TWI220157B - Coriolis force type flow meter using an optical interferometer - Google Patents

Coriolis force type flow meter using an optical interferometer Download PDF

Info

Publication number
TWI220157B
TWI220157B TW91125289A TW91125289A TWI220157B TW I220157 B TWI220157 B TW I220157B TW 91125289 A TW91125289 A TW 91125289A TW 91125289 A TW91125289 A TW 91125289A TW I220157 B TWI220157 B TW I220157B
Authority
TW
Taiwan
Prior art keywords
coriolis force
optical interferometer
patent application
perforation
flowmeter
Prior art date
Application number
TW91125289A
Other languages
Chinese (zh)
Inventor
Cheng-Wen Fan
Chin-Chung Nien
Tsung-Tu Gwo
Kao-Hone Chu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW91125289A priority Critical patent/TWI220157B/en
Application granted granted Critical
Publication of TWI220157B publication Critical patent/TWI220157B/en

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

There is provided a Coriolis force type flow meter, which is a device using an optical interferometer for measurement. When a conductive pipe through which fluid flows produces a bending vibration due to external exciting source, the conductive pipe also produces a twist vibration due to the effect of Coriolis force. Furthermore, an optical interferometer is used to measure tiny amplitude angle change when the conductive pipe is vibrating, thereby determining the flow magnitude of the fluid flowing through the conductive pipe.

Description

1220157 _案號91125289_年月日__ 五、發明說明(1) 【發明領域】 本發明是關於一種科氏力型流量計,特別是關於一種 應用光學式干涉計作為量測裝置的科氏力型流量計。 【發明背景】 在許多需要流量控制的製程或是應用技術中,首先, 必須要做的第一件事,便是需要能夠精準地量測及控制流 量的大小,以製作出所希望的產品,例如:在生化科技 中,某種化合物的混成,需要二種或是多種物質依照某一 特殊比例的混合,才能製作出此化合物;或是在汽車、摩 托車引擎中,必須精準地控制油氣比,而達到引擎的較佳 效率。 目前,大多數的流量計其應用的原理是利用量測流體 流經的導管中,流體的壓力、溫度變化或是其傳輸聲波性 質的改變,來推算其流量的大小,而依照其量測方式的不 同,流量計可區分為熱傳式、壓差式及超音波式等類型, 利用上述流量計所量測出的物理量,通常是流速(公尺/ 秒),或是體積流率(立方公尺/秒),然後,再利用流體的 密度,即可得知所欲量測流體的質量流率之大小。 然而,上述之流量計,其量測流體流量的方式是屬於 間接量測的方式,且其量測流量之精度極易受到流體性質 的改變而有變化,例如:流體的溫度、壓力、密度、黏滯 性、均質性等性質的影響而改變,甚至,會受到流場的分 佈特性而改變,因而無法精準地量測流體正確的流量大 小 〇 為克服上述流量計的缺點,M i c r〇Μ 〇 t i ο η公司首先在1220157 _ Case No. 91125289_ Year Month Date __ V. Description of the Invention (1) [Field of the Invention] The present invention relates to a Coriolis force flowmeter, in particular to a Coriolis using an optical interferometer as a measuring device Force type flowmeter. [Background of the Invention] In many processes or application technologies that require flow control, the first thing that must be done is to be able to accurately measure and control the size of the flow in order to make the desired product, such as : In biochemical technology, the compounding of a certain compound requires the mixing of two or more substances according to a special ratio in order to produce this compound; or in automobile and motorcycle engines, the oil-gas ratio must be precisely controlled. To achieve better efficiency of the engine. At present, the principle of most flowmeters is to use the measurement of the fluid flow through the conduit, the fluid pressure, temperature changes, or changes in its transmission sound wave properties to estimate its flow rate, and according to its measurement method Different types of flowmeters can be divided into heat transfer type, differential pressure type, and ultrasonic type. The physical quantities measured by the above flowmeters are usually flow velocity (meters / second) or volume flow rate (cubic Meters / second), and then the density of the fluid can be used to determine the mass flow rate of the fluid to be measured. However, in the above flowmeter, the method of measuring fluid flow is an indirect measurement method, and the accuracy of measuring the flow rate is very easy to change due to changes in the properties of the fluid, such as: temperature, pressure, density, Viscosity, homogeneity, and other properties change, and even will be affected by the distribution characteristics of the flow field, so it is impossible to accurately measure the correct flow of the fluid. To overcome the shortcomings of the above flowmeter, Micr0M 〇 ti ο η company first

12201571220157

1 997 ^ =务出一種利用科氏力(c〇r i〇1 is F〇rce)原理所製 成的^1計’藉由直接或間接測量在旋轉導管中流動的流 體所產士的科氏力即可測得流體之質量流量。這種流量計 可直接里測&官中流體的流量,且最大的優點是:其測量 的精度不έ文到流體特性變化的影響而改變,且可達到高 精度的ί求'然而,這種科氏力型流量計也有其缺點,亦 即為了里測由科氏力所引起流場中的微小變化,這種流量 a十相對的必須没計為較大的尺寸,而且需要較複雜的量測 f能2達到高精度的要求,如此一來,便會增加整個 流重计的製作成本,且對於低流量的流體量測較不適用。 在美國專利第6,4 1 2,355號專利(US Patent N 〇 · 6, 4 1 2 ’ 3 5 5 )中所揭露的方法,其設計概念和μ 土 c r 〇 Mo t i on公司相同’不過其量測的方法是透過量測一導管中 不同位置之二點的電子訊號,來計算其相位差與激振頻率 間=關係,而得到導管中流量的大小。然而,這種類型的 流篁计’其整體的尺寸較大,裝置亦較複雜,因此,不適 用於低流里的流體量測。 而在1996年國際電機及電子工程師學會(〗EEE) En^won等人所發表的論文”矽晶片上之科θ氏力型流量感 測菇n(A Coriolis Mass Flow Sensor Structure in S i 1 i c ο n ·),他們是利用將雷射光投射到改變運動狀態的 雙迴路導官上,然後量測反射光在光偵測儀上的位置變 化,以推算旋轉角的大小,進而得到導管中的流量值。鋏 而,整個光學量測系統的定位及校準都非常不易,會使;^ 1敏度受到影響’因此’必須經由其他方面設法取得補1 997 ^ = To develop a ^ 1 meter made using the principle of Coriolis force (c〇〇〇1 is F〇rce) by directly or indirectly measuring the fluid flowing in a rotating tube Force can measure the mass flow of the fluid. This kind of flowmeter can directly measure the flow rate of the fluid in the government, and the biggest advantage is that its measurement accuracy does not change to the effect of the change in fluid characteristics, and it can achieve high precision. However, this This Coriolis force type flowmeter also has its shortcomings, that is, in order to measure small changes in the flow field caused by Coriolis force, this flow rate a must be relatively large and not complicated. The measurement f can reach the requirement of high accuracy. In this way, it will increase the production cost of the entire flow meter, and it is less applicable to the measurement of low-flow fluid. The method disclosed in U.S. Patent No. 6,4 1 2,355 (US Patent No. 6, 4 1 2 '3 5 5), the design concept is the same as that of the μ MoMo ti on company, but the amount The measurement method is to measure the electronic signal of two points at different positions in a catheter to calculate the relationship between the phase difference and the excitation frequency to obtain the magnitude of the flow in the catheter. However, this type of flow meter has a large overall size and a complicated device, so it is not suitable for fluid measurement in low flows. In 1996, a paper published by the International Institute of Electrical and Electronics Engineers (〗 EEE) En ^ won et al. “A Coriolis Mass Flow Sensor Structure in Si 1 ic on a silicon wafer” ο n ·), they used the laser light projected on the dual circuit guide to change the movement state, and then measured the position change of the reflected light on the light detector to estimate the size of the rotation angle, and then obtained the Flow value. Moreover, the positioning and calibration of the entire optical measurement system is very difficult, and will affect; ^ 1 sensitivity is affected 'so' must be obtained through other ways

1220157 M% 9112528Q 五、發明說明(3) 年月 曰 修正 償,例如:提高激振器的輸入電壓等。 【發明之目的及概述】 # 1監於上述流量計在量測時所會遭遇到的困難,本發 月之目的在於^供一種利用光學干涉計(Fabry- Perot1220157 M% 9112528Q V. Description of the invention (3) Month, month, and day, Correction, such as: increasing the input voltage of the shaker. [Objective and summary of the invention] # 1 In view of the difficulties encountered by the above flowmeters during measurement, the purpose of this month is to provide a method for using an optical interferometer (Fabry-Perot

InteTferometer)來量測導管中流量的科氏力型流量計, 由於足2光學干涉計的靈敏度可達到微米級的程度,因 此’非常適用於量測導管中微小的流量變化,且整個光學 干涉计的裝置與校準並不複雜,可降低整個量測裝置的製 作成本’因而提高科氏力型流量計相較於其他類型流量計 的競爭優勢。 加本發2所研發之應用光學干涉計之科氏力型流量計, 其架構包含有:在一基板上,具有用以提供靜電力的激振 電2 ’而在激振電極對稱的兩側分別具有穿孔。在此基板 ^设置有對稱^矩形迴路導管,其後端為可供流體進出之 、^ 而其别端設置於此基板之激振電極上方,藉由此 激振〒極提供之靜電力,驅使此矩形迴路導管撓曲振動。 孔,且】路導官之前端,具有對應於上述穿孔的貫 設置於此㈣,將數㈣ 土奴之牙孔以及此迴路導管之貫孔来泝 設置於迴路導管之♦方从L ,〒吕心貝札円,再將九鎵 ΛΑ g之貝孔的上方;並將光探測器,設置於基 面,ί:::! ^的光線經過位於貫孔及穿孔中的反射鏡 過計算即可= t操取經過干涉後的光學訊號。最後,經 于到〜經此矩形迴路導管的流量大小。 二~明的目的、構造特徵及其功能有進一步的InteTferometer) is a Coriolis force flowmeter that measures the flow in the catheter. Because the sensitivity of the foot 2 optical interferometer can reach the level of micrometers, it is' very suitable for measuring small flow changes in the catheter, and the entire optical interferometer The device and calibration are not complicated, which can reduce the manufacturing cost of the entire measurement device, thus improving the competitive advantage of Coriolis force flow meters compared to other types of flow meters. The Coriolis force flowmeter using optical interferometers developed by Gabbenfa 2 has a structure including: on a substrate, an excitation current 2 ′ for providing electrostatic force, and symmetrical sides of the excitation electrodes. Each has perforations. A symmetrical ^ rectangular loop duct is provided on this substrate ^, the rear end of which is for the fluid to enter and exit, and the other end is arranged above the excitation electrode of this substrate. The electrostatic force provided by the excitation pole is driven to drive This rectangular loop conduit flexes and vibrates. Hole, and] the front end of the circuit guide has a through hole corresponding to the above-mentioned perforation, and the tooth holes of the tunu and the through hole of the circuit pipe are traced to the side of the circuit pipe from L, 〒 Lu Xinbei Zha, then set the photodetector above the hole of Jiu Ga ΛΑ g; set the photodetector on the base surface, and the light of ί :::! ^ Can be calculated through the reflection mirror located in the through hole and the perforation. t manipulate the optical signal after interference. Finally, the flow rate to ~ through this rectangular loop duct. Two ~ Ming's purpose, structural features and functions have further

第8頁 1220157 修正Page 8 1220157 Amendment

____案號 91125289_年月 一B 五、發明說明(4) 了解,茲配合圖示詳細說明如下: 【實施例詳細說明】 為測置流量計中由科氏力所引起的微小變化,本I 3 設計了一種矩形對稱之迴路導管丨〇,請參考「第1 X -、, M」所 不,首先,使流體流經此迴路導管1 0,並經由激振器^, 迴路導管10—個作用力,使迴路導管10作繞曲振動 ’ (Bending Vibration),然由於科氏力的作用,會使得此 迴路導管10同時產生扭曲振動(Twist Vibration)。 而迴路導管1 0前端在靜止狀態時及激振狀態時之剖面 圖’如「第2圖」所示,圖中所示之虚線矩形為靜止狀雜 下之迴路導管1 〇的前端剖面,而圖中所示之實線矩形為、敦 振狀態下之迴路導管1 〇的前端剖面。經由量測'丨及以的值 移量大小,即可由下列之公式(1)及公式(2)推算出迴路導 管1 〇之撓曲振動的最大振幅角Θ b,及扭曲振動的最大振幅 (1) (2) 再將所得到的撓曲振動的最大振幅角Θ b及扭曲振動的最 大振幅角 0t ,帶入「Measurement Systems Application and Design」(量測系統之應用與設計)Ernest 〇. Deobelin ^McGraw-Hill publishing Company ^ New York,1990·(第602頁-第605頁)一書中所揭露之公式 (7 · 8 0 )即可知到公式(3 )-流量φ與0 b 、01:的關係式: 1220157 案號 91125289 五、發明說明____ Case No. 91125289_ January 1B V. Description of the invention (4) Understand that the detailed description with the illustration is as follows: [Detailed description of the embodiment] To measure the small changes caused by Coriolis force in the flow meter, this I 3 designed a rectangular symmetrical circuit conduit. 〇, please refer to the "1 X-,, M", first, let the fluid flow through this circuit conduit 10, and through the exciter ^, circuit conduit 10— This force causes the loop duct 10 to vibrate ('Bending Vibration'). However, due to the Coriolis force, the loop duct 10 will generate twist vibration at the same time. The cross-sectional view of the front end of the loop catheter 10 in the stationary state and the excited state is as shown in FIG. 2, and the dashed rectangle shown in the figure is the front end cross-section of the loop catheter 10 in the stationary state. The solid rectangle shown in the figure is the front cross-section of the loop duct 10 in the state of oscillating. The maximum amplitude angle Θ b of the deflection vibration of the loop duct 10 and the maximum amplitude of the torsional vibration (by the following formula (1) and formula (2) can be calculated by measuring the magnitude of the shifted value. 1) (2) Then bring the maximum amplitude angle Θ b of the flexural vibration and the maximum amplitude angle 0t of the torsional vibration into the "Measurement Systems Application and Design" Ernest 〇. Deobelin ^ McGraw-Hill publishing Company ^ New York, 1990 · (p. 602-p. 605) revealed the formula (7 · 8 0), we can know the formula (3)-flow rate φ and 0 b, 01: Relationship: 1220157 Case No. 91125289 V. Description of Invention

a:迴路導管10之長度 b:迴路導管10之寬度 f〇 :激振頻率 ks••扭曲彈性係數(T〇rSlonal SpFin 即可得到流體流經迴路導管丨〇的流I 丄 根據本發明所揭露的應用先^ = 計,其第一實施例的架構示意圖:央 在基板20上,架設有呈矩形對稱 迴路導管10後端的入口11流入,再= 口12流出,其流路係為對稱的矩带 此迴路導管10的截面可為任」 照流量計的尺寸大小及製程考量而 ^可㈣路導管的截面設計為對 (丄f六角形等,然後再利用微機電 ^ 釗技術分別製作出迴路導管丨0 Μ t利用接合的技術將上、下兩 此迴路導管1 0的製作。 接著,在迴路導管10前端下方的撓:Γϋ ’ ί目的是為了提供靜電力 二振動的激勵源。若設置有雙數個 二的位置必須是以迴路導管1 0的中心 1。而在激振電極30二侧的基板20上 Α淮此穿孔21設置的位置同樣是以迴 土,王對稱分佈.D而穿孔21内分別a: the length of the loop duct 10 b: the width of the loop duct 10 f〇: the excitation frequency ks •• torsion elastic coefficient (TorSlonal SpFin to obtain the flow I of the fluid flowing through the loop duct 丨 〇 丄 according to the present disclosure The application of the first embodiment is as follows. The schematic diagram of the first embodiment is as follows: On the base plate 20, an inlet 11 at the rear end of the duct 10 with a rectangular symmetrical circuit is set to flow in, and then to the outlet 12, the flow path is a symmetrical moment. The cross section of the duct 10 with this circuit can be used according to the size of the flowmeter and the process considerations. The cross section of the duct can be designed to be right (丄 f hexagonal, etc., and then the micro-electromechanical technology is used to make the loop. The catheter 丨 0 Μ uses the joining technology to make the upper and lower circuit loops 10. Next, the torsion below the front end of the loop duct 10: Γϋ 'The purpose is to provide an excitation source of two vibrations of electrostatic force. If set The position of the double number two must be the center 1 of the loop duct 10. The position of the perforation 21 on the substrate 20 on the two sides of the excitation electrode 30 is also the same as that of the back soil and the king is symmetrically distributed. Within 21

Stiffness 大小φ 〇 涉計之科氏 考「第3圖^ 路導管10, 迴路導管10 何形狀,其 整。以微型 稱形狀,例 製程中之體 上、下二個 加以接合, 力型流量 所示, 流體由此 後端的出 形狀可依 導管為 如:矩 型加工乾 對稱面, 即可完成 基板2 Q上, ’以作為迴 激振電極3 〇 線為基準,呈對稱分 ’分別具有一個穿孔 路導管1 0的中心線為 設置有一反射鏡面 設置有激 路導管1 0 時,其擺 1220157Stiffness size φ 〇 Involved Coriolis test "Figure 3 ^ The shape of the circuit catheter 10, the circuit catheter 10, the whole. Take a miniature scale shape, for example, the upper and lower bodies of the process are joined together. It can be seen that the shape of the fluid from the rear end can be based on the duct as follows: a rectangular symmetry plane can be processed on the substrate 2 Q, and “the symmetry points are taken as the reference line of the oscillating electrode 30”, each of which has a perforation. The center line of the road duct 10 is a reflection mirror surface provided with the shock path duct 10, the pendulum 1220157

在 置分別 迴路導 面分別 之距離 之製作 如 光纖45 為兩道 面41, 鏡面47 此迴路導管1 〇前端之下 -班古 g um 對應於上述穿孔21的位 :,有:反射鏡面47,請參考「第4 圖’基极2〇上之反射鏡面4!的下表 與早模光纖4 5接合,而只g w gF ^ φ ^ ^ ^ X a 反射鏡面41與反射鏡面47間 ^ ^ m 1 派I長度。而反射鏡面41、47 方式係採用微機電製程中 「筐q闰私-丄 之先學鍵膜技術製作。 ^ 尤源42發射出的光線經由單模 ::輪而進入搞合器44中,繼44會將此光線分 先^接者,再由單模光纖45將光線傳遞至反射鏡 玉==反射鏡面41,而光線會在反射鏡面41與反射 之間來回反射。 當共振腔的長度改變時’特定波長的光線將會穿透反 射鏡面41而進入單模光纖45,並經由單模光纖“將光線回 傳至耦合器44 ’此時,#合器44會將所接收到的光訊號耦 合起來後,再將其傳送至光探測器4 3以進行干涉條紋之判 別,最後,再經由訊號處理器46的處理計算後,即可得知 如「第2圖」中所示之位移量心及L,再經由公式(3)的計 算後即可計算出流體流經迴路導管丨Q的流量大小。 而整個應用光學干涉計之科氏力型流量計其精度大小 是取決於所使用的光學干涉計的特性,亦即光源4 2之波 長、反射鏡面41及反射鏡面47之反射率與共振腔長度。 請參考「第5圖」所示,係為本發明之第二實施例的 架構示意圖’第二實施例之架構大致上是與第一實施例相 同,不過,在迴路導管1〇相對應於穿孔21之處設置有兩個 1220157At the distances of the respective circuit guide surfaces, for example, the optical fiber 45 is two surfaces 41, and the mirror surface 47 is below the front end of the circuit conduit 10-Bangu gum corresponds to the position of the perforation 21 above, and there are: reflective mirror surface 47, Please refer to "Fig. 4" The following table of the mirror surface 4! On the base 20 is bonded to the early-mode fiber 4 5 and only gw gF ^ φ ^ ^ ^ X a between the mirror surface 41 and the mirror surface ^ ^ m 1 pie length. Reflective mirrors 41 and 47 are produced using the "basket q 闰 丄-丄 first learning key film technology" in the micro-electro-mechanical process. ^ The light emitted by You Yuan 42 enters through the single-mode :: wheel. In the combiner 44, the light is divided into the following first by the 44, and then the single-mode optical fiber 45 transmits the light to the mirror surface 41, and the light is reflected back and forth between the mirror surface 41 and the reflection. When the length of the resonant cavity is changed, 'light of a specific wavelength will penetrate the mirror 41 and enter the single-mode fiber 45, and pass the light back to the coupler 44 via the single-mode fiber.' At this point, # 合 器 44 will After the received optical signals are coupled, they are transmitted to the photodetector 4 3 for interference. Finally, after the calculation by the signal processor 46, the displacement centroid and L as shown in the "Figure 2" can be obtained, and then calculated by the formula (3). The amount of fluid flowing through the loop conduit Q. The accuracy of the Coriolis force flowmeter used in the entire optical interferometer depends on the characteristics of the optical interferometer used, that is, the wavelength of the light source 42, the reflectance of the reflecting mirror surface 41 and the reflecting mirror surface 47, and the length of the resonant cavity. . Please refer to "Figure 5", which is a schematic diagram of the architecture of the second embodiment of the present invention. 'The architecture of the second embodiment is substantially the same as that of the first embodiment. 21 places have two 1220157

貫孔1 3 ’而貫孔1 3的上方設 板20之兩個穿孔21的下方亦 而穿孔21與貫孔1 3中之反射 干涉計的共振腔長度。 置有相對應的光源42,且在基 設置有相對應的光探測器43 : 鏡面41、47間的距離即為光學 *由光源42發射出的光線經由單模光纖45傳遞至貫孔13 及穿孔21中的反射鏡面41,再由光探測器“擷取經過干涉 後的光學訊號;接著,再透過單模光纖45之傳輸將光學訊 號傳遞至汛號處理器4 6進行訊號的處理,即可得到如「第 2圖」所示之位移值及,再經由公式(3)即可計算出流 體流經迴路導管1〇的流量大小。而整個應用光學干涉計之 科氏力型流罝計,其精度大小取決於所使用的光學干涉計 的特性,亦即光源42波長、反射鏡面41的反射率及共振腔 長度等。 【達成之功效】 利5本發明所揭露之應用光學干涉計之科氏力型流量 計’其s測的精度高於上述Micr〇 M〇t i〇n公司所研發出的 科氏力(Coriolis F〇]:ce)型流量計。且其光學干涉計之定 位及权準要比Enoksson等人發表的論文π矽晶片上之科氏 力型流 $ 感測器,,(A Coriolis Mws Flow Sensor Sti^uctuFe in Si 1 iCon·)其流量感測器所使用的雷射光量 測系統容易,因此,其測量精度也大為提升。由於測量精 度的提升’連帶地’亦可簡化應用光學干涉計之科氏力型 流置計的構型設計’並可減少激振器所需之電壓值,因 此,可大幅降低整個流量計之製作成本。 a Ji戶斤述者’僅為本發明其中的較佳實施例而已,並 1220157 案號91125289 年月日 修正The through hole 1 3 'and the upper part of the through hole 13 are provided below the two perforations 21 of the plate 20, and also the length of the resonant cavity of the reflection interferometer in the perforation 21 and the through hole 13. A corresponding light source 42 is provided, and a corresponding light detector 43 is provided on the base: The distance between the mirror surfaces 41 and 47 is optical * The light emitted by the light source 42 is transmitted to the through-hole 13 and the through-hole 13 through the single-mode fiber 45 The reflective mirror surface 41 in the perforation 21 is then used by the photodetector to "capture the optical signal after interference; then, the single-mode optical fiber 45 is used to transmit the optical signal to the flood signal processor 46 for signal processing, ie The displacement value and can be obtained as shown in "Figure 2", and then the flow rate of the fluid flowing through the loop duct 10 can be calculated by formula (3). The accuracy of the Coriolis force type flow meter using the entire optical interferometer depends on the characteristics of the optical interferometer used, that is, the wavelength of the light source 42, the reflectance of the reflecting mirror 41, and the length of the resonant cavity. [Achieved effect] Lee 5 The Coriolis force flowmeter using the optical interferometer disclosed in the present invention has an accuracy higher than that of the Coriolis force (Coriolis F 〇]: ce) type flowmeter. And its optical interferometer positioning and weighting are better than the Coriolis force flow sensor on a π silicon wafer published by Enoksson et al. (A Coriolis Mws Flow Sensor Sti ^ uctuFe in Si 1 iCon ·) The laser light measurement system used in the flow sensor is easy, so its measurement accuracy is also greatly improved. As the improvement of measurement accuracy 'jointly' can also simplify the design of the Coriolis force flow meter using an optical interferometer 'and reduce the voltage value required for the exciter, it can greatly reduce the overall flowmeter. cost of production. a Ji 户 Jin Speaker ’is just one of the preferred embodiments of the present invention, and amended 1220157 case number 91125289

第13頁 1220157 _案號91125289_年月日__ 圖式簡單說明 第1圖為本發明所設計之矩形對稱的迴路導管1 0 ; 第2圖為迴路導管1 0前端在靜止狀態時及激振狀態時之剖 面圖; 第3圖為本發明所揭露的應用光學干涉計之科氏力型流量 計第一實施例的架構示意圖; 第4圖為迴路導管前端之剖面圖;及 第5圖為本發明所揭露的應用光學干涉計之科氏力型流量 計第二實施例的架構示意圖。 【圖式符號說明】 10 迴路導管 11 入口 12 出口 13 貫孔 20 基板 21 穿孔 30 激振電極 41 反射鏡面 42 光源 43 光探測器 44 耦合器 45 單模光纖 46 訊號處理器 47 反射鏡面Page 13 1220157 _ Case No. 91125289 _ year month day __ Brief description of the diagram. The first diagram is a rectangular symmetrical circuit catheter 10 designed by the present invention; the second diagram is the front end of the circuit catheter 10 when it is stationary and excited. Sectional view in the vibration state; FIG. 3 is a schematic structural diagram of the first embodiment of a Coriolis force flowmeter using an optical interferometer disclosed in the present invention; FIG. 4 is a sectional view of a front end of a loop conduit; and FIG. 5 It is a schematic diagram of a second embodiment of a Coriolis force flowmeter using an optical interferometer disclosed in the present invention. [Illustration of Symbols] 10 loop conduit 11 inlet 12 outlet 13 through hole 20 substrate 21 perforation 30 excitation electrode 41 reflecting mirror 42 light source 43 light detector 44 coupler 45 single-mode fiber 46 signal processor 47 reflecting mirror

第14頁Page 14

Claims (1)

12201571220157 六、申請專利範圍 1 · 一種應用光學干涉計之科氏力型流量計,其包含有: 基板,具有一激振電極,可提供一靜電力,且該 激振電極兩側分別具有一穿孔; 一對稱之迴路導管,架設於該基板之上,後端為可 供流體進出之出入口,前端設於該基板之激振電極上, 藉由該激振電極提供之靜電力驅使該迴路導管撓曲振 動’該迴路導管前端更具有對應於該穿孔的複數個貫 孔’且該貫孔係位於對稱之位置; 複數個反射鏡面,分別設置於該基板之該穿孔以及 該迴路導管之該貫孔内; 複數個光源,設置於該迴路導管之該貫孔上方;及 複數個光探測器,設置於該基板之該穿孔下方; 其中該光探測器可擷取該光源依序通過該穿孔以及 該貫孔内之該反射鏡面干涉後的光學訊號,經過計算可 得流經該對稱之迴路導管的流量大小。 2 ·如申請專利範圍第1項所述之應用光學干涉計之科氏力 型流量計,更包含有複數個激振電極,且該激振電極係以 σ亥迴路導管的中心線呈對稱分佈。 3 i如申請專利範圍第1項所述之應用光學干涉計之科氏力 型流量計,其中該迴路導管係採用微機電製程中之體型加 I乾式蝕刻技術化學蝕刻法製作。 j如申請專利範圍第1項所述之應用光學干涉計之科氏力 & ’灰量計,其中該迴路導管係為矩形之迴路導管。 •如申請專利範圍第1項所述之應用光學干涉計之科氏力Sixth, the scope of patent application 1 · A Coriolis force type flowmeter using an optical interferometer, which includes: a substrate with an excitation electrode that can provide an electrostatic force, and a perforation on each side of the excitation electrode; A symmetrical circuit conduit is mounted on the substrate, the rear end is an inlet and outlet for fluid in and out, and the front end is arranged on the excitation electrode of the substrate. The circuit conduit is driven to flex by the electrostatic force provided by the excitation electrode. Vibration 'the front end of the circuit catheter has a plurality of through holes corresponding to the perforation' and the through holes are located at symmetrical positions; a plurality of reflecting mirror surfaces are respectively disposed in the perforation of the substrate and the through holes of the circuit conduit A plurality of light sources disposed above the through-hole of the circuit conduit; and a plurality of light detectors disposed below the perforation of the substrate; wherein the light detector can capture the light source sequentially through the perforation and the through-hole The optical signal after the interference of the reflecting mirror surface in the hole can be calculated to obtain the flow rate flowing through the symmetrical loop duct. 2 · The Coriolis force flowmeter using an optical interferometer as described in item 1 of the scope of the patent application, further includes a plurality of excitation electrodes, and the excitation electrodes are symmetrically distributed around the center line of the σHai circuit conduit . 3 i The Coriolis force type flowmeter using an optical interferometer as described in item 1 of the scope of the patent application, wherein the loop conduit is manufactured using a chemical etching method of the body type plus I dry etching technology in a micro-electro-mechanical process. j. The Coriolis force & ash meter using an optical interferometer as described in item 1 of the scope of the patent application, wherein the loop duct is a rectangular loop duct. • Coriolis force applied to the optical interferometer as described in item 1 of the patent application 第15頁 1220157 _案號91125289_年月曰 修正_ 六、申請專利範圍 型流量計,其中該迴路導管之貫孔内的該反射鏡面具有特 定之反射率。 6. 如申請專利範圍第1項所述之應用光學干涉計之科氏力 型流量計,其中設置於該穿孔以及該貫孔内之該反射鏡面 間的距離即為光學干涉計之共振腔長度。 7. 如申請專利範圍第1項所述之應用光學干涉計之科氏力 型流量計,其中該反射鏡面係採用微機電製程中之光學鍍 膜技術製作。Page 15 1220157 _Case No. 91125289 _ Year Modified_ VI. Patent application range type flowmeter, in which the reflecting mirror surface in the through hole of the loop duct has a specific reflectivity. 6. The Coriolis force flowmeter using an optical interferometer as described in item 1 of the scope of the patent application, wherein the distance between the reflecting mirror surface provided in the perforation and the through hole is the resonant cavity length of the optical interferometer . 7. The Coriolis force flowmeter using an optical interferometer as described in item 1 of the scope of the patent application, wherein the reflecting mirror surface is made using optical coating technology in a micro-electro-mechanical process. 第16頁Page 16
TW91125289A 2002-10-25 2002-10-25 Coriolis force type flow meter using an optical interferometer TWI220157B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91125289A TWI220157B (en) 2002-10-25 2002-10-25 Coriolis force type flow meter using an optical interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91125289A TWI220157B (en) 2002-10-25 2002-10-25 Coriolis force type flow meter using an optical interferometer

Publications (1)

Publication Number Publication Date
TWI220157B true TWI220157B (en) 2004-08-11

Family

ID=34075606

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91125289A TWI220157B (en) 2002-10-25 2002-10-25 Coriolis force type flow meter using an optical interferometer

Country Status (1)

Country Link
TW (1) TWI220157B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI410611B (en) * 2009-12-11 2013-10-01 Oval Corp Coriolis flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI410611B (en) * 2009-12-11 2013-10-01 Oval Corp Coriolis flowmeter

Similar Documents

Publication Publication Date Title
US10794744B2 (en) Flowmeter sensor with interchangeable flow path and related method
Enoksson et al. A silicon resonant sensor structure for Coriolis mass-flow measurements
JPH0692901B2 (en) Mass flowmeter operating on the Coriolis principle
GB2221302A (en) Coriolis-effect fluid mass flow and density sensor made by a micromachining method
JP2011512541A (en) Coriolis flow meter with improved balance system
KR100973772B1 (en) In-flow determination of left and right eigenvectors in a coriolis flowmeter
RU2487321C1 (en) Flow metre comprising balance element
US6722209B1 (en) Coriolis force type flow meter using optical interferometer
TWI220157B (en) Coriolis force type flow meter using an optical interferometer
JP6771036B2 (en) Coriolis flow meter
JP3327325B2 (en) Coriolis mass flowmeter
JP5439592B2 (en) Flow meter with a balanced reference member
JPS63191024A (en) Mass flowmeter
EP1409968A1 (en) Device and method for measuring mass flow of a non-solid medium
JPS5880525A (en) Karman vortex flowmeter
JPH11304562A (en) Coriolis flowmeter
JP2002054959A (en) Differential pressure type flow rate meter
WO2019143239A1 (en) Coriolis flow sensor
JPH10221146A (en) Coriolis mass flow meter
JPS63233328A (en) Mass flowmeter
JPS58219415A (en) Karman's vortex street flowmeter
JPH10221147A (en) Coriolis mass flowmeter
JPH0436409Y2 (en)
AU2013200990B2 (en) A flow meter including a balanced reference member
JPH0357920A (en) Coriolis mass flowmeter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees