TW593653B - Medium having a high heat transfer rate - Google Patents

Medium having a high heat transfer rate Download PDF

Info

Publication number
TW593653B
TW593653B TW90119783A TW90119783A TW593653B TW 593653 B TW593653 B TW 593653B TW 90119783 A TW90119783 A TW 90119783A TW 90119783 A TW90119783 A TW 90119783A TW 593653 B TW593653 B TW 593653B
Authority
TW
Taiwan
Prior art keywords
heat transfer
dichromate
transfer medium
silver
potassium
Prior art date
Application number
TW90119783A
Other languages
Chinese (zh)
Inventor
Yuzhi Qu
Original Assignee
New Qu Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Qu Energy Ltd filed Critical New Qu Energy Ltd
Priority to TW90119783A priority Critical patent/TW593653B/en
Application granted granted Critical
Publication of TW593653B publication Critical patent/TW593653B/en

Links

Landscapes

  • Paper (AREA)

Abstract

Disclosed is a heat transfer medium having high heat transfer rate, being useful in even wider fields, simple in structure, easy to made, environmentally sound, and capable of rapidly conducting heat and preserving heat in a highly efficient manner. Further disclosed are a heat transfer surface and a heat transfer element utilizing the heat transfer medium.

Description

593653 經濟部中央標準局員工消費合作社印策 A7 B7 五、發明説明(1) 發明領域 本發明係關於一種高傳熱速率熱傳介質、使用本發明 熱傳介質之熱傳表面與元件。 發明背景 有效地將熱由某地傳遞至另一地一直是工業生產乃至 於人類生活各個層面所面臨的問題。有時需要快速地傳 導熱並將其移除,像是使半導體晶片保持冷卻,而有時 則需快速地熱傳導熱量並將其存留使用,如自爐中發散 熱量。無論是移除亦或是存留使用,熱導熱量所用之材 料限制了熱傳導的效率。 舉例來說,使用熱管路(heat pipe)來導熱為眾所周知的 例子。熱管路操作之熱傳原理係經由其内含液質載體之 質量轉移,以及載體於一封閉迴路管線中從液態至汽態 之相變化。熱量之吸收,係於封閉迴路管路中的一端, 藉由汽化液質載體來達成,而於他端以凝結此載體來釋 放熱量。雖然與固體金屬桿相較,熱管路改善了熱傳導 效率,但熱管路卻需要液態/汽態載體的循環流動且受限 於載體相關之汽化/凝結溫度。因此,熱管路之軸向熱傳 導速率會進一步受限於液體汽化潛熱的量值以及液態與 汽態間循環變態的速率。再者,熱管路本質上必會發生 對流因而造成熱損失,以致降低熱效率。一般可接受的 觀念是,當兩個不同溫度之物質放在一起,較熱物質的 -4- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) ϋ ·1>11 ml mr.n an-—— anil HIV —m ml 21— .m 191 —HI— ^ —r nn HI·— mu nn 11-1 ^ (請先閱讀背面之注意事項再填寫本頁) 593653 五___ 經濟部中央標準局員工消費合作社印製 A7 B7 發明説明(2) 溫度下降而較冷物質的溫度上升。當熱由熱輸導管較熱 的一端傳遞至較冷的一端時,可獲得之熱量會有損失, 這是因為輸導管材料的導熱能力、輸導管較冷部份的加 熱過程、以及散至大氣中的熱損失所致。 為突破熱傳導材料本身的限制,發明人稍早於2〇0〇年1〇 月17日獲頒之美國專利第6,132,823號中所揭示一種熱傳介 質組成及製備方法。 於該專利中,熱傳介質係由沈積於一基材上之三層結 構所組成。前兩層是以曝置於輸導管内壁上之溶液所製 成。第三層則為包含不同組合之粉末。第一層係配置於 輸導管之内表面上,第二層接著配置於該第一層之上而 在整個輸導管内表面上形成一層薄膜。第三層為粉末, 較佳為平均地分佈於整個輸導管内表面上。 第一層命名為抗腐蝕層,用以防止受到輸導管内表面 的侵蝕。第二層據稱係用以防止元素態之氫與氧的生 成,故可限制氧原子與輸導管材料間氧化反應。第三層 稱作為「黑粉」層,據稱一旦曝露於最低活化溫度38它二 即可被活化。因此,據稱將先前專利之熱傳介質中三屉 結構中的任-層移除均會對熱傳效率造成不利的影響。51 此外I備孩先前專利介質之方法十分繁瑣。舉例一 言,該第-層的形成可涉及7個步驟中的9種化合物。: 成第二層可涉及13個步驟斷備之14種化合物。而形成#形 -5- 5氏張尺度適用中國國( CNS )八爾(2丨〇><297公釐)- (请先閱讀背面之注意事項再填寫本頁)593653 Printing policy of the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention (1) Field of the invention The present invention relates to a heat transfer medium with high heat transfer rate, and heat transfer surfaces and components using the heat transfer medium of the present invention. BACKGROUND OF THE INVENTION Effectively transferring heat from one place to another has been a problem faced by industrial production and even all aspects of human life. Sometimes it is necessary to transfer heat quickly and remove it, such as keeping the semiconductor wafers cool, and sometimes it is necessary to quickly transfer heat and keep it in use, such as dissipating heat from the furnace. Whether removed or stored, the materials used for thermal conductivity limit the efficiency of heat transfer. For example, the use of heat pipes to conduct heat is a well-known example. The principle of heat transfer in the operation of hot pipelines is through the mass transfer of the liquid-containing carrier and the phase change of the carrier from liquid to vapor in a closed loop pipeline. The absorption of heat is tied to one end of the closed circuit pipe, which is achieved by vaporizing the liquid carrier, while the other end releases the heat by condensing the carrier. Although heat pipes improve heat transfer efficiency compared to solid metal rods, heat pipes require circulating flow of liquid / vapor carriers and are limited by the carrier's associated vaporization / condensation temperature. Therefore, the axial heat transfer rate of the heat pipe will be further limited by the magnitude of the latent heat of liquid vaporization and the rate of cyclic metamorphosis between the liquid and vapor states. Furthermore, convection must occur in the heat pipe in nature, which causes heat loss, which reduces thermal efficiency. The generally accepted concept is that when two substances with different temperatures are put together, the paper size of the hotter substance -4- applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) ϋ · 1 > 11 ml mr. n an -—— anil HIV —m ml 21— .m 191 —HI— ^ —r nn HI · — mu nn 11-1 ^ (Please read the notes on the back before filling out this page) 593653 5 ___ Ministry of Economic Affairs Printed by the Central Bureau of Standards Consumer Cooperative A7 B7 Invention Description (2) The temperature drops while the temperature of the colder substance rises. When heat is transferred from the hot end of the heat transfer tube to the colder end, the available heat is lost due to the thermal conductivity of the material of the transfer tube, the heating process of the colder portion of the transfer tube, and the dissipation to the atmosphere Due to heat loss in the medium. In order to break through the limitations of the thermally conductive material itself, the inventor disclosed a composition and preparation method of a thermally conductive medium disclosed in US Patent No. 6,132,823, issued on October 17, 2000 earlier. In this patent, the heat transfer medium consists of a three-layer structure deposited on a substrate. The first two layers are made from a solution exposed on the inner wall of the catheter. The third layer is powder containing different combinations. The first layer is disposed on the inner surface of the catheter, and the second layer is then disposed on the first layer to form a thin film on the entire inner surface of the catheter. The third layer is a powder, preferably distributed evenly over the entire inner surface of the catheter. The first layer is named an anti-corrosion layer to prevent erosion from the inner surface of the conduit. The second layer is said to prevent the formation of elemental hydrogen and oxygen, so it can limit the oxidation reaction between oxygen atoms and the material of the catheter. The third layer is called the "black powder" layer and is said to be activated once exposed to a minimum activation temperature of 38 ° C. Therefore, the removal of any layer in the three-drawer structure in the heat transfer medium of the previous patent is said to have an adverse effect on the heat transfer efficiency. 51 In addition, the method of preparing previous patented media is cumbersome. For example, the formation of this first layer may involve 9 compounds in 7 steps. : Forming the second layer can involve 14 compounds in 13 steps. The formation of the # shape -5- 5's scale is applicable to the Chinese National (CNS) Oct (2 丨 〇 > < 297 mm)-(Please read the precautions on the back before filling this page)

593653 經濟部中夬檫準局員工消費合作社印裝 A7 五、發明説明(3) 層可涉及12步驟中製造的12種化合物。再者,倘若每一層 之組成份的混合順序與其列出汝床 ,^ 序不—致且符合該專利 中所棱醒的例外情形,則所製出 π — 疋I備之溶液將可能不 一-般而言’本發明之熱傳介質排除了或改良了許多先 雨技術中明顯的缺點或壞處。本發明之熱傳介質較佳係 由沈積於基材上之一層結冑所組最佳為—單一層。 該層係由-組選自下列之12種無機化合物所製備而形成一 單一層。此改良介質不僅降低了介質中使用之化合物數 目及種類’而且有效地縮減製備該介質所需步驟,卻無 損熱傳效率。 發明概述 根據本發明以及上述依舊待解的問題,本發明目的之 一即在於提供一種適用範圍更為廣泛的高傳熱速率熱傳 介質’其結構簡單、便於製造、使用安全且對環境無 害、可高效率地快速導熱。 本發明提供一種高傳熱速率熱傳介質,通常其本皙 無機質,其可視為一種組合物。該組合物包含或,換個 方式說’基本上由下列化合物一起以下示比例或量藏人 組成。所示量可依需要放大或縮小製造所要的量。雖然 諸該化合物較佳要依所示次序混合,它們或許也可以不 必依此次序混合。 6 - 本紙張尺度適用中國國家標準(CNS ) 格(210><297公釐) (請先閑讀背面之注意事項再填寫本頁)593653 Printed by the Consumers' Cooperative of the China Standards and Quarantine Bureau of the Ministry of Economic Affairs A7 V. Description of Invention (3) The layer can involve 12 compounds manufactured in 12 steps. Furthermore, if the mixing order of the components of each layer is not the same as that listed in the table, and the order is inconsistent with the exceptions in the patent, the solution of π- 疋 I prepared may be different. -In general, the heat transfer medium of the present invention eliminates or improves many obvious shortcomings or disadvantages of the prior rain technology. The heat transfer medium of the present invention is preferably a single layer composed of a layer of scum deposited on the substrate. This layer is prepared from a group of twelve inorganic compounds selected from the following to form a single layer. This improved medium not only reduces the number and types of compounds used in the medium, but also effectively reduces the steps required to prepare the medium without compromising heat transfer efficiency. SUMMARY OF THE INVENTION According to the present invention and the above-mentioned unsolved problems, one of the purposes of the present invention is to provide a heat transfer medium with a high heat transfer rate that has a wider range of applications. Its structure is simple, easy to manufacture, safe to use, and harmless to the environment. Can efficiently conduct heat quickly. The present invention provides a heat transfer medium with a high heat transfer rate, which is generally an inorganic substance which can be regarded as a composition. The composition contains or, in other words, 'is composed essentially of the following compounds together in the proportions or amounts shown below. The quantities shown can be scaled up or down as needed for manufacturing. Although the compounds are preferably mixed in the order shown, they may not necessarily be mixed in this order. 6-This paper size applies Chinese National Standard (CNS) grid (210 > < 297mm) (please read the precautions on the back before filling this page)

593653 A7 B7 五、發明説明(4) (1) 三氧化二鈷((:〇203),0.5-1.0%,較佳0.7-0.8%,最佳為 0.723 % ; (2) 三氧化二硼(B2〇3),1.0-2.0 %,較佳 1.4-1.6 %,最佳為 1.4472 % ; (3) 重鉻酸鈣(CaCr207),1.0-2.0 %,較佳 1.4-1.6 %,最佳為 1.4472 % ; (4) 重鉻酸鎂(MgCr207· 6H20),10.0-20.0%,較佳 14.0-16.0 %,最佳為 14.472 % ; (5) 重鉻酸鉀(K2Cr207),40.0-80.0 %,較佳 56.0-64.0 %, 最佳為57.888 % ; (6) 重鉻酸鈉(Na2Cr207),10.0-20.0 %,較佳 14.0-16.0 %, 最佳為14.472 % ; (7) 氧化鈹(BeO),0.05-0.10 %,較佳 0.07-0.08 %,最佳為 0.0723 % ; (8) 二硼化鈦(TiB2),0.5-1.0 %,較佳 0.7-0.8 %,最佳為 0.723 % ; 經濟部中央標準局員工消費合作社印製 (請先閲讀背面之注/f項再填寫本頁) (9) 過氧化鉀(K202),0.05-0· 10 %,較佳 0.07-0.08 %,最佳 為 0.0723 % ; (10) —選用之金屬或铵的重鉻酸鹽(MCr2〇7),5.0-10.0 %, 較佳7.0-8.0 %,最佳為7.23 %,其中「Μ」係選自鉀、 鈉、銀及銨所構成之群組; (11) 鉻酸鳃(SrCr〇4),0.5-1.0 %,較佳 0.7-0.8 %,最佳為 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)593653 A7 B7 V. Description of the invention (4) (1) Cobalt trioxide ((: 203), 0.5-1.0%, preferably 0.7-0.8%, most preferably 0.723%; (2) boron trioxide ( B2〇3), 1.0-2.0%, preferably 1.4-1.6%, the best is 1.4472%; (3) calcium dichromate (CaCr207), 1.0-2.0%, preferably 1.4-1.6%, the best is 1.4472 %; (4) magnesium dichromate (MgCr207 · 6H20), 10.0-20.0%, preferably 14.0-16.0%, and most preferably 14.472%; (5) potassium dichromate (K2Cr207), 40.0-80.0%, compared with 56.0-64.0%, 57.888% is best; (6) Sodium dichromate (Na2Cr207), 10.0-20.0%, preferably 14.0-16.0%, most preferably 14.472%; (7) beryllium oxide (BeO), 0.05-0.10%, preferably 0.07-0.08%, the best is 0.0723%; (8) titanium diboride (TiB2), 0.5-1.0%, preferably 0.7-0.8%, the best is 0.723%; Central Ministry of Economic Affairs Printed by the Consumer Bureau of Standards Bureau (please read the note / f on the back before filling this page) (9) Potassium peroxide (K202), 0.05-0 · 10%, preferably 0.07-0.08%, and the best is 0.0723 %; (10) — selected metal or ammonium dichromate (MCr207), 5.0-10.0%, preferably 7.0-8.0%, most 7.23%, where "M" is selected from the group consisting of potassium, sodium, silver, and ammonium; (11) SrCrO4, 0.5-1.0%, preferably 0.7-0.8%, the best Applicable Chinese National Standard (CNS) A4 specification (210X297 mm) for this paper size

〇·723 % ;以及 (12)重路酸銀(Ag2Cr207),0.5-1.0%,較佳no』%,最佳為 0.723 %。 緊鄰上述所表示之百分比為將所添加水份乾燥移除後之 取終組合物之重量百分比。 本發明之另一目的為提供一種熱傳表面,其包括至少部 分覆蓋本發明之高傳熱速率熱傳介質的表面基材。 本發明之又一目的在於提供一種包含本發明高傳熱速率 為傳介負之熱傳元件,該鬲傳熱速率熱傳介質位於一基材 上。 經由以下的對應圖式與發明詳述,本發明的其他特徵及 優點將會更加地明顯。 圖式簡單說明 圖1A顯示根據本發明之熱傳管元件的透視圖。 圖1B顯示圖1元件之剖面圖。 圖ic顯示加熱器輸入功率從由9瓦逐步加至2〇瓦,再逐 步加至17 8瓦。 圖1D顯π疋以各感應咨及其平均值之穩定狀態溫差(感 應备溫度T減去周溫T。)相對於輸入功率之圖。 圖1E顯示輸入功率20至178瓦產生之瞬間溫度。 圖1F顯示同樣的電阻數據對應於熱電偶溫度感應器在管 子的兩半分別記錄的平均溫度之圖。 -8 - 度適用巾S S家標準(CNS) A4規格(210X297公釐丨 —-- 593653 A7 B7 五、發明説明(6 ) 圖1G顯示碳鋼管之預期的熱傳導係數對應表面溫度之 圖。 圖1H顯示對熱輸入功率20至170瓦反應之預期及觀察之 瞬間溫度。 圖II顯示模型計算的結果,用以預測沿著熱管的溫度分 布。 圖1J顯示具第一換熱器的熱傳管圖,該裝置稱為Diffl, 設計來測試在溫度變化的系統中測量熱導率的原理。 圖1K顯示另利一種不同的熱導管,有一個中空通有水 流的兩晞酸柱體附於該熱管的一端,稱Diff2。 圖1L顯示由這兩種熱量計設計(Diffl和Diff2)在輸入功率 100-1500瓦範圍内,流量1 - 85克/秒下操作,其相應的熱流 密度(1^31£11^(1611347)為0.11\106至1.7\106〜/1112,得到從 300到1500瓦的熱量回收。 圖1M顯示應用Diffl和Diff2沿著熱導管所測得之熱量回 收曲線。 圖1N顯示溫差相對於熱流密度之曲線。 圖10顯示有效熱導率相對於各輸入功率之熱流密度之 測量值。 元件符號說明 102 熱傳管元件 104 插塞 -9- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 5936530.72%; and (12) silver biacid (Ag2Cr207), 0.5-1.0%, preferably no%, and most preferably 0.723%. The percentage indicated immediately above is the weight percentage of the final composition after the added water is dried and removed. Another object of the present invention is to provide a heat transfer surface including a surface substrate that at least partially covers the high heat transfer rate heat transfer medium of the present invention. It is still another object of the present invention to provide a heat transfer element including the high heat transfer rate of the present invention, the heat transfer medium being located on a substrate. Other features and advantages of the present invention will become more apparent through the following corresponding drawings and detailed description of the invention. Brief Description of the Drawings Figure 1A shows a perspective view of a heat transfer tube element according to the present invention. FIG. 1B shows a cross-sectional view of the element of FIG. 1. Figure ic shows that the heater input power is gradually increased from 9 watts to 20 watts, and then to 178 watts. Fig. 1D shows a graph of the steady state temperature difference (inductive preparation temperature T minus the ambient temperature T.) of each sensor and its average value against the input power. Figure 1E shows the instantaneous temperature produced by an input power of 20 to 178 watts. Figure 1F shows a graph of the same resistance data corresponding to the average temperature recorded by the thermocouple temperature sensor on each half of the tube. -8-Degree applicable towel SS home standard (CNS) A4 specification (210X297 mm 丨-593653 A7 B7 V. Description of the invention (6) Figure 1G shows the expected thermal conductivity of carbon steel pipe corresponding to the surface temperature. Figure 1H Shows the expected and observed instantaneous temperature response to the heat input power of 20 to 170 watts. Figure II shows the results of the model calculations to predict the temperature distribution along the heat pipe. Figure 1J shows the heat transfer tube diagram with the first heat exchanger This device is called Diffl and is designed to test the principle of measuring thermal conductivity in a temperature-varying system. Figure 1K shows another different type of heat pipe with a hollow two-acid column with water flow attached to the heat pipe. One end is called Diff2. Figure 1L shows that these two calorimeter designs (Diffl and Diff2) operate at a flow rate of 1-85 g / s in the input power range of 100-1500 watts, and their corresponding heat fluxes (1 ^ 31 £ 11 ^ (1611347) is 0.11 \ 106 to 1.7 \ 106 ~ / 1112, which gives a heat recovery from 300 to 1500 watts. Figure 1M shows the heat recovery curve measured along the heat pipe using Diffl and Diff2. Figure 1N shows Temperature difference vs. heat flux density. Figure 10 shows With respect to the effective thermal conductivity of each of the heat flux value measured input power. REFERENCE SIGNS LIST 102 heat transfer element pipe plug member 104 applies -9- present paper China National Standard Scale (CNS) A4 size (210 X 297 mm) 593 653

AT B7 五、發明説明(7 ) 癌 102 熱傳管元件 106 孔徑 104 插塞 108傳輸管 105 空腔 110 熱傳介質 發明詳細說明斑較佳實施例 組合物 本發明提供一種高傳熱速率熱傳介質,其可視為一種 組合物。該組合物包含或,換個方式說,基本上由下列 化合物一起以下示比例或量混合組成。所示量可依需要 放大或縮小製造所要的量。雖然諸該化合物較佳要依所 示次序混合,它們或許也可以不必依此次序混合。 (1)三氧化二鈷(Co2〇3) ,0.5-1.0 %,較佳 0.7- 〇.8 %,最佳 為 0.723 % ; (2)三氧化二硼(B2〇3), 1.0-2.0 %,較佳 1.4-1.6 % ’ 最佳為 1.4472 % ; (3)二鉻酸鈣(CaCr207), 1.0-2.0%,較佳 1.4-1.6%,最佳為 1.4472 % ; (4)重鉻酸鎂(MgCr207 · 6H20),10.0-20.0 %,較佳 ΚίΜό.Ο %,最佳為14.472 % , (5)重鉻酸鉀(K2Cr207), 40.0-80.0 %,較佳 56.0-64.0 %,最 佳為 57.888 % ; (6)重鉻酸鈉(Na2Cr207) ,10.0-20.0 %,較佳 14〇-16·〇 °/〇, -10- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 593653AT B7 V. Description of the invention (7) Cancer 102 Heat transfer tube element 106 Aperture 104 Plug 108 Transfer tube 105 Cavity 110 Heat transfer medium Detailed description of the invention Preferred embodiment composition The present invention provides a high heat transfer rate heat transfer Medium, which can be considered as a composition. The composition comprises or, in other words, basically consists of the following compounds together together in the proportions or amounts shown below. The amount shown can be enlarged or reduced as needed for manufacturing. Although the compounds are preferably mixed in the order shown, they may or may not be mixed in this order. (1) Cobalt trioxide (Co203), 0.5-1.0%, preferably 0.7-0.8%, most preferably 0.723%; (2) Boron trioxide (B203), 1.0-2.0% , Preferably 1.4-1.6% 'the best is 1.4472%; (3) calcium dichromate (CaCr207), 1.0-2.0%, preferably 1.4-1.6%, the best is 1.4472%; (4) magnesium dichromate (MgCr207 · 6H20), 10.0-20.0%, preferably ΚίΜό.Ο%, most preferably 14.472%, (5) potassium dichromate (K2Cr207), 40.0-80.0%, preferably 56.0-64.0%, most preferably 57.888%; (6) Sodium dichromate (Na2Cr207), 10.0-20.0%, preferably 14〇-16 · 〇 ° / 〇, -10- This paper size applies to China National Standard (CNS) A4 (210 X 297) Mm) 593653

7 7 A B 五、發明説明(8 ) 最佳為14.472 % ; (7) 氧化鈹(BeO),0.05-0.10 %,較佳 0.07-0.08 %,最佳為 0.0723 % ; (8) 二硼化鈦(TiB2),0.5-1.0 %,較佳 0.7-0.8 %,最佳為 0.723 % ; (9) 過氧化鉀(K202),0.05-0.10 %,較佳 0.07-0.08 %,最佳 為 0.0723 % ; (10) —選用之金屬或銨的重鉻酸鹽(MCr2〇7),5.0-10.0 %, 較佳7.0-8.0 %,最佳為7.23 %,其中「Μ」係選自鉀、 鈉、銀及銨所構成之群組; (11) 鉻酸锶(SrCr〇4),0.5_1.0 %,較佳 0.7-0.8 %,最佳為 0.723 % ;以及 (12) 重鉻酸銀(Ag2Cr207),0.5-1.0 %,較佳 0.7-0.8 %,最佳為 0.723 % ° 緊鄰上述所表示之百分比為將所添加水份乾燥移除後 之最終組合物之重量百分比。 本發明最佳之組合物可以下列方式製得。下列之無機 化學品可以化合物所示量之+/- 0.10 %範圍變化添加,而 添加方式則如下所討論: (1) 三氧化二鈷(Co203),0.01 克; (2) 三氧化二硼(B2〇3),0.2克; (3) 二鉻酸鈣(CaCr207),0·02克; -11 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 593653 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(9) (4) 重絡酸鍰(MgCr2〇7· 6H2O) ’ 0.2克; (5) 重路酸卸(K2Cr2〇7) ’ 〇·8 克’ (6) 重絡酸納(Na2Cr2〇7),0.2克’ (7) 氧化鈹(BeO),0.001 克; (8) 二硼化鈦(ΤιΒ2),0.01 克; (9) 過氧化鉀(K202),0.001 克; (10) —選用之金屬或按的重絡酸鹽(MCi:2〇7),〇 1克,其中 「Μ」係選自钟、鋼、銀及按所構成之群組; (11) 絡酸锶(SrCr04),0.01克;以及 (12) 重鉻酸銀(Ag2Cr207),0.01 克。 諸該化合物係以緊鄭上述所列之次序添加至内含1〇〇毫 升大禮上為純水(較佳經二次蒸餘)的容器中直到溶解。該 混合物在常溫下混合,如約1 8至20°C,然後較佳再加熱至 55至65。C(較佳約60°C)之溫度範圍内,並在該溫度下撥 摔混合(約20分鐘)直到完全溶解。所得之組合物即可或隨 後可供應用。 本發明之熱傳介質可施於任何適何之基材上,傻是置 於金屬傳輸管,甚或玻璃傳輸管上,只要所選用之表面 基本上不含金屬氧化物、油脂或油類即可。為了使所得 熱傳組合物之品質最佳,較佳是在很低的濕度環境下施 用此組合物,如35至37%之相對濕度,任何情況下均需低 於約40%相對濕度。同時希望是將此組合物施用於〜2 / -12- 本紙張尺度適用中國國家樣準(CNS〉A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁}7 7 AB 5. Description of the invention (8) The best is 14.472%; (7) Beryllium oxide (BeO), 0.05-0.10%, preferably 0.07-0.08%, and the best 0.0723%; (8) Titanium diboride (TiB2), 0.5-1.0%, preferably 0.7-0.8%, most preferably 0.723%; (9) potassium peroxide (K202), 0.05-0.10%, preferably 0.07-0.08%, most preferably 0.0723%; (10) — selected metal or ammonium dichromate (MCr207), 5.0-10.0%, preferably 7.0-8.0%, most preferably 7.23%, where "M" is selected from potassium, sodium, silver And ammonium; (11) strontium chromate (SrCr〇4), 0.5_1.0%, preferably 0.7-0.8%, most preferably 0.723%; and (12) silver dichromate (Ag2Cr207) 0.5-1.0%, preferably 0.7-0.8%, and most preferably 0.723% ° The percentage indicated immediately above is the weight percentage of the final composition after the added water is dried and removed. The optimum composition of the present invention can be prepared in the following manner. The following inorganic chemicals can be added within a range of +/- 0.10% of the compound's indicated amount, and the methods of addition are discussed as follows: (1) Cobalt trioxide (Co203), 0.01 g; (2) Boron trioxide ( B2〇3), 0.2 g; (3) Calcium dichromate (CaCr207), 0.02 g; -11-This paper size applies to China National Standard (CNS) A4 (210X297 mm) 593653 Central Bureau of Standards, Ministry of Economic Affairs Printed by employees 'consumer cooperatives A7 B7 V. Description of the invention (9) (4) Double complex acid (MgCr2〇7 · 6H2O)' 0.2 g; (5) Double route acid unloading (K2Cr2〇7) '〇 · 8 g' (6) Sodium complexate (Na2Cr207), 0.2 g '(7) Beryllium oxide (BeO), 0.001 g; (8) Titanium diboride (TiB2), 0.01 g; (9) Potassium peroxide (K202 ), 0.001 g; (10) — selected metal or pressed complexate (MCi: 207), 0 g, where "M" is selected from the group consisting of bell, steel, silver, and pressed (11) Strontium complex acid (SrCr04), 0.01 g; and (12) Silver dichromate (Ag2Cr207), 0.01 g. The compounds are added in the order listed above to a container containing 100 milliliters of pure water (preferably after a second distillation) until dissolved. The mixture is mixed at normal temperature, such as about 18 to 20 ° C, and then preferably heated to 55 to 65. C (preferably about 60 ° C), and mix at this temperature (about 20 minutes) until completely dissolved. The resulting composition is ready for use or later. The heat transfer medium of the present invention can be applied to any suitable substrate. It can be placed on a metal transfer tube or even a glass transfer tube, as long as the selected surface is substantially free of metal oxides, grease or oil. . In order to maximize the quality of the resulting heat transfer composition, it is preferred to apply the composition in a very low humidity environment, such as a relative humidity of 35 to 37%, and in any case it should be lower than about 40% relative humidity. At the same time, it is hoped that this composition will be applied to ~ 2 / -12- This paper size is applicable to Chinese national standards (CNS> A4 size (210X 297 mm)) (Please read the precautions on the back before filling this page}

經濟部中央標準局員工消費合作社印製 593653 A7 B7 五、發明説明(功 旦施用即與水(水氣或液體)隔絕之密閉空間體積中。 為於含有此組合物之熱傳傳輸管或空腔中達成所欲之 熱傳導度(heat conductivity),加至該空腔中之本發明熱傳 介質的質量會隨該空腔之體積而改變。較佳地,(本發明 組合物體積/空腔體積)之比值希望能夠保持在以下的比值 範圍内:0.001至0.025,而較佳為0.01至0.025,最佳則為下 面幾個比值:0.025、0.02、0.0125與0.01。傳輸管不需要做 任何預塗覆的步騾。一旦該傳輸管載入或填滿所需量之 介質,傳輸管便被加熱至120°C以蒸發該二次蒸館水。該 傳輸管或空腔接著被密封,以供作為熱傳裝置使用。 用於製備該傳輸管之本發明之熱傳介質的用量可以根 據所要之成品用途而有所不同。本改良之介質的製備與 使用本發明熱傳介質之熱傳表面或傳輸管的製造均可於 一個單一步騾中達到且完成。 該改良介質可在70至1800°C的溫度範圍内使用操作而無 損其特性。而其表面可依據所需產品的外型建構成任何 形狀(如管形、平板形或其組合),而無任何結構角度上的 限制。舉例來說,該傳輸管可做成直的、彎的、曲折 的、網狀的、螺旋的、或蛇狀的外型。再配合外部尺寸 的設計,即可分別應用於不同的領域中。 頃觀察到本發明熱傳介質之熱導率(thermal conductance) 與熱傳速率目前已超過純金屬銀的32,000倍以上。 -13 - 本紙浪尺度適用中國國家標準(CNS ) A4規格(210X297公釐) m tm^m· ml *11— tn.— nm ϋϋ mu nn 1·11« ni>l— mu i i fm mu tm nn mu H4i (請先閱讀背面之注意事項再填寫本頁) 1 593653Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 593653 A7 B7 V. Description of the Invention (Gongdan application is in the volume of a closed space that is isolated from water (water vapor or liquid). For heat transfer tubes or empty containing this composition The cavity achieves the desired heat conductivity, and the mass of the heat transfer medium of the present invention added to the cavity will change with the volume of the cavity. Preferably, (volume of the composition of the present invention / cavity The ratio of volume) is expected to be maintained in the following ratio range: 0.001 to 0.025, and preferably 0.01 to 0.025, and the best are the following ratios: 0.025, 0.02, 0.0125, and 0.01. The transfer tube does not require any pre-treatment. Coating step. Once the transfer tube is loaded or filled with the required amount of medium, the transfer tube is heated to 120 ° C to evaporate the secondary steaming water. The transfer tube or cavity is then sealed to It is used as a heat transfer device. The amount of the heat transfer medium of the present invention used to prepare the transfer tube may vary according to the intended use of the finished product. The preparation of the improved medium and the heat transfer meter using the heat transfer medium of the present invention Or the manufacture of the transfer tube can be achieved and completed in a single step. The improved medium can be used in the temperature range of 70 to 1800 ° C without damaging its characteristics. The surface can be constructed according to the appearance of the desired product. It can be formed into any shape (such as tube shape, flat plate shape, or a combination thereof) without any structural angle limitation. For example, the transmission tube can be made straight, curved, zigzag, mesh, spiral, Or snake-like shape. Together with the design of external dimensions, it can be applied to different fields. It has been observed that the thermal conductance and heat transfer rate of the heat transfer medium of the present invention have exceeded pure metallic silver. More than 32,000 times. -13-The paper scale is applicable to Chinese National Standard (CNS) A4 specification (210X297 mm) m tm ^ m · ml * 11— tn.— nm ϋϋ mu nn 1 · 11 «ni > l— mu ii fm mu tm nn mu H4i (Please read the precautions on the back before filling out this page) 1 593653

AT B7 五 發明説明( ) 11AT B7 V. Description of Invention (11)

應注意的是,如果該改良介質組成份(component)沒有按 照所列次序混合,介質會變得不穩定且可能會導致災難 性的反應。再者,應以金屬做為本發明介質的基材,建 議所用之金屬應為乾淨且無任何氧化物或銹垢。這可藉 由習用之噴砂、弱酸洗或弱鹼洗之處理來完成。任何用 於清洗或處理該傳輸管的材料均應完全被移除,且該傳 輸管内表面在施加入該介質之前也應先經乾燥處理。下 面以非限定性之實施例來進一步說明本發明之技術内 容。 實施例1 以下列方式製備無機高導熱性熱傳介質,而添加方式 則如下所討論: (1) 三氧化二鈷(Co203),0.01 克; (2) 三氧化二硼(B2〇3),0.2克; » (3) 二鉻酸鈣(CaCr207),0.02克; (4) 重鉻酸鎂(MgCr207· 6H20),0.2 克; (5) 重鉻酸鉀(K2Ci:207),0.8克; (6) 重鉻酸鈉(Na2Cr207),0.2克; (7) 氧化鈹(BeO),0.001 克; (8) 二硼化鈦(TiB2),0.01 克; (9) 過氧化鉀(K202),0.001 克; (10) —選用之金屬或按的重絡酸鹽(MCr207),0.1克,其中 -14- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 593653 A7 B7 五、發明説明( ) 12 「Μ」係選自鉀、鈉、銀及銨所構成之群組; (11) 鉻酸锶(SrCr04),0.01克;以及 (12) 重鉻酸銀(Ag2Cr207),0.01 克。 裝 將上述各化合物依所列之次序添加至内含100毫升(ml) 經二次蒸餾純水的容器中直到溶解。該混合物在常溫2〇t 下混合,然後於60°C之溫度下,攪拌混合(約20分鐘)直到 完全溶解。所得之組合物即可或隨後可供應用。 實施例2 t 將實施例1所得之組合物作為本發明之熱傳介質,在36 %之相對濕度塗覆於各種不同之基材上,如金屬(碳鋼、 不銹鋼、铭、銅、款、鐵等合金)或非金屬(玻璃或陶资) 傳輸管上,形成所需之熱傳元件。所選用之基材表面基 本上不含金屬氧化物、油脂或油類。為使所得熱傳元件 之品質最佳,施用實施例1之組合物是在低相對濕度環境 下進行(低於約40%相對濕度)。作為熱傳介質之組合物於 施用後,即將其密閉於熱傳元件之空腔中,以與水(水氣 或液體)隔絕。空腔中可視需要抽真空後密封。 為於含有此組合物之熱傳傳輸管(conduit)或空腔(cavity) 中達成此意欲之熱傳導度,加至該空腔中之本發明熱傳 介質的品質會隨該空腔之體積而改變。本發明組合物體 積與空.腔體積之比值用0.025、0.02、0.0125與0.01等比例塗 覆於傳輸管空腔之内壁上。傳输管不需要做任何預塗附 -15- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 593653 A7 B7 五 發明説明( ) 13 的步驟。一旦該傳輸管載入或填滿所需量之介質,傳輸 管便被加熱至120°C以蒸發該二次蒸餾水。該傳輸管或空 腔接著被密封,以供作為熱傳裝置中之熱傳元件使用。 用於製備該傳輸管之本發明之熱傳介質用量可以根據 所要之成品用途而有所不同。本改良之介質的製備與使 用本發明熱傳介質之熱傳表面或傳輸管的製造均可於一 個單一步騾中達到且完成。 該改良介質經測定可在70至1800°C的溫度範圍内操作而 無損其特性。而其表面可依據所需產品的外型建構成任 何形狀(如管形、挺形或其組合),而無任彳可結構角度上的 限制。舉例來說,該傳輸管可做成直的、彎的、曲折 的、網狀的、螺旋的、或蛇狀的外型。再配合外部尺寸 的設計,即可分別應用於不同的領域中。 常規熱管路是利用液體汽化和蒸汽冷凝時吸收和放出 大量潛熱,而使熱能從管子的熱端迅速傳向冷端的技 術,其軸向傳熱速率取決於液體汽化潛熱的大小,汽液 往返的速率。此外還要受材質是否適應、溫度和壓力不 能太高等條件的限制。 本發明之熱管元件其軸向導熱速率遠大於同樣大小的 任何金屬棒或任何常規熱管。管内壓力強度遠低於同溫 度下的任何熱管的管内壓強,適用的溫度上限為管材的 許用溫度上限。根據本發明之熱傳介質可依不同應用領 -16- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 593653 A7 B7 五 發明説明( ) 14 域的需求,管元件可依需求將外部製作成各種的尺寸與 型式。 圖1A及1B顯示根據本發明之熱傳管元件的示意透視圖 與剖面圖。如兩圖中所示,其中熱傳管元件102包含塗覆 其内壁面表上之熱傳介質110,空腔105,傳輸管108,孔 徑106,以及密閉孔徑106用之插塞104。 本發明之熱傳管元件可依使用上的實際需要將管與管 元件組合應用。管管元件具有高效傳熱、均溫性、可組 合及熱流密度可變等特性,用管管元件製造而成的換熱 器,體積緊湊,體積小,表面散熱小,提高了熱利用 率,節省電能。管管元件都獨立的工作元件,任意一端 壞不會引起兩種換熱流體互混,任何一只管管元件損壤 都不會影響其元件的正常工作。少量管管組合元件損壞 或失效,不影響整台設備正常運行。 而隨組合方式的不同一般可分為管管組合單體元件和 管管組合分離元件。管管組合單體元件係將本發明之熱 傳管元件並排或交錯組合,通常是用於高度需要均勻加 熱的應用領域,如加熱溫恒穩,易燃,易爆之有毒化工 原料氣體或液體。加工化工原料氣、液體、工藝要求 高,難度大。多數化工原料流體屬於易燃易爆有毒氣 體,有時還帶壓力,生產工藝要求原料氣體液體的加熱 必需要均勻,加熱溫度要恒穩,且不得淺漏。 -17- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 593653 A7 B7 五、發明説明( 15 热傳功效测定過程及方法 一對使用實施例1所得組合物製成之管元件,用於驗證 熱傳度及有效熱導率(effective thermal conductance),並於後 進一步例示所得組合物材料在各種傳遞熱方法上之用 途。 例證管(demonstration tube)其尺寸為直徑2.5公分X 1.2公 尺,該管的一端焊接有一直徑7.5公分X長度10公分之開口 圓柱形附件,以插入一緊密契合且略帶錐度的加熱器(直 徑5公分X長度9公分)。例證管的内部在清潔後塗覆上一 層薄的由根據上述步騾製備之本發明熱傳材料塗層。 在沿著例證熱傳管(heat transfer tube)外圍部份經明確界 定的位置上,接附上最多達9個經校正的熱電偶。監看該 等位置之溫度,當測點的溫度對不斷變化的電熱輸入至 位於管底之加熱器產生反應時,對這些點的溫度進行監 視並記錄下來。在某些情況下,會用到重複的溫度感應 器及監視裝置,尤其是在該管的兩端,以確定不會發生 任何重大之溫度誤測(mis-measurement)。 彼等實驗在尺寸大小約為1.2χ 1.6χ 1.0公尺之安食密# 的通氣屏蔽體(closure)内進行。為了將測試室内溫度分廣 化減至最小,該試驗是以與水平線夾角為10。之受試.$ (tested tube)進行。在此結構中輸入功率及溫度均受到/ 視,以量化在驗證熱導管内熱傳率。It should be noted that if the components of the modified medium are not mixed in the order listed, the medium may become unstable and may cause catastrophic reactions. Furthermore, metal should be used as the base material of the medium of the present invention. It is recommended that the metal used should be clean and free of any oxides or rust. This can be done by conventional sandblasting, weak pickling or weak alkaline washing treatments. Any material used to clean or dispose of the transfer tube should be completely removed, and the inner surface of the transfer tube should be dried before applying the medium. The following non-limiting examples further illustrate the technical content of the present invention. Example 1 An inorganic high thermal conductivity heat transfer medium was prepared in the following manner, and the manner of addition was discussed as follows: (1) Cobalt trioxide (Co203), 0.01 g; (2) Diboron trioxide (B203), 0.2 g; »(3) calcium dichromate (CaCr207), 0.02 g; (4) magnesium dichromate (MgCr207 · 6H20), 0.2 g; (5) potassium dichromate (K2Ci: 207), 0.8 g; (6) Sodium dichromate (Na2Cr207), 0.2 g; (7) Beryllium oxide (BeO), 0.001 g; (8) Titanium diboride (TiB2), 0.01 g; (9) Potassium peroxide (K202), 0.001 grams; (10) — selected metal or pressed complex salt (MCr207), 0.1 grams, of which -14- this paper size applies to China National Standard (CNS) A4 specifications (210X 297 mm) 593653 A7 B7 five Explanation of the invention () 12 "M" is selected from the group consisting of potassium, sodium, silver and ammonium; (11) strontium chromate (SrCr04), 0.01 g; and (12) silver dichromate (Ag2Cr207), 0.01 g. Fill each of the above compounds in the order listed in a container containing 100 milliliters (ml) of distilled distilled water until dissolved. The mixture was mixed at a normal temperature of 20 t, and then stirred and mixed at a temperature of 60 ° C (about 20 minutes) until completely dissolved. The resulting composition is ready for use or subsequently available. Example 2 t The composition obtained in Example 1 was used as the heat transfer medium of the present invention, and was coated on various substrates at a relative humidity of 36%, such as metals (carbon steel, stainless steel, stainless steel, copper, copper Alloys such as iron) or non-metal (glass or ceramic) transmission tubes to form the required heat transfer elements. The surface of the selected substrate is basically free of metal oxides, greases or oils. To optimize the quality of the resulting heat transfer element, the application of the composition of Example 1 was performed in a low relative humidity environment (less than about 40% relative humidity). After application, the composition as a heat transfer medium is sealed in the cavity of the heat transfer element to be isolated from water (water vapor or liquid). The cavity can be sealed after vacuuming as required. In order to achieve this intended thermal conductivity in a heat transfer tube or cavity containing the composition, the quality of the heat transfer medium of the present invention added to the cavity will vary with the volume of the cavity. change. In the present invention, the ratio of the volume of the object to the volume of the cavity is coated on the inner wall of the cavity of the transfer tube with the ratios of 0.025, 0.02, 0.0125 and 0.01. The transfer tube does not need to be pre-coated. -15- This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) 593653 A7 B7 5 The steps of the invention description () 13. Once the transfer tube is loaded or filled with the required amount of medium, the transfer tube is heated to 120 ° C to evaporate the secondary distilled water. The transfer tube or cavity is then sealed for use as a heat transfer element in a heat transfer device. The amount of the heat transfer medium of the present invention used to prepare the transfer tube may vary depending on the intended use of the finished product. The preparation of the improved medium and the manufacture of the heat transfer surface or the transfer tube using the heat transfer medium of the present invention can be achieved and completed in a single step. This modified medium has been determined to operate in a temperature range of 70 to 1800 ° C without compromising its characteristics. And its surface can be constructed into any shape (such as tube shape, straight shape or combination) according to the appearance of the desired product, without any restrictions on the structural angle. For example, the transfer tube may be formed into a straight, curved, zigzag, mesh, spiral, or snake-like shape. Together with the design of external dimensions, they can be applied in different fields. The conventional heat pipe is a technology that uses the absorption and release of a large amount of latent heat when the liquid vaporizes and the steam condenses, so that the heat energy is quickly transferred from the hot end of the tube to the cold end. The axial heat transfer rate depends on the latent heat of liquid vaporization. rate. In addition, it is limited by the material's suitability, and the temperature and pressure cannot be too high. The heat pipe element of the present invention has an axial heat conduction rate much larger than any metal rod or any conventional heat pipe of the same size. The pressure in the pipe is much lower than the pressure in the pipe of any heat pipe at the same temperature, and the applicable temperature upper limit is the upper limit of the allowable temperature of the pipe. The heat transfer medium according to the present invention can be used according to different applications. -16- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 593653 A7 B7 Five invention descriptions () 14 requirements of the field, the tube components can be The exterior can be made into various sizes and types according to requirements. 1A and 1B show a schematic perspective view and a sectional view of a heat transfer tube element according to the present invention. As shown in the two figures, the heat transfer tube element 102 includes a heat transfer medium 110, a cavity 105, a transfer tube 108, a hole diameter 106, and a plug 104 for sealing the hole 106 coated on the inner wall surface thereof. The heat transfer tube element of the present invention can be combined with a tube and a tube element according to the actual needs in use. Tube and pipe components have the characteristics of high efficiency heat transfer, temperature uniformity, combination, and variable heat flux density. The heat exchanger made of tube and pipe components has compact size, small size, and small surface heat dissipation, which improves the heat utilization rate. Save electricity. The tube and pipe components are independent working elements, and the damage of either end will not cause the two heat exchange fluids to mix with each other, and damage to any one of the tube and pipe components will not affect the normal operation of its components. Damage or failure of a small number of pipe and tube assembly components will not affect the normal operation of the entire equipment. According to different combinations, it can be generally divided into tube and tube combined single element and tube and tube combined separation element. The tube and tube combination monomer element is a side-by-side or staggered combination of the heat transfer tube elements of the present invention, and is usually used in applications that require high uniform heating, such as constant and stable heating temperature, flammable and explosive toxic chemical raw material gas or liquid. Processing chemical raw materials such as gas, liquid, and technology requires high and difficult. Most chemical raw material fluids are flammable, explosive, and toxic gases, and sometimes under pressure. The production process requires that the heating of the raw material gas liquid must be uniform, the heating temperature must be constant, and there must be no leakage. -17- This paper size is in accordance with Chinese National Standard (CNS) A4 (210X 297 mm) 593653 A7 B7 V. Description of the invention (15 Process and method for measuring heat transfer efficiency) A pair of tubes made of the composition obtained in Example Device for verifying thermal conductivity and effective thermal conductance, and further exemplifying the use of the resulting composition material in various methods of heat transfer. Demonstration tube has a diameter of 2.5 cm X 1.2 meters, one end of the tube is welded with an opening cylindrical attachment with a diameter of 7.5 cm x a length of 10 cm to insert a closely fitting and slightly tapered heater (5 cm in diameter X 9 cm in length). The interior of the tube is shown in After cleaning, apply a thin coating of the heat transfer material of the present invention prepared in accordance with the steps described above. At a clearly defined location along the outer portion of the heat transfer tube of the example, attach up to 9 calibrated thermocouples. Monitor the temperature at these locations. When the temperature of the measuring point reacts to the changing electric heat input to the heater located at the bottom of the tube, these points Temperature is monitored and recorded. In some cases, repeated temperature sensors and monitoring devices are used, especially at both ends of the tube, to ensure that no major mis-measurement of temperature occurs Their experiments were performed in a ventilation shield with a size of about 1.2x 1.6x 1.0 meters in An Shimi #. In order to minimize the widening of the temperature in the test room, the test is based on the angle with the horizontal line as 10. The test was performed. (Tested tube). In this structure, the input power and temperature are both viewed / viewed to quantify the heat transfer rate in the verification heat pipe.

本紙浪尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 593653The paper scale is applicable to China National Standard (CNS) A4 (210X 297 mm) 593653

AT B7 五、發明説明( ) 16 使用7個J型熱電偶,沿直徑2,5公分、長1.2公尺之管等 距放置於其上來進行溫度測量。另一熱電偶則放置於外 覆在加熱器之較大直徑的管上。該熱電偶使用不銹鋼管 钳夾(clamp)固定。剩餘的熱電偶則測量室溫。 將熱電偶連接至凱氏(Keithley) 706掃描器内部的凱氏 7057A型熱電偶掃描卡。在7057A的接點塊(junction block) 具有一支用於對冷溫端進行補償的熱敏電阻(thermistor)溫 度感應器。以標準四階多項式做連點溫度補償與溫度計 算。 自惠普(HP)66000A電源供應器供給電源至管加熱器,電 源供應器主要架構為具有8個HP66105A 125A/120V電力模 組(module)。每四具電源供應器並聯成一組,而將兩組電 源的輸出端串聯,以產生一 5A/240V電源供應之淨輸出。 此電源供應系統在整個實驗過程中,產生非常穩定之加 熱功率。而實際電流以使用加熱器通過kepco 01-Q/200瓦標 準電流電阻器兩端之電壓測量之。通過連接在加熱器兩 端的電壓敏感線測量電壓。 該二電壓以上述凱氏(Keithley) 706掃描器中之凱氏7055 通用掃描卡進行測試。將掃描器板之輸出信號輸入到以 直流電壓模式操作之訊氏195A 5 1/2位數萬用表(multi-meter) (DMM)。以麥金塔(Macintosh) Ilsi電腦控制掃描器及 DMM,該電腦使用I〇Tech型SCS 1488 IEEE-488介面。將 -19- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 593653 A7 B7 五、發明説明( ) 17 結果儲存在電腦硬碟上以用於存取(accessed)分析。數據收 集(data acquisition)軟體係以Future Basic語言撰寫。分析後 之數據以微軟EXCEL試算表(spreadsheet)軟體呈現。 熱傳導度之測試(Determination of Thermal Conductivity) 在將該管以接近水平放置後,使用最高達300瓦輸入功 率繼續類似的測試,產生溫度最高達到室溫150 °C以上, 再將該管以置於水平之模式進行7次實驗,包括在最後一 次實驗中,在10天内將輸入功率在170至300瓦特間來回逐 步改變大小。 進行數個實驗以測試熱管表面上之溫度分佈及對階躍函 數(step function)加熱器輸入功之瞬態反應。於該等測試中 使用9個相同且經校正(calibrated)之熱電偶:1 ) 一個監視 周圍溫度之熱電偶(Tair),2 ) —個固定在管柱形加熱器上之 熱電偶(Theai),及3 ) 7個置於沿著管軸等距位置之熱電偶 (在12點鐘位置,命名為丁2至T8,越接近加熱器之數字越 小)。 圖1C顯示某次該實驗之結果,其中加熱器輸入功率從由 9逐步加至20瓦,再逐步加至178瓦。圖1D是以各感應器及 其平均值之穩定狀態溫差(感應器溫度Τ減去周溫Τ。)相對 於輸入功率做圖。圖1D中之實線是用指定係數對溫度平均 值進行的二次方最佳配適(fit)。此線顯示出均溫管路(pipe) 之熱耗散的期望形式,即與線性相關有一負的二階 -20- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)AT B7 V. Description of the invention () 16 Use 7 J-type thermocouples, and place them on a pipe with a diameter of 2,5 cm in diameter and 1.2 meters in length to measure the temperature. The other thermocouple is placed on a larger diameter tube that covers the heater. The thermocouple is fixed with a stainless steel tube clamp. The remaining thermocouples measure room temperature. Connect the thermocouple to a Keithley Model 7057A thermocouple scan card inside a Keithley 706 scanner. The junction block on the 7057A has a thermistor temperature sensor for compensating the cold and temperature ends. The standard fourth-order polynomials are used to perform continuous point temperature compensation and temperature calculation. The power is supplied from a HP 66000A power supply to the tube heater. The main structure of the power supply is eight HP66105A 125A / 120V power modules. Every four power supplies are connected in parallel to form a group, and the output terminals of the two power supplies are connected in series to generate a net output of 5A / 240V power supply. This power supply system produced very stable heating power throughout the experiment. The actual current is measured as the voltage across the kepco 01-Q / 200 Watt standard current resistor using a heater. The voltage is measured via voltage-sensitive wires connected to both ends of the heater. The two voltages were tested using the above-mentioned Keithley 705 scanner in the Keithley 706 scanner. The scanner board's output signal is input to a 195A 5 1/2 digit multi-meter (DMM) that operates in DC voltage mode. Scanner and DMM are controlled by Macintosh Ilsi computer, which uses ITech type SCS 1488 IEEE-488 interface. -19- This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) 593653 A7 B7 V. Description of the invention () 17 The result is stored on the computer hard disk for access analysis. The data acquisition software system is written in Future Basic language. The analyzed data is presented in Microsoft Excel spreadsheet software. Measurement of Thermal Conductivity After the tube is placed close to the level, a similar test is continued with an input power of up to 300 watts, which produces a temperature of up to 150 ° C above room temperature. Seven experiments were performed in the horizontal mode, including in the last experiment, the input power was gradually changed back and forth between 170 and 300 watts within 10 days. Several experiments were performed to test the temperature distribution on the surface of the heat pipe and the transient response to the input function of the step function heater. Nine identical and calibrated thermocouples were used in these tests: 1) a thermocouple monitoring the ambient temperature, 2) a thermocouple (Theai) fixed on a tubular heater , And 3) 7 thermocouples placed at equidistant positions along the tube axis (at 12 o'clock, named Ding 2 to T8, the closer to the heater the smaller the number). Figure 1C shows the results of a certain experiment, in which the heater input power was gradually increased from 9 to 20 watts, and then gradually increased to 178 watts. Figure 1D is a graph of the steady state temperature difference (inductor temperature T minus the ambient temperature T) of each sensor and its average value versus the input power. The solid line in Figure 1D is the quadratic best fit of the temperature average using the specified coefficient. This line shows the expected form of heat dissipation of a uniform temperature pipe, that is, there is a negative second order of linearity. -20- This paper size applies to China National Standard (CNS) A4 (210X297 mm)

Hold

線 593653 A7 B7 五、發明説明( ) 18 偏離。令人意外的是溫度的度數,沿著僅在一端加熱之基 本上為空的管路延伸長度方向上,溫度始終保持不變。 在20至178瓦之間的大功率進行更仔細的不同功率的逐 步試驗時,茲發現於測量之時刻(time scale),在沿著加熱 試驗管之各點溫度相當快速地升高。將溫度感應器T2- T8 及其平均值作為2小時時間之函數繪線於圖1Ε上,溫度緊 跟著功率逐步上升而即刻變化。(最初45分鐘,每分鐘收 集一次數據,接著每5分鐘收集一次。)而在圖中所示之時 刻上,溫度沒有隨位置顯著變化,試驗之管的行為表現就 好像是沿著其軸向均勻地加熱一般。 三種其他數據組繪製於圖1Ε中,但它彼此間太緊密一致 以致於難以去解析;星號表示尺寸等同於該熱管均勻受熱 鋼管,其對應之由20至178瓦功率階躍的熱量散發之預測 溫度。此模型細節將於下面討論。 •圖1Ε中以空心菱形與圓形表示之繪點(point plotted)為測 自沿管軸向金屬相中之電阻比值。根據下面的公式可以預 測,某種金屬的電阻值會隨著溫度的變化而改變: R = R0 (1 +α T) (1) 於是, T = (R/R。-1)/α R為Τ = 0 °C時測量到的電阻值。 -21 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) A7Line 593653 A7 B7 V. Description of the invention () 18 Deviation. Surprisingly, the degree of temperature stays constant along the length of the length of the pipe that is essentially empty, heated only at one end. When performing more careful step-by-step tests of different powers at high powers between 20 and 178 watts, it was found that at the time scale of the measurement, the temperature rose fairly rapidly at various points along the heating test tube. Plot the temperature sensors T2-T8 and their average values as a function of 2 hours on Figure 1E. The temperature immediately changes as the power gradually rises. (The data was collected every minute for the first 45 minutes and then every 5 minutes.) At the time shown in the figure, the temperature did not change significantly with the position, and the test tube behaved as if it was along its axis. Heat evenly. Three other data sets are plotted in Figure 1E, but they are too close to each other to make it difficult to interpret; the asterisk indicates that the size is equivalent to the heat pipe uniformly heated steel pipe, which corresponds to the prediction of heat emission from a power step of 20 to 178 Watts temperature. The details of this model are discussed below. • The point drawn in hollow diamond and circle in Figure 1E is measured from the resistance ratio in the metal phase along the axial direction of the tube. According to the following formula, it can be predicted that the resistance value of a certain metal will change with temperature: R = R0 (1 + α T) (1) Then, T = (R / R.-1) / α R is Resistance measured at Τ = 0 ° C. -21-This paper size applies to Chinese National Standard (CNS) A4 (210X297 mm) A7

19 標記有Rb〇t的數據點,是指在靠近加熱器的半截管上冽 量到的電阻值,而那些標有及⑽的數據點,是指管二上= 截的電阻值。圖1F顯示出繪出同樣的電阻數據,分別對應 於用熱電偶溫度感應器在管的兩半分別記的平均溫度。從 圖1F中繪製的回歸線,T以清楚地看到這條線很準:地遵 從方程式(1)的計算結果,並且製造該管的鋼材電阻值的溫 度係數 0.428 土 001% 1C〗。 m 圖1E與圖IF中的電阻值數據的重要性在於丨)在熱電偶溫 度測量中沒有明顯的誤差;2)對該管表面進行的這些溫度 測量,得到通過電阻值比率記錄的容積的溫度測量結果的 準確確讀;3)任何時候,不管熱源點的位置在何處,遠離 加熱器的管子一端的平均溫度與接近加熱器的管一端測得 的平均溫度都很難辨別。 有效熱傳速率(Effective Heat Transfer Rates) •熱從破鋼管傳遞是一個熟知並且非常容易理解的,具有 顯著工程重要性的問題。 熱經過自然對成和%射的方式,從一根水平的、裸露的 標準碳鋼管的表面傳遞的速率,通過一組根據經驗方程和 確定的常數’在參考文獻中有很好的描述。圖1G繪製 出1英吋直徑的碳鋼管對應其表面溫度的預期的熱傳 導係數。通過從表中常數計算出的數據點配適出一條拋物 線形的回歸線。這條回歸線函數,用於匹配對應於逐步 -22- ^紙張尺度適用中國國家料(CNS) A4規格(21G X 297公爱) 593653 A719 The data points marked with Rb0t refer to the resistance values measured on the half-pipe near the heater, and those data points marked with ⑽ refer to the resistance values on the second tube = cut. Figure 1F shows the same resistance data plotted, corresponding to the average temperatures recorded on the two halves of the tube with a thermocouple temperature sensor, respectively. From the regression line drawn in Figure 1F, T clearly sees that this line is accurate: it follows the calculation result of equation (1), and the temperature coefficient of the resistance value of the steel of which the pipe is made is 0.428 soil 001% 1C. The importance of the resistance value data in Figure 1E and IF is that there are no obvious errors in the temperature measurement of the thermocouple; 2) These temperature measurements on the surface of the tube yield the temperature of the volume recorded by the resistance ratio Accurate reading of measurement results; 3) At any time, regardless of the location of the heat source point, the average temperature at the end of the tube far from the heater and the average temperature measured at the end of the tube near the heater are difficult to distinguish. Effective Heat Transfer Rates • Heat transfer from broken steel pipes is a well-known and very easy to understand problem of significant engineering importance. The rate of heat transfer from the surface of a horizontal, bare standard carbon steel pipe through natural pairing and% injection is well described in the references through a set of constants based on empirical equations and determinations. Figure 1G plots the expected thermal conductivity of a 1-inch diameter carbon steel pipe against its surface temperature. A parabolic regression line is fitted through the data points calculated from the constants in the table. This regression line function is used to match the corresponding gradual -22- ^ paper size applicable to China National Materials (CNS) A4 specifications (21G X 297 public love) 593653 A7

593653 A7593653 A7

在心節之中,我們纣論了如何達到穩態響應和功率上升 時的0坪態反應。作出與觀察一致的假設。即管子是均勻一 也加熱的由於貫際上只在該管的一端加熱,這個假定 就產生了顯著的錯誤。 由於管子是在一端加熱,熱流模式可以做成一個_維的 傳輸線模型。使用此概念,熱從加熱器開#,沿著管子的 長度方向在各個連續單元中傳導:丨)熱沿著軸的方向,在 該管的容積内填充了無論何種物質;2)熱通過管的鋼壁, 呈放射狀地傳導至外表面(此處溫度受到監視);3 )再次熱 王放射狀地傳導至周圍環境的空氣中去(周圍環境的溫度 考慮為固定的)。 /m又 將這些條款以排成倒序的形式,熱由管表面到環境命氣 中的傳遞速率為圖1G中實線條所描述的函數。R ' 狄 _ 1 G中還 表示的鐵的熱傳導數據,使用一根拋物線形 w崎線配適 (fit)並外插(extrapolation)。 圖II表明模型計算的結果,用以預測沿著熱管的溫度分 布。假定管中充滿銀元素。銀被用作一種參考材料=刀 為它在所有元素及元素的標準同素異形體中,3 疋 疋已知最好 的熱導體(鑽石的導熱性優於銀)。在4.3 w ^ cm κ 1的條件 下’銀的導熱能力大約超過鐵的5 1/2倍(鐵” 用於表示碳鋼 官)。 在圖11中,上方的線條顯示出預期的沿其 贫&予的溫度In the plexus, we talked about how to achieve the steady-state response and zero-plate response when the power rises. Make assumptions consistent with observations. Even if the tube is uniform and heated, since it is heated only at one end of the tube, this assumption makes a significant mistake. Since the tube is heated at one end, the heat flow mode can be modeled as a _dimensional transmission line. Using this concept, heat is transferred from the heater to ## along the length of the tube in each continuous unit: 丨) heat is directed along the axis, and the volume of the tube is filled with whatever matter; 2) heat passes The steel wall of the tube is radiated to the outer surface (the temperature is monitored here); 3) The thermal king is again radiated to the surrounding air (the temperature of the surrounding environment is considered fixed). / m again arranges these terms in reverse order, and the heat transfer rate from the tube surface to the ambient life is a function described by the solid line in Figure 1G. The heat conduction data of iron, which is also shown in R'D1_G, is fitted and extrapolated using a parabolic waki line. Figure II shows the results of the model calculations to predict the temperature distribution along the heat pipe. Assume that the tube is filled with silver. Silver is used as a reference material = knife. For all elements and standard allotrope, 3 疋 疋 is known as the best thermal conductor (diamond has better thermal conductivity than silver). Under the condition of 4.3 w ^ cm κ 1, the thermal conductivity of silver is approximately 5 1/2 times more than that of iron (iron "is used to indicate the carbon steel officer). In Figure 11, the upper line shows the expected leanness along its & temperature

Hold

k -24-k -24-

Claims (1)

經濟部中央標隼局員工消費合作社印SL 59^653 公告本 Μ L C8 ------- D8 、申請專利範圍 1 · 一種高傳熱速率熱傳介質,其係藉由將下列化合物溶 解於水中以產生一混合物,乾燥所得之該混合物以產 生具下列重量百分比之該熱傳介質產物: (1) 三氧化二姑(Co2〇3),0.5-1.0〇/〇; (2) 三氧化二硼(B2〇3),1.0-2.0% ; (3) 二鉻酸鈣(CaCr207),1·0-2·0〇/ο; ⑷重鉻酸鎂(MgCr207· 6Η20),ι〇〇_2〇.〇% ; (5) 重鉻酸鉀(K2Cr207),40.0-80·〇〇/。; (6) 重絡酸鋼(Na2Cr2〇7),10.0-20.0 % ; (7) 氧化鈹(BeO),0.05-0.10% ; (8) 二硼化鈦(TiB2),0.5-1.0% ; (9) 過氧化鉀(K202),0.05-0.10 % ; (10) —選用之金屬或銨的重鉻酸鹽(MCr207),5 〇、1〇 〇 %,其中「Μ」係選自鉀、鈉、銀及銨所構成之群 組; (11) 鉻酸鳃(SrCr04),0.5-1.0%;以及 (12) 重鉻酸銀(Ag2Cr207),0.5-1.0〇/〇。 2 ·根據申請專利範圍第1項之高傳熱速率熱傳介質,其中 該熱傳介質產物之重量百分比為: (1) 三氧化二鈷(Co203),0.7-0.8% ; (2) 二乳化—棚(B2O3) ’ 1 ·4-1.6 %, (3) 二鉻酸鈣(CaCr207),1.4-1.6% ; (請先閱讀背面之注意事項再填寫本頁}The Ministry of Economic Affairs Central Standards Bureau employee consumer cooperative printed SL 59 ^ 653 Notice ML C8 ------- D8, patent application scope 1 · A high heat transfer rate heat transfer medium, which is dissolved by dissolving the following compounds In water to produce a mixture, and the resulting mixture was dried to produce the heat transfer medium product with the following weight percentages: (1) Dioxide (Co203), 0.5-1.00 / 〇; (2) Trioxide Diboron (B203), 1.0-2.0%; (3) Calcium dichromate (CaCr207), 1.0-2.00 / ο; 镁 Magnesium dichromate (MgCr207 · 6Η20), ι〇〇_ 20.0%; (5) potassium dichromate (K2Cr207), 40.0-80 · 00 /. ; (6) Double complex acid steel (Na2Cr2〇7), 10.0-20.0%; (7) Beryllium oxide (BeO), 0.05-0.10%; (8) Titanium diboride (TiB2), 0.5-1.0%; ( 9) Potassium peroxide (K202), 0.05-0.10%; (10) — selected metal or ammonium dichromate (MCr207), 50%, 100%, where "M" is selected from potassium and sodium Of silver, ammonium and ammonium; (11) gill chromate (SrCr04), 0.5-1.0%; and (12) silver dichromate (Ag2Cr207), 0.5-1.00 / 〇. 2 · The high heat transfer rate heat transfer medium according to item 1 of the scope of patent application, wherein the weight percentage of the product of the heat transfer medium is: (1) cobalt trioxide (Co203), 0.7-0.8%; (2) di-emulsification —Shed (B2O3) '1.4-1.6%, (3) calcium dichromate (CaCr207), 1.4-1.6%; (Please read the precautions on the back before filling in this page} -29- 593653 8 8 8 8 ABCD κ、申請專利範圍 (4) 重鉻酸鎂(MgCr207· 6Η20),l4 (M6 0% ; (5) 重鉻酸鉀(K2Cr207),56.0-64.0 °/。; (6) 重鉻酸鈉(Na2Cr207),14.0-16.0% ’· (7) 氧化鈹(BeO),0.07-0.08 % ; (8) 二硼化鈦(TiB2),0.7-0.8% ; (9) 過氧化鉀(K202),0.07-0.08 % ; (10) —選用之金屬或銨的重鉻酸鹽(MCr2〇7),7,0-8.0 %,其中「Μ」係選自鉀、鈉、銀及銨所構成之群 組; (11) 鉻酸鳃(SrCr04),0.7-0.8%;以及 (12) 重鉻酸銀(Ag2Cr207),0.7-0.8 °/〇 ° 3 .根據申請專利範圍第1項之高傳熱速率熱傳介質,其中 該熱傳介質產物之重量百分比為: (1) 三氧化二鈷(Co203),0.723 % ; (2) 三氧化二硼(B2〇3),1.4472 % ; (3) 二鉻酸鈣(CaCr207),1.4472 % ; (4) 重鉻酸鎂(MgCr207· 6H20),14.472 % ; 經濟部中央標隼局員工消費合作社印製 (請先閱讀背面之注意事項再填寫本頁) (5) 重鉻酸鉀(K2Cr207),57·888 % ; (6) 重絡酸納(Na2Cr2〇7) ’ 14.472 %, (7) 氧化鈹(BeO),0.0723 % ; (8) 二硼化鈦(TiB2),0.723 % ; (9) 過氧化鉀(K202) ’ 0.0723 % ; -30- ^張尺度逋用中國國家標準(匚奶)八4規格(210乂297公釐) ' ---- 593653 A8 B8 C8 D8 經濟部中央標準局貝工消費合作社印製 申請專利範圍 (1〇) 一選用之金屬或銨的重鉻酸鹽(MCr2〇7),7.23 %, 其中「Μ」係選自鉀、鈉、銀及銨所構成之群組; (11) 路酸鳃(SrCr〇4),0.723 % ’·以及 (12) 重鉻酸銀(Ag2Cr2〇7),0.723 %。 4 ·根據申請專利範圍第1項之高傳熱速率熱傳介質,其中 该熱傳介質產物之熱傳導係數為金屬銀的32,〇〇〇倍以 上。 5 ·根據申凊專利範圍第2項之鬲傳熱速率熱傳介質,其中 孩熱傳介質產物之熱傳導係數為金屬銀的32,〇〇〇倍以 上。 6 ·根據申凊專利範圍第3項之高傳熱速率熱傳介質,其中 該熱傳介質產物之熱傳導係數為金屬銀的32,〇〇〇倍以 上。 7 · —種高傳熱速率熱傳介質,其係藉由將下列化合物(以 每個化合物所示量之+/- 010 %範圍變化)溶解於水中 以產生一種混合物,乾燥所得之該混合物以產生該無 傳介質產物: (1) 三氧化二鈷(C〇2〇3),0.01 克; (2) 三氧化二硼(B2〇3),0.2克; (3) 二鉻酸鈣(CaCr207),0.02克; (4) 重鉻酸鎂(MgCr207 · 6H20),0.2克; (5) 重鉻酸鉀(K2Cr207),0.8克; (請先閱讀背面之注意事項再填寫本I ) —訂 •T 31 - 經濟部中央樣率局負工消費合作社印裝 593653 A8 B8 C8 D8 六、申請專利範圍 (6) 重鉻酸鈉(Na2Cr207),0.2克; (7) 氧化鈹(BeO),0.001 克; (8) 二硼化鈦(TiB2),0.01 克; (9) 過氧化鉀(K202),0.001 克; (10) —選用之金屬或銨的重鉻酸鹽(MCr207),0.1克,其 中「Μ」係選自鉀、鈉、銀及銨所構成之群組; (11) 鉻酸鳃(SrCr〇4),0.01克;以及 (12) 重鉻酸銀(Ag2Cr207),0.01 克。 8 ·根據申請專利範圍第7項之高傳熱速率熱傳介質,其中 該熱傳介質產物之熱傳導係數為金屬銀的32,000倍以 上。 9. 一種熱傳表面,其包括至少部分覆蓋高傳熱速率熱傳 介質之表面基材,該高傳熱速率熱傳介質係藉由將下 列化合物溶解於水中以產生一混合物,乾燥·所彳于之该 混合物以產生具下列重量百分比之該熱傳介質產物: (1) 三氧化二鈷(C〇203),0.5-1.0% ; (2) 三氧化二硼(B2〇3),1.0-2.0% ; (3) 二鉻酸鈣(CaCr207),1.0-2.0% ; (4) 重鉻酸鎂(MgCr207· 6H2〇),10.0-20.0% ; (5) 重鉻酸鉀(K2Cr207),40.0-80.0 % ; (6) 重鉻酸鈉(Na2Cr207),10.0-20.0% ; (7) 氧化鈹(BeO),0.05-0.10 %; -32- 本紙張尺度逍用中國國家揉準(CNS ) 格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)-29- 593653 8 8 8 8 ABCD κ, patent application scope (4) magnesium dichromate (MgCr207 · 6Η20), l4 (M6 0%; (5) potassium dichromate (K2Cr207), 56.0-64.0 ° /. (6) Sodium dichromate (Na2Cr207), 14.0-16.0% '(7) Beryllium oxide (BeO), 0.07-0.08%; (8) Titanium diboride (TiB2), 0.7-0.8%; (9 ) Potassium peroxide (K202), 0.07-0.08%; (10) —Selected metal or ammonium dichromate (MCr207), 7,0-8.0%, where "M" is selected from potassium and sodium Of silver, ammonium and ammonium; (11) gill chromate (SrCr04), 0.7-0.8%; and (12) silver dichromate (Ag2Cr207), 0.7-0.8 ° / 〇 ° 3. According to the scope of patent application Item 1 of the high heat transfer rate heat transfer medium, wherein the weight percentage of the product of the heat transfer medium is: (1) cobalt trioxide (Co203), 0.723%; (2) boron trioxide (B203), 1.4472%; (3) Calcium dichromate (CaCr207), 1.4472%; (4) Magnesium dichromate (MgCr207 · 6H20), 14.472%; Printed by the Consumer Cooperatives of the Central Bureau of Standards, Ministry of Economic Affairs (please read the back page first) Note: Please fill in this page again.) (5) Potassium dichromate (K2Cr207), 57 · 888% (6) Sodium complexate (Na2Cr207) '14.472%, (7) Beryllium oxide (BeO), 0.0723%; (8) Titanium diboride (TiB2), 0.723%; (9) Potassium peroxide ( K202) '0.0723%; -30- ^ Zhang scale adopts Chinese national standard (milk milk) 8 4 specifications (210 乂 297 mm)' ---- 593653 A8 B8 C8 D8 Shellfish Consumer Cooperative, Central Standards Bureau, Ministry of Economic Affairs Printed patent application scope (10) A selected metal or ammonium dichromate (MCr207), 7.23%, where "M" is selected from the group consisting of potassium, sodium, silver and ammonium; ( 11) Road acid gills (SrCr〇4), 0.723% '· and (12) Silver dichromate (Ag2Cr207), 0.723%. 4 · According to the high heat transfer rate heat transfer medium of the first item of the scope of the patent application, The heat transfer coefficient of the heat transfer medium product is more than 32,000 times that of metallic silver. 5 · According to the heat transfer rate of the heat transfer medium in item 2 of the patent application, the heat transfer coefficient of the heat transfer medium product is Metal silver is more than 32,000 times. 6. The heat transfer medium with a high heat transfer rate according to item 3 of the patent application, wherein the thermal conductivity of the product of the heat transfer medium is 32, 000 times or more that of metallic silver. 7 · A heat transfer medium with a high heat transfer rate, which is obtained by dissolving the following compounds (with a range of +/- 010% of the amount shown for each compound) in water to produce a mixture, and drying the resulting mixture to This dielectric-free product is produced: (1) Cobalt trioxide (C0203), 0.01 g; (2) Boron trioxide (B2O3), 0.2 g; (3) Calcium dichromate (CaCr207 ), 0.02g; (4) Magnesium dichromate (MgCr207 · 6H20), 0.2g; (5) Potassium dichromate (K2Cr207), 0.8g; (Please read the notes on the back before filling in this I) — Order • T 31-Printed by the Consumer Sample Cooperative of the Central Sample Rate Bureau of the Ministry of Economic Affairs 593653 A8 B8 C8 D8 VI. Patent Application Scope (6) Sodium dichromate (Na2Cr207), 0.2 g; (7) Beryllium oxide (BeO), 0.001 Grams; (8) titanium diboride (TiB2), 0.01 grams; (9) potassium peroxide (K202), 0.001 grams; (10) — selected metal or ammonium dichromate (MCr207), 0.1 grams, "M" is selected from the group consisting of potassium, sodium, silver and ammonium; (11) gill chromate (SrCrO4), 0.01 g; and (12) silver dichromate (Ag2Cr2 07), 0.01 g. 8 · The high heat transfer rate heat transfer medium according to item 7 of the scope of patent application, wherein the heat transfer coefficient of the heat transfer medium product is 32,000 times or more that of metallic silver. 9. A heat transfer surface comprising a surface substrate that at least partially covers a high heat transfer rate heat transfer medium. The high heat transfer rate heat transfer medium is obtained by dissolving the following compounds in water to produce a mixture. The mixture was used to produce the heat transfer medium product with the following weight percentages: (1) Cobalt trioxide (C203), 0.5-1.0%; (2) Diboron trioxide (B203), 1.0- 2.0%; (3) calcium dichromate (CaCr207), 1.0-2.0%; (4) magnesium dichromate (MgCr207 · 6H2〇), 10.0-20.0%; (5) potassium dichromate (K2Cr207), 40.0 -80.0%; (6) Sodium dichromate (Na2Cr207), 10.0-20.0%; (7) Beryllium oxide (BeO), 0.05-0.10%; -32- This paper is based on the Chinese National Standard (CNS) standard. (210X297 mm) (Please read the notes on the back before filling this page) 經濟部中央標隼局員工消費合作社印製 593653 A8 B8 C8 D8 六、申請專利範圍 (8) 二硼化鈦(TiB2),0.5-1.0% ; (9) 過氧化鉀(κ2〇2),0.05-0.10% ; (1〇) —選用之金屬或銨的重鉻酸鹽(MCr207),5.0-10·0 % ’其中「M」係選自鉀、鈉、銀及銨所構成之群 組; (11) 鉻酸鳃(SrCr04),0.5-1.0% ;以及 (12) 重鉻酸銀(Ag2Cr207),0·5-1.0〇/。。 1 〇.根據申請專利範圍第9項之熱傳表面,其中該高傳熱速 率熱傳介質包含在熱傳介質產物中之重量百分比為: (1) 三氧化二鈷(Co2〇3),0.7- 0·8 % ; (2) 三氧化二硼(Β2〇3),1.4-1.6% ; (3) 二鉻酸鈣(CaCr207),1.4-1.6% ; ⑷重絡酸鍰(MgCr207· 6H20),14.0-16.0% ; (5) 重鉻酸鉀(K2Cr207),56.0-64.0% ; (6) 重絡酸 #i(Na2Cr2〇7),14.0-16.0% ; (7) 氧化鈹(BeO),0.07-0.08 % ; (8) 二硼化鈦(TiB2),0.7-0.8% ; (9) 過氧化鉀(K202),0.07-0.08 % ; (10) —選用之金屬或銨的重鉻酸鹽(MCr207),7.0-8.0 %,其中「Μ」係選自鉀、鈉、銀及銨所構成之群 組; (11) 絡酸總(SrCr04),0.7-0.8%;以及 -33 - 本紙张;Ut適财S醉鮮(CNS ) A4^ ( 21()x297公i~ 广锖光聞讀背希之法意事續系填寫本貧)Printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs 593653 A8 B8 C8 D8 VI. Application scope of patents (8) Titanium diboride (TiB2), 0.5-1.0%; (9) Potassium peroxide (κ2〇2), 0.05 -0.10%; (1〇)-selected metal or ammonium dichromate (MCr207), 5.0-10 · 0% 'wherein "M" is selected from the group consisting of potassium, sodium, silver and ammonium; (11) gill chromate (SrCr04), 0.5-1.0%; and (12) silver dichromate (Ag2Cr207), 0.5-1.0%. . 10. The heat transfer surface according to item 9 of the scope of the patent application, wherein the weight percentage of the high heat transfer rate heat transfer medium contained in the heat transfer medium product is: (1) Cobalt trioxide (Co203), 0.7 -0 · 8%; (2) Boron trioxide (B2 03), 1.4-1.6%; (3) Calcium dichromate (CaCr207), 1.4-1.6%; ⑷Double complex acid (MgCr207 · 6H20) , 14.0-16.0%; (5) potassium dichromate (K2Cr207), 56.0-64.0%; (6) double complex acid #i (Na2Cr207), 14.0-16.0%; (7) beryllium oxide (BeO), 0.07-0.08%; (8) titanium diboride (TiB2), 0.7-0.8%; (9) potassium peroxide (K202), 0.07-0.08%; (10) — selected metal or ammonium dichromate (MCr207), 7.0-8.0%, where "M" is selected from the group consisting of potassium, sodium, silver, and ammonium; (11) Total complex acid (SrCr04), 0.7-0.8%; and -33-this paper ; Ut Shicai S Zuixian (CNS) A4 ^ (21 () x297 male i ~ Guang Guang Guang Wen reading the Greek law and meanings continued to fill in the poverty) 593653 A8 B8 C8 D8 #、申請專利範圍 〇2)重鉻酸銀(Ag2Cr2〇7),0.7-0.8%。 11. 根據申請專利範圍第9項之熱傳表面,其中該高傳熱速 率熱傳介質包含在熱傳介質產物中之重量百分比為: (1) 三氧化二鈷(C〇2〇3),0.723 % ; (2) 三氧化二硼(b2〇3),1.4472 % ; (3) 二鉻酸鈣(CaCr207),1.4472 % ; (4) 重鉻酸鎂(MgCr207· 6H20),14.472 % ; (5) 重鉻酸鉀(K2Cr207),57.888 % ; (6) 重鉻酸鈉(Na2Cr207),14.472 % ; (7) 氧化鈹(BeO),0.0723 % ; (8) 二硼化鈦(TiB2),0.723 % ; (9) 過氧化鉀(K202),0.0723 % ; (10) —選用之金屬或銨的重鉻酸鹽(MCr207),7.23 %, 其中「Μ」係選自鉀、鈉、銀及銨所構成之群組; (11) 鉻酸鳃(SrCr04),0.723 % ;以及 (12) 重鉻酸銀(Ag2Cr207),0.723 %。 12. 根據申請專利範圍第9項之熱傳表面,其中該高傳熱速 率熱傳介貝具熱傳導係數為金屬銀的3 2 〇 〇 〇倍以上。 13. 根據申請專利範圍第10項之熱傳表面,其中該高傳熱 速率熱傳介質具熱傳導係數為金屬銀的32,〇〇〇倍以上。 14·根據申請專利範圍第11項之熱傳表面,其中該高傳熱 速率熱傳介質具熱傳導係數為金屬銀的32 〇〇〇倍以上。 -34- 本紙張尺度逋用中國國家揉準(CNS ) A4規格(210χ297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 # 經濟部t央標隼局員工消費合作社印製 593653 經濟部中央樣隼局員工消費合作社印製 A8 ?8s —------D8 _ '申請專利範® ------ b· -種熱傳表面,其包括至少部分覆蓋高傳熱速率熱傳 介質之表面基材,該高傳熱速率熱傳介質係藉由將下 列化合物(以每個化合物所示量之+/· 〇1〇 %範圍變化) 溶解於水中以產生一種混合物,乾燥所得之該混合物 以產生該熱傳介質產物: (1) 三氧化二鈷(C〇203),0.01 克; (2) 三氧化二硼(b2〇3),〇 2克; (3) 二鉻酸鈣(CaCr207),0.02克; (4) 重路酸鎂(MgCr207· 6H2〇),0.2克; (5) 重鉻酸鉀(K2Cr207),0·8 克; (6) 重路酸鈉(Na2Cr207),0.2克; ⑺氧化鈹(BeO),0.001克; (8) 二硼化鈦(TiB2),0.01 克; (9) 過氧化鉀(Κ202),0.001 克; (ίο) —選用之金屬或銨的重鉻酸鹽(MCr2〇7),〇丨克,其 中「Μ」係選自钾、鈉、銀及按所構成之群組; (11) 鉻酸鳃(SrCr〇4),0.01克;以及 (12) 重鉻酸銀(Ag2Cr207),0.01 克。 16·根據申請專利範圍第15項之熱傳表面,其中該高傳熱 速率熱傳介質具熱傳導係數為金屬銀的32 〇〇〇倍以上。 -35- 本紙張尺度適用中國國家橾準(CNS ) A4规格(210X297公釐) (請先閱讀背面之注意事項存填寫本X )593653 A8 B8 C8 D8 #, patent application scope 〇2) silver dichromate (Ag2Cr207), 0.7-0.8%. 11. The heat transfer surface according to item 9 of the scope of the patent application, wherein the weight percentage of the high heat transfer rate heat transfer medium contained in the heat transfer medium product is: (1) cobalt trioxide (C0203), 0.723%; (2) boron trioxide (b203), 1.4472%; (3) calcium dichromate (CaCr207), 1.4472%; (4) magnesium dichromate (MgCr207 · 6H20), 14.472%; ( 5) Potassium dichromate (K2Cr207), 57.888%; (6) Sodium dichromate (Na2Cr207), 14.472%; (7) Beryllium oxide (BeO), 0.0723%; (8) Titanium diboride (TiB2), 0.723%; (9) potassium peroxide (K202), 0.0723%; (10) — selected metal or ammonium dichromate (MCr207), 7.23%, where "M" is selected from potassium, sodium, silver and Group consisting of ammonium; (11) gill chromate (SrCr04), 0.723%; and (12) silver dichromate (Ag2Cr207), 0.723%. 12. The heat transfer surface according to item 9 of the scope of patent application, wherein the heat transfer coefficient of the high heat transfer rate heat transfer shell has a thermal conductivity of more than 3,200 times that of metallic silver. 13. The heat transfer surface according to item 10 of the scope of patent application, wherein the high heat transfer rate heat transfer medium has a thermal conductivity coefficient of more than 32,000 times that of metallic silver. 14. The heat transfer surface according to item 11 of the scope of patent application, wherein the high heat transfer rate heat transfer medium has a thermal conductivity coefficient of more than 32,000 times that of metallic silver. -34- This paper size is in Chinese National Standard (CNS) A4 (210 x 297 mm) (Please read the notes on the back before filling out this page) Order # Printed by the Ministry of Economic Affairs and the Central Standards Bureau Employee Consumption Cooperatives 593653 Printed by the Consumer Sample Cooperatives of the Central Bureau of Economic Affairs of the Ministry of Economic Affairs A8 ~ 8s ------- D8 _ 'Patent Application ® ------ b · -A kind of heat transfer surface, which includes at least partially covering high heat transfer Surface substrate of rate heat transfer medium, the high heat transfer rate heat transfer medium is produced by dissolving the following compounds (changed in the range of +/- 100% of the amount shown for each compound) in water to produce a mixture The resulting mixture was dried to produce the heat transfer medium product: (1) Cobalt trioxide (C203), 0.01 g; (2) Diboron trioxide (b203), 0.02 g; (3) Di Calcium chromate (CaCr207), 0.02 g; (4) Magnesium dichromate (MgCr207 · 6H2〇), 0.2 g; (5) Potassium dichromate (K2Cr207), 0.8 g; (6) Sodium diluate (Na2Cr207), 0.2 g; Thallium beryllium oxide (BeO), 0.001 g; (8) Titanium diboride (TiB2), 0.01 g; (9) Potassium peroxide (Κ202) 0.001 g; (ίο) — selected metal or ammonium dichromate (MCr207), 0 g, where "M" is selected from the group consisting of potassium, sodium, silver, and according to the group; (11) Gill chromate (SrCrO4), 0.01 g; and (12) silver dichromate (Ag2Cr207), 0.01 g. 16. The heat transfer surface according to item 15 of the scope of patent application, wherein the high heat transfer rate heat transfer medium has a thermal conductivity coefficient of more than 32,000 times that of metallic silver. -35- This paper size is applicable to China National Standard (CNS) A4 (210X297mm) (Please read the precautions on the back and fill in this X)
TW90119783A 2001-08-13 2001-08-13 Medium having a high heat transfer rate TW593653B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90119783A TW593653B (en) 2001-08-13 2001-08-13 Medium having a high heat transfer rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90119783A TW593653B (en) 2001-08-13 2001-08-13 Medium having a high heat transfer rate

Publications (1)

Publication Number Publication Date
TW593653B true TW593653B (en) 2004-06-21

Family

ID=34075393

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90119783A TW593653B (en) 2001-08-13 2001-08-13 Medium having a high heat transfer rate

Country Status (1)

Country Link
TW (1) TW593653B (en)

Similar Documents

Publication Publication Date Title
US6811720B2 (en) Medium having a high heat transfer rate
Sundar et al. Experimental investigation of thermo-physical properties, heat transfer, pumping power, entropy generation, and exergy efficiency of nanodiamond+ Fe3O4/60: 40% water-ethylene glycol hybrid nanofluid flow in a tube
Zhang et al. Influence of additives on thermal conductivity of shape-stabilized phase change material
Jouhara et al. Experimental investigation of an inclined-condenser wickless heat pipe charged with water and an ethanol–water azeotropic mixture
Dheep et al. Investigation on thermal reliability and corrosion characteristics of glutaric acid as an organic phase change material for solar thermal energy storage applications
Fu et al. A steady-state measurement system for total hemispherical emissivity
Liu et al. Composites enhance heat transfer in paraffin/melamine resin microencapsulated phase change materials
Sathishkumar et al. Influence of thermal transport properties of NEPCM for cool thermal energy storage system
Rutherford et al. Thermal diffusion in methane-n-butane mixtures in the critical region
Seki et al. Development and evaluation of graphite nanoplate (GNP)‐based phase change material for energy storage applications
Karayiannis EHD boiling heat transfer enhancement of R123 and R11 on a tube bundle
Rajulu et al. Enhancement of nucleate pool boiling heat transfer coefficient by reentrant cavity surfaces
TW593653B (en) Medium having a high heat transfer rate
Xu et al. Thermal behavior and phase transition of the aminostaldehyde as the wall and bromohexadecane as a phase change material enriched via gold nanoparticles: Molecular dynamics study
Fink et al. Thermophysical properties of sodium
Hegde et al. Studies on nanoparticle coating due to boiling induced precipitation and its effect on heat transfer enhancement on a vertical cylindrical surface
Dinker et al. Experimental performance analysis of beeswax/expanded graphite composite for thermal energy storage in a shell and tube unit
Sun et al. Investigating the effect of graphene nanoplatelets on the thermal conductivity of KAl (SO4) 2· 12H2O
Cieśliński et al. Thermal energy storage using stearic acid as PCM material
Chavda Investigation of Thermal Performance of Cylindrical Heat Pipe Using Silver Nanofluid. Part I: Experimental Evaluation
Bianchi et al. Temperature measurement on copper surfaces for superconducting thin film cavity applications
Al Omari et al. Experimental study on the enhancement of heat transfer between water interfaced with higher thermal conductivity liquid
Rivera et al. Heat transfer coefficients in two-phase flow for mixtures used in solar absorption refrigeration systems
Burge et al. Thermal Conductivities of He, Ne, Ar, and of their Mixtures
Jouhara et al. Experimental study of small diameter thermosyphons charged with water, FC-84, FC-77 & FC-3283

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees