TW593341B - Method for producing water-insoluble polysaccharides - Google Patents

Method for producing water-insoluble polysaccharides Download PDF

Info

Publication number
TW593341B
TW593341B TW89127293A TW89127293A TW593341B TW 593341 B TW593341 B TW 593341B TW 89127293 A TW89127293 A TW 89127293A TW 89127293 A TW89127293 A TW 89127293A TW 593341 B TW593341 B TW 593341B
Authority
TW
Taiwan
Prior art keywords
solution
cross
water
polysaccharide
linking
Prior art date
Application number
TW89127293A
Other languages
Chinese (zh)
Inventor
Ruei-Shiang Chen
Jiung-Lin Yang
Yu-Luen Huang
Shiau-Wen Tsai
Chuen-Huei Tzeng
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW89127293A priority Critical patent/TW593341B/en
Application granted granted Critical
Publication of TW593341B publication Critical patent/TW593341B/en

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicinal Preparation (AREA)

Abstract

This invention is concerned with a method for producing water-insoluble polysaccharides. A method for making the water-insoluble bio-compatible gel includes activating the hydroxyl-containing polysaccharides with the activating agent to form activated polysaccharides, and cross-linking the activated polysaccharides, under moderate conditions producing different shapes of the water-insoluble bio-compatible gel. The water-insoluble bio-compatible gels, films, porosities, powders, sheets, fibers and spheres of this invention may be applied to various medical and cosmetic uses.

Description

593341 . . ' ·' . · 玖、發明說明: 【發明所屬之技術領域】 . 本發明係關於一種製造非水溶性多醣類材料之 方法,尤指一種經由交鏈反應製造出適用於醫學或化 妝品之非水溶性多醣類材料之方法。 【先前技術】 透明質酸(Hyaluronic acid,HA)爲存在於脊椎 動物的組織與液體的一種黏多醣。HA含有糖醛酸 (uronic acid)及胺基糖(amino sugar)。爲一線性高分 子,分子量可由數萬至數百萬,其重複單位 (repeating unit)是由 D-葡糖醛酸(D-glucuronic acid) 及 D-N-乙醯基-葡糖胺(D-N-acetyl- glucosamine)以 /3 -(1 - 3)鍵結構成之dimer,再以0 - (1-4)鍵結成直鏈 聚合物。在自然界中廣泛地存在於脊椎動物之結締組 織、黏液組織及眼球之晶狀体’及某些細菌的莢膜 中0 HA因具有以下優點:自然存在於人体內、無免疫 反應、可被人体分解吸收、已可大量取得,而成爲常 用於醫藥方面的生物高分子。HA主要用於白內障、 角膜損傷等眼外科手術,高分子量(數百萬)的HA溶 液注射入眼中當黏彈液’保持眼睛的正常形狀與功 6 能。另外HA亦可用於關節炎治療劑或關節手術。近 來HA也被發展在一般創傷癒合(wound healing)、手 術後組織抗沾黏(anti-adhesion)及藥劑釋放(drug release)上。由於HA有保持水份的功能,可以應用 於防止皮膚老化的化妝品。 【(·Tomihata 等人(Biomaterials,1997,vol 18, 1 89-195 )使用分子量約爲1.5 xlO6之透明質酸(HA, Hyaluronic acid),並使用二環氧化合物(diepoxy compound)中之多(乙二醇)二縮水甘油醚 (poly(ethylene glycol) diglycidyl ether)做爲 HA 之交 鏈劑(cross-linker)。Tomihata等人將HA粉末溶於 蒸餾水中,再將二環氧化合物加入HA溶液中,並調 整HA溶液pH値,觀察二環氧化合物在不同之pH値 條件下對HA之交鏈效果。Tomihata等人將HA與二 環氧化合物之混合溶液攪拌均勻後,倒入培養皿 (Petri dish)內,於大氣壓力及25 °C條件下放置5天, 乾燥後形成厚度200μιη之交鏈HA薄膜(Film),經由 實驗結果發現Tomihata等人認爲二環氧化合物對Η A 分子產生之交鏈反應在HA溶液pH値控制在pH = 6.1 是最適合的。593341.. '·'. · Description of the invention: [Technical field to which the invention belongs]. The present invention relates to a method for manufacturing water-insoluble polysaccharide materials, especially a method suitable for medical or Method for non-water-soluble polysaccharide materials of cosmetics. [Previous Technology] Hyaluronic acid (HA) is a mucopolysaccharide that exists in the tissues and fluids of spinal animals. HA contains uronic acid and amino sugar. It is a linear polymer with a molecular weight of tens of thousands to millions. The repeating unit is composed of D-glucuronic acid and DN-acetyl. -glucosamine) is a dimer with a / 3-(1-3) bond structure, and then a linear polymer with a 0-(1-4) bond. It is widely present in connective tissue, mucous tissue and crystalline lens of vertebrae and capsules of some bacteria in nature. 0 HA has the following advantages: it exists naturally in the human body, has no immune response, and can be broken down and absorbed by the human body. It can be obtained in large quantities and has become a biopolymer commonly used in medicine. HA is mainly used for ocular surgery such as cataract and corneal injury. High molecular weight (millions) HA solution is injected into the eye when viscoelastic fluid 'maintains the normal shape and function of the eye 6. In addition, HA can also be used for arthritic agents or joint surgery. Recently HA has also been developed for general wound healing, anti-adhesion of tissues after surgery, and drug release. Since HA has a function of retaining moisture, it can be applied to cosmetics for preventing skin aging. [(· Tomihata et al. (Biomaterials, 1997, vol 18, 1 89-195) uses hyaluronic acid (HA) with a molecular weight of about 1.5 x 10 6 and uses as many diepoxy compounds ( Poly (ethylene glycol) diglycidyl ether was used as the cross-linker of HA. Tomihata et al. Dissolved the HA powder in distilled water and added the diepoxy compound to the HA solution. And adjust the pH of the HA solution to observe the cross-linking effect of the second epoxy compound on HA under different pH conditions. Tomihata et al. Stirred the mixed solution of HA and the second epoxy compound evenly and poured it into a petri dish ( In a Petri dish, it was left at atmospheric pressure and 25 ° C for 5 days. After drying, a cross-linked HA film (Film) with a thickness of 200 μm was formed. According to the experimental results, Tomihata et al. The cross-linking reaction is most suitable when the pH of the HA solution is controlled at pH = 6.1.

Malson在美國專利US 4,963,666揭示一種製造含 有一 COOH官能基多醣類(polysaccharides)材料之 製造方法,Malson將含有—COOH基之多醣類材料, 例如:透明質酸先與雙(bi-)或多官能基(polyfunctional) 環氧 化合物 (epoxide) 於鹼性 (alkali) 條件 593341 反應,形成所謂的環氧活化(ePoxy-activation)之多醣 類材料,於此反應階段不會有膠狀物(gel)形成,多醣 類材料於此階段仍爲可溶性(soluble),接著將反應ik 剩餘之環氧化合物移除[例如,利用透析(dialysis) 法],接著再將此多醣類溶液倒入一模具內靜置乾 燥,在乾燥過程中,此環氣活化之多醣類材料進行交 鏈反應(cross-linking)。Mai son氏於此專利中之實施 例如下所示:將〇.2g透明質酸(分子量約爲3χ106) 先與6ml之0.5% NaOH混合均勻,再加入2ml之1,4-丁二醇二縮說甘油醚(1,4-butanediol diglycidyl ether; BDDE)混合均勻,此溶液予以搖動(Shaking) 隔夜,再將此溶液移入透析管(dialysis tube)使用蒸 餾水透析24小時,經此透析處理後比溶液之PH値 爲5.5。透析後之溶液再倒入聚苯乙烯材料製成之培 養皿(Petri dish),於室溫條件下乾燥2天形成透明, 水不可溶性(water-insoluble)之透明質酸薄膜 (Film)。Malson in U.S. Patent No. 4,963,666 discloses a manufacturing method for manufacturing polysaccharides containing a COOH functional group. Malson will include polysaccharides containing a -COOH group, for example, hyaluronic acid and bi- or bi- or Polyfunctional epoxy compounds (epoxides) react under alkaline conditions 5933341 to form so-called ePoxy-activation polysaccharides. There will be no gums at this reaction stage ( gel) is formed, and the polysaccharide material is still soluble at this stage, and then the epoxy compounds remaining in the reaction ik are removed [for example, by a dialysis method], and then the polysaccharide solution is poured into A mold is left to dry in the mold. During the drying process, the ring-activated polysaccharide material undergoes cross-linking. The example of Mai son's patent in this patent is as follows: 0.2g of hyaluronic acid (molecular weight is about 3x106) is first mixed with 6ml of 0.5% NaOH, and then 2ml of 1,4-butanediol is used to shrink It is said that glycerol ether (1,4-butanediol diglycidyl ether; BDDE) is mixed uniformly, and the solution is shaken overnight, and then the solution is transferred to a dialysis tube and dialyzed with distilled water for 24 hours. The pH 値 is 5.5. The dialysis solution was poured into a petri dish made of polystyrene material and dried at room temperature for 2 days to form a transparent, water-insoluble hyaluronic acid film.

Sakurai在美國專利US 4, 7 1 6, 224揭示一種交鏈 性透明質酸之製法,此專利中交鏈劑爲多官能基性環 氧化合物(poly-functional epoxy compound),包括鹵 甲基—氧化合物(halomethyloxirane),及雙環氧化合 物(bis-epoxy compound)型交鏈劑,交鏈劑與透明質 酸父鏈反應後之交鏈指數(crosslinking index)爲100 個雙醣單位分子形成5〜20個交鏈反應,且交鏈後之 透明負酸材料爲水可溶性(w a t e r s ο 1 u b 1 e)及粘稠狀 (stringy)。 8 593341Sakurai in U.S. Patent No. 4, 7 1 6, 224 discloses a method for producing cross-linked hyaluronic acid. In this patent, the cross-linking agent is a poly-functional epoxy compound, including halomethyl- Halomethyloxirane and bis-epoxy compound cross-linking agents. The cross-linking index of the cross-linking agent after reacting with the parent chain of hyaluronic acid is 100 disaccharide unit molecules. 5 ~ 20 cross-linking reactions, and the transparent negative acid material after the cross-linking is water-soluble (water 1 ub 1 e) and stringy. 8 593341

Burns等人在美國專利US 5,017,229中,揭示一種 透明質酸非水溶性衍生物之製法。於此專利中 5 Burns 宣稱使用固形份(Solid content) 0.4 %〜2.6%之透明賣 . 酸溶液,配合活化劑(activating agent)使用可製出透 明質酸膠狀體(gel)。本專利申請專利範圍中之聚陰離 子(polyanionic)多醣類(polysaccharide)材料除 HA 外,亦可爲錢甲基纖維素(carboxymethlcellulose), 羧甲基直鏈殿粉(carboxylmethylamylose),軟骨素- 6-硫酸鹽(Chondroitin-6-sulfate),dermatin sulfate, h e p a i m等高分子。本專利實施例之一如后所述:使 用分子量介於1〇ό〜2xl06之透明質酸鈉鹽〇.4g溶於 l〇ml蒸餾水中,再調整HA溶液pH値至pH = 4.75, 再加入0.314g EDC( 1-乙基-3-C3-二甲基胺基丙基) 碳化二亞胺鹽酸鹽 ;(l-ethyl-3-C3-dimethylaminopropyl) carbodiimide hy dr ο - chloride),反應混合物於室溫條件反應5小時形成一 種水不可溶性水膠(Hydrogel)。Burns et al., In U.S. Patent No. 5,017,229, discloses a method for producing a water-insoluble derivative of hyaluronic acid. In this patent, 5 Burns claims to use a transparent solid solution (Solid content) of 0.4% to 2.6%. An acid solution, combined with an activating agent, can be used to produce transparent acid gels. In addition to HA, the polyanionic polysaccharide materials in the scope of this patent application can also be carboxymethlcellulose, carboxylmethylamylose, and chondroitin-6 -Shondroitin-6-sulfate, dermatin sulfate, hepaim and other polymers. One of the embodiments of the patent is described later: 0.4 g of sodium hyaluronate having a molecular weight between 10 and 2 × l06 is dissolved in 10 ml of distilled water, and then the pH of the HA solution is adjusted to pH = 4.75, and then added 0.314 g EDC (1-ethyl-3-C3-dimethylaminopropyl) carbodiimide hydrochloride; (l-ethyl-3-C3-dimethylaminopropyl) carbodiimide hy dr-chloride), reaction mixture Reaction at room temperature for 5 hours to form a water-insoluble hydrogel (Hydrogel).

Burns等人在US5,5 27,893專利中揭示一種聚陰離 ® 子多醣水不可溶性衍生物之製法。此專利實施例之一 如后所述:使用透明質酸鈉鹽〇.4g溶於l〇ml蒸餾水 中,再調整HA溶液pH値至pH = 4.75,再加入0.3 14g EDC( \-乙基-3-C3-二甲基胺基丙基)碳化二亞胺鹽酸 ' 鹽),再加入適量之L-白胺酸甲酯鹽酸鹽(L-leucine · methyl ester hydrochloride),反應混合物於室溫條件 反應形成一種水不可溶性水膠(Hydr〇gel) °本專利申 請專利重點在HA以EDC交鏈程序中’再加入另一種 9 丙烯基尿素(aery 1 ufea)衍生物’以得到一種改質之透 明質酸水膠(Hydrogel)。Burns et al., In US Pat. No. 5,5,27,893, disclose a method for preparing a water-insoluble derivative of polyanion ® polysaccharide. One of the embodiments of this patent is described later: 0.4 g of sodium hyaluronate is dissolved in 10 ml of distilled water, and the pH of the HA solution is adjusted to pH = 4.75, and 0.3 14 g of EDC (\ -ethyl- 3-C3-dimethylaminopropyl) carbodiimide hydrochloride 'salt), and then add an appropriate amount of L-leucine methyl ester hydrochloride. The reaction mixture is at room temperature. Conditional reaction to form a water-insoluble hydrogel. This patent application focuses on 'adding another 9 aery 1 ufea derivative' in HA's EDC cross-linking procedure to obtain a modification. Of hyaluronic acid (Hydrogel).

Kuo等人在US 5,3 5 6,8 83專利中揭示一種水不可 溶性明質酸水膠(gel),薄膜(films)及海綿(sPonge)之 製法。此專利之技術內容係使用EDC交鏈劑,加入 HA溶液中,經適當反應時間後’再加入乙醇於反應 後混合物內,將EDC化學改質後之HA沈澱析出,此 沈殿物經水洗乾燥後,再加入水於此產物中,可形成 非水溶性膠體。Kuo et al., U.S. Patent No. 5,3,5,8,83, disclose a method for producing water-insoluble gelatine gels, films, and sponges. The technical content of this patent is to use an EDC cross-linking agent, add it to the HA solution, and add the ethanol to the post-reaction mixture after an appropriate reaction time to precipitate and precipitate the HA after the chemical modification of EDC. This Shen Dianwu was washed and dried Then, water is added to this product to form a water-insoluble colloid.

Kuo等人在US 5,502,08 1專利中揭示一種將具藥 物活性(pharmaceutical activity)物質,經由碳化二亞 胺(carbodiimide)類化合物之作用,以共價鍵結合反 式連結於透明質酸高分子鏈上。Kuo et al., In US 5,502,08 1 patent, discloses a pharmaceutical activity substance, which is covalently bonded to a hyaluronic acid polymer through a covalent bond via the action of a carbodiimide compound. On the chain.

Kuo在US 6,0 13,679專利中揭示非水溶性透明質 酸衍生物之製備方法。專利技術內容主要是在,利用 碳化二亞胺(carbodiimide)類化合物做爲透明質酸之 化學交鏈劑,形成非水溶性透明質酸衍生物。 DE BELDER等人在WO 86/009 1 2專利中揭示一種 防止身體組織粘黏之膠體(Gel)之製備方法。此種膠 體係由含-COOH基之多醣類材料,透明質酸,使用 多官能基性環氧化合物(Poly-functional epoxide)交 鏈透明質酸以形成交鏈性之透明質酸膠體。 M alson等人在W0 86/00079專利中揭示一種交鏈 性透明質酸膠體之製法。此專利申請專利範圍爲,一 種滅菌,不具熱原反應(pyrogen-free)之透明質酸膠· 593341 體,此膠體係使用多官能基性環氧化合物,或鹵代醇 (halohydrin),或表鹵醇(epihalohydrin)或鹵化物 (halide)做爲透明質酸之交鏈劑反應所得。 * 'Kuo in U.S. Patent No. 6,0 13,679 discloses a method for preparing a water-insoluble hyaluronic acid derivative. The technical content of the patent is mainly to use carbodiimide compounds as chemical cross-linking agents for hyaluronic acid to form water-insoluble hyaluronic acid derivatives. DE BELDER et al. Discloses a method for preparing a gel (Gel) for preventing sticking of body tissues in WO 86/009 1 2 patent. This gum system consists of a polysaccharide material containing -COOH group, hyaluronic acid, and poly-functional epoxide cross-linked hyaluronic acid to form a cross-linked hyaluronic acid colloid. M alson et al., WO 86/00079, disclose a method for preparing a crosslinked hyaluronic acid colloid. The scope of this patent application is a sterilized, hyaluronic acid glue without pyrogen-free · 593341 body. This glue system uses a polyfunctional epoxy compound, or a halohydrin, or It is obtained by the reaction of epihalohydrin or halide as a cross-linking agent of hyaluronic acid. * '

Mai son等人在WO 90/0940 1專利中揭示一種交鏈 . 性透明質酸膠體之製法,此專利技術主要特徵係使用 含磷化合物(phosphorus-containing reagent)做爲透 明質酸之交鏈劑。Mai son et al. Disclosed a method for producing cross-linked hyaluronic acid colloid in WO 90/0940 1 patent. The main feature of this patented technology is the use of phosphorus-containing reagent as a cross-linking agent for hyaluronic acid. .

Malson等人在US 5,783,69 1專利中揭示一種使用 含磷化合物做爲透明質酸交鏈劑以製備交鏈性透明 馨 質酸膠體之製法。Malson et al., U.S. Patent No. 5,783,69 1 discloses a method for preparing a cross-linked transparent cinnamic acid colloid using a phosphorus-containing compound as a hyaluronic acid cross-linking agent.

Malson等人在US 4,716,154專利中揭示一種交鏈 性透明質酸膠體之製法,此HA膠體適合做眼科視網 膜(Retinal)手術中玻璃體(Vitreous hum or)替代物。專 利技術之主要特徵爲使用多官能基環氧化合物(polyfunctional epoxide)或 鹵代醇 (halohydrin)或 表鹵醇 (epihalohydrin)或鹵化物(halide)做爲透明質酸之交 鏈劑,以製備交鏈性透明質酸膠體。於此專利實施例 φ 中可發現,Malson等人使用高固形份(Solid content) 之HA溶液,在鹼性HA溶液中加入環氧化合物,例 如:BDDE,經由實驗結果發現HA溶液必須在HA固 形份超過I 3 · 3 %以上時,反應溫度超過5 0 °C時方可形 _ 成Η A膠體。Malson et al., In US Pat. No. 4,716,154, discloses a method for producing a cross-linked hyaluronic acid colloid. This HA colloid is suitable as a vitreous substitute for ophthalmic retinal surgery. The main feature of the patented technology is to use polyfunctional epoxide or halohydrin or epihalohydrin or halide as the cross-linking agent of hyaluronic acid to prepare the cross-linking agent. Chain hyaluronic acid colloid. It can be found in Example φ of this patent that Malson et al. Used a high solid content (Solid content) HA solution and added an epoxy compound, such as BDDE, to an alkaline HA solution. It was found through experiments that the HA solution must be in the solid form of HA. When the content exceeds I 3 · 3% or more, the reaction temperature exceeds 50 ° C can form _ A colloid.

Nobuhiko 等人(Journal of controlled Release, 25, 1993,pl33-143)揭示一種含有磷脂質微粒(lipid m i c r o s p h e r e s )之交鏈性透明質酸之製備方法。 11 593341Nobuhiko et al. (Journal of controlled Release, 25, 1993, pl33-143) discloses a method for preparing cross-linked hyaluronic acid containing phospholipid microparticles (lipid mi c ro s p h e r e s). 11 593341

Nobuhiko等人將透明質酸溶於IN NaOH溶液中,形 成Η A固形份約爲20 wt%之鹼性溶液,再加入適量之 PGPGE (Polyglycerol polyglycidyl ether)環氧化合 物,其中PGPGE與HA之重複單元(repeating unit) 化學計量摩爾比(molar ratio)約爲1.0。此反應混合物 於60 °C反應15分鐘後可形成交鏈性ΗΑ膠體。Nobuhiko et al. Dissolved hyaluronic acid in IN NaOH solution to form a basic solution of ΗA solid content of about 20 wt%, and then added an appropriate amount of PGPGE (Polyglycerol polyglycidyl ether) epoxy compound, in which the repeating units of PGPGE and HA (Repeating unit) The stoichiometric molar ratio is about 1.0. This reaction mixture reacts at 60 ° C for 15 minutes to form a crosslinked ΗΑ colloid.

Nobuhiko 等人(Journal of controlled Release, 22, 1992,P105-106)揭示一種製備交鏈性透明質酸膠體 之製法。Nobuhiko等人將透明質酸溶於NaOH溶液 中,形成固形份約爲20 wt%之鹼性HA溶液,再加入 已溶於乙醇之 EGDGE (Ethylene glycol diglycidyl ether)或PGPGE環氧化合物,於60°C溫度下反應15 分鐘,可得到交鏈性HA膠體。 3&1&25等人在115 4,582,865(19 8 6)及1;5 4,605,691 ( 1 986)專利中揭示一種交鏈性透明質酸膠體之製 法。Balazs等人之專利技術主要特色在於使用HA溶 液,在pH値超過9.0之條件下,使用二乙烯基風 (dwinyl sulfone)做爲HA之化學交鏈劑,以製得交鏈 性透明質酸膠體。Nobuhiko et al. (Journal of controlled Release, 22, 1992, P105-106) discloses a method for preparing cross-linked hyaluronic acid colloids. Nobuhiko et al. Dissolved hyaluronic acid in NaOH solution to form an alkaline HA solution with a solid content of about 20 wt%, and then added EGDGE (Ethylene glycol diglycidyl ether) or PGPGE epoxy compound which had been dissolved in ethanol, at 60 ° After reacting at a temperature of 15 minutes at a temperature of C, a crosslinked HA colloid can be obtained. 3 & 1 & 25, et al., In 115 4,582,865 (19 8 6) and 1; 5 4,605,691 (1 986), disclose a method for producing a crosslinked hyaluronic acid colloid. The main feature of the patented technology of Balazs et al. Is the use of HA solution, under the condition of pH 値 exceeding 9.0, using divinyl sulfone as the chemical cross-linking agent of HA to obtain cross-linked hyaluronic acid colloid .

Hamilton等人在US 4,93 7,2 70專利中揭示一種使 用EDC及氯化L-白胺酸甲酯(L-leucine methyl ester ^hlofide)對透明質酸進行化學交鏈,以製備非水溶性 Η A水膠之製法。 急.、Hamilton et al. In US 4,93 7,2 70 patent discloses a method for chemically cross-linking hyaluronic acid using EDC and L-leucine methyl ester ^ hlofide to prepare non-water soluble Sex Η A water glue method. anxious.,

Miller等人在US 5,760,200專利中揭示一種非水 溶性多醣類衍生物之製法,專利內容係使用多醣類材 12 593341 料,例如:透明質酸,於多醣類材料之水溶液中,於 酸性pH値條件下,加入EDC及氯化L-白胺酸甲酯 (L'leucine methyl ester chloride)對 HA 進行化學交 鏈,以形成非水溶性HA膠體。 .褐藻酸鹽(alginate ),爲由植物萃取所得之多醣 體,爲'P洋植物形成膠質結構的主要成份。其組成爲 I, 4-鏈結-β-D-甘露糖醛酸(l,4-linked β-D- mannuronic acid ( Μ ))與 1,4-linked α-L- guluronic acid ( G )兩單醣分子所形成之共聚物。Miller et al., In US 5,760,200 patent, discloses a method for preparing a water-insoluble polysaccharide derivative. The patent content is the use of polysaccharide materials 12 593341, such as hyaluronic acid, in an aqueous solution of polysaccharide materials, and acidic. Under pH 値 conditions, EDC and L'leucine methyl ester chloride were added to chemically cross-link HA to form a water-insoluble HA colloid. Alginate, a polysaccharide obtained from plants, is the main component of the colloidal structure of 'P' plants. Its composition is I, 4-linked-β-D-mannuronic acid (l, 4-linked β-D-mannuronic acid (M)) and 1,4-linked α-L-guluronic acid (G). A copolymer of monosaccharide molecules.

Thompson等人在US 5,5 63,1 86專利中揭示一種交 鏈性褐藻酸鹽膠體(gel)之製法。此專利之主要技術內 容係使用褐藻酸鹽多醣類高分子,溶解於水中形成褐 藻酸鹽膠體,此膠體可使用兩價金屬離子,或雙醛類 化合物(dialdehyde)或二胺類(diamine)進行膠體之交 鏈反應,而得到交鏈性之褐藻酸鹽膠體。Thompson et al., U.S. Patent No. 5,5,63,186, disclose a method for producing a cross-linked alginate gel. The main technical content of this patent is the use of alginate polysaccharide polymers, dissolved in water to form alginate colloids. This colloid can use divalent metal ions, or dialdehydes or diamines. The colloidal cross-linking reaction is performed to obtain a cross-linked alginate colloid.

Desai等人在US 5,334,640專利中揭示一種交鏈性 生物相容(crosslinked Biocompatible)材料之製法。 D e s a i等人將褐藻酸鹽鈉鹽(S 〇 d i u m s a 11)溶於水中, 再加入PEG二丙稀酸酯(diacrylate),此反應混合物 再經由照光處理,可光交鏈(photocrosslinked)褐藻 酸鹽材料。Desai et al., In US 5,334,640, disclose a method for making crosslinked biocompatible materials. Desai et al. Dissolved alginate sodium salt (SOdiumsa 11) in water, then added PEG diacrylate, and the reaction mixture was treated with light to photocrosslink alginate. material.

Patrick等人在US 5,70 5,270專利中揭示一種可交 鏈性(crosslinkabU)多醣類材料微膠囊(microcapsuie) 之製法。本專利技術實施例之一,槪述如下··使用褐 藻酸鹽材料先進行真空乾燥,乾燥後之粉末懸浮於二 13 593341 氯甲院,再加入過量之丙儲醯基氯(acryloyl chloride) 及三乙胺(triethylamine),反應於迴流狀態進行24小 時,反應後將褐藻酸鹽丙嫌酸鹽(alginate acrylate) 過濾出來,並使用乙醇清洗再乾燥,此材料經由乳化 方法(Emul si fi cation)製成微膠囊,再使用UV光照 射,形成光交鏈之褐藻酸鹽微膠囊(aglinate microcapsule) 〇 [guchi等人在US 5,811,531專利中揭示一種交鏈 性多醣類材料吸收劑(Absorbent)之製法。Iguchi等人 使用1 〇〇份咕噸樹膠(xanthan gum)多醣類材料,並加 入4份交鏈劑水溶液,此交鏈劑係由添加乙二醇二縮 水甘油醚於甲醇(methanol)所組成。咕噸樹膠與交鏈 劑之混合物於14(TC溫度加熱20分鐘,即可形成交 鏈性咕噸樹膠吸收劑(Absorbent)。利用相似方法 Iguchi等人亦可製備交鏈性褐藻酸鹽、果膠及瓜耳樹 膠等多醣類材料。Patrick et al., In US Pat. No. 5,70,270, disclose a method for producing microcapsuie of crosslinkabU polysaccharide material. One of the technical examples of this patent is described as follows: · The alginate material is vacuum dried first, and the dried powder is suspended in Chlorine A, and the excess acryloyl chloride and triethyl chloride are added. Triethylamine. The reaction is carried out under reflux for 24 hours. After the reaction, alginate acrylate is filtered out, washed with ethanol and dried. This material is made by the emulsification method (Emul si fi cation). Microcapsules are then irradiated with UV light to form photo-crosslinked alginate microcapsules. [Guchi et al., In US 5,811,531 patent, discloses a cross-linked polysaccharide material absorbent (Absorbent). System of law. Iguchi et al. Used 100 parts of xanthan gum polysaccharide material and added 4 parts of a cross-linking agent aqueous solution. The cross-linking agent was composed of ethylene glycol diglycidyl ether and methanol. . The mixture of Gutton gum and cross-linking agent is heated at 14 ° C for 20 minutes to form a cross-linked Gutton gum absorbent (Absorbent). Using a similar method, Iguchi et al. Can also prepare cross-linked alginates, fruit Gum and guar gum and other polysaccharide materials.

Hamdi ( J.Control. Res. 55:pl93-201)等人揭示一 種交鏈性殿粉微粒(microsphere)之製備方法。Hamdi 等人使用水溶性澱粉(Soluble starch)以機械式攪拌 方法溶解於2M NaOH溶液中。攪拌均勻之鹼性澱粉 水溶液,再於含有 0·5%(ν/ν)之 sorbitane monoeleate 乳化劑之環己烷-氯仿混合溶劑中(4:1,Wv)進行乳 化。乳化液再傾入玻璃反應槽內,並加入2.5 %表氯 醇(€0丨(:111〇1*〇1^(11^11)於6〇〇”111條件下持續攪拌,於 40 °C反應1 8小時,經離心,清洗後即可得到交鏈性 澱粉微粒。 14 593341 幾丁質(Chitin)是自然界中含量豐富僅次於纖維素 的有機物質。主要存在於甲殼、軟骨、昆蟲的外骨骼 及真菌細胞壁中。幾丁質是由單體葡萄胺糖 (gkicosamine)及 N-乙醯葡萄胺糖(N-acetyN D- glucosamine)以/3 -卜4鏈結所形成的直鏈狀高分子多 醣聚合物,約含有2000-3000個單體,分子量約二百 萬左右,視其製造條件及來源而定。幾丁質經高溫熱 鹼的去乙醯作用,會去除部分或全部的乙醯基成爲帶 有游離的胺基,而得到幾丁聚醣(chitosan)。 幾丁質、幾丁聚醣爲天然高分子,具有良好的組 織相容性,幾乎無毒(半數致死劑量,L D 5 Q = 1 6 g / k g), 並具有生物可分解性。除了在各種不同食品工業上之 應用已有許多用途外,由於其抗菌作用亦可應用於包 裝與醫藥方面。而其生物分解性可使膜在使用結束後 被分解,減輕其對環境所造成的衝擊。這些特殊的分 解性更能使其具有在包裝材料、農業用膜、生醫材 抖、製藥材科等各方面之潛在用途。Hamdi (J. Control. Res. 55: pl93-201) and others have disclosed a method for preparing cross-linked microspheres. Hamdi et al. Used soluble starch to dissolve in 2M NaOH solution by mechanical stirring. Stir the aqueous alkaline starch solution uniformly, and then emulsify it in a cyclohexane-chloroform mixed solvent (4: 1, Wv) containing 0.5% (ν / ν) sorbitane monoeleate emulsifier. The emulsion was poured into a glass reaction tank, and 2.5% epichlorohydrin (€ 0 丨 (: 111〇1 * 〇1 ^ (11 ^ 11)) was continuously stirred under the condition of 600′111 at 40 ° C. After reacting for 18 hours, after centrifugation and washing, cross-linked starch particles can be obtained. 14 593341 Chitin is the second most abundant organic substance in nature after cellulose. It mainly exists in carapace, cartilage, and insects. In the exoskeleton and fungal cell wall, chitin is a straight chain formed by the monomers gkicosamine and N-acetyN D-glucosamine with a / 3-β4 chain High molecular polysaccharide polymer, containing about 2000-3000 monomers, molecular weight of about two million, depending on its manufacturing conditions and sources. Chitin will be removed in part or all by the high temperature hot alkali deacetylation Chitosan becomes a free amine group to obtain chitosan. Chitin and chitosan are natural polymers with good histocompatibility and almost non-toxicity (half lethal dose, LD 5 Q = 16 g / kg), and it is biodegradable. In addition to many industrial applications, it can also be used for packaging and medicine due to its antibacterial effect. And its biodegradability can decompose the film after use, reducing its impact on the environment. These special Decomposability can make it potentially useful in packaging materials, agricultural films, biomedical materials, pharmaceutical materials, etc.

Unger等人在U S 5,5 2 5,7 1 0專利中揭示一種交鏈 性,高度孔性幾丁聚醣多醣類材料之製法。Unger等 人將幾丁聚醣片狀材料,溶解於酸液中形成粘稠狀溶 液(viscous solution),此塊狀膠體(gel)再切片後置入 NaOH溶液中24小時。膠體片狀材料再浸泡於甲苯 (Toluene)中,並加入 2,4-TDI做爲交鏈劑(cross- 15 593341 1 i n k e r),交鏈後幾丁聚醣再於真空烘箱中乾燥,再磨 碎成粉末,此交鏈之幾丁聚醣粉末具有極高之孔洞體 積(pore volume) 〇Unger et al., U.S. Patent 5,5 2,5,710, disclose a method for preparing a cross-linked, highly porous chitosan polysaccharide material. Unger et al. Dissolved the chitosan flake material in an acid solution to form a viscous solution. The gel was sliced and placed in a NaOH solution for 24 hours. The colloidal sheet material is then immersed in toluene (Toluene), and 2,4-TDI is added as a cross-linking agent (cross- 15 593341 1 inker). After the cross-linking, the chitosan is dried in a vacuum oven and then ground. Broken into powder, this cross-linked chitosan powder has extremely high pore volume.

Roy人在US 5,770,7 1 2專利中揭示一種由幾丁聚 醣多醣類材料製備交鏈性水膠圓珠(crosslinked hydrogel bead)之方法。Roy等人將幾丁聚醣圓珠水 相懸浮丨夜(a q u e 〇 u s s u s p e n s i ο η)浸泡於 1 〇 〇 % 乙醇溶 劑中,再將1,4-丁二醇二縮水甘油醚加入於含幾丁 聚醣圓珠之醇類溶劑中,室溫條件反應24小時。反 應後再使用醇類溶劑將未反應之環氧化合物清除,再 將幾丁聚醣圓珠分散於水相溶液中,再加入二乙胺 (DEA),室溫下反應約16小時,最後可得到一種DEA-活化,交鏈性之幾丁聚醣圓珠。 軟骨素硫酸鹽(Chondroitin sulfate)可由牛和魚 的軟骨萃取而得。它是身體中最大的結構分子(被稱 爲Glycosaminoglycan)之一。爲結締組織中的一種 成分。軟骨素硫酸鹽是一種由N-乙醯葡萄胺糖(N-acetyl-D-glucosamine)與葡糖醛酸(glucuronic acid) 組成之高分子。又有人稱之爲 galactosaminoglucuronoglycan sulfate 〇 車欠骨素硫酸 鹽幫助軟骨吸住水分,帶入營養物質,其作用有如 緩衝器。另可保護現存軟骨免於過早破損。Roy, U.S. Patent No. 5,770,712 discloses a method for preparing crosslinked hydrogel bead from chitosan polysaccharide material. Roy et al. Suspended the chitosan round beads in aqueous phase (aque 〇ussuspensi ο η) soaked in 100% ethanol solvent, and then added 1,4-butanediol diglycidyl ether to chitin containing The glycan globular alcohol solvent was reacted at room temperature for 24 hours. After the reaction, the alcoholic solvent is used to remove unreacted epoxy compounds, and the chitosan beads are dispersed in the aqueous solution, and then diethylamine (DEA) is added, and the reaction is performed at room temperature for about 16 hours. A DEA-activated, cross-linked chitosan bead was obtained. Chondroitin sulfate is obtained from the cartilage of cattle and fish. It is one of the largest structural molecules in the body (called Glycosaminoglycan). A component in connective tissue. Chondroitin sulfate is a polymer composed of N-acetyl-D-glucosamine and glucuronic acid. It is also called galactosaminoglucuronoglycan sulfate 〇 carotidin sulfate helps cartilage to absorb water and bring in nutrients, which acts like a buffer. It also protects existing cartilage from premature damage.

Sakurai等人在US4,863,907專利中揭示一種交鏈 性glycosamioglycan多醣類材料之製法。於本專利中 593341 實施例如后所示:於0.75N NaOH溶液中製備固形份 12.5%之軟骨素硫酸鹽鈉鹽溶液,再加入適量乙醇, 形成粘稠狀沈澱物,分離後回收。於此粘稠沈澱物+ 加入表氯醇(epichlorohydrin),攪拌均勻後,於20°C 反應24小時後可得到交鏈性軟骨素硫酸鹽多醣類材 料。Sakurai et al., In U.S. Patent No. 4,863,907, disclose a method for producing a cross-linked glycosamioglycan polysaccharide material. The example of 593341 in this patent is as follows: a 12.5% chondroitin sulfate sodium salt solution is prepared in a 0.75N NaOH solution, and an appropriate amount of ethanol is added to form a viscous precipitate, which is recovered after separation. Add the epichlorohydrin to this viscous precipitate, stir it evenly, and then react at 20 ° C for 24 hours to obtain the cross-linked chondroitin sulfate polysaccharide material.

Matsuda等人在US 5,462,976專利中揭示一種光 交鏈性(photo-crosslinked) glycosaminoglycan (GAG)衍生物材料之製法。此專利技術之特徵是於 正-丁胺 GAG 之 DMF(dimethyl formamide)溶液 中,H入無水(anhydrous)pyridine,接著再加入肉 桂醯氯(cinnamoyl chloride),於 75°C 反應 2 小時, 再加入醇類溶劑將反應產物沈澱出來,此產物使 用乙醇清洗再使用270nm波長之光線照射可進行 光交鏈反應。 【發明内容】 爲選自下述組群之至少一種或其混合物:1,4-二 惡院(1,4-dioxane),氯仿(chloroform),二氯甲 院(methylene chloride) , N, N -二甲基甲醯胺 (N,N-dimethylformamide ; DMF), N, N-二 甲基乙醯胺(N,N-dimethyl Acetamide ; DMAc), 醋酸乙酯(ethyl acetate), 丙酮(acetone),甲乙酮 (methyl ethyl ketone, MEK),甲醇(methanol),乙 醇(ethanol),丙酉享(propanol),異丙醇(isopropanol), 及丁醇(butanol)。 17 593341 上述經成形所得之薄膜狀,或粉末狀,或片 狀,或纖維狀,或圓球狀非水溶性多醣類材料, 經使用含水之混合有機溶劑清洗,再使用潔淨έ 水清洗,烘乾後之非水溶性多醣類材料可應用於 醫學或化妝品。上述含水之混合有機溶劑組成份 包括水及有機溶劑,有機溶劑可爲丙酮 (acetone),甲乙酮(methyl ethyl ketone, Μ ΕΚ), 甲醇(methanol),乙醇(ethanol),丙醇(propanol), 異丙醇(isopropanol),或丁醇(butanol)或其混合 物,於清洗液中有機溶劑之重量分率(weight fraction)佔有5 0- 1 00%,且酮類與醇類溶劑可以任 意比例使用,清洗液之溫度爲15°C -50°C,經清洗 液清洗後之非水溶性多醣類材料,再使用溫度爲 2 5 °C -5 0°C潔淨之水清洗,之後,進一步使用溫度 60 °C以下之熱風式乾燥(Hot air drying),或輻射 式加熱乾燥(Radiation heating drying),或真空式 乾燥(Vacuum drying)方式予以烘乾。 【實施方式】 實施例 茲以下列實施例進一步說明本發明,惟這些實 施例僅係用於說明,本發明之範圍並不侷限於此。 實施例(一):非水溶性,交鏈性透明質酸多醣類材 料之製備法 取透明質酸鈉鹽(Sodium Hyaluronate)多醣類材 料粉末0·1克(含有1.0毫當量[meq]經基[Hydroxy group]),溶於10ml之蒸餾水中,於室溫條件攪拌 18 593341 均勻後形成固形份(Solid content) 1%之透明質酸溶 液。再使用1 ·0 N NaOH或1 .ON之HC1溶液,調整 透明質酸溶液之PH値,如下表(1A)所示。再將此透 明質酸溶液預熱至35t,再加入定量之乙二醇二縮 水甘油醚(EGDGE)環氧化合物至透明質酸溶液(如表 1 A所示),其中EGDGE添加之毫當量數(meq)與透明 質酸羥基(Hydroxy group)毫當量數化學計量比爲4 meq : 1 meq, 攪拌均勻,於設定之交鏈溫度及時間 下(如表1 A所示),繼續攪拌進行透明質酸交鏈反應。 再將EGDGE環氧化合物交鏈後之透明質酸溶液,倒 入鐵氟龍(Teflon)材質製成之平板模具內,於35 °C之 熱烘箱內乾燥成膜,乾燥後之透明質酸薄膜置入清洗 液中(組成份爲80 wt%之丙酮水溶液)清洗,再置入蒸 餾水中清洗,於35t之熱烘箱內乾燥後之多醣類透 明質酸薄膜,進行於0.02M PBS溶液中之溶解性測 試(結果如表1 B所示)。 溶解性測試結果: 由此實驗結果發現多醣類透明質酸材料加彳容角军 後所形成之溶液,加入EGDGE環氧化合物交鏈劑, 當透明質酸溶液之pH値在3.0-7·5範圍間時,環氧 化合物交鏈反應時間在0 · 5小時以上時,此交鍵後$ 593341 透明質酸溶液經烘乾後所形成之薄膜,浸泡於0.02M 之PBS溶液中24小時不會溶解(如表1B所示),形成 種非水溶性,交鏈透明質酸薄膜材料。 593341 表(ΙΑ) 試樣(Sample) 1A 1Β 1C 1D 1Ε iF 透明質酸鈉鹽之重量(克) 0.1 0.1 0.1 0.1 0.1 0.1 透明質酸鈉鹽之羥基 (Hydroxy group)毫當量數 (m equ valent) 1 1 1 1 1 1 透明質酸鈉鹽溶液固形份 (Solid content 9 wt%) 1 1 1 1 1 1 交鏈反應前透明質酸溶液 pH値 3.0 土 0·2 3.5 土 0.2 7.5 土 0.2 10.0 土 0.2 11.5土0.2 12_5 土 0.2 EGDGE之添加重量(克) 0.448 0.448 0.448 0.448 0.448 0.448 EGDGE之添加毫當量數 (meq) 4 4 4 4 4 4 HA溶液交鏈反應溫度 (°c)/時間(分鐘), (試樣編號) 35/30 (1Α1) 35/30 (1Β1) 35/30 (1C1) 35/30 (1D1) 35/30 (1Ε1) 35/30 (1F1) HA溶液交鏈反應溫度 (°c)/時間(小時), (試樣編號) 35/1 (1Α2) 35/1 (1Β2) 35/1 (1C2) 35/1 (1D2) 35/1 (1Ε2) 35/1 (1F2) HA溶液交鏈反應溫度 (°c)/時間(小時), (試樣編號) 35/2 (1F3) 35/2 (1G3) HA溶液交鏈反應溫度 (°c)/時間(小時), (試樣編號) 35/24 (1F4) 35/24 (1F4) 表(I Β) EGDGE交鏈後成型之ΗΑ薄膜於0.02Μ 593341 PBS溶液中之溶解性測試 試樣置於25T:,0.02M (1A1) (1B1) (1C1) (1D1) (1E1) (LF1) PBS溶液中24小時 不溶 不溶 不溶 溶解 溶解 溶解 試樣置於25°C,0.02M (1A2) (1B2) (1C2) (1D2) (1E2) (1F2) PBS溶液中24小時 不溶 不溶 不溶 溶解 溶解 溶解 試樣置於25°C,0.02M — —_ (1F3) (1G3) PBS溶液中24小時 溶解 溶解 試樣置於25°C,0.02M —- (1F4) (1F4) PBS溶液中24小時 溶解 溶解 實施例(二):非水溶性,交鏈性透明質酸多醣類材 料之製法 取透明質酸鈉鹽多醣類材料粉末0.1克(含有1.0 毫當量羥基),溶於l〇ml之蒸餾水中,於室溫條件攪 拌均勻後形成固形份1%之透明質酸溶液。再使用1.0 N NaOH或1 ·0Ν之HC1溶液,調整透明質酸溶液之 φ pH値,如下表(2)所示。再將此透明質酸溶液預熱至 30t,再加入定量之EGDGE環氧化合物至透明質酸 溶液,、如表(2)所示,其中EGDGE添加之毫當量數與 透明質酸羥基毫當量數化學計量比爲2 : 1, 攪拌均 勻後於30°C交鏈溫度反應4小時後,再將於不同pH 値交鏈後之透明質酸溶液,使用1.0 N NaOH或1. ON 之HC1溶液,調整透明質酸溶液之pH値至6.5-7.5 22 593341 接近中性狀態,再將這些透明質酸溶液’倒入鐵氟龍 平板模具內,於3 0 °C之熱烘箱內乾燥1 2小時成膜, 乾燥後之透明質酸薄膜置入清洗液中(組成份爲80 w t %之丙嗣水溶液)清洗,再置入蒸飽水中清洗’於 3 5 °C之熱烘箱內乾燥後之多醣類透明質酸薄膜,進 行於0.02M PBS溶液中之溶解性測試,結果如表(2) 所示。 溶解性及D S C熱分析測試結果: 由實驗結果發現透明質酸材料加水溶解後所形成 之溶液加入EGDGE交鏈劑,當透明質酸溶液之pH 値在2.5-7.1範圍間時,環氧化合物交鏈後之透明 質酸溶液經烘乾後所形成之薄膜,浸泡於0.02M之 PBS溶液中48小時不會溶解(如表2所示),形成一 種非水溶性,交鏈透明質酸薄膜材料。且EGDGE交 鏈後之透明質酸溶液經烘乾,清洗後所得之薄膜,經 使用 DSC(Differential Sacnning Calorimetry)熱分析 ί義進行熱分析,實驗結果發現,未交鏈之透明質酸薄 膜材料具有主要融點(Melting point),其溫度爲166 °C (Tm2)。由表(2)中可明顯看出,透明質酸溶液之PH 値在2.5-7.1範圍間進行EGDGE化學交鏈後所得透明 質酸薄膜材料(試樣編號21A, 21B)之融點(表2), 23 593341 因具良好之交鏈效果皆明顯提高,此結果顯示現透明 質酸溶液pH値在2.5-7.1範圍間進行環氧化合物交 鏈反應,可得到較佳之交鏈效果。PH値在10.2及 12.6(試樣編號21F)之交鏈條件所得之透明質酸薄膜 材料之融點(表2),則皆明顯低於未交鏈之透明質酸 薄膜材料。Matsuda et al., In US Pat. No. 5,462,976, disclose a method for making a photo-crosslinked glycosaminoglycan (GAG) derivative material. The feature of this patented technology is that in the DMF (dimethyl formamide) solution of n-butylamine GAG, H is added to anhydrous pyridine, then cinnamoyl chloride is added, and the reaction is performed at 75 ° C for 2 hours, and then added An alcoholic solvent precipitates the reaction product. This product is washed with ethanol and then irradiated with light at a wavelength of 270 nm to perform a photo-crosslinking reaction. [Summary of the Invention] It is at least one or a mixture selected from the group consisting of 1,4-dioxane, chloroform, methylene chloride, N, N -N, N-dimethylformamide (DMF), N, N-dimethyl Acetamide (DMAc), ethyl acetate, acetone , Methyl ethyl ketone (MEK), methanol, ethanol, propanol, isopropanol, and butanol. 17 593341 The above-mentioned formed film-like, powdery, or sheet-like, or fibrous, or spherical insoluble polysaccharide materials are washed with a mixed organic solvent containing water, and then washed with clean water. The dried water-insoluble polysaccharide material can be used in medicine or cosmetics. The composition of the above-mentioned water-containing mixed organic solvent includes water and an organic solvent, and the organic solvent may be acetone, methyl ethyl ketone (MEMS), methanol, ethanol, propanol, isopropyl alcohol Isopropanol, butanol or a mixture thereof, the weight fraction of the organic solvent in the cleaning solution occupies 50 to 100%, and the ketones and alcohol solvents can be used in any ratio. The temperature of the cleaning solution is 15 ° C -50 ° C. The non-water-soluble polysaccharide materials after the cleaning solution is washed, and then cleaned with clean water at a temperature of 25 ° C-50 ° C, and then further used. Hot air drying below 60 ° C, or Radiation heating drying, or Vacuum drying. [Embodiments] Examples The following examples further illustrate the present invention, but these examples are only for illustration, and the scope of the present invention is not limited thereto. Example (1): Preparation of non-water-soluble, cross-linked hyaluronic acid polysaccharide material. Sodium Hyaluronate polysaccharide material powder 0.1 g (containing 1.0 milli-equivalent [meq] Hydoxy group is dissolved in 10ml of distilled water, and stirred at room temperature for 18 593341 to form a 1% solid content hyaluronic acid solution. Then use 1 · 0 N NaOH or 1. ON HC1 solution to adjust the pH of the hyaluronic acid solution, as shown in the following table (1A). Preheat this hyaluronic acid solution to 35t, and then add a quantitative amount of ethylene glycol diglycidyl ether (EGDGE) epoxy compound to the hyaluronic acid solution (as shown in Table 1 A), in which EGDGE is added in the equivalent of milli equivalents (Meq) and hyaluronic acid hydroxyl group (Hydroxy group), the stoichiometric ratio is 4 meq: 1 meq, stir well, at the set cross-linking temperature and time (as shown in Table 1 A), continue to stir for transparency Acid-chain reaction. Then the EGDGE epoxy compound cross-linked hyaluronic acid solution is poured into a flat mold made of Teflon material, dried in a 35 ° C hot oven to form a film, and the dried hyaluronic acid film Put it into a cleaning solution (80 wt% acetone aqueous solution), and then put it into distilled water to wash it. The polysaccharide hyaluronic acid film after drying in a 35t hot oven is carried out in a 0.02M PBS solution. Solubility test (results are shown in Table 1 B). Solubility test results: According to the results of this experiment, it was found that the solution formed by adding polysaccharide hyaluronic acid material to the saccharine, adding EGDGE epoxy compound cross-linking agent, when the pH of the hyaluronic acid solution was 3.0-7 · In the range of 5, when the epoxy compound cross-linking reaction time is more than 0.5 hours, the thin film formed after drying the $ 593341 hyaluronic acid solution after the cross-linking is immersed in a 0.02M PBS solution for 24 hours. Will dissolve (as shown in Table 1B), forming a water-insoluble, cross-linked hyaluronic acid film material. 593341 Table (ΙΑ) Sample 1A 1B 1C 1D 1E iF Weight of sodium hyaluronate (gram) 0.1 0.1 0.1 0.1 0.1 0.1 Milli-equivalent number of hydroxyl group of hyaluronic sodium (m equ valent) ) 1 1 1 1 1 1 Hyaluronic acid sodium salt solution solid content (Solid content 9 wt%) 1 1 1 1 1 1 Hyaluronic acid solution pH 値 3.0 before the cross-linking reaction Soil 0 · 2 3.5 Soil 0.2 7.5 Soil 0.2 10.0 Soil 0.2 11.5 Soil 0.2 12_5 Soil 0.2 EGDGE added weight (g) 0.448 0.448 0.448 0.448 0.448 0.448 EGDGE added millequivalents (meq) 4 4 4 4 4 4 HA solution cross-linking reaction temperature (° c) / time (minutes) ), (Sample number) 35/30 (1Α1) 35/30 (1B1) 35/30 (1C1) 35/30 (1D1) 35/30 (1E1) 35/30 (1F1) Crosslinking reaction temperature of HA solution ( ° c) / time (hours), (sample number) 35/1 (1Α2) 35/1 (1Β2) 35/1 (1C2) 35/1 (1D2) 35/1 (1E2) 35/1 (1F2) Crosslinking reaction temperature of HA solution (° c) / time (hour), (sample number) 35/2 (1F3) 35/2 (1G3) Crosslinking reaction temperature of HA solution (° c) / time (hour), ( Sample number) 35/24 (1F4) 35/24 (1F4) Table (I Β) EGDGE cross-linking The solubility test sample of the formed ΗΑ film in 0.02M 593341 PBS solution was placed in 25T :, 0.02M (1A1) (1B1) (1C1) (1D1) (1E1) (LF1) insoluble insoluble for 24 hours in PBS solution Dissolve dissolve dissolve sample at 25 ° C, 0.02M (1A2) (1B2) (1C2) (1D2) (1E2) (1F2) in PBS solution for 24 hours. 0.02M — —_ (1F3) (1G3) Dissolve and dissolve samples in PBS solution for 24 hours and place at 25 ° C. 0.02M —- (1F4) (1F4) Dissolve and dissolve samples in PBS solution for 24 hours. Example (2): Non Method for preparing water-soluble, cross-linked hyaluronic acid polysaccharide material: take 0.1 g of sodium hyaluronate polysaccharide material powder (containing 1.0 milliequivalent hydroxyl group), dissolve in 10 ml of distilled water, and stir at room temperature After homogenization, a 1% hyaluronic acid solution is formed. Then use 1.0 N NaOH or 1 · NO HC1 solution to adjust the φ pH 値 of the hyaluronic acid solution, as shown in the following table (2). Preheat this hyaluronic acid solution to 30t, and then add a quantitative amount of EGDGE epoxy compound to the hyaluronic acid solution, as shown in Table (2), where the milli-equivalents of EGDGE and the milli-equivalents of hyaluronic acid are added. The stoichiometric ratio is 2: 1, after stirring evenly at the cross-linking temperature of 30 ° C for 4 hours, then the hyaluronic acid solution after cross-linking at different pH will use 1.0 N NaOH or 1. ON HC1 solution, Adjust the pH of the hyaluronic acid solution to 6.5-7.5 22 593341 is close to a neutral state, and then pour these hyaluronic acid solutions into a Teflon flat mold and dry in a hot oven at 30 ° C for 1 to 2 hours. Film, the dried hyaluronic acid film is placed in a cleaning solution (a composition containing 80% by weight of an aqueous solution of propyl hydrazone), and then placed in steamed water to wash the polysaccharide after drying in a hot oven at 3 5 ° C Hyaluronic acid-like film was tested for solubility in 0.02M PBS solution, and the results are shown in Table (2). Solubility and DSC thermal analysis test results: It is found from the experimental results that the solution formed by dissolving the hyaluronic acid material with water is added with EGDGE cross-linking agent. When the pH of the hyaluronic acid solution is between 2.5 and 7.1, the epoxy compounds cross-link. The film formed after drying the hyaluronic acid solution after the chain is immersed in 0.02M PBS solution for 48 hours and will not dissolve (as shown in Table 2), forming a water-insoluble, cross-linked hyaluronic acid film material . In addition, the EGDGE cross-linked hyaluronic acid solution was dried and washed. The resulting film was subjected to thermal analysis using DSC (Differential Sacnning Calorimetry) thermal analysis. The experimental results found that the uncross-linked hyaluronic acid film material has The main melting point has a temperature of 166 ° C (Tm2). It can be clearly seen from Table (2) that the melting point of the hyaluronic acid film material (Sample Nos. 21A, 21B) obtained after the EGDGE chemical cross-linking in the pH range of the hyaluronic acid solution in the range of 2.5-7.1 (Table 2 ), 23 593341 have been significantly improved due to the good cross-linking effect. This result shows that the pH of the present hyaluronic acid solution is between 2.5 and 7.1 and the epoxy compound is cross-linked to obtain a better cross-linking effect. The melting points (Table 2) of hyaluronic acid film materials obtained with PH 値 under the cross-linking conditions of 10.2 and 12.6 (sample number 21F) are significantly lower than those of non-crosslinked hyaluronic acid film materials.

24 593341 表(2) 言式樣(Sample) 未交鏈 之HA 薄膜 21A 21Β 21C 21D 21Ε 21F 透明質酸鈉鹽羥基毫當 量數 1 1 1 1 1 1 交鏈反應前透明質酸溶 液之PH値 2.5 土 (λ 2 3.3 士 0·2 4·5 土 0.2 7.1 土 0.2 10·2 土 0. 2 12.6 土 0· 2 EGDGE之添加重量(克) 0.224 0.224 0.224 0.224 0.224 0.224 EGDGE之添加毫當量數 2 '2 2 2 2 2 交鏈反應溫度(°c)/時間 (小時) 30/4 30/4 30/4 30/4 30/4 30/4 交鏈後透明質酸溶液置 入模具後之烘乾溫度 fc)/時間(小時) 30/12 30/12 30/12 30/12 30/12 30/12 試樣置於37°C,0.02M PBS溶液48小時 立刻溶 解 不溶 不溶 不溶 不溶 24小時 內溶解 立刻溶 解 DSC: Tm2°C 166 185 184 — 173 159 138 實施例(三):非水溶性,交鏈性透明質酸多醣類材 料之製法 25 593341 取透明質酸鈉鹽多醣類材料粉末〇· i克,溶於 l〇ml之蒸餾水中,於室溫條件攪拌均勻後形成固形 份1 %之透明質酸溶液。再使用1 .〇 N NaOH或1 ·0Ν 之HC1溶液,調整透明質酸溶液之pH値,如下表(3) ^ 所示。再將此透明質酸溶液預熱至30 °C,再加入定 量之EGDGE至透明質酸溶液,如表(3)所示,其中 EGDGE添加之毫當量數與透明質酸羥基毫當量數化 學計量比爲6 : 1,攪拌均勻後於3 5 °C交鏈溫度反應 ® 4小時後,再將於不同pH値交鏈後之透明質酸溶液, 使用1.0 N NaOH或1.0N之HC1溶液,調整透明質酸 溶液之pH値至6.5-7.5接近中性狀態,再將這些透 明質酸溶液,倒入鐵氟龍平板模具內,於3 5 °C之熱 烘箱內乾燥1 2小時成膜,乾燥後之透明質酸薄膜置 入清洗液中(組成份爲80 wt%之丙酮水溶液)清洗’再 置入蒸飽水中清洗,於3 5 °C之熱烘箱內乾燥後之多 醣類透明質酸薄膜,進行於〇·〇2Μ PBS溶液中之溶 解性測試,結果如表(3)所示。 溶解性及DSC測試分析結果: 實驗結果發現,透明質酸溶液加入EGDGE交鏈 劑,當透明質酸溶液之PH値在3·3-7·4範圍間時’ 26 593341 交鏈後之透明質酸溶液經烘乾後所形成之薄膜,浸泡 於0.02M之PBS溶液中72小時不會溶解(如表3所 示),形成一種非水溶性,交鏈透明質酸薄膜材料。 且EG DGE交鏈後之透明質酸溶液,經烘乾,清洗後 所得之薄膜,經DSC熱分析實驗結果發現,透明質 酸溶液之PH値在3.3-7.4範圍間進行EGDGE化學交 鏈後所得透明質酸薄膜材料(試樣編號3 A, 3B, 3C) 之融點,因具良好之交鏈效果,皆明顯高於未交鏈之 透明質酸薄膜材料。 表(3) 試樣(Sample) 未交鏈 之HA 薄膜 3A 3B 3C 3D 3Ε 透明質酸鈉鹽之重量 (克) —- 0.1 0.1 0.1 0.1 0.1 透明質酸鈉鹽之羥基 毫當量數 — 1 1 1 1 1 透明質酸鈉鹽溶液固 形份 — 1 1 1 1 1 交鏈反應前透明質酸 溶液PH値 — 3.3 土 0.2 4.5 土 0·2 7·4土 0.2 10.5 土 0·2 12.8 土 0·2 EGOGE之添加重量 (克) — 0.672 0.672 0.672 0.672 0.672 EGDGE之添加毫當量 數 --- 6 6 6 6 6 HA溶液交鏈反應溫度 (°c)/時間(小時) — 35/4 35/4 35/4 35/4 35/4 27 試樣置於25°C ’ 0.02M PBS 溶液 72 小 時 立刻溶 解 不溶 不溶 不溶 24小時 內 溶解 立刻溶 解 DSC: Tm2°C 170 187 181 175 158 593341 實施例(四):非水溶性,交鏈性褐藻酸鹽(alginate) 多醣類,材料之製法 取褐藻酸鹽鈉鹽(Sodium salt)多醣類材料粉末 0.2克(含有2.0毫當量經基),溶於2〇ml之蒸飽水 中,於室溫條件攪拌均勻後形成固形份1 %之褐藻酸 鹽溶液。再使用1·〇 N NaOH或1.0N之HC1溶液,調 整褐藻酸鹽溶液之pH値,如下表(4)所示。再將此褐 藻酸鹽溶液預熱至預定之溫度3 5 °C ’再加入定量之 E G D G E環氧化合物至褐藻酸鹽溶液,如表(4)所示, 攪拌均勻,於設定之交鏈溫度及時間下,如表(4)所 示,繼續攪拌進行褐藻酸鹽多醣類材料交鏈反應。將 EG DGE環氧化合物交鏈後之褐藻酸鹽材料溶液,倒 入鐵氟龍材質製成之平板模具內,於35°C溫度之熱 烘箱內,乾燥成膜,乾燥後之褐藻酸鹽薄膜置入清洗液 中清洗,再置入蒸餾水中清洗,35°C乾燥後之褐藻 酸鹽薄膜,進行溶解性測試(於〇·〇2Μ PBS溶液中) 結果如表(4)所示。實驗結果發現,褐藻酸鹽溶液加 入EGDGE交鏈劑,當褐藻酸鹽溶液之ρΗ値在3·8- 28 593341 7.2範圍間時,交鏈後之褐藻酸鹽溶液經烘乾後所形 成之褐藻酸鹽薄膜,浸泡於0.02 Μ之PBS溶液中48 小時以上不會溶解,形成一種非水溶性褐藻酸鹽薄膜 材。 表(4) 試樣(Sample) 未交鏈 褐藻酸 鹽醒 材 4A 4B 4C 4D 4E 丨 褐藻酸鹽鈉鹽之重量 (克) — 0.2 0.2 0.2 0.2 0.2 褐藻酸鹽之羥基毫當 量數 2 2 2 2 2 褐藻酸鹽溶液固形份 1 1 1 1 1 交鏈反應前褐藻酸鹽 溶液之pH値 — 3·8 土 0.2 5·0 土0·2 7.2 土 0.2 10·2 土 0·2 12.2 土 0·2 EGDGE之添加重量 m , μ w 0.224 0.224 0.224 0.224 0.224 EGDGE之添加毫當量 數 — 2 2 2 2 2 交鏈反應溫度(°c)/時 間(分鐘) 35/4hr 35/4hr 35/4hr 35/4hr 35/4hr 試樣置於25°C, 0.02M PBS溶液中 立刻溶 解 2天以上 不溶 2天以上 不溶 2天以上 不溶 立刻溶解 立刻溶解 實施例(五):非水溶性,交鏈性軟骨素.硫酸鹽 (Chondroitin sulfate) 多醣類材料之製法 29 593341 取軟骨素-6-硫酸鹽(Chondroitin-6-sulfate)多醣 類材料粉末 0.503 (含有3毫當量羥基),溶於l〇ml 之蒸餾水中,於室溫條件攪拌均勻後形成固形份5% 之軟骨素-6-硫酸鹽溶液。再使用1.0 N NaOH或1.0N 之HC1溶液,調整軟骨素-6-硫酸鹽溶液之pH値,如 下表(5)所示。再將此軟骨素-6-硫酸鹽溶液預熱至預 定之溫度35°C,再加入定量之EGDGE環氧化合物至 軟骨素-6-硫酸鹽溶液,如表(5)所示,攪拌均勻, 於設定之交鏈溫度及時間下,如表(5)所示,繼續攪 拌進行軟骨素-6-硫酸鹽交鏈反應。將EGDGE環氧 化合物交鏈後之軟骨素-6-硫酸鹽溶液,倒入鐵氟龍 材質製成之平板模具內,於3 5 t之熱烘箱內乾燥成 膜,乾燥後之軟骨素-6-硫酸鹽薄膜置入清洗液中清 洗,再置入蒸餾水中清洗,35t乾燥後之軟骨素-6-硫酸鹽e薄膜,進行溶解性測試(於0·〇2Μ PBS溶 液中)結果如表(5)所示。實驗結果發現,軟骨素-6-硫酸鹽溶液加入EGDGE交鏈劑,當軟骨素_硫酸鹽 溶液之pH値在3·7-7·0範圍間時,交鏈後之軟骨素-6 -硫酸鹽溶液經烘乾後所形成之薄膜,浸泡於〇 . 〇 2 Μ 之PBS溶液中48小時以上不會溶解,形成一種非水 溶性軟骨素-6 -硫酸鹽薄膜材料。 30 表(5) 試樣(Sample) 未交鏈 軟骨素 -6-硫酸 m ΓΤΠ. 5A 5B 5B 5C 5C 軟骨素-6-硫酸鹽重量 (克) 0.503 0.503 0.503 0.503 0.503 軟骨素-6-硫酸鹽之羥 基毫當量數 3 3 3 3 3 軟骨素-6-硫酸鹽溶液 固形份 —- 5 5 5 5 5 交鏈反應軟骨素-6-硫 酸鹽溶液之PH値 3.7 土 0.2 5·5 土 0·2 7·2±0·2 9.5 土 0·2 12·2 土 0· 2 EGDGE之添加重量 (克) 0.336 0.336 0.336 0.336 0.336 EGDGE之添加毫當量 數 3 3 3 3 3 交鏈反應溫度/時間 35〇C *4hr 35〇C *4hr 35〇C *4hr 35〇C *4hr 35〇C 氺4hr 試樣置於25°C,0.02M PBS溶液中 立刻溶 解 2天以 上不溶 2天以 上不溶 2天以 上不溶 立刻溶 解 立刻溶 解 593341 實施例(六):非水溶性,交鏈性果膠(Pectin)多醣類 材料之製法 取果膠多醣類材料粉末 0.352 (含有4毫當量羥 基),溶於17.6ml之蒸餾水中,於室溫條件攪拌均勻 後形成固形份2%之果膠溶液。再使用1.0 N NaOH或 1. 0N之HC1溶液,調整果膠溶液之pH値,如下表(6) 所示。再將此果膠溶液預熱至預定之溫度3 5 t,再 加入定量之EGDGE環氧化合物至果膠溶液,如表(6) 31 593341 所示,攪拌均勻,於設定之交鏈溫度及時間下,如表 (6)所示,繼續攪拌進行果膠交鏈反應。將EGDG-E 環氧化合物交鏈後之果膠溶液’倒入鐵氟龍材質製成 之平板模具內,於35t熱烘箱內乾燥成膜,乾燥後 之果膠薄膜置入清洗液中清洗’再置入蒸餾水中清 洗,乾燥後之果膠薄膜,進行溶解性測試(於0.02M PBS溶液中),結果如表(6)所示。實驗結果發現,果 膠溶液加入EGDGE交鏈劑,當果膠溶液之pH値在 2.9-7.5範圍間時,交鏈後之果膠溶液經烘乾後所形 成之薄膜,浸泡於0.02M之PBS溶液中24小時以 上不會溶解,形成一種非水溶性果膠薄膜材料。 表(6) 試樣(Sample) 未交鏈 果膠薄 膜 6A 6B 6C 6D 6E 果膠之重量(克) 0.352 0.352 0.352 0.352 0.352 0.352 果膠之羥基毫當量數 —- 4 4 4 4 4 果膠溶液固形份(wt%) 2% 2% 2% 2% 2% 2% 交鏈反應前果膠溶液 pH値 2.9 3.81 5.8 7.5 12.3 EGDGE之添加重量 (克) 0.448 0.448 0.448 0.448 0.448 32 EGDGE之添加毫當量 數 4 4 4 4 4 交鏈反應溫度(°C)/時 間(分鐘) (試樣編號) 35〇C *4hr (PEF1A) 35〇C *4hr (PEF1B) 35〇C *4hr (PEF1C) 35〇C *4hr (PEF1D) 35〇C *4hr (PEF1E) 試樣置於25它, 0.02M PBS溶液中 溶解 3天以上 不溶 3天以上 不溶 3天以上 不溶 3天以上 不溶 24小時 內溶解 593341 馨 實施(例(七):非水溶性,交鏈性褐藻酸鹽多醣類材 料之製法 取褐藻酸鹽鈉鹽多醣類材料粉末 0.1克 (含有 1.0毫當量羥基),溶於10ml之蒸飽水中,於室溫條 件攪拌均勻後形成固形份1 %之褐藻酸鹽溶液。再使 鲁 用1·0Ν之HC1溶液,調整透明質酸溶液之PH値, 如下表(7)所示。再將此褐藻酸鹽溶液預熱至預定之 溫度35°C,再加入不同劑量之EGDGE環氧化合物至 褐藻酸鹽溶液,如表(7)所示,攪拌均勻,於設定之 交鏈溫度及時間下,如表(7)所示,繼續攪拌進行褐 藻酸鹽多醣類材料交鏈反應。將EGDGE環氧化合物 交鏈後之褐藻酸鹽材料溶液,倒入鐵氟龍材質製成之 33 593341 平板模具內,於40 °C熱烘箱內乾燥成膜,乾燥後之 褐藻酸鹽薄膜置入清洗液中清洗,再置入蒸餾水中清 洗,乾燥後之褐藻酸鹽薄膜,進行溶解性測試,結果 如表(7)所示。實驗結果發現,褐藻酸鹽溶液加入 EGDGE交鏈劑,當褐藻酸鹽溶液中加入之EGDGE環 氧化合物其毫當量數爲褐藻酸鹽之毫當量數1/5以上 時,交鏈後之褐藻酸鹽溶液經烘乾後所形成之薄膜, 浸泡於0.02M之PBS溶液中24小時以上不會溶解, 形成一種非水溶性薄膜材料。 表(7) 試樣(Sample) 未交鏈 褐藻酸 鹽薄膜 7A 7B 7C 7D 7E 褐藻酸鹽薄膜之重 Μ(克) 0.1 0.1 0.1 0.1 0.1 褐藻酸鹽之羥基毫 當量數 一_ 1 1 1 1 1 褐藻酸鹽溶液固形 份(%) 1 1 1 1 1 交鏈反應前褐藻酸 鹽溶液之pH値 —- 3.5 土 0·2 3.5 土 0·2 3·5 土 0.2 3.5±0.2 3.5 土 0.2 EGDGE之添加重量 (克) 0.002 0.011 0.022 0.112 0.224 EGDGE之添加毫當 量數 —- 0.02 0.1 0.2 1 2 交鏈反應溫度(°c)/ 時間(分鐘) 35〇C *24hr 35〇C *24hr 35〇C *24hr 35〇C *24hr 35〇C *24hr 34 試樣置於25t, 0·02Μ PBS溶液中 24小時 溶解 溶解 溶解 不溶 不溶 不溶 593341 貫施例(八):非水溶性軟骨素-6 -硫酸鹽 (Chondroitin-6-sulfate) 多醣類材料之製法 取軟骨素-6-硫酸鹽多醣類材料粉末〇·5〇3 (含有 3笔當量經基),溶於1 〇mi之蒸飽水中,於室溫條件 攪拌均勻後形成固形份5%之軟骨素-6-硫酸鹽溶液。 再使用1 ·0 N NaOH或1 ·0Ν之HC1溶液,調整軟骨素 -6-硫酸鹽溶液之ρΗ値,如下表(8)所示。再將此軟 骨素-6-硫酸鹽溶液預熱至預定之溫度35t:,再加入 定量之EGDGE環氧化合物至軟骨素-6-硫酸鹽溶液, 如表(8)所示,攪拌均勻,於設定之交鏈溫度及時間 下,如表(8)所示,繼續攪拌進行軟骨素-6-硫酸鹽交 鏈反應。將EGDGE環氧化合物交鏈後之軟骨素-6-硫酸鹽溶液,倒入鐵氟龍材質製成之平板模具內,於 3 5 °C之熱烘箱內乾燥成膜’乾燥後之軟骨素-6-硫酸 鹽薄膜置入清洗液中清洗,再置入蒸餾水中清洗,3 5 °C乾燥後之軟骨素-6-硫酸鹽薄膜,進行溶解性測試 (於0.02M PBS溶液中)結果如表(8)所示。實驗結果 發現,軟骨素-6-硫酸鹽溶液加入EGDGE交鏈劑, 35 593341 當軟骨素-6-硫酸鹽溶液之pH値在3.7-7.0範圍間時 且軟骨素-6-硫酸鹽溶液之固形份在0.1%以上時,交 鏈後之軟骨素-6-硫酸鹽溶液經烘乾後所形成之薄 膜,浸泡於0.02 Μ之PBS溶液中48小時以上不會 溶解,形成一種非水溶性軟骨素-6-硫酸鹽薄膜材 料。24 593341 Table (2) Sample Unlinked HA film 21A 21B 21C 21D 21E 21F Hyaluronic acid sodium salt hydroxyl equivalents 1 1 1 1 1 1 pH ≥ 2.5 of hyaluronic acid solution before crosslinking reaction Soil (λ 2 3.3 ± 0 · 2 4 · 5 Soil 0.2 7.1 Soil 0.2 10 · 2 Soil 0.2 2 12.6 Soil 0 · 2 EGDGE added weight (g) 0.224 0.224 0.224 0.224 0.224 0.224 0.224 EGDGE added milli-equivalent 2 ' 2 2 2 2 2 Cross-linking reaction temperature (° c) / time (hours) 30/4 30/4 30/4 30/4 30/4 30/4 After the cross-linking, the hyaluronic acid solution is placed in the mold and dried. Temperature fc) / time (hours) 30/12 30/12 30/12 30/12 30/12 30/12 The sample is placed at 37 ° C and dissolved in 0.02M PBS solution for 48 hours. Insoluble and insoluble. Insoluble and soluble within 24 hours. Immediately dissolve DSC: Tm2 ° C 166 185 184 — 173 159 138 Example (3): Method for preparing water-insoluble, cross-linked hyaluronic acid polysaccharide material 25 593341 Take the powder of hyaluronic acid sodium salt polysaccharide material. · I grams, dissolved in 10 ml of distilled water, and stirred at room temperature to form a 1% solids hyaluronic acid solution. Then use 1.0 N NaOH or 1 · ON HC1 solution to adjust the pH of the hyaluronic acid solution, as shown in the following table (3). Preheat this hyaluronic acid solution to 30 ° C, and then add quantitative EGDGE to the hyaluronic acid solution, as shown in Table (3), where the number of milli-equivalents added to EGDGE and the number of milli-equivalents of hyaluronic acid are stoichiometric. The ratio is 6: 1. After homogeneous stirring, react at a cross-linking temperature of 3 5 ° C. After 4 hours, adjust the hyaluronic acid solution after cross-linking at different pH using 1.0 N NaOH or 1.0 N HC1 solution to adjust The pH of the hyaluronic acid solution is approximately 6.5-7.5, and the hyaluronic acid solution is poured into a Teflon flat mold, and dried in a hot oven at 35 ° C for 1 to 2 hours to form a film and dry. The subsequent hyaluronic acid film is placed in a cleaning solution (80 wt% aqueous acetone solution) and then washed and then placed in steamed water. The polysaccharide hyaluronic acid is dried in a hot oven at 35 ° C. The film was tested for solubility in a 0.02M PBS solution, and the results are shown in Table (3). Solubility and DSC test analysis results: The experimental results found that when the hyaluronic acid solution was added with EGDGE cross-linking agent, when the pH of the hyaluronic acid solution was in the range of 3 · 3-7 · 4 '26 593341 The film formed by drying the acid solution will not dissolve in 0.02M PBS solution for 72 hours (as shown in Table 3), forming a water-insoluble, cross-linked hyaluronic acid film material. The EG DGE cross-linked hyaluronic acid solution was dried and washed. The DSC thermal analysis experiment found that the pH value of the hyaluronic acid solution was EGDGE chemically cross-linked in the range of 3.3-7.4. The melting point of the hyaluronic acid film material (sample No. 3 A, 3B, 3C) is significantly higher than that of the uncrosslinked hyaluronic acid film material because of its good cross-linking effect. Table (3) Sample (Unsampled) HA film 3A 3B 3C 3D 3E Weight (g) of sodium hyaluronate —- 0.1 0.1 0.1 0.1 0.1 Number of milli-equivalents of hyaluronate sodium salt — 1 1 1 1 1 Solid content of sodium hyaluronate solution — 1 1 1 1 1 Hyaluronic acid solution PH 値 before cross-linking reaction — 3.3 soil 0.2 4.5 soil 0 · 2 7 · 4 soil 0.2 10.5 soil 0 · 2 12.8 soil 0 · 2 EGOGE added weight (g) — 0.672 0.672 0.672 0.672 0.672 EGDGE added milli-equivalent --- 6 6 6 6 6 HA solution cross-linking reaction temperature (° c) / time (hour) — 35/4 35/4 35/4 35/4 35/4 27 The sample is placed in 25 ° C '0.02M PBS solution for 72 hours and immediately insoluble and insoluble. Insoluble and soluble within 24 hours. DSC: Tm2 ° C 170 187 181 175 158 593341 Example (4) ): Water-insoluble, cross-linking alginate polysaccharides. Preparation method of materials: Take 0.2 g of alginate sodium salt (sodium salt) polysaccharide material powder (containing 2.0 milli-equivalent basis), dissolve 20 ml of saturated water was stirred and stirred at room temperature to form a 1% alginate solution. Then use 1 · N NaOH or 1.0N HC1 solution to adjust the pH of the alginate solution, as shown in Table (4) below. Then preheat this alginate solution to a predetermined temperature of 35 ° C. Then add a certain amount of EGDGE epoxy compound to the alginate solution, as shown in Table (4), stir evenly at the set cross-linking temperature and Under time, as shown in Table (4), the alginate polysaccharide material cross-linking reaction was continued with stirring. The alginate material solution after the EG DGE epoxy compound is cross-linked is poured into a flat mold made of Teflon material, and dried in a hot oven at a temperature of 35 ° C to form a film. The dried alginate film It was washed in a cleaning solution, and then washed in distilled water. The alginate film after drying at 35 ° C was subjected to a solubility test (in a 0.02M PBS solution). The results are shown in Table (4). The experimental results show that the alginate solution is added to the EGDGE cross-linking agent. When the pH of the alginate solution is in the range of 3 · 8-28 593341 7.2, the brown alga formed after the cross-linked alginate solution is dried Acid salt film, soaked in 0.02 M PBS solution for more than 48 hours will not dissolve, forming an insoluble alginate film material. Table (4) Sample (Unsampled) Alginate Alkali 4A 4B 4C 4D 4E 丨 Alginate sodium salt weight (g) — 0.2 0.2 0.2 0.2 0.2 Alginate hydroxyl equivalent number 2 2 2 2 2 Alginate solution solids 1 1 1 1 1 pH of the alginate solution before cross-linking 値 — 3 · 8 soil 0.2 5 · 0 soil 0 · 2 7.2 soil 0.2 10 · 2 soil 0 · 2 12.2 soil 0 · 2 EGDGE added weight m, μ w 0.224 0.224 0.224 0.224 0.224 EGDGE added milli-equivalent — 2 2 2 2 2 Cross-linking reaction temperature (° c) / time (minutes) 35 / 4hr 35 / 4hr 35 / 4hr 35 / 4hr 35 / 4hr The sample was placed in 25 ° C, and dissolved in 0.02M PBS solution for more than 2 days. Insoluble for 2 days or more. Insoluble for 2 days or more. Insoluble and dissolved immediately. Example 5: Insoluble, cross-linked cartilage Method for preparing chondroitin sulfate polysaccharide materials 29 593341 Take chondroitin-6-sulfate polysaccharide material powder 0.503 (containing 3 milli-equivalent hydroxyl group), dissolved in 10ml The distilled water was stirred well at room temperature to form a 5% chondroitin-6-sulfate solution. Then use 1.0 N NaOH or 1.0 N HC1 solution to adjust the pH of chondroitin-6-sulfate solution, as shown in the following table (5). Preheat this chondroitin-6-sulfate solution to a predetermined temperature of 35 ° C, and then add a certain amount of EGDGE epoxy compound to the chondroitin-6-sulfate solution, as shown in Table (5), stir well. At the set cross-linking temperature and time, as shown in Table (5), continue to stir for chondroitin-6-sulfate cross-linking reaction. The chondroitin-6-sulfate solution after the EGDGE epoxy compound is cross-linked is poured into a flat mold made of Teflon material, and dried to form a film in a 3 5 t hot oven. The dried chondroitin-6 -The sulfate film was washed in a cleaning solution, and then washed in distilled water. After 35t of dried chondroitin-6-sulfate e film, the solubility test (in a 0.02M PBS solution) was performed. The results are shown in the table ( 5) shown. The experimental results show that when chondroitin-6-sulfate solution is added to the EGDGE cross-linking agent, when the pH of the chondroitin_sulfate solution is in the range of 3 · 7-7 · 0, the chondroitin-6-sulfate after cross-linking The film formed by drying the salt solution will not dissolve after being soaked in a PBS solution of 0.02 M for more than 48 hours, forming a water-insoluble chondroitin-6-sulfate film material. 30 Table (5) Sample (Unsampled) Chondroitin-6-sulfate m ΓΤΠ 5A 5B 5B 5C 5C Chondroitin-6-sulfate weight (g) 0.503 0.503 0.503 0.503 0.503 Chondroitin-6-sulfate Number of hydroxyl equivalents 3 3 3 3 3 Chondroitin-6-sulfate solution solids content-5 5 5 5 5 PH of chain reaction chondroitin-6-sulfate solution 値 3.7 0.2 0.2 5 · 5 00 · 2 7 · 2 ± 0 · 2 9.5 Soil 0 · 2 12 · 2 Soil 0 · 2 Weight of EGDGE added (g) 0.336 0.336 0.336 0.336 0.336 Milli equivalent of EGDGE added 3 3 3 3 3 Cross-linking reaction temperature / time 35 〇C * 4hr 35 ° C * 4hr 35 ° C * 4hr 35 ° C * 4hr 35 ° C 氺 4hr The sample was placed in 25 ° C and dissolved in 0.02M PBS solution for more than 2 days and insoluble for 2 days or more. Insoluble immediately dissolve immediately 593341 Example (6): Preparation of non-water-soluble, cross-linked pectin polysaccharide material 0.352 (containing 4 milliequivalent hydroxyl groups) of pectin polysaccharide material powder, soluble in 17.6 After stirring in ml of distilled water at room temperature, a 2% solid pectin solution was formed. Then use 1.0 N NaOH or 1.0 N HC1 solution to adjust the pH of the pectin solution, as shown in the following table (6). Preheat this pectin solution to a predetermined temperature of 3 5 t, and then add a certain amount of EGDGE epoxy compound to the pectin solution. As shown in Table (6) 31 593341, stir well and set the cross-linking temperature and time. Next, as shown in Table (6), stirring was continued to perform a pectin cross-linking reaction. The EGDG-E epoxy compound cross-linked pectin solution is poured into a flat mold made of Teflon material, dried in a 35t hot oven to form a film, and the dried pectin film is placed in a cleaning solution for cleaning. Put it into distilled water for washing, and then dry the dried pectin film, and perform a solubility test (in a 0.02M PBS solution). The results are shown in Table (6). The experimental results found that the EGDGE cross-linking agent was added to the pectin solution. When the pH of the pectin solution was in the range of 2.9-7.5, the film formed after drying the cross-linked pectin solution was immersed in 0.02M PBS. It will not dissolve in the solution for more than 24 hours, forming a water-insoluble pectin film material. Table (Sample) Uncrosslinked pectin film 6A 6B 6C 6D 6E Weight (g) of pectin 0.352 0.352 0.352 0.352 0.352 0.352 Pectin hydroxyl equivalents-4 4 4 4 4 Pectin solution Solid content (wt%) 2% 2% 2% 2% 2% 2% 2% pH value of pectin solution before crosslinking reaction 値 2.9 3.81 5.8 7.5 12.3 EGDGE added weight (g) 0.448 0.448 0.448 0.448 0.448 32 EGDGE added equivalent Number 4 4 4 4 4 Crosslinking reaction temperature (° C) / time (minutes) (sample number) 35 ° C * 4hr (PEF1A) 35 ° C * 4hr (PEF1B) 35 ° C * 4hr (PEF1C) 35 ° C * 4hr (PEF1D) 35 ° C * 4hr (PEF1E) The sample is placed in 25 samples, dissolved in 0.02M PBS solution for more than 3 days, insoluble for 3 days or more, insoluble for more than 3 days, insoluble for more than 3 days, insoluble for more than 24 days, dissolved in 593341. (Example (7): Preparation of water-insoluble, cross-linked alginate polysaccharide material. Take 0.1 g of alginate sodium salt polysaccharide material powder (containing 1.0 milli-equivalent hydroxyl group) and dissolve it in 10 ml of saturated water. After stirring at room temperature, an alginate solution with a solid content of 1% is formed. Then use a HC1 solution of 1.0N to adjust the permeability. The pH of the hyaluronic acid solution is shown in the following table (7). Then preheat this alginate solution to a predetermined temperature of 35 ° C, and then add different doses of EGDGE epoxy compound to the alginate solution, as shown in the table. As shown in (7), stir well. At the set cross-linking temperature and time, as shown in Table (7), continue to stir to carry out the alginate polysaccharide material cross-linking reaction. After the EGDGE epoxy compound is cross-linked, The alginate solution is poured into a 33 593341 flat mold made of Teflon material, and dried to form a film in a 40 ° C hot oven. The dried alginate film is placed in a cleaning solution, and then placed in distilled water. The alginate film was cleaned and dried in the medium, and the solubility test was performed, and the results are shown in Table (7). The experimental results showed that the EGDGE cross-linking agent was added to the alginate solution, and the EGDGE epoxy was added to the alginate solution. When the compound's milli-equivalent number is 1/5 or more of the alginate, the thin film formed after the cross-linked alginate solution is dried will not dissolve in the 0.02M PBS solution for more than 24 hours. To form a water-insoluble film Table (7) Sample (Sample) Uncrosslinked alginate film 7A 7B 7C 7D 7E Alginate film weight M (g) 0.1 0.1 0.1 0.1 0.1 Alginate hydroxyl equivalent number _ 1 1 1 1 1 Solid content of alginate solution (%) 1 1 1 1 1 pH of alginate solution before cross-linking reaction 値 --- 3.5 soil 0 · 2 3.5 soil 0 · 2 3 · 5 soil 0.2 3.5 ± 0.2 3.5 soil 0.2 EGDGE added weight (g) 0.002 0.011 0.022 0.112 0.224 EGDGE added milli-equivalent --- 0.02 0.1 0.2 1 2 Cross-linking reaction temperature (° c) / time (minutes) 35 ° C * 24hr 35 ° C * 24hr 35 〇C * 24hr 35 ° C * 24hr 35 ° C * 24hr 34 The sample is placed in 25t, 0. 02M PBS solution for 24 hours to dissolve, dissolve, dissolve, insoluble, insoluble 593341. Example (8): Water-insoluble chondroitin-6 -Chondroitin-6-sulfate Polysaccharide material preparation method Chondroitin-6-sulfate polysaccharide material powder 0.5 · 3 (containing 3 equivalents of the base), dissolved in 10 mM steam Saturated water, stirred evenly at room temperature to form a 5% chondroitin-6-sulfate solution. Then use 1 · 0 N NaOH or 1 · 0N HC1 solution to adjust the pH of the chondroitin-6-sulfate solution, as shown in the following table (8). Preheat this chondroitin-6-sulfate solution to a predetermined temperature of 35t :, then add a certain amount of EGDGE epoxy compound to the chondroitin-6-sulfate solution, as shown in Table (8), stir well, and At the set cross-linking temperature and time, as shown in Table (8), the chondroitin-6-sulfate cross-linking reaction was continued with stirring. The chondroitin-6-sulfate solution after the EGDGE epoxy compound is cross-linked is poured into a flat mold made of Teflon material, and dried in a hot oven at 35 ° C to form a film 'dried chondroitin- The 6-sulfate film was placed in a cleaning solution and washed with distilled water. The chondroitin-6-sulfate film after drying at 35 ° C was tested for solubility (in a 0.02M PBS solution). The results are shown in the table. (8). The experimental results show that when chondroitin-6-sulfate solution is added with EGDGE cross-linking agent, 35 593341 when the pH of chondroitin-6-sulfate solution is in the range of 3.7-7.0 and the solid form of chondroitin-6-sulfate solution When the content is above 0.1%, the film formed after the cross-linked chondroitin-6-sulfate solution is dried and immersed in 0.02 M PBS solution for more than 48 hours will not dissolve, forming a water-insoluble chondroitin -6-sulfate film material.

表(8) 霞式樣(Sample) 8A 8B 8C 8D 8E 軟骨素-6-硫酸鹽重量 (克) 0.503 0.503 0.503 0.503 0.503 軟骨素-6-硫酸鹽之羥基 毫當量數 3 3 3 3 3 軟骨素-6-硫酸鹽溶液固 形份 0.05 0.1 1 5 10 交鏈反應軟骨素-6·硫酸 鹽溶液之pH値 3·2 土 0.2 3.2 土 0·2 3.2 土 0.2 3.2±0.2 3.2 土 0.2 EGDGE之添加重量(克) 0.336 0.336 0.336 0.336 0.336 EGDGE之添加毫當量數 3 3 3 3 3 交鏈反應溫度/時間 35〇C*8hr 35〇C*8hr 35〇C*8hr 35〇C*8hr 35〇C*8hr 試樣置於25°C,0.02M PBS溶液中 立即溶解 2天以上 不溶 2天以上 不溶 2天以上 不溶 2天以上 不溶 實施例(九):非水溶性透明質酸多醣類材料之製法 取透明質酸鈉鹽多醣類材料粉末0.1克(含有1.0 毫當量羥基),溶於10ml之蒸餾水中,於室溫條件攪 拌均勻後形成固形份1 %之透明質酸溶液。再使用 36 593341 1. ON之HC1溶液,調整透明質酸溶液之pH値,如下 表(9)所示。再將此透明質酸溶液預熱至3(rc,再加 入定量之不同種類之環氧化合物至透明質酸溶液,如 表(9)所示’其中環氧化合物添加之毫當量數與透明 質酸羥基毫當量數化學計量比皆保持爲1 : 1,攪拌 均勻後於3 0 °C交鏈溫度反應4小時後,將這些透明 質酸溶液,倒入鐵氟龍平板模具內,於3 5 °C之熱烘 箱內乾燥小時成膜,乾燥後之透明質酸薄膜置入清洗 液中(組成份爲70 wt%之丙酮水溶液)清洗,再置入蒸 餾水中清洗,乾燥後之多醣類透明質酸薄膜,進行 於0.02M PBS solution中之溶解性測試,結果如表(9) 所示。由實驗結果發現透明質酸溶液加入本例所使用 之各類多官能基(Poly-functional) epoxide交鏈劑, 交鏈後之透明質酸溶液經烘乾後所形成之薄膜,浸泡 於0 · 0 2 Μ之P B S溶液中2 4小時以上皆不會溶解, 形成一種非水溶性透明質酸薄膜材料。 表(9) 試樣(Sample) 9A 9B 9C 9D 9E 9F 透明質酸鈉鹽之重量 (克) 0.1 0.1 0.1 0.1 0.1 0.1 透明質酸鈉鹽之羥基毫 當量數 1 1 1 1 1 1 37 593341 透明質酸鈉鹽溶液固形 份 1 1 1 1 1 1 交鏈反應前透明質酸溶 液pH値 3.3 土 0.2 3.3 士 0.2 3.3 土 0.2 7·3 土 0.2 3.3 土 0.2 6.5±0.2 BDDE之添加重量(克)/ 毫當量數 0.101/1 — — — —- — EGDGE之添加重量(克) /毫當量數 —- 0.112/1 — — — --- Ex-861(二官能基環氧化 合物)之添加重量(克)/ 毫當量數 0.587/1 0.587/1 EX-411(四官能基環氧化 合物)之添加重量(克)/ 毫當量數 0.231/1 0.231/1 HA溶液交鏈反應溫度 (°c)/時間(小時) 30/4 30/4 30/4 30/4 30/4 30/4 試樣置於25°C,0.02M PBS溶液24小時 不溶 不溶 不溶 不溶 不溶 不溶 註: *Ex-861(di- epoxide) Polyethylene glycol diglycidylTable (8) Xia style (Sample) 8A 8B 8C 8D 8E Chondroitin-6-sulfate weight (g) 0.503 0.503 0.503 0.503 0.503 Chondroitin-6-sulfate hydroxyl equivalents 3 3 3 3 3 Chondroitin- Solid content of 6-sulfate solution 0.05 0.1 1 5 10 Cross-linking reaction chondroitin-6 · sulfate solution pH 値 3.2 soil 0.2 3.2 soil 0.2 0.2 3.2 0.2 ± 0.2 3.2 soil 0.2 EGDGE added weight ( G) 0.336 0.336 0.336 0.336 0.336 EGDGE added milli-equivalents 3 3 3 3 3 Crosslinking reaction temperature / time 35 ° C * 8hr 35 ° C * 8hr 35 ° C * 8hr 35 ° C * 8hr 35 ° C * 8hr Test Samples were immediately dissolved in 0.02M PBS solution at 25 ° C for more than 2 days, insoluble for 2 days or more, insoluble for 2 days or more, and insoluble for 2 days or more. Example (9): Preparation of non-water-soluble hyaluronic acid polysaccharide materials. Transparent 0.1 g of sodium polysaccharide powder (containing 1.0 milli-equivalent hydroxyl group) was dissolved in 10 ml of distilled water and stirred at room temperature to form a 1% solid solution of hyaluronic acid. Then use 36 593341 1. ON HC1 solution, adjust the pH of the hyaluronic acid solution, as shown in the following table (9). Then preheat this hyaluronic acid solution to 3 (rc), and then add quantitative different kinds of epoxy compounds to the hyaluronic acid solution, as shown in Table (9), where the number of milli-equivalents of epoxy compounds and hyaluronic acid The stoichiometric ratio of acidic hydroxyl equivalents was kept at 1: 1, and after stirring for 4 hours at a cross-linking temperature of 30 ° C, these hyaluronic acid solutions were poured into a Teflon flat mold at 3 5 The film is formed by drying in a hot oven at ° C for an hour. The dried hyaluronic acid film is placed in a cleaning solution (70 wt% acetone aqueous solution) and then washed in distilled water. The dried polysaccharides are transparent. Soluble acid film was tested for solubility in 0.02M PBS solution, and the results are shown in Table (9). From the experimental results, it was found that the hyaluronic acid solution was added to various poly-functional epoxides used in this example. Cross-linking agent, the film formed by drying the cross-linked hyaluronic acid solution, it will not dissolve after immersing in 0 · 0 2 M PBS solution for more than 24 hours, forming a water-insoluble hyaluronic acid film Material Table (9) Sample 9A 9B 9C 9D 9E 9F Weight of sodium hyaluronate (g) 0.1 0.1 0.1 0.1 0.1 0.1 Number of hydroxyl equivalents of sodium hyaluronate 1 1 1 1 1 1 37 593341 Solid content of sodium hyaluronate solution 1 1 1 1 1 1 Hyaluronic acid solution pH 値 3.3 soil 0.2 3.3 ± 0.2 3.3 soil 0.2 7 · 3 soil 0.2 3.3 soil 0.2 6.5 ± 0.2 BDDE added weight (g) / milli-equivalent 0.101 / 1 — — — — — — EGDGE added weight (g) / milli-equivalent — — 0.112 / 1 — — — — — Ex-861 (difunctional epoxy compound) added weight (g) / milli-equivalent 0.587 / 1 0.587 / 1 EX-411 (tetrafunctional epoxy compound) added weight (g) / milli-equivalent 0.231 / 1 0.231 / 1 HA solution cross-linking reaction temperature (° c) / time (hour) 30/4 30 / 4 30/4 30/4 30/4 30/4 The sample is placed at 25 ° C, 0.02M PBS solution for 24 hours. Insoluble, insoluble, insoluble, insoluble, insoluble Note: * Ex-861 (di-epoxide) Polyethylene glycol diglycidyl

ether, WPE (weight per epoxy equivalent ) =587 * EX-41 l(Tetra-epoxide) Pentaerythritol Poly glycidyl Ether: WPE(weight per epoxy equivalent ) = 231 38 593341 實施例(十)·· 非水溶性透明質酸多醣類材料之製- 法 取透明質酸鈉鹽多醣類材料粉末0·1克(含有1.0 毫當量羥基),溶於1 〇 m 1之蒸餾水中,於室溫條件攪 拌均勻’後形成固形份1 %之透明質酸溶液。再使用 I .0N之HC1溶液,調整透明質酸溶液之pH値,如下 表(10)所示。再將此透明質酸溶液預熱至不同溫度, 泰 如表(1〇)所示,再加入定量之之EGDGE環氧化合物 至透明質酸溶液,如表(1 0)所示,其中環氧化合物 (epoxide)添加之毫當量數與透明質酸羥基毫當量數 化學計量比皆保持爲2 : 1, 攪拌均勻後於各不同交 鏈溫度反應6小時後,將這些透明質酸溶液’倒入鐵 氟龍平板模具內,乾燥後之透明質酸薄膜置入清洗液 中(組成份爲60 wt%之丙酮水溶液)清洗,再置入蒸餾 ® 水中清洗,乾燥後之多醣類透明質酸薄膜,進行於 0.02M PBS溶液中之溶解性測試,結果如表(1〇)所 示◦由實驗結果發現透明質酸溶液加入EGDGE交鏈 劑,於20-45 °C溫度間交鏈反應後之透明質酸溶液經 烘乾後所形成之薄膜,浸泡於0.02M之PBS溶液中 72小時以上皆不會溶解,形成一種非水溶性透明質 酸薄膜材料。 39 表(10) 言式樣(Sample) 10A 10B 10C 10D 10E 10F 透明質酸鈉鹽之重量(克) 0.1 0.1 0.1 0.1 0.1 0.1 透明質酸鈉鹽之羥基毫當 量數 1 1 1 1 1 1 透明質酸鈉鹽溶液之固形 份 1 1 1 1 1 1 交鏈反應前透明質酸溶液 之pH値 3_5 土 0·2 6.5 士 0·2 3.3 土 0.2 7J 土 0.2 3.1 土 0.2 7.3 土 0.2 EGDGE之添加重量(克) 0.22 0.22 0.22 0.22 0.22 0.22 EGDGE之添加毫當量數 2 2 2 2 2 2 交鏈反應溫度及時間 20°C 20°C 35〇C 35〇C 45〇C 45〇C *6hr *6hr *6hr *6hr 氺6hr *6hr 試樣置於 37°C,0.02MPBS 3天不 3天不 3天不 3天不 3天不 3天不 溶液 溶 溶 溶 溶 溶 溶 593341 實施例(十一):交鏈後褐藻酸鹽多醣類材料溶液使 用冷凍乾燥方法製備多孔洞性基材 取褐藻酸鈉鹽(Alginate)多醣類材料粉末,溶於蒸 餾水中,於50-60°C條件下攪拌均勻後形成固形份 1%, 2%, 3%之溶液。再使用1·0Ν之HC1溶液, 調整溶液之pH値至4.0左右。再加入定量之EGDGE 環氧化合物至多醣類溶液中,使其中環氧化合物之毫 當量數與多醣類羥基毫當量數化學計量比保持爲1 : 1。 攪拌均勻後於3 5 °C恆溫下反應6小時,再將交 40 593341 鏈反應後之多醣類溶液倒入模具內,經冷凍乾燥後即 可得具開放性孔洞(open cell)型態之多孔性交鏈多醣 類基材。冷凍乾燥後之多孔性交鏈褐藻酸鹽基材置又 清洗液中(組成份爲80 wt%之丙酮水溶液)清洗,再置 入蒸餾水中清洗。乾燥後之多孔性交鏈褐藻酸鹽基 材,於0.02M PBS溶液中進行溶解性測試,結果如 表(Π )所示。由實驗結果發現多孔性交鏈褐藻酸鹽基 材,浸泡於〇·〇2Μ 之PBS溶液中24小時以上皆不 會溶解,形成一種非水溶性多孔性褐藻酸鹽基材。 表(11) 試樣(Sample) 11A 11B 11C 11D 11Ε 11F 褐藻酸鈉鹽溶液之固形份 1 1 2 2 3 3 添加EGDGE交鏈劑後褐藻 酸鹽溶液之pH値 3.5 土 0.2 6.5 土 0.2 3.3 土 0·2 7.3 土 0.2 3.1 土 0.2 7·3 土 0.2 多孔性交鏈褐藻酸鹽基材試 樣置於 37°C,0.02MPBS 溶 液 24小時 不溶 24小時 不溶 24小時 不溶 24小時 不溶 24小時 不溶 24小時 不溶 實施例(十二):交鏈後透明質酸多醣類材料溶液使 用冷凍乾燥方法製備多孔洞性基材 · 取透明質酸鈉鹽多醣類材料粉末,溶於蒸飽水 中,於室溫條件下攪拌均勻後形成固形份1 %, 2 %, 3%之溶液。再使用1.0Ν之HC1溶液,調整溶液之 pH値至4.5。再加入定量之EGDGE環氧化合物至多 醣類溶液中,使其中環氧化合物之毫當量數與多醣類 羥基毫當量數化學計量比保持爲1 ·· 1。 攪拌均勻後 於35 °C恆溫下反應6小時,再將交鏈反應後之多醣 類溶液倒入模具內,經冷凍乾燥後即可得具開放性孔 洞型態之多孔性交鏈多醣類基材。冷凍乾燥後之透明 41 593341 質酸鈉鹽多孔性交鏈基材置入清洗液中(組成份爲80 wt%之丙酮水溶液)清洗,再置入蒸餾水中清洗。乾燥 後之多孔性交鏈透明質酸鈉鹽基材,於0.02M P^S 溶液中進行溶解性測試,結果如表(1 2)所示。由實驗 結果發現多孔性交鏈透明質酸鈉鹽基材,浸泡於 0.02 Μ之PBS溶液中24小時以上不會溶解,形成' — 種非水溶性多孔性透明質酸基材。 表(12) 試樣(Sample) 12A 12Β 12C 12D 12Ε 12F HA溶液之固形份 1 1 2 2 3 3 添加EGDGE交鏈劑 3·5 土 6 · 5 士 3.3 土 7 · 3 土 3.1土 7.5 土 後HA溶液之pH値 0.2 0.2 0.2 0.2 0.2 0.2 多孔性交鏈HA試樣 24小 24小 24小 24小 24小 24小 置於 37°C, 0.02M 時不 時不 時不 時不 時不 時不 PBS溶液 溶 溶 溶 溶 溶 溶 實施例(十三):交鏈後軟骨素-4-硫酸鹽(Chonroitin-4-siilfate)材料溶液使用冷凍乾燥方法製 備多孔洞 性基材 取軟骨素硫酸鹽材料粉末,溶於蒸餾水中,於 室溫條件下攪拌均勻後形成固形份5%及10%之溶 液。#使用K0N之HC1調整軟骨素-4-硫酸鹽溶液之 pH値(如表13所示)。再加入定量之EGDGE環氧化 合物至軟骨素硫酸鹽溶液中,使其中EGDGE環 氧化合物之毫當量數與多醣類羥基毫當量數化學計 量比保持爲4 : 1。 攪拌均勻後於3 5 °C ·恆溫下反應2 小時’再將交鏈反應後之軟骨素-4-硫酸鹽溶液倒入 42 593341 模具內,經冷凍乾燥後即可得具開放性孔洞型態之多 孔性交鏈軟骨素-4-硫酸鹽基材。冷凍乾燥後之軟骨 素硫酸鹽e多孔性交鏈基材置入清洗液中(組成备 爲8 0 w t %之丙酮水溶液)清洗,再置入蒸餾水中清 洗。乾燥後之多孔性交鏈軟骨素-4-硫酸鹽基材,於 0.02M PBS溶液中進行溶解性測試,結果如表(13) 所示。由實驗結果發現多孔性交鏈軟骨素-4-硫酸鹽 基材,浸泡於〇.〇2Μ之PBS溶液中24小時以上不 會溶解,形成一種非水溶性多孔性軟骨素-4-硫酸鹽 基材。 表(13) 試樣(Sample) 13A 13B 13C 13D 13E 13F C軟骨素-4-硫酸鹽 溶液之固形份 5 5 5 10 10 10 添加EGDGE交鏈劑 後軟骨素-4-硫酸鹽 溶液之pH値 2.5± 0.2 4.6 土 0.2 6.5 ± 0.2 2.4 土 0.2 3.9 土 0.2 6·3 土 0.2 多孔性交鏈軟骨素-4-硫酸鹽試樣置於 3 7°C, 0.02M PBS 溶液 24小 時不 溶 24小 時不 溶 24小 時不 溶 24小 時不 溶 24小 時不 溶 24小 時不 溶 43 實施例(十四):非水溶性,交鏈性褐藻酸鹽纖維製 備 取褐藻酸鈉鹽(alginate sodium salt)材料粉末0.1 克(含有1.0毫當量羥基),溶於l〇ml之蒸餾水中,於 5 0-60 °C攪拌均勻後形成固形份1%之溶液。再使用 1.0N之'HC1溶液,調整溶液之pH値至4.0左右。再 加入定量之EGDGE環氧化合物至多醣類溶液中,使 其中環氧化合物之毫當量數與多醣類羥基毫當量數 化學計量比保持爲1 : 2。攪拌均勻後於3 5 t恆溫下 反應6小時。再將交鏈反應後之褐藻酸鈉鹽溶液,以 不同大小之注射針頭於95 %酒精中擠壓成單纖維 (Monofilament fiber )。再將此之褐藻酸纖維取出, 於乾燥器內乾燥後保存,即可得直徑於1πιιη-50μηι不 同粗細之纖維狀基材。此種經環氧化合物交鏈後之褐 藻酸纖維,浸泡於0.02Μ之PBS溶液中48小時以 上不會溶解,形成一種非水溶性褐藻酸纖維。 實施例(十五):非水溶性,交鏈性果膠(Pectin)纖維 製備 取Μ膠多醣類材料粉末 0.352 (含有4毫當量羥 基),溶於17.6ml之蒸餾水中,於室溫條件攪拌均勻 後形成固形份2%之果膠溶液。再使用1·0 N NaOH或 1.0N之HC1溶液,調整溶液之pH値至3.5。再加入 定量之EGDGE環氧化合物至多醣類溶液中,使其中 環氧化合物之毫當量數與多醣類羥基毫當量數化學 593341 計量比保持爲2 : 1。攪拌均勻後於3 5 °c恆溫下反應6 小時。再將交鏈反應後之果膠溶液,以不同大小之注 射針頭於9 5 %酒精中擠壓成單纖維。再將此之果慶 纖維取出,於乾燥器內乾燥後保存,即可得直徑於 1 mm-5 0 μηι不同粗細之果膠纖維狀基材。此種經環氧 化合物交鏈後之果膠纖維,浸泡於0.02Μ之PBS溶 液中48小時以上不會溶解,形成一種非水溶性果膠 纖維。、 45 實施例(十六):非水溶性,交鏈性HA纖維製備 取透明質酸鈉鹽多醣類材料粉末0·1克(含有厂〇 毫當量羥基),溶於1 0 m 1之蒸飽水中,於3 0 - 3 5 °c攪 拌均勻後形成固形份1%之HA溶液。再使用1. ON之 H C 1溶液,調整溶液之ρ Η値至4 · 5左右。再加入定 量之 EGDGE環氧化合物至 ΗΑ溶液中,使其中 EGDGE環氧化合物之毫當量數與多醣類羥基毫當 量數化學計量比保持爲3 : 1。攪拌均勻後於3 5 °C恆 溫下反應2小時。再將EGDGE交鏈反應後之透明質 酸溶液,以不同大小之注射針頭於9 5 %酒精中濟壓 成單纖維。再將此之ΗA纖維取出,於乾燥器內乾燥 後保存,即可得直徑於1πΐΓη·5 0μπι不同粗細之HA纖 維狀基材。此種經EGDGE交鏈後之ΗΑ纖維,浸泡 於0·〇2Μ之PBS溶液中48小時以上不會溶解,形 成一種非水溶性ΗΑ纖維。 實施例(十七)··交鏈後褐藻酸鹽多醣類材料溶液使 用冷凍乾燥方法製備球型多孔洞性基材 取褐藻酸鹽多醣類材料粉末,溶於蒸餾水中,於 5 0 °C - 6 0 °C攪拌均勻後形成固形份3 %, 之溶液。再: 使用1 ·0Ν之HC1溶液,調整溶液之pH値至3.0左右。 再加入定量之EGDGE環氧化合物至多醣類溶液中, 使其中環氧化合物之毫當量數與多醣類羥基毫當量 數化學計量比保持爲2 : 1。攪拌均勻後於3 5 °C恆溫 下反應6小時,再將E G D G E交鏈反應後之褐藻酸鹽 多醣類溶液,利用syring Pump以不同大小之注射針 頭滴入酒精或液態氮中,經冷凍乾燥,即可得直徑於 593341 2 m m - 2 Ο Ο μ m大小不同之球型(s p h e r e)多孔洞性多醣類 交鏈基材。此種經EGDGE交鏈後之褐藻酸鹽球型多 孔洞性基材,浸泡於0.02M之PBS溶液中48小日% 以上不會溶解,形成一種非水溶性褐藻酸鹽球型多孔 洞性基材。 實施例(十八):交鏈後HA多醣類材料溶液使用冷凍 乾燥方法製備球型多孔洞性基材 取HA多醣類材料粉末,溶於蒸餾水中,於30°C 攬拌均勻後形成固形份2.5 %之溶液。再使用1. ON之 HC1溶液,調整溶液之pH値至5.0左右。再加入定 量之BDDE環氧化合物至多醣類溶液中,使其中環氧 化合物之毫當量數與多醣類羥基毫當量數化學計量 比保持爲3 : 1。攪拌均勻後於35 °C恆溫下反應3小 時,再將BDDE交鏈反應後之HA多醣類溶液,利用 syring pump以不伺大小之注射針頭滴入酒精或液態 氮中,經冷凍乾燥,即可得直徑於2 mm - 2 0 0 μ m大小 不同之球型(sphere)多孔洞性HA交鏈基材。此種經 BDDE交鏈後之HA球型多孔洞性基材,浸泡於0.02M 之PBS溶液中48小時以上不會溶解,形成一種非水 溶性HA球型多孔洞性基材。 實施例(十九):交鏈後軟骨素-4 -硫酸鹽材料溶液使 用冷凍乾燥方法製備球型多孔洞性基材 取軟骨素-4-硫酸鹽材料粉末,溶於蒸餾水中,於 3〇°C攪拌均勻後形成固形份5%之溶液。再使用1.0N 之HC1溶液,調整溶液之pH値至4.0。再加入定量 之EG DGE環氧化合物至軟骨素-4-硫酸鹽溶液中,使 47 593341 其中EGDGE環氧化合物之毫當量數與軟骨素-4-硫 酸鹽之羥基毫當量數化學計量比保持爲2 : 1。攪拌 均勻後於35°C恆溫下反應2小時,再將EGDGE交ft 反應後之軟骨素-4-硫酸鹽溶液,利用syring pump以 不同大小之注射針頭滴入酒精或液態氮中,經冷凍乾 燥,即可得直徑於 2mm-200pm大小不同之球型 (sphea)多孔洞性軟骨素-4-硫酸鹽基材。此種經 EG DGE'交鏈後之軟骨素-4-硫酸鹽球型多孔洞性基 材,浸泡於〇·〇2Μ之PBS溶液中48小時以上不會 溶解,形成一種非水溶性軟骨素-4-硫酸鹽球型多孔 洞性基材。 實施例(二十):交鏈後果膠材料溶液使用冷凍乾燥 方法製備球型多孔洞性基材 取果膠多醣類材料粉末 0.352 (含有4毫當量羥 基),溶於17.6ml之蒸餾水中,於室溫條件攪拌均勻 後形成固形份2%之果膠溶液。再使用1.0N之HC1 溶液,調整溶液之pH値至5.5左右。再加入定量之 EGDGE環氧化合物至多醣類溶液中,使其中環氧化 合物之毫當量數與多醣類羥基毫當量數化學計量比 保持爲2 : 1,攪拌均勻後於3 5 °C恆溫下反應4小時。 再將交鏈反應後之果膠溶液,利用syring pump以不 同大小之注射針頭滴入酒精、丙酮或液態氮中,經冷 凍乾燥,即可得直徑於2mm-200gm大小不同之球型 多孔洞性果膠基材。此種經EGDGE交鏈後之果膠球 型多孔洞性基材,浸泡於0.02M之PBS溶液中48 小時以上不會溶解,形成一種非水溶性果膠球型多孔 洞性基材。 48 593341 本發明實施例中,經使用各種多醣類材料於不同 pH値、交鏈劑種類、交鏈溫度、交鏈反應時間古 乾燥方式下,可得到品質良好之非水溶性多醣類 基材。但本發明並不受限於上述實施例,而應以 專利申請範圍爲準。 【圖式簡單說明】 49ether, WPE (weight per epoxy equivalent) = 587 * EX-41 l (Tetra-epoxide) Pentaerythritol Poly glycidyl Ether: WPE (weight per epoxy equivalent) = 231 38 593341 Example (ten) · Water-insoluble hyaluronic acid Preparation of Polysaccharide Materials-Method of taking 0.1 · 1g of sodium hyaluronate polysaccharide material powder (containing 1.0 milli-equivalent hydroxyl group), dissolving in 10m 1 of distilled water, and stirring evenly at room temperature to form 1% Hyaluronic Acid Solution. Then use HC1 solution of 1.0N to adjust the pH of the hyaluronic acid solution, as shown in the following table (10). Preheat this hyaluronic acid solution to different temperatures, as shown in Table (10), and then add a quantitative amount of EGDGE epoxy compound to the hyaluronic acid solution, as shown in Table (10), where the epoxy The stoichiometric ratio of milli-equivalents of the compound (epoxide) added to the milli-equivalents of hyaluronic acid was kept at 2: 1, and after stirring for 6 hours at different cross-linking temperatures, the mixture was poured into the hyaluronic acid solution. In a Teflon flat mold, the dried hyaluronic acid film is placed in a cleaning solution (a 60 wt% acetone aqueous solution), and then washed in distilled ® water. The dried polysaccharide hyaluronic acid film The solubility test in 0.02M PBS solution was performed. The results are shown in Table (10). The experimental results showed that the hyaluronic acid solution was added with the EGDGE cross-linking agent, and the cross-linking reaction was performed at a temperature of 20-45 ° C. The film formed by drying the hyaluronic acid solution will not dissolve after being soaked in 0.02M PBS solution for more than 72 hours, forming a water-insoluble hyaluronic acid film material. 39 Table (10) Sample 10A 10B 10C 10D 10E 10F Weight (g) of sodium hyaluronate 0.1 0.1 0.1 0.1 0.1 0.1 Number of hydroxyl equivalents of sodium hyaluronate 1 1 1 1 1 1 Hyaluronic The solid content of the sodium salt solution 1 1 1 1 1 1 1 pH of the hyaluronic acid solution before the cross-linking reaction 値 3_5 soil 0 · 2 6.5 ± 0 · 2 3.3 soil 0.2 7J soil 0.2 3.1 soil 0.2 7.3 soil 0.2 EGDGE added weight (G) 0.22 0.22 0.22 0.22 0.22 0.22 Milli-equivalents of EGDGE added 2 2 2 2 2 2 Cross-linking reaction temperature and time 20 ° C 20 ° C 35 ° C 35 ° C 45 ° C 45 ° C * 6hr * 6hr * 6hr * 6hr 氺 6hr * 6hr The sample is placed at 37 ° C, 0.02MPBS for 3 days, not 3 days, 3 days, 3 days, 3 days, and 3 days. Alginate polysaccharide material solution is prepared by freeze-drying porous porous substrate. Alginate polysaccharide material powder is taken, dissolved in distilled water, and stirred to form a solid form at 50-60 ° C. 1%, 2%, 3% solution. Then use 1 · N HC1 solution to adjust the pH of the solution to about 4.0. Quantitative EGDGE epoxy compound is added to the polysaccharide solution, so that the stoichiometric ratio of the milli-equivalent number of the epoxy compound to the milli-equivalent number of the polysaccharide hydroxyl group is maintained at 1: 1. After homogeneous stirring, react at a constant temperature of 3 5 ° C for 6 hours, and then pour the 40 593341 chain reaction polysaccharide solution into the mold. After freeze-drying, an open cell type can be obtained. Porous cross-linked polysaccharide substrate. After freeze-drying, the porous cross-linked alginate substrate was washed in a cleaning solution (80 wt% acetone in water), and then washed in distilled water. The dried cross-linked alginate substrate was tested for solubility in a 0.02M PBS solution. The results are shown in Table (Π). From the experimental results, it was found that the porous cross-linked alginate substrate did not dissolve in the PBS solution for more than 24 hours, forming a water-insoluble porous alginate substrate. Table (11) Sample 11A 11B 11C 11D 11E 11F Alginate sodium salt solution 1 1 2 2 3 3 pH of alginate solution after adding EGDGE cross-linking agent 3.5 0.2 0.2 6.5 0.2 0.2 3.3 土0 · 2 7.3 soil 0.2 3.1 soil 0.2 7 · 3 soil 0.2 The porous cross-linked alginate substrate sample is placed at 37 ° C, 0.02 MPBS solution for 24 hours, insoluble for 24 hours, insoluble for 24 hours, insoluble for 24 hours, insoluble for 24 hours, insoluble for 24 hours Insoluble Example (12): Hyaluronic acid polysaccharide material solution after cross-linking is used to prepare porous porous substrates by freeze-drying method. • Hyaluronic acid sodium salt polysaccharide material powder is taken, dissolved in steam-saturated water, After stirring under warm conditions, a solid content of 1%, 2%, and 3% was formed. Then use 1.0N HC1 solution to adjust the pH of the solution to 4.5. Quantitative EGDGE epoxy compound is added to the polysaccharide solution, so that the stoichiometric ratio of the milli-equivalent number of the epoxy compound to the milli-equivalent number of the polysaccharide hydroxyl group is maintained at 1 ·· 1. After stirring well, react at constant temperature of 35 ° C for 6 hours, and then pour the polysaccharide solution after cross-linking reaction into the mold. After freeze-drying, a porous cross-linked polysaccharide group with open pores can be obtained. material. Transparent after freeze-drying 41 593341 The porous sodium cross-linking substrate of high quality is placed in a cleaning solution (80 wt% acetone aqueous solution), and then washed in distilled water. After drying, the porous cross-linked hyaluronate sodium salt substrate was tested for solubility in a 0.02M P ^ S solution, and the results are shown in Table (12). According to the experimental results, it was found that the porous cross-linked hyaluronic acid sodium salt substrate will not dissolve after being immersed in a 0.02 M PBS solution for more than 24 hours, forming a '-insoluble porous hyaluronic acid substrate. Table (12) Sample 12A 12B 12C 12D 12E 12F HA solid content 1 1 2 2 3 3 Add EGDGE crosslinker 3 · 5 soil 6 · 5 ± 3.3 soil 7 · 3 soil 3.1 soil 7.5 soil PH of HA solution 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Porous cross-linked HA sample 24 hours 24 hours 24 hours 24 hours 24 hours 24 hours at 37 ° C, 0.02M from time to time from time to time from time to time (13): Chondroitin-4-siilfate material solution after cross-linking Preparation of porous porous substrate using freeze-drying method Take chondroitin sulfate material powder, dissolve in distilled water, and at room temperature After stirring under the conditions, a solid content solution of 5% and 10% is formed. #Use K0N HC1 to adjust the pH of chondroitin-4-sulfate solution (as shown in Table 13). Quantitative EGDGE epoxide was added to the chondroitin sulfate solution to keep the stoichiometric ratio of milli-equivalents of EGDGE epoxy compounds to milli-equivalents of polysaccharide hydroxyl groups to 4: 1. Stir evenly at 3 5 ° C. Reaction at constant temperature for 2 hours. Then pour the chondroitin-4-sulfate solution after the cross-linking reaction into 42 593341 mold. After freeze-drying, an open hole shape can be obtained. Porous cross-linked chondroitin-4-sulfate substrate. The freeze-dried chondroitin sulfate e porous cross-linked substrate was placed in a cleaning solution (composed of 80 wt% acetone aqueous solution), and then washed in distilled water. The dried cross-linked chondroitin-4-sulfate substrate was tested for solubility in a 0.02M PBS solution. The results are shown in Table (13). According to the experimental results, it was found that the porous cross-linked chondroitin-4-sulfate substrate does not dissolve after being immersed in a PBS solution of 0.02M for more than 24 hours, forming a water-insoluble porous chondroitin-4-sulfate substrate . Table (13) Sample 13A 13B 13C 13D 13E 13F C solid content of chondroitin-4-sulfate solution 5 5 5 10 10 10 pH of chondroitin-4-sulfate solution after adding EGDGE crosslinker 剂2.5 ± 0.2 4.6 soil 0.2 6.5 ± 0.2 2.4 soil 0.2 3.9 soil 0.2 6 · 3 soil 0.2 Porous cross-linked chondroitin-4-sulfate sample at 37 ° C, 0.02M PBS solution 24 hours insoluble 24 hours insoluble 24 Insoluble for 24 hours Insoluble for 24 hours Insoluble for 24 hours Insoluble for 24 hours Insoluble 43 Example (14): Preparation of water-insoluble, cross-linked alginate fibers 0.1 g of alginate sodium salt powder (containing 1.0 milliequivalent) Hydroxyl), dissolved in 10 ml of distilled water, and stirred at 50-60 ° C to form a 1% solid solution. Then use 1.0N 'HC1 solution and adjust the pH of the solution to about 4.0. Then add a quantitative amount of EGDGE epoxy compound to the polysaccharide solution, so that the stoichiometric ratio of the number of milli-equivalents of the epoxy compound to the number of milli-equivalents of the hydroxyl groups of the polysaccharide remains at 1: 2. After stirring well, the reaction was performed at a constant temperature of 3 5 t for 6 hours. Then, the alginate sodium salt solution after the cross-linking reaction was extruded into 95% alcohol with monofilament fibers (Monofilament fiber) with injection needles of different sizes. The alginic acid fibers were taken out and dried in a desiccator to store fibrous substrates with different diameters ranging from 1 μm to 50 μm. The alginate fiber after the epoxy compound is cross-linked will not dissolve after being immersed in 0.02M PBS solution for more than 48 hours to form a kind of insoluble alginate fiber. Example (15): Preparation of non-water-soluble, cross-linked pectin fibers. 0.352 (containing 4 milliequivalent hydroxyl groups) of M gum polysaccharide powder was dissolved in 17.6 ml of distilled water at room temperature. After stirring, a 2% pectin solution was formed. Then use 1 · N NaOH or 1.0N HC1 solution to adjust the pH of the solution to 3.5. Quantitative EGDGE epoxy compound was added to the polysaccharide solution, so that the molar ratio of epoxy compound to the equivalent of hydroxyl polysaccharide hydroxyl 593341 was kept at 2: 1. After stirring well, react at a constant temperature of 3 5 ° C for 6 hours. Then, the pectin solution after the cross-linking reaction was extruded into a single fiber in 95% alcohol with injection needles of different sizes. Then take out this fruit Qing fiber, store it in a desiccator, and save it to obtain pectin fiber-like substrates with different diameters ranging from 1 mm to 50 μm. Such pectin fibers after being cross-linked by epoxy compounds will not dissolve after being soaked in 0.02M PBS solution for more than 48 hours, forming a water-insoluble pectin fiber. Example 45 (sixteen): Preparation of water-insoluble, cross-linked HA fibers. Hyaluronic acid sodium salt polysaccharide material powder 0.1 g (containing factory 0 milli-equivalent hydroxyl group) was dissolved in 10 m 1 of Stir in water and stir at 30-3 5 ° C to form a 1% HA solution. Then use 1. ON solution of H C 1 and adjust the ρ 溶液 of the solution to about 4 · 5. Then add a certain amount of EGDGE epoxy compound to the ΗΑ solution, so that the stoichiometric ratio of the milli-equivalent number of EGDGE epoxy compound to the milli-equivalent number of polysaccharide hydroxyl group is maintained at 3: 1. After stirring well, react at a constant temperature of 35 ° C for 2 hours. The hyaluronic acid solution after the EGDGE cross-linking reaction was then pressed into 95% alcohol with single-sized injection needles to form single fibers. This ΗA fiber was taken out and dried in a desiccator, and then stored to obtain HA fiber-like substrates having different diameters of 1πΐΓη · 50 μm in different thicknesses. Such EG fibers after EGDGE cross-linking will not dissolve after being soaked in a PBS solution of 0. 02M for more than 48 hours, forming a kind of insoluble HF fibers. Example (seventeen) ································································································· C-60 ° C after stirring to form a solid content of 3%, a solution. Then: use 1 · ON solution of HC1, adjust the pH of the solution to about 3.0. A quantitative amount of the EGDGE epoxy compound was added to the polysaccharide solution so that the stoichiometric ratio of the milli-equivalent number of the epoxy compound to the milli-equivalent number of the polysaccharide hydroxyl group was maintained at 2: 1. Stir well and react at a constant temperature of 3 5 ° C for 6 hours. Then the alginate polysaccharide solution after the EGDGE cross-linking reaction is dropped into an alcohol or liquid nitrogen with a syringe needle of different sizes using a syringe pump, and freeze-dried To obtain sphere porous porous polysaccharide cross-linked substrates with different diameters of 593341 2 mm-2 〇 Ο μ m. The alginate spherical porous substrate after EGDGE cross-linking will not dissolve for more than 48 hours after being soaked in 0.02M PBS solution, forming a water-insoluble alginate spherical porous substrate. material. Example (eighteen): HA polysaccharide material solution after cross-linking was prepared by using a freeze-drying method to prepare spherical porous substrates. HA polysaccharide material powder was taken, dissolved in distilled water, and mixed at 30 ° C to form uniformly. 2.5% solids solution. Then use 1. ON HC1 solution, adjust the pH of the solution to about 5.0. Then add a certain amount of BDDE epoxy compound to the polysaccharide solution, so that the stoichiometric ratio of the number of milli-equivalents of the epoxy compound to the number of milli-equivalents of the hydroxy group of the polysaccharide is maintained at 3: 1. After homogeneous stirring, react at a constant temperature of 35 ° C for 3 hours. Then the HA polysaccharide solution after the BDDE cross-linking reaction is dropped into the alcohol or liquid nitrogen with a syringe needle of no size, and then freeze-dried, that is, Sphere porous HA crosslinked substrates with different diameters ranging from 2 mm to 200 μm can be obtained. This HA spherical porous substrate after BDDE cross-linking will not dissolve after being immersed in 0.02M PBS solution for more than 48 hours, forming a non-water soluble HA spherical porous substrate. Example (nineteen): Chondroitin-4-sulfate material solution after cross-linking was prepared using a freeze-drying method to prepare spherical porous substrates. Chondroitin-4-sulfate material powder was taken and dissolved in distilled water. After stirring at ° C, a 5% solids solution was formed. Then use 1.0N HC1 solution to adjust the pH of the solution to 4.0. Quantitative EG DGE epoxy compound was added to the chondroitin-4-sulfate solution, so that the ratio of the stoichiometric number of milli-equivalents of the EGDGE epoxy compound to the number of hydroxyl equivalents of the chondroitin-4-sulfate was kept at 47 593341. twenty one. After stirring well, react at a constant temperature of 35 ° C for 2 hours, and then pass the EGDGE solution to the chondroitin-4-sulfate solution. Use a syringe pump to drop alcohol or liquid nitrogen with different sizes of injection needles and freeze-dry them. To obtain sphea porous chondroitin-4-sulfate substrates with different diameters from 2mm to 200pm. The chondroitin-4-sulfate spherical porous substrate after EG DGE 'cross-linking will not dissolve in PBS solution for more than 48 hours, forming an insoluble chondroitin- 4-sulfate spherical porous substrate. Example (twenty): A solution of cross-linked consequence gum material was prepared by using a freeze-drying method to prepare a spherical porous cavity substrate. Pectin polysaccharide material powder 0.352 (containing 4 milli-equivalent hydroxyl groups) was dissolved in 17.6 ml of distilled water. Stir at room temperature to form a 2% pectin solution. Then use 1.0N HC1 solution to adjust the pH of the solution to about 5.5. Quantitative EGDGE epoxy compound was added to the polysaccharide solution so that the stoichiometric ratio of the milli-equivalent number of the epoxy compound to the milli-equivalent number of the polysaccharide hydroxyl group was maintained at 2: 1, and the mixture was uniformly stirred at a constant temperature of 3 5 ° C. The reaction took 4 hours. Then, the pectin solution after the cross-linking reaction is dropped into alcohol, acetone or liquid nitrogen with injection needles of different sizes by using a syring pump, and freeze-dried to obtain spherical porous holes with different diameters of 2mm-200gm. Pectin substrate. This pectin spherical porous substrate after EGDGE cross-linking will not dissolve after being soaked in 0.02M PBS solution for more than 48 hours, forming a water-insoluble pectin spherical porous substrate. 48 593341 In the embodiment of the present invention, by using various polysaccharide materials at different pH values, types of cross-linking agents, cross-linking temperature, and cross-linking reaction time and ancient drying methods, good quality water-insoluble polysaccharide-based groups can be obtained material. However, the present invention is not limited to the above embodiments, but should be based on the scope of patent applications. [Schematic description] 49

Claims (1)

593341 修正替換本 拾、申請專利範圍: 年6月1 a 1 · 一種製造非水溶性多醣類材料之方法,包括下列 步驟: (a) 提供含羥基多醣類之水溶液; (b) 調整該含羥基多醣類之水溶液於2_8之印値; (c) 添加多官能基環氧類化合物於該含羥基多醣類 之水溶液中,以進行交鏈反應; (d) 使交鏈後之多醣類溶液經成形程序,得到非水 馨 溶性多醣類材料。 2 ·如申請專利範圍第1項之方法, 其中該步驟(d) 係將交鏈後之多醣類溶液置入模具內,經烘乾後形 成非水溶性多醣類薄膜狀材料。 3·如申請專利範圍第1項之方法, 其中該步驟(d) 係將交鏈後之多醣類材料溶液置入模具內,再使用 冷凍乾燥方法,製成具多孔性(P〇rous)結構之非水 籲 溶性多醣類基材(water-insoluble polysaccharides matrix)。 4 .如申請專利範圍第1項之方法,其中該步驟(d)係 在交鏈後之多醣類材料溶液中添加有機溶劑,以 將交鏈後之多醣類材料沈澱出來,再經由過濾得到 粉末狀(Podwer),或片狀(Sileet)之非水溶性多醣類 材料。 50 593341 5 ·如申請專利範圍第1項之方法,其中該步驟(d)係 將交鏈後之多醣類材料溶液擠出進入含有機溶劑 之凝固液(Coagulant)中,於其中,形成纖維狀(Fiber) 之非水溶性多醣類材料。 (3·如申請專利範圍第5項之方法,其中該步驟(d)係 將交鏈後之多醣類材料溶液以間歇式擠出方式,形 成圓球狀粒子。 7. 如申請專利範圍第2至6項任一項之方法,其中 薄膜狀’或粉末狀,或片狀,或纖維狀,或圓球狀 粒子非水溶性多醣類材料,經使用含水之混合有機 溶劑清洗,再使用潔淨之水清洗,洪乾後之非水溶 性多醣類材料可應用於醫學或化妝品。 8. 如申請專利範圍第1項之方法,其中步驟(a)之該含 羥基多醣類係選自下述組群:透明質酸 (Hyaluronic acid), 羧甲基纖維素 (Carboxymethylcellulose), 澱粉(Starch), 褐 藻酸鹽(Alginate) ’ 軟骨素-4-硫酸鹽 (Chondroitin-4-Sulfate), 軟骨素-6-硫酸鹽 (Chondroitin-6-Sulfate) , 咕噸樹膠(Xanthane Gum),殼聚糖(Chitosan),果 ^(Pectin) ,瓊 脂(Aga〇 , 鹿角菜膠(Carrageenan)及瓜耳樹 51 593341 膠(Guar gum)。 9·如申請專利範圍第1項之方法,其中步驟(a)係以水 溶解該含羥基多醣類形成均勻之水溶液,且該含 羥基多醣類之重量固形份(s 〇 1 i d c ο n t e n t, w t %)爲 〇 · 2 w t、% - 1 0 wt% o 10.如申請專利範圍第1項之方法,其中步驟(b)係將 PH値調整於2.5-7·5範圍。 Π.如申請專利範圍第1項之方法,其中步驟(c)之環 氧類化合物係選自下述組群:1,4-丁二醇二縮水 甘油醚(1 ,4-butanediol diglycidyl ether ; BDDE), 乙二醇二縮水甘油醚(ethylene glycol diglycidyl ether ; EGDGE), l,6-己二醇二縮 水甘油醚(1,6-1^\&116(1丨〇1(!丨213^丨8)^161:1161*),多 乙二醇二縮水甘油醚 (Polyethylene glycol diglycidyl ether), 多丙二醇二縮水甘油醚 (Polypropylene glycol diglycidyl ether), 多四甲 撐二醇二縮水甘油醚(polytetramethylene glycol digylcidyl ether), 新戊二醇二縮水甘油醚 (Neopentyl glycol digylcidyl ether) > 多甘油多縮 .52 593341 水甘油醚(polyglycerol polyglycidyl ether),二甘 油多縮水甘油醚(diglycerol polyglycidyl ether): 甘油多縮水甘油醚(giycer〇i poiygiycidyl ether), 三經甲基丙院多縮水甘油醚(tri-methylolpropane polyglycidyl ether), 季戊四醇多縮水甘油醚 (Pentaerythritol Polyglycidyl Ether), 及山梨糖 醇多縮水甘油醚(sorbitoi polyglycidyl ether)。 12.如申3靑專利軺圍弟1項之方法,其中步驟(c)中 ’ 相對於多醋類中所含之經基1當量(equivalent), 環氧類化合物的添加量爲〇·1_8·〇當量。 1 3 ·如申請專利範圍第1 1項之方法,其中環氧類化合 物的較佳添加量爲〇 · 2 - 6 · 0當量。 1 4 ·如申請專利範圍第1項之方法,其中步驟(c )之交 鏈反應之溫度猶” X:,炎鏈反應之時間爲1〇 分鐘至1 2小時。 53 593341 1 6 ·如申請專利之第3項之方法,其中交鏈後之多醣 類溶液置入於適當形狀之模具內,再使用冷凍乾燥 方法,製成具多孔性結構,且孔洞型態(Pore morphology)爲交互連通(interconnective)結構之非 水溶性多醣類基材。 1 7 ·如申請專利之第4項之方法,其中交鏈後之多醣 類溶液傾入於含有機溶劑之凝固液中,於攪拌狀態 下,將交鏈後之多醣類沈澱出來,再經由過濾後得 到粉末狀(powder),或片狀(sheet)之非水溶性多醣 類材料。 1 8 ·如申請專利之第5項之方法,其中將交鏈後之多 醣類材料溶液利用押出裝置連續性擠出進入含有 機溶劑之凝固液(coagulant)中,形成纖維狀(fiber) 之非水溶性多醣類材料,乾燥後形成直徑介於 1 ηΐϊη-50μιη之纖維狀不溶性多醣類材料。 I 9 ·如申請專利之第6項之方法,其中將交鏈後之多 醣類材料溶液間歇式擠出於凝固液(coagulant) 中,形成直徑介於1πιηι-50μπι之圓球狀。 20·如申請專利之第18項之方法,其中含有機溶劑之 54 593341 凝固液(coagulant)組成份包括水及有機溶劑,其 中有機溶劑之重量分率(weight fraction)佔有6(1-10 0%。 2 1 .如申請專利之第20項之方法,其中有機溶劑係 選自下述組群:1,4-二惡烷(1,4-dioxane),氯仿 (chloroform),二氯甲院(methylene chloride), N, N -二甲基甲醯胺(N,N_dimethylformamide ; _ DMF), N, N-二甲基乙醯胺 (N,N-dimethylacetamide ; DMAc), 醋酸乙酯(ethyl acetate),丙酮(acetone),甲乙酮(methyl ethyl ketone, MEK),甲醇(methanol},乙醇(ethanol), 丙醇(propanol),異丙醇(isopropanol),及丁醇 (butanol) ° 22·如申請專利之第18項之方法,其中交鏈後之多醣 類溶液於凝固液凝固成型之溫度爲5-60°C。 23·如申請專利範圍第7項之方法,其中粉末狀,或 薄膜狀’或片狀,或纖維狀或圓球粒狀非水溶性多 醣類材料經使用含水之混合有機溶劑清洗,再使用 潔淨之水清洗,其中,含水之混合有機溶劑組 55 593341 成份包括水及有機溶劑,有機溶劑爲丙酮 (acetone),甲乙酉同(methyl ethyl ketone, ME K),< 甲醇(methanol),乙醇(ethanol),丙醇(propanol), 異丙醇(isopropanol),或丁醇(Butanol)或其混合 物,於清洗液中有機溶劑之重量分率(weight fraction)佔有50-100%,且酮類與醇類溶劑可以任 意比例使用,清洗液之溫度爲15t -50°C, 經清 洗液清洗後之非水溶性多醣類材料,再使用溫度爲 2 5°C -5 0T:潔淨之水清洗。 24.如申請專利範圍第23項之方法,其中經使用含 水之混合有機溶劑清洗,再使用潔淨之水清洗後之 粉末狀,或薄膜狀,或片狀,或纖維狀或圓球粒狀 非水溶性多醣類材料,進一步使用溫度60°C以下之 熱風式乾燥(hot air drying),或輻射式加熱乾燥 (radiation heating drying),或真空式乾燥(vacuum drying)方式予以烘乾。593341 Amended and replaced the scope of the patent application: June 1 a 1 · A method for manufacturing water-insoluble polysaccharide materials, including the following steps: (a) providing an aqueous solution containing hydroxy polysaccharides; (b) adjusting the Hydroxyl polysaccharide-containing aqueous solution is printed on 2-8 of Azadirachski; (c) Add a polyfunctional epoxy compound to the hydroxyl polysaccharide-containing aqueous solution to perform a cross-linking reaction; (d) Make as much as possible after cross-linking The carbohydrate solution is subjected to a shaping process to obtain a non-aqueous soluble polysaccharide material. 2. The method according to item 1 of the scope of patent application, wherein step (d) is to place the cross-linked polysaccharide solution into a mold and dry it to form a water-insoluble polysaccharide film-like material. 3. The method according to item 1 of the scope of patent application, wherein the step (d) is to place the polysaccharide material solution after cross-linking into a mold, and then freeze-dry to make it porous. Structure of water-insoluble polysaccharides matrix (water-insoluble polysaccharides matrix). 4. The method according to item 1 of the scope of patent application, wherein step (d) is adding an organic solvent to the polysaccharide material solution after cross-linking to precipitate the polysaccharide material after cross-linking, and then filtering A powdery (Podwer) or sheet (Sileet) water-insoluble polysaccharide material is obtained. 50 593341 5 · The method according to item 1 of the scope of patent application, wherein the step (d) is to extrude the solution of the polysaccharide material after cross-linking into a coagulating solution (Coagulant) containing organic solvents, and form fibers therein. Fiber-insoluble polysaccharide material. (3. The method according to item 5 of the scope of patent application, wherein step (d) is a method of intermittent extrusion of the polysaccharide material solution after cross-linking to form spherical particles. The method according to any one of items 2 to 6, wherein the film-like or powder-like, or flake-like, or fibrous, or spherical particles are insoluble polysaccharide materials, washed with a mixed organic solvent containing water, and then used The water-insoluble polysaccharide material after being washed with clean water and dried can be applied to medicine or cosmetics. 8. For the method in the first item of the patent application, wherein the hydroxyl-containing polysaccharide in step (a) is selected from the group consisting of The following groups: Hyaluronic acid, Carboxymethylcellulose, Starch, Alginate 'Chondroitin-4-Sulfate, Cartilage Chondroitin-6-Sulfate, Xanthane Gum, Chitosan, Pectin, Aga0, Carrageenan, and Guar Tree 51 593341 Guar gum (9. If applying for a patent The method of the first item, wherein step (a) is to dissolve the hydroxyl-containing polysaccharides in water to form a uniform aqueous solution, and the weight solids content of the hydroxyl-containing polysaccharides (s 〇1 idc ο ntent, wt%) is 〇 2 wt,%-10 wt% o 10. The method according to item 1 of the scope of patent application, wherein step (b) is to adjust the pH 于 in the range of 2.5-7 · 5. Item, wherein the epoxy compound in step (c) is selected from the group consisting of 1,4-butanediol diglycidyl ether (BDDE), ethylene glycol diglycidyl ether Glyceryl ether (ethylene glycol diglycidyl ether; EGDGE), 1,6-hexanediol diglycidyl ether (1,6-1 ^ \ & 116 (1 丨 〇1 (! 丨 213 ^ 丨 8) ^ 161: 1161 *), Polyethylene glycol diglycidyl ether, Polypropylene glycol diglycidyl ether, Polytetramethylene glycol digylcidyl ether, Neopentyl Glycol diglycidyl ether > Polyglycerol Polyglycerol. 52 593341 polyglycerol polyglycidyl ether, diglycerol polyglycidyl ether: glycerol poiygiycidyl ether, triglyceride polyglycidyl ether tri-methylolpropane polyglycidyl ether), pentaerythritol polyglycidyl ether, and sorbitoi polyglycidyl ether. 12. The method according to item 3 of the patent claim 3, wherein in step (c), the epoxy compound is added in an amount of 0.1 to 8 with respect to the equivalent of 1 equivalent in the polyacetic acid group. O equivalent. 1 3 · The method according to item 11 of the scope of patent application, wherein the preferred addition amount of the epoxy compound is 0. 2-6 · 0 equivalent. 1 4 · The method according to item 1 of the scope of patent application, wherein the temperature of the cross-linking reaction in step (c) is still "X :, the time of the inflammation chain reaction is 10 minutes to 12 hours. 53 593341 1 6 · If applying The method of item 3 of the patent, wherein the polysaccharide solution after the cross-linking is placed in a mold of an appropriate shape, and then a freeze-drying method is used to produce a porous structure, and the pore morphology is interconnected. (Interconnective) structure of water-insoluble polysaccharide base material. 1 7 · The method according to item 4 of the patent application, in which the polysaccharide solution after the cross-linking is poured into a coagulation solution containing organic solvent, and is stirred. Next, the cross-linked polysaccharides are precipitated out, and then filtered to obtain powder or sheet-shaped water-insoluble polysaccharide materials. 1 8 · As in the fifth item of the patent application A method in which a solution of a polysaccharide material after cross-linking is continuously extruded into a coagulant containing an organic solvent using an extruder to form a fiber-like non-water-soluble polysaccharide material, which is formed after drying. Diameter between 1 ηΐϊη -50μιη fibrous insoluble polysaccharide material. I 9 · The method according to item 6 of the patent application, wherein the cross-linked polysaccharide material solution is intermittently extruded into a coagulant to form a diameter medium The spherical shape is from 1 to 50 μm. 20. The method according to item 18 of the patent application, which contains 54 593341 organic solvent. The coagulant composition includes water and organic solvents, where the weight fraction of organic solvents (weight fraction) occupies 6 (1-10 0%. 2 1. The method according to item 20 of the patent application, wherein the organic solvent is selected from the following group: 1,4-dioxane, Chloroform, methylene chloride, N, N-dimethylformamide (N, N_dimethylformamide; DMF), N, N-dimethylacetamide (N, N-dimethylacetamide; DMAc), ethyl acetate, acetone, methyl ethyl ketone (MEK), methanol, ethanol, propanol, isopropanol, and butane Alcohol (butanol) ° 22 · as the 18th in the patent application The method, wherein the solution of cross-linking polysaccharides to a coagulation liquid formed of the solidification temperature of 5-60 ° C. 23. The method according to item 7 of the scope of patent application, wherein the powdery, or film-like, or sheet-like, or fibrous or spherical granular water-insoluble polysaccharide material is washed with a mixed organic solvent containing water, and then used Clean water, including water-containing mixed organic solvent group 55 593341 Ingredients include water and organic solvents, the organic solvent is acetone, methyl ethyl ketone (ME K), < methanol, ethanol (Ethanol), propanol, isopropanol, or butanol or a mixture thereof, the weight fraction of the organic solvent in the cleaning solution accounts for 50-100%, and the ketones It can be used in any proportion with alcohol solvents. The temperature of the cleaning solution is 15t -50 ° C. The non-water-soluble polysaccharide materials after the cleaning solution is washed, and then the temperature is 2 5 ° C -5 0T: clean water. . 24. The method according to item 23 of the patent application, wherein the powdery, or film, or sheet, or fibrous or spherical granular non-aqueous powder is washed with a mixed organic solvent containing water and then cleaned with clean water. The water-soluble polysaccharide materials are further dried by hot air drying at a temperature below 60 ° C, radiation heating drying, or vacuum drying.
TW89127293A 2000-12-19 2000-12-19 Method for producing water-insoluble polysaccharides TW593341B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89127293A TW593341B (en) 2000-12-19 2000-12-19 Method for producing water-insoluble polysaccharides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89127293A TW593341B (en) 2000-12-19 2000-12-19 Method for producing water-insoluble polysaccharides

Publications (1)

Publication Number Publication Date
TW593341B true TW593341B (en) 2004-06-21

Family

ID=34075342

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89127293A TW593341B (en) 2000-12-19 2000-12-19 Method for producing water-insoluble polysaccharides

Country Status (1)

Country Link
TW (1) TW593341B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946305B2 (en) 2011-12-22 2015-02-03 Industrial Technology Research Institute Method for crosslinking a colloid, and crosslinked colloid therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946305B2 (en) 2011-12-22 2015-02-03 Industrial Technology Research Institute Method for crosslinking a colloid, and crosslinked colloid therefrom

Similar Documents

Publication Publication Date Title
US6852255B2 (en) Method for producing water-insoluble polysaccharides
Rezaei et al. Chitosan films and scaffolds for regenerative medicine applications: A review
Rinaudo Main properties and current applications of some polysaccharides as biomaterials
Shou et al. Thermoresponsive chitosan/DOPA-based hydrogel as an injectable therapy approach for tissue-adhesion and hemostasis
Ciolacu et al. Cellulose-based hydrogels for medical/pharmaceutical applications
TWI251596B (en) Method for producing a double-crosslinked hyaluronate material
Wan et al. Biodegradable polylactide/chitosan blend membranes
Sahiner et al. Mesoporous, degradable hyaluronic acid microparticles for sustainable drug delivery application
Duceac et al. Biopolymers and their derivatives: Key components of advanced biomedical technologies
US20190046429A1 (en) Dermal filler composed of macroporous chitosan microbeads and cross-linked hyaluronic acid
US20050281880A1 (en) Methods for making injectable polymer hydrogels
WO2009108760A2 (en) Dendritic macroporous hydrogels prepared by crystal templating
PT1163274E (en) Process for cross-linking hyaluronic acid to polymers
WO1999031167A1 (en) Process for the preparation of aqueous dispersions of particles of water-soluble polymers and the particles obtained
de Oliveira et al. Thermo-and pH-responsive chitosan/gellan gum hydrogels incorporated with the β-cyclodextrin/curcumin inclusion complex for efficient curcumin delivery
KR20080073419A (en) Microbead of hyaluronic acid derivatives for medical purpose and process for preparing the same
ZA200605168B (en) Compositions of semi-interpenetrating polymer network
EP0977780B1 (en) Hetero-polysaccharide conjugates, s-inp polysaccharide gels and methods of making and using the same
Gonçalves et al. Chitosan-based hydrogels
Kavitha et al. Chitosan polymer used as carrier in various pharmaceutical formulations: brief review
Wang et al. Pharmaceutical applications of chitosan in skin regeneration: A review
Pantić et al. Evaluation of ethanol-induced chitosan aerogels with human osteoblast cells
TW593341B (en) Method for producing water-insoluble polysaccharides
EP2844310A1 (en) Shape-memory cross-linked polysaccharides
Poshina et al. Electrospinning of polysaccharides for tissue engineering applications

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent