玖、發明說明 【發明所屬之技術領域】 本發明是有關於一種動咸半 ^ 4十台,特別是指一種工作空 g space)大,且空間迷向仿真效果佳的空 向機。 【先前技術】 10 15 如第一圖所示’習知-種動感平台包含-可供-模擬 器6設置的上平台卜一下平台及三對裝設於該上、 下:台卜2之間的液壓致動器3、4、5,每一對液壓致 動益3、4、5的頂端是分別成對地連接於該上平台i的底 :,每-對液壓致動器3、4、5的底端則是分開地與該下 平台2的頂面連接,藉此’當操作者操控該模擬器6的中 央處理器而分別驅動該等液壓致動器3、4、5伸縮移動時 ,利用該等液錢動器3、4、5的伸縮搖擺組合,可使該 上平台1帶動該模擬器6產生模擬飛機俯仰(剛)、滾 轉(Γ〇11)、偏航(yaw)等動感作動。 、雖然,利用該等液藶致動器3、4、5的伸縮作動,可 、^使及上平。1產生動感作動的目的,但 時,該動感平台卻具有以下之缺失: A際使用 20 —、平台是一運動自由度(degree of freed〇m )為六 的空間機構’因此必須利用三組(六根)液屢致動器3、、 1、。:來拘束控制該上平台1的作動,然而,該等液壓致 4 5不僅會增加製作成本,且’組裝定位不易。 —、該上平台1同時受六根液壓致動器3、4、5的拘 限’且’該等液壓致動器3、4、5的底端並無法相對該下 5 59460^ 玖、發明說明(2 ) 平口 2私動,所以,該上平台^的運動空間調變能力差, 而工作空間有限,因此,該上平台1的上下俯仰角度、左 右滾轉角度、旋轉偏航角度一般只有25〜30度,如此, 例如§忒上平台1欲模擬360度偏航的空間迷向狀態時, 5 因為該上平台1的偏航角度只有25〜30度,所以,該上 平台1必須往復小角度(3〇度)旋轉偏航至少十二次, 方旎達到模擬360度偏航的動感,然而,由於該上平台工 單次的偏航角度小、加速持續時間短,導致該上平台i的 偏航加速感中斷不連續(中斷十二次),因此,該上平台 0 1的仿真動感不佳,而無法有效模擬空間迷向的偏航錯覺 ’同理’當該上平台1欲模擬大角度的俯仰與滾轉的空間 迷向狀態時,亦會產生相同的缺失。 二、當該上平台1欲模擬俯仰、滾轉或偏航等空間迷 向狀態時,均需同時控制三組(六根)液壓致動器3、4 5 、5 ’如此,不僅控制複雜且不便。 【發明内容】 因此,本發明之目的,即在於提供一種構造簡單、成 本低’且工作空間大而空間迷向仿真效果佳,並易於控制 之空間迷向機。 於是,本發明之空間迷向機,包含有一上平台、一下 平台、三第一致動器,及三第二致動器。·該下平台是相反 於該上平台,而間隔地設置於該上平台下方。該等第一致 動器是設置於該下平台上,該等第一致動器各具有一被驅 動部,且,該等被驅動部可分別沿一第一軸向、一第二軸 6 玖、發明說明(3 >; 向、一第三軸向往復移 、下平台之間,”笛/專第—致動器是設置於該上 。亥專第二致動器各具 可相對該固定端部上 口疋知邛,及一 部是分別可繞該第—㈣Γ移動端部,該等固定端 該等移動端部是分別可轉動地與該上平: 動Γ動端部分別相對所對應的該等固定端部上 台上下純移動端部可帶動該上平台相對該下平 一 4夕,而,當該等被驅動部分別沿該第一、二 10 ::軸:帶動對應的該等固定端部往復移動時,該等移動 可π動該上平台相對該下平台產生轉動。 【貫施方式】 本發明之前述以及其他技術内容、特點與優點,在以 下配合芩考圖式之一(數)較佳實施例的詳細說明中’將可 清楚的明白。 15 ,在提出詳細說明之前,要注意的是,在以下的說明中 類似的7L件疋以相同的編號來表示。 芩閱第一、二圖,為本發明之空間迷向機的一第一較 佳實施例,該空間迷向機包含:一上平台10、一下平台 拘束度均為二的萬向接頭30、三第-致動器40, 2〇 及二弟—致動器5〇。 *平σ 1 〇的尺寸大小是小於該下平台20,且可供 一座椅60設置於其上。 該下平台20是相.反於該上平台1〇,而與該上平台ι〇 互相間隔地設置於該上平纟1〇下方。 7 594609发明 、 Explanation of the invention [Technical field to which the invention belongs] The present invention relates to an air moving machine with a large amount of space, particularly an air machine with a large working space (g space) and a good space simulation effect. [Prior art] 10 15 As shown in the first picture, 'Knowledge-Kinetic platform includes-Available-Upper platform for simulator 6 and three platforms installed between the upper and lower: between platform 2 The hydraulic actuators 3, 4, and 5, the top ends of each pair of hydraulic actuators 3, 4, 5 are connected to the bottom of the upper platform i in pairs, respectively, and each-pair of hydraulic actuators 3, 4 The bottom ends of 5 and 5 are separately connected to the top surface of the lower platform 2, thereby 'when the operator controls the central processing unit of the simulator 6 and drives the hydraulic actuators 3, 4, and 5 to telescopically move, respectively. At this time, by using the telescopic swing combination of these liquid money devices 3, 4, and 5, the upper platform 1 can drive the simulator 6 to generate simulated aircraft pitch (rigid), roll (Γ〇11), and yaw (yaw ) Wait for action. Although, the use of the telescopic actuators 3, 4, and 5 of the telescoping action, can be used and flat. 1 The purpose of generating dynamic action, but this time, the dynamic platform has the following shortcomings: A. The use of 20 — the platform is a space mechanism with a degree of freedom of six (degree of freedom) six, so three groups ( Six) Liquid actuators 3, 1, 1. : To restrict and control the operation of the upper platform 1, however, the hydraulic pressure 