TW593641B - Topologically structured polymer coating - Google Patents

Topologically structured polymer coating Download PDF

Info

Publication number
TW593641B
TW593641B TW89121795A TW89121795A TW593641B TW 593641 B TW593641 B TW 593641B TW 89121795 A TW89121795 A TW 89121795A TW 89121795 A TW89121795 A TW 89121795A TW 593641 B TW593641 B TW 593641B
Authority
TW
Taiwan
Prior art keywords
coating
thin film
layer
film
scope
Prior art date
Application number
TW89121795A
Other languages
Chinese (zh)
Inventor
Hubert Seiberle
Martin Schadt
Mohammed Ibn-Elhaj
Carsten Benecke
Klaus Schmitt
Original Assignee
Rolic Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolic Ag filed Critical Rolic Ag
Application granted granted Critical
Publication of TW593641B publication Critical patent/TW593641B/en

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

Sub-micron-structured (nanostructured) polymer film or coatings are made by coating a substrate with a mixture of materials. One of the materials is removed using a selective solvent, leaving pores or other nanostructure. The substrate may be grooved, providing a competing nanostructure. The coating may act as an antireflective coating, optical retarder, optical diffuser, or orientation layer.

Description

593641 A7 五、發明說明(1 ) 【發明說明】 本發明關於位相結構聚合物薄膜或塗層的製造。這些 可應用於光學薄膜或塗層,且更特別地,當作定向層、光 延遲層、抗反射性塗層、光擴散板。這些塗層典型上表現 次微米輪廓,如孔隙、溝、通道或條紋。593641 A7 V. Description of the invention (1) [Explanation of the invention] The present invention relates to the manufacture of a phase-structured polymer film or coating. These can be applied to optical films or coatings, and more particularly, as alignment layers, light retardation layers, anti-reflection coatings, light diffusion plates. These coatings typically exhibit sub-micron contours such as pores, grooves, channels or stripes.

Walheim等人在科學2M (1999年1月22日)520-2中 教示一種已知的各向同性位相結構聚合物塗層。在旋塗到 一光滑基材的期間,使二元聚合物摻合物(爲聚苯乙烯和聚 甲基丙烯酸甲酯溶於四氫呋喃中者)分層(demix)至一控制的 程度。使所塗覆的基材暴露於環己烷中,其選擇地溶解聚 苯乙烯,而獲得PMMA的多孔塗層。可藉由改變材料及分 層時間而修改此塗層,但是無法對給予長程級數或圖案化 的位相結構。 希望能夠有一種多變化性的薄膜或塗層,例如產生不 僅各向同性位相結構而且各相異性位相結構的可能性,具 有使結構形成圖案的能力。再者,此薄膜或塗層應表現高 的化學和物理安定性,以及不會隨著分層時間或溶劑而改 變的特性。 該薄膜或塗層因此可用於,例如,當作液晶和液晶顯 示器的定向層(在某些情況中當作雙穩態定向層)。其它技 術應用亦變得可行的,如可用當作抗反射性塗層的低有效 折射率層或光擴散層之製造,及用於產生新穎光學構件的 光學各向異構性塗層(尤其爲液晶聚合物)之製造。使用光 配向,則光圖案化的溝紋塗層係可能的。 3 (請先閱讀背面之注意事項再填寫本頁) -丨^|^ --------訂--------線· 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 593641 A7 ____B7 _ 五、發明說明O ) 根據本發明,一種產生位相結構聚合物薄膜或塗層之 方法,包括混合至少兩種材料,將混合物塗佈於基材上, 及移除至少一種材料(例如藉由使用一種對另一材料呈鈍性 的溶劑),其特徵在於一種材料係不可交聯的,而至少一種 其它材料在塗佈於基材後和在使用溶劑之前係被交聯的。 可使用各式各樣的基材,如玻璃、塑膠、金屬、半導 體或紙張。 較佳係暴露於光線如UV光(其可被偏光)下而完成交 聯,此有助於薄膜或塗層的良好安定性。 較宜地,可交聯性材料包括桿似(蘆木)形狀。有利地 ,可交聯性材料與不可交聯性材料係有類似的結構,即良 好的相容性而無關於互溶性。更宜地,可交聯性樹脂係液 晶性’且在追樣的情況中不可交聯性材料亦較佳爲介晶性( 液晶性)。 由混合物可知,均勻的透明薄膜可被形成及暴露於光 線中,較佳暴露於UV光中。在此過程期間,可交聯性材 料係逐漸交聯,已交聯的材料係與不可交聯性材料漸漸分 層。在完成父聯後’用選擇性溶劑來移除未交聯的材料(或 在加熱層後蒸發)以產生孔隙。依此方式,可以獲得具有次 微米長度規模的結構(孔、溝等)之層/薄膜/塗層。 該不可交聯性材料可以有含有一種界面活性劑。該可 交聯性材料可以含有一種添加劑如二色性染料。在交聯期 間’可父聯性材料可以維持在定向狀態,例如可藉由—下 定向層而給予定向,該下定向層係光定向層,如偶氮染料 4 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) ϋ n all ϋ ϋ i·— n 一 n flu ϋ ϋ 線· 593641 A7 _____B7_— 五、發明說明(今) 或線型聚合的光聚合物’其係比機械製造的定向層較便宜 、較簡單且更具有多樣性。 以在交聯期間會形成均勻相的兩種分子混合成分之分 層(奈米相分離)爲基礎,而形成位相結構。此方法的一明 顯有利處係在於可藉由適當地選擇實驗參數而在寬廣的範 圍中調整位相結構的大小、形狀和分佈,該參數尤其是溶 劑的種類、混合比、在溶劑中的濃度、及光線的強度和持 久時間、波長、入射角度和偏光狀態。 特別地,若交聯的和不交聯的材料之化學結構爲類似 ,且尤其若添加界面活性劑’則可達成分子良好混合的溶 液,此額外地確保交聯過程係爲分層的主要原因。 增加薄膜均勻性及奈米孔之形成的可能性係在製備混 合物時,使用至少兩種溶劑(溶劑1和溶劑2)以代替一種溶 劑,例如溶劑2爲不可交聯性材料之好溶劑而爲交聯的材 料之差溶劑,例如是己烷或乙醇,而溶劑1爲交聯的材料 之好溶劑(可能是不可交聯性材料的好或差溶劑)’例如是 乙酯。在此方法中,較佳爲在第一步驟中將交聯的和不可 交聯性材料分別溶於溶劑1和溶劑2中。然後,使兩種獲 得的溶液混合及均勻化。溶劑1和溶劑2較佳爲選自於互 相互溶者。 在一較佳具體實施例中,本發明提供一種經調製(幾乎 週期的)的位相結構之方法。例如,混合物較佳爲包含一種 定向的液晶性材料。該定向會誘導孔隙的延長而導致溝(或 通道、條紋等)的形成。”溝”的大小和分佈範圍可爲幾nm 5 紙張尺度適用中關家標準(CNS)A4規格(210 X 297公 (請先閱讀背面之注意事項再填寫本頁) —A__w--------訂---------線- 593641 A7 ______B7______ 五、發明說明(.) 至幾μηι,視製備參數(如混合物、光照射時間、溫度等)。 原則上,可以使用任何方法來定向混合物,如採用一 能誘導毗鄰的液晶材料之排列的層。較適合者爲藉由光定 向方法(通常採用線性偏光)所製造的定向層,且特別適合 者爲線性光聚合(LPP)的定向層,亦稱爲光定向的聚合物網 絡(ΡΡΝ),特別是因爲這些層可容易地施用於非平面表面。 該方法例如揭示於Gibbons等人的美國專利第4974941號 ,Chigrinov等人的美國專利第5838407號和Schadt等人 的美國專利第5602661號中。另一可行性爲使用一種本身 含有光可定向成分的混合物。此種定向方法之例子例如可 見於1999年6月3日申請的國際專利申請案 PCT/IB99/01001(ROLIC)中。 若依本發明的第一層具有排列的位相結構,其較佳爲 排列著而石平行於交聯的材料之定向(雖然就增加的因宙而 言平行係可能的),該定向和排列較佳係互相成直角,則可 獲得可用的多層結構(尤其在雙穩態排列的領域)。在這些 情況中,可藉由線性偏振UV光來誘導第二層的排列和交 聯。可調整UV光的照度,俾排列和定向的固定力可互相 競爭的。 在依本發明的方法中,在混合之前兩種材料可溶於各 自的溶劑中,溶劑係互相互溶的但是爲另一溶質的差溶劑 〇 可交聯性材料的存在比例係每份的不可交聯性材料有 1/10至30重量份,較佳1/4至4重量份,該不可交聯性材 6 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) "' ' (請先閱讀背面之注意事項再填寫本頁) --------訂---------線 593641 A7 -- -- B7 五、發明說明(f) 料最後將由所完成的塗層中溶解出。 本發明擴及一種已經藉由上述方法所產生的位相結構 聚合物薄膜或塗層。在該薄膜或塗層中,結構在平行於塗 層平面的至少一方向中可包含至少99%小於i〇〇〇nm的空 洞,較佳小於500nm的空洞,更佳小於2〇〇nm的空洞。將 了解的是,在由塗層溶解出未交聯的材料後可能產生空洞 。相鄰的空洞間之距離典型上係小於500nm,且該空洞係 可拉長的,可了解此係爲交聯的材料之定向結果。在大多 數應用中,塗層以及許多情況亦爲基材,係光學透明的。 基材較佳係一種經排列的結構,可例如採用一能誘導 相鄰的液晶材料之排列的層來達成該結構。特別適合者爲 藉由光定向方法(通常使用線性偏光)所製造的定向層,而 更特別適合者爲線性光聚合(LPP)的定向層。亦可藉由摩擦 、刷拂或其它機械方式來達成該經排列的結構。該塗層係 以一方向施予,該方向係與排列成0。至90。,或其中角度 係隨著塗層的不同部分而不同,視情況與畫素有關的。 本發明亦提供一種在基材上的位相結構聚合物薄膜或 塗層,其包括當作塗層的一種具有空洞及/或位相結構的材 料,特徵在於該材料係交聯的。可藉由另一種材料之存在 及然後被移除以產生該空洞及/或結構。 本發明亦提供一種光延遲物,包括一在基材上的薄膜 或塗層,如藉由稍後的實例所說明者。 本發明擴及一種位相結構聚合物薄膜或塗層,其充當 光擴散器。在此例中,孔和溝通常具有光波長之等級的尺 7 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公t ) 一 ' "~ (請先閱讀背面之注意事項再填寫本頁)Walheim et al. In Science 2M (January 22, 1999) 520-2 teach a known isotropic phase structure polymer coating. During spin coating to a smooth substrate, the binary polymer blend (which is polystyrene and polymethyl methacrylate dissolved in tetrahydrofuran) was demixed to a controlled degree. The coated substrate was exposed to cyclohexane, which selectively dissolved polystyrene, to obtain a porous coating of PMMA. This coating can be modified by changing the material and the delamination time, but it is not possible to give long-range progressions or patterned phase structures. It is desirable to have a film or coating that is highly variable, such as the possibility of generating not only isotropic phase structures but also anisotropic phase structures, and the ability to pattern the structure. Furthermore, the film or coating should exhibit high chemical and physical stability and properties that do not change over time or with solvents. The film or coating can therefore be used, for example, as an alignment layer for liquid crystals and liquid crystal displays (in some cases as a bi-stable alignment layer). Other technical applications have also become feasible, such as the manufacture of low-refractive-index layers or light-diffusing layers that can be used as anti-reflective coatings, and optical anisotropic coatings (especially for Liquid crystal polymer). Using photo-alignment, a photo-patterned grooved coating is possible. 3 (Please read the precautions on the back before filling out this page)-丨 ^ | ^ -------- Order -------- Line · This paper size is applicable to China National Standard (CNS) A4 (210 X 297 public love) 593641 A7 ____B7 _ V. Description of the invention O) According to the present invention, a method for generating a phase structure polymer film or coating includes mixing at least two materials, and coating the mixture on a substrate, And removing at least one material (for example, by using a solvent that is passive to another material), characterized in that one material is non-crosslinkable, and at least one other material is applied to the substrate and after the solvent is used Previously cross-linked. A wide variety of substrates can be used, such as glass, plastic, metal, semiconductor or paper. It is preferred to complete the crosslinking by exposing to light such as UV light (which can be polarized), which contributes to the good stability of the film or coating. Preferably, the crosslinkable material includes a rod-like (reed) shape. Advantageously, the crosslinkable material and the non-crosslinkable material have a similar structure, that is, good compatibility without regard to mutual solubility. More desirably, the crosslinkable resin-based liquid crystallinity 'and the non-crosslinkable material in the case of following the sample are also preferably mesogenic (liquid crystal). It is known from the mixture that a uniform transparent film can be formed and exposed to light, preferably to UV light. During this process, crosslinkable materials are gradually crosslinked, and crosslinked materials are gradually delaminated from non-crosslinkable materials. After completion of the parent linking ', a selective solvent is used to remove uncrosslinked material (or evaporate after heating the layer) to create porosity. In this way, layers / films / coatings having structures (holes, trenches, etc.) on the sub-micron length scale can be obtained. The non-crosslinkable material may contain a surfactant. The crosslinkable material may contain an additive such as a dichroic dye. During cross-linking, the parentally-linkable material can be maintained in an oriented state, for example, the orientation can be given by an under-orientation layer, which is a light-orientation layer, such as an azo dye. 4 This paper size applies Chinese national standards CNS) A4 specification (210 X 297 mm) (Please read the precautions on the back before filling out this page) ϋ n all ϋ ϋ i · — n a n flu ϋ ϋ line · 593641 A7 _____ B7_— 5. Description of the invention ) Or linear polymerized photopolymers are cheaper, simpler and more versatile than mechanically manufactured alignment layers. The phase structure is formed on the basis of the layering (nanophase separation) of the two molecular mixed components that will form a homogeneous phase during crosslinking. One obvious advantage of this method is that the size, shape, and distribution of the phase structure can be adjusted in a wide range by appropriately selecting experimental parameters, especially the type of solvent, the mixing ratio, the concentration in the solvent, And the intensity and duration of light, wavelength, angle of incidence, and polarization. In particular, if the chemical structures of the cross-linked and non-cross-linked materials are similar, and especially if a surfactant is added, a well-mixed solution of the molecules can be achieved, which additionally ensures that the cross-linking process is the main reason for delamination . The possibility of increasing the uniformity of the film and the formation of nanopores is to use at least two solvents (solvent 1 and solvent 2) instead of one solvent when preparing the mixture. For example, solvent 2 is a good solvent for non-crosslinkable materials. The poor solvent of the cross-linked material is, for example, hexane or ethanol, and the solvent 1 is a good solvent of the cross-linked material (may be a good or poor solvent of the non-crosslinkable material), such as ethyl ester. In this method, it is preferable to dissolve the crosslinked and non-crosslinkable materials in the solvent 1 and the solvent 2 respectively in the first step. Then, the two obtained solutions were mixed and homogenized. The solvent 1 and the solvent 2 are preferably selected from mutually soluble solvents. In a preferred embodiment, the present invention provides a method for modulating (almost periodic) phase structure. For example, the mixture preferably contains an oriented liquid crystalline material. This orientation induces the elongation of pores and leads to the formation of grooves (or channels, stripes, etc.). The size and distribution range of the "ditch" can be a few nm 5 paper size applicable to the Zhongguanjia Standard (CNS) A4 specification (210 X 297 male (please read the precautions on the back before filling this page) —A__w ----- --- Order --------- line- 593641 A7 ______B7______ 5. Description of the invention (.) To several μηι, depending on the preparation parameters (such as mixture, light irradiation time, temperature, etc.) In principle, any Method to align the mixture, such as using a layer that can induce the alignment of adjacent liquid crystal materials. A more suitable alignment layer is made by a photo-alignment method (usually linear polarization), and a linear photopolymerization (LPP) is particularly suitable. ) Oriented layers, also known as photo-oriented polymer networks (PPN), especially because these layers can be easily applied to non-planar surfaces. This method is disclosed, for example, in U.S. Patent No. 4,974,941 by Gibbons et al., Chigrinov et al. U.S. Patent No. 5,838,407 and Schadt et al. U.S. Patent No. 5,602,661. Another possibility is to use a mixture that itself contains photo-orientable ingredients. An example of such an orientation method can be found in, for example, June 3, 1999 In the requested international patent application PCT / IB99 / 01001 (ROLIC). If the first layer according to the present invention has an aligned phase structure, it is preferably aligned with the stone parallel to the orientation of the crosslinked material (although it increases (Parallel systems are possible due to geography), the orientation and arrangement are preferably at right angles to each other, and a usable multilayer structure (especially in the field of bistable arrangements) can be obtained. In these cases, linear polarization can be used The UV light is used to induce the alignment and cross-linking of the second layer. The illumination of the UV light can be adjusted, and the fixing forces of the rubidium arrangement and orientation can compete with each other. In the method according to the invention, the two materials are soluble in each other before mixing. Among solvents, the solvent is a poor solvent which is mutually soluble but is another solute. The cross-linkable material is present in a ratio of 1/10 to 30 parts by weight per non-crosslinkable material, preferably 1/4 to 4 parts by weight of this non-crosslinkable material 6 This paper is sized to the Chinese National Standard (CNS) A4 (210 X 297 mm) " '(Please read the precautions on the back before filling this page) --- ----- Order --------- line 593641 A7--B7 V. Invention Explanation (f) The material will eventually dissolve from the finished coating. The present invention extends to a phase-structured polymer film or coating that has been produced by the method described above. In the film or coating, the structure is parallel to The coating plane may contain at least 99% of voids smaller than 1000 nm in at least one direction, preferably less than 500 nm voids, and more preferably less than 2000 nm voids. It will be understood that the Voids may occur after uncrosslinked materials. The distance between adjacent cavities is typically less than 500 nm, and the cavities are stretchable. It can be understood that this system is the orientation result of crosslinked materials. In most applications, coatings and, in many cases, substrates are also optically transparent. The substrate is preferably an aligned structure, which can be achieved, for example, by using a layer capable of inducing the alignment of adjacent liquid crystal materials. Particularly suitable is an alignment layer produced by a photo-alignment method (normally using linear polarized light), and more particularly suitable is an alignment layer of linear photopolymerization (LPP). The aligned structure can also be achieved by rubbing, brushing or other mechanical means. The coating is applied in a direction which is aligned with 0. To 90. , Or where the angle varies with different parts of the coating, depending on the pixels. The present invention also provides a phase-structured polymer film or coating on a substrate, which includes a material having a cavity and / or a phase structure as a coating, which is characterized in that the material is crosslinked. The void and / or structure can be created by the presence of another material and then being removed. The present invention also provides a light retarder comprising a film or coating on a substrate, as illustrated by the examples below. The invention extends to a phase-structured polymer film or coating that acts as a light diffuser. In this example, the holes and grooves usually have a grade of light wavelength. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 g). &Quot; ~ (Please read the precautions on the back before (Fill in this page)

^OJ· ϋ 1 n 1 I ϋ ϋ I ·1 ϋ n ϋ ϋ ϋ I n Λί I ϋ ϋ ϋ H I ϋ ^1 ί ·1 ϋ -ϋ ϋ I 593641 A7 __ __B7__ 五、發明說明(k ) 寸。 本發明亦擴及二或多層之重疊’較佳爲堆疊物或多層 (請先閱讀背面之注意事項再填寫本頁) 形式。 本發明亦提供一種光學構件’其包括一帶有液晶聚合 物層的基材,該液晶聚合物層具有與溝成〇°至90°的排列( 就二穩定排列間的最感趣競爭較佳係90。)且在其厚度內具 有空洞,空洞的平均間隔爲小於5〇〇nm,99%該空洞係小 於500nm,且係至少它們橫過的兩倍。平行的排列(即〇°) 係可能的,例如就高固定能量應用而言。 本發明擴及一種組件’包括一可排列的分子層,其與 上述塗層或光學構件接觸之層’該分子係因此排列著。 本發明更擴及一種抗反射性塗覆物件,其包括一上述 的塗層或構件,及擴及一種液晶單元,其中可採用至少二 不同穩定排列中之一的液晶分子與單元壁接觸,單元壁包 括一如上述的薄膜或塗層。 本發明更擴及一種光學顯示裝置,較佳爲一種液晶顯 示器,包括如上述的薄膜或塗層。 再者,本發明亦提供一種用於防止僞造或複製的元件 〇 將舉例說明本發明的某些應用。 杭反射塗層:用於可見光範圍需要減少或擗穿.実两的 光反射者。一個例子爲顯示裝置之玻璃的令人討厭之反射 。可了解該塗層的基本原理爲基於:空氣膜與薄膜基材界 的反射光之間的破壞性干涉。玻璃或塑膠基材需要低的有 8 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱1 ~ 593641 A7 __._B7_ 五、發明說明(^ ) 效折射率nefgl.2的塗膜。然而,由於缺乏適合的低折射 率材料,不能以均勻的單層塗層來符合此要求,而因此通 常使用多層式塗層。 作爲多層的替代物,已知可用多孔薄膜來降低在光波 長的反射(許多其它人已經硏究此所謂的”蛾眼”效應)。第 一個方式爲提供一種小於λ〇/4(λ〇係自由空間中的波長)的孔 隙大小,則層將是一種具有有效折射率(由薄膜之平均値獲 得)的連續膜。因此,挑戰爲使孔隙的莫耳分率達到最大, 俾獲得非常低的neff。明顯地,折射率爲造成反射係數的減 少。根據此觀念,已經發展出不同的方法,包括溶膠方法 、經次微米光柵圖案化的表面、次微米粒子的疊置及聚合 物摻合物的使用。 本發明提供一種使用簡單方法製造奈米孔交聯薄膜之 方法,其適用於平面且尤其亦適用於非平面的表面。此方 法之根據爲以奈米長度規模來控制分子混合的化合物之相 分離。視製備參數而定,可孔隙的大小、形狀和體積分率 。利用橢圓測量法,我們發現亦可以調整該層的有效折射 率(neff)及減少到1.2或更低。因此可有效地降低玻璃的折 射係數。 更一優點爲通常係來自於孔隙/空洞之頂部至底部的連 續變窄之形狀(參考稍後第3c圖中所述者),因爲如此的” 梯度空洞”具有使折射率沿著空洞之深度而連續變化的效果 ,因此僅以單層即能在寬廣的光譜範圍中有效地抗反射。 再者,若使用依本發明上述特殊實施例之具有延長溝 9 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) > — — — — — — — — — 111 — — — — — — — — — — — — — — — — — — — 593641 A7 __._B7____ 五、發明說明($ ) 結構之層,則該延長結構亦會影響有效折射率而使得其係 方向依賴性的。該層因此可用當作抗反射層,其對於入射 角度係敏感的。 定向層:已知由於各向異性表面交互作用,具有溝的 表面能產生均勻且平行的液晶排列。茲相信此由於具有機 械形成溝的基材之週期位相能迫使導向器沿著溝排列,而 使液晶的彈性變形態量達到最小化。傳統上藉由摩擦(玻璃 板、聚合物層等)、單向拋光、正切蒸發、氧化物的正切離 子束蝕刻、或在基材上形成光柵而產生溝。雖然機械排列 係比較簡單的,但是用於產生溝的技術常常難以實行,此 牽涉昂貴的設備及係相當慢的。再者,刷拂(摩擦)方法具 有許多固有的缺點,如產生塵粒及表面靜電荷。另一限制 在於機械排列係一種大規模方法,而因此不適用表面導向 器的局部變化(圖案),當然不能用於畫素規模。 如上定向的依本發明所製造的交聯層之薄膜或塗層’ 顯示定向溝,而因此可用當作祖鄰液晶材料之定向層。茲 相信此在液晶上的排列效果係由於交聯層的位相所致’十 分類似於一經刷拂的定向層之效果。 混合的(雙穩態的)固定:本發明更可爲一種混合的排 列,即一種定像層其中任一給定點同時擁有二(或更多)不 同的定向方向。該定向層例如可用於產生一種雙穩態(多穩 態)液晶固定系統。 關於此,使用二(或多)重疊層之間的固定競爭。一爲 依本發明的位相結構薄膜或塗層,其經由位相(奈米溝)藉 10 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注咅?事項再填寫本頁) -ϋ n I I 1 n n^OJ· I n ϋ 1 1 ϋ ϋ I - 593641 A7 ---— B7__ 五、發明說明(,) 由上述機構而傾向於給予液晶排列。另一爲經光定向的定 向層’較佳線性聚合的光聚合物(LPP)薄膜,在該位相結構 薄膜或塗層的頂上,以不同於位相結構薄膜或塗層的固定 方向’例如與它垂直的方向,來誘導競的液晶排列。 視二重疊層的厚度、”溝,,的尺寸(A、Aeff和λ,見第4 圖)及光照射方向而定,可以找出會產生雙穩態固定的參數 範圍。 里i乍光延遲器:已知一具有調製表面輪廓的層,如線 型光柵或多孔薄膜,具有在斜角的蒸氣沈積方法中所形成 的傾斜柱狀結構,表面介電常數(亦稱爲相對電容率)係爲 深度的函數且就平行或垂直於光柵的偏光而言將是不同的 。該薄膜係雙折射的且已經被提議用於構成相延遲板。 因爲本發明提供製造位相結構液晶聚合物(LCP)層的方 法’其亦給予一種製造特殊光延遲器的新可能性。就該調 製的表面輪廓LCP而言,除了 LCP材料固有的各向異性 (△nu:P),亦有對於表觀介電常數(或對應於表觀介電常數各 向異性)的幾何貢獻(Δη㈣)。此將修改LCP層的總表觀各向 異性(吊吊吾人可大致將其視爲AneffEnAnLcp + Δη溝”)。視溝 的體積分率而定,可能使Aneff增加至最高爲50%或更多。 修改透射光線的偏振係特別有用於製造光學構件,如延遲 器、波片等,其中依此方式較低的Δη材料可達成高的Δη。 用作光擴散器:具有不同析射率的f學薄膜在沿著薄 膜的軸線可具有對它們的反射和透射性之實質擴散的構件 。已知的例子爲塡充有無機夾雜物不小於光線波長者的拉 11 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) # 訂---------線· 593641 B7 五、發明說明) 伸聚合物、拉伸聚合物分散的液晶(PDLC)或聚合物慘合物 。沿著特定軸線之折射率的失配係具有效果爲使得'沿著軸 線(其中折射率係匹配的)偏振的入射光將以較小散射程度 的透射或反射。 在此應用領域中亦可用本發明之適當改造的實施例。 本發明提供在沿某些薄膜軸線具有可控制尺寸和折射率的 位相結構聚合物薄膜或塗層。典型地’位相結構(LCP)層擁 有約0.5之十分大的折射率失配(即孔或溝(空氣)與聚合物 基質之間折射率差異)。因此’以約波長之孔或溝尺寸’而 獲得實質的擴散反射。通常’若希望有擴散反射時’結構 的尺寸在至少一方向中應小於數波長。適當地選擇參數値 ,如孔或溝的大小(關於薄膜內的波長)及形狀(界面幾何或 位相)、其體積分率、薄膜厚度及因此的折射率失配程度’ 則可在特定方向中達成所欲的擴散反射度和總透光度。再 者,另可藉改變所用的(LCP)材料之雙折射而控制反射率失 配値。 更可能定向(如上述)該薄膜或塗層,而因此控制光學 特性,以及可能控制圖案化。此容許操縱折射率失配,而 在沿著特定的目視方向及/或目視錐形區,達成所欲的擴散 或鏡面反射和透射度。再者,藉由選擇適合的溝及/或圖案 之幾何形狀,亦可能影響散射光的分佈。 依本發明之具有光學的位相結構液晶聚合物薄膜或塗 層係可利用於製造各式各樣的光學裝置。例子爲(偏光)擴 散器及反射器,以及特殊構形以用於改良液晶顯示器的性 12 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) I --------訂---------線· 593641 A7 五、發明說明(丨I) 能,尤其是關於亮度、觀察特性及視差。薄膜或塗層可用 於各種顯示型內當作各向同性或各向異性擴散器,以及當 作反射型液晶顯示器的各向同性或各向異性之前散射膜或 各向同性或各向異性之擴散反射器。作爲反射偏光器,它 們係特別有用於增加對比、減少刺眼或增強光線的偏振。 有利地,它們亦可用當作電極(視情況與畫素有關的)。再 者,因爲它們的位相結構,它們可用當作液晶或其它要被 定向的材料之定向層。其它用途爲鑑定元件(例如防範鈔票 、信用卡、證卷、身份證等被僞造)。它們例如僅能對於某 些視角有高度反射性,因此對觀看者提供歪斜效果,而特 殊的圖案,甚至於簽名或照片係可行的。 在交聯過程期間,藉由控制定向量或藉由用雷射光寫 ,本發明亦提供一種製造週期性結構(例如光柵)的可能性 。此外,雷射所寫的週期性結構與產生的排列(圖案化)結 構之組合係有可能的。有利地,依此方式,可製得新位相 各向異性結構塗層,具有合倂散射和繞射效果的光學特性 Ο 與溝有關的高度散射方向係取決於參數如所用的LCP 之各向異性(關於量値和符號)。例如,使用具有正各向異 性(Δη)的LCP所製作的各向異性LCP塗層,沿著溝方向排 列,由於較大的折射率失配,而在平行溝方向的方向將入 射光強烈散射,然而與溝成垂直的方向中之入射光成分將 以較少的干擾透射經過薄膜。結果,在通過薄膜後,未偏 振的光線將被部分地偏振。該薄膜的消光比可具有約2或 13 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁)^ OJ · ϋ 1 n 1 I ϋ ϋ I · 1 ϋ n ϋ ϋ ϋ I n Λί I ϋ ϋ ϋ H I ϋ ^ 1 ί · 1 ϋ -ϋ ϋ I 593641 A7 __ __B7__ 5. Description of the invention (k). The invention also extends to the overlap of two or more layers', preferably in the form of a stack or multiple layers (please read the precautions on the back before filling this page). The present invention also provides an optical member including a substrate with a liquid crystal polymer layer, the liquid crystal polymer layer having an arrangement of 0 ° to 90 ° with the grooves (for the most interesting competition between the two stable arrangements) 90.) And there are voids in its thickness, the average interval of the voids is less than 500 nm, 99% of the voids are less than 500 nm, and at least twice that they cross. Parallel arrangements (ie 0 °) are possible, for example for high fixed energy applications. The invention extends to a component ' comprising an array of molecular layers which are in contact with the coating or optical member ' The invention further extends to an anti-reflective coated object, which includes a coating or member as described above and a liquid crystal cell, wherein at least two liquid crystal molecules in one of the different stable arrangements can be used to contact the cell wall. The wall comprises a film or coating as described above. The invention further extends to an optical display device, preferably a liquid crystal display, which comprises a film or coating as described above. Furthermore, the present invention also provides an element for preventing counterfeiting or duplication. 〇 Certain applications of the present invention will be exemplified. Hang reflective coating: used in the visible light range need to reduce or penetrate. 実 two light reflectors. An example is the objectionable reflection of glass in display devices. It can be understood that the basic principle of this coating is based on the destructive interference between the air film and the reflected light from the film substrate boundary. Glass or plastic substrates need to be low. 8 paper sizes are applicable to Chinese National Standard (CNS) A4 specifications (210 X 297 public love 1 ~ 593641 A7 __._ B7_ V. Description of the invention (^) Coating of effective refractive index nefgl.2 However, due to the lack of suitable low-refractive-index materials, it is not possible to meet this requirement with a uniform single-layer coating, and therefore multi-layer coatings are often used. As a multi-layer alternative, porous thin films are known to reduce light exposure. Wavelength reflection (many others have studied this so-called "moth-eye" effect). The first way is to provide a pore size smaller than λ0 / 4 (wavelength in λ〇 system free space), then the layer will be A continuous film with an effective refractive index (obtained from the average chirp of the thin film). Therefore, the challenge is to maximize the mol fraction of the pores and to obtain a very low neff. Obviously, the refractive index causes a reduction in the reflection coefficient. According to this concept, different methods have been developed, including a sol method, a surface patterned by a sub-micron grating, a superposition of sub-micron particles, and the use of a polymer blend. A simple method for making nanoporous crosslinked films, which is suitable for planar and especially non-planar surfaces. The basis of this method is the phase separation of compounds that control molecular mixing on a nanoscale scale. Depending on the preparation parameters, The pore size, shape and volume fraction can be determined. Using ellipse measurement, we found that the effective refractive index (neff) of this layer can also be adjusted and reduced to 1.2 or lower. Therefore, the refractive index of glass can be effectively reduced. A further advantage is that the shape is usually a continuous narrowing from the top to the bottom of the pore / cavity (refer to the later figure 3c), because such a "gradient cavity" has a refractive index along the depth of the cavity And the effect of continuous change, so only a single layer can effectively anti-reflection in a wide spectral range. Moreover, if the use of the special embodiment of the present invention with the extension groove 9 paper size applicable to Chinese national standards (CNS ) A4 size (210 X 297 mm) (Please read the precautions on the back before filling out this page) > — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 593641 A7 __._ B7____ 5. Description of the invention ($) Structure layer, the extended structure will also affect the effective refractive index and make it direction dependent. The The layer can therefore be used as an anti-reflection layer, which is sensitive to the angle of incidence. Orientation layer: It is known that due to anisotropic surface interaction, the surface with grooves can produce a uniform and parallel liquid crystal arrangement. It is believed that this is due to the mechanical formation The periodic phase of the substrate of the groove can force the director to be arranged along the groove, thereby minimizing the amount of elastic deformation of the liquid crystal. Traditionally, friction (glass plate, polymer layer, etc.), unidirectional polishing, tangential evaporation, The tangent ion beam of the oxide is etched, or a grating is formed on the substrate to generate a groove. Although the mechanical arrangement is relatively simple, the techniques used to create the grooves are often difficult to implement, which involves expensive equipment and the system is relatively slow. Furthermore, the brushing (friction) method has many inherent disadvantages, such as generation of dust particles and surface electrostatic charges. Another limitation is that mechanical alignment is a large-scale method, and therefore local variations (patterns) of surface guides are not applicable, and of course cannot be used at the pixel scale. The film or coating layer 'of the cross-linked layer manufactured according to the present invention oriented as above shows alignment grooves, and thus can be used as an alignment layer of an ancestral liquid crystal material. It is believed that the effect of this alignment on the liquid crystal is due to the phase of the cross-linked layer, which is very similar to the effect of the brushed alignment layer. Mixed (bistable) fixed: The present invention can be a mixed arrangement, that is, any given point of a fixing layer has two (or more) different orientations at the same time. The alignment layer can be used, for example, to produce a bistable (multistable) liquid crystal fixing system. In this regard, a fixed competition between two (or more) overlapping layers is used. The first is a phase structure film or coating according to the present invention, which borrows 10 paper sizes via the phase (nano groove) to apply Chinese National Standard (CNS) A4 (210 X 297 mm) (please read the note on the back first) ? Please fill in this page again) -ϋ n II 1 nn ^ OJ · I n ϋ 1 1 ϋ ϋ I-593641 A7 ----- B7__ V. Description of the invention () The liquid crystal arrangement tends to be given by the above institutions. The other is a light-oriented alignment layer 'preferably a linearly polymerized photopolymer (LPP) film, on top of the phase structure film or coating, with a different orientation from the phase structure film or coating', such as with it Vertical orientation to induce competing liquid crystal alignment. Depending on the thickness of the two overlapping layers, the size of the grooves (A, Aeff, and λ, see Figure 4) and the direction of light irradiation, it is possible to find the parameter range that will produce a fixed bi-stable state. Device: A layer with a modulating surface profile, such as a linear grating or a porous film, is known to have an oblique columnar structure formed in an oblique vapor deposition method. The surface dielectric constant (also known as relative permittivity) is The function of depth will be different with respect to polarized light that is parallel or perpendicular to the grating. The film is birefringent and has been proposed for use in forming phase retarders. Because the present invention provides the fabrication of a phase structure liquid crystal polymer (LCP) layer It also gives a new possibility to make special optical retarders. As far as the modulated surface profile LCP is concerned, in addition to the inherent anisotropy (△ nu: P) of the LCP material, there is also an apparent dielectric constant (Or corresponding to the anisotropy of the apparent dielectric constant) geometric contribution (Δη㈣). This will modify the total apparent anisotropy of the LCP layer (we can generally regard it as AneffEnAnLcp + Δη trench ”). Depending on the volume fraction of the ditch, Aneff may increase up to 50% or more. Modifying the polarization of transmitted light is particularly useful for manufacturing optical components such as retarders, wave plates, etc., where a lower Δη material can achieve a high Δη in this way. Used as a light diffuser: f-films with different emissivities may have a substantially diffusing member for their reflection and transmission properties along the axis of the film. A known example is the drawing of a person filled with inorganic inclusions that is not less than the wavelength of light. 11 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm). (Please read the precautions on the back before filling this page. ) # Order --------- line · 593641 B7 V. Description of the invention) Extension polymer, stretch polymer dispersed liquid crystal (PDLC) or polymer compound. A mismatch of the refractive index along a particular axis has the effect that incident light polarized along the axis (where the refractive index system is matched) will be transmitted or reflected with a small degree of scattering. Appropriately modified embodiments of the invention can also be used in this field of application. The present invention provides a phase structure polymer film or coating having controllable size and refractive index along certain film axes. A typical 'phase structure (LCP) layer has a very large refractive index mismatch of about 0.5 (i.e., the refractive index difference between a hole or groove (air) and the polymer matrix). Therefore, 'with a hole or groove size of about wavelength', a substantial diffuse reflection is obtained. In general, if diffusion reflection is desired, the size of the structure should be less than a few wavelengths in at least one direction. Appropriate selection of parameters 如, such as the size of the holes or grooves (with respect to the wavelength in the film) and shape (interface geometry or phase), their volume fraction, film thickness, and therefore the degree of refractive index mismatch 'can be in a particular direction Achieve the desired diffuse reflectance and total light transmittance. Furthermore, the reflectance mismatch 反射 can be controlled by changing the birefringence of the (LCP) material used. It is more likely to orient (as described above) the film or coating, and thus control the optical characteristics, and possibly patterning. This allows the refractive index mismatch to be manipulated to achieve the desired diffusion or specular reflection and transmission in a particular viewing direction and / or visual cone area. Furthermore, by selecting the appropriate groove and / or pattern geometry, the distribution of scattered light may also be affected. The liquid crystal polymer film or coating system having an optical phase structure according to the present invention can be used for manufacturing various optical devices. Examples are (polarized) diffusers and reflectors, and special configurations for improving the properties of liquid crystal displays. 12 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (please read the note on the back first) Please fill in this page for more information) I -------- Order --------- line · 593641 A7 V. Description of the invention (丨 I), especially about brightness, observation characteristics and parallax. Films or coatings can be used in various display types as an isotropic or anisotropic diffuser, and as an isotropic or anisotropic diffusion film or an isotropic or anisotropic diffusion in a reflective liquid crystal display reflector. As reflective polarizers, they are particularly useful for increasing contrast, reducing glare, or enhancing the polarization of light. Advantageously, they can also be used as electrodes (depending on the pixel as appropriate). Furthermore, because of their phase structure, they can be used as alignment layers for liquid crystals or other materials to be aligned. Other uses are authentication components (such as preventing banknotes, credit cards, certificates, ID cards, etc. from being forged). They can, for example, only be highly reflective for certain viewing angles and therefore provide a skewed effect to the viewer, and special patterns, even signatures or photographs, are possible. During the cross-linking process, by controlling the constant vector or by writing with laser light, the present invention also provides a possibility to make a periodic structure, such as a grating. In addition, a combination of the periodic structure written by the laser and the resulting permutation (patterning) structure is possible. Advantageously, in this way, a new phase anisotropic structure coating can be made, with optical properties that combine the effects of scattering and diffraction. 0 The direction of the high scattering associated with the groove depends on parameters such as the anisotropy of the LCP used (About volume and symbols). For example, an anisotropic LCP coating made using LCP with positive anisotropy (Δη) is aligned along the groove direction. Due to the large refractive index mismatch, incident light is strongly scattered in a direction parallel to the groove direction. However, the incident light component in a direction perpendicular to the groove will be transmitted through the film with less interference. As a result, after passing through the film, the unpolarized light will be partially polarized. The extinction ratio of this film can have about 2 or 13 This paper size is applicable to Chinese National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page)

I ·111111 - — — — — — — — — — —^^^1 - — —II - I--I-----II-----I 593641 A7 __._B7___ 五、發明說明(\> ) 更高之値,而藉由調整薄膜厚度、溝的體積分率和大小、 折射率匹配和失配程度、使用具有充分界定雙折射的材料 及/或使用相對於溝方向具有特殊吸收軸的染料,可以達成 更高的消光比。藉由調整溝的週期和長度,亦能使得塗層 在一方向爲抗反射性而在另一方向爲散射性。此使得能製 作低損失的偏光器,具有高消光比,能用於偏光敏感性光 學元件。可利用重疊的二或多層,例如在一基材的兩面上 塗覆,或藉由多層,或堆疊的數層,而更進一步地改良散 射及/或偏光特性。視所欲的特性(亮度、視角、偏光效率 等),可使得各層的位相結構相同或不同,而各連續層中的 溝方向係互相相同或不同。此外,各向同性或各向異性的 抗反射塗層可用於達成高的透射値。 可用各種材料如聚合物、金屬、介電質等來塗覆在依 本發明的位相結構聚合物薄膜或塗層上,而不破壞位相。 再者,可使用特殊的外覆層以操縱最後塗層的位相或光學 特性。經金屬層所覆蓋的塗層例如可用於製作擴散性反射 器或反射偏光器。其它光學元件,如UV過濾器或UV偏 光器和紅外偏光器亦變成有可能的。 在本發明另一觀點中,位相結構聚合物薄膜或塗層可 當作母型以用於製造各種材料如金屬、預聚物、聚合物、 介電質等的各向同性或各向異性位相結構之複製品。爲此 目的,所欲的材料(例如鋁)將塗佈於薄膜或塗層上,視需 要可經更進一步的處理(例如加熱、曝光、塗覆等)以達成 特殊的性能,然後與下層薄膜或塗層分開。 14 本紙張尺度適用中國國家標準(CNS)A4規格(21() x 297公爱) - (請先閱讀背面之注意事項再填寫本頁) 訂---------線· 593641 A7 __;__B7___ 五、發明說明(G ) 依本發明的薄膜或塗層之又一優點在於它們可容易地 塗覆在各式各樣的裝置或基材如紙張、塑膠、金屬、介電 質等,及在於可以將它們由一基材轉印到另一基材。就轉 印而言,例如已知的燙印技術係適合的,使用市場上可取 得轉印膜當作基材。 在轉印依本發明的薄膜或塗層後,有利上可在其下面 塗覆另一種材料。 現將參照附圖以實例來說明本發明,其中: 第1圖顯示爲本發明之塗層的三種奈米孔抗反射LCP 膜之原子力顯微鏡(AFM)影像。這些爲透明的,具低有效 折射率和比可見光波長低的不同孔隙大小:(a)平均直徑爲 200nm且高度爲90nm的孔隙,(b)平均直徑爲180nm且高 度爲120nm的孔隙,(c)平均直徑爲lOOnm且高度爲50nm 的孔隙。 第2(a)圖顯示有效折射率Δη^之變化,其爲波長的函 數。空心圓係對應於實例3之層(第lc圖),而實心方塊係 對應於實例1之層(第la圖)。第2(b)圖顯示實例2之抗反 射層(第lb圖)的透光率相對於波長。玻璃基材之一面上被 抗反射層所塗覆。圖式顯示比較寬帶的抗反射LCP層具有 幾乎零%的反射(由於經塗覆的玻璃面達成96%透射)。 第3(a)圖顯示實例4所獲得的溝之原子力顯微鏡影像 ,而第3(b)圖係奈米溝結構的對應描繪圖;雙箭指出LPP 層的排列方向。可調整溝的週期λ和高度A之値。第3(c) 圖係LCP層沿著第3(a)圖之黑線軌跡的AFM剖面輪廓。 15 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) I--------訂---------線- 593641 A7 ______B7___ 五、發明說明(\七) 第4(a)圖係用於獲得混合排列的LCP-LPP層之示意圖 ,顯示一具有沿著X軸的排列方向之有溝LCP層’其被一 沿著y軸的排列方向之有溝LPP層所覆蓋,其中LPP層已 經部分塡充LCP溝而將它們的高度由A=40nm減少到 Aeff=10nm。第4(b)圖顯示一種在正交偏光器(來自實例6) 之間所看到的混合排列,看到具有對應於二固定方向的二 不同顏色之二不同區域,當樣品被旋轉45。時,此二區域 間的這些顏色係變成逆轉的。 第5(a)圖係由橢圓測量法根據波長所測得之實例7的 層之尋常(n〇)和非常(ne)折射率之繪圖,第5(b)圖顯示實例 7之有奈米溝的LCP層(方塊)與對應之無奈米溝的LCP層( 圓)的光學各向異性根據波長的比較(Διι=η6-η〇) ’而弟5(c) 圖爲實例7之一面經抗反射LCP層所塗覆的玻璃滑片之s-偏光(實心方塊)和Ρ-偏光(空心三角形)的透光率相對於視角 的繪圖。 第6(a)圖係光學顯微鏡照片,取自於實例8之光學圖 案化的有奈米溝LCP層的正交偏光器之間,在大小 ΙΟΟχΙΟΟμιη的相鄰畫素中具有二排列方向ai和a2 ;第6(b) 圖係取自於區域a2中的對應原子力影像;第6(d)圖係取自 於區域&1者,而第6(c)圖顯示這兩區域之間的界面。 第7(a)圖係實例10之光學圖案化(有溝)的LCP層之示 意代表圖,在所示的相鄰畫素中具有二排列方向ai(平行於 i軸)和a2(與i軸成45。角度);XYZ代表實驗室框架軸(具 有Z視軸),而ijk係基材框架軸(以k垂直於基材);0i、0j 16 張尺度適用中國國家標準(CNS)A4規格(210 χ 297公釐) ' (請先閱讀背面之注意事項再填寫本頁) 訂---------^I · 111111-— — — — — — — — — — ^^^ 1-— — II-I--I ----- II ----- I 593641 A7 __._ B7___ V. Description of the invention (\ >) Higher, and by adjusting film thickness, volume fraction and size of grooves, refractive index matching and mismatch degree, using materials with well-defined birefringence, and / or using special absorption relative to groove direction Axial dyes can achieve higher extinction ratios. By adjusting the period and length of the grooves, the coating can also be made antireflective in one direction and scattering in the other. This makes it possible to make a low-loss polarizer with a high extinction ratio and can be used for polarization-sensitive optical elements. Two or more layers overlapping, such as coating on both sides of a substrate, or multiple layers, or several layers stacked, can be used to further improve the scattering and / or polarization characteristics. Depending on the desired characteristics (brightness, viewing angle, polarization efficiency, etc.), the phase structure of each layer can be the same or different, and the groove directions in each continuous layer are the same or different from each other. In addition, isotropic or anisotropic anti-reflection coatings can be used to achieve high transmission chirp. Various materials such as polymers, metals, dielectrics, etc. can be used to coat the phase structure polymer film or coating according to the present invention without damaging the phases. Furthermore, special overcoats can be used to manipulate the phase or optical characteristics of the final coating. Coatings covered with a metal layer can be used, for example, to make diffusive reflectors or reflective polarizers. Other optical elements such as UV filters or UV polarizers and infrared polarizers are also possible. In another aspect of the present invention, a phase-structured polymer film or coating can be used as a master for the production of isotropic or anisotropic phases of various materials such as metals, prepolymers, polymers, dielectrics, etc. Replica of structure. For this purpose, the desired material (such as aluminum) will be coated on the film or coating, and if necessary, can be further processed (such as heating, exposure, coating, etc.) to achieve special properties, and then with the underlying film Or the coating is separated. 14 This paper size applies to China National Standard (CNS) A4 (21 () x 297 public love)-(Please read the precautions on the back before filling this page) Order --------- line · 593641 A7 __; __ B7___ 5. Description of the invention (G) Another advantage of the films or coatings according to the present invention is that they can be easily applied to a variety of devices or substrates such as paper, plastic, metal, dielectric, etc. And that they can be transferred from one substrate to another. For transfer printing, for example, known hot stamping techniques are suitable, and commercially available transfer films are used as substrates. After the film or coating according to the invention has been transferred, another material can advantageously be applied underneath it. The invention will now be described by way of example with reference to the accompanying drawings, in which: Figure 1 shows an atomic force microscope (AFM) image of three nanoporous anti-reflective LCP films coated with the invention. These are transparent, different pore sizes with low effective refractive index and lower wavelength than visible light: (a) pores with an average diameter of 200 nm and a height of 90 nm, (b) pores with an average diameter of 180 nm and a height of 120 nm, (c ) Pores having an average diameter of 100 nm and a height of 50 nm. Figure 2 (a) shows the change in effective refractive index Δη ^ as a function of wavelength. The hollow circles correspond to the layers of Example 3 (Figure lc), while the solid squares correspond to the layers of Example 1 (Figure la). Figure 2 (b) shows the transmittance of the anti-reflective layer (Figure lb) of Example 2 with respect to wavelength. One side of the glass substrate is coated with an anti-reflection layer. The figure shows that the relatively broadband anti-reflective LCP layer has almost zero% reflection (due to the 96% transmission achieved by the coated glass surface). Figure 3 (a) shows the trench atomic force microscope image obtained in Example 4, and Figure 3 (b) is the corresponding drawing of the nano-groove structure; the double arrows indicate the arrangement direction of the LPP layer. The period λ of the groove and the height A can be adjusted. Figure 3 (c) is the AFM profile of the LCP layer along the black line trace in Figure 3 (a). 15 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page) I -------- Order ------- --Line- 593641 A7 ______B7___ 5. Description of the invention (\ VII) Figure 4 (a) is a schematic diagram for obtaining a mixed arrangement of LCP-LPP layers, showing a grooved LCP layer having an arrangement direction along the X axis 'It is covered by a grooved LPP layer along the arrangement direction of the y-axis, where the LPP layer has partially filled the LCP grooves and reduced their height from A = 40nm to Aeff = 10nm. Figure 4 (b) shows a hybrid arrangement seen between orthogonal polarizers (from Example 6). It is seen that there are two different colors and two different areas corresponding to two fixed directions when the sample is rotated 45. As a result, these colors between these two regions become reversed. Figure 5 (a) is a plot of the ordinary (n0) and extraordinary (ne) refractive index of the layer of Example 7 measured by the ellipsometry according to the wavelength. Figure 5 (b) shows the nanometers of Example 7 Comparison of the optical anisotropy of the LCP layer (square) of the trench with the corresponding LCP layer (circle) of the helpless groove according to the wavelength (Διι = η6-η〇) 'And the brother 5 (c) The picture shows a surface of Example 7 Plot of s-polarized light (solid squares) and P-polarized light (hollow triangles) of the glass slide coated with the anti-reflective LCP layer as a function of viewing angle. Fig. 6 (a) is a photo of an optical microscope, taken from the optically patterned orthogonal polarizer with a nano-groove LCP layer in Example 8, and having two arrangement directions ai and 10 in adjacent pixels of size 100 × 10 a2; Figure 6 (b) is taken from the corresponding atomic force image in area a2; Figure 6 (d) is taken from area & 1, and Figure 6 (c) shows the area between the two areas interface. Figure 7 (a) is a schematic representation of the optically patterned (grooved) LCP layer of Example 10. In the adjacent pixels shown, there are two alignment directions ai (parallel to the i-axis) and a2 (with i The axis is 45. Angle); XYZ represents the laboratory frame axis (with Z-view axis), and ijk series substrate frame axis (k is perpendicular to the substrate); 0i, 0j 16 scales apply Chinese National Standard (CNS) A4 Specifications (210 χ 297 mm) '(Please read the precautions on the back before filling this page) Order --------- ^

593641 A7 _______Β7_ 五、發明說明((<) 和ek係分別爲i與χ軸間、j與γ軸間和k與ζ軸間的角 度;角度(α)界定照明方向,相對於ΥΖ平面。第7(b)顯示 二張照片,說明如實例10中所述製備的光學圖案化”有溝 ”LCP層之反射光的視角依賴性,具有偏光器(偏光軸平行 於Υ)置於基材與照相機之間;亮區在對應於區域a2的左影 像中,及那些在區域右圖片中者。 第8(a)圖顯示各種照片,說明實例11的光學圖案化” 有溝”LCP層之反射光的照度與視角依賴性;第8(b)圖係實 例11之塗層的對應原子力顯微鏡影像(ΙΟχΙΟμηι掃描),取 自區域ai(左)中及其自區域a2(右)中者。 實例1 :製浩一蒱爲侬太發明之塗層的曆。 製備一種混合物Mixl,其含有LCP預材料(光可交聯 性液晶預聚物)和不可光交聯性向列液晶材料。標示爲LCP 成分的單體1、單體2和單體3係可交聯性二丙烯酸酯單 體,而標示爲5CAP02的不可交聯性成分係不可交聯性向 列液晶單體。 單體1 : 單體 3 : 'α Π 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) ,_·--------tl-------_•線. 593641 A7 五、發明說明(山)593641 A7 _______ Β7_ 5. Description of the invention (<) and ek are the angles between the i and χ axes, the j and γ axes, and the k and ζ axes, respectively; the angle (α) defines the lighting direction, relative to the ΥZ plane. Section 7 (b) shows two photographs illustrating the viewing angle dependence of the reflected light of the optically patterned "grooved" LCP layer prepared as described in Example 10 with a polarizer (the polarization axis is parallel to Υ) placed on the substrate And the camera; the bright area is in the left image corresponding to area a2, and those in the right image of area. Figure 8 (a) shows various photos illustrating the optical patterning of the grooved LCP layer of Example 11 The illuminance and viewing angle dependence of the reflected light; Figure 8 (b) is the corresponding atomic force microscope image (10 × 10 μηι scan) of the coating of Example 11, taken from area ai (left) and from area a2 (right). Example 1: Preparation of a coating calendar invented by Nong Tai. Preparation of a mixture Mixl, which contains an LCP pre-material (photocrosslinkable liquid crystal prepolymer) and a non-photocrosslinkable nematic liquid crystal material. Labeled as LCP Monomer 1, Monomer 2 and Monomer 3 are crosslinkable diacrylate monomers The non-crosslinkable component labeled 5CAP02 is a non-crosslinkable nematic liquid crystal monomer. Cell 1: Cell 3: 'α Π This paper size applies to China National Standard (CNS) A4 (210 X 297) Li) (Please read the notes on the back before filling this page), _ · -------- tl -------_ • line. 593641 A7 V. Description of the Invention (Mountain)

Mixl係由以下製得: 58.9重量%=52.6毫克單體1 13.0重量%=11.6毫克單體2 4.3重量%=3.8毫克單體3 9.3 重量%=8·3 毫克 5CAP02 12.1重量%=10.8毫克乙醇 1.2重量%=1.1毫克光引發劑(CIBA公司的lrgacure(商 品名)369),及 1.2重量%=1·1毫克BHT(丁基羥基甲苯)當作抑制劑。 在醋酸乙酯中製造混合物Mixl的1_5重量%溶液,然 後用超音波振動(用BRANSON超音波公司的數位式 S〇nifier(商品名)“W-250”)於適度攪拌下15分鐘以使均勻 化,然後過濾經過〇·2μπι過濾器。 然後在lOOOrpm將溶液薄薄地旋塗於玻璃板上。在50 它熱板上將板溫熱1分鐘。然後在氮氣下於室溫中,藉由 來自水銀燈的各向同性(未偏振的)光線,以4.1mW/cm2的 紫外線強度,照射該層5分鐘,以便交聯LCP單體。層係 光學透明的。最後,用醋酸乙酯沖洗該層以便去除未交聯 的材料。在此程序後,層仍然是透明的。所獲得的抗反射 LCP層之總厚度約90nm。使用接觸模式原子力顯微鏡 (AFM),發現層含有奈米孔(第la圖)。該孔隙具有約 18 (請先閱讀背面之注意事項再填寫本頁) --------訂---------線 本國國家標準(CNS)A4規格(210 X 297公釐)— 593641 A7 _ ___B7____ 五、發明說明(0 ) 200nm的平均直徑和約90nm的平均高度。在400nm至 lOOOrnn間的光波長,使用可變角度的光譜橢圓計(美國內 布拉斯加州林肯市J_ A· Woolam公司Research & Instrumentation的V.A.S.E),評估所獲得的抗反射LCP層 之有效折射率。結果的一個例子示於第2a圖中(實心方塊) 〇 實例2 :改變成分比率 混合物Mix2係由以下製得: 29.6重量%=35.5毫克單體1 6.8重量%=8·1毫克單體2 2.2重量%=2.7毫克單體3 35.9 重量%=43.1 毫克 5CAP02 24.3重量%=29·1毫克乙醇 0.6重量%=0.68毫克光引發劑(CIBA公司的Irgacure( 商品名)369),及 0.6重量%=1.1毫克BHT(丁基羥基甲苯)當作抑制劑。 在醋酸乙酯中製造混合物Mix2的7.8重量%溶液,然 後用超音波振動(用BRANSON超音波公司的數位式 Sonifier(商品名)“W-250”)於適度攪拌下15分鐘以使均勻 化,然後過濾經過〇.2μιη過濾器。然後在3000rpm將溶液 薄薄地旋塗於玻璃板上。然後在氮氣下於室溫中,使用來 自水銀燈的各向同性(未偏振的)光線,以4.5mW/cm2的紫 外線強度,照射該層5分鐘,以便交聯LCP單體。層係光 學透明的。最後,用溶劑沖洗該層以便去除未交聯的材料 19 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂---------_ 593641 A7 ___B7_____ 五、發明說明(丨?) 。在此程序後,層仍然是透明的。所獲得的抗反射LCP層 之總厚度約120mn。使用接觸模式AFM,發現層含有奈米 孔。該孔隙具有約180nm的平均直徑和約120nm的平均高 度(見第lb圖)。在400nm至lOOOnm間的光波長,使用可 變角度的光譜橢圓計(美國內布拉斯加州林肯市L A. Woolam 公司 Research & Instrumentation 的 V.A.S.E),評 估所獲得的奈米孔LCP層之透射性。結果顯示高性能抗反 射LCP層在可見光的寬波長範圍中具有零%的反射。 實例3 :再度改變成分比率 混合物Mix3係由以下製得: 20.2重量%=35.9毫克單體1 3.8重量%=6.7毫克單體2 1.3重量%=2.3毫克單體3 18.2 重量%=32.3 毫克 5CAP02 55.3重量%=98.4毫克乙醇 〇·62重量%=1_1毫克光引發劑(CIBA公司的Irgacure( 商品名)369),及 0.62重量%=1.1毫克BHT(丁基羥基甲苯)當作抑制劑 〇 在醋酸乙酯中製造混合物Mix3的4.7重量%溶液,然 後在50°C適度攪拌30分鐘以使均勻,及過濾經過〇_2μιη 過濾器。然後在lOOOrpm將溶液薄薄地旋塗於玻璃板上。 然後在氮氣下於室溫中,使用來自水銀燈的各向同性(未偏 振的)光線,以4.5mW/cm2的紫外線強度,照射該層5分鐘 20 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 0 訂---------^ 593641 A7 ____;__Β7_____ 五、發明說明(1 ) 。在此照射後,LCP單體已經變成交聯的。層係光學透明 的。最後,用醋酸乙酯沖洗該層以便去除未交聯的材料。 在此程序後,層仍然是透明的。所獲得的抗反射LCP層之 總厚度約120nm。使用接觸模式AFM,發現層含有奈米孔 。該孔隙具有約lOOnm的平均直徑和約50nm的平均高度( 見第lc圖)。 實例4 =在定向層上製備依本發明的LCP層,造成一 經調製輪廓的”有奈米溝”位相結構 一種光定向材料JP 265(市場上可由CIBA取得)之溶 液,其係爲線型光可聚合性聚合物(LPP)在環戊酮中者,係 以3000rpm薄薄地塗覆於玻璃板上。於180°C加熱板上將 板溫熱10分鐘。所獲得的層具有約60nm的厚度,然後用 來自200瓦水銀高壓燈的線性偏振UV光在室溫照射該層 30秒鐘。偏光器爲Polaroid公司的薄膜偏光器HNP’B。藉 由UV濾光片WG295(Schott)和帶通濾波片UGll(Schott)來 更進一步限制光的波長。板處的UV光強度經測量爲 lmW/cm2 〇 然後用相同的實驗處理,以實例3的溶液來旋塗所製 備的定向層。在用溶劑沖洗之前和後,所獲得的層係透明 的。總LCP薄膜厚度係約120nm。使用接觸模式AFM, 發現形成非實質上圓孔隙奈米溝(或通道),而是在下LPP 定向層之方向延伸(其在此案例中亦是已經照射過LPP層的 UV光之偏振方向)。溝具有約lOOnm的平均週期(λ)和約 40nm的平均高度(Α)(參考第3圖)。 21 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) .0 訂---------線, 593641 A7 ____ B7__ 五、發明說明) 實例5 :使用實例4的有溝LCP層當作LCD單元中的 定向層 以塗覆面向內,將實例4的二板組合成具有90°的 TN-LCD(且平行側單元具有0°的扭轉角),使用5μιη厚度 的玻璃球當作間隔物。在稍高於向列各向同性轉變溫度(89 °C)的溫度用向列液晶混合物MLC 12000-00(MerCk)塡充該 單元,及徐徐冷卻。觀察所製備的在正交偏光器間的單元 ,顯示液晶係均勻定向的。使用偏光顯微鏡,證實塗覆板 已經施加於向列混合物的定向方向係實質平行於”溝”方向 〇 實例6 :製造一種混雜(混合)定向層 將光定向LPP材料JP 265(來自CIBA)在環戊酮中的 1%溶液,在4000rpm,薄薄地塗覆於實例4之板的塗層面 上,即在一具有約4〇nm之溝的平均高度(A)之有溝位相的 LCP層上。在塗覆後,AFM調查顯示光定向層(LPP層)係 完全覆蓋LCP層,如第4a圖中所描繪者,且奈米溝仍然 存在著。結果爲一種LCP-LPP層,其之溝具有約100nm的 平均週期(λ)和約10nm的平均有效高度(Aeff)。 板被溫熱至180°C歷10分鐘,然後用來自200瓦水銀 高壓燈的線性偏振UV光在室溫照射該層。偏光器爲 Polaroid公司的薄膜偏光器HNP’B。藉由UV濾光片 WG295(Schott)和帶通濾波片UGll(Schott)來更進一步限制 光的波長。板處的UV光強度經測量爲lmW/cm2。爲了證 明二重疊層之間的排列(aligning)競爭,我們使用事實:光 22 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) --------訂---------線 593641 A7 ____._B7 _ 五、發明說明(y| ) 定向LPP的排列效果係隨照射時間長度而增加。因此,層 被再分割爲不同區段,各被照射3秒鐘至10分鐘的固定時 間長度。光的偏振方向係在一垂直於板及如第4a圖中所繪 的”溝”方向之平面中。 以塗覆面向內,將LCP-LPP塗覆板組合成TN-LCD, 其使用一已經被光定向LPP材料JP 265的單定向層(依實 例4之程序所製備者)所塗覆的板當作第二板,及以5μηι 厚度的玻璃球當作間隔物。相對於第一板的溝之方向,第 二板的固定方向係固定在45°角度。在稍高於向列各向同 性轉變溫度(89°C)的溫度用向列液晶混合物MLC 12000-00(MerCk)塡充該單元,及徐徐冷卻。 觀察所製備的在正交偏光器間的單元,顯示對應於不 同的UV照射時間,在單元之所有不伺的區段上,單元中 的向列液晶係係均勻定向的。使用偏光顯微鏡,發現液晶 的定向方向係平行於區段(其中UV照明時間係短於25秒 鐘)中的LCP-LPP塗覆板之溝的方向。就UV照明時間比5 分鐘長的區段而言,證實液晶的定向方向係平行於疊置在 有溝LCP層的LPP層之定向方向,即垂直於溝方向的液晶 之定向。 在正交偏光器下使用偏光顯微鏡觀察,顯示UV照明 時間爲中等長度(介於25秒鐘和5分鐘之間)的區段中,單 元含有對應於二不同顏色的兩方向(見第4b圖)。將單元轉 動,經由45°的旋轉,可以由一顏色(定向)變成另一顏色。 因此,排列競爭,若經適當調整的話,可用於產生雙穩態 23 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) IA__^--------訂-------- . 593641 A7 __________B7 _ 五、發明說明(》) 固定的液晶。 亶通製造具有人造高有效各向異性的光延遲層 混合物Mix4係由以下製得: 17.0重量%=36.2毫克單體1 3.2重量%=6.8毫克單體2 1.1重量%=2.3毫克單體3 19.2 重量%=40·8 毫克 5CAP02 58·5重量%=124.3毫克乙醇 〇·5重量%=1.〇1毫克光引發劑(CIBA公司的Irgacure( 商品名)369),及 〇·5重量%=1.〇5毫克BHT(丁基羥基甲苯)當作抑制劑 〇 在醋酸乙酯中製造混合物Mix4的6.7重量%溶液,然 後在50°C適度攪拌30分鐘以使均勻,及過濾經過〇.2//m 過濾器。 使用上述溶液重複實例4。在用溶劑沖洗之前和後, 層係透明的。總LCP薄膜厚度係約llOnm。AFM調查顯 示”奈米溝”的形成,其具有約150nm的平均週期(λ)和約 75nm的平均高度(Α)。 使用傾斜補償器和偏光顯微鏡,發現層係具有約19nm 的光延遲,其對應於約0.17的有效光學各向異性。亦證實 所有層上的光軸之定向係平行於LPP層的定向方向。 更進一步地用橢圓測量法來確認此發現。第5圖顯示 所獲得的結果之一例子。第5a圖顯示本實例之層的尋常 24 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 丨—I----訂---------線. 593641 A7 ___B7____ 五、發明說明(>)) (n〇)和非常(ne)折射率相對於波長之圖;第5b圖中,方塊 爲對應於光學各向異性△nae-no,及作爲比較,圓爲對應 於沒有溝的LCP層之光學各向異性。 此外,第5c圖顯示依本實例一面經抗反射LCP層所 塗覆的玻璃滑片之s-偏光(實心方塊)和p-偏光(空心三角形) 的透光率相對於視角的繪圖。 實例8 :光學圖案化的”有奈米溝”LCP層 將光定向LPP材料(JP 265,來自CIBA)在環戊酮中的 2%溶液,在3000rpm,薄薄地塗覆於玻璃板上。在180°C 的熱板上溫熱該板10分鐘。所獲得的LPP層具有約60nm 的厚度,然後在第一步驟中用線性偏振UV光經由光罩 (ΙΟΟμηιχΙΟΟμιη方形)照射4分鐘。在此程序中,光的偏振 方向係在一垂直於板的平面中(排列方向。在第二步驟 中’於轉動線性偏光方向45。後,移開光罩,及將層照射 30秒鐘(排列方向a2)。此產生一種光圖案化LPP層,具有 一不问的排列方向a:和a2。 然後,在醋酸乙酯中製造混合物Mix3(見實例3)的3.8 重量%溶液,在50°C適度攪拌30分鐘以使均勻,及過濾經 過〇·2μηι過濾器,在lOOOrpm被薄薄地旋塗於光圖案化 LPP層上。在氮氣下於室溫中,使用來自水銀燈的各向同 性(未偏振的)光線,以4.5mW/cm2的紫外線強度,照射所 獲得的層5分鐘。在此照射後,LCP單體已經變成交聯的 ° Λ係光學透明的。最後,用溶劑沖洗該層以便去除未交 @的材料。在此程序後,層仍然是透明的。所獲得的抗反 _ 25 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公麓) (請先閱讀背面之注意事項再填寫本頁) —A_w--------訂---------線 593641 A7 ____B7__ 五、發明說明(>Υ) 射LCP層之總厚度約l〇〇nm。 使用偏光顯微鏡,證實LCP層的光軸定向係平行於圖 案化的LPP層之二排列方向(a〗和a2)。第6圖顯不所獲得 的結果之一個例子。使用接觸模式AFM,發現層含有”奈 米溝”沿著排列方向a!和a2,在相鄰的方塊中。該溝具有 約150nm的平均週期λ和約70nm的平均高度A。 實例9 :製造一種具有”有溝”位相結構的LCP薄膜, 造成一種各向異性擴散器 混合物Mix5係由以下製得: 52.6重量%的單體1 9.9重量%的單體2 3.3重量%的單體3 32.8 重量%的 5CAP02 0.7重量%的光引發劑(CIBA公司的Irgacure(商品名 )369),及 0.7重量%的BHT(丁基羥基甲苯)當作抑制劑。 在9份醋酸丁酯和1份乙醇的混合液中製造混合物 Mix5的16重量%溶液,然後用超音波振動(用BRANSON 超音波公司的數位式Sonifier(商品名)“W-250”)於適度攪 拌下5分鐘以使均勻化,及過濾經過〇.2μιη過濾器。然後 在氮氣下於室溫中,使用來自水銀燈的各向同性(未偏振的 )光線,以4.5mW/Cm2的紫外線強度,照射該層2分鐘,以 交聯LCP單體。層係光學透明的。最後,用乙醇沖洗該層 以便去除未交聯的材料。獲得的LCP層之總厚度約400nm 26 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂---------線. 593641 A7 -—_;___B7 _ 五、發明說明〇<) 。使用接觸模式AFM,發現溝(或通道)的形成,其係在下 LPP定向層的方向中延伸。溝具有約9〇〇nm的平均週期(λ) 和I約70nm的平均高度(Α)。在相對於溝方向的特定視角中 ’層係光擴散的。 在550nm的光波長,使用可變角度的光譜橢圓計(J. A· Woolam公司的V.A.S.E),在相對於溝方向的不同視角 ’評估該塗層的透射率(反射率)。就正交透射而言塗層的 透射率達到約90%(即以垂直於偏光方向的LCP層之定向 方向所測量的透射率),而就平行透射而言係約50%(即以 平行於偏光方向的LCP層之定向方向所測量的透射率)。 此使得反射外觀對於層有強烈方向依賴性。該層的消光比 係約2之値。 實例_:製造一種光學圖案化各向異性擴散器 將光定向LPP材料JP 265在環戊酮中的2%溶液,在 3000rpm,薄薄地塗覆於玻璃板上。在180°C的熱板上溫熱 該板10分鐘。所獲得的層具有約60nm的厚度。然後在第 一步驟中用線性偏振UV光經由光罩(見第7b圖,最小的 方形栢當於2000μιηχ2000μπι方形)照射4分鐘。在此程序 中,光的偏振方向係在一垂直於板的平面中(排列方向ai, 見第7a圖)。在第二步驟中,於轉動線性偏光方向45°後, 移開光罩,及將層照射30秒鐘(排列方向a2)。此產生一種 光圖案化LPP層,具有二不同的排列方向a!和a2。 然後,將混合物Mix5(見實例9)在800rpm薄薄地旋塗 於光圖案化LPP層上。在氮氣下於室溫中,使用來自水銀 27 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) -«--------tr---------^u 593641 A7 ___—_B7_____Mixl is made from: 58.9% by weight = 52.6mg monomer 1 13.0% by weight = 11.6mg monomer 2 4.3% by weight = 3.8mg monomer 3 9.3% by weight = 8.3 mg 5CAP02 12.1% by weight = 10.8 mg ethanol 1.2% by weight = 1.1 mg of a photoinitiator (lrgacure (trade name) 369 of CIBA Corporation), and 1.2% by weight = 1.1 mg of BHT (butylhydroxytoluene) were used as inhibitors. A 1-5 wt% solution of the mixture Mixl was prepared in ethyl acetate, and then ultrasonically vibrated (using BRANSON's digital Sonifier (trade name) "W-250") with moderate stirring for 15 minutes to make uniform And then filtered through a 0.2 μm filter. The solution was then spin-coated thinly onto a glass plate at 1000 rpm. Warm the plate on a 50-hot plate for 1 minute. This layer was then irradiated with an isotropic (unpolarized) light from a mercury lamp at a UV intensity of 4.1 mW / cm2 for 5 minutes at room temperature under nitrogen to crosslink the LCP monomer. Layer system Optically transparent. Finally, the layer was rinsed with ethyl acetate to remove uncrosslinked material. After this procedure, the layers remain transparent. The total thickness of the obtained anti-reflective LCP layer was about 90 nm. Using a contact mode atomic force microscope (AFM), the layer was found to contain nanopores (Figure la). The pore has about 18 (please read the precautions on the back before filling this page) -------- Order --------- Line National Standard (CNS) A4 Specification (210 X 297 male (Centi) — 593641 A7 _ _B7____ 5. Description of the invention (0) The average diameter of 200nm and the average height of about 90nm. The effective refraction of the obtained anti-reflective LCP layer was evaluated at a wavelength of light between 400 nm and 100 Ornn using a spectroscopic ellipsometer (VASE of Research & Instrumentation, J. Woolam Corporation, Lincoln, Nebraska, USA). rate. An example of the results is shown in Figure 2a (solid squares). Example 2: Mixing Mix 2 was prepared from: 29.6 wt% = 35.5 mg of monomer 1 6.8 wt% = 8.1 mg of monomer 2 2.2 Wt% = 2.7 mg monomer 3 35.9 wt% = 43.1 mg 5CAP02 24.3 wt% = 29.1 mg ethanol 0.6 wt% = 0.68 mg photoinitiator (Irgacure (trade name) 369 of CIBA) and 0.6 wt% = 1.1 mg of BHT (butylhydroxytoluene) was used as an inhibitor. A 7.8 wt% solution of the mixture Mix2 was prepared in ethyl acetate, and then ultrasonically vibrated (using BRANSON Ultrasonic's Digital Sonifier (trade name) "W-250") with moderate stirring for 15 minutes to homogenize, It was then filtered through a 0.2 μm filter. The solution was then spin-coated thinly onto a glass plate at 3000 rpm. The layer was then irradiated with an isotropic (unpolarized) light from a mercury lamp at 4.5 mW / cm2 at room temperature under nitrogen for 5 minutes to crosslink the LCP monomer. The layer system is optically transparent. Finally, rinse the layer with solvent in order to remove uncrosslinked material. 19 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page). Order- -------_ 593641 A7 ___B7_____ 5. Description of the invention (丨?). After this procedure, the layers remain transparent. The total thickness of the obtained anti-reflective LCP layer was about 120 mn. Using contact mode AFM, the layer was found to contain nanopores. The pores have an average diameter of about 180 nm and an average height of about 120 nm (see Figure lb). At a wavelength of light between 400 nm and 100 nm, a variable-angle spectroscopic ellipsometer (VASE from Research & Instrumentation, LA A. Woolam, Lincoln, Nebraska, USA) was used to evaluate the transmission of the nanoporous LCP layer Sex. The results show that the high-performance anti-reflective LCP layer has zero% reflection in a wide wavelength range of visible light. Example 3: The mixture ratio of Mix3 was changed again: 20.2% by weight = 35.9mg monomer 1 3.8% by weight = 6.7mg monomer 2 1.3% by weight = 2.3mg monomer 3 18.2% by weight = 32.3mg 5CAP02 55.3 Wt% = 98.4 mg ethanol 0.62 wt% = 1_1 mg photoinitiator (Irgacure (trade name) 369 of CIBA) and 0.62 wt% = 1.1 mg BHT (butylhydroxytoluene) as inhibitors in acetic acid A 4.7% by weight solution of the mixture Mix3 was made in ethyl acetate, and then moderately stirred at 50 ° C. for 30 minutes to make homogeneous, and filtered through a 0-2 μm filter. The solution was then spin-coated thinly onto a glass plate at 1000 rpm. Then at room temperature under nitrogen, use an isotropic (unpolarized) light from a mercury lamp to irradiate the layer for 5 minutes at a UV intensity of 4.5 mW / cm2. 20 This paper is sized to the Chinese National Standard (CNS) A4 (210 X 297 mm) (Please read the notes on the back before filling out this page) 0 Order --------- ^ 593641 A7 ____; __Β7 _____ 5. Description of the invention (1). After this irradiation, the LCP monomer has become crosslinked. The layer is optically transparent. Finally, the layer was rinsed with ethyl acetate to remove uncrosslinked material. After this procedure, the layers remain transparent. The total thickness of the obtained anti-reflective LCP layer was about 120 nm. Using contact mode AFM, the layer was found to contain nanopores. The pores have an average diameter of about 100 nm and an average height of about 50 nm (see Figure 1c). Example 4 = Preparation of an LCP layer according to the present invention on an alignment layer, resulting in a profiled "nano-groove" phase structure, a solution of a photo-alignment material JP 265 (available from CIBA on the market), which is a linear light The polymerizable polymer (LPP) in cyclopentanone was thinly coated on a glass plate at 3000 rpm. Warm the plate for 10 minutes on a 180 ° C hot plate. The obtained layer had a thickness of about 60 nm, and then the layer was irradiated with linearly polarized UV light from a 200-watt mercury high-pressure lamp at room temperature for 30 seconds. The polarizer was Polaroid's thin film polarizer HNP'B. The wavelength of light is further limited by the UV filter WG295 (Schott) and the band-pass filter UG11 (Schott). The intensity of the UV light at the plate was measured to be lmW / cm2, and then subjected to the same experimental treatment, and the prepared alignment layer was spin-coated with the solution of Example 3. The layers obtained were transparent before and after rinsing with a solvent. The total LCP film thickness is about 120 nm. Using contact mode AFM, it was found that non-substantially circular pore nanogrooves (or channels) were formed, but rather extended in the direction of the lower LPP alignment layer (which in this case is also the polarization direction of the UV light that has irradiated the LPP layer). The trench has an average period (λ) of about 100 nm and an average height (A) of about 40 nm (refer to FIG. 3). 21 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page) .0 Order --------- line, 593641 A7 ____ B7__ 5. Description of the invention) Example 5: Using the grooved LCP layer of Example 4 as the orientation layer in the LCD unit to coat the facing side, the two plates of Example 4 were combined into a TN-LCD with 90 ° (and parallel sides The unit has a twist angle of 0 °) and a glass ball with a thickness of 5 μm is used as a spacer. The cell was charged with a nematic liquid crystal mixture MLC 12000-00 (MerCk) at a temperature slightly higher than the nematic isotropic transition temperature (89 ° C), and slowly cooled. Observation of the prepared unit between the orthogonal polarizers shows that the liquid crystal system is uniformly oriented. Using a polarizing microscope, it was confirmed that the orientation direction of the coated plate that has been applied to the nematic mixture is substantially parallel to the "groove" direction. Example 6: Manufacturing a hybrid (hybrid) orientation layer to orient the light LPP material JP 265 (from CIBA) in the ring A 1% solution in pentanone was thinly applied to the coating surface of the plate of Example 4 at 4000 rpm, that is, on an LCP layer with a groove phase having an average height (A) of a groove of about 40 nm. . After coating, AFM investigations revealed that the light-orientation layer (LPP layer) completely covered the LCP layer, as depicted in Figure 4a, and the nanometer trench was still present. The result was an LCP-LPP layer with grooves having an average period (λ) of about 100 nm and an average effective height (Aeff) of about 10 nm. The plate was warmed to 180 ° C for 10 minutes, and then the layer was irradiated with linearly polarized UV light from a 200 watt mercury high pressure lamp at room temperature. The polarizer was a thin film polarizer HNP'B from Polaroid. The wavelength of light is further limited by the UV filter WG295 (Schott) and the band-pass filter UG11 (Schott). The UV light intensity at the plate was measured as lmW / cm2. In order to prove the alignment competition between the two overlapping layers, we use the fact that the paper size 22 applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (Please read the precautions on the back before filling in this (Page) -------- Order --------- line 593641 A7 ____._ B7 _ 5. Description of the invention (y |) The effect of directional LPP arrangement increases with the length of irradiation time. Therefore, the layer is subdivided into different sections, and each is irradiated for a fixed period of time ranging from 3 seconds to 10 minutes. The direction of light polarization is in a plane perpendicular to the plate and the direction of the "groove" as depicted in Figure 4a. The LCP-LPP coated plate was assembled into the TN-LCD with the coating side facing in, using a plate that had been coated with a single alignment layer (prepared according to the procedure of Example 4) of a light-oriented LPP material JP 265. A second plate was used, and a glass ball with a thickness of 5 μm was used as a spacer. With respect to the groove direction of the first plate, the fixing direction of the second plate is fixed at an angle of 45 °. The cell was charged with nematic liquid crystal mixture MLC 12000-00 (MerCk) at a temperature slightly higher than the nematic isotropic transition temperature (89 ° C), and slowly cooled. Observation of the prepared cells between the orthogonal polarizers showed that the nematic liquid crystal system in the cells was uniformly aligned in all the non-serving sections of the cells corresponding to different UV irradiation times. Using a polarizing microscope, the orientation of the liquid crystal was found to be parallel to the direction of the grooves of the LCP-LPP-coated plate in the segment where the UV illumination time was shorter than 25 seconds. For the segment where the UV illumination time is longer than 5 minutes, it is confirmed that the orientation direction of the liquid crystal is parallel to the orientation direction of the LPP layer stacked on the grooved LCP layer, that is, the orientation of the liquid crystal perpendicular to the groove direction. Observed with a polarizing microscope under an orthogonal polarizer, it shows that the UV illumination time is a medium length (between 25 seconds and 5 minutes). The unit contains two directions corresponding to two different colors (see Figure 4b). ). By turning the unit, it can change from one color (orientation) to another color through 45 ° rotation. Therefore, the permutation competition, if properly adjusted, can be used to generate a bi-stable 23 paper size applicable to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling out this page) IA __ ^ -------- Order --------. 593641 A7 __________B7 _ 5. Description of the invention (") Fixed LCD. Xitong manufactures Mix4, a light retardation layer mixture with artificial high effective anisotropy, which is prepared from: 17.0% by weight = 36.2 mg of monomer 1 3.2% by weight = 6.8 mg of monomer 2 1.1% by weight = 2.3 mg of monomer 3 19.2 Weight% = 40 · 8 mg 5CAP02 58 · 5% by weight = 124.3 mg ethanol 0.5% by weight = 1.01 mg photoinitiator (Irgacure (trade name) 369 of CIBA Corporation), and 0.5% by weight = 1.05 mg of BHT (butyl hydroxytoluene) was used as an inhibitor. A 6.7% by weight solution of the mixture Mix4 was made in ethyl acetate, and then moderately stirred at 50 ° C for 30 minutes to make uniform, and filtered through 0.2. // m filter. Example 4 was repeated using the above solution. The layers were transparent before and after rinsing with solvents. The total LCP film thickness is about 110 nm. AFM investigation revealed the formation of a "nano-trench" with an average period (λ) of about 150 nm and an average height (A) of about 75 nm. Using a tilt compensator and a polarization microscope, the layer system was found to have a light retardation of about 19 nm, which corresponds to an effective optical anisotropy of about 0.17. It was also confirmed that the orientation of the optical axis on all layers was parallel to the orientation direction of the LPP layer. This finding was further confirmed by ellipsometry. Figure 5 shows an example of the results obtained. Figure 5a shows the ordinary layer of this example. 24 The paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page) 丨 —I ---- Order --------- line. 593641 A7 ___B7____ 5. Description of the invention (>)) (n〇) and extraordinary (ne) refractive index vs. wavelength; in Figure 5b, the squares correspond to Optical anisotropy Δnae-no, and for comparison, the circle is the optical anisotropy corresponding to the LCP layer without grooves. In addition, Fig. 5c shows a plot of the transmittance of s-polarized light (solid squares) and p-polarized light (hollow triangles) against the viewing angle of a glass slide coated with an anti-reflective LCP layer according to this example. Example 8: Optically patterned "Nanogroove" LCP layer A 2% solution of a light-directed LPP material (JP 265 from CIBA) in cyclopentanone was thinly coated on a glass plate at 3000 rpm. Warm the plate on a hot plate at 180 ° C for 10 minutes. The obtained LPP layer had a thickness of about 60 nm, and was then irradiated with linearly polarized UV light through a mask (100 μηι × 100 μιη square) for 4 minutes in a first step. In this procedure, the polarization direction of light is in a plane perpendicular to the plate (arrangement direction. In the second step, the linear polarization direction is turned 45. Then, the mask is removed, and the layer is irradiated for 30 seconds ( Arrangement direction a2). This results in a light-patterned LPP layer with an arrangement direction a: and a2. Then, a 3.8 wt% solution of the mixture Mix3 (see Example 3) is produced in ethyl acetate at 50 ° C. Stir moderately for 30 minutes to make uniform, and filter through a 0.2 μm filter, spin-coated thinly on the photo-patterned LPP layer at 1,000 rpm. Use isotropic (not mercury) from a mercury lamp at room temperature under nitrogen. The polarized) light was irradiated with the obtained layer at a UV intensity of 4.5 mW / cm2 for 5 minutes. After this irradiation, the LCP monomer had become cross-linked ° Λ series optically transparent. Finally, the layer was washed with a solvent so Remove the unsubmitted materials. After this procedure, the layer is still transparent. The anti-reflection obtained_ 25 This paper size applies to China National Standard (CNS) A4 (210 X 297 feet) (Please read the back (Please fill in this page for attention) --A_w ------ --Order --------- line 593641 A7 ____B7__ 5. Explanation of the invention (> Υ) The total thickness of the LCP layer is about 100 nm. Using a polarizing microscope, it is confirmed that the optical axis orientation of the LCP layer is parallel Figure 2 shows the alignment direction (a) and a2 of the patterned LPP layer. Figure 6 shows an example of the results obtained. Using the contact mode AFM, it was found that the layer contains "nano grooves" along the alignment direction a! And a2, in adjacent squares. The trench has an average period λ of about 150 nm and an average height A of about 70 nm. Example 9: Fabrication of an LCP film with a "grooved" phase structure, resulting in an anisotropic diffuser mixture Mix5 is made from the following: 52.6% by weight of monomers 1 9.9% by weight of monomers 2 3.3% by weight of monomers 3 32.8% by weight 5CAP02 0.7% by weight of photoinitiator (Irgacure (trade name) of CIBA Corporation 369 ), And 0.7% by weight of BHT (butyl hydroxytoluene) as an inhibitor. A 16% by weight solution of the mixture Mix5 was made in a mixture of 9 parts of butyl acetate and 1 part of ethanol, followed by ultrasonic vibration (using BRANSON Ultrasonic's digital Sonifier (brand name) "W-250") Mix for 5 minutes to homogenize, and filter through a 0.2 μm filter. Then use isotropic (unpolarized) light from a mercury lamp at room temperature under nitrogen at a UV intensity of 4.5 mW / Cm2, Irradiate the layer for 2 minutes to crosslink LCP monomers. The layer is optically transparent. Finally, rinse the layer with ethanol to remove uncrosslinked material. The total thickness of the obtained LCP layer is about 400nm 26 This paper is applicable to China Standard (CNS) A4 specification (210 X 297 mm) (Please read the precautions on the back before filling out this page) Order --------- line. 593641 A7--_; ___B7 _ V. Description of the invention 〇 <). Using the contact mode AFM, the formation of grooves (or channels) was found, which extended in the direction of the lower LPP alignment layer. The grooves have an average period (λ) of about 900 nm and an average height (A) of about 70 nm. The layer is light-diffusing in a specific viewing angle with respect to the groove direction. At a wavelength of light of 550 nm, the transmittance (reflectivity) of the coating was evaluated at different viewing angles with respect to the groove direction using a spectroscopic ellipsometer (V.A.S.E. of J. A. Woolam Corporation). The transmittance of the coating reaches about 90% for orthogonal transmission (that is, the transmission measured in the orientation direction of the LCP layer perpendicular to the direction of polarized light), and about 50% for parallel transmission (that is, parallel to Transmittance measured in the orientation direction of the LCP layer in polarized light direction). This makes the reflective appearance strongly dependent on the layer. The extinction ratio of this layer is about 2%. Example_: Fabrication of an optically patterned anisotropic diffuser A 2% solution of light-directed LPP material JP 265 in cyclopentanone was thinly coated on a glass plate at 3000 rpm. The plate was warmed on a hot plate at 180 ° C for 10 minutes. The obtained layer has a thickness of about 60 nm. Then in a first step, linearly polarized UV light was irradiated through a reticle (see Figure 7b, the smallest square cypress was 2000 μm x 2000 μm square) for 4 minutes. In this procedure, the polarization direction of light is in a plane perpendicular to the plate (arrangement direction ai, see Figure 7a). In the second step, after rotating the linear polarization direction by 45 °, the photomask is removed, and the layer is irradiated for 30 seconds (arrangement direction a2). This results in a light-patterned LPP layer with two different alignment directions a! And a2. Then, the mixture Mix5 (see Example 9) was thinly spin-coated on the photo-patterned LPP layer at 800 rpm. Under nitrogen at room temperature, use mercury from 27. This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page)-«---- ---- tr --------- ^ u 593641 A7 ___—_ B7_____

五、發明說明(yM (請先閱讀背面之注意事項再填寫本頁) 燈的各向同性(未偏振的)光線,以4.5mw/cm2的紫外線強 度,照射所獲得的層2分鐘。在此照射後,LCP單體已經 變成交聯的。層係光學透明的。最後,用乙醇沖洗該層以 便去除未交聯的材料。所獲得的反射LCP層之總厚度約 400nm。使用接觸模式AFM,發現層含有”溝”,在相鄰畫 素中具有二不同方向,如由定向層所施加的。該溝具有約 900nm的平均週期和約70nm的平均高度。層的光學調查 顯示相鄰畫素具有二不同定向方向,以45。角度移位,如 由雙UV照明所施加的。亦顯示相鄰畫素具有不同的反射( 或透射),其亦依賴於與溝方向有關的視角(見第7圖)。 MLLLL製造一種光學圖案化擴散反射器 將薄鋁(A1)層(約80nm厚)蒸發到依實例1〇所製備的 光學圖案化”有溝”LCP層。蒸發後,AFM調查顯示所蒸發 的鋁層已經完全覆蓋住LCP層,而溝仍存在著(見第8b圖) 。結果爲一種LCP/鋁調製塗層,具有約i.ogm的平均週期 (λ)和約70nm的平均高度。相鄰畫素中的溝係具有二不同 的定向方向,以45°角度移位,如由雙uv照明所施加的。 塗層的光學調查顯示相鄰畫素以不同方式反射光線,此依 賴於照明和視角。典型的例子係示於第8a圖中。 28 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)V. Description of the invention (yM (please read the notes on the back before filling this page) The isotropic (unpolarized) light of the lamp irradiates the obtained layer with a UV intensity of 4.5mw / cm2 for 2 minutes. Here After irradiation, the LCP monomer has become crosslinked. The layer is optically transparent. Finally, the layer is rinsed with ethanol to remove uncrosslinked material. The total thickness of the obtained reflective LCP layer is about 400nm. Using contact mode AFM, The layer was found to contain "grooves" with two different orientations in adjacent pixels, as imposed by the orientation layer. The grooves have an average period of about 900 nm and an average height of about 70 nm. Optical investigation of the layer shows adjacent pixels It has two different orientation directions at 45. Angular shift, as applied by dual UV lighting. It also shows that adjacent pixels have different reflections (or transmissions), which also depend on the viewing angle related to the groove direction (see section Figure 7). MLLLL manufactures an optically patterned diffuse reflector that vaporizes a thin aluminum (A1) layer (about 80 nm thick) to the optically patterned "grooved" LCP layer prepared in Example 10. After evaporation, an AFM survey showed The evaporated aluminum layer has been The LCP layer is completely covered, while the trench is still present (see Figure 8b). The result is an LCP / aluminum modulation coating with an average period (λ) of about i.ogm and an average height of about 70 nm. Adjacent pixels The ditch system in the middle has two different orientation directions, shifted at an angle of 45 °, as applied by dual UV lighting. Optical investigations of the coating show that adjacent pixels reflect light in different ways, depending on lighting and viewing angle. A typical example is shown in Figure 8a. 28 This paper size applies the Chinese National Standard (CNS) A4 (210 X 297 mm)

Claims (1)

593641 A8 B8 C8 D8 六、申請專利範圍 12. 如申請專利範圍第8項之方法,其中該不可交聯性 材料係向列液晶。 ------------------------1裝...... (請先閲讀背面之注意事項寫本頁) 13. 如申請專利範圍第9項之方法,其中該不可交聯性 材料係向列液晶。 14. 如申請專利範圍第1或2項之方法,其中該不可交 聯性材料含有界面活性劑。 15. 如申請專利範圍第1或2項之方法,其中在交聯期 間,該可交聯性材料係保持在定向狀態。 .16.如申請專利範圍第3項之方法,其中在交聯期間, I 該可交聯性材料係保持在定向狀態。 17. 如申請專利範圍第4項之方法,其中在交聯期間, 該可交聯性材料係保持在定向狀態。 18. 如申請專利範圍第5項之方法,其中在交聯期間, 該可交聯性材料係保持在定向狀態。 19. 如申請專利範圍第6項之方法,其中在交聯期間, 該可交聯性材料係保持在定向狀態。 20. 如申請專利範圍第7項之方法,其中在交聯期間, 該可交聯性材料係保持在定向狀態。 21. 如申請專利範圍第8項之方法,其中在交聯期間, 該可交聯性材料係保持在定向狀態。 22. 如申請專利範圍第9項之方法,其中在交聯期間, 該可交聯性材料係保持在定向狀態。 23. 如申請專利範圍第10項之方法,其中在交聯期間 ,該可交聯性材料係保持在定向狀態。 _2_ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 593641 ABCD 六、申請專利範圍 24.如申請專利範圍第11項之方法,其中在交聯期間 ,該可交聯性材料係保持在定向狀態。 (請先閲讀背面之注意事項寫本頁) 25·如申請專利範圍第12項之方法,其中在交聯期間 ,該可交聯性材料係保持在定向狀態。 26·如申請專利範圍第13項之方法,其中在交聯期間 ,該可交聯性材料係保持在定向狀態。 27·如申請專利範圍第14項之方法,其中在交聯期間 ,該可交聯性材料係保持在定向狀態。 28·如申請專利範圍第15項之方法,其中該定向係藉 由下定向層而施加。 29·如申請專利範圍第28項之方法,其中該下定向層 係光定向層如偶氮染料或線型聚合的光聚合物。 3〇·如申請專利範圍第15項之方法,其中基材已經具 有一種排列結構,且以可爲對該排列之0。至90。的定向將 該薄膜或塗層施加於基材,或其中該角度在薄膜或塗層的 不同部分係相異的,視情況與畫素有關的。 31·如申請專利範圍第15項之方法,其中該交聯和排 列係藉由線性偏振UV光來誘導。 32.如申請專利範圍第丨或2項之方法,其中在混合之 前,兩種材料係溶於各自溶劑中,溶劑爲互相可互溶的, 但是各爲另一溶劑的差溶劑。 33·如申請專利範圍第1或2項之方法,其中該可交聯 性材料的存在量係每份不可交聯性材料有1/10至30重量 份。 _______3___ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 593641 A8B8C8D8 、申請專利範圍 34·如申請專利範圍第33項之方法, 材料贿在量係每份不可交聯性材料有1/4至^ 專利範圍第1或2項之方法,其中藉由使用 種封其匕材料呈鈍性的溶劑來去除該材料的—種。 36. —種在基材上之位相結構聚合物薄膜,宜包括一種 ^有空洞及/或位相結構的材料,其㈣在於_料_ 父聯的且已經_帽專利範圍第旧2項之方法產生。 37. —種在基材上之位相結構聚合物薄膜,其包括一種 具有空洞及/或位槪働材料,特徵在贿材料係被 的且該空洞及/或結構係藉由另一種材料之存在及妖^ 移除以產生者。 h 38. —種在基材上之位相結構聚合物薄膜,其包括一種 f有空洞及/或位相結構的材料,其特徵在於該材料係被 交聯且該已交聯的材料係液晶聚合物。 39. 如申請專利範圍第37或38項之薄膜,其中該已交 聯的材料具有定向。 40·如申請專利範圍第37項之薄膜,其中該已交聯的 材料具有定向。 41·如申請專利範圍第39項之薄膜,其中該已交聯的 材料之定向在薄膜的不同部分係相異的。 42.如申目靑專利朝圍弟36至38項中任一項之薄膜,宜 中該結構在平行於薄膜平面的至少一方向中包含至少99% 小於lOOOnm的空洞。 43·如申請專利範圍第36至38項中任一項之薄膜,其 (請先閲讀背面之注意事項寫本頁) 、-?T^J 度適用中國國家標準(CNS)A4規格(210 X 297公釐) 593641 888 99 ABCD 六、申請專利範圍 中該結構在平行於薄膜平面的至少一方向中包含至少99% 小於500nm的空洞。 44.如申請專利範圍第36至38項中任一項之薄膜,其 中該結構在平行於薄膜平面的至少一方向中包含至少99% 小於200nm的空洞。 45·如申請專利範圍第37或38項之薄膜,其中該相鄰 空洞間的平均距離係小於5OOnm。 46·如申請專利範圍第37或38項之薄膜,其中該空洞 係拉長的。 47·如申請專利範圍第37或38項之薄膜,其中該空洞 係由頂部至底部連續變窄的形狀。 48·如申請專利範圍第37或38項之薄膜,其中該薄膜 係光學透明的。 49_如申請專利範圍第48項之薄膜,其中該薄膜係光 學雙折射的。 5〇·如申請專利範圍第49項之薄膜,其中該薄膜係光 學雙折射的,而使得有效光學各向異性係大於所用的薄膜 材料之各向異性。 51·如申請專利範圍第49項之薄膜,其中該薄膜係光 學雙折射的,而使得薄膜的有效η。係低於所用的薄膜材料 之η〇。 52·如申請專利範圍第36至38項中任一項之薄膜,其 中該薄膜係充當光擴散器。 53.如申請專利範圍第52項之薄膜,其中該薄膜係充 5 度適用中國國家標準(CNS)A4規格(210 X 297公釐) '— — — — — — — it — — — — — — — — — — — — — — — — —— — —u« — — — — a (請先閲讀背面之注意事項寫本頁) 、1T: #· 593641 A8 B8 C8 D8 六、申請專利範圍 當各向異性光擴散器。 54·如申請專利範圍第36至%項中任一項之.薄膜,其 中該薄膜係充當偏光器。 55. 如申請專利範圍第36至38項中任一項之薄膜,其 中該薄膜係經另一層塗覆在外。 56. 如申請專利範圍第52項之薄膜,其中該薄膜係至 少部分經一充當擴反射器的反射層所覆蓋。 57. 如申請專利範圍第56項之薄膜,其中該反射層充 當各向異性擴散反射器。 58·如申請專利範圍第56項之薄膜,其中該反射層係 金屬性。 59· —種在基材上之位相結構聚合物塗層,其包括一種 具有空洞及/或位相結構的材料,其特徵在於該材料係被 父聯的且已經由如申請專利範圍第丨或2項之方法產生。 60·種在基材上之位相結構聚合物塗層,其包括一種 具有空洞及/或位相結構的材料,特徵在於該材料係被交聯 的且該空洞及/或結構係藉由另一種材料之存在及然後被 移除以產生者。 61· —種在基材上之位相結構聚合物塗層,其包括一種 具有空洞及/或位相結構的材料,其特徵在於該材料 交聯且該已交聯的材料係液晶聚合物。 . 62·如帽專利範圍第6〇或Η項之塗層,其中 聯的材料具有定向。 . 又 63·如申請專利範圍第6〇項之塗層,其中該已交聯的 ___— — 6 本紙張尺度適用中國國家標準(CNS)A4規格 一-—--- 593641 A8 ?! D8 六、申請專利範圍 材料具有定向。 ---------------------!»!裝·…… (請先閱讀背面之注意事塡寫本頁) 64·如申請專利範圍第62項之塗層,其中該已交聯的 材料之定向在塗層的不同部分係相異的。 65·如申請專利範圍第59至61項中任一項之塗層,其 中該結構在平行於塗層平面的至少一方向中包含至少99% 小於lOOOnm的空洞。 66·如申請專利範圍第59至61項中任一項之塗層,其 中該結構在平行於塗層平面的至少一方向中包含至少99% 小於500nm的空洞。 67. 如申請專利範圍第59至61項中任一項之塗層,其 中該結構在平行於塗層平面的至少一方向中包含至少99% 小於200nm的空洞。 68. 如申請專利範圍第60或61項中任一項之塗層,其 中該相鄰空洞間的平均距離係小於500nm。 #·. 69. 如申請專利範圍第60或61項之塗層,其中該空洞 係拉長的。 7〇·如申請專利範圍第60或61項之塗層,其中該空洞 係由頂部至底部連續變窄的形狀。 7L如申請專利範圍第60或61項之塗層,其中該塗層 係光學透明的。 72. 如申請專利範圍第71項之塗層,其中該塗層係光 學雙折射的。 73. 如申g靑專利範圍第72項之塗層,其中該塗層係光 學雙折射的’而使得有效光學各向異性係大於所用的塗層 _____ 7 __ 本紙張尺度適用中國國家標準(CNS)A4規格(21〇χ 297公釐) 593641 0^88^ ABCD 六、申請專利範圍 材料之各向異性。 74. 如申請專利範圍第72項之塗層,其中該塗層係光 學雙折射的,而使得塗層的有效nQ係低於所用的塗層材料 之n〇。 75. 如申請專利範圍第59至61項中任一項之塗層,其 中該塗層係充當光擴散器。 76. 如申請專利範圍第75項之塗層,其中該塗層係充 當各向異性光擴散器。 .77.如申請專利範圍第59至61項中任一項之塗層,其 中該塗層係充當偏光器。 78. 如申請專利範圍第59至61項中任一項之塗層,其 中該塗層係經另一層塗覆在外。 + 79. 如申請專利範圍第75項之塗層,其中該塗層係至 少部分經一充當擴反射器的反射層所覆蓋。 80. 如申請專利範圍第79項之塗層,其中該反射層充 當各向異性擴散反射器。 81. 如申請專利範圍第79項之塗層,其中該反射層係 金屬性。 82. —種堆疊物或多層,其包含二或多個如申請專利範 圍第36至38項中任一項之薄膜或如申請專利範圍第59至 61項中任一項之塗層。 83. 如申請專利範圍第36至38項中任一項之薄膜,其 中該基材係光學透明的。 84. 如申請專利範圍第59至61項中任一項之塗層,其 _____________ 8_ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閲讀背面之注意事項寫本頁) F:裝 、言 593641 A8 B8 C8 D8 I六、申請專利範圍 中該基材係光學透明的。 85.—種光學構件(如光延遲器),其包括一帶有透明液 晶聚合物層的基材,該經交聯的液晶聚合物層具有與下層 定向成〇°至90°的排列(取決於其功能)且在其厚度內具有空 洞,空洞的平均間隔爲小於500nm,99%該空洞係小於 500nm,且係至少它們橫過的兩倍。 86. —種組件,其包括一可排列的分子層,其與如申請 專利範圍第36至38項中任一項之薄膜或如申請專利範圍 第59至61項中任一項之塗層或與如申請專利範圍第85項 之光學構件接觸,該分子係因此排列著。 87. —種抗反射性塗覆物件,其包括如申請專利範圍第 36至38項中任一項之薄膜或如申請專利範圍第59至61 項中任一項之塗層或如申請專利範圍第85項之光學構件。 88.—種液晶單元,其中可採用至少二不同穩定排列中 之一的液晶分子與單元壁接觸,單元壁包括如申請專利範 圍第36至38項中任一項之薄膜或如申請專利範圍第59至 61項中任一項之塗層或如申請專利範圍第85項之光學構 件。 89.—種光學顯示裝置,其包括如申請專利範圍第36 I 至38項中任一項之薄膜或如申請專利範圍第59至61項中 之任一項之塗層或如申請專利範圍第85項之光學構件。 90.—種用於防止僞造及/或複製的元件,其特徵爲如 申請專利範圍第36至38項中任一項之薄膜或如申請專利 範圍第59至61項中任一項之塗層。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐〉 (請先閱讀背面之注意事填寫本頁) 裝593641 A8 B8 C8 D8 6. Scope of patent application 12. For the method of the eighth scope of patent application, the non-crosslinkable material is nematic liquid crystal. ------------------------ 1 pack ... (Please read the precautions on the back to write this page) 13. If the scope of patent application The method of item 9, wherein the non-crosslinkable material is a nematic liquid crystal. 14. The method of claim 1 or 2, wherein the non-crosslinkable material contains a surfactant. 15. The method of claim 1 or 2, wherein the crosslinkable material is kept in an oriented state during the crosslinking. .16. The method according to item 3 of the scope of patent application, wherein during the cross-linking, the cross-linkable material is kept in an oriented state. 17. The method of claim 4 in which the crosslinkable material is kept in an oriented state during the cross-linking. 18. The method of claim 5 in which the crosslinkable material is kept in an oriented state during crosslinking. 19. The method of claim 6 in which the crosslinkable material is kept in an oriented state during crosslinking. 20. The method of claim 7 in which the crosslinkable material is kept in an oriented state during the crosslinking. 21. The method of claim 8 in which the crosslinkable material is kept in an oriented state during the crosslinking. 22. The method of claim 9 in which the crosslinkable material is kept in an oriented state during the crosslinking. 23. The method of claim 10, wherein the crosslinkable material is kept in an oriented state during the crosslinking. _2_ This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 593641 ABCD VI. Application scope of patent 24. For the method of item 11 of the scope of patent application, the crosslinkability during cross-linking The material remains in the oriented state. (Please read the note on the back first to write this page) 25. If the method of the scope of patent application is No. 12, in which the crosslinkable material is kept in the orientation state during the crosslinking. 26. The method of claim 13 in which the crosslinkable material is kept in an oriented state during the cross-linking. 27. The method of claim 14 in which the crosslinkable material is kept in an oriented state during the crosslinking. 28. The method of claim 15 in which the orientation is applied by means of a lower orientation layer. 29. The method of claim 28, wherein the lower alignment layer is a photo-alignment layer such as an azo dye or a linear polymerized photopolymer. 30. The method of claim 15 in which the base material already has an arrangement structure, and the arrangement may be zero. To 90. The orientation in which the film or coating is applied to a substrate, or where the angle is different in different parts of the film or coating, depends on the pixels, as the case may be. 31. The method of claim 15 in which the crosslinking and arrangement are induced by linearly polarized UV light. 32. The method according to item 1 or 2 of the scope of patent application, wherein before mixing, the two materials are dissolved in respective solvents, and the solvents are mutually miscible, but each is a poor solvent of the other solvent. 33. The method of claim 1 or 2, wherein the crosslinkable material is present in an amount of 1/10 to 30 parts by weight per part of the non-crosslinkable material. _______3___ This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) 593641 A8B8C8D8, patent application scope 34. If the method of patent application scope item 33 is used, the amount of material bribe is each non-crosslinkable material There are 1/4 to ^ method of patent scope item 1 or 2, wherein the material is removed by using a solvent that seals the material's bluntness. 36. — A phase-structured polymer film on a substrate, which should include a material with voids and / or phase structure, which is based on the method of the _material_ father-linked and has_ the oldest 2 items in the scope of the patent produce. 37. A phase-structured polymer film on a substrate, comprising a material having voids and / or sites, characterized in that the material is covered and the void and / or structure exists through the presence of another material And demon ^ removed to generate. h 38.-A phase-structured polymer film on a substrate, comprising a material having a cavity and / or a phase structure, characterized in that the material is crosslinked and the crosslinked material is a liquid crystal polymer . 39. For a film in the scope of patent application No. 37 or 38, wherein the crosslinked material has orientation. 40. The film of claim 37, wherein the crosslinked material has orientation. 41. The film of claim 39, wherein the orientation of the crosslinked material is different in different parts of the film. 42. If the thin film of any one of the 36th to 38th patents of Shenmuyu Patent, the structure preferably contains at least 99% of voids less than 100 nm in at least one direction parallel to the plane of the film. 43 · If you apply for any of the films in the range of 36 to 38 of the patent scope, (please read the precautions on the back to write this page),-? T ^ J degree is applicable to China National Standard (CNS) A4 specification (210 X 297 mm) 593641 888 99 ABCD 6. In the scope of the patent application, the structure contains at least 99% of voids smaller than 500 nm in at least one direction parallel to the plane of the film. 44. The thin film of any one of claims 36 to 38, wherein the structure includes at least 99% of voids smaller than 200 nm in at least one direction parallel to the plane of the thin film. 45. The thin film of claim 37 or 38, wherein the average distance between adjacent cavities is less than 500 nm. 46. The thin film of claim 37 or 38, wherein the cavity is elongated. 47. The thin film of claim 37 or 38, wherein the cavity has a shape that continuously narrows from top to bottom. 48. The thin film of claim 37 or 38, wherein the thin film is optically transparent. 49_ The thin film of claim 48, wherein the thin film is optically birefringent. 50. The thin film of claim 49, wherein the thin film is optically birefringent, so that the effective optical anisotropy is greater than the anisotropy of the thin film material used. 51. The thin film of claim 49, wherein the thin film is optically birefringent, making the thin film effective η. It is lower than η0 of the film material used. 52. The thin film according to any one of claims 36 to 38, wherein the thin film acts as a light diffuser. 53. If the thin film of the scope of application for patent No. 52, the thin film is 5 degrees to apply Chinese National Standard (CNS) A4 specifications (210 X 297 mm) '— — — — — — — — — — — — — — — — — — — — — — — — — — — — U «— — — — a (Please read the notes on the back to write this page), 1T: # · 593641 A8 B8 C8 D8 Anisotropic light diffuser. 54. A thin film according to any one of claims 36 to% of the scope of patent application, wherein the thin film serves as a polarizer. 55. The film according to any one of claims 36 to 38, wherein the film is coated with another layer. 56. The thin film of claim 52, wherein the thin film is at least partially covered by a reflective layer serving as a diffuser. 57. The thin film of claim 56, wherein the reflective layer acts as an anisotropic diffuse reflector. 58. The thin film according to claim 56 in which the reflective layer is metallic. 59 · —A phase-structured polymer coating on a substrate, which includes a material having a cavity and / or a phase structure, which is characterized in that the material is affiliated and has been patented by The term method is generated. 60. A phase-structured polymer coating on a substrate, comprising a material having a void and / or phase structure, characterized in that the material is crosslinked and the void and / or structure is via another material Exists and is then removed to generate. 61 · A phase-structured polymer coating on a substrate, comprising a material having a cavity and / or a phase structure, characterized in that the material is crosslinked and the crosslinked material is a liquid crystal polymer. 62. A coating as described in Cap 60 or Η of the patent, wherein the associated material has orientation. And 63. If you apply for the coating of item 60 in the scope of patent application, where the cross-linked ___—— 6 This paper size applies to China National Standard (CNS) A4 Specification One ------ 593641 A8?! D8 6. The scope of patent application materials has orientation. ---------------------! »! Install · …… (Please read the cautions on the back first and write this page) 64 · If you apply for patent No. 62 Coating, wherein the orientation of the crosslinked material is different in different parts of the coating. 65. The coating according to any one of claims 59 to 61, wherein the structure contains at least 99% of voids less than 100 nm in at least one direction parallel to the coating plane. 66. The coating according to any one of claims 59 to 61, wherein the structure contains at least 99% of voids smaller than 500 nm in at least one direction parallel to the plane of the coating. 67. The coating according to any one of claims 59 to 61, wherein the structure contains at least 99% of voids smaller than 200 nm in at least one direction parallel to the coating plane. 68. For a coating according to any one of claims 60 or 61, the average distance between adjacent cavities is less than 500 nm. # ·. 69. In the case of a coating according to item 60 or 61, the cavity is elongated. 70. The coating according to item 60 or 61 of the patent application scope, wherein the cavity has a shape that continuously narrows from top to bottom. 7L The coating according to claim 60 or 61, wherein the coating is optically transparent. 72. The coating of claim 71, wherein the coating is optically birefringent. 73. For example, the coating of item 72 of the patent scope, where the coating is optically birefringent, so that the effective optical anisotropy is larger than the coating used _____ 7 __ This paper size applies Chinese national standards ( CNS) A4 specification (21〇χ 297 mm) 593641 0 ^ 88 ^ ABCD 6. The anisotropy of patent application materials. 74. The coating of claim 72, wherein the coating is optically birefringent, so that the effective nQ of the coating is lower than n0 of the coating material used. 75. A coating according to any one of claims 59 to 61, wherein the coating acts as a light diffuser. 76. The coating of claim 75, wherein the coating acts as an anisotropic light diffuser. .77. A coating according to any one of claims 59 to 61, wherein the coating acts as a polarizer. 78. A coating according to any one of claims 59 to 61, wherein the coating is coated with another layer. + 79. A coating according to item 75 of the patent application, wherein the coating is at least partially covered by a reflective layer acting as a diffuse reflector. 80. The coating of claim 79, wherein the reflective layer acts as an anisotropic diffuse reflector. 81. The coating of claim 79, wherein the reflective layer is metallic. 82. A stack or multilayer comprising two or more films according to any one of claims 36 to 38 or a coating according to any one of claims 59 to 61. 83. The film according to any one of claims 36 to 38, wherein the substrate is optically transparent. 84. If you apply for a coating in any one of items 59 to 61, the _____________ 8_ This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back first (Write this page) F: equipment, 593641 A8 B8 C8 D8 I VI. The substrate is optically transparent in the scope of patent applications. 85. An optical component (such as a light retarder) comprising a substrate with a transparent liquid crystal polymer layer, the crosslinked liquid crystal polymer layer having an orientation of 0 ° to 90 ° with the underlying layer (depending on Its function), and there are voids in its thickness, the average interval of the voids is less than 500nm, 99% of the voids are less than 500nm, and at least twice that they cross. 86. A component comprising an arrayable molecular layer, and a thin film according to any one of claims 36 to 38 or a coating according to any one of claims 59 to 61 The molecules are aligned as a result of contact with an optical member such as the 85th patent application. 87. An anti-reflective coated article comprising a film as claimed in any one of claims 36 to 38 or a coating as claimed in any one of claims 59 to 61 or as claimed Item 85. Optical member. 88. A liquid crystal cell, in which at least one of the liquid crystal molecules in one of the different stable arrangements can be used to contact the cell wall, and the cell wall includes a thin film according to any one of claims 36 to 38 or a patent application A coating according to any one of 59 to 61 or an optical member such as 85 in the scope of patent application. 89. An optical display device comprising a thin film according to any one of claims 36 to 38 or a coating according to any one of claims 59 to 61 or Optical component of item 85. 90. An element for preventing forgery and / or duplication, which is characterized by a film as in any one of claims 36 to 38 or a coating as in any one of claims 59 to 61 . This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the notes on the back first and fill in this page).
TW89121795A 1999-10-19 2000-10-18 Topologically structured polymer coating TW593641B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB9924746.2A GB9924746D0 (en) 1999-10-19 1999-10-19 Topologically structured polymer coating

Publications (1)

Publication Number Publication Date
TW593641B true TW593641B (en) 2004-06-21

Family

ID=10863007

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89121795A TW593641B (en) 1999-10-19 2000-10-18 Topologically structured polymer coating

Country Status (2)

Country Link
GB (1) GB9924746D0 (en)
TW (1) TW593641B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI460474B (en) * 2004-07-21 2014-11-11 Rolic Ag Anisotropic optical devices and method for making same
TWI799878B (en) * 2021-05-31 2023-04-21 希映顯示科技股份有限公司 Anti-peep screen and anti-peep method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI460474B (en) * 2004-07-21 2014-11-11 Rolic Ag Anisotropic optical devices and method for making same
TWI799878B (en) * 2021-05-31 2023-04-21 希映顯示科技股份有限公司 Anti-peep screen and anti-peep method thereof

Also Published As

Publication number Publication date
GB9924746D0 (en) 1999-12-22

Similar Documents

Publication Publication Date Title
KR100843639B1 (en) A method of creating topologically structured polymer film or coating, a film or coating created therefrom, and an optical article comprising the film or coating
Ibn-Elhaj et al. Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies
TWI232880B (en) Optical component, orientation layer, and layerable polymerisable mixture
TW548689B (en) Reflection type liquid crystal display device and manufacturing method thereof
US9983479B2 (en) Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays
JP4054071B2 (en) Layered optical component with liquid crystal anisotropic layer
TWI250327B (en) Reflecting board, liquid crystal device and electronic device
TWI460474B (en) Anisotropic optical devices and method for making same
US20160026092A1 (en) Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays
TW201027195A (en) Retardation film, method of manufacturing the same, and display
Chigrinov Photoaligning and photopatterning technology: applications in displays and photonics
Lim et al. Anisotropic nano-imprinting technique for fabricating a patterned optical film of a liquid crystalline polymer
Kim et al. Patterned hydrophobic liquid crystalline fibers fabricated from defect arrays of reactive mesogens via electric field modulation
EP1094103A1 (en) Topologically structured polymer coating
JP2005049866A (en) Phase difference layer and liquid crystal display device using the same
EP1363143A1 (en) Bright and white optical diffusing film
TW593641B (en) Topologically structured polymer coating
EP1147451B1 (en) Method of imparting preferred alignment in liquid crystal cells
EP1400838A1 (en) Thin films with corrugated surface topologies and method to produce them
TWI247136B (en) Optical device and method of making the same
Sim et al. Self-organized wrinkling of liquid crystalline polymer with plasma treatment
Zhao Patterned and Photo-induced Vertical Alignment for Liquid Crystal Photonics and Display Applications
CN116224667A (en) Adjustable liquid crystal holographic device, preparation method thereof and holographic light field modulation device
Kim Control of Coloration and Colloidal Assembly Based on Molecular Ordering of Reactive Mesogens
Lee et al. 8 Photoreactive Processes for Flexible Displays and Optical Devices

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees