TW594353B - An method of improving color shift of liquid crystal display - Google Patents

An method of improving color shift of liquid crystal display Download PDF

Info

Publication number
TW594353B
TW594353B TW92132073A TW92132073A TW594353B TW 594353 B TW594353 B TW 594353B TW 92132073 A TW92132073 A TW 92132073A TW 92132073 A TW92132073 A TW 92132073A TW 594353 B TW594353 B TW 594353B
Authority
TW
Taiwan
Prior art keywords
pixel
region
electrode
electrodes
daylight
Prior art date
Application number
TW92132073A
Other languages
Chinese (zh)
Inventor
Dano Lin
Tingshien Jen
Original Assignee
Hannstar Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hannstar Display Corp filed Critical Hannstar Display Corp
Priority to TW92132073A priority Critical patent/TW594353B/en
Application granted granted Critical
Publication of TW594353B publication Critical patent/TW594353B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

A liquid crystal display has red pixels, green pixels and blue pixels. An effective spacing between a pixel electrode and a common electrode of each different color pixel is changed to modify an electric field thereof. The effective spacings of the red pixels are less than the effective spacings of the green pixels, and the effective spacings of the blue pixels are greater than the effective spacings of the green pixels. Voltage-transmittance curves of red pixels, green pixels and blue pixels therefore are substantially equal.

Description

594353 玖、發明說嘴 【發明所屬之技術領域】 置,且特別是有關於 本發明是有關於一種液晶顯示裝 種液晶顯示器之色偏的改善方法。 【先前技術】 液晶顯示器具有高書質,接 、 ^门旦貝體積小、重量輕、低電壓塌 動、低消耗功率及應用蔬圊声笪很594353 发明, invention talking mouth [Technical field to which the invention belongs], and more particularly, the present invention relates to a method for improving the color shift of a liquid crystal display and a liquid crystal display. [Previous technology] The LCD has a high book quality. It has a small volume, light weight, low voltage collapse, low power consumption, and low noise.

用靶固贗專優點。因此被廣泛應用方 中、小型可攜式電視、行動電 】切电沽攝錄放影機、筆記型1 腦、桌上型顯示器、以及投影電視等消費性電子或電腦^ 品,並已逐漸取代陰極射線管(cathode ray tube,cRT)i 為顯示器的主流。Use the target to fix the special advantages. Therefore, it is widely used in consumer electronics or computer products such as small and medium-sized portable TVs, mobile TVs, video recorders, notebooks, desktop monitors, and projection TVs. Replace the cathode ray tube (cRT) i as the mainstream of the display.

然而,大多數的液晶顯示器都會有色偏(c〇1〇r shift) 的現象,發生色偏的原因是因為液晶分子對於不同波長的 光線具有不同的穿透率。第丨圖係繪示習知液晶分子之驅 動氣壓與不同波長光線之穿透率的關係圖,其中橫軸係表 示液晶分子之驅動電壓,單位為伏特(V),以及縱軸係表 示液晶分子之穿透率,單位為百分比(%)。線段1 〇2、線 段1 04以及線段1 06係分別表示液晶分子被不同電壓驅動 時的紅光、綠光以及藍光穿透率。如第1圖所示,液晶分 子的穿透率會隨驅動電壓增加而上升。但是,在同一驅動 電壓時’液晶分子的紅光穿透率(線段1 0 2 )、綠光穿透率 (線段1 04)、藍光穿透率(線段1 〇6)並不相同。一般來說, 液晶分子對於波長越短的光線,如藍光,具有越高的穿透 6 594353 率 ο 紅、綠、藍三種原色在某一顏色中所佔的比例,可作 為一組色座標來代表該顏色。這組色座標為該顏色的三色 係數(trichromatic coefficient),其總和為1,且其中兩個 係數可被選取繪製成二維的色座標圖。第2圖係繪示習知 液晶顯示器之白色色階的色座標圖,其中線段2〇2係表示 第64白色色階212至第256白色色階214之色座標位置。 在理想狀況下,不同色階的白色,其色座標位置應該 相同。然而,在第2圖中,不同色階的白色,其色座標位 置並不一樣。如前所述,越高色階的白色,即液晶分子被 驅動於越高的穿透率時,其短波長光線所佔的比率越多, 此即色偏現象。再者,真正的純白色,其紅色、綠色、藍 色三者的比例必須相同,若白色中某一原色偏多,則其看 起來會略偏該原色。因此,習知的液晶顯示器,在不同色 階時其色彩會失真,並產生色偏的問題。 習知技術提出一種補償電路,以三組gamma設定來 個別σ又疋紅、綠、藍二色晝素區域之驅動電壓,使分別驅 動於不同電壓的二色晝素區域能夠以相同的穿透度來表 現-顏色的單一色階,如此來改善上述之色偏的問題。 第3圖係繪示習知技術之色階與光線穿透率之 gamma曲線圖,其中縱軸係表示液晶分子之穿透率,單 4為百刀比(/〇)’以及橫軸係表示色階,此色階則對應至 液曰曰刀子之驅動電壓。如第3圖所示,習知技術將對應至 色P自1 23與1 22之驅動電壓分別修正成對應色階i 2丨·5與 7 120.3之驅動迅壓,使得原本的gamma曲線被修正成 為gamma曲線304。 然而,此種習知技術,使用三組設定來分別 操作,色晝素區域,會增加液晶顯示器的製造成本。再 者,若要在原本規劃的色階之間增加新的内插色階,即增 加更精細的内插驅動電壓值,則其驅動積體電路中必須以 更夕的位元來表不修正後的驅動電壓資料。也就是說,盆 驅動積體電路中會使用資料擴充(⑽expansiQn)以及位 元縮減(bit reduction)等複雜的資料處理步驟來處理内插 的驅動電壓資料,這些都會增加驅動積體電路設計上的複 雜與困難度。 【發明内容】 習知之液晶顯示器,由於其液晶分子對於不同波長的 光線具有不同的穿透率,因此會產生色偏的問題。習知技 術係以三組gamma設定來分別驅動紅、、綠、藍三色畫素 區域,然、而這種方法不但設計上複雜困難,而且會增加製 造成本的負擔。 有鑑於此’本發明的目的就是在提供一種液晶顯示器 色偏的改。方/去使得紅色畫素區域之紅光穿透率電壓 曲線、綠色晝素區域之綠& &+ 一 Λ <、、、录先牙透率-電壓曲線以及藍色晝 素區域之I光牙透率-電壓曲線在任一,驅自冑$日夺皆實質 上相同。 本I月的#目的是在提供—種液晶顯示器的製造 594353 使得 方法,調整紅、綠、藍三色晝素區域中的電場強度 二色晝素區域之gamma曲線能夠重合在—起。 本發明的又一目的是在提供一種液晶顯示器,以改變 其晝素區域之電極結構來減少藍光穿透率並增加紅光穿 透率,如此不但較習知技術之設計更為簡單並可節省液 顯示器之製造成本。However, most liquid crystal displays have a color shift phenomenon. The color shift occurs because the liquid crystal molecules have different transmittances for different wavelengths of light. Figure 丨 shows the relationship between the driving pressure of the conventional liquid crystal molecules and the transmittance of light with different wavelengths. The horizontal axis represents the driving voltage of the liquid crystal molecules in volts (V) and the vertical axis represents the liquid crystal molecules. The transmission rate, the unit is percentage (%). Line 1 〇2, line 1 04, and line 1 06 represent the red, green, and blue light transmittances when the liquid crystal molecules are driven by different voltages. As shown in Figure 1, the transmittance of liquid crystal molecules increases as the driving voltage increases. However, the red light transmittance (line segment 102), green light transmittance (line segment 04), and blue light transmittance (line segment 106) of the liquid crystal molecules are not the same at the same driving voltage. Generally speaking, liquid crystal molecules have a higher transmission rate for light with shorter wavelengths, such as blue light. The ratio of the three primary colors of red, green, and blue to a certain color can be used as a set of color coordinates. Represents the color. This set of color coordinates is the trichromatic coefficient of the color, the sum of which is 1, and two of the coefficients can be selected to be drawn into a two-dimensional color coordinate map. Fig. 2 is a color coordinate diagram showing a white color gradation of a conventional liquid crystal display, wherein a line segment 202 indicates a color coordinate position of a 64th white color 212 to a 256th white color 214. Under ideal conditions, the color coordinates of white with different color levels should be the same. However, in Figure 2, the color coordinates of different white levels are not the same. As mentioned earlier, the higher the gradation of white, that is, when the liquid crystal molecules are driven to a higher transmittance, the more the proportion of short-wavelength light is occupied, this is the phenomenon of color misregistration. Furthermore, for true pure white, the proportions of the three colors of red, green, and blue must be the same. If there is more primary color in white, it will look slightly closer to that primary color. Therefore, the color of the conventional liquid crystal display is distorted at different color levels, and the problem of color shift occurs. The conventional technology proposes a compensation circuit that uses three sets of gamma settings to individually drive the red, green, and blue two-color celestial regions, so that the two-color celestial regions that are driven at different voltages can pass through the same To express-a single color gradation of color, so as to improve the above-mentioned problem of color cast. Fig. 3 is a graph showing the gamma curve and light transmittance of the conventional technology. The vertical axis represents the transmittance of the liquid crystal molecules, and the single 4 represents the hundred knife ratio (/ 〇) 'and the horizontal axis represents. The color scale corresponds to the driving voltage of the liquid knife. As shown in Figure 3, the conventional technique modifies the driving voltage corresponding to color P from 1 23 and 1 22 to the driving fast voltage corresponding to color levels i 2 丨 · 5 and 7 120.3, so that the original gamma curve is corrected. It becomes a gamma curve 304. However, this conventional technique uses three sets of settings to operate separately. The color and daylight region will increase the manufacturing cost of the liquid crystal display. Furthermore, if a new interpolation level is to be added between the originally planned color levels, that is, to increase the finer interpolation driving voltage value, the driver integrated circuit must be expressed in more recent bits. After the driving voltage data. In other words, the basin drive integrated circuit uses complex data processing steps such as data expansion (⑽expansiQn) and bit reduction to process the interpolated drive voltage data, which will increase the drive integrated circuit design. Complexity and difficulty. [Summary of the Invention] The conventional liquid crystal display has a problem of color shift due to its liquid crystal molecules having different transmittances for light of different wavelengths. The conventional technology uses three sets of gamma settings to drive the red, green, and blue pixel areas. However, this method is not only complicated and difficult to design, but also increases the burden on the manufacturing cost. In view of this, the object of the present invention is to provide a color shift improvement of a liquid crystal display. Square / go to make the red light transmittance voltage curve of the red pixel area, the green & & + a Λ <,,, the first tooth penetration rate-voltage curve and the blue day pixel area The light transmittance-voltage curve is substantially the same at any time. The purpose of this month # is to provide a method for manufacturing a liquid crystal display. 594353 enables the method to adjust the electric field strength in the red, green, and blue three-color daylight regions. The gamma curves of the two-color daylight regions can overlap. Another object of the present invention is to provide a liquid crystal display, which can reduce the blue light transmittance and increase the red light transmittance by changing the electrode structure of its daylight region, which is not only simpler and saves compared with the design of the conventional technology. Manufacturing cost of liquid crystal display.

根據本發明之上述目的,提出一種液晶顯示器色偏的 改善方法。本發明係調整液晶顯示器中紅色晝素區域、綠 色畫素區域以及藍色晝素區域之畫素電極與共用電極之 有效間距,使得紅色晝素區域之紅光穿透率-電壓曲線、 綠色畫素區域之綠光穿透率_電壓曲線以及藍色畫素區域 之藍光穿透率-電壓曲線實質上皆相同。 依照本發明一較佳實施例,上述之液晶顯示器為同平 面切換(In-Plane Switching,IPS)、超級同平面切換(super IPS)或是邊界電場切換(Fringe Field Switching,ffs)顯示 裔。在此類型的液晶顯示器中,紅色晝素區域、綠色晝素According to the above object of the present invention, a method for improving the color shift of a liquid crystal display is proposed. The invention adjusts the effective distance between the pixel electrode and the common electrode of the red day pixel area, the green pixel area and the blue day pixel area in the liquid crystal display, so that the red light transmittance-voltage curve and the green picture of the red day pixel area. The green light transmittance-voltage curve of the pixel region and the blue light transmittance-voltage curve of the blue pixel region are substantially the same. According to a preferred embodiment of the present invention, the above-mentioned liquid crystal display is an In-Plane Switching (IPS), Super In-Plane Switching (super IPS) or Fringe Field Switching (FFS) display. In this type of liquid crystal display,

區域或藍色晝素區域中之畫素電極與共用電極係位於同 一平面。 再者,在此較佳實施例中,紅色畫素區域之晝素電極 與共用電極之有效間距係小於綠色晝素區域之畫素電極 與共用電極之有效間距。藍色晝素區域之畫素電極與共用 電極之有效間距係大於綠色畫素區域之畫素電極與共用 電極之有效間距。 綜合以上所述,本發明改變液晶晝素區域中之電極結 9 構&加或減少不同顏色畫素區域之電場強度,以調整不 同顏,畫素區域之穿透度。相較於f知技術之設計複雜且 成本P貝本發明僅需利用調整畫素電極以及共用電極之 有=即可’使得二色晝素區域之gamma曲線能夠 重口在起。因此,本發明不但設計更為簡單並可節省液 晶顯示器之製造成本。 【實施方式】 在液晶晝素區域中,液晶分子係以一電場來控制其旋 轉的私度而此電%的強度則由液晶畫素區域之驅動電壓 以及其畫素電極與共用電極之有效間距來決定。在同一驅 動電壓下,當晝素電極與共用電極之有效間距越大時,其 所形成的電場越小,反之則所形成的電場越大。本發明即 依照此原理調整液晶顯示器中紅色畫素區域、綠色畫素區 域以及藍色畫素區域之畫素電極與共用電極之有效間 距’使得紅色畫素區域之紅光穿透率-電壓曲線、綠色畫 素區域之綠光穿透率—電壓曲線以及藍色畫素區域之藍光 穿透率-電壓曲線在不同色階時實質上皆相同。 在眾多液晶面板技術中,同平面切換(In_plane Switching,IPS)技術為改善視角的主流技術之一。第4A 圖係緣示習知同平面切換液晶晝素區域之示意圖。同平面 切換液晶畫素區域4〇〇係由一薄膜電晶體基板402、液晶 分子406以及一彩色濾光片基板4〇4所組成,其中薄膜電 晶體基板402上具有薄膜電晶體412,而彩色濾光片基板 10 404上則具有彩色濾光片424以及黑色矩陣422。 如第4A圖所示,用以驅動液晶分子406旋轉的晝素 笔極4 1 4以及共用電極41 6皆位於同一基板上,即薄膜電 晶體基板402。如此,晝素電極414以及共用電極416所 形成的電場方向434平行於基板4〇2與4〇4,因此被稱為 同平面切換。第4B圖係繪示梳狀畫素電極與共用電極之 上視圖。晝素電極414a與共用電極416a為梳狀(c〇mb shape)電極,彼此相互交錯排列。 近來年’同平面切換技術發展出其他類似的新穎技 術,例如:超級同平面切換(super Ips)或是邊界電場切換 (Fruige Field Switching,FFS),以獲得更大的視角、降低 色差、增加開口率、或是縮短反應時間。這些新穎技術使 用了不同於傳統梳狀電極的其他電極形狀,例如鋸齒狀 (zigzag)電極、人字型(herringb〇ne)電極或是山型(chevr〇n) 電極。 第4 C圖係繪示錄齒狀晝素電極與共用電極之上視 圖。晝素電極414b與共用電極416b為鋸齒狀(zigzag shape)電極,彼此相互交錯排列。第4D圖係繪示人字型 晝素電極與共用電極之上視圖。畫素電極414c與共用電 極41 6c為人字型(herringbone shape)電極,彼此相互交錯 排列。 本發明調整不同顏色液晶畫素區域之畫素電極與共 用電極之有效間距,使得不同顏色畫素區域之穿透率-電 1曲線在不同色階時實質上皆相同。如前所述,在相同驅 594353 動電壓下,短波長的光線(藍光)之穿透率高於長波長的光 線(紅光)之穿透率。若要得到相同的穿透率,紅色晝素區 域之電場強度必須大於綠色晝素區域之電場強度,且藍色 晝素區域之電場強度必須小於綠色畫素區域之電場強度。 第5圖係繪示本發明之一較佳實施例之示意圖。紅色 畫素區域502a、綠色畫素區域5〇2b以及藍色畫素區域 之畫素電極與共用電極為鑛齒狀㈣叫如㈣電 極,彼此相互交錯排列。紅色畫素區域—之畫素電極 5 14a與共用電極516a之有效間距為,綠色畫素區域 旦素甩極514b與共用電極516c之有效間距為 L2’藍色畫素區域5心之畫素電極514c與共用電極516c 之有效間距為L3。 在此較佳實施例中,若要使紅色畫素區域⑽之紅 光牙透率-電壓曲線盘綠声查去f 邑里素區域502b之綠光穿透率_ 電壓曲線實質上相同,則紅洛查喜广丄 ^ 則、、工色畫素區域502a之畫素電極 a 用電極5 1 6a之有效問部τ】 ^ 负文間距U必須小於綠色畫素 &或502b之畫素電極514b盥丘帝 ’、 ” 用屯極516b之有效間距 。右要使藍色畫素區域5〇2 綠色晝素區域5〇2…光穿二先牙透率-電麼曲線與 n 七 录先牙透率-電壓曲線實質上相 ,則i色畫素區域5 02 c之書辛雷朽 、 一系尾極514c與共用雷搞 516C之有效間距L3必須大於綠色全 電才 ^ ^ ^ U t 旦素區域5 02 b之書素 电極⑽與共用電極516b之有效間距a。 -f 此外,本發明之畫素電極以及庄 — 圖所示之鋸齒狀電極外,亦二4 ,除了第5 了為其他類型的電極,如上述 12 之梳狀電極、人字剖雪 ^ m n r 電極、山型電極等。本發明可應用於 使用同平面切換、韶纫π il 曰 之、、及冋千面切換或是邊界電場切換等技 術的液晶顯示器之中,夢 ^ 精由调整不同顏色液晶晝素區域之 與共用電極之有效間距,使得不同顏色畫素區域 牙料-電壓曲線在不同色階時實質上皆相同。 弟6圖係纷示本於 — π去; +1月之一較佳實施例之液晶分子之 驅動電壓與不同油具水 .,一 皮長先線之牙透率的模擬關係圖,其中橫 軸係表示液晶分子之鳃叙 . 4 , 卞之驅動電壓,單位為伏特(V),以及縱 軸係^液晶分子之穿透率,單位為百分比(%)。在第6 只知例中’綠色畫素區域之有效間距L2 | 13.75微 米’紅色畫素區域之有效間距L1為13 25微米,藍色畫 素區域之有效間距L3為14·25微米。線段6()2、線段6〇4 、、水奴606係分別表不紅色晝素區域、綠色畫素區域以 |色里素區域被不同電壓驅動時的紅光、綠光以及藍光 穿透率。 由第6圖可知,上述三種顏色晝素區域之畫素電極以 用電極之有效間距經過調整後,在同一驅動電壓時, 紅色畫素區域之紅光穿透率(線段6〇2)會大於綠色畫素區 域之綠光穿透率(線段6〇4),而綠色畫素區域之綠光穿透 率(線段604)則會大於藍色畫素區域之藍光穿透率(線段 606) 〇 ”值得/主思的是,第6圖為一模擬數據,僅考慮驅動電 壓與上述之有效間距所形成的電場與穿透率的關係,而第 1圖為一實際量測所得的數據,其穿透率除了被驅動電壓 13 14固定間距所影響外,還包含了光學散射等其他影響因 2。因此,將第1圖之原始實際數據與第6圖之模擬數據 Ό併可知,在實際應用時,本發明可以讓紅色畫素區域之 、、工光穿透率-電壓曲線、綠色晝素區域之綠光穿透率-電壓 線以及藍色晝素區域之藍光穿透率-電壓曲線在任一驅 動電壓時皆實質上相同。 、、、不a以上所述’本發明改變液晶晝素區域中之電極結 ^增加或減少不同顏色晝素區域之電場強度,以調整不 5顏色畫素區域之穿透度。相較於習知技術之設計複雜且 =本卬貝,本發明僅需利用調整畫素電極以及共用電極之 重=間距,即可,使得三色畫素區域之gamma曲線能夠 曰。在一起。因此,本發明不但設計更為簡單並可節省液 曰曰顯示器之製造成本。 以=然本發明已以一較佳實施例揭露如上,然其並非用 神限^本發明,㈣熟習1"匕技藝者,在不脫離本發明之精 譜L乾^内’當可作各種之更動與潤飾,因此本發明之保 °執圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 嗜县2讓本發明之上述和其他目的、特徵、和優點能更明 〇、、貝易Μ,下文特舉一較 罕又彳土實施例,並配合所附圖式,作詳 第1圖係緣 一鴒4液曰曰分子之驅動電壓與不同波長 14 594353 光線之穿透率的關係圖; 第2圖係繪示習知夜晶顯示器之白色色階的色座標 圖; 第3圖係繪示習知技術之色階與光線穿透率之 gamma曲線圖; 第4A圖係繪不習知同平面切換液晶畫素區域之示意 圖; 第4B圖係繪不梳狀晝素電極與共用電極之上視圖·, 第4C圖係繪示鋸齒狀畫素電極與共用電極之上視 圖, 第4D圖係繪不人字型晝素電極與共用電極之上視 圖; 第5圖係繪示本發明之一較佳實施例之示意圖;以及 第6圖係繪不本發明之一較佳實施例之液晶分子之 驅動電壓與不同波長光線之穿透率的模擬關係圖。 【元件代表符號簡單說明】 102、104、106 :線段 212 :第64白色色階 302、304 : gamma 曲線 400 :同平面切換液晶畫 402 :薄膜電晶體基板 4 0 6 ·液晶分子 4 1 4 :晝素電極 202 :線段 214 :第256白色色階 區域 404 :彩色濾光片基板 4 12 :薄膜電晶體 4 1 6 ·共用電極 15 594353 422 :黑色矩陣 424 :彩色濾光片 434 :電場方向 414a、414b、414c :晝素電極 416a、416b、416c :共用電極 502a :紅色晝素區域 502b :綠色晝素區域 502c :藍色晝素區域 514a、514b、514c :晝素電極 516a、516b、516c :共用電極 602 > 604 > 606 :線段 16The pixel electrode and the common electrode system in the region or blue daylight region are located on the same plane. Furthermore, in this preferred embodiment, the effective distance between the day pixel electrode and the common electrode in the red pixel region is smaller than the effective distance between the pixel electrode and the common electrode in the green pixel region. The effective distance between the pixel electrode and the common electrode in the blue day pixel area is greater than the effective distance between the pixel electrode and the common electrode in the green pixel area. To sum up, the present invention changes the structure of the electrodes in the liquid crystal pixel region & increases or decreases the electric field intensity of the pixel regions of different colors to adjust the penetration of different colors and pixel regions. Compared with the known technology, the design is complicated and the cost is low. The present invention only needs to adjust the pixel electrode and the common electrode to have the same value, so that the gamma curve of the two-color daylight region can be reproduced. Therefore, the present invention not only has a simpler design but also saves the manufacturing cost of the liquid crystal display. [Embodiment] In the liquid crystal pixel region, the liquid crystal molecules control their privacy by an electric field, and the intensity of this electric% is determined by the driving voltage of the liquid crystal pixel region and the effective distance between the pixel electrode and the common electrode. To decide. Under the same driving voltage, when the effective distance between the day electrode and the common electrode is larger, the smaller the electric field formed by it, and vice versa, the larger the electric field formed. The present invention adjusts the effective distance between the pixel electrode and the common electrode of the red pixel region, the green pixel region, and the blue pixel region according to this principle to make the red light transmittance-voltage curve of the red pixel region. The green light transmittance-voltage curve of the green pixel region and the blue light transmittance-voltage curve of the blue pixel region are substantially the same at different color levels. Among many LCD panel technologies, In-plane Switching (IPS) technology is one of the mainstream technologies to improve the viewing angle. FIG. 4A is a schematic diagram showing the conventional switching of the daylight region of the liquid crystal in the same plane. The same plane switching liquid crystal pixel area 400 is composed of a thin film transistor substrate 402, liquid crystal molecules 406, and a color filter substrate 400. The thin film transistor substrate 402 has a thin film transistor 412, and the color The filter substrate 10 404 includes a color filter 424 and a black matrix 422. As shown in FIG. 4A, the daytime pen electrodes 4 1 4 and the common electrode 4 16 for driving the liquid crystal molecules 406 to rotate are all located on the same substrate, that is, the thin-film transistor substrate 402. In this way, the electric field direction 434 formed by the day element electrode 414 and the common electrode 416 is parallel to the substrates 402 and 404, so it is called coplanar switching. Figure 4B is a top view of the comb-shaped pixel electrode and the common electrode. The day element electrode 414a and the common electrode 416a are comb-shaped electrodes, and are staggered with each other. In recent years, the same-plane switching technology has developed other similar novel technologies, such as super in-plane switching (super Ips) or boundary field switching (FFS) to obtain a larger viewing angle, reduce chromatic aberration, and increase openings. Rate, or shorten response time. These novel technologies use other electrode shapes than traditional comb electrodes, such as zigzag electrodes, herringbone electrodes, or chevrron electrodes. Figure 4C is a top view of the dentate daylight electrode and the common electrode. The day electrode 414b and the common electrode 416b are zigzag-shaped electrodes, and are staggered with each other. Figure 4D is a top view of a chevron electrode and a common electrode. The pixel electrode 414c and the common electrode 416c are herringbone shape electrodes, which are arranged alternately with each other. The present invention adjusts the effective distance between the pixel electrode and the common electrode of the liquid crystal pixel regions of different colors, so that the transmittance-electricity 1 curves of the pixel regions of different colors are substantially the same at different color levels. As mentioned earlier, under the same driving voltage of 594353, the transmittance of short-wavelength light (blue light) is higher than that of long-wavelength light (red light). In order to obtain the same transmittance, the electric field strength in the red daylight region must be greater than the electric field strength in the green daylight region, and the electric field strength in the blue daylight region must be smaller than that in the green pixel area. FIG. 5 is a schematic diagram illustrating a preferred embodiment of the present invention. The pixel electrodes and the common electrode of the red pixel area 502a, the green pixel area 502b, and the blue pixel area are ore-like, so-called Ruga electrodes, which are staggered with each other. The effective distance between the pixel electrode 514a and the common electrode 516a in the red pixel area is: the effective distance between the pixel 514b and the common electrode 516c in the green pixel area is L2 'and the pixel electrode with 5 hearts in the blue pixel area The effective distance between 514c and the common electrode 516c is L3. In this preferred embodiment, if the red light transmissivity-voltage curve of the red pixel region is to be checked for green sound, the green light transmittance_voltage curve of f ylisu region 502b is substantially the same, then Hongluo Chaxi 丄, the pixel electrode a for the pixel area 502a of the working color pixel area 502. The effective interval of the electrode 5 1 6a τ] ^ The negative text spacing U must be less than the green pixel & or 502b pixel electrode 514b Emperor Qiu ', "" uses the effective spacing of Tunji 516b. The right is to make the blue pixel area 502 and the green daylight area 502 ... the light penetrates through the tooth permeability-electricity curve and n. The permeation rate-voltage curve is substantially the same, then the i-color pixel region 5 02c is the book of thunder, the effective distance L3 between the tail 514c of the first series and the common thunder 516C must be greater than the green full power ^ ^ ^ U t The effective distance a between the pixel electrode ⑽ and the common electrode 516b in the plain region 5 02 b. -F In addition, the pixel electrode and the zigzag electrode shown in the picture of the present invention are also 2 and 4 except for the 5th It is designed for other types of electrodes, such as the comb electrode of the above 12, herringbone ^ mnr electrode, mountain electrode, etc. The present invention can be applied In liquid crystal displays that use in-plane switching, π il il, and 冋 thousand-plane switching or boundary electric field switching, etc., Dream ^ precisely adjusts the effective distance between the day-light element area of different colors and the common electrode Therefore, the tooth material-voltage curves of the pixel regions of different colors are substantially the same at different color levels. The figure 6 shows that this is in —π; The driving voltage of the liquid crystal molecules in a preferred embodiment of +1 month and Different oils and water. The simulation relationship diagram of the penetration rate of a skin long front line, where the horizontal axis represents the gills of the liquid crystal molecules. 4, the driving voltage of 卞, the unit is volts (V), and the vertical axis system ^ The transmittance of liquid crystal molecules, in units of percentage (%). In the sixth known example, the effective distance L2 of the green pixel area L2 | 13.75 microns, the effective distance L1 of the red pixel area is 13 25 microns, blue The effective distance L3 of the pixel area is 14.25 microns. The line segment 6 () 2, the line segment 604, and the water slave 606 respectively indicate that the red daylight region and the green pixel region are driven by different voltages in the chromin region. The red, green and blue light transmittance at the time. It can be seen from FIG. 6 that after the pixel electrodes of the three color daytime pixel areas are adjusted with the effective spacing of the electrodes, the red light transmittance (line segment 60) of the red pixel area is greater than the same driving voltage. The green light transmittance of the green pixel area (line segment 604), while the green light transmittance of the green pixel area (line segment 604) is greater than the blue light transmittance of the blue pixel area (line segment 606). It is worthwhile / thinking that Figure 6 is an analog data, which only considers the relationship between the electric field and the transmittance formed by the driving voltage and the effective distance mentioned above, and Figure 1 is the actual measured data. In addition to being affected by the fixed pitch of the driving voltage 13 14, the transmittance also includes other factors such as optical scattering2. Therefore, comparing the original actual data in Figure 1 and the simulation data in Figure 6, it can be known that, in actual application, the present invention can make the red pixel area, the light transmittance-voltage curve, and the green day pixel area The green light transmittance-voltage line and the blue light transmittance-voltage curve of the blue daylight region are substantially the same at any driving voltage. The above-mentioned method of the present invention changes the electrode junction in the liquid crystal daylight region ^ increases or decreases the electric field strength of different color daylight regions to adjust the penetration of the 5 color pixel regions. Compared with the conventional technology, the design of the technology is complicated and the present invention only needs to adjust the pixel electrode and the common electrode weight = spacing, so that the gamma curve of the three-color pixel region can be described. Together. Therefore, the present invention not only has a simpler design but also saves the manufacturing cost of the liquid crystal display. Therefore, the present invention has been disclosed as above with a preferred embodiment, but it is not limited to the present invention. Those skilled in 1 " dagger arts can do various things without departing from the precise spectrum of the present invention. Changes and retouching, therefore, the protection of the present invention shall be determined by the scope of the attached patent application. [Schematic description] Xixian 2 makes the above and other objects, features, and advantages of the present invention clearer. Beiyi M, the following is a rare and earthy embodiment, and cooperate with the attached drawings Figure 1 shows the relationship between the driving voltage of the 4 liquid molecules and the transmittance of light with different wavelengths of 14 594353 at different wavelengths; Figure 2 shows the color coordinates of the white color scale of the conventional night crystal display Figure 3 shows the gamma curve of the color scale and light transmittance of the conventional technology; Figure 4A shows the schematic diagram of switching liquid crystal pixel regions in the same plane; Figure 4B shows the non-comb shape Top view of day element electrode and common electrode. Figure 4C shows a top view of a zigzag pixel electrode and common electrode. Figure 4D shows a top view of a herringbone day electrode and common electrode. The drawing is a schematic diagram showing a preferred embodiment of the present invention; and FIG. 6 is a simulation relationship diagram of the driving voltage of liquid crystal molecules and the transmittance of light with different wavelengths according to a preferred embodiment of the present invention. [A brief description of the element representative symbols] 102, 104, 106: Line segment 212: 64th white color gradation 302, 304: Gamma curve 400: In-plane switching liquid crystal picture 402: Thin-film transistor substrate 4 0 6 · Liquid crystal molecules 4 1 4: Day element electrode 202: line segment 214: 256th white color gradation region 404: color filter substrate 4 12: thin film transistor 4 1 6Common electrode 15 594353 422: black matrix 424: color filter 434: electric field direction 414a , 414b, 414c: daylight electrodes 416a, 416b, 416c: common electrode 502a: red daylight region 502b: green daylight region 502c: blue daylight region 514a, 514b, 514c: daylight electrode 516a, 516b, 516c: Common electrode 602 > 604 > 606: segment 16

Claims (1)

594353 拾、申請專利範圍 且^ —種液晶顯示器色偏的改善方法,該液晶顯示器 :,紅色畫素區域、-綠色畫素區域以及-藍色晝素區 :各旦素區域内至少有-位於同-平面之-晝素電極 一一,、用電極,該改善方法至少包含: 凋正σ亥紅色晝素區域之該畫素電極與該共用電極之 哕:Γ:’使该紅色畫素區域之紅光穿透率-電壓曲線與 Μ -里素區域之綠光穿透率-電壓曲線實質上相同;以 及 口周整口亥i色畫素區域之該畫素電極與該共用電極之 有效間距,使該誌多者去P 0 + 之邑旦素E域之藍光穿透率_電壓曲線盥 該綠色畫素區域之綠光穿透率-電壓曲線實質上相同。’、 2·如申請專利範圍第1項所述之改善方法,其中該 紅色晝素區域之該晝素電極與該共用電極之有效間距係 小於該綠色畫素區域之該晝素電極與該共用電極之 間距。 其中該 間矩係 3·如申請專利範圍第丨項所述之改善方法, 藍色晝素區域之該畫素電極與該共用電極之有效 大於該綠色畫素區域之該晝素電極與該共用電極 間距。 17 594353 4. 如申請專利範圍第1項所述之改善方法,其中該 紅色晝素區域、該綠色晝素區域以及該藍色畫素區域之該 些晝素電極以及該些共用電極係為梳狀電極。 5. 如申請專利範圍第1項所述之改善方法,其中該 紅色晝素區域、該綠色晝素區域以及該藍色晝素區域之該 些晝素電極以及該些共用電極係為鋸齒狀電極。 6. 如申請專利範圍第1項所述之改善方法,其中該 紅色晝素區域、該綠色晝素區域以及該藍色晝素區域之該 些畫素電極以及該些共用電極係為人字型電極。 7. 如申請專利範圍第1項所述之改善方法,其中該 紅色晝素區域、該綠色畫素區域以及該藍色畫素區域之該 些晝素電極以及該些共用電極係為山型電極。 8. —種液晶顯示器的製造方法,該製造方法至少包 含: 形成一綠色晝素區域,該綠色晝素區域内至少有一位 於同一平面之一第一畫素電極與一第一共用電極,且該第 一畫素電極與該第一共用電極間相隔一第一有效間距; 形成一紅色畫素區域,該紅色畫素區域内至少有一位 於同一平面之一第二晝素電極與一第二共用電極,且該第 二晝素電極與該第二共用電極間相隔一第二有效間距,其 18 中該第二有效間距使該紅色晝素區域之紅光穿透率-電壓 曲線與該綠色畫素區域之綠光穿透率-電壓曲線實質上相 同;以及 形成一藍色畫素區域,該藍色晝素區域内至少有一位 於同一平面之一第三晝素電極與一第三共用電極,且該第 三晝素電極與該第三共用電極間相隔一第三有效間距,其 中該第三有效間距使該藍色晝素區域之藍光穿透率-電壓 曲線與該綠色畫素區域之綠光穿透率-電壓曲線實質上相 同。 9 ·如申請專利範圍第8項所述之製造方法,其中該 弟一有效間距係小於該第一有效間距。 10·如申請專利範圍第8項所述之製造方法,其中該 第三有效間距係大於該第一有效間距。594353 Patent application scope and a method for improving the color shift of a liquid crystal display, the liquid crystal display: red pixel area, -green pixel area, and -blue day pixel area: at least- Same-plane-day pixel electrodes one by one, using the electrode, the improvement method includes at least: the pixel electrode and the common electrode of the σ-hai red day pixel area: Γ: 'make the red pixel area The red light transmittance-voltage curve is substantially the same as the green light transmittance-voltage curve of the M-lisin region; and the pixel electrode and the common electrode of the pixel region of the entire color area are effective. The pitch makes the blue light transmittance-voltage curve of the E-domain of P 0 + go to P 0 +. The green light transmittance-voltage curve of the green pixel area is substantially the same. ', 2. The improvement method as described in item 1 of the scope of patent application, wherein the effective distance between the daylight electrode and the common electrode in the red daylight region is smaller than the daylight electrode and the common electrode in the green pixel area Distance between electrodes. The moment is the improvement method described in item 1 of the scope of the patent application. The pixel electrode and the common electrode in the blue pixel area are more effective than the pixel electrode and the common pixel in the green pixel area. Electrode spacing. 17 594353 4. The improvement method as described in item 1 of the scope of patent application, wherein the celestial electrodes and the common electrodes of the red celestial region, the green celestial region and the blue pixel region are combs状 electrode. 5. The improvement method according to item 1 of the scope of the patent application, wherein the celestial electrodes and the common electrodes of the red celestial region, the green celestial region and the blue celestial region are jagged electrodes . 6. The improvement method described in item 1 of the scope of patent application, wherein the pixel electrodes and the common electrodes of the red daylight region, the green daylight region and the blue daylight region are herringbone electrode. 7. The improvement method as described in item 1 of the scope of the patent application, wherein the red pixel regions, the green pixel regions, and the blue pixel regions of the celestial electrodes and the common electrodes are mountain electrodes. . 8. A manufacturing method of a liquid crystal display, the manufacturing method at least comprises: forming a green daylight region, at least one of the first pixel electrode and a first common electrode located on a same plane in the green daylight region, and the The first pixel electrode is separated from the first common electrode by a first effective distance; a red pixel region is formed, and at least one of the second pixel electrode and a second common electrode is located on the same plane in the red pixel region. And the second effective electrode is separated from the second common electrode by a second effective distance, wherein the second effective distance makes the red light transmittance-voltage curve of the red daylight region and the green pixel The green light transmittance-voltage curves of the regions are substantially the same; and a blue pixel region is formed in which at least one third day electrode and a third common electrode are located on the same plane, and A third effective distance is separated between the third daylight electrode and the third common electrode, and the third effective distance makes the blue light transmittance-voltage curve of the blue daylight region and the green The green light transmittance-voltage curves of the color pixel area are substantially the same. 9-The manufacturing method as described in item 8 of the scope of the patent application, wherein the effective distance between the two is less than the first effective distance. 10. The manufacturing method according to item 8 of the scope of patent application, wherein the third effective pitch is greater than the first effective pitch. 些晝素電極以及該些共用電極係為梳狀 I色晝素區域之該 電極。The celestial electrodes and the common electrodes are the electrodes in the comb-shaped I-color celestial area. 些晝素電極以及該些共用電極係為鋸齒狀電極 12.如申請由心,# 色晝素區域、 19 Μ請㈣範圍第8項所述之製造方法,其 、、、工色畫素區域、今终洛查 人 此查夸^ 亥、4色畫素區域以及該藍色晝素區域之該 二且素電極以及該些共用電極係為人字型電極。 ^如申請專利範圍第8項所述之製造方法,其中該 此查:。區域、該綠色晝素區域以及該藍色晝素區域之該 二旦素電極以及該些共用電極係為山型電極。 15· 種液晶顯示器,至少包含: —平:綠色畫素區域,該綠色晝素區域内至少有-位於同 之—第一晝素電極與一第一共用電極,且該第一書 一 ” δ亥苐一共用電極間相隔一第一有效間距; 一、,、工色晝素區域,該紅色晝素區域内至少有一位於同 平面之一第二畫素電極與一第二共用電極,且該第二畫 素電極與該第二共用電極間相隔一第二有效間距,其中該 鱼上有放間距使该紅色晝素區域之紅光穿透率-電壓曲線 /、λ、、表色晝素區域之綠光穿透率-電壓曲線實質上· 以及 、、 j , 一藍色晝素區域,該藍色晝素區域内至少有一位於同 平面之一第三晝素電極與一第三共用電極,且該第三畫 素電極與該第三共用電極間相隔一第三有效間距,其中該 第二有效間距使該藍色晝素區域之藍光穿透率_電壓曲線 與邊綠色晝素區域之綠光穿透率_電壓曲線實質上相同。 20 594353 16.如申請專利範圍第1 5項所述之液晶顯示器,其 中該第二有效間距係小於該第一有效間距。 1 7.如申請專利範圍第1 5項所述之液晶顯示器,其 中該第三有效間距係大於該第一有效間距。 1 8.如申請專利範圍第1 5項所述之液晶顯示器,其 中該紅色晝素區域、該綠色晝素區域以及該藍色晝素區域 之該些晝素電極以及該些共用電極係為梳狀電極。 1 9.如申請專利範圍第1 5項所述之液晶顯示器,其 中該紅色畫素區域、該綠色畫素區域以及該藍色畫素區域 之該些畫素電極以及該些共用電極係為鋸齒狀電極。 20.如申請專利範圍第15項所述之液晶顯示器,其 中該紅色晝素區域、該綠色晝素區域以及該藍色晝素區域 之該些晝素電極以及該些共用電極係為人字型電極。 2 L如申請專利範圍第1 5項所述之液晶顯示器,其 中該紅色晝素區域、該綠色晝素區域以及該藍色晝素區域 之該些晝素電極以及該些共用電極係為山型電極。 21These day electrodes and these common electrodes are zigzag electrodes. 12. If you apply for the heart, # 色 日 素 区, 19 Μ Please refer to the manufacturing method described in item 8 of the range, and 3. At the end of this year, the people in Luocha are looking at the picture, the four-color pixel area and the two blue electrodes and the common electrode are herringbone electrodes. ^ The manufacturing method as described in item 8 of the scope of patent application, wherein: The two dendron electrodes and the common electrodes of the region, the green daylight region and the blue daylight region are mountain electrodes. 15. · Liquid crystal display, at least:-flat: green pixel area, at least in the green daylight area-located in the same-the first daylight electrode and a first common electrode, and the first book one "δ A common effective electrode is separated by a first effective distance from the common electrode. First, the working color daylight region, the red daylight region has at least one second pixel electrode and a second common electrode located on the same plane, and the The second pixel electrode is separated from the second common electrode by a second effective distance, and the fish is provided with a distance to make the red light transmittance-voltage curve of the red daylight region /, λ, and surface color daylight The green light transmittance-voltage curve of the region is substantially · and, j, a blue daylight region, at least one of the third daylight electrode and a third common electrode in the same plane in the blue daylight region. And the third pixel electrode is separated from the third common electrode by a third effective distance, wherein the second effective distance makes the blue light transmittance_voltage curve of the blue daylight region and the edge green daylight region Green light transmittance _ voltage curve essence The same as above. 20 594353 16. The liquid crystal display according to item 15 of the scope of patent application, wherein the second effective pitch is smaller than the first effective pitch. 1 7. The liquid crystal according to item 15 of the scope of patent application The display, wherein the third effective pitch is greater than the first effective pitch. 1 8. The liquid crystal display according to item 15 of the scope of patent application, wherein the red daylight region, the green daylight region and the blue daylight region The daytime pixel electrodes and the common electrodes in the pixel area are comb electrodes. 1 9. The liquid crystal display according to item 15 of the scope of patent application, wherein the red pixel area, the green pixel area, and the The pixel electrodes and the common electrodes in the blue pixel area are zigzag electrodes. 20. The liquid crystal display according to item 15 of the scope of patent application, wherein the red daylight area, the green daylight area and The celestial electrodes and the common electrodes in the blue celestial region are herringbone electrodes. 2 L The liquid crystal display according to item 15 of the patent application scope, wherein the red celestial region, the The plurality of pixel electrodes day daytime color pixel region and a blue pixel region day of the plurality of common electrode lines, and a mountain-type electrode 21
TW92132073A 2003-11-14 2003-11-14 An method of improving color shift of liquid crystal display TW594353B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92132073A TW594353B (en) 2003-11-14 2003-11-14 An method of improving color shift of liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92132073A TW594353B (en) 2003-11-14 2003-11-14 An method of improving color shift of liquid crystal display

Publications (1)

Publication Number Publication Date
TW594353B true TW594353B (en) 2004-06-21

Family

ID=34076714

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92132073A TW594353B (en) 2003-11-14 2003-11-14 An method of improving color shift of liquid crystal display

Country Status (1)

Country Link
TW (1) TW594353B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683992B2 (en) 2007-08-02 2010-03-23 Au Optronics Corporation Multi-domain liquid crystal display
US7924354B2 (en) 2008-04-30 2011-04-12 Au Optronics Corp. Liquid crystal display panel and pixel structure thereof
US8159426B2 (en) 2005-02-03 2012-04-17 Chimei Innolux Corporation Organic light emitting display devices and methods of rendering images thereof
TWI402590B (en) * 2008-12-26 2013-07-21 Chunghwa Picture Tubes Ltd Liquid crystal display device for improving color washout effect
TWI547745B (en) * 2014-03-14 2016-09-01 群創光電股份有限公司 Liquid crystal display panel and pixel cell circuit
US10054830B2 (en) 2005-12-05 2018-08-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8159426B2 (en) 2005-02-03 2012-04-17 Chimei Innolux Corporation Organic light emitting display devices and methods of rendering images thereof
US10054830B2 (en) 2005-12-05 2018-08-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US7683992B2 (en) 2007-08-02 2010-03-23 Au Optronics Corporation Multi-domain liquid crystal display
US7924354B2 (en) 2008-04-30 2011-04-12 Au Optronics Corp. Liquid crystal display panel and pixel structure thereof
TWI402590B (en) * 2008-12-26 2013-07-21 Chunghwa Picture Tubes Ltd Liquid crystal display device for improving color washout effect
TWI547745B (en) * 2014-03-14 2016-09-01 群創光電股份有限公司 Liquid crystal display panel and pixel cell circuit

Similar Documents

Publication Publication Date Title
WO2018121305A1 (en) Liquid crystal display device
RU2660628C1 (en) Liquid crystal panel and control method for such panel
US11120753B2 (en) Liquid crystal display and method for driving same
CN102725676B (en) Liquid crystal indicator
EP2487528A1 (en) Liquid crystal display device and driving method thereof
CN104616631B (en) Display method and device for MVA (multi-domain vertical alignment) wide viewing angle LCD (liquid crystal display) screen
US7522127B2 (en) Driving method for driving a display device including display pixels, each of which includes a switching element and a pixel electrode, display device, and medium
US11348550B2 (en) Driving method of display panel and display device
CN106154658B (en) Array substrate, display panel, display device and design method of display panel
CN104867471B (en) A kind of RGB turns the method, apparatus and RGBW display equipment of RGBW
US11295679B2 (en) Method and apparatus for compensating view chromatic aberration of display device and display device
US20120001951A1 (en) Liquid crystal display
TWI536338B (en) Liquid crystal display device and driving method of the same
CN109461400B (en) Sub-pixel rendering method and device for converting RGB (red, green and blue) image into RGBW (red, green and blue) image
US10679575B2 (en) Drive method and apparatus of display apparatus, and display apparatus
CN104900205A (en) Liquid-crystal panel and drive method therefor
CN107978289A (en) The driving method and driving device of a kind of display device
US10825401B2 (en) Method and device for compensating viewing angle chromatic aberration of display device, and display device
WO2019127669A1 (en) Display driving method and apparatus
US9401115B2 (en) Liquid crystal display with a higher luminance sub-pixel including controllable light emission subsections
TW201418849A (en) Display for generating uniform brightness image
CN107863084A (en) The driving method and drive device of a kind of display device
WO2019006842A1 (en) Driving method for display panel and display device
TW594353B (en) An method of improving color shift of liquid crystal display
US11138942B2 (en) Driving method of display module, driving system thereof, and driving device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees