TW594862B - Method for crystallizing semiconductor thin film - Google Patents

Method for crystallizing semiconductor thin film Download PDF

Info

Publication number
TW594862B
TW594862B TW92113202A TW92113202A TW594862B TW 594862 B TW594862 B TW 594862B TW 92113202 A TW92113202 A TW 92113202A TW 92113202 A TW92113202 A TW 92113202A TW 594862 B TW594862 B TW 594862B
Authority
TW
Taiwan
Prior art keywords
thin film
semiconductor thin
film
crystallization
semiconductor
Prior art date
Application number
TW92113202A
Other languages
Chinese (zh)
Other versions
TW200425297A (en
Inventor
Nobuo Sasaki
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to TW92113202A priority Critical patent/TW594862B/en
Application granted granted Critical
Publication of TW594862B publication Critical patent/TW594862B/en
Publication of TW200425297A publication Critical patent/TW200425297A/en

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

A method for crystallizing semiconductor thin film comprises: a step of forming a semiconductor thin film (14) on a substrate; a step of forming a strip portion (16) for hindering the crystallization direction of the semiconductor thin film in or on the semiconductor thin film; and a step of crystallizing the semiconductor thin film by scanning an energy beam of continuous wave onto the direction crossing the direction of the portion for hindering the crystallization direction of the semiconductor thin film. As the scanning energy beam and the portion for hindering the crystallization direction of the semiconductor thin film are crossed, when the area irradiated by the energy beam and the portion for hindering the crystallization direction of the semiconductor thin film are crossed, the crystal growth is hindered from continuing. Therefore, even if the crystallizing semiconductor thin film has not yet formed the complete island-like pattern, the semiconductor thin film with high yield and good crystal is formed, while film peeling is prevented.

Description

玫、發明說明: 【發明所屬之技術領域】 技術領域 本發明係有關於-種半導體薄膜的結晶化方法,特別 5係有關於一種可高良率地形成結晶良好之半導體薄膜而不 必形成島狀圖案之半導體薄膜的結晶化方法。 背景技術 近來’有人提出可在較低溫下形成多晶石夕膜的技術。 10若利用這種技術,便可於耐熱性較低之玻璃基板上形成多 晶石夕膜。然後’可於玻璃基板上形成使用多晶石夕膜作為動 作半導體膜的薄膜電晶體(TFT)。 使用多晶石夕膜之薄膜電晶體可作為主動式矩陣型之液 晶顯示器(LCD)之像素用開關元件。 15 由於使用多晶矽膜作為動作半導體膜之薄膜電晶體與 使用非晶矽膜作為動作半導體膜之薄膜電晶體相比,載體 移動速度較高,故可實現高速動作。因此,使用多晶矽膜 之薄膜電晶體不僅可用作像素用開關元件,亦可用作周邊 電路之開關元件。因此,若利用可在較低溫下形成多晶石夕 2〇 膜的技術,還可知·供顯不部和周邊電路形成在同/基板上 而製成之系統化面板(system on panel)。 又,使用多晶石夕膜作為動作半導體膜之薄膜電晶體不 只可應用於液晶顯示器,可期待其亦可應用於有機電致發 光(EL)顯示器。 5 可在較低溫下於玻璃基板形成多晶矽膜的技術中,例 如’有人提出以下之技術。 首先,於玻璃基板上形成非晶石夕膜。 其次,於非晶矽膜,照射脈衝狀雷射光束。雷射光束 可使用激分子雷射。 當照射脈衝狀雷射光束時,被雷射光束熔解之矽在固 化的過程中,矽之結晶會成長,形成多晶矽膜。 然而,利用如前述之方法形成之多晶矽膜中,矽結晶 之粒徑未必充分地形成很大。因此,無法充分獲得高載體 移動度。 更進一步,可獲得高載體移動度的技術中,有人提出 如下之技術。 首先,於玻璃基板上形成非晶矽膜。 其次’將玻璃基板載置於乂_丫平移台。 接著,一邊於非晶矽膜照射連續波之雷射光束,一邊 藉X-Y平移台使玻璃基板移動,以掃描雷射光束。雷射光束 可使用半導體激發之雷射光束。 當掃描雷射光束時,被雷射光束照射到之區域之非晶 矽膜會熔化,且在脫離雷射光束照射區域之部份,矽會固 化。矽之結晶沿雷射光束掃描方向延續形成,且沿雷射光 束掃描方向有細長結晶成長。又,這種結晶成長態樣,稱 為橫向成長。 若使用依此而結晶化之矽薄膜作為動作半導體膜,且 令矽結晶之長向和载體移動方向一致,便可構成載體移動 594862 度極局之薄膜電晶體。此乃由於若令載體沿矽結晶之長向 移動時,載體的移動不會受到結晶粒界妨礙之故。 然而’這種提出之技術中,若欲使整體之形成完整狀 之非晶矽膜結晶,膜將產生剝離。第23圖是顯示膜剝離的 5圖。如第23圖所示,一部份結晶化之矽薄膜100有膜剝離102 產生。結晶化之膜之膜剝離102,雖然不易在開始掃描雷射 光束之地點附近產生,但是隨著遠離開始掃描雷射光束之 地點,就容易產生。由於膜剝離1〇2會隨著雷射光束之掃描 而延續下去,故會擴及廣大範圍而形成剝離。因此,當產 10生膜剝離1〇2時,無法將該矽薄膜1〇〇用於製品。膜剝離1〇2 產生的原因雖然未必明確,但是一般認為係包含於膜中之 不純物和熔化之矽的表面張力等所導致。 可防止膜剝離102的技術中,有人提出預先將非晶矽膜 形成島狀圖案,且於形成島狀圖案之非晶矽膜掃描雷射光 15 束的技街(參照專利文獻1,2)。 第24A圖顯示配列尺寸6〇χ 70//m之長方形島狀圖案 104a時之例。又,第24B圖顯示配列尺寸50/zmx 200之 島狀圖案104b時之例。島狀圖案i〇4b,端部為丰圓形狀^ 另,島狀圖案的形狀和尺寸並不限於此,而係可適當地設 20 定。 若預先將非晶矽膜形成島狀圖案,因為雷射光束於一 個一個之島狀圖案104a,104b掃描的距離較短,所以不易產 生膜剝離。又,即使一個島狀圖案104a,104b中,產生有膜 剝離時,由於產生有膜剝離之島狀圖案l〇4a,l〇4b與其他島 7 狀圖案l〇4a,l〇4b相互是分離的,㈣制離不會延續至其他 島狀圖案104a,104b。 依此,若預先將非晶頻形成島狀圖案,便可提高良 率。' 然而,當使形成島狀圖案之非晶石夕膜結晶時,島狀圖 案104中,在緣部106不會成長為良好結晶。因此,適合作 為薄膜電晶體之動作半導體膜的部份僅限於島狀圖案1〇4 中的中央部份108 (參照第25A圖)。 因此,如第25B圖所示,更進一步將島狀圖案1〇4形成 圖案’且只使用島狀圖_4中的中央部份刪乍為薄膜電 晶體之動作半導體膜11()。然後,於動作半導體膜11〇上形 成閘極絕賴(未圖^),且藉著形朗極112,形成薄膜 電晶體114。如此一來,可使用作為薄膜電晶體114之動作 半導體膜no者僅為島狀圖案⑽中的—部份。因此,預先 將非晶㈣形成島狀圖案的方㈣無法高密度地形成薄膜 電曰曰體114。故’曰遍期待能有—種可高良率地形成具有良 好結晶性之半導體_而不必預紐非晶碎膜形成島狀圖 案的技術。 專利文獻1 曰本專利公開公報特開2003-86505號 專利文獻2 曰本專利公開公報特開2〇〇3-865〇9號 非專利文獻1 佐佐木伸夫、原明人、竹内文代、管勝行、竹井美智 594862 子、吉野健一、千田滿「CW橫向結晶化(CLC)技術之移 動度超過500cm2/Vs的新低溫多晶矽TFT技術」電子資訊通 信學會論文誌C,Vol.J85-C,Νο·8,ρρ·601_608 (2002) · 非專利文獻2 5 A. Hara, F. Takeuchi, and N. Sasaki, 、、SelectiveDescription of the invention: [Technical field to which the invention belongs] TECHNICAL FIELD The present invention relates to a method for crystallization of a semiconductor thin film, and in particular, 5 relates to a semiconductor film that can form a highly crystalline semiconductor film with a high yield without forming an island pattern Method for crystallization of semiconductor thin films. 2. Description of the Related Art Recently, a technique has been proposed that can form a polycrystalline stone film at a relatively low temperature. 10 When using this technique, a multi-spar Xi film can be formed on a glass substrate of low heat resistance. Then, a thin film transistor (TFT) using a polycrystalline silicon film as an active semiconductor film can be formed on a glass substrate. A thin film transistor using a polycrystalline silicon film can be used as a pixel switching element for an active matrix liquid crystal display (LCD). 15 Because the thin film transistor using a polycrystalline silicon film as the operating semiconductor film has a higher carrier moving speed than the thin film transistor using an amorphous silicon film as the operating semiconductor film, high-speed operation can be achieved. Therefore, the polysilicon film is a thin film transistor used not only as a pixel switching element can also be used as the switching elements of the peripheral circuit. Thus, when using a technique of forming a multi-spar may eve 2〇 film at a relatively low temperature, it is not significant for the further understood · and the peripheral circuit portion are formed on the same panel systematic / substrate made of the (system on panel). And, using a multi-spar Tokyo film as a thin film transistor of the operation of the semiconductor film can be applied not only to a liquid crystal display, which is also expected to be applied to an organic electroluminescent light (EL) display. Technical polysilicon film 5 may be formed on the glass substrate at a relatively low temperature of, for example, 'was made of the following techniques. First, an amorphous stone film is formed on a glass substrate. Next, the amorphous silicon film is irradiated with a pulsed laser beam. Laser beams can use excimer lasers. When a pulsed laser beam is irradiated, during the curing process of the silicon melted by the laser beam, the crystal of silicon will grow and form a polycrystalline silicon film. However, in the polycrystalline silicon film formed by the method described above, the particle size of the silicon crystal is not necessarily sufficiently large. Therefore, a high carrier mobility cannot be obtained sufficiently. Furthermore, among the techniques for obtaining high carrier mobility, the following techniques have been proposed. First, an amorphous silicon film is formed on a glass substrate. Secondly, the glass substrate is placed on a translator. Subsequently, while in the amorphous silicon film is irradiated with the continuous wave laser beam, while by X-Y translation stage that the glass substrate is moved to scan the laser beam. Laser beam excitation of the semiconductor laser beam can be used. When the laser beam is scanned, the amorphous silicon film in the area irradiated by the laser beam will melt, and the silicon will solidify in the part separated from the area irradiated by the laser beam. The crystalline silicon formed in continuation along the laser beam scanning direction, and an elongated crystal growth along the laser beam scanning direction. Further, this aspect of crystal growth, called lateral growth. When so used the crystallized silicon thin film as the operation of the semiconductor film, and the silicon crystal so that the long and consistent moving direction vector, can constitute a carrier mobility of the thin film transistor 594 862 Board of electrodes. This is so because when the silicon crystal along the length of the carrier when the mobile, the mobile carrier is not hindered so that the grain boundaries. However, 'this technique, proposed, the amorphous silicon film is crystallized if connecting complete shape of integrally formed, the film peeling. FIG 5 FIG 23 is a display film peeling. As shown in FIG. 23, a portion of the crystallized silicon thin film 100 with a film 102 peeled generated. The crystallization of the film peeling film 102, although is not easily generated near the start location of the scanning laser beam, but as the distance from the start of laser beam scanning location, it is easy to produce. 1〇2 film peeling due to the laser beam as the scanning will continue and, it will expand and form a broad range of release. Thus, when producing the green sheet 10 peeled 1〇2 when the silicon thin film can not be used 1〇〇 article. Causes film peeling 1〇2 generated though not necessarily clear, it is generally believed that the system contains impurities in the film and the surface tension of the molten silicon and the like caused. Among the techniques for preventing film peeling 102, a technique has been proposed in which an amorphous silicon film is formed into an island pattern in advance, and 15 beams of laser light are scanned on the amorphous silicon film formed with the island pattern (see Patent Documents 1 and 2). FIG. 24A, when the display with the column size of Example 70 // m 6〇χ 104a of rectangular island pattern. And, arranging the display of FIG. 24B size 50 / zmx Example 104b when the island pattern of 200. I〇4b island pattern, the abundance of circular end ^ Also, the shape and size of the island-shaped pattern is not limited thereto, but may be appropriately set based set 20. If the previously formed amorphous silicon film island pattern, since the laser beam 104a, 104b from the scanning of a short in an island pattern, it is not easy to generate film peeling. In addition, even if one of the island-like patterns 104a and 104b is peeled off, the island-like patterns 104a, 104b and the other island-like patterns 104a, 104b are separated from each other due to the film peeling. Yes, the separation will not continue to other island patterns 104a, 104b. Accordingly, if an amorphous pattern is formed into an island pattern in advance, the yield can be improved. 'However, when forming a non-crystalline film spar Tokyo island pattern of island-like pattern 104, the edge portion 106 does not grow as well crystallized. Thus, for operation as a part of the thin film transistor of the semiconductor film is limited to a central portion of an island pattern 1〇4 108 (refer to FIG. 25A). Therefore, as shown in Fig. 25B, the island pattern 10 is further formed into a pattern ', and only the central portion of the island pattern _4 is used to remove the semiconductor film 11 () which is a thin film transistor. Then, a gate electrode (not shown) is formed on the operation semiconductor film 110, and a thin film transistor 114 is formed by using the shape electrode 112. In this way, the semiconductor film no that can be used as the operation of the thin film transistor 114 is only a part of the island pattern. Therefore, it is impossible to form the thin film capacitor 114 in a high density by forming the amorphous silicon into an island pattern in advance. Therefore, it is expected to have a technology that can form a semiconductor with good crystallinity with a high yield without having to preliminarily form an amorphous film to form an island pattern. Patent Literature 1 Japanese Patent Laid-Open Publication No. 2003-86505 Patent Literature 2 Japanese Patent Laid-Open Publication No. 2000-865009 Non-Patent Literature 1 Nobuo Sasaki, Haraaki, Takenai Takeshi, Guan Shengxing, Takei Mitsuko 594862, Kenichi Yoshino, and Chida Man "New low-temperature polycrystalline silicon TFT technology with CW lateral crystallization (CLC) technology mobility of more than 500cm2 / Vs" Electronic Information and Communication Society Papers C, Vol. J85-C, No. 8 , ρρ · 601_608 (2002) · Non-Patent Document 2 5 A. Hara, F. Takeuchi, and N. Sasaki, ,, Selective

Single-Crystalline-silicon Growth at the Pre-defined Active Regions of TFTs on a Glass by a Scanning CW Laser Irradiation,IEEE IEDM 2000 Tech. Digest,ρρ·209-212 (2000). 10 非專利文獻3 A. Hara,Y. Mishima,T. kakehi,F. Takeuchi,M. Takei, K. Yoshino, K. Suga5 M. Chida, and N. Sasaki, vv High performance Poly-Si TFTs on a Glass by a Stable Scanning CW Laser Lateral Crystallization, IEEE IEDM 2001 Tech. 15 Digest,pp.747-750 (2001).Single-Crystalline-silicon Growth at the Pre-defined Active Regions of TFTs on a Glass by a Scanning CW Laser Irradiation, IEEE IEDM 2000 Tech. Digest, ρρ · 209-212 (2000). 10 Non-Patent Document 3 A. Hara, Y. Mishima, T. kakehi, F. Takeuchi, M. Takei, K. Yoshino, K. Suga5 M. Chida, and N. Sasaki, vv High performance Poly-Si TFTs on a Glass by a Stable Scanning CW Laser Lateral Crystallization , IEEE IEDM 2001 Tech. 15 Digest, pp.747-750 (2001).

非專利文獻4 Y. Sano, M. Takei, A. Hara, and N. Sasaki, vv High-performance Single-Crystalline-silicon TFTs on a Non-Alkali Glass Substrate,〃 IEEE IEDM 2002 Tech. Digest, 20 pp.565-568 ( 2002). 非專利文獻5 Κ· Yoshino, M. Takei,M. Chida,A. Hara,and N. Sasaki, vv Effect on Poly-Si Film Uniformity and TFT Performance of Overlap Irradiation by a Stable Scanning CW Laser, 〃Proc. 9 9th Int· Display Worlshops,02 ( Hiroshima,Dec· 4-6, 2002), pp.343-346 (2002). 本發朗之目的即在提供一種可高良率地形成具有良好 結晶性之半導體薄膜而不必預先形成島狀圖案之半導體薄 膜的結晶化方法。 【發明内容】 發明揭示 前述目的係藉一種半導體薄膜的結晶化方法來達成, 包含有:於基板上形成半導體薄膜的步驟;於該半導體薄 膜或該半導體薄膜上,形成帶狀之用以阻礙該半導雔薄膜 之結晶成長之部份的步驟;及,藉著於與該用以阻礙結晶 成長之部份之長向交又的方向掃描連續波之能量束,使該 半導體薄膜結晶的步驟。 依本發明,由於掃描能量束,俾與該用以阻礙結晶成 長之。⑽又又故胃%量束之照射區域與該用以阻礙結晶 成長之。又叉時可阻礙結晶成長延續。由於若將結晶 成長L、’、貝之長1 成縮短某個程度,膜剝離就傾向於 不易產生,故可—邊防止_離產生,-邊形成具有良質 結晶的半導體薄膜。又,即使膜_已產生,但當能量束 之照射區域與用錄礙結晶成長之部份交叉時,依舊可阻 礙膜剝離延續。因此,依本發明,即使在使未形成島狀圖 案之=整狀半導體薄m結晶時,還是可—邊防止膜剝離, -邊高良率地形成具有良好結晶的半導體_。依本發 明因為可將具有良好結晶的半導體薄膜形成完整狀,所 594862 以可高密度地形成電氣特性良好之薄膜電晶體。 圖式簡單說明 第1A〜F圖係顯示本發明第!實施形態之半導體薄膜的 結晶化方法的截面圖和平面圖。 5 帛2®係顯示本發明第1實施形態之半導體薄膜的結晶 化方法的平面圖。 第3圖係顯示結晶化裝置的概略圖。 第4A〜B圖係顯示雷射光束之點之形狀的平面圖,以及 顯示藉掃描雷射光束而獲得之矽結晶狀態的圖。 1〇 第5圖係顯示本發明第1實施形態之變形例(之一)之 半導體薄膜的結晶化方法的平面圖。 第6圖係顯示本發明第丨實施形態之變形例(之二)之 半導體薄膜的結晶化方法的平面圖。 第7圖係顯示本發明第丨實施形態之變形例(之三)之 15半導體薄膜的結晶化方法的平面圖。 第8圖係顯示本發明第1實施形態之變形例(之四)之 半導體薄膜的結晶化方法的平面圖。 第9圖係顯示本發明第1實施形態之變形例(之五)之 半導體薄膜的結晶化方法的平面圖。 2q ^ 第10A〜C圖係顯示本發明第2實施形態之半導體薄膜 的結晶化方法的步驟圖(之一)。 第11A〜F圖係顯示本發明第2實施形態之半導體薄膜 的結晶化方法的步驟圖(之二)。 第12圖係顯示本發明第2實施形態之半導體薄膜的結 11 594862 晶化方法的平面圖。 第13A〜C圖係顯示本發明第3實施形態之半導體薄膜 的結晶化方法的步驟圖(之一)。 第14A〜F圖係顯示本發明第3實施形態之半導體薄膜 5 的結晶化方法的步驟圖(之二)。 第15圖係顯示本發明第3實施形態之半導體薄膜的結 晶化方法的平面圖。 第16A〜F圖係顯示本發明第4實施形態之半導體薄膜 的結晶化方法的步驟圖。 1〇 帛17圖係顯示本發明第4實施形態之半導體薄膜的結 日日化方法的平面圖。 第18A〜F圖係顯示本發明第5實施形態之半導體薄膜 的結晶化方法的步驟圖。 第19圖係顯示本發明第5實施形態之半導體薄膜的結 15 晶化方法的平面圖。 第20A〜C圖係顯示本發明第6實施形態之半導體薄膜 的結晶化方法的步驟圖(之一)。 第21A F圖係顯不本發明第6實施形態之半導體薄膜 的結晶化方法的步驟圖(之二)。 〇 第22圖係顯示本發明裳 曰& 月弟6實苑形態之半導體薄膜的結 日日化方法的平面圖。 第23圖係顯示膜剝離的圖。 第广A〜B圖係顯示配列島狀圖案時的平面圖。 第25A〜C圖係顯示當使島狀圖案結晶而形成薄膜電晶 12 594862 體時的步驟圖。 I:實施方式3 用以實施發明之最佳形態 (第1實施形態) 5 利用第1圖至第4圖說明本發明第1實施形態之半導體 薄膜的結晶化方法。第1圖係顯示本實施形態之半導體薄膜 的結晶化方法的截面圖和平面圖。第1A圖、第1C圖、第1E 圖係截面圖,而第⑺圖、第10圖、第1F圖係平面圖。第1A 圖係沿第1B圖之A_ a >線截取的截面圖。第1C圖係沿第 1〇 1D圖之A-A'線截取的截面圖。第1E圖係沿第1F圖之A — A>線截取的截面圖。第2圖係顯示本實施形態之半導體薄 膜的結晶化方法的平面圖。 首先’如第1A圖和第1B圖所示,藉例如電漿CVD (電 漿加強化學蒸氣沉積)法,於玻璃基板1〇上全面地形成作 15為緩衝層之矽氧化膜12。令矽氧化膜12之膜厚為例如 400nm。 接著,藉例如電漿CVD法,全面地形成非晶矽膜14。 令非晶石夕膜14之膜厚為例如5〇〜2〇〇nm。 接下來,為了脫氫,進行例如450°C之2小時熱處理。 2〇 H利用微影成像技術,於非晶頻14形成多數縫 隙16。令縫隙16之寬度w為例如5㈣。令縫隙之間距ρχ為 例如200/z m。如第2圖所示,縫隙i6係連續地形成,俾由非 晶矽膜14之一邊端部到達另一邊端部。 接下來,藉著掃描雷射光束18,使非晶石夕膜14結晶。 13 594862 在此,利用第3圖說明使非晶矽膜14結晶時所用的結晶 化裝置。第3圖係顯示結晶化裝置的概略圖。 如第3圖所示,結晶化裝置包含有:雷射光源部2〇,係 用以射出雷射光束18者;凹透鏡22,係用以將由雷射光源 5部20射出之雷射光束18之形狀成形者;鏡24,係用以將藉 凹透鏡22成形之雷射光束18反射於預定方向者;圓柱透鏡 26,係用以將藉鏡24反射之雷射光束18之形狀成形者;圓 柱透鏡28 ’係設置成與圓柱透鏡26之長向直交,且用以將 藉圓柱透鏡26成形之雷射光束18之形狀更進一步成形者; 10凸透鏡30,係用以將藉圓柱透鏡26成形之雷射光束18之形 狀更進一步成形者;及,X-Y平移台32,係用以於χγ方向 移動玻璃基板10者。 雷射光源部20可使用例如,以LD (雷射二極體)為激 發光源之半導體激發之振動連續波(CW)的固體雷射。這 15 種固體雷射可使用例如波長532nm之Nd : YV04雷射。令固 體雷射之輸出功率為例如6W。另,之所以使用半導體激發 之固體雷射,係由於半導體激發之固體雷射與氣體雷射相 比’較可獲得穩定之雷射光束18之故。 當由雷射光源部20射出之雷射光束18通過如前述之光 20學系統時,雷射光束18之點之形狀,即,照射區域18a之形 狀將如第3圖和第4圖所示,變成橢圓形。第4A圖係顯示雷 射光束之點之形狀的平面圖。 如第4A圖所示,雷射光束18之點18a之形狀係細長形 狀。更具體而言,雷射光束18之點18a之形狀係長軸La長度 14 594862 為例如約400#m,短軸Lb|度為例如約鄭m的擴圓形。 雷射光束18中之中央部是強度強的部份。雷射光束18之強 度強之部伤的長向長度Lc為例如約i5〇#m。另一方面,雷 射光束18中之除中央部以外的部份{強度並不太強的部 5份。 使用這種結晶化裝置,且如以下進行,以於非晶矽膜 14掃描雷射光束18。 首先,將玻璃基板10載置於χ_γ平移台32上。此時, 將玻璃基板10載置成使縫隙16之長向與雷射光束18之照射 10 區域18a之長向平行。 然後,一邊於非晶矽膜14照射雷射光束18,一邊利用 X-Y平移台32使玻璃基板1〇移動,藉此於相對於縫隙16之長 向的垂直方向,即X方向,掃描雷射光束18之照射區域18a。 令雷射光束18之知描速度為例如5〇cm/秒。 15 如第1C圖至第1F圖所示,當掃描雷射光束18時,在雷 射光束18之照射區域18a,非晶矽膜η會熔化,且在脫離雷 射光束18之照射區域18a的部份,石夕會固化。矽之結晶沿雷 射光束18之掃描方向繼續形成,並沿雷射光束18之掃描方 向有細長結晶粒成長。 2〇 當雷射光束18之照射區域18a與縫隙16交又時,矽之結 晶成長不會延續。若將結晶成長延續之長度,設定成縮短 某個程度’膜剝離就傾向於不易產生。因此,依本實施形 態’即使在使未預先形成島狀圖案之完整狀非晶石夕膜結晶 時,還是可一邊防止膜剝離,一邊使其良好地結晶。 15 594862 第4B圖係顯示藉掃描雷射光束而獲得之矽結晶狀態的 圖。 如第4B圖所示’在雷射光束18所掃描過之區域中的中 央部份34a ’沿雷射光束18之掃描方向,即χ方向,矽結晶 5成長為細長狀。這種結晶成長態樣,稱為橫向成長。另, 在雷射光束18所掃描過之區域中的中央部份3如,之所以可 獲得良好結晶係由於雷射光束強度較強之故。 另一方面,在雷射光束18所掃描過之區域中,除中央 部份之外的部份34b,有結晶粒徑並不太大之矽結晶成長。 10另,在雷射光束I8所掃描過之區域中,除中央部份之外的 部份34b,結晶粒徑小係由於雷射光束強度較弱之故。 由於了獲仔良好結晶之區域,僅有雷射光束18所掃描 過之區域中的中央部份,故若只掃描丨次雷射光束18,係無 法使整體非晶矽膜14結晶。因此,如第2圖所示,藉著進行 15夕次雷射光束18之掃描Sn,使整體非晶石夕膜14結晶。 當進行數次雷射光束18之掃描sn時,係掃描雷射光束 U,俾雷射光束18之照射區域i8a之執道部份地重疊。 使雷射光束18之照射區域18a之執道部份地重疊的理 由如下所示。 20 即,當不使雷射光束18之照射區域18a之執道部份地重 疊,而單只進行多次雷射光束18之掃描時,僅在雷射光束 18所掃描過之區域中的中央部份34a (參照第4圖)可獲得 良好結晶,而在雷射光束18所掃描過之區域中,除中央部 之外的區域34b,係無法獲得粒徑大之石夕結晶。 16 594862 因此,本實施形態中,係使雷射光束18之照射區域18a 之執道部份地重疊,以進行雷射光束18之掃描。藉此,可 使整體非晶矽膜14良好地結晶。 如前述者,依本實施形態,由於掃描雷射光束18,俾 5 與縫隙16交叉,故當雷射光束18之照射區域18a與縫隙16交 叉時,可阻礙結晶成長延續。由於若將結晶成長延續之長 度,設定成縮短某個程度,膜剝離就傾向於不.易產生,故 可一邊防止膜剝離產生,一邊形成具有良質結晶的半導體 薄膜。又,即使膜剝離已產生,但當雷射光束18之照射區 10 域18a與縫隙16交叉時,依舊可阻礙膜剝離延續。 因此’依本實施形態,即使在使未形成島狀圖案之完 整狀非晶矽膜結晶時,還是可一邊防止膜剝離,一邊高良 率地形成具有良好結晶的半導體薄膜。依本實施形態,因 為可將具有良好結晶的半導體薄膜形成完整狀,所以可高 15 密度地形成電氣特性良好之薄膜電晶體。 (變形例(之一)) 接著,利用第5圖說明本實施形態之半導體薄膜的結晶 化方法的變形例(之一)。第5圖係顯示本變形例之半導體 薄膜的結晶化方法的平面圖。 20 本變形例之半導體薄膜的結晶化方法的主要特徵在 於:相互錯開而形成有多數之長向長度較短的縫隙丨如。 如第5圖所示,於非晶矽膜14形成有多數之長向長度“ 較短的縫隙16a。多數之縫隙16a形成長向相互平行之狀 態。縫隙16a之長向長度Ls為例如2〇〇//m。縫隙之寬度w, 17 '、則述樣地’為例如m。縫隙恤係於χ方向錯開而形 成。縫隙16a之X方向之錯開間隔〜為例如·爪。 縫隙16a 係形成重疊於Y方向。縫隙⑹之Y方向之重疊距離DY為例 如20//m。藉多數配列於長向之縫隙他,可構成整體而言 5 是斷續的縫隙。 當對這種非晶矽膜14進行雷射光束18之掃描心時,雷 射光束18之照射區域18a會與其中之一縫隙16a交叉。 因此’藉本變形例’亦可在雷射光束18之照射區域18a 與縫隙16a交又時,阻礙結晶成長延續。 〇 所以’藉本變形例,亦可高良率地形成具有良好結晶 之半導體薄膜而不必將非晶矽膜形成島狀圖案。 (變形例(之二)) 接著’利用第6圖說明本實施形態之半導體薄膜的結晶 化方法的變形例(之二)。第6圖係顯示本變形例之半導體 15薄膜的結晶化方法的平面圖。 本變形例之半導體薄膜的結晶化方法的主要特徵在 於:形成有較雷射光束18之照射區域18a之長向長度短的縫 隙 16b 〇 如第6圖所示,於非晶矽膜14形成有多數之縫隙16b。 20 多數之縫隙16b對齊於長向。藉多數配列於長向之縫隙 16b ’可構成整體而言是斷續之縫隙。縫隙16b之長向長度 Ls為例如100/zm。雷射光束18之照射區域18a中,光束強度 強之部份的長向長度Lc為例如150//m。縫隙16b之長向長 度Ls係較雷射光束18之照射區域18a中,光束強度強之部份 18 594862 的長向長度Lc還短。縫隙16b之寬度W為例如5# m。X方向 之縫隙16b之配置間隔ρχ為例如200/zm。Y方向之縫隙16b 之配置間隔Ργ為例如120// m。 當對這種非晶矽膜Η進行雷射光束18之掃描sn時,僅 5 一部份之雷射光束18之照射區域18a會與縫隙16b交叉。 本變形例中,當雷射光束18之照射區域18a與縫隙16b 交叉時’雖然並不是整體雷射光束18之照射區域18a與縫隙 16b交叉,但只要至少一部份之雷射光束18之照射區域18a 與縫隙16b交叉,便可阻礙結晶成長延續。 10 因此,藉本變形例,亦可一邊防止膜剝離,一邊成長 為良好結晶。又,即使膜剝離已產生,還是可藉縫隙16b阻 礙膜剝離延續。 所以’藉本變形例,亦可可高良率地形成具有良好結 晶之半導體薄膜而不必將非晶矽膜丨4形成島狀圖案。 15 (變形例(之三)) 接著,利用第7圖說明本實施形態之變形例(之三)之 半導體薄膜的結晶化方法。第7圖係顯示本變形例之半導體 薄膜的結晶化方法的平面圖。 本變形例之半導體薄膜的結晶化方法的主要特徵在 20於^縫隙16c之長向長度Ls係較雷射光束18之照射區域18a 之長向長度LA還長。 如第7圖所示,於非晶矽膜14形成有多數之縫隙16c。 縫隙16c之長向長度Ls為例如5〇〇# m。雷射光束18之照射區 域18a中,光束強度強之部份的長向長度lc,如前述者,為 19 594862 例如150# m。縫隙16c之長向長度Ls係較雷射光束18之照射 區域18a中,光束強度強之部份的長向長度Lc還長。縫隙16c 之寬度W為例如5 // m。X方向之縫隙16〇間之配置間隔ρχ為 例如20#m。Υ方向之縫隙l6c間之配置間隔Ργ為例如2〇〇// 5 m。藉多數配列於長向之縫隙16c,可構成整體而言是斷續 之縫隙。 若於這種非晶矽膜14掃描雷射光束18,當雷射光束18 之照射區域18a與縫隙16c交又時,係全部或一部份之雷射 光束18之照射區域18a與縫隙16c交叉。由於當至少一部份 10之雷射光束18之照射區域18a與缝隙16c交又時,可阻礙結 晶成長延續,故可防止膜剝離。又,與前述一樣地,即使 膜剝離已產生,但只要當至少一部份之雷射光束18之照射 區域18a與縫隙16c交叉時,便可阻礙膜剝離延續。 因此,藉本變形例,亦可高良率地形成具有良好結晶 15之半導體薄膜而不必將非晶矽膜14形成島狀圖案。 (變形例(之四)) 接下來,利用第8圖說明本實施形態之變形例(之四) 之半導體薄膜的結晶化方法。第8圖係顯示本變形例之半導 體薄膜的結晶化方法的平面圖。 20 本變形例之半導體薄膜的結晶化方法的主要特徵在 於:相對於雷射光束18之掃描方向,即X方向,而斜地形成 有多數長向長度較短之縫隙16d。 如第8圖所示,於非晶矽膜14形成有多數之縫隙16d。 縫隙16d係相對於雷射光束18之掃描方向而斜地形成。雷射 20 594862 光束18之掃描方向和縫隙16d之長向所形成的角度0為例 如45。。縫隙16d之寬度W為例如5//m。縫隙16d之長向+ 度Ls為例如300/zm。多數之縫隙16d係於χ方向相互錯開^ 成。縫隙16d之X方向之錯開間隔£^為例如2〇//m。多數之 5縫隙係形成相互重疊於Y方向。縫隙之γ方向之重聂 距離DY為例如20/zm。藉多數配列於長向之縫隙16d,可構 成整體而言是斷續的縫隙。 當於這種形成有縫隙16d之非晶碎膜14掃描雷射光束 18時,雷射光束18之照射區域18a係相對於縫隙i6d之長向 10而與其斜地交叉。即使雷射光束18之照射區域18a是相對於 縫隙16d之長向而與其斜地交叉,但當雷射光束18之照射區 域18a與縫隙16d交叉時,依舊可阻礙結晶成長延續。又, 即使膜剝離已產生,但當雷射光束18之照射區域18a與縫隙 16d交叉時,還是可阻礙膜剝離延續。 15 因此,藉本變形例,亦可高良率地形成具有良好結晶 之半導體薄膜而不必將非晶矽膜14形成島狀圖案。 (變形例(之五)) 接著,利用第9圖說明本實施形態之變形例(之五)之 半導體薄膜的結晶化方法。第9圖係顯示本變形例之半導體 2〇 薄膜的結晶化方法的平面圖。 本變形例之半導體薄膜的結晶化方法的主要特徵在 於:縫隙16e係相對於雷射光束18之掃描方向而斜地形成, 且縫隙16e係連續地形成,俾由非晶矽膜14之一端部到達另 一端部。 21 594862 如第9圖所示,於非晶矽膜14,相對於雷射光束18之掃 描方向而斜地形成有縫隙16e。雷射光束18之照射區域18a 之長向和縫隙16e之長向所形成的角度0為例如45°。縫隙 16e之寬度W為例如5 // m。 5 當於這種形成有縫隙16e之非晶矽膜14掃描雷射光束 18時,亦可在雷射光束18之照射區域18a與縫隙16e交叉 時,阻礙結晶成長延續。又,即使膜剝離已產生,但當雷 射光束18之照射區域18a與縫隙16e交叉時,還是可阻礙膜 剝離延續。 1〇 因此,藉本變形例,亦可高良率地形成具有良好結晶 之半導體薄膜而不必將非晶矽膜14形成島狀圖案。 (第二實施形態) 利用第10圖至第12圖說明本發明第2實施形態之半導 體薄膜的結晶化方法。第10圖係顯示本實施形態之半導體 15 薄膜的結晶化方法的步驟圖(之一)。第10圖係截面圖。第 11圖係顯示本實施形態之半導體薄膜的結晶化方法的步驟 圖(之二)。第11A圖、第llc圖、第11E圖係截面圖,而第 11B圖、第11D圖、第11F圖係平面圖。第11A圖係沿第11B 圖之A —A’線截取的截面圖。第llc圖係沿第11D圖之A — 20 線截取的截面圖。第11E圖係沿第11F圖之A—A>線截 取的截面圖。第12圖係顯示本實施形態之半導體薄膜的結 晶化方法的平面圖。此外,對於與第1實施形態之半導體薄 膜的結晶化方法相同的構成要素,賦與相同標號,並省略 說明或者加以簡略。 22 594862 本實施形態之半導體薄膜的結晶化方法的主要特徵在 於:於非晶矽膜14形成槽36,且掃描雷射光束18,俾與槽 36交又。 首先,與第1實施形態之半導體薄膜的結晶化方法一樣 5地,於整面玻璃基板10上,依序形成矽氧化膜12和非晶矽 膜14。之後,與第i實施形態之半導體薄膜的結晶化方法一 樣地,進行用以脫氫之熱處理(參照第1〇A圖)。 接著,如第10B圖所示,藉例如旋轉塗布法,全面地形 成光阻膜38。 10 然後,利用微影成像技術,於光阻膜38,形成到達非 晶矽膜14之開口部40。開口部4〇係形成由非晶矽膜14之一 邊端部到達另一邊端部。 接下來,如第10C圖所示,以光阻膜38為遮罩,蝕刻非 晶矽膜14。此時,令蝕刻非晶矽膜14之深度為由非晶矽膜 15 Μ之表面起例如30nm的深度。如此一來,如第12圖所示, 連續地形成槽36,俾由非晶矽膜14之一邊端部到達另一邊 端部。令槽36之寬度W為例如5em。 然後’如第11A圖所示,除去光阻膜38。 接著,如第11B和第11C圖所示,掃描雷射光束18,俾 20與槽%父又。由於在槽36形成之處,一部份之非晶石夕膜μ 不連續,故某個程度上可阻礙結晶成長。 由於若將結晶成長延續之長度,設定成縮短某個程 度,則如前述者,膜剝離就傾向於不易產生,所以可一邊 防止膜剝離產生,一邊形成具有良質結晶之半導體薄膜。 23 594862 又,即使膜剝離已產生,但當雷射光束18之照射區域18a與 槽36交叉時,還是可阻礙膜剝離延續。 因此,藉本實施形態,亦可高良率地形成具有良好結 晶之半導體薄膜而不必將非晶矽膜14形成島狀圖案。 5 (第3實施形態)Non-Patent Document 4 Y. Sano, M. Takei, A. Hara, and N. Sasaki, vv High-performance Single-Crystalline-silicon TFTs on a Non-Alkali Glass Substrate, 〃 IEEE IEDM 2002 Tech. Digest, 20 pp. 565-568 (2002). Non-Patent Document 5 Κ · Yoshino, M. Takei, M. Chida, A. Hara, and N. Sasaki, vv Effect on Poly-Si Film Uniformity and TFT Performance of Overlap Irradiation by a Stable Scanning CW Laser, 〃Proc. 9 9th Int · Display Worlshops, 02 (Hiroshima, Dec · 4-6, 2002), pp.343-346 (2002). That is the purpose of the present invention is formed Langevin has to provide a high yield Crystallization method of semiconductor film with good crystallinity without having to form island patterns in advance. [Summary of the Invention] The foregoing object of the invention is achieved by a crystallization method of a semiconductor thin film, including: a step of forming a semiconductor thin film on a substrate; and forming a strip shape on the semiconductor thin film or the semiconductor thin film to hinder the And a step of crystallizing the semiconductor thin film by scanning a continuous wave energy beam in a direction intersecting with the longitudinal direction of the portion for blocking the crystal growth of the semiconductor film. Under this invention, since the scanning energy beam, it serves to impede the length of the crystal. ⑽ and so the irradiation region and the amount of gastric% of the beam to impede the crystal growth. When the crystal growth may hinder the continuation and fork. Since crystal growth if L, ', to shorten the length of a shell of a certain extent, film peeling tends to less likely to occur, it can be - while preventing from generation _, - edge forming a semiconductor thin film having good crystalline quality. In addition, even if the film _ has been generated, when the area irradiated by the energy beam intersects with the part that inhibits the crystal growth, it can still prevent the film peeling from continuing. Therefore, according to the present invention, even when crystallized semiconductor thin m without forming an island pattern can be crystallized, a semiconductor with good crystallinity can be formed with high yield while preventing film peeling. Under this inventions may as a semiconductor thin film having excellent crystallinity is formed a complete shape, the high-density 594 862 to form a good electrical characteristics of the thin film transistor. Brief Description of the drawings FIG 1A~F system of the present invention show! Sectional view of a semiconductor crystallization method of the embodiment and a plan view of the film morphology. 5 shows a plan view silk 2® crystallization method based semiconductor thin film according to the first embodiment of the present invention. Fig. 3 is a schematic view showing a crystallization apparatus. FIG 4A~B based on a plan view showing the shape of the spot of the laser beam, and FIG silicon in the crystalline state by scanning the laser beam obtained by the display. 10 FIG. 5 is a plan view showing a method for crystallizing a semiconductor thin film according to a modification (1) of the first embodiment of the present invention. 6 a plan view of the crystallization method based semiconductor thin film of a first embodiment of the present invention Shu modification of morphology (bis) of the display. 7 a plan view of a crystallization method based semiconductor thin film 15 of the modification example (third) embodiment of the first aspect of the present invention Shu display. Fig. 8 is a plan view showing a method for crystallizing a semiconductor thin film according to a modification (fourth) of the first embodiment of the present invention. Figure 9 based crystallization method of a plan view of a modified example (part five) of the first embodiment of the present invention, the semiconductor thin film display. 2q ^ Figures 10A to 10C are step diagrams (part 1) showing a crystallization method of a semiconductor thin film according to a second embodiment of the present invention. Figures 11A to F are step diagrams (No. 2) showing a crystallization method of a semiconductor thin film according to a second embodiment of the present invention. Fig. 12 is a plan view showing a method for crystallization of a semiconductor thin film 11 594862 according to a second embodiment of the present invention. FIG displaying step based on 13A~C figure (1) a method of crystallizing a semiconductor thin film according to the third embodiment of the present invention. FIG displaying step based on FIG 14A~F (bis) crystallization method according to the third embodiment of the present invention, the semiconductor thin film 5. Figure 15 A plan view crystallization method based semiconductor thin film according to the third embodiment of the present invention. FIG displaying step based on 16A~F FIG method of crystallizing a semiconductor thin film according to the fourth embodiment of the present invention. FIG 17 1〇 silk-based cosmetic method of a plan view of a semiconductor thin film junction day fourth embodiment of the present invention. FIG displaying step based on 18A~F FIG method of crystallizing a semiconductor thin film according to the fifth embodiment of the present invention. Fig. 19 is a plan view showing a method for crystallization of a semiconductor thin film according to a fifth embodiment of the present invention. Figures 20A to 20C are step diagrams (part 1) showing a crystallization method of a semiconductor thin film according to a sixth embodiment of the present invention. The first step of FIG. 21A F line in FIG significant crystallization method of a semiconductor thin film of the sixth embodiment of the present invention is not (2). FIG 22 square-based display of the present invention said Couture & Day method of a plan view of a semiconductor thin film Yuan end date of the month brother 6 solid form. Fig. 23 is a diagram showing film peeling. The first wide A~B FIG plan view display system with islands pattern. Based on the display when the 25A~C FIG crystallization step of forming an island pattern view of a thin film crystal 12594862 thereof. I: The method of Embodiment 3 of the crystalline semiconductor thin film according to the first embodiment of the present invention Best Mode for invention (first embodiment) FIG. 5 using the first to fourth instructions FIG. Fig. 1 is a cross-sectional view and a plan view showing a method for crystallizing a semiconductor thin film according to this embodiment. FIG. 1A, FIG. 1C, FIG. 1E based on a cross-sectional view and FIG. ⑺ first, FIG. 10, a plan view of the system of FIG 1F. Figure 1A along line 1B of FIG A_ of a > cross-sectional view taken along a line. FIG. 1C 1D-based cross-sectional view of FIG 1〇 the A-A 'taken along a line. The first line in FIG. 1E 1F A map of the first - A > cross-sectional view taken along a line. Fig. 2 is a plan view showing a method for crystallizing a semiconductor film according to this embodiment. First, 'as shown in Figure 1A and FIG. 1B, for example, by plasma CVD (chemical vapor deposition strengthening electrical plasma) method, on a glass substrate 1〇 fully formed as a silicon oxide film 15 as a buffer layer 12. The film thickness of the silicon oxide film 12 is, for example, 400 nm. Next, by a plasma CVD method, for example, amorphous silicon film 14 is formed fully. Non-spar 14 so that the film thickness of Tokyo, for example, 5〇~2〇〇nm. Subsequently, to the dehydrogenation, a heat treatment for 2 hours, for example of 450 ° C. H 2〇 lithography using imaging techniques, frequency 14 is formed on the amorphous most slit 16. 16 so that the slit width w, for example, 5㈣. So that the pitch of the slit ρχ, for example, 200 / z m. As shown in FIG. 2, the slit lines sequentially formed i6, serve reach the other side end portion by the one side end portion 14 of the amorphous silicon film. Subsequently, by scanning the laser beam 18, 14 of the non-crystalline film spar Xi. 13 594 862 In this case, by the third crystallization apparatus described in FIG. 14 so that when the amorphous silicon film is crystallized used. Fig. 3 is a schematic view showing a crystallization apparatus. As shown in FIG. 3, the crystallization apparatus comprising: a laser light source unit 2〇, based for emitting the laser beam by 18; concave lens 22, lines 5 to 20 of the light emitted by the laser light source 18 of the laser beam shape forming by; mirror 24, lines 18 to the concave reflector 22 formed by the laser beam by a predetermined direction; a cylindrical lens 26, the laser system to learn from the reflection of the beam 24, 18 of the molded shape; cylindrical lens 28 'perpendicular to the line disposed with the length of the cylindrical lens 26, and 26 for forming of the laser beam by a cylindrical lens 18 by the shape of the further shaping; 10 a convex lens 30, the shaping line for the mine by a cylindrical lens 26 further the shape formed by the light beam 18; and, XY translation stage 32, to move the system to the glass substrate 10 by χγ direction. Laser light source 20 may be used, for example, to a solid laser LD (laser diode) excitation vibration is continuous wave (CW) excitation of the light source of semiconductor. These 15 may be used, for example, a solid laser wavelength of 532nm Nd: YV04 laser. Let the output power of the solid laser be, for example, 6W. Another reason why a semiconductor excitation solid laser, the excitation of the system since the semiconductor laser and solid laser gas compared to 'obtain a more stable so that the laser beam of 18. When the light 20 as the optical system of the laser light source unit 20 emits a laser light beam 18 is passed through, the shape of the laser beam 18 points, i.e., the shape of the irradiation region 18a as in FIG. 3 and 4 shown in FIG. , become oval. Figure 4A based mine plan view of the beam spot shape of the exit of the display. As shown in Fig. 4A, the shape of the point 18a of the laser beam 18 is an elongated shape. More specifically, the shape of the laser beam spot 18a of line 18 of a length of the major axis La 14 594 862, for example, from about 400 # m, the minor axis Lb |, for example, of approximately circular expansion Zheng m. The central portion of the laser beam 18 is a strong portion. The intensity of the laser beam intensity of the portion 18, for example, wound about a long i5〇 # m of the length Lc. On the other hand, the strength of {part other than the central portion 18 of the light beam is not too strong lightning portion 5 parts. This crystallization apparatus used, and as for the following to 14 scanning laser beam 18 on the amorphous silicon film. First, the glass substrate 10 is placed on a translation stage 32 χ_γ. At this time, the glass substrate 10 is placed so that the long direction of the slit 16 is parallel to the long direction of the irradiation region 10a of the laser beam 18. Then, while the laser beam 14 irradiated amorphous silicon film 18, while the XY translation stage 32 moves the glass substrate 1〇, whereby with respect to a direction perpendicular to the long slot 16, namely the X direction, the scanning laser beam 18a 18 of the irradiation region. So that the laser beam 18, for example, known speed described 5〇cm / sec. 15 through FIG. 1C as shown in Figure 1F, when the scanning laser beam 18, the laser beam 18 in the irradiation region 18a, η amorphous silicon film melts, and the laser beam irradiated from the region 18a of 18 most, stone evening will be cured. Crystals of silicon continue to form along the scanning direction of the laser beam 18, and elongated crystal grains grow along the scanning direction of the laser beam 18. 20 When the irradiated area 18a of the laser beam 18 intersects the gap 16, the crystal growth of silicon will not continue. If the length of the crystal growth continues, is set to reduce the extent of a 'film peeling tends to less likely to occur. Therefore, even in the case of crystallizing an intact amorphous stone film in which an island-like pattern is not formed in advance according to this embodiment mode, the film can be well crystallized while preventing the film from peeling. 15594862 Figure 4B a view showing a state of silicon crystal obtained by the scanning of the laser beam. As shown 'in the central portion of laser beam 18 is scanned across the region 34a' in FIG. 4B, the scanning direction of the laser beam 18, i.e. the direction χ, silicon crystal 5 grown into an elongated shape. This kind of crystal growth is called lateral growth. In addition, in the central portion 3 in the area scanned by the laser beam 18, a good crystal system can be obtained because the laser beam intensity is strong. On the other hand, in the area scanned by the laser beam 18, in the portion 34b other than the central portion, there is a silicon crystal with a crystal grain size which is not too large. In addition, in the area scanned by the laser beam I8, the portion 34b other than the central portion has a small crystal grain size because the laser beam intensity is weak. Since the area where the crystals are well crystallized has only the central part of the area scanned by the laser beam 18, if the laser beam 18 is scanned only once, the entire amorphous silicon film 14 cannot be crystallized. Therefore, as shown in FIG. 2, the entire amorphous stone film 14 is crystallized by performing a scan Sn of the laser beam 18 15 times. When the scanning sn of the laser beam 18 is performed several times, the laser beam U is scanned, and the rules of the irradiation area i8a of the laser beam 18 partially overlap. The reason for partially overlapping the rules of the irradiation area 18a of the laser beam 18 is as follows. 20 That is, when the doctrines of the irradiation areas 18a of the laser beam 18 are not partially overlapped, and the laser beam 18 is scanned only a plurality of times, only in the center of the area scanned by the laser beam 18 The part 34a (refer to FIG. 4) can obtain good crystals, and among the regions scanned by the laser beam 18, the regions 34b other than the central part cannot obtain the stone crystalline with a large particle size. 16594862 Accordingly, the present embodiment, the system 18 so that laser beam irradiation region 18a of the execution of the road partially overlap, for the laser beam 18 scans. Thereby, the entire amorphous silicon film 14 can be satisfactorily crystallized. As aforesaid, under this embodiment, since the 18, 5 and the slit 16 serve cross-scan the laser beam, so that when the laser beam 18 is irradiated region 18a and the cross slot 16, may hinder crystal growth continues. Because if the length of the crystal growth continues, is set to reduce to some extent, the film does not tend to peel. Easy to produce, it can be produced while preventing film peeling, while forming a semiconductor thin film having good crystalline quality. In addition, even if the film peeling has occurred, when the irradiation region 10a of the laser beam 18 intersects with the slit 16, the film peeling can be prevented from continuing. Therefore, according to this embodiment, even when a complete amorphous silicon film having no island pattern is crystallized, a semiconductor thin film having good crystallinity can be formed with high yield while preventing the film from peeling. Under this embodiment, because the semiconductor thin film having good crystallinity to be a complete shape is formed, it is possible to form a good high 15 density electrical characteristics of the thin film transistor. (Modification Example (one)) Next, a fifth modified example of FIG crystallization method of the present embodiment aspect of a semiconductor thin film (one). Fig. 5 is a plan view showing a crystallization method of a semiconductor thin film according to this modification. The main feature of the crystallization process of the modification example 20 of the semiconductor thin film is to: form a staggered long as a majority of the short length of the slit Shu. As shown in FIG. 5, a large number of short slits 16 a having a plurality of long lengths are formed in the amorphous silicon film 14. The plurality of slits 16 a form a state in which the long directions are parallel to each other. The length Ls of the slits 16 a is, for example, 2 °. square // m. the width w of the slit 17 ', the said plots', for example, m. shirt slit lines shifted in direction χ formed shifted slit 16a of the X-direction interval ~. slits 16a is formed, for example, based pawl · overlap in the Y direction overlap distance of the DY in the Y direction, for example, the slit ⑹ 20 // m. by arranging the majority of the long gap to him, may constitute the whole of the slot 5 is intermittent. when such amorphous silicon when the laser beam scanning film 14 of the heart 18, the irradiation area of the laser beam 18 and 18a will intersect one of the slot 16a. Thus ', by modification of the present embodiment' 18 may irradiate the laser beam 18a and the slot 16a in region when they cross and hinder crystal growth continues. square so 'by modification of the present embodiment, a high yield can be formed with good crystallinity of the semiconductor thin film of amorphous silicon film is formed without having an island pattern. (modification Example (bis)) followed by 'of FIG. 6 using the described embodiment of this aspect of the semiconductor thin Modification (No. 2) of the crystallization method of the film. Fig. 6 is a plan view showing the crystallization method of the semiconductor 15 thin film of this modification. The main feature of the crystallization method of the semiconductor thin film of this modification is that: long laser beam 18 is irradiated to the area 18a of the short length of the slit 16b of the square as shown in Fig. 6, in the amorphous silicon film 14 is formed with a slit 16b of the slit 16b majority. 20 is aligned with the majority of the length. by arranging the majority The slit 16b ′ in the long direction may constitute an intermittent slit as a whole. The length Ls of the slit 16b in the longitudinal direction is, for example, 100 / zm. In the irradiation area 18a of the laser beam 18, the longitudinal direction of the portion with a strong beam intensity for example, the length Lc 150 // m. 18a than the irradiation area of the laser beam 18, the intensity of the slit 16b of the longitudinal length of the beam intensity based part length Ls 18594862 shorter length Lc of the width W of the slit 16b the slits 16b, for example, 5 # m.X direction intervals of, for example, a slit 16b of ρχ 200 / zm.Y direction Ργ intervals of, for example, 120 // m. when such amorphous silicon film for the laser beam 18 Η when the scanning sn, only a part of the laser beam 5 of 18 Shot region 18a will intersect the slit 16b in this modification, when the laser beam 18 is irradiated region 18a and the slit 16b intersect 'Although the entire region is not irradiated with the laser beam 18 and the slit 18a 16b intersect, but as long as at least one part of the laser beam irradiation areas 18a 16b 18 of the cross slit, hindering crystal growth can continue. 10 Thus, by this modification, while also preventing film peeling, while the growth of good crystallinity. further, even if the film is peeled off generating, by the slit 16b or the barrier film may peel off continues. so 'by modification of the present embodiment, it may be formed of a semiconductor thin film having good crystallinity, high yield without having the amorphous silicon film 4 is formed Shu island pattern. 15 (Modification (No. 3)) Next, a method for crystallizing a semiconductor thin film according to Modification (No. 3) of this embodiment will be described with reference to FIG. 7. 7 a plan view of a crystallization method based semiconductor thin film of the present modified embodiment of the display. The main feature of the crystallization method of the present modification of the semiconductor thin film 20 is irradiated to the long length of the slit 16c ^ Ls of the length of the lines representing the laser beam 18 to the area 18a of the longer length LA. As shown in FIG. 7, in the amorphous silicon film 14 is formed a slit 16c of the majority. Slit 16c of the longitudinal length Ls, for example, 5〇〇 # m. Irradiation field region 18a of the laser beam 18, the intensity of the beam intensity of the portion of the longitudinal length LC, as aforesaid, to 19594862 e.g. 150 # m. Irradiation region 18a of the longitudinal length of the slit 16c more lines Ls of the laser beam 18, the beam intensity of the strong part of the length Lc to the length of the longer. The width W of the slit 16c is, for example, 5 // m. The X-direction slit intervals of, for example, between ρχ 16〇 20 # m. Ργ gap between intervals of, for example, Υ direction of l6c 2〇〇 // 5 m. Most by arranging lengthwise of the slit 16c, can constitute the whole of intermittent slits. When the scanning laser beam 14 in this amorphous silicon film 18, and when the slot 18a when post 16c of the laser beam irradiated area 18, based in whole or in part of the laser beam 18 is irradiated region 18a and the slit 16c intersecting . Because when the laser beam 10 at least a portion of the region 18 is irradiated with slits 18a and 16c cross, can hinder the growth of crystals continues, film peeling can be prevented. In addition, as described above, even if film peeling has occurred, if at least a part of the irradiation area 18a of the laser beam 18 intersects the slit 16c, the film peeling can be prevented from continuing. Therefore, by this modification, a high yield can be formed in the semiconductor thin film 15 having good crystallinity of the amorphous silicon film 14 is formed without having an island pattern. (Modification (fourth)) Next, a method for crystallizing a semiconductor thin film according to a modification (fourth) of the present embodiment will be described with reference to FIG. 8. Fig. 8 is a plan view showing a crystallization method of a semiconductor thin film according to this modification. 20 The main feature of the crystallization method for a semiconductor thin film according to this modification is that the slit 16d is formed obliquely with respect to the scanning direction of the laser beam 18, that is, the X direction. As shown in FIG. 8, a large number of slits 16 d are formed in the amorphous silicon film 14. The slit 16 d is formed obliquely with respect to the scanning direction of the laser beam 18. 20594862 angle laser scanning direction and the length of the slot 16d of the beam 18 is formed as 0 Example 45. . The width W of the slit 16d, for example, 5 // m. Long slit 16d, for example, in the + Ls of 300 / zm. Most of the lines to the slit 16d χ ^ to a direction shifted from each other. Shifting the X-direction slit 16d, for example, the spacing £ ^ 2〇 // m. 5 Most of the slit lines are formed to overlap each other in the Y direction. Nie distance DY γ heavy direction of the slit, for example, 20 / zm. The majority of the slits 16d arranged in the longitudinal direction can form intermittent slits as a whole. When the laser beam 18 is scanned on the amorphous chip 14 having the slit 16d formed therein, the irradiation area 18a of the laser beam 18 crosses it obliquely with respect to the length 10 of the slit i6d. Even if the irradiated area 18a of the laser beam 18 intersects it obliquely with respect to the length of the slit 16d, when the irradiated area 18a of the laser beam 18 intersects the slit 16d, it can still hinder the crystal growth from continuing. In addition, even if film peeling has occurred, when the irradiation area 18a of the laser beam 18 and the slit 16d cross, the film peeling can be prevented from continuing. 15 Therefore, with this modification, it is also possible to form a semiconductor thin film having good crystallinity with high yield without having to form the amorphous silicon film 14 into an island-like pattern. (Modification (No. 5)) Next, a method for crystallizing a semiconductor thin film according to Modification (No. 5) of this embodiment will be described with reference to FIG. 9. Fig. 9 is a plan view showing a crystallization method of a semiconductor 20 thin film according to this modification. The main feature of the crystallization method for a semiconductor thin film according to this modification is that the slit 16e is formed obliquely with respect to the scanning direction of the laser beam 18, and the slit 16e is formed continuously, and one end of the amorphous silicon film 14 reaches the other end portion. 21 594862 As shown in FIG. 9, a slit 16e is formed obliquely in the amorphous silicon film 14 with respect to the scanning direction of the laser beam 18. The angle 0 formed by the long direction of the irradiation area 18a of the laser beam 18 and the long direction of the slit 16e is, for example, 45 °. The width W of the slit 16e is, for example, 5 // m. 5 When scanning the laser beam 18 on the amorphous silicon film 14 with the gap 16e formed therein, when the irradiation area 18a of the laser beam 18 and the gap 16e intersect, the crystal growth is prevented from continuing. Further, even if film peeling has occurred, when the irradiation area 18a of the laser beam 18 intersects the slit 16e, the film peeling can be prevented from continuing. 10 Therefore, with this modification, it is also possible to form a semiconductor thin film having good crystallinity with high yield without having to form the amorphous silicon film 14 in an island-like pattern. (Second Embodiment) FIG. 10 by the first through twelfth view illustrating the method of crystallizing the semiconductor of the second embodiment of the present invention is a thin film. FIG displaying step based on FIG. 10 (one of) the crystallization method of the present embodiment aspect of the semiconductor thin film 15. 10 a sectional view of FIG lines. FIG 11 based on a process diagram showing a method of crystallizing a semiconductor thin film morphology of the present embodiment (part two). 11A, 11C, and 11E are cross-sectional views, and FIGS. 11B, 11D, and 11F are plan views. FIG. 11A based on cross-sectional view taken along the line A -A of FIG. 11B the 'direction. A section along line of FIG. Llc FIG. 11D - A cross-sectional view taken along line 20. Fig. 11E is a cross-sectional view taken along line A-A > of Fig. 11F. Fig. 12 is a plan view showing a crystallization method of a semiconductor thin film according to this embodiment. Further, for the same crystallization method in the first embodiment of the semiconductor thin film components, endowed with the same reference numerals, and description thereof will be omitted or be simplified. 22594862 embodiment of Major features of the method of crystallizing a semiconductor thin film in the form of: amorphous silicon film 14 is formed in the groove 36, and scanning the laser beam 18, 36 with cross grooves serve yet. First, as in the method of crystallizing a semiconductor thin film 5 of the first embodiment, the entire surface on the glass substrate 10, silicon oxide film 12 are sequentially formed and the amorphous silicon film 14. Thereafter, in the same manner as the crystallization method of the semiconductor thin film of the i-th embodiment, a heat treatment for dehydrogenation is performed (see FIG. 10A). Next, as shown in FIG. 10B, the photoresist film 38 is formed on the entire surface by, for example, a spin coating method. 10 Then, using lithography imaging technique, in the photoresist film 38 is formed an opening portion 40 reaching the polysilicon film 14 of the non. The opening 40 is formed from one end of the amorphous silicon film 14 to the other end. Next, as shown in FIG. 10C first, the resist film 38 as a mask to etch the amorphous silicon film 14. In this case, amorphous silicon film 14 is etched so that a depth by depth from the surface of the amorphous silicon film 15 Μ e.g. the 30nm. Thus, as shown in FIG. 12, the groove 36 is continuously formed, serve reach the other side end portion by the one side end portion 14 of the amorphous silicon film. The width W of the groove 36 so e.g. as 5em. Then 'section as shown in FIG. 11A, a resist film 38 is removed. Next, as shown, the scanning laser beam 18, and the groove 20 serve% of the parent 11B and 11C in FIG. Since the groove 36 is formed at a portion of the non-discontinuous μ membrane spar evening, to some extent it can hinder crystal growth. If the length of the crystal growth continuation is set to be shortened to a certain degree, film peeling tends to be difficult to occur as described above, so that a semiconductor thin film with good crystals can be formed while preventing film peeling from occurring. 23,594,862 and, even if the film has been peeled off is generated, but the laser beam 36 is irradiated crossing region 18a and the groove 18, the barrier film is peeled off can continue. Therefore, according to this embodiment, a semiconductor thin film having good crystallinity can be formed with a high yield without having to form the amorphous silicon film 14 in an island-like pattern. 5 (third embodiment)

利用第13圖至第15圖說明本發明第3實施形態之半導 體薄膜的結晶化方法。第13圖係顯示本實施形態之半導體 薄膜的結晶化方法的步驟圖(之一)。第13圖係截面圖。第 14圖係顯示本實施形態之半導體薄膜的結晶化方法的步驟 10圖(之二)。第14A圖、第14C圖、第14E圖係截面圖,而第 14B圖、第14D圖、第14F圖係平面圖。第14a圖係沿第14B 圖之A —A’線截取的截面圖。第14C圖係沿第14D圖之A — A線截取的截面圖。第14E圖係沿第14F圖之A—A"線截 取的截面圖。第15圖係顯示本實施形態之半導體薄膜的結 15晶化方法的平面圖。此外,對於與第1或第2實施形態之半 導體薄膜的結晶化方法相同的構成要素,賦與相同標號, 並省略說明或者加以簡略。 本實施形態之半導體薄膜的結晶化方法的主要特徵在 於:藉著部份地餘刻非晶矽膜14之表面,於非晶石夕膜14之 20表面形成由非晶矽膜14構成之帶狀圖案44,且掃描雷射光 束18,俾與帶狀圖案44交又。 首先,與第1實施形態之半導體薄膜的結晶化方法一樣 地,於整面玻璃基板1〇上,形成矽氧化膜12。 其次,藉例如電聚CVD法,全面地形成較厚之非晶石夕 24 膜14。令非晶賴14謂料例如30〇nm。 4 ’與第1實施形態之半導體薄膜的結晶化方法一樣 土 ,進行用以脫氫之熱處理(參照第13A圖)。 接者,如第13B圖所#,藉例如旋轉塗布法,全面地形 成光阻膜42。 接下來,利用微影成像技術,將光阻膜42形成帶狀圖 案。光阻膜42係連續地形力,俾由非晶石夕膜14之一邊端部 到達另一邊端部。 10 然後,如第13C圖所示,以光阻膜42為遮罩,蝕刻非晶 夕膜14到達由非晶石夕膜14之表面起200nm之深度。如此一 來於非晶矽膜14之表面形成由非晶矽膜14構成之帶狀圖 案44。令帶狀圖案44之寬度W為例如1〇//m。帶狀圖案料 係連續地形成,俾由非晶矽膜14之一邊端部到達另一邊端 部。 接著,如第14A圖所示,除去光阻膜42。 之後’如第14B和第14C圖所示,掃描雷射光束18,俾 與帶狀圖案44交叉。有帶狀圖案44形成之區域中,由於藉 由帶狀圖案44使非晶矽膜14膜厚較厚,故熱容量大。因此, 有帶狀圖案44形成之區域中,非晶矽膜14不會熔化。所以, 20虽雷射光束18之照射區域18a與帶狀圖案44交叉時,可阻礙 結晶成長延續。 由於若將結晶成長延續之長度,設定成縮短某個程 度,則如前述者,膜剝離就傾向於不易產生,所以可_邊 防止膜剝離產生,一邊形成具有良質結晶之半導體薄膜。 25 594862 又,即使膜剝離已產生,但當雷射光束18之照射區域18a與 帶狀圖案44交叉時,還是可阻礙膜剝離延續。 因此’藉本實施形恶,亦可南良率地形成具有良好結 晶之半導體薄膜而不必將非晶矽膜14形成島狀圖案。 5 (第4實施形態) I . 利用第16圖和第17圖說明本發明第4實施形態之半導 體薄膜的結晶化方法。第16圖係顯示本實施形態之半導體 薄膜的結晶化方法的步驟圖。第16A圖、第16C圖、第16E 圖係截面圖,而第16B圖、第16D圖、第16F圖係平面圖。 10第16A圖係沿第16B圖之A —線截取的截面圖。第i6c圖 係沿第16D圖之A —A—線截取的截面圖。第16E圖係沿第 16F圖之A — A'線截取的截面圖。第17圖係顯示本實施形 態之半導體薄膜的結晶化方法的平面圖。此外,對於與第i 至第3實施形態之半導體薄膜的結晶化方法相同的構成要 15素,賦與相同標號,並省略說明或者加以簡略。 本實施形態之半導體薄膜的結晶化方法的主要特徵在 於·於非曰曰矽膜14之上方形成由金屬膜構成之帶狀圖案 46,且掃描雷射光束18,俾與帶狀圖案牝交叉。 首先,與第1實施形態之半導體薄膜的結晶化方法一樣 2〇地,於整面玻璃基板10上,依序形成石夕氧化膜12和非晶石夕 膜14 〇 其次,藉例如CVD法,於非晶石夕膜14上,形成石夕氧化 膜5 7石夕氧化膜45之膜厚為例如1〇〇_。石夕氧化膜係用 以分離非晶石夕膜14和由金屬膜構成之帶狀圖案46者。 26 594862 然後’與第1實施形態之半導體薄膜的結晶化方法一樣 地,進行用以脫氫之熱處理。 , 接著,藉機鑛法形成金屬膜。金屬膜可使用例如賴 或鶬膜等高炼點金屬膜。 5 接下來,利用微影成像技術,將金屬卿成帶狀圖案 (參照第16A圖)。帶狀圖案係連續地形成,俾由非晶矽膜 14之一邊端部到達另一邊端部(參照第17圖)。令圖案之寬 度W為例如l0/zm。如此一來,形成由金屬膜構成之帶狀圖 案46。 10 下一步,如第16B圖和第16C圖所示,掃描雷射光束 18,俾與由金屬膜構成之帶狀圖案46交叉。在有由金屬臈 構成之帶狀圖案46形成之區域中,藉帶狀圖案46可反射雷 射光束18。因此,在有帶狀圖案46形成之區域中,非晶矽 膜14不會熔化。所以,當雷射光束18之照射區域18a與帶狀 15圖案46交叉時,可阻礙結晶成長延續。 由於若將結晶成長延續之長度,設定成縮短某個程 度’則如前述者,膜剝離就傾向於不易產生,所以可一邊 防止膜剝離產生,一邊形成具有良質結晶之半導體薄膜。 又’即使膜剝離已產生,但當雷射光束18之照射區域18a與 20 帶狀圖案46交叉時,還是可阻礙膜剝離延續。 因此,藉本實施形態,亦可高良率地形成具有良好結 晶之半導體薄膜而不必將非晶矽膜14形成島狀圖案。 (第5實施形悲) 利用第18圖和第19圖說明本發明第5實施形態之半導 27 594862 體薄膜的結晶化方法。第18圖係顯示本實施形態之半導體 薄膜的結晶化方法的步驟圖。第18A圖、第18C圖、第18E 圖係截面圖,而第18B圖、第18D圖、第18F圖係平面圖。 第18A圖係沿第18B圖之A —A,線截取的截面圖。第18C圖 5 係沿第18D圖之A—A—線截取的截面圖。第18E圖係沿第 18F圖之a—A'線截取的截面圖。第19圖係顯示本實施形 態之半導體薄膜的結晶化方法的平面圖。此外,對於與第1 至第4實施形態之半導體薄膜的結晶化方法相同的構成要 素’賦與相同標號’並省略說明或者加以簡略。 10 本實施形態之半導體薄膜的結晶化方法的主要特徵在 於:於非晶矽膜14上形成設有縫隙50之介電體膜48,且掃 描雷射光束18,俾與縫隙50交又。 首先,與第1實施形態之半等體薄膜的結晶化方法一樣 地,於整面玻璃基板ίο上,依序形成矽氧化膜12和非晶矽 15 膜 14 〇 其次,藉例如CVD法,全面地形成介電體膜48。介電 體膜48可形成例如矽氧化膜。令介電體膜48之膜厚巾為入 /4n,或者λ (m+i) /4n。在此,n為介電體膜之折射率。 "電體膜48若是石夕氧化膜,則折射率η為1.42。λ為雷射光 2〇束之波長。雷射光束之波長λ為例如532nm。m為正的整 數。若將介電體膜48之膜厚依此設定,有介電體膜叫形成 之區域中,雷射光束18之反射率便成為極小值。因此,藉 著將介電體膜48之膜厚依此設定,可對非晶矽膜14充分^ 應雷射光束18。 28 594862 然後,與第1實施形態之半導體薄膜的結晶化方法—樣 地’進行用以脫氫之熱處理。 接下來,利用微影成像技術,於介電體膜48形成縫隙 5〇 (參照第18A圖)。縫隙50係連續地形成,俾由非晶矽膜 5 14之一邊端部到達另一邊端部(參照第19圖)。令縫隙50之 寬度W為例如10/zrn。 雷射光束18之反射率為極大值之介電體膜48之膜厚d2 為〇 ’或者又m/2n。由於本實施形態中,有縫隙50形成之區 域中’介電體膜48之膜厚d2為Onm,所以有縫隙50形成之區 10 域中,可藉大之反射率來反射雷射光束18。 接著,如第18B圖和第18C圖所示,掃描雷射光束18, 俾與縫隙50交叉。此時,可適當地設定雷射光束18之強度 #掃描速度,使形成有介電體膜48之區域中,非晶矽膜14 會橡化,且形成有縫隙50之區域中,非晶矽膜14不會熔化。 15 因此,藉本實施形態,當雷射光束18之照射區域18a與縫隙 5〇交又時,可阻礙結晶成長延續。 由於若將結晶成長延續之長度,設定成縮短某個程 度’則如前述者,膜剝離就傾向於不易產生,所以可一邊 防止膜剝離產生,一邊形成具有良質結晶之半導體薄膜。 20 又,即使膜剝離已產生,但當雷射光束18之照射區域18a與 縫隙50交叉時,還是可阻礙膜剝離延續。 因此,藉本實施形態,亦可高良率地形成具有良好結 晶之半導體薄膜而不必將非晶矽膜14形成島狀圖案。 (第6實施形悲) 29 594862 利用第20圖至第22圖說明本發明第5實施形態之半導 體薄膜的結晶化方法。第20圖係顯示本實施形態之半導體 薄膜的結晶化方法的步驟圖(之一)。第20圖係截面圖。第 21圖係顯示本實施形態之半導體薄膜的結晶化方法的步驟 5 圖(之二)。第21A圖、第21C圖、第21E圖係截面圖,而第 21B圖、第21D圖、第21F圖係平面圖。第21A圖係沿第21B 圖之A —線截取的截面圖。第21C圖係沿第21D圖之A — 線截取的截面圖。第21E圖係沿第21F圖之A — A —線截 取的截面圖。第22圖係顯示本實施形態之半導體薄膜的結 10晶化方法的平面圖。此外,對於與第1至第5實施形態之半 導體薄膜的結晶化方法相同的構成要素,賦與相同標號, 並省略說明或者加以簡略。 本實施形態之半導體薄膜的結晶化方法的主要特徵在 於:於非晶矽膜14上形成設有槽56之介電體膜48,且掃描 15 雷射光束18,俾與槽56交叉。 首先,與第1實施形態之半導體薄臈的結晶化方法一樣 地,於整面玻璃基板10上,依序形成矽氧化膜12和非晶矽 膜14。 其次,藉例如CVD法,全面地形成介電體膜牝。介電 20體膜48可形成例如矽氧化膜。令介電體膜48之膜厚山為入 /4η,或者λ (m+1) /4η。如前述者,若將介電體膜牦之 膜厚依此設定,有介電體膜48形成之區域中,雷射光束18 之反射率便成為極小值。因此,藉著將介電體膜牝之膜厚 依此設定,可對非晶矽膜14充分供應雷射光束18。 30 594862 地, 然後’與第1實施形態之半導體薄膜的結晶化方法 進行用以脫氫之熱處理。 一樣 接著,如第20B圖所示,藉例如旋轉 成光阻膜52。 塗布法,全面地形 5 然後,利職影祕技術,料_52,形成到㈣ 電體膜48之開口部54。開口部54係連續地形成,由非晶每 膜14之一邊端部到達另一邊端部。 曰曰 接下來,如第20C圖所示,藉著以光阻膜52為遮罩,勒 刻介電體膜48,形成槽56。雷射光束18之反射率為極大值Using FIGS. 13 through FIG. 15 illustrate the method of crystallizing the semiconductor of the third embodiment of the present invention is a thin film. Fig. 13 is a flowchart (part 1) showing a method for crystallizing a semiconductor thin film according to this embodiment. Figure 13 is a sectional view. Fig. 14 is a step 10 (No. 2) showing the crystallization method of the semiconductor thin film of this embodiment. Of FIG. 14A, FIG. 14C first, based on a sectional view of FIG. 14E, FIG. 14B and the first, second FIG. 14D, 14F of FIG plan view of the system. Fig. 14a is a cross-sectional view taken along line A-A 'of Fig. 14B. Figure 14C is a cross-sectional view taken along line A-A of Figure 14D. The first line in FIG. 14E of FIG. 14F of A-A " cross-sectional view taken line. Fig. 15 is a plan view showing a method of crystallizing the junction 15 of the semiconductor thin film of this embodiment. In addition, the same constituent elements as those of the crystallization method of the semiconductor thin film according to the first or second embodiment are given the same reference numerals, and the description is omitted or abbreviated. The main feature of the crystallization method for a semiconductor thin film according to this embodiment is that a part of the amorphous silicon film 14 is formed with a band made of the amorphous silicon film 14 on the surface of the amorphous silicon film 14 by partially etching the surface The laser beam 18 is scanned, and the beam pattern 44 intersects with the band pattern 44. First, in the same manner as the method for crystallizing a semiconductor thin film according to the first embodiment, a silicon oxide film 12 is formed on the entire glass substrate 10. Next, by a CVD method such as electrical polyethylene, the non-fully form a thicker film 24 Xi spar 14. Let the amorphous material be, for example, 30 nm. 4 'Soil crystallization method as in the first embodiment of the semiconductor thin film to a heat treatment for the dehydrogenation (refer to FIG. 13A). Who then, as FIG. 13B of the #, for example by spin coating, the resist film 42 into a full terrain. Next, the photoresist film 42 is formed into a band pattern by using a lithography imaging technique. Based resist film 42 is continuously formed force, reach the side end portion to serve non-spar 14 of the other side of the membrane evening ends. 10 Then, as shown on FIG. 13C, the resist film 42 as a mask to etch the amorphous film evening from 14 to a depth of 200nm from the surface of the membrane 14 of the non-spar evening. Thus an amorphous silicon film 14 to the surface of a belt-like pattern 14 of the amorphous silicon film 44 is formed. Let the width W of the stripe pattern 44 be, for example, 10 // m. Stripe pattern is formed continuously feed lines, it serves reach the other side end portion by the one side end portion 14 of the amorphous silicon film. Next, as shown in FIG. 14A, the photoresist film 42 is removed. 'After the first as shown in FIG. 14B and 14C, the scanning laser beams 18, 44 serve cross the stripe pattern. In the area formed by the stripe pattern 44, since the thickness of the amorphous silicon film 14 is made thicker by the stripe pattern 44, the heat capacity is large. Therefore, the amorphous silicon film 14 does not melt in a region where the stripe pattern 44 is formed. Therefore, although the laser beam 20 is irradiated region 18a and the belt-shaped pattern 18 of the cross 44, may hinder crystal growth continues. Since the crystal growth continues if the length is set to reduce an extent, then, as aforesaid, film peeling tends to less likely to occur, it is possible to prevent film exfoliation _ edge, while forming a semiconductor thin film having good quality of crystal. 25,594,862 and, even if the film has been peeled off is generated, but when the laser beam irradiation area 18 of the belt-shaped patterns 18a and 44 intersect, or may hinder the continuation of film peeling. Thus' evil shaped by this embodiment, the yield may be formed south semiconductor thin film having good crystallization of the amorphous silicon film 14 is formed without having an island pattern. 5 (fourth embodiment) the I. FIG. 16 and using the FIG. 17 described method of crystallizing the semiconductor of the fourth embodiment of the present invention is a thin film. Fig. 16 is a flowchart showing a method for crystallizing a semiconductor thin film according to this embodiment. 16A, 16C, and 16E are cross-sectional views, and FIGS. 16B, 16D, and 16F are plan views. 10 based on FIG. 16A FIG. 16B along the A - cross-sectional view taken along a line. FIG i6c based on cross-sectional diagram of FIG 16D taken along the line A -A-. Figure 16E is a cross-sectional view taken along line A-A 'of Figure 16F. 17 a plan view of FIG crystallization method based semiconductor thin film morphology of the present embodiment is displayed. In addition, a semiconductor film and crystallization of i to the third embodiment of the element 15 to the same configuration, and assigned the same reference numerals, and description thereof will be omitted or be simplified. The main feature of the method of crystallizing a semiconductor thin film according to the present embodiment in the form of a pattern composed of strip-to a metal film 46 is formed above said non-silicon film 14 of the said, and scanning the laser beam 18, and a stripe pattern crossing serve female. First, as in the method of crystallizing the semiconductor thin film according to the first aspect of 2〇 embodiment, the entire surface on the glass substrate 10, an oxide film are sequentially formed stone Xi Xi spar 12 and the non-membrane followed by 14 billion, for example, by a CVD method, Xi spar on the non-film 14 having a thickness of, for example, 1〇〇_ stone stone Xi Xi oxide film 57 of the oxide film 45. Xi stone with a non-oxide-based film membrane separation Xi spar 14 and the belt-shaped pattern constituted by a metal film 46. 26 594862 Then, a heat treatment for dehydrogenation is performed in the same manner as in the crystallization method of the semiconductor thin film of the first embodiment. Subsequently, a metal film opportunity Mine Act. A metal film may be used, for example, rely 鶬 film or a metal film high refining. 5 Next, the lithography imaging, Qing metal strip into a pattern (refer to FIG. 16A). Line stripe pattern is formed continuously, the other side end portion (see FIG. 17) reaches the side end portion serve film 14 of amorphous silicon. So that the pattern width W, for example, l0 / zm. In this way, a band pattern 46 made of a metal film is formed. 10 Next, as FIG. 16B and FIG 16C, the scanning laser beam 18, and serve a stripe pattern composed of intersecting metal film 46. The laser beam 18 can be reflected by the band pattern 46 in the area formed by the band pattern 46 made of metal 构成. Therefore, in the area where the stripe pattern 46 is formed, the amorphous silicon film 14 does not melt. Therefore, when the laser beam 18 is irradiated regions 18a pattern 46 and the strip 15 cross, it may hinder crystal growth continues. If the length of the crystal growth continuation is set to be shortened to a certain degree ', as described above, film peeling tends to be difficult to occur, so a semiconductor thin film with good crystals can be formed while preventing film peeling from occurring. Also, even if the film peeling has occurred, when the irradiation area 18a of the laser beam 18 intersects with the stripe pattern 46, the film peeling can be prevented from continuing. Therefore, according to this embodiment, a semiconductor thin film having good crystallinity can be formed with a high yield without having to form the amorphous silicon film 14 in an island-like pattern. (Fifth Embodiment sad shape) using FIGS. 18 and FIG. 19 illustrate the method of crystallizing the semiconductor fifth embodiment of the present invention 27594862 thin film. FIG 18 based on a process diagram showing a method of crystallizing a semiconductor thin film morphology of the present embodiment. Of FIG. 18A, FIG. 18C first, based on a sectional view of FIG. 18E, FIG. 18B and the first, second FIG. 18D, 18F of FIG plan view of the system. FIG 18A along a first line of A -A of FIG 18B, a sectional view taken along a line. Fig. 18C is a sectional view taken along line A-A- in Fig. 18D. Figure 18E is a cross-sectional view taken along the line AA 'of Figure 18F. Figure 19 a plan view of the crystallization method based semiconductor thin film morphology of the present embodiment is displayed. In addition, the same constituent elements as those of the crystallization method of the semiconductor thin film according to the first to fourth embodiments are given the same reference numerals, and the description is omitted or abbreviated. 10 The main feature of the crystallization method for a semiconductor thin film according to this embodiment is that a dielectric film 48 having a gap 50 is formed on the amorphous silicon film 14 and the laser beam 18 is scanned so that the radium intersects the gap 50. First, in the same manner as the crystallization method of the semi-isotropic thin film of the first embodiment, a silicon oxide film 12 and an amorphous silicon 15 film 14 are sequentially formed on the entire glass substrate ο. Secondly, for example, a CVD method is used to comprehensively地 Forming a dielectric film 48. The dielectric film 48 may be formed of, for example, a silicon oxide film. So that the dielectric film of a thickness of the towel 48 / 4n, or λ (m + i) / 4n. Here, n is the refractive index of the dielectric film. " If the electrical film 48 is a stone evening oxide film, the refractive index η is 1.42. λ is the laser beam of a wavelength of light 2〇. The wavelength λ of the laser beam is, for example, 532 nm. m is a positive integer. If the film thickness of the dielectric film 48 so set, the region where the dielectric film is formed of the call, the reflectance of the laser beam 18 becomes the minimum value. Thus, by the film thickness of the dielectric film 48 so set, it can be sufficiently amorphous silicon film on the laser beam should be 18 ^ 14. 28594862 Then, the crystallization method of the first embodiment of the semiconductor thin film - like the 'heat treatment for dehydrogenation of. Next, a slit 50 is formed in the dielectric film 48 using a lithography imaging technique (see FIG. 18A). Department of slits 50 formed continuously from the side end portion serve reaching amorphous silicon film 514 of the other side end portion (see FIG. 19). So that the slit width W 50 of, for example, 10 / zrn. The dielectric film thickness d2 of the reflectance of the laser beam 18 is a maximum value of 48 billion 'or and m / 2n. Since the present embodiment, the film thickness d2 'of the dielectric film is formed in the domain region of the slot 50 to 48. ONM, so there is a gap 10 of field region 50 is formed, may, by a large reflectivity of the reflected laser beam 18. Next, as FIG. 18B, and FIG 18C, the scanning laser beam 18, the slit 50 serve cross. At this time, the intensity of the laser beam appropriately set # 18 of the scanning speed, so that a region where the dielectric film 48, the amorphous silicon film 14 will be of rubber, and is formed in the region of slits 50, amorphous silicon The film 14 does not melt. 15 Accordingly, by the present embodiment, when the laser beam irradiation area 18a of the cross slit 18 and 5〇, may hinder crystal growth continues. If the length of the crystal growth continuation is set to be shortened to a certain degree ', as described above, film peeling tends to be difficult to occur, so a semiconductor thin film with good crystals can be formed while preventing film peeling from occurring. 20 and, even if the film has been peeled off is generated, but when the laser beam 18 is irradiated region 18a of the cross slit 50, or the film peeling may hinder continuation. Therefore, according to this embodiment, a semiconductor thin film having good crystallinity can be formed with a high yield without having to form the amorphous silicon film 14 in an island-like pattern. (Sixth Embodiment sad shaped) 29 594 862 20 using FIGS. 22 through FIG crystallization method described semiconductor fifth embodiment of the present invention is a thin film. Fig. 20 is a flowchart (part 1) showing a method for crystallizing a semiconductor thin film according to this embodiment. Figure 20 is a sectional view. 21 FIG 5 FIG line display step (second) method of crystallizing a semiconductor thin film morphology of the present embodiment. 21A, 21C, and 21E are cross-sectional views, and FIGS. 21B, 21D, and 21F are plan views. 21A along section line A of FIG. FIG. 21B - A cross-sectional view taken along a line. Of FIG 21C along line A of FIG. 21D - A cross-sectional view taken along a line. The first line in FIG. 21E 21F A section of FIG. - A - cross sectional view taken line. 22 A plan view of FIG 10 based semiconductor thin film crystallization method of the present embodiment aspect of display. In addition, the same constituent elements as those of the crystallization method of the semiconductor thin film according to the first to fifth embodiments are given the same reference numerals, and the description is omitted or abbreviated. The main feature of the method of crystallizing a semiconductor thin film of the present embodiment aspect in that: a groove formed in the dielectric film 4856 on the amorphous silicon film 14, 15 and scanning the laser beam 18, the grooves 56 serve cross. First, a semiconductor thin Ge crystallization method according to the first embodiment of the same manner, on the entire surface of the glass substrate 10, silicon oxide film 12 are sequentially formed and the amorphous silicon film 14. Next, a dielectric film 牝 is comprehensively formed by, for example, a CVD method. The dielectric body film 48 may be formed of, for example, a silicon oxide film. So that the dielectric film having a thickness of 48 to the mountain / 4η, or λ (m + 1) / 4η. As aforesaid, if the thickness of the dielectric film is set so Yak of the body, a dielectric region 48 is formed of the film, the reflectance of the laser beam 18 becomes the minimum value. Thus, by the film thickness of the dielectric film so female set, amorphous silicon film 14 can be sufficiently supplied to the laser beam 18. 30594862 manner, then 'crystallization method of the first embodiment of the semiconductor thin film to a heat treatment for dehydrogenation of. Similarly, as shown in Fig. 20B, for example, the photoresist film 52 is formed by being rotated. Coating method, comprehensive terrain 5 Then, Lili shadow technology, material _52, is formed to the opening 54 of the galvanic film 48. An opening portion 54 formed continuously lines, each of the side end portion of the amorphous film 14 to reach the other side of the end portion. Next, as shown in FIG. 20C, by using the photoresist film 52 as a mask, the dielectric film 48 is etched to form a groove 56. The reflectivity of the laser beam 18 is maximum

10 之介電體賴之膜厚d2,如前述者,為Q,或者Am/2n。本 實施形態中,將槽56之深度設定成令槽56正下方之介電體 膜48膜厚為又m/2n。如第22圖所示,槽56係形成由非晶矽 膜14之一邊端部到達另一邊端部。令槽56之寬度w為例如 10 // m 〇 15 接著,如第21A圖所示,除去光阻膜52。 之後’如第22圖所示’掃描雷射光束18,俾與槽56交 又。此時,可適當地設定雷射光束18之強度和掃描速度, 使沒有槽56形成之區域中,非晶石夕膜14會溶化,且有槽56 形成之區域中,非晶矽膜14不會熔化。因此,藉本實施形 2〇 態’當雷射光束18之照射區域18a與槽56交又時,可阻礙結 晶成長延續。 由於若將結晶成長延續之長度,設定成縮短某個程 度,則如前述者,膜剝離就傾向於不易產生,所以可一邊 防止膜剝離產生,一邊形成具有良質結晶之半導體薄膜。The film thickness d2 of the dielectric body 10 is Q, or Am / 2n, as described above. In this embodiment, the depth of the groove 56 is set so that the thickness of the dielectric film 48 immediately below the groove 56 is m / 2n. As shown in FIG. 22, line 56 is formed by the groove side end portion of the amorphous silicon film 14 to reach the other side end portion. The width w of the groove 56 so that, for example, 15 10 // m square Subsequently, as shown in FIG. 21A first, the resist film 52 is removed. After 'as shown in FIG. 22' 18 scanning the laser beam, and the groove 56 serve to pay. At this time, the intensity and scanning speed of the laser beam 18 can be appropriately set so that the amorphous silicon film 14 will be melted in the area where the groove 56 is not formed, and the amorphous silicon film 14 will not be formed in the area where the groove 56 is formed. It will melt. Thus, by this embodiment shaped 2〇 state 'when the post 56 is irradiated region 18a and the groove 18 of the laser beam and may hinder the continuation of the crystalline growth. If the length of the crystal growth continuation is set to be shortened to a certain degree, film peeling tends to be difficult to occur as described above, so that a semiconductor thin film with good crystals can be formed while preventing film peeling from occurring.

31 594862 又,即使膜剝離已產生,但當雷射光束18之照射區域18&與 槽56交叉時,還是可阻礙膜剝離延續。 因此,藉本實施形態,亦可高良率地形成具有良好結 晶之半導體薄膜而不必將非晶矽膜14形成島狀圖案。 (變形實施形態) 本發明並不限於前述實施形態,而是可作種種變形。 舉例而言,前述實施形態中,係說明由玻璃基板之表 面側照射雷射光束時之例,不過亦可由玻璃基板之裏面側 照射雷射光束。 又,前述實施形態中,係說明使用玻璃基板作為基板 時之例,不過基板並不限於玻璃基板,而可適當地使用一 切基板。 又,第2至第5實施形態中,係說明將槽36,56,帶狀圖 案44,46,或縫隙50形成由非晶矽膜14之一邊端部到達另一 15 邊端部時之例,不過槽36,56,帶狀圖案44,46,或縫隙50 的平面形狀並不僅限於此,如第1實施形態之變形例(之一) 至變形例(之5)所示,亦可適當地設定槽36,56,帶狀圖 案44,46,或縫隙5〇的平面形狀。 又’前述實施形態中,係說明藉著使非晶矽膜結晶, 20俾形成由矽構成之半導體薄膜時之例,不過結晶化之膜的 材料並不限於矽,亦可適用於使其他一切材料構成之膜結 晶而形成半導體薄膜的情形。 又’前述實施形態中,係說明使用Nd : YVO4雷射作為 雷射時之例,不過並不限於Nd: YVO4雷射,亦可使用例如 32 59486231,594,862 and, even if the film has been peeled off is generated, but when the laser beam irradiated area 18 of 18 & 56 when crossing the groove, or may hinder the continuation of film peeling. Therefore, according to this embodiment, a semiconductor thin film having good crystallinity can be formed with a high yield without having to form the amorphous silicon film 14 in an island-like pattern. (Modified Embodiments) The present invention is not limited to the foregoing embodiments, but can be modified in various ways. For example, the embodiment described above, based upon the embodiments described by the surface of the glass substrate of the laser beam irradiation side, but also from the inside of the glass substrate side of the laser beam is irradiated. Further, the embodiment described above, a glass substrate as described based upon embodiments of the substrate, but the substrate is not limited to the glass substrate, and can be suitably used a cut substrate. Further, the second to fifth embodiment, system 36, 56 will be described, strip patterns 44, 46, or when the slit groove 50 is formed in Example 15 of the other side end portion by the one side end portion of the amorphous silicon film 14 reaches However grooves 36, 56, 44, 46, the planar shape of a stripe pattern or slits 50 is not limited thereto, as a first modification of the embodiment aspect (one) to the modification example (5), can also be suitably setting grooves 36, 56, 44, 46 belt-shaped pattern, or the planar shape of the slit 5〇. And 'the foregoing embodiment, that the system described by amorphous silicon film is crystallized, when the cases 20 are formed to serve composed of a silicon semiconductor thin film, but crystallization of the material of the film is not limited to silicon, can also be applied to cause all other A case where a film made of a material crystallizes to form a semiconductor thin film. And 'the foregoing embodiment, based instructions Nd: YVO4 laser when the laser embodiment as, but not limited to Nd: YVO4 laser, for example, may also be used 32594862

Nd : YAG雷射、Nd : YID雷射等。 又,前述實施形態中,係使用矽氧化膜作為介電體膜 48 ’不過介電體膜48並不限於石夕氧化膜,亦可形成由其他 —切材料構成之介電體膜。 5 又,前述實施形態中,係於玻璃基板10和非晶矽膜14 之間形成矽氧化膜12,不過於玻璃基板1〇和非晶石夕膜14之 間形成之膜並不限於石夕氧化膜。例如,亦可於玻璃基板 和非晶矽膜14之間形成矽氧化膜和矽氮化的積層膜。 又,前述實施形態中,係藉著利用χ_γ平移台32使玻 10璃基板1〇移動,以掃描雷射光束18之照射區域18a,不過亦 可藉著使雷射光束18側移動,以掃描掃描雷射光束18之照 射區域18a。 又,前述實施形態中,係說明雷射光束18之點i8a之形 狀,即R?、射£域18a之形狀為擴圓形時之例,不過雷射光束 15 18之照射區域18&之形狀並不限於橢圓形,只要適當地設定 即可。 產業上可利用性 本發明之半導體薄膜的結晶化方法,其有用之點在於 可尚良率地形成結晶性良好之半導體薄膜而不必形成島狀 20 圖案。 【圖式簡單說明】 第1A〜F圖係顯示本發明第丨實施形態之半導體薄膜的 結晶化方法的截面圖和平面圖。 第2圖係顯示本發明第丨實施形態之半導體薄膜的結晶 33 化方法的平面圖。 第3圖係顯示結晶化裝置的概略圖。 第4A〜B圖係顯不雷射光束之點之形狀的平面圖,以及 顯不藉掃描雷射光束而獲得之矽結晶狀態的圖。 、>第5圖係顯示本發明第1實施形態之變形例(之一)之 半導體薄膜的結晶化方法的平面圖。 第6圖係顯示本發明第丨實施形態之變形例(之二)之 半導體薄膜的結晶化方法的平面圖。 第7圖係顯示本發明第1實施形態之變形例(之三)之 半導體薄膜的結晶化方法的平面圖。 第8圖係顯示本發明第1實施形態之變形例(之四)之 半導體薄膜的結晶化方法的平面圖。 第9圖係顯示本發明第丨實施形態之變形例(之五)之 半導體薄膜的結晶化方法的平面圖。 第10A〜C圖係顯示本發明第2實施形態之半導體薄膜 的結晶化方法的步驟圖(之一)。 第11A〜F圖係顯示本發明第2實施形態之半導體薄膜 的結晶化方法的步驟圖(之二)。 第12圖係顯示本發明第2實施形態之半導體薄膜的結 晶化方法的平面圖。 第13A〜C圖係顯示本發明第3實施形態之半導體薄膜 的結晶化方法的步驟圖(之一)。 第14A〜F圖係顯示本發明第3實施形態之半導體薄膜 的結晶化方法的步驟圖(之二 第15圖係顯示本發明第3實施形態之半導體薄膜的結 晶化方法的平面圖。 第16A〜F圖係顯示本發明第4實施形態之半導體薄膜 的結晶化方法的步驟圖。 第17圖係顯示本發明第4實施形態之半導體薄膜的結 晶化方法的平面圖。 弟18 A〜F圖係顯示本發明第5實施形態之半導體薄膜 的結晶化方法的步驟圖。 第19圖係顯示本發明第5實施形態之半導體薄膜的結 晶化方法的平面圖。 第20A〜C圖係顯示本發明第6實施形態之半導體薄膜 的結晶化方法的步驟圖(之一)。 第21A〜F圖係顯示本發明第6實施形態之半導體薄膜 的結晶化方法的步驟圖(之二 曰第22圖係顯不本發明第6實施形態之半導體薄膜的結 晶化方法的平面圖。 第23圖係顯示膜剝離的圖。 第24A〜B圖係顯示配列島狀圖案時的平面圖。 第25A〜C圖係顯示當使島狀圖案結晶而形成薄膜電晶 體時的步驟圖。 594862 【圊式之主要元件代表符號表】 10.. .玻璃基板 12,45…矽氧化膜 14.. .非晶矽膜 16,16\165,16〇,16(1,16150...縫 隙 18…雷射光束 18a...照射區域 20.. .雷射光源部 22.. .凹透鏡 24."鏡 26.28.. .圓柱透鏡 30…凸透鏡 32.. .X-Y平移台 34a...雷射光束所掃描過之區 域中的中央部份 34b...除中央部份之外的部份 36,56…槽 38,42,52…光阻膜 40,54···開口部 44.46.. ·帶狀圖案 104,104a,104b···島狀圖案 106.. .緣部 108.. .島狀圖案之中央部份 110.. .動作半導體膜 112…閘極 114.. .薄膜電晶體Nd: YAG laser, Nd: YID laser, etc. Further, the embodiment described above, the use of silicon-based oxide film as dielectric film 48 ', but the dielectric film 48 is not limited to stone Xi oxide film can also be formed by other - the dielectric film constituting the cut material. 5 Further, the embodiment described above, based on the glass substrate 10 and the amorphous silicon film 12 is formed between the silicon oxide film 14, but the film 14 is formed between the glass substrate and the non-spar 1〇 Xi Xi film is not limited to stone Oxide film. For example, a silicon oxide film and a silicon nitride film may be formed between the glass substrate and the amorphous silicon film 14. In the foregoing embodiment, the glass substrate 10 is moved by using the χ_γ translation stage 32 to scan the irradiation area 18a of the laser beam 18, but it is also possible to scan by moving the laser beam 18 side. The irradiation area 18a of the laser beam 18 is scanned. In the foregoing embodiment, the shape of the point i8a of the laser beam 18, that is, the shape of the R? And the radiation region 18a, is described as an example of a rounded shape, but the shape of the irradiation area 18 & of the laser beam 15 18 It is not limited to an oval shape, and may be set as appropriate. A method of crystallizing a semiconductor thin film may be utilized according to the present invention is industrially useful in that it may be formed of crystalline semiconductor film is still good yield without having to form an island pattern 20. [Brief description of the drawings] FIGS. 1A to F are cross-sectional views and plan views showing a crystallization method of a semiconductor thin film according to a first embodiment of the present invention. FIG. 2 is a plan view showing a method for crystallizing a semiconductor thin film according to a first embodiment of the present invention. Fig. 3 is a schematic view showing a crystallization apparatus. Figures 4A to B are plan views showing the shape of the points of the laser beam, and the views showing the crystal state of silicon obtained by scanning the laser beam. ≫ FIG. 5 is a plan view showing a method for crystallizing a semiconductor thin film according to a first modification of the first embodiment of the present invention. Fig. 6 is a plan view showing a method for crystallizing a semiconductor thin film according to a modification (second) of the first embodiment of the present invention. 7 a plan view of a crystallization method based modification (third) embodiment of the first aspect of the present invention, a semiconductor thin film display. Fig. 8 is a plan view showing a method for crystallizing a semiconductor thin film according to a modification (fourth) of the first embodiment of the present invention. A plan view of FIG. 9 based on the method of crystallizing a semiconductor thin film of a first embodiment of the present invention Shu modification of form (part five) of the display. FIG displaying step based on 10A~C figure (1) a method of crystallizing a semiconductor thin film of the second embodiment of the present invention. Figures 11A to F are step diagrams (No. 2) showing a crystallization method of a semiconductor thin film according to a second embodiment of the present invention. Figure 12 A plan view crystallization method based semiconductor thin film of the second embodiment of the present invention. FIG displaying step based on 13A~C figure (1) a method of crystallizing a semiconductor thin film according to the third embodiment of the present invention. FIG displaying step based on FIG 14A~F (crystallization method of a semiconductor thin film according to the third embodiment of the present invention, two lines of FIG. 15 is a plan view of the method of crystallizing a semiconductor thin film of a third form of embodiment of the present invention. The first 16A~ FIG displaying step F-based method of FIG crystallized semiconductor thin film according to the fourth embodiment of the present invention. FIG. 17 a plan view of the crystallization method based semiconductor thin film of a fourth form of embodiment of the present invention. FIG. 18 A~F lines showed brother FIG step crystallization method of a semiconductor thin film of the fifth embodiment of the present invention. FIG. 19 a plan view of the crystallization method based semiconductor thin film of the fifth embodiment of the present invention. FIG 20A~C based on a sixth embodiment of the present invention show FIG step (one of) the method of crystallizing the semiconductor thin film form. the first step 21A~F view appearing in FIG. (a method of crystallizing a semiconductor thin film of the sixth embodiment of the present invention, the first second is not significant to the present system 22 of FIG. crystallization method of the invention is a plan view of a semiconductor thin film of the sixth embodiment. FIG. 23 is a view showing the film peeling. 24A~B first plan view of FIG feature based pattern displayed Islands FIG 25A~C first lines showed that the island pattern when the crystallization step is formed in a thin film transistor in FIG. 594 862 [pigsty formula principal element symbol representing] Table 10 .. The glass substrate silicon oxide film 12, 45 ... 14 .. . 16, 16 amorphous silicon film \ 165,16〇, 16 (1,16150 ... slit 18 ... laser beam irradiation region 18a ... 20 ... .. laser beam source portions 22. 24. & quot concave ;. .. mirror 26.28 convex cylindrical lens 30 ... 32 .. .XY 34a ... translatable central laser beam scanned over the region of Taichung part 34b ... other than the central portion of the portion 36, 56 ... 38,42,52 ... groove opening portion of the resist film 40, 54 ··· · 44.46 stripe pattern .. 104,104a, 104b ··· island pattern 106 ... .. edge portion 108. island- central portion 110 of the pattern .. the operation of the semiconductor film 112 ... 114 .. gate thin film transistor

48…介電體膜 100.. .矽薄膜 102.. .膜剝離 3648 ... Dielectric film 100 ... Silicon film 102 ... Film peeling 36

Claims (1)

5 拾、申請專利範圍: 種半導體薄膜的結晶化方法,包含有· 於基板上形成半導體薄膜的步驟; 藉著於與該心阻礙結晶成長之部份之長向交 ί的方向掃描連續波之能量束,使該半導體薄膜結 10 曰曰的步 2·如申凊專利範圍第1項之半導 ,心干等體潯膜的結晶化方 -中别述形成帶狀之用以阻礙前述半導體薄膜 ^結晶成長之部份时驟具#於前料導體薄膜形 成縫隙的步驟, 又’前述使前述半導體薄膜結晶的步财,係於與 “縫隙之長向父叉之方向,掃描前述能量束。5 pick, patent range: the method of crystallizing the semiconductor film, there is a thin film-formed on a semiconductor substrate, comprising the step of; by crystal growth in the length of the portion of the heart preventing scanning of a continuous wave in the direction of the cross-ί The energy beam makes the semiconductor thin film junction step 10, such as the semi-conductor of the first patent application scope, the crystallization of the body stem film, etc.-forming a band to prevent the semiconductor mentioned above ^ crystallization step # film with conductive material prior to the step of film-forming slits, and 'so that the semiconductor thin the step Choi, based on the "father slit long in the direction of the fork, while scanning the energy beam part growth . 3.如申請專利範圍第1項之半導體薄膜的結晶化方 法,其中前述形成帶狀之用以阻礙前述半導體薄膜 之結晶成長之部份的步驟具有: 於剷述半導體薄膜上形成介電體膜的步驟丨及 於該介電體膜形成縫隙的步驟, 又,前述使前述半導體薄膜結晶的步驟中,係於與 該縫隙之長向交叉之方向,掃描前述能量束。 4·如申晴專利範圍第2 < 3項之半導體薄膜的結晶化 方法,其中岫述使前述半導體薄膜結晶的步驟中, 37 係於相對於前述縫隙之長向大致為 垂直之方向,掃 插前述能量束。 如申請專利範圍第2或3項之半導體薄膜的結晶化 方去’其中前述形成前述縫隙的步驟中,係連續地 形成前述縫隙,俾由前述半導體薄膜之一端部到達 另一端部。 •如申請專利範圍第2或3項之半導體薄膜的結晶化 方去,其中前述形成前述縫隙的步驟中,係斷續地 形成前述縫隙。 •如申請專利範圍第2或3項之半導體薄膜的結晶化 方法’其中前述形成前述縫隙的步驟中,係於與前 述縫隙之長向交叉之方向,相互隔開而形成多數之 前述縫隙, 又,前述使前述半導體薄膜結晶的步驟中,係掃描 月’J述能量束,俾前述能量束可依序與前述多數之前 述縫隙交叉。 8.如申請專利範圍第1項之半導體薄膜的結晶化方 法,其中前述形成帶狀之用以阻礙前述半導體薄膜 之結晶成長之部份的步驟具有藉著部份地蝕刻前述 半導體薄膜之表面,於前述半導體薄膜之表面形成 由前述半導體薄膜構成之帶狀圖案的步驟, 又,前述使前述半導體薄膜結晶的步驟中,係於與 該帶狀圖案之長向交叉之方向,掃描前述能量束。 9·如申請專利範圍第1項之半導體薄膜的結晶化方 38 法,其中前述形成帶狀之用以阻礙前述半導體薄膜 之、’、QB曰成長之部份的步驟具有於前述半導體薄膜上 形成由金屬膜構成之帶狀圖案的步驟, 又,前述使前述半導體薄臈結晶的步驟中,係於與 該帶狀圖案之長向交又之方向,掃描前述能量束。 10.如申請專利範圍第8或9項之半導體薄膜的結晶化 方法,其中前述使前述半導體薄膜結晶的步驟中, 係於相對於前述帶狀圖案之長向大致為垂直之方 向,掃描前述能量束。 10 U.如申請專利範圍第8或9項之半導體薄媒的結晶化 方法,其巾前述於前料㈣薄細彡成前述帶狀圖 案的步驟中’係連續地形成前述帶狀圖案,俾由前 述半導體薄膜之-端部到達另-端部。 15 12·如申請專利範圍第8或9項之半導體薄膜的結晶化 方法,其中前述形成前述帶狀圖案的 續地形成前述帶狀圖案。 係斷 13. 如申請專利範圍第8或9項之半導體薄膜的結晶化 20 八中如述形成則述帶狀圖案的步驟中,在认 與前述帶狀圖案之長向交叉之方向,相互而形 成多數之前述帶狀圖案, * > 二 =前述半導體薄膜結晶的步驟中,係掃描 、此篁束’俾前述能量束可依序與前述多數之帶 狀圖案交又。 14. 如申請專利範圍第1項之半導體薄膜的結晶化方 39 594862 法,其中前述使前述半導體薄膜結晶的步驟中,係 多次掃描前述能量束,俾前述能量束之照射區域之 執道可部份地重疊。 15.如申請專利範圍第1項之半導體薄膜的結晶化方 5 法,其中前述能量束係藉半導體雷射激發的雷射光 束0Step 3. The patentable scope of the method of crystallizing a semiconductor thin film applications, Paragraph 1, wherein the strip portion is formed to hinder the crystallization of the semiconductor thin film having a growth of: forming a dielectric film on said semiconductor thin blade Shu step and the step of the dielectric film to the step of forming a slit, and, to make the crystal of the semiconductor thin film, the slit lines in the long direction of the cross, the scanning energy beam. 4. The application Partly patentable scope of the 2 < method of crystallizing a semiconductor thin film 3, the Xiu said that the aforementioned semiconductor film crystallization step wherein, the 37 lines in respect of the long gap of a direction substantially perpendicular to the sweep interpolating the energy beam. For example, in the crystallization of a semiconductor thin film in the second or third aspect of the patent application, wherein in the aforementioned step of forming the slit, the aforementioned slit is continuously formed, from one end of the semiconductor film to the other. • The application step is crystallized semiconductor thin film side patentable scope of the 2 or 3 to wherein the formation of the slit in the slit lines are formed intermittently. • Step The crystallization method of the patent application range of the semiconductor thin film 2 or the 3 'wherein the forming the slit in a direction crossing the lines to, and spaced the length of the slit of the slit is formed of a majority, and , so that the crystallization of the semiconductor thin film step, scanning lines months' J said energy beam, said energy beam may serve sequentially intersecting with the majority of the slot. 8. The method for crystallization of a semiconductor thin film according to item 1 of the application, wherein the step of forming a strip-shaped portion to hinder the crystalline growth of the semiconductor thin film includes partially etching the surface of the semiconductor thin film, the step of forming a strip-shaped pattern of the semiconductor thin film, and, so that the crystallization step of the semiconductor thin film on the surface of the semiconductor thin film in the long line in the direction crossing the stripe pattern, the scanning the energy beam. 9. The patent application range of the semiconductor thin film 1 as item 38 square crystallization method in which the strip is formed of a semiconductor thin film for the hindering of ', QB step of growing said portion having the semiconductor thin film formed on the step of the belt-shaped pattern of the metal film, but also, so that the crystallization of the semiconductor thin Ge step, based on the long strip of the pattern and the cross direction, the scanning energy beam. 10. The application range of the method of crystallizing a semiconductor thin film of Patent 8 or 9, the semiconductor thin film in which the crystal so that the step, based on the relative length of the belt-shaped pattern is substantially perpendicular to a direction of scanning said energy bundle. 10 U. Step 8 The patentable scope of the method of crystallizing a semiconductor thin or medium 9 of the application, which the towel before the thin sheet material (iv) to the San stripe pattern of 'the lines are continuously formed in a stripe pattern, serve From the -end portion of the semiconductor film to the other-end portion. 15 12. The crystallization method for a semiconductor thin film according to claim 8 or 9, wherein the aforementioned strip-shaped pattern is continuously formed as described above. 13. Application system off in the crystallization range of 20 eight Patent said semiconductor thin film is formed of 8 or 9 of the ribbon-step pattern, with long recognition of the stripe pattern in a direction of intersecting each other and most of the stripe pattern is formed, * > = the two semiconductor thin-step, the scanning system, this beam Huang 'serve the energy beam sequentially and most of the stripe pattern and cross. 14. Patent application range of the semiconductor thin film 1, Paragraph crystallization method 39594862 side, so that the crystallization of the semiconductor thin film wherein in step, the plurality of scanning-based energy beam, to serve the executors of the energy beam irradiation area can be Partially overlap. 15. Patent application range of the semiconductor thin film 1, Paragraph 5 square crystallization method in which the energy beam-based laser excited by a semiconductor laser beam 0 4040
TW92113202A 2003-05-15 2003-05-15 Method for crystallizing semiconductor thin film TW594862B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92113202A TW594862B (en) 2003-05-15 2003-05-15 Method for crystallizing semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92113202A TW594862B (en) 2003-05-15 2003-05-15 Method for crystallizing semiconductor thin film

Publications (2)

Publication Number Publication Date
TW594862B true TW594862B (en) 2004-06-21
TW200425297A TW200425297A (en) 2004-11-16

Family

ID=34076174

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92113202A TW594862B (en) 2003-05-15 2003-05-15 Method for crystallizing semiconductor thin film

Country Status (1)

Country Link
TW (1) TW594862B (en)

Also Published As

Publication number Publication date
TW200425297A (en) 2004-11-16

Similar Documents

Publication Publication Date Title
KR101147223B1 (en) Laser irradiation apparatus and method for manufacturing semiconductor device
TWI402989B (en) Method of forming polycrystalline silicon thin film and method of manufacturing thin film transistor using the method
JP3778456B2 (en) Method for manufacturing insulated gate thin film semiconductor device
US7153359B2 (en) Crystalline semiconductor film and production method thereof, and semiconductor device and production method thereof
TW200304178A (en) Semiconductor element and semiconductor device using the same
KR101372340B1 (en) Process and system for laser annealing and laser-annealed semiconductor film
JP4169073B2 (en) Thin film semiconductor device and method for manufacturing thin film semiconductor device
US7651928B2 (en) Method for crystallizing a semiconductor thin film
US20070212860A1 (en) Method for crystallizing a semiconductor thin film
JP4169071B2 (en) Display device
TW594862B (en) Method for crystallizing semiconductor thin film
JP4169072B2 (en) Thin film semiconductor device and method for manufacturing thin film semiconductor device
KR101276150B1 (en) Process and system for laser annealing and laser-annealed semiconductor film
US7309645B2 (en) Semiconductor thin film crystallization method
JP3630593B2 (en) Semiconductor device, method for manufacturing semiconductor device, and liquid crystal display device
TW200307903A (en) Active-matrix type display device and method for manufacturing the same
JP3857085B2 (en) Thin film transistor and manufacturing method thereof
KR100642190B1 (en) Method for crystallizing semiconductor thin film
JP3842083B2 (en) Thin film transistor, manufacturing method thereof, and display device
US8507331B2 (en) Method of adjusting gap between bumps in pixel region and method of manufacturing display device using the method
KR101372869B1 (en) Process and system for laser annealing and laser-annealed semiconductor film
JP3842082B2 (en) Thin film transistor and manufacturing method thereof
JP3842072B2 (en) Method for manufacturing thin film transistor
JP2005123475A (en) Semiconductor thin film, its manufacturing method, and thin film transistor using thin film
JP2008071776A (en) Laser annealing apparatus, semiconductor film, semiconductor device and electrooptical apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees