed by equation (10) in a time zone where no shift operator is used. Q (t) =-aiQ (t-1) -a2Q (t-2) -anQ (tn) + biR (t-1) + b2R (t-2) bmR (tm) (10) Assuming good weather and R (t) = 0. In general, because Part of the sewage field is a mixed sewage system, and sewage containing domestic wastewater and industrial wastewater will flow into the sewage field even when there is no rainfall. In this case, formula (1 1) can be obtained from formula (10). Q (t) --aiQ (t-1) ^ a2Q (t-2) ^ -...- anQ (tn) (11) Actually, the amount of sewage inflow changes moderately. However, for the sake of simplicity, 'assume The inflow of sewage is a fixed inflow qg. Then, the expression (1 1) can be written as:
Qo=(-ai-a2-...-an)Q〇 (12) 爲了使式(1 2 )固持良好,,其等同於A ( 1 )二0的事實,其中,A ( 1 )是自動回歸部A ( q·1 )的參 數値總合。這也等同於自動回歸部A ( q·1 )具有積分器及 A ( )的零點等於1。 -18- (15) (15)1225189 藉由在自動回歸部中使用具有積分器的模型以作出預 測時,可以使固定値的千擾影響無效。由於污水流入量可 以被視爲固定干擾,所以,藉由符合A ( 1 ) =0可以使 污水流入量的影響完全無效’結果,取得堅固的預測。 但是,假使A ( 1 ) =〇,則式(9 )的右側是無窮大, 因此,無法滿足限制條件。當A ( 1 )是以式(1 3 )表示 的非常小的値時,可以解決此問題。 Α(1) = ε, Ο < ε « 1 .......... (13) 慮及可以被分開檢查的處理穩定度’ e的値必須是正的。 從式(1 3 )可知,可以取得堅固的預測’同時,靜態 參數識別機構4會降低至非常實際的條件’自動回歸部與 移動平均部的參數値之個別總合如同下述表示式所示般爲 固定的。 自動回歸部: A<1) = l + ai + a2+ ··· 〇<ε .....《14) 移動平均部: B(l) = bi + b2 + ... bm = k-ε .......... <15> 從式(l4 )及(1 5 )明顯可知,當流出量係數k及正 値的常數ε非常接近零時,自動回歸部的參數値的總合與 移動平均部的參數値的總合必須滿足式(1 4 )及(1 5 )。 因此,動態參數識別機構6僅需識別參數以符合「自動回 歸部的參數値的總合是固定的」以及「移動平均部的參數 値的總合是固定的」之條件,因而可以取得非常符合預期 的參數識別。 -19- (16) (16)1225189 靜態參數識別機構4如上述般操作。 經過識別的參數數目決定機構5決定自動回歸部與移 動平均部之要識別的參數數目η及m。可以以自動方式或 手動方法決定數目η及m。 參數數目η及m可以由下述機械方法決定。 儲存在識別/確認資料儲存機構3 1中的資料被分成 識別資料及確認資料。使用識別資料及改變數目n及m 的値,以一般習知的參數識別方法,識別參數,舉例而言 ,最小平方法。然後,藉由使用經過識別的參數値及確認 資料,作成預測。經過識別的參數的數目η及m是使確 認資料的平方預測誤差之總合最小化之値。一般而言,本 方法稱爲使用損耗函數之程度決定方法。可以根據稱爲( Akaike資訊準則/資訊準則)之準則,決定經過識別的 參數之最佳數目η及m。可以使用稱爲MDL (最小說明 長度)取代AIC。 隨著這些方法決定數目η及m,可以同時識別動態參 數。僅對經過識別的參數之最佳數目之決定執行此識別, 因此,如此經過識別的參數之値不需滿足靜態參數識別機 構4所決定的限制條件。因此’這些値不會作爲最終參數 値。假使經過識別的參數之値滿足要加諸於靜態參數識別 機構4所決定的參數的限制條件’則識別結果可以直接作 爲動態參數識別機構6。 參數數目η及m可以由下述人工方法決定。從識別 /確認資料儲存機構3 1取回降雨量資料及流入量資料’ -20- (17) (17)1225189 且降雨量資料及流入量資料會以時間序列繪於適當顯示裝 置的螢幕上。然後,回應降雨量變化的流入量改變速度會 被估算。假使流入量快速地回應降雨量的變化’則因爲自 動回歸部的效果會著數目η的增加而增加,且假使η大時 ,則預測落後降雨量的變化,所以較佳的是η= 1。雖然如 上所述假使有固定的干擾時可以作出堅固的預測,但是’ 當1時,當有可變干擾時,預測不是很堅固的。另一方 面,假使降雨量與流入量之間的因果關係僅爲定性關係, 其中,流入量的改變沒有很快速地回應降雨量的變化,且 流入量隨著降雨量增加,則由於使用大的數目作爲數目η 等於置於以往降雨量之作爲預測因素之重要性比置於降雨 量的重要性更多,所以,較佳的是數目η會增加至某一程 度。當數目η大時,當有可變干擾時,可以作出相當堅固 的預測。在這些因素之間有定性關係。 表1 對η的預測之追隨< 生能與堅固性之相依性 降雨量追隨性能 抗干擾的堅固性 小η 快速回應 當時,足夠堅強對抗固定干 擾 大η 緩慢回應 足夠堅強對抗固定及可變干擾 表1中所示的關係作爲用於決定數目η的標準。 舉例而言’以下述方式決定數目η。從依時間序列繪 -21 - (18) (18)1225189 製降雨量資料及流入量資料而取得的圖形中,評估降雨量 對流入量的影響之持續時間。舉例而言,從顯示降雨量與 流入量隨著時間的個別變化之圖形中可知降雨量終束之後 夭氣良好時流入量耗費多少時間回至流入量位準。經由對 多次降雨量事件重覆降雨量對流入量的影響之持續時間的 此評估,可以決定降雨量對流入量的影響之近似持續時間 。舉例而言,假定評估以5分鐘的時間執行,以及降雨量 关寸流入量的影響之持繪時間爲3 0分鐘。則m = 3 0 / 6 = 5。 但是,假使η > 1,則小於從以時間序列顯示降雨量資料 及流入量資料的圖形估算而得的m値之値可以作爲數目 ηι的最終値,這是因爲當n> 〇時,自動回歸部會連續地校 正預測。 '上述操作是動態參數識別機構5的操作之實施例。 動態參數識別機構6具體地決定經過識別的參數數目 決定機構5所決定的符合靜態參數識別機構4所決定的限 制條件的參數之數目値。舉例而言,以下述最佳化方式, 藉由執行稱爲遺傳演繹法的探索最佳化方法,可以達成此 點。 下述表示式定義爲評估函數(適應性的倒數)。 J =2(Q(t)-Q(t)) =(y-y)Tfr-y) (16) y :=[Q(i)Q(2)/、<^N)r (17) 歹:=[⑽你),· ··,_)]" (18) 其中,上方標有Λ之文字是預測値,N代表資料數目。 然後,決定滿足靜態參數識別機構4所決定的限制條 •22- (19) 1225189 件之範圍中的多個初始參數値。必須決定多個値,以致於 ai的總合及bi的總合是固定的,藉由移除ai及bi中每一 者的參數之一,可以達成此點。當藉由使用隨機數及以下 述表示式界定8!及b!以產生8!及bi以外的ai(i=2,3, …及η ) 及bi ( i = 2,3,…及m )時,總數需要爲固定的 bj = ε ··!<:- 31 =卜1-》丨, i=2 接著,藉由使用隨機數而產生的値以適當大小的二進 位標記法表示,以及二進位値會作爲遺傳演繹法的原始個 體。藉由使二進位値重覆地接受相交、突變及選擇,以決 定使式(1 6 )所代表的評估函數最小化的値。如此,執行 動態參數識別機構。 J = (y-y)T(y-y) =(y - Φθ)τ (y — Φθ) Φη Φΐ2* V V 1 Φη Φΐ2· θ/ Φ21 〇22· θ2. ] y \ Φ21 Φ22 θ2< Qi : = [-ai,-彐2,…,-an]T (20) ㈣ q2 : = [bi, b2, ..., bn]T (21) 其中,Φ是藉由適當地配置儲存在識別/確認資料儲存機 構3 1中的時間序列降雨量資料R ( t )及時間序列流入量 資料Q ( t )。 由靜態參數識別機構4所決定的限制條件以式(22 ) 、(23)及(24)表示。 -23- (20) (20)1225189 eTA = 1-ε (22) eI02 * (23) e,.:= [U."1,]T (24) v — 2 動態參數識別機構6可以以對參數的線性等式限制, 公式化成爲二次規劃問題。以諸如具有未定係數的拉格朗 日(Lagrange )方法,將限制的評估函數降成下述新的無 限制最佳化問題,可以求解限制最佳化方法。 J » (y-<D0)T(y-〇e)+\+ε)+λ2.$:θ2-ε·k) (25) 其中,λ1&Λ2是拉格朗日未定係數。藉由對0部 份微分式(25)並使?????。 藉由求解式(26 ),可以執行動態參數識別機構6, 滿足靜態參數識別機構4所決定的限制條件。舉例而言, 求解的方法詳細說明於Imano Hiroshi, Yamashita Hiroshi 之” Nonlinear Programming",Nikka Giren ( 1994)。 在由動態參數識別機構6決定所有的動態參數的値之 後,這些値會儲存於參數値儲存單元22中。 在以預測系統建構預測模型之後,執行下述運算以作 預測。 降雨量量測裝置及流入量量測裝置1 2會以線上量測 模式於預定時段分別量測降雨量及流入量,以取得資料。 由降雨量量測裝置1 1及流入量量測裝置1 2所取得的資料 會被儲存於輸入及輸出資料儲存機構3的預測儲存機構 -24- (21) (21)1225189 3 2中。預測資料儲存機構3 2會儲存至少m件降雨量資料 及η件流入量資料。 然後’梦數値儲存單元2 2會將參數値傳送給預測模 裂裝置2的預測模型形成單元2 1,然後,儲存在預測資 料儲存機構3 2中的降雨量資料及流入量資料會傳送給預 測模型形成單元2 1。預測模型形成單元2 !形成式(27 ) 表示的預測模型。 Q(> = ^aiQ (t-ι) -a2Q (t-2) -anQ (t-n) +biR(t-1) -fb2R(t-2) +...bmR(t-m) (27) 降雨量資料及流入量資料會被給予預測模型形成單元 2 1所形成的預測模型’然後,藉由使用式(2 7 )以預測 流入量。藉由重覆使用式(2 7 )的計算,可以預測長時間 的流入量。 在完成最後預測時,儲存在預測資料儲存機構3 2中 的降雨量資料與流入量資料中不必要的資料會傳送給識別 /確認資料儲存機構3 1。 在預定的預測時段執行系列操作。 在第一實施例中的預測系統與根據習知的黑箱近似之 預測模型建構方法不同,其會根據對靜態參數識別機構4 所決定的參數之限制條件,以識別動態參數識別機構6識 別參數。如此,本發明的預測系統具有下述功效。 (1 )由靜態參數識別機構4所決定的參數之限制條 件通常對應於物理守恒定律或類似者,並且是必須由預測 模型滿足的必要條件。如此,可以建構能夠確定地滿足這 些守恒定律的預測模型。 -25- (22) (22)1225189 (2 )假使資料包含不正常資料或者是在以習知的預 測模型形成方法建構預測模型時資料不足以及預測模型完 全不能作用,則參數値會發散。本發明的預測模型形成方 法避免此現象並能夠形成堅固的預測模型。 (3 )不論干擾爲何可以取得堅固預測以及取得不受 干擾影響之預測。 第二實施例 將參考圖2至5,說明本發明的第二實施例,其中, 類似於第一實施例的部份將以相同的代號表示並省略其說 明。 圖2係顯示第二實施例中的預測系統,其應用於河水 水位預測。 河流系統5 0,亦即’圖2中所示的預測系統之操作 標的’包含潮水水位量測裝置5 1、上泵排放量測裝置5 2 、排水泵排放量測裝置5 3、排水泵站河水水位量測裝置 5 4及河流處理5 5。 河流系統5 0包含區域河流處理5 5、影響河水水位的 因果變數、及河水水位(亦即結果變數)。圖3係具體顯 示河流系統5 0。 參考圖3,河流系統5 0包含潮水水位量測裝置5 1, 其連續地或在預定時段量測影響河流系統5 0的排水泵站 5 4 a中的河水水位之潮水水位。 有潮水水位量測裝置5 1安裝於其中的水灣連接至有 -26- (23) (23)1225189 排水泵站54a安裝於旁的河流。 包含於河流系統5 0中的上泵排放量測裝置5 2會連續 地或在預定時段量測影響河流系統50的排水泵站54a中 的河水水位之上泵的泵排放量。泵排放量會受此區域中的 降雨量影響。河流系統5 0又包含降雨量量測裝置5 8。 河流系統5 0的排水泵排放量量測裝置5 3連續量測或 在預定時段量測直接影響河流系統50的排水泵站54a中 的河水水位之排水泵站5 4 a的泵排放量。 圖2及3中所示的預測系統在配置上類比於圖1中所 示的預測系統,但是,前者應用於河流系統的條件預測, 而後者應用於污水場的流入量預測。在第二實施例中的預 測系統與第一實施例中的預測系統在下述二點上是不同的 〇 二點之一是預測系統包含第一動態參數識別機構61 及第二動態參數識別機構62而非單一動態參數識別機構 。另一點是顯示裝置7及標示裝置8係以互動方式連接至 第二動態參數識別機構62。 將說明第二實施例中的預測系統之操作。 分別由水位量測裝置5 1、上泵排放量量測裝置5 2、 排水泵排放量測裝置53及排水站水位量測裝置54在預定 時段量測的潮水水位資料、上泵排放量資料、排水泵排放 量資料及排水站水位資料會被給予輸入及輸出資料儲存機 構3並以時間序列儲存於其中。由於在初始階段未建構預 測模型,所以,這些資料會儲存於識別/確認資料儲存機 -27- (24) 1225189 構3 1中。 第一動態參數識別機構61會以習知的系統 識別預測模型的動態參數。在系統具有多個輸入 潮水水位、上泵排放量及排水泵排放量之假設下 數被識別。但是,在資料數目不充足的很多情形 取得正確的識別。在此情形中,以日本專利申請 / 2002 、、River Stage Prediction System〃中所 ,對每一部份執行參數識別。 由於當第一動態參數識別機構6 1使用根據 申請號 24231/2002 ^ River Stage Prediction 中所述的方法時,係根據例如AIC或MDL準則 數數目,所以,經過識別的參數數目決定機構5 動態參數識別機構6 1同時操作。由於當第一動 別機構6 1執行時需要決定靜態參數,所以,靜 別機構4會與第一動態參數識別機構61同時操 ’當資料的數目小且識別問題的條件不佳或包含 料時,則藉由執行第一動態參數識別機構6 1以 參數可能是非常不可靠的。在此情形中,再度執 說明之靜態參數識別機構4。 舉例而言,由於量測潮水水位的位置是在水 測的位置之下,所以’儲存在識別/確認資料 3 1中的潮水水位C ( t )與水位H ( t )之間的平 差値L。 假設在預測模型形成單元21中潮水水位與 識別方法 ,亦即, ,動態參 中’無法 號 24231 述的方法 曰本專利 System" 以決定參 會與第一 態參數識 態參數識 作。但是 不正常資 決定靜態 行將於下 位要被預 儲存機構 均値會有 河水水位 -28- (25) 1225189 之間的關係以下述離散時間的轉換函數模型表示。 D(q 1)=l-fdlq"1+d2q"2+ ... +dnq'n (自動回歸部)(29) N1 (q'1) =nilqel+na2q~2+ . . · +nlxnq-m (移動平均部)(3〇) 水水 當平均潮水水位C〇連續地輸入時,假設平均河 位是Η 〇Qo = (-ai-a2 -...- an) Q〇 (12) In order to keep formula (1 2) well, it is equivalent to the fact that A (1) is 0, where A (1) is automatic The sum of the parameters 値 of the regression part A (q · 1). This is also equivalent to that the automatic regression unit A (q · 1) has an integrator and the zero point of A () is equal to 1. -18- (15) (15) 1225189 When making a prediction by using a model with an integrator in the automatic regression section, the perturbation effect of the fixed chirp can be invalidated. Since the amount of sewage inflow can be regarded as a fixed disturbance, the impact of the amount of sewage inflow can be completely invalidated by conforming to A (1) = 0, and a solid prediction is obtained. However, if A (1) = 0, then the right side of equation (9) is infinite, and therefore, the constraint condition cannot be satisfied. This problem can be solved when A (1) is a very small 値 represented by the formula (1 3). Α (1) = ε, Ο < ε «1 .... (13) Considering the stability of the process that can be checked separately 'e must be positive. From equation (1 3), it can be seen that a solid prediction can be obtained. At the same time, the static parameter recognition mechanism 4 will be reduced to a very practical condition. Generally fixed. Automatic regression section: A < 1) = l + ai + a2 + ··· 〇 < ε ..... << 14) Moving average section: B (l) = bi + b2 + ... bm = k-ε .... < 15 > It is clear from the equations (l4) and (1 5) that when the outflow coefficient k and the constant ε of the positive 値 are very close to zero, the parameter 値 of the automatic regression unit The sum of the sum 値 and the parameter 値 of the moving average part must satisfy equations (1 4) and (1 5). Therefore, the dynamic parameter recognition mechanism 6 only needs to identify the parameters to meet the conditions of "the sum of the parameters 値 of the automatic regression section is fixed" and "the sum of the parameters 値 of the moving average section is fixed", so that it can obtain a very good match Expected parameter identification. -19- (16) (16) 1225189 The static parameter identification mechanism 4 operates as described above. The number of identified parameters determining means 5 determines the number of parameters η and m to be identified in the automatic regression section and the moving average section. The numbers η and m can be determined automatically or manually. The number of parameters η and m can be determined by the following mechanical method. The data stored in the identification / confirmation data storage unit 31 is divided into identification data and confirmation data. Using the identification data and the number of changes n and m 値, the parameters are identified using generally known parameters, such as the Least Squares method. Then, predictions are made by using the identified parameters and confirmation data. The number of identified parameters η and m is one that minimizes the sum of the squared prediction errors of the confirmed data. In general, this method is called the degree of determination method using a loss function. The optimal number of identified parameters η and m can be determined according to a criterion called (Akaike Information Criterion / Information Criterion). Instead of AIC, it can be called MDL (Minimum Description Length). As these methods determine the numbers η and m, dynamic parameters can be identified simultaneously. This identification is performed only on the determination of the optimal number of identified parameters, so that one of the identified parameters does not need to satisfy the limiting conditions determined by the static parameter identification mechanism 4. So these 値 will not be used as the final parameter 参数. Provided that one of the identified parameters satisfies the restriction condition 'to be imposed on the parameter determined by the static parameter recognition mechanism 4, the recognition result can be directly used as the dynamic parameter recognition mechanism 6. The number of parameters η and m can be determined by the following manual method. Retrieve rainfall data and inflow data from the identification / confirmation data storage unit 31. -20- (17) (17) 1225189 and the rainfall data and inflow data will be plotted in time series on the screen of an appropriate display device. The rate of change of inflows in response to changes in rainfall is then estimated. If the inflow quickly responds to the change in rainfall ’, the effect of the automatic regression unit will increase with the increase in the number η, and if η is large, the change in the backward rainfall is predicted, so η = 1 is preferred. Although a solid prediction can be made in the presence of fixed interference as described above, when '1', when there is variable interference, the prediction is not very robust. On the other hand, if the causal relationship between rainfall and inflow is only a qualitative relationship, where the change in inflow does not respond quickly to the change in rainfall, and the inflow increases with rainfall, the use of large The number as the number η is equal to the importance of placing the previous rainfall as a predictor more than the importance of placing the rainfall. Therefore, it is preferable that the number η is increased to a certain degree. When the number? Is large, when there is variable interference, a fairly robust prediction can be made. There is a qualitative relationship between these factors. Table 1 Follow the prediction of η < Dependence between energy and ruggedness Rainfall following performance Anti-interference ruggedness η Fast response At that time, it was strong enough to resist fixed interference Large η Slow response was strong enough to resist fixed and variable interference The relationship shown in Table 1 serves as a criterion for determining the number η. For example, 'determines the number? In the following manner. From the graph obtained by plotting -21-(18) (18) 1225189 rainfall data and inflow data according to time series, evaluate the duration of the impact of rainfall on the inflow. For example, from the graph showing the individual changes in rainfall and inflow over time, you can see how much time it takes for the inflow to return to the inflow level when the radon is good after the end of the rainfall. Based on this assessment of the duration of repeated rainfall events' impact on inflows, the approximate duration of the impact of rainfall on inflows can be determined. For example, suppose that the evaluation is performed in 5 minutes and the holding time of the impact of rainfall inflow is 30 minutes. Then m = 3 0/6 = 5. However, if η > 1, m 値 of 小于 smaller than the graph estimated by displaying rainfall data and inflow data in time series can be used as the final 値 of the number η, because when n > 〇, The regression department continuously corrects forecasts. 'The operation described above is an example of the operation of the dynamic parameter identification mechanism 5. The dynamic parameter identification mechanism 6 specifically determines the number of identified parameters. The number of parameters determined by the determination mechanism 5 that meets the limit conditions determined by the static parameter identification mechanism 4 is determined. This can be achieved, for example, by performing an optimization method called genetic deduction in the following optimization method. The following expression is defined as the evaluation function (the inverse of the adaptability). J = 2 (Q (t) -Q (t)) = (yy) Tfr-y) (16) y: = [Q (i) Q (2) /, < ^ N) r (17) 歹: = [⑽ 你), ··· , _)] " (18) Among them, the text marked with Λ above is prediction 値, N represents the number of data. Then, it is decided to satisfy a plurality of initial parameters 范围 in the range of 22- (19) 1225189 cases determined by the static parameter recognition mechanism 4. Multiple 値 must be determined so that the total of ai and the total of bi are fixed. This can be achieved by removing one of the parameters of each of ai and bi. When 8! And b! Are defined by using random numbers and the following expressions, ai (i = 2, 3, ... and η) and bi (i = 2, 3, ..., and m) other than 8! And bi are generated. , The total needs to be fixed bj = ε · !! <:-31 = 卜 1-》 丨, i = 2 Then, the 値 generated by using a random number is represented by a binary notation of appropriate size, and Binary puppets serve as the primitive individuals of genetic deduction. By repeatedly accepting the intersection, mutation, and selection of the binary 値, it is determined 値 that minimizes the evaluation function represented by equation (16). In this way, a dynamic parameter identification mechanism is executed. J = (yy) T (yy) = (y-Φθ) τ (y — Φθ) Φη Φΐ2 * VV 1 Φη Φΐ2 · θ / Φ21 〇22 · θ2.] Y \ Φ21 Φ22 θ2 < Qi: = [-ai ,-彐 2,…, -an] T (20) ㈣ q2: = [bi, b2, ..., bn] T (21) where Φ is stored in the identification / confirmation data storage mechanism by proper configuration The time series rainfall data R (t) and time series inflow data Q (t) in 31. The limiting conditions determined by the static parameter identification mechanism 4 are expressed by equations (22), (23), and (24). -23- (20) (20) 1225189 eTA = 1-ε (22) eI02 * (23) e,.: = [U. " 1,] T (24) v — 2 The dynamic parameter identification mechanism 6 can Restrictions on the linear equation of the parameters are formulated into quadratic programming problems. By using a Lagrange method with an indefinite coefficient, for example, the restricted evaluation function is reduced to the following new unrestricted optimization problem, and the restricted optimization method can be solved. J »(y- < D0) T (y-〇e) + \ + ε) + λ2. $: Θ2-ε · k) (25) where λ1 & Λ2 is a Lagrangian indeterminate coefficient. By formulating (25) for 0 part and making? ? ? ? ? . By solving the equation (26), the dynamic parameter identification mechanism 6 can be executed, and the constraint conditions determined by the static parameter identification mechanism 4 can be satisfied. For example, the solution method is described in detail in Imano Hiroshi, Yamashita Hiroshi's "Nonlinear Programming", Nikka Giren (1994). After all the dynamic parameters 决定 are determined by the dynamic parameter recognition mechanism 6, these 値 will be stored in the parameter 値In the storage unit 22. After the prediction system is constructed with the prediction system, the following operations are performed for prediction. The rainfall measuring device and the inflow measuring device 12 will measure the rainfall and The inflow to obtain the data. The data obtained by the rainfall measurement device 11 and the inflow measurement device 12 will be stored in the input and output data storage mechanism 3 in the forecast storage mechanism -24- (21) (21 ) 1225189 3 2. The prediction data storage mechanism 32 will store at least m pieces of rainfall data and n pieces of inflow data. Then the 'dream number 値 storage unit 2 2 will send the parameter 値 to the prediction model of the prediction die cracking device 2 Forming unit 21, and then the rainfall data and inflow data stored in the forecasting data storage mechanism 32 will be transmitted to the forecasting model forming unit 21. Formation unit 2! The prediction model represented by the formation formula (27): Q (> = ^ aiQ (t-ι) -a2Q (t-2) -anQ (tn) + biR (t-1) -fb2R (t- 2) + ... bmR (tm) (27) The rainfall data and the inflow data are given to the prediction model formed by the prediction model forming unit 21, and then the inflow is predicted by using the formula (2 7). By repeating the calculation using the formula (2 7), the long-term inflow can be predicted. When the final prediction is completed, the unnecessary data in the rainfall data and inflow data stored in the forecast data storage mechanism 32 will be Sent to the identification / confirmation data storage mechanism 3. 1. Perform a series of operations in a predetermined prediction period. The prediction system in the first embodiment is different from the construction method of the prediction model based on the conventional black box approximation. The restriction conditions of the parameters determined by the mechanism 4 are used to identify the parameters identified by the dynamic parameter identification mechanism 6. Thus, the prediction system of the present invention has the following effects. (1) The restriction conditions of the parameters determined by the static parameter identification mechanism 4 generally correspond to To the law of physical conservation or similar, and Necessary conditions that must be met by the prediction model. In this way, a prediction model that can satisfy these conservation laws can be constructed with certainty. -25- (22) (22) 1225189 (2) If the data contains abnormal data or is known Prediction model formation method When the data is insufficient when the prediction model is constructed and the prediction model cannot function at all, the parameters will not diverge. The prediction model formation method of the present invention avoids this phenomenon and can form a solid prediction model. (3) No matter what the interference is, a solid prediction can be obtained and a prediction that is not affected by the interference can be obtained. Second Embodiment A second embodiment of the present invention will be described with reference to Figs. 2 to 5, in which portions similar to the first embodiment will be denoted by the same reference numerals and descriptions thereof will be omitted. Fig. 2 shows a prediction system in a second embodiment, which is applied to river water level prediction. The river system 50, that is, the 'operation target of the prediction system shown in FIG. 2' includes a tidal water level measurement device 5 1. An upper pump discharge measurement device 5 2. A drainage pump discharge measurement device 5 3. A drainage pump station River water level measuring device 5 4 and river treatment 5 5. The river system 50 includes regional river treatment 5 5. Causal variables that affect river water levels and river water levels (ie, outcome variables). Figure 3 shows the river system 50 in detail. Referring to FIG. 3, the river system 50 includes a tidal water level measuring device 51, which continuously or at a predetermined time period measures the tidal water level of the river water level in the drainage pumping station 54a that affects the river system 50. Tidal water level measurement device 51 1 The water bay installed in it is connected to the river with -26- (23) (23) 1225189 drainage pump station 54a installed beside it. The upper pump discharge measuring device 52 included in the river system 50 measures the pump discharge of the pump above the river level in the drainage pumping station 54a of the river system 50 continuously or at a predetermined time period. Pump emissions are affected by rainfall in this area. The river system 50 also contains a rainfall measuring device 58. The drainage pump discharge measuring device 5 3 of the river system 50 continuously measures or measures the pump discharge of the drainage pump station 5 4 a which directly affects the river water level in the drainage pump station 54a of the river system 50 at a predetermined period. The prediction system shown in Figs. 2 and 3 is similar in configuration to the prediction system shown in Fig. 1, but the former is applied to the condition prediction of the river system, and the latter is applied to the inflow prediction of the sewage field. The prediction system in the second embodiment is different from the prediction system in the first embodiment in the following two points. One of the two points is that the prediction system includes a first dynamic parameter identification mechanism 61 and a second dynamic parameter identification mechanism 62. Rather than a single dynamic parameter identification mechanism. Another point is that the display device 7 and the marking device 8 are interactively connected to the second dynamic parameter identification mechanism 62. The operation of the prediction system in the second embodiment will be explained. The tidal water level data, the upper pump discharge data, which are measured by the water level measurement device 5 1, the upper pump discharge measurement device 5 2, the drainage pump discharge measurement device 53 and the drainage station water level measurement device 54 in a predetermined period, Drain pump discharge data and drainage station water level data will be given to the input and output data storage mechanism 3 and stored therein in time series. Since no predictive model is constructed at the initial stage, these data will be stored in the identification / confirmation data storage machine -27- (24) 1225189 Structure 31. The first dynamic parameter identification mechanism 61 recognizes the dynamic parameters of the prediction model using a conventional system. The numbers are identified under the assumption that the system has multiple inputs, tidal levels, discharge from upper pump, and discharge from drain pump. However, correct identification was obtained in many cases where the amount of data was insufficient. In this case, parameter identification is performed on each part with Japanese Patent Application / 2002, and River Stage Prediction System. Since when the first dynamic parameter identification mechanism 61 uses the method according to the application number 24231/2002 ^ River Stage Prediction, it is based on, for example, the number of AIC or MDL criteria. Therefore, the number of identified parameters determines the dynamic parameter of the mechanism 5. The identification mechanism 61 operates simultaneously. Since the static parameters need to be determined when the first moving mechanism 61 is executed, the static mechanism 4 and the first dynamic parameter recognition mechanism 61 operate simultaneously when the number of data is small and the conditions for identifying the problem are poor or contain materials. Then, by executing the first dynamic parameter identification mechanism 61, the parameters may be very unreliable. In this case, the static parameter identification mechanism 4 explained again is performed. For example, since the position where the tide level is measured is below the position where the tide level is measured, 'the adjustment between the tide level C (t) and the water level H (t) stored in the identification / confirmation data 31 1 値L. It is assumed that the tide level and identification method in the prediction model forming unit 21, that is, the method described in the dynamic parameter 'Cannot No. 24231' is referred to as the present patent System " to determine the identification of the participant and the identification of the first state parameter. However, the abnormal assets are determined to be static and will be stored in the lower level. All institutions will have river water levels. The relationship between -28- (25) 1225189 is expressed by the following discrete-time transfer function model. D (q 1) = l-fdlq " 1 + d2q " 2+ ... + dnq'n (Automatic regression section) (29) N1 (q'1) = nilqel + na2q ~ 2 +.. · + Nlxnq- m (moving average) (3〇) Water and water When the average tidal water level C0 is continuously input, it is assumed that the average river level is Η 〇
Η ⑽)。nii+ni2nn!m c 0 D(l)。一 l + A+dw + dn 如此,1 = Co · N ( 1 ) / D ( 1 ) - Co必須保持 ,因此,自動回歸部及移動平均部的參數値分別的總 比例以式(3 2 )表示。 Nl(l)_ UC〇 良好 合之 爾一 C0 (32) 基本上,對於C ( t )以外的値,式(3 2 )必須 良好。但是,實際上是不可能的,因此這些値以平均 示。 假使以第一動態參數識別機構6 1的識別而決定 數値的總合之間的比例與式(32 )所示的比例相差其 ,則將式(32 )儲存作爲靜態參數識別機構4,且第 態參數識別機構62會再度識別參數値以滿足靜態參 別機構所決定的限制條件。 類似地,排水泵排放量P ( t )與河水水位H ( t 保持 値表 的參 大時 二動 數識 )之 -29 - (26) 1225189 間的關係,以及上游泵排放量P u ( t ).與河水水位Η ( t ) 之間的關係,於需要時由靜態參數識別機構4事先決定。 當排水泵排放量P ( t )與上泵排放量pu ( t )保持固定時 ,河水水位不會是固定的。假使上泵排放量Pu ( t )爲固 定且排水泵排放量P ( t ) =0,則除非河水氾濫,否則河 水水位會繼續上升。假使P u ( t ) = 0及P ( t )爲固定的, 則河水水位繼續降低直至河流乾涸爲止。因此,認爲泵排 放量與河水水位之間的關係具有一體特徵。 在此情形中,下述靜態參數識別機構4是可能的。舉 例而言,假使上泵排放量Pu ( t )是固定的,則河水水位 會以固定速率上升。河水水位的上升相對於單位排放量之 比例(梯度)s ( t )可以以下述表示式表示。 视(t) =潔咖徽咖1) =(1-兑_'(0 ㈣ (34) N2(q-J) = + 其中,N2(q^)是由用於上泵排放量Pu(t)的係數參數 構成的多項式。 假使類似此河流系統般,該關係具有一體特徵,則 ^(ζΓ1)= (1 -分丨)乃(分】) 必須保持良好。將此關係代入式(3 3 )中 ,取得式(3 5 )。 -30- (27) 1225189 s(〇Pu(〇 «Η ⑽). nii + ni2nn! m c 0 D (l). 1 l + A + dw + dn So, 1 = Co · N (1) / D (1)-Co must be maintained. Therefore, the total ratio of the parameters 自动 of the automatic regression part and the moving average part is expressed by the formula (3 2) Means. Nl (l) _UC0 is good. In combination C0 (32) Basically, for 以外 other than C (t), the formula (3 2) must be good. However, it is practically impossible, so these are shown on average. If the ratio between the sum of the numbers determined by the identification of the first dynamic parameter recognition mechanism 61 is different from the ratio shown in equation (32), then the equation (32) is stored as the static parameter recognition mechanism 4, and The first state parameter recognition mechanism 62 will recognize the parameters again to meet the limiting conditions determined by the static reference mechanism. Similarly, the relationship between the discharge amount P (t) of the drainage pump and the river water level H (t maintains the reference value of the second movement when the table is large) is -29-(26) 1225189, and the discharge amount of the upstream pump P u (t ). The relationship with the river water level Η (t) is determined in advance by the static parameter identification mechanism 4 when necessary. When the drainage pump discharge amount P (t) and the upper pump discharge amount pu (t) remain fixed, the river water level will not be fixed. Assuming that the upper pump discharge Pu (t) is fixed and the drainage pump discharge P (t) = 0, the river water level will continue to rise unless the river floods. If P u (t) = 0 and P (t) are fixed, the river water level continues to decrease until the river dries up. Therefore, the relationship between pump discharge and river water level is considered to have an integral feature. In this case, the following static parameter identification mechanism 4 is possible. For example, if the pump discharge Pu (t) is fixed, the river water level will rise at a fixed rate. The ratio (gradient) s (t) of the rise in river water level to the unit discharge can be expressed by the following expression. Seeing (t) = Jiejia Huica 1) = (1- to _ '(0 ㈣ (34) N2 (qJ) = + where N2 (q ^) is used for the pump discharge Pu (t) The polynomials formed by the coefficient parameters. If the relationship is integrated like this river system, then ^ (ζΓ1) = (1-分 丨) ((分)) must be maintained well. This relationship is substituted into equation (3 3) To obtain formula (3 5). -30- (27) 1225189 s (〇Pu (〇 «
(l-q-1)N2(q^) (^q-)D(q^T p,(0(l-q-1) N2 (q ^) (^ q-) D (q ^ T p, (0
PuO) N2(q1 假使p u ( t) = p u 〇 (常數),則此固 位的上升速率一致並以固定値收歛。 麵 ;〇(1) D(l) ^ 係以下述方式取得。 ·π(π Μ! - π ㈣ ϋ(1) = ^q:i)D(q ^ q 1 “ =-1((^+2(12+…+ ndn) _ N2(l) n21 十n22 十·••十n2p S~ D(l) * -l-(di +2d2 +* -4-ndn) 式(3 9 )表不要加諸於靜態參數識別 參數上之限制條件。由於s是代表具有單 水位的變化之曲線的梯度,所以,真實的 於上泵排放量爲PuG時一步驟的時間之梯 定s。 可以以上述方法,對具有一體特徵的 數識別機構4。假使使用第一動態參數識 (35) :値會與河水水 (36) (37) (38) (39) 構4所決定的 排放量的河水 算必須將相對 除以PuG以決 統執行靜態參 機構6 I所決 -31 - (28) (28)1225189 定的參數値而計算的式(3 9 )的右側之値與s相差甚大時 ,則第二動態參數識別機構6 2會再度識別參數以滿足式 (39 ) ° 將說明第二動態參數識別機構62的識別操作。如圖 2所示’第二動態參數識別機構62會連接至顯示裝置7 及標示裝置8。顯示裝置7也會連接至第一動態參數識別 機構61。 圖4及5係顯示舉例說明之顯示裝置7及標示裝置8 。參考圖4,當使用第一動態參數識別機構6〗以識別動 態參數的値時,預測的河水水位可以由顯示裝置7顯示。 同時,儲存在識別/確認資料儲存裝置3 1中的上泵排放 量資料 '排水泵排放量資料、潮水水位資料及河水水位資 料可以由顯示裝置7顯示。 從圖4中可以輕易得知,由顯示裝置7所顯示的這些 資料具有高的預測準確度部份及低的預測準確度部份。標 示裝置8會如圖4所示般將低預測準確度及需要改進的預 測準確度分開。同時,標示裝置8會推論出被視爲低預測 準確度(河水水位、潮水水位、上泵排放量或排水泵排放 量)的最大原因之變數並顯示原因變數。舉例而言,在圖 4中,當上泵排放量及排水泵排放量實質上爲零時,則預 測準確度是令人滿意的;亦即,當無降雨量時,預測準確 度是令人滿意的。因此,可知降雨量爲降低預測準確度的 原因。由於潮水水位完全不會視降雨量而定,所以,潮水 水位不會是預測準確度降低的原因。 -32- (29) (29)1225189 在上泵排放量增加的狀態中預測準確度是相當高的’ 上泵排放量幾乎不是預測準確度降低的原因。在排水栗排 放量突然開始增加的狀態中,預測準確度是尙可的。結果 ,推論出預測準確度降低的原因是河水水位的係數(自動 回歸係數)及次級原因是排水泵排放量。在此情形中’河 水水位被視爲是主要原因且標示裝置8將河水水位標示爲 原因。 因此,標示裝置8會標示希望要降低預測誤差的部份 及預測誤差的原因。然後,被指定爲原因的河水水位的參 數値會被儲存備份。然後,第二動態參數識別機構62執 行識別以降低預測誤差。具體而言,第二動態參數識別機 構62會以諸如遺傳演繹法的探索最佳化方法、或是限制 的二次規劃法,使參數的値最佳化。第二動態參數識別機 構6 2與第一動態參數識別機構6 1不同之處在於評估函數 被定義爲不是用於所有的預測誤差,而是僅用於標示裝置 8所標示的部份中的預測誤差,且動態參數被識別以致於 降低被標示部份中的預測誤差。因此,在某些情形中,當 第二動態參數識別機構8再度辨識參數時,在標示裝置8 所標示的部份之外的部份中的預測誤差會增加。 同倫近似法可以用以避免此現象’其使用第一動態參 數識別機構61所辨識的參數値作爲初始値並逐漸地及連 續地改變初始値。假使逐漸改變的預測的參數値由顯示裝 置7同時顯示時,則當近似的預測參數値由顯示裝置7顯 示時,執行參數識別的操作員能夠停止第二動態參數識別 -33- (30) (30)1225189 機構6 2的參數識別操作。 假使以第二動態參數識別機構6 2執行此方法,無法 令人滿意地識別參數時’則由第一動態參數識別機構6 1 對其原始値及另一原因變數識別的河水水位之參數値會由 標示裝置8標示。舉例而言,排水泵排放量係被標示成原 因變數。然後,第二動態參數識別機構62執行相同的方 法以識別參數。如此,在標示裝置8所標示的部份中的預 測誤差會如圖5所示般降低,且其它部份的預測準確度可 以增進。 如此,構成預測模式形成部2 1中的預測模型。接著 ,以配合第一實施例說明之上述方法,取得預測。 如同上述說明淸楚可知般,設有第一動態參數識別機 構6 1及第二參數識別機構62之預測系統能夠改進特別部 份的預測準確度並能夠提供具有嚴密預測的預測模型。 第三實施例 將參考圖6及7,說明根據本發明之第三實施例中的 預測系統。 在第三實施例中的預測系統在配置上與圖2至5中所 示的第二實施例中的預測系統實質上相同,而與第二實施 例中的預測系統不同之處僅在於使用可調參數選擇裝置9 以取代標示裝置8。 在圖6及7中示的預測系統中,第二動態參數識別機 構6 2執行人工動態參數識別以取代自動動態參數識別。 -34- (31) (31)1225189 如圖7所示的原因變數之係數參數顯示於顯示裝置7 的部份中。 選取根據推測會降低特定地方的預測準確度之原因變 數。選擇要被調整的原因變數之多對參數。舉例而言,選 擇圖7中所示的排水泵排放量的係數參數n31及n34以用 於調整。以下述標準選擇二參數。 在圖7所示的表中,相對於時間預測,愈遠的右方參 數代表愈遠的過去之影響,而愈遠的左方參數代表愈接近 過去。 在圖7所示的表中,二選取參數之間的距離愈短,則 特定時間的影響愈大,且距離愈長,則影響的持續時間愈 長。 可調參數選擇裝置9參考顯示裝置7所顯示的資料, 選擇二參數。 由於選擇可調參數n31及n34,所以,這些參數會被 成對地調整。靜態參數識別機構4會設置要求參數値的總 合與常數相符之限制條件。因此,當決定二參數之一的値 時,另一參數的値會被自動地決定。舉例而言,假使參數 n31的値從-1 .2變成- 〇·8,則參數n34的値必須從〇.6變至 〇 · 2。如此,可以調整參數的値以滿足靜態參數識別機構4 所決定的限制條件。 當執行參數調整操作時,以視覺辨識導因於參數調整 的預測値變化,觀視顯示裝置7所顯示的資料。將標準( a)及(b)列入考慮,逐漸調整參數,且顯示裝置7會顯 -35- (32) 1225189 示如圖5所示的最終預測値。 從上述說明中淸楚可知,在第三實施例的 ,藉由連接可調參數選擇裝置9至第二動態參 6,以成對地調整二參數,則經由實際的參數 調,可以人工地改進預測準確度。因此,當需 地方的條件預測的準確度時,以人工系統可以 調。雖然相信由於參數未具有物理意義,所以 近似法調整參數,但是,即使使用黑箱近似法 仍然能夠微調參數。 本發明具有下述效果。 靜態限制條件的決定,亦即,穩定狀態中 制條件,將能夠以限制條件下靜態模型識別及 別之組合,識別動態模型。因此,使用黑箱近 模型能夠將例如質量守恒定律等物理限制列入 在可取得的資料包含不正常資料或不可取得充 佳條件之下,仍可建立尙屬可靠的預測模型。 辨,可以取得使用黑箱近似法的預測模型之參 以增進預測準確度。 【圖式簡單說明】 圖1係根據本發明之第一實施例的預測系 圖2係根據本發明的第二實施例的預測系 預測系統中 數識別機構 對之一的微 要改進特定 取得參數微 難以以黑箱 時,本發明 的參數之限 動態模型識 似法之預測 考慮。即使 份資料之不 使用人工分 數微調,藉 統的方塊圖 統的方塊圖 -36- (33) (33)1225189 圖3係河流系統的視圖; 圖4係顯示調整前的顯示裝置及標示裝置; 圖5係顯示調整後的顯示裝置及標示裝置; 圖6係根據本發明的第三實施例之預測系統的方塊圖 ;及 圖7係有助於解釋可調整的參數選擇裝置之操作。 主要元件對照表 1 污 水 場 流 入 系 統 2 預 測 模 型 裝 置 3 輸 入 及 輸 出 資 料 儲 存 機 構 4 靜 態 參 數 =SIi m 別 機 構 5 經 過 =ίφ. m 別 的 參 數 數 S 決 定機構 6 動 態 參 數 Ξώΐι m 別 機 構 7 顯 示 裝 置 8 標 示 裝 置 9 可 三田 m 參 數 選 擇 裝 置 11 降 雨 量 量 測 裝 置 12 流 入 量 量 測 裝 置 13 降 雨 量 -流入量處理 2 1 預 測 模 型 形 成 單 元 22 預 測 模 型 形 成 單 元 3 1 Ξώΐι m 別 / 確 認 資 料 儲 存 機 構 32 預 測 資 料 儲 存 機 構 -37- (34)1225189 50 河 流 系 統 5 1 潮 水 水 位 量 測 裝 置 52 上 泵 排 放 量 量 測 裝 置 52a 上 泵 站 53 排 水 泵 站 排 放 旦 里 量 測 裝置 54 排 水 泵 排 放 量 量 測 裝 置 54a 排 水 泵 站 55 河 流 處 理 58 降 雨 量 量 測 裝 置 6 1 第 一 動 態 參 數 =ili m 別 機 構 62 第 二 動 態 參 數 Ξώΐΐ 識 別 機 構 -38-PuO) N2 (q1 Assuming pu (t) = pu 〇 (constant), the rate of rise of this retention is uniform and converges at a fixed 値. Surface; 0 (1) D (l) ^ is obtained in the following manner. · Π (π Μ!-π ㈣ ϋ (1) = ^ q: i) D (q ^ q 1 "= -1 ((^ + 2 (12 +… + ndn) _ N2 (l) n21 ten n22 ten · • • Ten n2p S ~ D (l) * -l- (di + 2d2 + * -4-ndn) The formula (3 9) does not impose restrictions on static parameter identification parameters. Because s represents a single water level The gradient of the curve of the change, so the true time step s for the step when the pump discharge is PuG. The number recognition mechanism 4 with integrated characteristics can be identified in the above method. If the first dynamic parameter is used to identify (35): Guihui and river water (36) (37) (38) (39) The river calculation of the discharge amount determined by the structure 4 must be divided by PuG to implement the static participation agency 6 I decision -31 -(28) (28) 1225189 When the right side of the formula (3 9) and s calculated are very different from each other, the second dynamic parameter recognition mechanism 6 2 will recognize the parameters again to satisfy the formula (39) ° The recognition operation of the second dynamic parameter recognition mechanism 62 will be explained. . As shown in FIG. 2 'the second dynamic parameter identification mechanism 62 will be connected to the display device 7 and the marking device 8. The display device 7 will also be connected to the first dynamic parameter identification mechanism 61. Figures 4 and 5 are examples of display displays Device 7 and marking device 8. Referring to FIG. 4, when the first dynamic parameter identification mechanism 6 is used to identify the dynamic parameter, the predicted river level can be displayed by the display device 7. At the same time, it is stored in the identification / confirmation data storage device. The upper pump discharge data in 3 1 'Drain pump discharge data, tidal water level data and river water level data can be displayed by the display device 7. It can be easily seen from FIG. 4 that these data displayed by the display device 7 have high levels. The prediction accuracy part and the low prediction accuracy part. The marking device 8 separates the low prediction accuracy from the prediction accuracy that needs to be improved as shown in Fig. 4. At the same time, the marking device 8 will infer that it is regarded as The biggest cause of low forecast accuracy (river water level, tidal water level, upper pump discharge or drainage pump discharge) and shows the cause variable. For example, in Figure 4, When the discharge from the upper pump and the discharge from the drain pump are substantially zero, the prediction accuracy is satisfactory; that is, when there is no rainfall, the prediction accuracy is satisfactory. Therefore, it can be known that the rainfall is Reasons for reducing the accuracy of the forecast. Because the tidal water level does not depend on the rainfall at all, the tidal water level will not be the reason for the decrease in the prediction accuracy. -32- (29) (29) 1225189 The prediction accuracy in the state is quite high. 'Uploading pump emissions are hardly the cause of the decrease in prediction accuracy. In a state where the amount of drained chestnuts suddenly starts to increase, the accuracy of the prediction is satisfactory. As a result, it was inferred that the reason for the decrease in prediction accuracy was the coefficient of the river water level (automatic regression coefficient) and the secondary reason was the drainage pump discharge. In this case, the 'river water level is considered to be the main cause and the marking device 8 indicates the river water level as the cause. Therefore, the labeling device 8 labels the portion where the prediction error is desired and the cause of the prediction error. The parameter of the river level specified as the cause is then stored and backed up. Then, the second dynamic parameter recognition mechanism 62 performs recognition to reduce the prediction error. Specifically, the second dynamic parameter identification mechanism 62 optimizes the parameter 値 using a search optimization method such as a genetic deduction method or a restricted quadratic programming method. The second dynamic parameter identification mechanism 6 2 differs from the first dynamic parameter identification mechanism 61 in that the evaluation function is defined not to be used for all prediction errors but only for prediction in the portion marked by the device 8. Errors, and dynamic parameters are identified so as to reduce prediction errors in the marked part. Therefore, in some cases, when the second dynamic parameter recognition mechanism 8 recognizes the parameters again, the prediction error in a portion other than the portion marked by the marking device 8 may increase. The homotopy approximation method can be used to avoid this phenomenon. It uses the parameter 辨识 identified by the first dynamic parameter recognition mechanism 61 as the initial 値 and gradually and continuously changes the initial 値. If the gradually changed predicted parameters are simultaneously displayed by the display device 7, when the approximate predicted parameters are displayed by the display device 7, the operator performing parameter identification can stop the second dynamic parameter identification-33- (30) ( 30) 1225189 Parameter identification operation of mechanism 62. If the method is executed by the second dynamic parameter identification mechanism 62, and the parameter cannot be satisfactorily identified, then the first dynamic parameter identification mechanism 62 will not recognize the parameters of the river water level identified by its original value and another reason variable. It is marked by the marking device 8. For example, drainage pump discharges are labeled as cause variables. Then, the second dynamic parameter identification mechanism 62 executes the same method to identify the parameters. In this way, the prediction error in the portion marked by the marking device 8 will be reduced as shown in Fig. 5, and the prediction accuracy of other portions can be improved. In this way, the prediction model in the prediction mode forming unit 21 is configured. Next, in accordance with the method described in the first embodiment, a prediction is obtained. As is clear from the above description, the prediction system provided with the first dynamic parameter identification mechanism 61 and the second parameter identification mechanism 62 can improve the prediction accuracy of a particular part and can provide a prediction model with strict prediction. Third Embodiment A prediction system according to a third embodiment of the present invention will be described with reference to Figs. 6 and 7. The prediction system in the third embodiment is substantially the same in configuration as the prediction system in the second embodiment shown in FIGS. 2 to 5, but differs from the prediction system in the second embodiment only in that the The parameter selection device 9 is adjusted instead of the marking device 8. In the prediction system shown in Figs. 6 and 7, the second dynamic parameter recognition mechanism 62 performs manual dynamic parameter recognition instead of automatic dynamic parameter recognition. -34- (31) (31) 1225189 The coefficient parameter of the cause variable as shown in Fig. 7 is displayed in the part of the display device 7. Select the cause variable that is estimated to reduce the accuracy of the prediction in a particular place. Select as many pairs of parameters as the cause variable to be adjusted. For example, the coefficient parameters n31 and n34 of the drainage pump discharge volume shown in FIG. 7 are selected for adjustment. Select the two parameters according to the following criteria. In the table shown in Fig. 7, with respect to time prediction, the farther right parameter represents the farther past influence, and the farther left parameter represents the closer to the past. In the table shown in Figure 7, the shorter the distance between the two selected parameters, the greater the impact at a particular time, and the longer the distance, the longer the duration of the impact. The adjustable parameter selection device 9 refers to the data displayed on the display device 7 and selects two parameters. Since the adjustable parameters n31 and n34 are selected, these parameters will be adjusted in pairs. The static parameter identification mechanism 4 sets a restriction condition that the total of the parameter 値 is required to be consistent with the constant. Therefore, when determining 之一 for one of the two parameters, 値 for the other parameter is automatically determined. For example, if the 値 of the parameter n31 changes from -1.2 to-〇 · 8, the 値 of the parameter n34 must change from 0.6 to 〇 · 2. In this way, the parameter 値 can be adjusted to meet the limiting conditions determined by the static parameter identification mechanism 4. When the parameter adjustment operation is performed, the data displayed on the display device 7 is observed visually by predicting the change in the prediction caused by the parameter adjustment. Taking the standards (a) and (b) into consideration, gradually adjusting the parameters, and the display device 7 will display -35- (32) 1225189 as shown in Figure 5 for the final prediction 値. As can be seen from the above description, in the third embodiment, by connecting the adjustable parameter selection device 9 to the second dynamic parameter 6 to adjust the two parameters in pairs, the actual parameter adjustment can be manually improved. Forecast accuracy. Therefore, when the accuracy of local condition prediction is needed, it can be adjusted by manual system. Although it is believed that the parameters are adjusted by the approximation method because the parameters have no physical meaning, even using the black box approximation method can still fine-tune the parameters. The present invention has the following effects. The determination of static constraints, that is, the steady-state control conditions, will be able to identify dynamic models with static model identification and other combinations under constraints. Therefore, using the black box near model can include physical constraints such as the law of conservation of mass, etc. Under the conditions where the available data contains abnormal data, or if sufficient conditions are not available, a reliable prediction model can still be established. It can obtain the parameters of the prediction model using the black box approximation to improve the prediction accuracy. [Brief description of the drawings] FIG. 1 is a prediction system according to the first embodiment of the present invention, FIG. 2 is a prediction system according to the second embodiment of the present invention, and one of the number recognition mechanism pairs in the prediction system is to improve specific acquisition parameters. When it is difficult to take the black box into consideration, the parameters of the present invention are limited to the prediction of the dynamic model recognition method. Even if the data is not fine-tuned manually, the block diagram of the traditional block diagram is -36- (33) (33) 1225189 Figure 3 is a view of the river system; Figure 4 is a display device and a marking device before adjustment; Fig. 5 is a diagram showing an adjusted display device and a marking device; Fig. 6 is a block diagram of a prediction system according to a third embodiment of the present invention; and Fig. 7 is a diagram for explaining the operation of an adjustable parameter selection device. Comparison table of main components 1 Sewage field inflow system 2 Prediction model device 3 Input and output data storage mechanism 4 Static parameter = SIi m Other institution 5 Pass = ίφ. M Other parameter number S Deciding mechanism 6 Dynamic parameter Ξώιι m Other institution 7 Display Device 8 Marking device 9 Mita M Parameter selection device 11 Rainfall measurement device 12 Inflow measurement device 13 Rainfall-inflow processing 2 1 Prediction model formation unit 22 Prediction model formation unit 3 1 ΞώΞι m Don't / Confirm data storage Institution 32 Prediction data storage mechanism-37- (34) 1225189 50 River system 5 1 Tidal water level measurement device 52 Upper pump discharge measurement device 52a Upper pump station 53 Drain pump station discharge measurement device 54 Drain pump discharge Measuring device 54a Drainage pump station 55 River treatment 58 Rainfall measuring device 6 1 First development Number = ili m respectively mechanism 62 second dynamic parameter identification mechanism -38- Ξώΐΐ