4 5 will not only increase the production cost, but also the assembly and positioning is not easy. —, The upper platform 1 is restricted by six hydraulic actuators 3, 4, and 5 at the same time 'and' the bottom ends of these hydraulic actuators 3, 4, and 5 cannot be compared with the lower 5 59460 ^ 玖, description of the invention (2) Pingkou 2 moves privately. Therefore, the upper platform ^ has poor motion space modulation ability and limited working space. Therefore, the upper platform 1's pitch angle, left-right roll angle, and rotational yaw angle are generally only 25. ~ 30 degrees, so, for example, when § 忒 platform 1 wants to simulate a 360-degree yaw space disorientation, 5 because the yaw angle of the upper platform 1 is only 25 ~ 30 degrees, the upper platform 1 must reciprocate small. The angle (30 degrees) rotation yaw at least twelve times, Fang Yan reached the dynamics of simulating 360-degree yaw. However, due to the small yaw angle and short acceleration duration of the single platform worker, the platform i The yaw acceleration sense is interrupted discontinuously (twelve times), so the simulation dynamics of the upper platform 0 1 is not good, and it is impossible to effectively simulate the space-oriented yaw illusion. At high angles of pitch and roll, the Produces the same deletion. 2. When the upper platform 1 wants to simulate pitch, roll or yaw, it must control three groups (six) of hydraulic actuators 3, 4 5 and 5 at the same time. This is not only complicated and inconvenient to control . [Summary of the Invention] Therefore, the object of the present invention is to provide a space steering machine with simple structure, low cost, large working space, good space steering simulation effect, and easy control. Therefore, the space steering machine of the present invention includes an upper platform, a lower platform, three first actuators, and three second actuators. The lower platform is opposite to the upper platform and is spaced below the upper platform. The first actuators are disposed on the lower platform, each of the first actuators has a driven portion, and the driven portions can be respectively along a first axis and a second axis 6发明, description of the invention (3 > axially, a third axial reciprocating, between the lower platform, "flute / special-the actuator is set on this. The second actuator of the Hai special can be opposite The fixed end portion is known, and one is a movable end portion which can be rotated around the -㈣Γ, the fixed end and the moving end portion are respectively rotatably and flatly connected with the upper end: The upper and lower pure moving ends of the upper stage relative to the corresponding fixed ends can drive the upper platform relative to the lower level, and when the driven parts are respectively along the first and second 10 :: axis: drive the corresponding When the fixed ends move back and forth, the movements can move the upper platform relative to the lower platform. [Performance Mode] The foregoing and other technical contents, features, and advantages of the present invention are described below with reference to the drawings. The detailed description of one (number) of the preferred embodiments will be clearly understood. 15, Before detailing, please note that in the following description, similar 7L pieces are indicated by the same numbers. 第一 See the first and second pictures, which is a first preferred implementation of the space fan of the present invention. For example, the space steering machine includes: a universal joint 30 with an upper platform 10 and a lower platform with a constraint degree of two, a third-actuator 40, 20, and a second-actuator 50. * 平 σ The size of 10 is smaller than the lower platform 20 and can be provided with a seat 60 thereon. The lower platform 20 is in phase. In contrast to the upper platform 10, it is arranged at a distance from the upper platform ι0. Beneath the upper flat 1〇 7 594609
软禽發轉說明(斗I 該等萬向接頭3〇的頂^ H八 底面上。 頂而疋刀別固接於該上平台10的 該等第一致動器4〇 一致動II 40各且有、置於訂平台20上,該等第 合-、有—破驅動部41,在太廢#仓丨士 第一致動器40是分Μ 纟本^例中’該等 刀另J為一同步伺服線性馬達, 動部W則是分別為該等 ’達㈣被驅 t乐致動态40的動子。該耸妯防 動部4!可分別沿—第 動子。亥專被驅 平由π X1、一第二軸向χ2、一筮一 軸=往㈣動,在本實施例中,第一、二、二 ίο X疋互相夾角相交,而概呈三角形。 該等第二致動器50是設置於該 間,該等第二致動器50各具有一缸體51千:° 20之 體51内的伸縮桿52,及一可驅”二、一套設於該缸 體51上下— 及了艇動该伸縮桿52相對該缸 下伸鈿移動的从感應伺服 54,及一可知观:# 口疋*而部 15 55,在本=定端部54上下往復移動的移動端部 广戚部只&料,料固定端部54即為該等缸體5 1的 =和該等移動端部55即為該等伸縮桿5 , 該等固定端部Μ是分別可繞該第―、二、 、 地與相對應的該等被驅動部41枢接,該等 20 端部^分物編接頭料底端2為動 (圖:此:!操作者坐置於該座椅6°上並經-控制搖桿 (圖未-)透過-中央處理器(圖未示),驅 杯 致動器-的伸縮桿52時,該等移動端部55== :對應的該等固定端部54上下往復移 目 台相對該下平台20上下往復移動,而,當驅= 8 玖、發明說明C 5 )‘ .〜. .. 二::則被驅動部41時,該等被驅動部Μ可分別 總立 一軸向Xl、X2、X3帶動對應的該等固定 4在料動,以使料移動端部55帶動該上平台 相對該下平台20產生轉動。 10 柚^第四、五圖所示,當驅動其中-第二致動器50的 &桿52伸長,同時並驅動其餘的第二致動器%的伸縮 干52縮短時,即可使該上平纟1〇相對該下平台2〇產生 上仰的動感作動’反之,即可使該上平台1〇相對該下平 =0產生下俯的動感作動’如此,即可模擬飛機的俯仰 大心,而使操作者產生上下俯仰的空間迷向錯覺。 15 如第六圖所示’當驅動右側的第二致動器5〇的伸縮 桿52縮短,同時並驅動左側的第二致動器%的伸縮桿 52伸長時,即可使該上平台10相對該下平台20產生向 右滾轉的動感作動’反之’即可使該上平台1〇相對該下 平台20產生向左滾轉的動感作動,如此,即可模擬飛機 的滾轉狀態,而使操作者產生左右滾轉的空間迷向錯覺。 如第七圖所示,當驅動該等第一致動器4〇的被驅動 部“分別沿該第一、二、三軸向χ1、χ2、χ3同向移動’ 而產生類似繞該下平台20中心的逆時針方向轉動時,即 可使該上平台10相對該下平台20產生逆時針偏航的動感 作動,反之,即可使該上平台10相對該下平台2〇產生順 時針偏航的動感作動,如此,即可模擬飛機的偏航狀能, 而使操作者產生旋轉偏航的空間迷向錯覺。 經由以上的說明,可再將本發明的優點歸納如下: 9 20 594609 b - 6 -、本發明亦是—運動自由度為六的空間機構,但, 本發明是分別利用該等第一致動器40與該等第二致㈣ 5:來拘束控制該上平台10的作動,如此,與習知技藝相 車乂本毛月僅而女裝二根第二致動3 5G,因此,本發明不 僅較易組裝定位,且可降低製成本。 ίο 二、本發明該上平台10僅受三根第二致動器50的連 接拘限’且’該等第二致動㊄50的固定端部54更是可相 對該下平台20移動’所以,該上平台1Q的運動空間調變 能力佳’而具有較大的工作空間,且,根據發明人的實際 模擬,該上平纟1G的上下俯仰角度、左右滾轉角度、旋 轉偏航角更可達50〜60度(約為習知技藝的兩倍),如此 例如田u亥上平台10欲模擬36〇度偏航的空間迷向狀態 寸°玄上平σ 10僅需往復旋轉偏航六次,即能達到模擬 15 360度偏航的動感,因此,由於該上平台ι〇 |次的偏航 角度大、加速持續時間長,所以該上平台ig的偏航加速 感可連續不中m上平台1G的仿真動感佳,而可 有效模擬空間迷向的偏航錯覺,同理,該上平台1〇亦可 真實地模擬大角度的俯仰與滾轉的空間迷向錯覺。 二、當該上平台10欲模擬俯仰、滾轉等空間迷向狀 態時,僅需控制三根第二致動器50,而,當該上平台1〇 欲模擬偏航的空間迷向狀態時,則僅需控制該等第一致動 器40,因此,本發明在模擬空間迷向的狀態時,每次僅 需控制三個變數,即可達到所需的動感作動,故,與習知 技蟄每次均需控制六個變數相較,本發明不僅操控更為簡 10 20 玖、發明說明") 單’且可快速反應。 如第八圖所示,為本發明 一“一 1 第一較佳實施例,該第 一钬‘貫施例是類似於該第一 孕乂佳貝施例,其差異之處在 该第二較佳實施例更包含—旋轉台70,及一驅動馬 «轉台7G是可轉動㈣設於該上平台…該驅 動馬達80是裝設於該上平台 U的底面,而可驅動該旋轉 。70相對該上平台1〇產生36〇度的轉動。如此,亦可達 到與上述第一較佳實施例相同的目的與功敢。 10 —值得-提的是,本發明更可與一視效系統(例如視效 頭幻搭配使用,如此,即可更真實地模擬空間迷 覺。 歸納上述,本發明之空間迷向機,不僅構造簡單、成 本低’且:LL作空間大而空間迷向仿真效果佳,並易於控制 ’故確實能達到發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明中請專利 範圍及創作說明書内容所作之簡單的等效變化與修飾,皆 仍屬本發明專利涵蓋之範圍内。 20 11 玖、發明說明(8 ) 【圖式簡單說明】 第一圖是習知一種動感平台的立體示意圖; 第二圖是本發明之空間迷向機一第一較佳實施例的立 體外觀示意圖; 5 第三圖是該第一較佳實施例的機構簡圖; 第四圖是該第一較佳實施例的機構作動簡圖(一), 。兄明该第一較佳實施例的一上平台是呈上仰的狀態; 第五圖是該第一較佳實施例的機構作動簡圖(二), 巩明該上平台是呈下俯的狀態; 1〇 第六圖是該第一較佳實施例的機構作動簡圖(三), 况明該上平台是呈側向滾轉的狀態; 第七圖是該第一較佳實施例的機構作動簡圖(四), 說明該上平台是呈旋轉偏航的狀態;及 第八圖是本發明之空間迷向機一第二較佳實施例的立 15 體外觀示意圖。 12 594609 玖、發明說明(9 ) : ' 【圖式之主要元件代表符號簡單說明】 1 ................上平台 80……·……·驅動馬達 2 ..........下平台 3 ................液壓致動器 4 ............液壓致動器 5…·….........液壓致動器 6..............模擬器 10..........上平台 20··…·…·…下平台 30………,♦…萬向接頭 40 ..........*第一致動器 41 ..............被驅動部 xl…………"第一軸向 χ2............•♦第二軸向 χ3...........…第三轴向 50………·…·第二致動器 51 *...........缸體 52……,……,伸縮桿 53............AC感應伺服馬達 54…………··固定端部 55 ..............移動端部 60…··………座椅 70..............旋轉台 13Instructions for the rotation of soft birds (Bucket I, the top and bottom surfaces of the universal joints 30, the top actuators, and the first actuators 40, which are fixed to the upper platform 10, and the motion II 40 Each of them has been placed on the order platform 20, and the first-and-existing drive unit 41 has been broken, and the first actuator 40 is divided in the too waste #Warehouse. In this example, these tools are different J is a synchronous servo linear motor, and the moving part W is the mover of the dynamic drive 40, which is driven by each of them. The anti-moving part 4! Can be moved along the first mover. Hai Zhuan The driven plane is moved by π X1, a second axis χ2, and a single axis = forward motion. In this embodiment, the first, second, and second X 疋 intersect with each other, and they are almost triangular. The actuators 50 are arranged in the room. Each of the second actuators 50 has a cylinder body 51 thousand: telescopic rod 52 in the body 51 of ° 20, and a driveable "two, one set in the cylinder. The body 51 is up and down — and the inductive servo 54 that the boat moves the telescopic rod 52 relative to the lower part of the cylinder, and one can see: # 口 疋 * 而 部 15 55, which is reciprocating up and down in this = fixed end 54 &Amp; material The fixed end 54 is the cylinder block 51 and the moving end 55 is the telescopic rod 5. The fixed end M can be respectively wound around the first, second, ground, and phase. The corresponding driven parts 41 are pivotally connected, and the 20 ends ^ are divided into two parts. The bottom end 2 of the material is movable (Figure: This:! The operator sits on the seat 6 ° and controls the joystick (Not shown)-through the central processing unit (not shown), when driving the cup actuator-the telescopic rod 52, the moving ends 55 ==: the corresponding fixed ends 54 move the eyepiece up and down Reciprocating up and down with respect to the lower platform 20, and when driving = 8 玖, invention description C 5) '. ~. .. 2 :: When the driven parts 41 are driven, the driven parts M can stand on one axis respectively. Drive the corresponding fixed 4 to the feed to X1, X2, and X3, so that the moving end portion 55 of the feed drives the upper platform to rotate relative to the lower platform 20. 10 Pomelo ^ As shown in the fourth and fifth figures, when driving -When the & lever 52 of the second actuator 50 is extended and the remaining second actuators are driven to shorten the telescopic stem 52, the upper flat 纟 10 can be raised up relative to the lower platform 20. Dynamic action 'Conversely, you can make the upper platform 10 move downwards relative to the level = 0 to generate a dynamic action of pitching'. In this way, you can simulate the pitching heart of an aircraft, and cause the operator to create the illusion of spatial obliquity. As shown in the sixth figure, when the telescopic rod 52 driving the second actuator 50 on the right side is shortened and the telescopic rod 52% driven by the second actuator on the left side is extended, the upper platform 10 can be made relatively The lower platform 20 generates a right-handed motion to "right" to cause the upper platform 10 to make a left-handed motion relative to the lower platform 20. In this way, the rolling state of the aircraft can be simulated, so that The operator has the illusion of spatial confusion of rolling left and right. As shown in the seventh figure, when the driven part that drives the first actuators 40 “moves in the same direction along the first, second, and third axes χ1, χ2, and χ3, respectively”, a similar motion is generated around the lower platform. The counterclockwise rotation of the center of 20 can cause the upper platform 10 to generate a counterclockwise yaw motion relative to the lower platform 20; otherwise, the upper platform 10 can generate a clockwise yaw relative to the lower platform 20 In this way, the yaw-like energy of the aircraft can be simulated, and the operator can produce the illusion of space yaw of rotation and yaw. Through the above description, the advantages of the present invention can be summarized as follows: 9 20 594609 b- 6-The present invention is also a space mechanism with six degrees of freedom of movement, but the present invention uses the first actuator 40 and the second actuator 5: 5 to restrain and control the operation of the upper platform 10 In this way, it is only related to the know-how that this hairy month is only two women's second actuation 3 5G, therefore, the present invention is not only easier to assemble and position, and can reduce the cost. Ίο Second, the platform of the present invention 10 Limited only by connection of three second actuators 50 'and' this The fixed end portion 54 of the second actuating pin 50 can be moved relative to the lower platform 20 'so that the movement space of the upper platform 1Q has better modulation ability' and has a larger working space, and according to the actual simulation of the inventor The up and down pitch angle, left and right roll angle, and rotary yaw angle of the 1G 1G can reach 50 ~ 60 degrees (about twice the conventional skill). The degree of space yaw of the degree of yaw. ° Xuan Shangping σ 10 only needs to revolve and rotate yaw six times, that is, it can achieve the dynamic of 15 360 degrees yaw. Therefore, the yaw angle of the upper platform is ι0 | times. Large, acceleration duration is long, so the yaw acceleration of the platform ig can continuously miss the simulation dynamics of platform 1G on m, and it can effectively simulate the illusion of yaw on space. Similarly, the platform 〇 It can also realistically simulate the spatial illusion of pitching and rolling at large angles. 2. When the upper platform 10 wants to simulate pitching, rolling and other spatial disorientation states, it only needs to control three second actuators 50, and , When the upper platform 10 wants to simulate the swaying space-wandering state , Only the first actuators 40 need to be controlled. Therefore, when simulating a space-obsessed state, the present invention only needs to control three variables at a time to achieve the required dynamic action. The technology requires six variables to be controlled each time. Compared with the present invention, the control is not only simpler and easier to operate. 10 20 玖, the description of the invention ") single 'and can respond quickly. In the first preferred embodiment, the first embodiment is similar to the first pregnant Jiabei embodiment. The difference is that the second preferred embodiment further includes a rotary table 70 and a drive. The horse «turntable 7G is rotatably provided on the upper platform ... The drive motor 80 is installed on the bottom surface of the upper platform U and can drive the rotation. 70 rotates 36 degrees with respect to the upper platform 10. In this way, the same purpose and skill as the first preferred embodiment described above can be achieved. 10—It is worth mentioning that the present invention can be used in combination with a visual effects system (such as a visual effect illusion). In this way, the spatial illusion can be more realistically simulated. Simple structure, low cost, and: LL has a large space and good space-distortion simulation effect, and is easy to control, so it can indeed achieve the purpose of the invention. However, the above is only a preferred embodiment of the present invention. The scope of implementation of the present invention cannot be limited in this way, that is, any simple equivalent changes and modifications made according to the scope of the patent and the contents of the creative description in the present invention are still within the scope of the patent of the present invention. 20 11 发明 Description of the invention (8) [Schematic description] The first diagram is a perspective view of a conventional dynamic platform; the second diagram is a perspective view of the first preferred embodiment of the space steering machine of the present invention; the third diagram is A schematic diagram of the mechanism of the first preferred embodiment; a fourth diagram is a schematic diagram of the mechanism of the first preferred embodiment (a). status The fifth diagram is a schematic diagram of the mechanism of the first preferred embodiment (2), Gong Ming said that the upper platform is in a downwardly inclined state; 10 the sixth diagram is a schematic diagram of the mechanism of the first preferred embodiment (3) It is clear that the upper platform is in a state of rolling sideways; FIG. 7 is a simplified diagram of the mechanism of the first preferred embodiment (4), illustrating that the upper platform is in a state of rotational yaw; And the eighth figure is a schematic diagram of the appearance of the 15th body of the second preferred embodiment of the space fan of the present invention. 12 594609 发明, description of the invention (9): '[The simple description of the main elements of the diagram represents the symbol] ............... Upper platform 80 .................. Drive motor 2 .......... Lower platform 3 .......... ...... Hydraulic actuator 4 ............ Hydraulic actuator 5 ...... ......... Simulator 10 ............. Upper platform 20 ········ Lower platform 30 ……… , ♦… Universal joint 40 ..... ..... * First actuator 41 .............. Driven part xl ............ " First axis χ2 ......... ... • ♦ The second axis χ3 .............. The third axis 50 …… ..... 2nd actuator 51 * .............. Cylinder block 52 ......, ......, telescopic rod 53 ............ AC induction servo motor 54 ………… ·· Fixed end portion 55 .............. Moving end portion 60.. ....... Seat 70 ............ ..Rotary table 13