TW593273B - Process for acyl substitution of anhydride by vanadyl salt catalyst - Google Patents

Process for acyl substitution of anhydride by vanadyl salt catalyst Download PDF

Info

Publication number
TW593273B
TW593273B TW91105433A TW91105433A TW593273B TW 593273 B TW593273 B TW 593273B TW 91105433 A TW91105433 A TW 91105433A TW 91105433 A TW91105433 A TW 91105433A TW 593273 B TW593273 B TW 593273B
Authority
TW
Taiwan
Prior art keywords
item
anhydride
scope
patent application
group
Prior art date
Application number
TW91105433A
Other languages
Chinese (zh)
Inventor
Jian-Tian Chen
Original Assignee
Nat Taiwan Teacher University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Taiwan Teacher University filed Critical Nat Taiwan Teacher University
Priority to TW91105433A priority Critical patent/TW593273B/en
Application granted granted Critical
Publication of TW593273B publication Critical patent/TW593273B/en

Links

Abstract

A process for acyl substitution of an anhydride with an active-hydrogen-containing compound includes reacting the anhydride with the active-hydrogen-containing compound in the presence of a vanadyl salt catalyst to obtain a high yield of acyl substitution reaction product with high chemoselectivity.

Description

593273593273

發明領域 本發明係有關一種利用一含活性氫化合物來進行酐之 醯基取代的方法,特別是指一種在一氧釩鹽催化劑存在 下’利用一含活性氫化合物來進行一酐之醯基取代的方 法’藉以得到一高產量之具高度化學選擇性的醯基取代反 應產物。 發明背景FIELD OF THE INVENTION The present invention relates to a method for performing hydrazone substitution of an anhydride using an active hydrogen-containing compound, and more particularly, to a method for hydrazone substitution of an anhydride using an active hydrogen-containing compound in the presence of a monooxanadium salt catalyst. Method to obtain a high yield of highly chemoselective fluorenyl substitution reaction products. Background of the invention

醇類、胺類與硫醇類之醯化作用在有機合成中係重要 且普遍地被使用的變換。在這些作用中,在驗性介質中或 在路易士鹼或酸性催化劑中,醯基函或酐常被作為醯基之 來源。過去,三曱矽(TMS)與金屬三氟甲基磺酸鹽,如三 氟曱基磺酸銦、三氟甲基磺酸銃、三氟甲基磺酸銅與三氟 曱基磺酸鉍,已被發現於催化具有酐之醇類的該醯化作用 中是有效用的。然而,在已被研究且具有更多廣泛種類之 酐與具6^-敏感性基團之基質,如丙g同化合物及烯丙基中, 只有其中一些可能不是完全地親和。此外,大多數的這些 催化劑已遭遇一些困難。例如,被三氟甲基磺酸銃所催化 的烯丙基醇(肉桂基醇)之醯化作用會產生重新排列之副產 物。被二曱石夕二氟甲基石黃酸鹽所催化之醯化作用應在0 或更低可抑制基質上官能基之水解作用的溫度下被進行。 另外,在催化途徑中該前述催化劑之實際角色未被完全暸 解。 特別地,該三氟甲基磺酸金屬鹽之製備時常需要金屬 氧化物與過量熱續酸之直接混合。自該三氟甲基磺酸金屬 4 593273 五、發明說明(5) 實施例 實施例1:三氟甲基磺酸氧釩鹽[V(0)(0Tf)2-x(H20)】之製 備 令硫酸氧釩鹽(V(0)S04 · 3H20)(342mg,2.1 mmole)加 入一雙頸燒瓶(50mL,真空乾燥)中,而後以甲醇(2mL)溶 解。令在甲醇(2M,2mL)中之三氟甲基磺酸鋇溶液於室溫 下加入,且被均質混合30分鐘。生成硫酸鋇沈澱物。該沈 澱物係藉由矽藻土過濾,且收集該濾液。殘留於該濾液中 之該溶劑於真空下(120°C,4小時)被移除,得到深藍色之 固體(622mg,產量·· 85%)。該得到之三氟甲基磺酸氧釩鹽 可直接被用於該醯化作用。 實施例2 :乙酸氧釩鹽[V(0)(0Ac)2-x(H20)】之製備 在一乾燥5毫升、雙頸、圓底反應燒瓶中,令硫酸氧 飢鹽三水化合物(114.0mg,0.53mmole)放置,接續加入甲 醇(lmL)。令在曱醇(lmL)中之一 Ba(OAc)2(130.3mg, 0.51mmol)溶液於室溫下加至該反應燒瓶中。經過30分鐘 的攪拌後,觀察到硫酸鋇之沈澱物,該沈澱物係通過矽藻 土之一短充填物所被過濾出來的。該過濾液在120°C下、 真空中被濃縮與乾燥4小時,且產生有如青色固體之 109.5mg(90%產量)乙酸飢鹽。 實施例3 :氯化氧釩鹽[V(0)(C1)2_x(H20)】之製備 在一乾燥5毫升、雙頸、圓底反應燒瓶中,令硫酸氧 593273 五、發明說明(6) 飢鹽三水化合物(114.Omg,0.53mmole)放置,接續加入含 水甲醇(Me0H/H20,1/0.3 mL)。令在曱醇(lmL)中之一 BaCl2-2H20(122.1mg,0.50mmol)溶液於室溫下加至該反應 燒瓶中。經過30分鐘的攪拌後,觀察到硫酸鋇之沈澱物, 該沈澱物係通過矽藻土之一短充填物所被過濾出來的。該 過濾液在120°C下、真空中被濃縮與乾燥4小時,且產生 有如淡紫色固體之86.4mg(90%產量)氯化氧釩鹽。實施例4 :疊氮氧釩鹽[V(0)(N3)2-x(H20)】之製備 在一乾燥5毫升、雙頸、圓底反應燒瓶中,令硫酸氧 叙鹽三水化合物(114.0mg,0.53mmole)放置,接續加入甲 醇(lmL)。令在甲醇(lmL)中之一 Ba(N3)2(112.5mg, 0.51mmol)溶液於室溫下加至該反應燒瓶中。經過30分鐘 的攪拌後,觀察到硫酸鋇之沈澱物,該沈澱物係通過矽藻 土之一短充填物所被過濾出來的。該過濾液在120°C下、 真空中被濃縮與乾燥2小時,且產生有如褐色固體之 91.5mg(88%產量)疊氮氧釩鹽。實施例5 :六氟銻酸氧釩鹽[V(0)(SbF6)2-x(H20)】之製備 在一乾燥5毫升、雙頸、圓底反應燒瓶中,令硫酸氧 #1鹽三水化合物(88.0mg,0.50mmole)放置,接續加入 THF(2mL)。令在 THF(lmL)中之一 AgSbF6(343.5mg,1 ·0 mmol)溶液於室溫下加至該反應燒瓶中。經過30分鐘的攪 拌後,觀察到硫酸鋇之沈澱物,該沈澱物係通過矽藻土之 9 593273 五、發明說明(7) 一短充填物所被過濾出來的。該過濾液在12〇艺下、真空 中被濃縮與乾燥4小時,且產生有如紅褐色固體之 254.6mg(86%產量)六氟銻酸氧釩鹽。實施例6 :過氣酸氧釩鹽[v(〇)(c丨〇4)2_x(H2〇)】之製備 在一乾燥5亳升、雙頸、圓底反應燒瓶中,令硫酸氧 釩鹽二水化合物(114.〇mg,0 53mm〇le)放置,接續加甲醇 (1 mL)。令在甲醇(lmL)中之一 Ba(cl〇4)2(171 5mg, 0.51 mmol)溶液於室溫下加至該反應燒瓶中。經過so分鐘 的攪拌後,觀察到硫酸鋇之沈澱物,該沈澱物係通過矽藻 土之一短充填物所被過濾出來的。該過濾液在i2(rc下、 真空中被濃縮與乾燥2小時,且產生有如褐色固體之 130.6mg(80%產量)過氣酸氧釩鹽。實施例7:四氰鉑氧釩鹽[v(〇)pt(CN)4-x(H20)】之製備 在一乾燥5亳升、雙頸、圓底反應燒瓶中,令硫酸氧 飢鹽二水化合物(114.0mg,0.53mmole)放置,接續加曱醇 (1 mL)。令在甲醇(lmL)中之一 BaPt(CN)4_xH20(222.5mg, 〇.51mmol)溶液於室溫下加至該反應燒瓶中。經過3〇分鐘 的攪拌後,觀察到硫酸鋇之沈澱物,該沈澱物係通過石夕藻 土之一短充填物所被過濾出來的。該過濾液在120。〇下、 真空中被濃縮與乾燥4小時,且產生有如褐色固體之 190.8mg(89%產量)四氰鉑氧釩鹽。 10 五、發明說明(8) 實施例8 :鈦酸氧釩鹽[V(0)Ti〇3_x(H20)】之製備 在一乾燥5毫升、雙頸、圓底反應燒瓶中,令硫酸氧 飢鹽三水化合物(114.Omg,0.53mmole)放置,接續加甲醇 (1 mL)。令在曱醇(imL)中之一 BaTi03(118.9mg,0.51mmol) 於室溫下加至該反應燒瓶。經過30分鐘的攪拌後,觀察到 硫酸鋇之沈澱物,該沈澱物係通過矽藻土之一短充填物所 被過濾出來的。該過濾液在120°C下、真空中被濃縮與乾 燥4小時,且產生有如青色固體之1〇L9mg(92%產量)鈦酸 氧叙鹽。 實施例9 :氧釩鹽催化劑之醯化作用反應 在本實施例中,四種不同的氧釩鹽催化劑係藉由2-苯 乙醇之醯化作用被試驗。 紀錄1:乙醯丙酮酸氧釩鹽之醯化作用反應 在一乾燥50亳升、雙頸、圓底反應燒瓶中,令在3mL 無水CH2C12中之乙醯丙酮氧釩鹽(B.Tmg,0.05mmole)放 置’乙酸酐(153.1mg,141.5 // L,1.5mmol)於室溫下被緩 慢地加入至該上述溶液。大約10分鐘後,在CH2Cl2(2mL) 中之2-苯乙醇溶液(i22mg,119.3/zL,l.Ommol)被緩慢地 加入該上述深綠色溶液中,且該反應混合液被攪拌5小 時。以TLC追蹤待該反應完成後,令該反應混合液以冷、 飽和液態NaHC〇3溶液(5mL)急速冷卻。令該產生的分離的 有機層以浸泡鹽水、乾燥(MgS〇4)、過濾與蒸發進行清洗。 593273 五、發明說明(11 )表1:在多種氧釩鹽催化劑之存在下,利用多種酐進 行2_苯乙醇之催化性醯化作用 0 〇 1 II II 1 mol% V(0)L , Ph^ 、〇C(〇)R_ 阡人〇人阡 ch2ci2 紀錄 V(〇)L 酐(R,) 時間 (h) 產量,α % 1 V(0)(acac)/ ,c ch3 5 85 2 V(0)C12 ch3 7.5 94 3 V(0)S0/ CH3e 24 92 4 V(0)(0Tf)2 ch3 0.5 98 5 V(0)(0Tf)/ ch3 0.75 98 6 V(0)(0Tf)2 cf3 3 98 7 V(0)(0Tf)2 i-?T 1 98 8 V(0)(0Tf)2 tert-Bu 11 99 9 V(0)(0Tf)2 tert-BnO 28 95 10 V(0)(0Tf)2 Ph 26 92 11 V(0)(0Tf)2 琥珀酐 42 93 12 V(0)(0Tf)2 苯甲酸酐 96 75A, β分離的產量 &乙醯丙酮酸 "使用五個莫耳數百分比之催化劑 a使用該三水化合物 e使用CH3CN作為溶劑 7催化劑係自水層被回收,且被重複使用五個連續流程 g二苯基酯之分離率為16% 14 五、發明說明(12) "具有5 mol%之乙醯丙酮酸氧釩鹽(v〇(acac)2)與硫酸 氧釩鹽之試驗結果是有效的,分別在5小時與24小時内, 於1·5當# Ac2〇之存在下於室溫下完成該醯化作用。 由硫酸氧鈒鹽與適當的鋇鹽所製備出之氣化氧飢鹽與 三氟甲基磺酸氧釩鹽被發現更為活化。使用之 ν(〇)α2與具有在 CH2Cl2 中 15 當量之 Ac2〇 的 v(〇)(〇Tf)2 之醯化作用分別於7·5冑〇.5小時内被完成,產生產量至 少94%之苯乙基乙酸。 需注意的是,該相對應之VCh與v(〇Tf)2係為催化上 不活化,支援在該氧釩鹽催化劑中之該V=〇單元的角色。 料,既然該殘留的乙酸酐與三氟甲基石黃酸氧鈒鹽可迅速 地藉由直接的液態清洗被移除,則無須利用該醯化流程來 進行色譜純化。更重要地,V(0)(0Tf)2係為完全可溶於水, 其可自該水層之濃縮而被回收’且具有相似的催化活性被 重複使用至少五個連續流程。 如表1所示,除了乙酸酐,該催化系統係可被用於非 壞狀、環狀、脂族與芳香族酐。一般而言,該野愈受到阻 礙,該隨化速率愈低(也就是說CH3>I-Pr>t-BU;參照在表 1中之、’·己錄4、7與8)。具有芳香族酐之醯化作用(如在表1 之紀錄10中的R-Ph)比具有脂族酐之醯化作用(在表1之 紀錄4與6至8中)慢高達50倍。具有雙-三級-丁基碳酸 氮鹽之醯化作用亦進行良好,且具有與該苯甲醯化(在表i 之紀錄9中)相似之速率。環酐,如琥珀酸酐與鄰苯二曱酸 酐,係最不活化的(在表i之紀錄u與12中)。 593273 五、發明說明(13 實施例10 : 利用現有最佳催化劑三氟甲基石黃酸氧銳鹽,乙酸野與 新戊酸酐兩者的親和性醯基取代作用被試驗於本實施例 中’:乙酸酐與新戊酸酐具有變異空間的與電子轉移的需 =之貝子親核試劑。本實施例之該基質、反應時間與產量 破歸納於下列表2中。 16 593273 五、發明說明(15) — 在幾乎所有的案例中,除了肉桂醇(85%)與甲醇 戊酸化,該醯化作用之化學產量至少為95%。一般而言: 醯化作用進行得較該相對應之新戊酸化快許多。具有一 級、二級與酸敏感性烯丙基、苯基醇之醯化作用進行得很 平穩。在鄰二級醇與10,u_二羥_二苯甲醯環庚烷之案例中 (在表1之紀錄2和5中),烯丙基或鄰二級醇重排作用副 產物未被觀察到。三級醇,如三級丁基醇與三苯甲基,係 不活化的。雖然如此,該相對應之三級丁硫醇係相當地活 (在表1中之紀錄1〇)。在本質地定量產量中,芳香醇、 胺與硫醇(如2-氫氧、2-胺與孓硫-萘)可被用於醯化作用(在 表2中之紀錄6-8)。 實施例11 :The halogenation of alcohols, amines, and thiols is an important and commonly used transformation in organic synthesis. In these roles, fluorenyl groups or anhydrides are often used as the source of fluorenyl groups in the test medium or in Lewis bases or acid catalysts. In the past, trisium silicon (TMS) and metal trifluoromethanesulfonates, such as indium trifluoromethanesulfonate, rhenium trifluoromethanesulfonate, copper trifluoromethanesulfonate, and bismuth trifluoromethanesulfonate It has been found to be effective in catalyzing this dehydration of alcohols having anhydrides. However, among the substrates that have been studied and have a wider range of anhydrides and 6 ^ -sensitive groups, such as propyl isopropyl compounds and allyl groups, only some of them may not be completely compatible. In addition, most of these catalysts have encountered some difficulties. For example, the tritiation of an allyl alcohol (cinnamyl alcohol) catalyzed by europium trifluoromethanesulfonate can result in rearranged by-products. The tritiated reaction catalyzed by difloxacin difluoromethylxanthate should be carried out at a temperature of 0 or lower which inhibits the hydrolysis of functional groups on the substrate. In addition, the actual role of the aforementioned catalyst in the catalytic pathway is not fully understood. In particular, the preparation of the metal trifluoromethanesulfonic acid salt often requires the direct mixing of a metal oxide with an excess of thermally continuous acid. From the metal trifluoromethanesulfonate 4 593273 V. Description of the invention (5) Examples Example 1: Preparation of vanadyl trifluoromethanesulfonate [V (0) (0Tf) 2-x (H20)] Vanadium sulfate (V (0) S04 · 3H20) (342 mg, 2.1 mmole) was added to a two-necked flask (50 mL, dried under vacuum), and then dissolved in methanol (2 mL). A solution of barium trifluoromethanesulfonate in methanol (2M, 2mL) was added at room temperature and homogeneously mixed for 30 minutes. A barium sulfate precipitate was formed. The precipitate was filtered through diatomaceous earth, and the filtrate was collected. The solvent remaining in the filtrate was removed under vacuum (120 ° C, 4 hours) to obtain a dark blue solid (622 mg, yield 85%). The obtained vanadyl trifluoromethanesulfonate can be directly used for the halogenation. Example 2: Preparation of vanadyl acetate [V (0) (0Ac) 2-x (H20)] In a dry 5 ml, double-necked, round-bottomed reaction flask, the sulfate trihydrate (114.0 mg, 0.53 mmole), followed by the addition of methanol (1 mL). A solution of Ba (OAc) 2 (130.3 mg, 0.51 mmol) in methanol (1 mL) was added to the reaction flask at room temperature. After 30 minutes of stirring, a precipitate of barium sulfate was observed, which was filtered out through a short filling of diatomaceous earth. The filtrate was concentrated and dried under vacuum at 120 ° C for 4 hours, and produced 109.5 mg (90% yield) of acetic acid famine salt like a cyan solid. Example 3: Preparation of vanadyl chloride salt [V (0) (C1) 2_x (H20)] In a dry 5 ml, double-necked, round-bottomed reaction flask, the oxygen sulfate was 5327273. 5. Description of the invention Hungry salt trihydrate (114.0 mg, 0.53 mmole) was placed, followed by the addition of aqueous methanol (Me0H / H20, 1 / 0.3 mL). A solution of BaCl2-2H20 (122.1 mg, 0.50 mmol) in methanol (1 mL) was added to the reaction flask at room temperature. After 30 minutes of stirring, a precipitate of barium sulfate was observed. The precipitate was filtered through a short filling of diatomaceous earth. The filtrate was concentrated and dried under vacuum at 120 ° C for 4 hours, and produced 86.4 mg (90% yield) of vanadyl chloride salt as a lavender solid. Example 4: Preparation of vanadyl azide [V (0) (N3) 2-x (H20)] In a dry 5 ml, double-necked, round-bottomed reaction flask, the sulfate trihydrate ( 114.0 mg, 0.53 mmole) was left, followed by the addition of methanol (1 mL). A solution of Ba (N3) 2 (112.5 mg, 0.51 mmol) in methanol (1 mL) was added to the reaction flask at room temperature. After 30 minutes of stirring, a precipitate of barium sulfate was observed, which was filtered out through a short filling of diatomaceous earth. The filtrate was concentrated and dried under vacuum at 120 ° C for 2 hours, and produced 91.5 mg (88% yield) of vanadyl azide as a brown solid. Example 5: Preparation of vanadyl hexafluoroantimonate [V (0) (SbF6) 2-x (H20)] In a dry 5 ml, double-necked, round-bottomed reaction flask, let the sulfuric acid # 1 salt three The water compound (88.0 mg, 0.50 mmole) was left, followed by the addition of THF (2 mL). A solution of AgSbF6 (343.5 mg, 1.0 mmol) in THF (1 mL) was added to the reaction flask at room temperature. After 30 minutes of stirring, a precipitate of barium sulfate was observed. The precipitate was filtered through diatomaceous earth 9 593273 V. Description of the invention (7) A short filling. The filtrate was concentrated and dried under vacuum at 120 ° C for 4 hours, and 254.6 mg (86% yield) of vanadyl hexafluoroantimonate was produced as a red-brown solid. Example 6: Preparation of vanadium peroxyacid salt [v (〇) (c 丨 〇4) 2-x (H2〇)] Preparation of a vanadium sulfate sulfate in a dry 5 l, double neck, round bottom reaction flask The dihydrate (114.00 mg, 0.553 mm) was placed, followed by the addition of methanol (1 mL). A solution of Ba (clO4) 2 (171 5 mg, 0.51 mmol) in one of methanol (1 mL) was added to the reaction flask at room temperature. After stirring for so minutes, a precipitate of barium sulfate was observed, and the precipitate was filtered through a short filling of diatomaceous earth. The filtrate was concentrated and dried in a vacuum under i2 (rc for 2 hours, and produced 130.6 mg (80% yield) of peroxovanadate salt as a brown solid. Example 7: Tetracyanoplatinum vanadate salt [v (〇) pt (CN) 4-x (H20)] Preparation In a dry 5 liter, double-necked, round-bottomed reaction flask, the oxygen sulphate dihydrate (114.0 mg, 0.53 mmole) was placed and continued. Add methanol (1 mL). Let a solution of BaPt (CN) 4-xH20 (222.5 mg, 0.51 mmol) in methanol (1 mL) be added to the reaction flask at room temperature. After 30 minutes of stirring, A precipitate of barium sulfate was observed. The precipitate was filtered through a short filling of diatomaceous earth. The filtrate was concentrated and dried under vacuum at 120 ° C for 4 hours, and produced a brown color. 190.8 mg (89% yield) of solid tetracyanoplatinum vanadium salt. 10 V. Description of the invention (8) Example 8: Preparation of vanadyl titanate salt [V (0) Ti〇3_x (H20)] In a 5 ml, double-necked, round-bottomed reaction flask, the sulfate trihydrate (114.0 mg, 0.53 mmole) was placed, followed by the addition of methanol (1 mL). One of the methanol (imL) was Ba Ti03 (118.9mg, 0.51mmol) was added to the reaction flask at room temperature. After 30 minutes of stirring, a precipitate of barium sulfate was observed, and the precipitate was filtered through a short filling of diatomaceous earth. The filtrate was concentrated and dried under vacuum at 120 ° C for 4 hours, and produced 10 L of 9 mg (92% yield) oxygen titanate salt as a cyan solid. Example 9: Oxyvanium salt catalyst Chemical reaction In this example, four different vanadyl oxide catalysts were tested by the tritiation of 2-phenylethanol. Record 1: The tritiation of the vanadyl salt of acetopyruvate in a dry 50 In a 1-liter, double-necked, round-bottomed reaction flask, place acetic acid vanadyl acetate (B.Tmg, 0.05mmole) in 3mL of anhydrous CH2C12 and place 'acetic anhydride (153.1mg, 141.5 // L, 1.5mmol) in It was slowly added to the above solution at room temperature. After about 10 minutes, a 2-phenylethanol solution (i22mg, 119.3 / zL, 1.0 mmol) in CH2Cl2 (2mL) was slowly added to the above dark green solution. And the reaction mixture was stirred for 5 hours. Followed by TLC. After the reaction was completed, the reaction was allowed to react. The combined solution was rapidly cooled with a cold, saturated liquid NaHC03 solution (5mL). The resulting separated organic layer was washed with brine, dried (MgS04), filtered, and evaporated. 593273 V. Description of the invention (11) Table 1: Catalytic dehydration of 2-phenylethanol with various anhydrides in the presence of various vanadyl oxide catalysts 0 〇1 II II 1 mol% V (0) L, Ph ^, 〇C (〇) R_ Qian Ren 〇 Ren Qian ch2ci2 Record V (〇) L Anhydride (R,) Time (h) Yield, α% 1 V (0) (acac) /, c ch3 5 85 2 V (0) C12 ch3 7.5 94 3 V (0) S0 / CH3e 24 92 4 V (0) (0Tf) 2 ch3 0.5 98 5 V (0) (0Tf) / ch3 0.75 98 6 V (0) (0Tf) 2 cf3 3 98 7 V (0) ( 0Tf) 2 i-? T 1 98 8 V (0) (0Tf) 2 tert-Bu 11 99 9 V (0) (0Tf) 2 tert-BnO 28 95 10 V (0) (0Tf) 2 Ph 26 92 11 V (0) (0Tf) 2 Succinic anhydride 42 93 12 V (0) (0Tf) 2 Benzoic anhydride 96 75A, β-isolated yield & acetic acid pyruvate " Use five mole percentages of catalyst a Use The trihydrate e was recovered from the aqueous layer using CH3CN as a solvent 7 catalyst system, and was repeatedly used in five consecutive processes. The separation rate of the diphenyl ester was 16%. 14 5. Description of the invention (12) " The test results with 5 mol% of vanadyl acetonylpyruvate (v〇 (acac) 2) and vanadyl sulfate are valid, respectively within 5 hours and 24 hours, The tritiation was completed in the presence of 1.5 Ac # 0 at room temperature. Vaporized oxonium salts and vanadium trifluoromethanesulfonate salts, which were prepared from oxosulfate and appropriate barium salts, were found to be more active. The dehydration of ν (〇) α2 used and v (〇) (〇Tf) 2 with 15 equivalents of Ac2 in CH2Cl2 was completed in 7.5.5 hours, yielding at least 94% The phenethylacetic acid. It should be noted that the corresponding VCh and v (〇Tf) 2 are catalytically inactive, supporting the role of the V = 0 unit in the oxovanadium catalyst. It is expected that since the residual acetic anhydride and trifluoromethyl lutein oxonium salt can be quickly removed by direct liquid washing, there is no need to use this dehydration process for chromatographic purification. More importantly, V (0) (0Tf) 2 is completely water-soluble, which can be recovered from the concentration of this aqueous layer 'and has similar catalytic activity and is reused for at least five consecutive processes. As shown in Table 1, in addition to acetic anhydride, the catalytic system can be used for non-bad, cyclic, aliphatic and aromatic anhydrides. Generally speaking, the more this field is obstructed, the lower the randomization rate (that is, CH3 > I-Pr >t-BU; refer to Table 1, "· Jilu 4, 7 and 8). The halogenation of aromatic anhydrides (such as R-Ph in record 10 of Table 1) is up to 50 times slower than the halogenation of aliphatic anhydrides (in records 4 and 6 to 8 of Table 1). The halogenation with bis-tertiary-butyl nitrogen carbonate is also well performed and has a rate similar to that of the benzylation (in record 9 of Table i). Cyclic anhydrides, such as succinic anhydride and phthalic anhydride, are the least active (in records u and 12 in Table i). 593273 V. Description of the invention (13 Example 10: Using the best existing catalyst trifluoromethyl lutein oxyacute salt, the affinity of acetic acid and pivalic anhydride for the substitution of fluorenyl groups was tested in this example ' : Acetic anhydride and pivalic anhydride have a space for variation and the need for electron transfer = shellfish nucleophiles. The matrix, reaction time and yield of this example are summarized in Table 2 below. 16 593273 V. Description of the invention (15 ) — In almost all cases, with the exception of cinnamyl alcohol (85%) and methanol valerate, the chemical yield of the tritiation is at least 95%. In general: the tritiation proceeds more than the corresponding pivalate Much faster. The dehydration of primary, secondary and acid-sensitive allyl and phenyl alcohols progresses very smoothly. In the case of o-secondary alcohols and 10, u_dihydroxy_benzophenone cycloheptane Medium (in records 2 and 5 of Table 1), no by-products of rearrangement of allyl or ortho secondary alcohols were observed. Tertiary alcohols, such as tertiary butyl alcohol and trityl, are inactive. Even so, the corresponding tertiary butyl mercaptan is quite alive (in Table 1 Record 10). In the quantitative production in nature, aromatic alcohols, amines and thiols (such as 2-hydroxide, 2-amine and thiothio-naphthalene) can be used for tritiation (record 6 in Table 2) -8). Example 11:

多種功能性基質之醯化作用和/或新戊酸化作用係於 本實施例中被試驗。本試驗之該基質、反應時間與產量被 歸納於下列表3中。 18 593273The tritium and / or pivalate effects of various functional matrices were tested in this example. The matrix, reaction time, and yield for this test are summarized in Table 3 below. 18 593273

19 593273 五、發明說明(17) --1 b除非另外說明,係使用1.5個當量之酐。 ’ 7分離的產量與藉分光鏡描寫特徵。 · 1括孤内之數值相對於新戊酸化。 d使用二個當量之酐。 e使用三個當量之酐。 f在-5°(:下進行。 g未使用溶劑。 h該反應處標記星號。 1關於有效的單醯化作用,使用〇.95個當量之 J10%產量之雙醯化作用產物被分離出。 _ · 如表3所示,該醯化流程可接受具有官能基,如婦、 酯、内酯、_、亞胺、丙g同化合物與經基駿(在表3中之紀 錄1至9)之質子親核試劑。它們的酿化作用進行得报平穩 具有75至100%的產量。在α_羥基、α_胺基g以在表3之 紀錄2與3中^及石,基醋與酮(在表3之紀錄4與$中) 中,副作用,如氧化作用(脫氫作用)與脫水作用,未被觀 察到。雖然在-級經基團上的醯化作用是無法避免的,該 一級羥基團具有丙酮化合物單元之相伴隨的遷移作用,但 φ 在-5°C下,二丙酮-D-葡萄糖(在表7之紀錄7中)之醯化作 用中’ 5亥配糖之C-0切割的跡象未被觀察到。 | 讜二氟甲基磺酸氧釩鹽之高催化功效係進一步地被說 明於聚备基分子,如尿苷、乳糖與環糊精(21 〇H基團)之 該前酿化作用中。在所有的案例中,雖然具有較長之反應 時間(2.5至4天),反應在乙酸或在純乙酸酐中完成。藉著 利用親核試劑間之該不同的反應活性,3-烴甲基萘之化 學選擇性醯化作用可被進行。其一級羥基基團係利用完全 20 59327319 593273 V. Description of the invention (17) --1 b Unless otherwise stated, 1.5 equivalents of anhydride are used. The yield of '7 separation is described with a spectroscope. · The values in parentheses are relative to pivalic acid. d uses two equivalents of anhydride. e uses three equivalents of anhydride. f is performed at -5 ° (:). g no solvent is used. h the reaction is marked with an asterisk. 1 For effective monohydration, the product of dihydration using 0.95 equivalents of J10% yield was isolated. _ · As shown in Table 3, the halogenation process can accept functional groups, such as hydrazine, ester, lactone, _, imine, propyl g and the same compound as Jing Jijun (Records 1 to 9 in Table 3 ) Proton nucleophiles. Their fermentation progresses smoothly and has a yield of 75 to 100%. The α-hydroxyl and α-amino groups are listed in Tables 2 and 3 in Table 3, and stone and base vinegar. In ketones (in records 4 and $ in Table 3), side effects, such as oxidation (dehydrogenation) and dehydration, have not been observed. Although tritiated effects on the -class radicals are unavoidable This primary hydroxyl group has a concomitant migration effect of acetone compound units, but at a temperature of -5 ° C, the hydration of diacetone-D-glucose (in record 7 of Table 7) is performed. No sign of C-0 cleavage has been observed. | The high catalytic efficiency of vanadyl difluoromethanesulfonate is further illustrated in the polymer base molecule, Such as the pre-fermentation of uridine, lactose and cyclodextrin (21 OH group). In all cases, although it has a long reaction time (2.5 to 4 days), the reaction is in acetic acid or in pure Acetic anhydride is completed. By utilizing the different reactivity between nucleophiles, the chemoselective chelation of 3-hydrocarbon methylnaphthalene can be carried out. The first hydroxyl group is completely used 20 593273

的化學遥擇性而被醯化,且具有至少95%之產量(在表3 之紀錄10中)。在空間上被遮蔽之胺要素上之三級亮胺醇 的醯化作用係適合選擇的。提供產量6〇%之該相對應的I 醯化產物。雖然如此,該相似之义新戊酸化以完全選擇性 (97%)進行著。 實施例12 :Is chemically selective and tritiated and has a yield of at least 95% (in record 10 of Table 3). The tritiated effect of tertiary leucine on the spatially masked amine element is suitable for selection. The corresponding I tritiated product is provided at a yield of 60%. Nonetheless, the similar meaning of pivalic acid proceeded with full selectivity (97%). Example 12:

既然本甲酸if為最不活化的非環狀酐,可在笨甲酸軒 之存在下,直接與脂肪酸進行醯化作用。Since this formic acid if is the least activated non-cyclic anhydride, it can be directly reacted with fatty acids in the presence of benzyl formate.

在本實施例中,該原位產生的混合的酐扮演著該實際 酿化作用的反應劑。該1 -苯乙基-3 - 丁稀-1 -醇及油酸盘笨 甲酸酐之混合物的反應和Fmoc-L-白胺酸與曱基三-白 胺酸的反應係如該下列流程2所示。如流程2所示,令 本乙基-3-丁稀-1-酵在具有5 mol%二氣甲基石黃酸氧飢鹽之 CH2C12中與油酸與苯曱酸酐之混合物處理2小時。具有 82%產量之該產生的油酸被平穩地生成。如同例示說明於 具有93%產量Fmoc-L-白胺酸與甲基t-三-白胺酸之直接 耦合,該混合性酐技術亦可用於雙胜肽之合成。 21 593273 五、發明說明(l9)流程2:在油酸與雙胜肽合成中,具有混合酐之醯化作用 途徑In this example, the mixed anhydride produced in situ acts as a reactant for the actual fermentation. The reaction of the mixture of 1-phenethyl-3 -butane-1 -alcohol and oleic acid and stearic anhydride and the reaction of Fmoc-L-leucine and fluorenyltri-leucine are as shown in the following scheme 2 As shown. As shown in Scheme 2, the ethyl ethyl-3-butane-1-enzyme was treated with a mixture of oleic acid and phenylarsinic anhydride in CH2C12 with 5 mol% of digas methyl luteinate salt for 2 hours. The produced oleic acid with a yield of 82% was formed smoothly. As exemplified in the direct coupling of Fmoc-L-leucine and methyl t-tri-leucine with a yield of 93%, this mixed anhydride technology can also be used for the synthesis of bis-peptide. 21 593273 V. Description of the invention (l9) Scheme 2: In the synthesis of oleic acid and bis-peptide, it has the dehydration effect of mixed anhydride.

5 mol% V(〇)(〇Tf)2 (PhC(〇))2〇5 mol% V (〇) (〇Tf) 2 (PhC (〇)) 2〇

實施例13 : 已知胺、硫、一級醇與芳香醇係可用於苯曱醯化。然 而,二級醇之苯甲醯化係略微受到限制的,且需要更嚴厲 的反應條件。關於醇、胺與硫之該苯曱醯化,該試驗之該 基質、反應時間與產量係被歸辣於下列表4中。如表4所 示,該僅可作用之二級醇,其在50°C下進行苯甲醯化具有 52%產量,係被顯示於表4之紀錄8中。 593273 五、發明說明(2〇)表4 :醇、胺與硫之苯甲醯化Example 13: It is known that amines, sulfur, primary alcohols, and aromatic alcohols can be used for phenylhydrazone. However, the benzamidines of secondary alcohols are slightly restricted and require more severe reaction conditions. Regarding the benzoylation of alcohols, amines, and sulfur, the substrate, reaction time, and yield of the test are summarized in Table 4 below. As shown in Table 4, the only active secondary alcohol, which has a yield of 52% when subjected to benzamidine at 50 ° C, is shown in record 8 of Table 4. 593273 V. Description of the invention (20) Table 4: Benzolation of alcohols, amines and sulfur

紀錄 基質a 時間,小時 產量/ % 1 Ph(CH2)2OH 26 92 2 ca0H 80 99 3 Cp OH 96 99 4 caNH2 96 99 5 (/-Pr)2NH 18 95 6 OCX 96 96 7 T^rZ-BuSH 36 97 8 (7〇H v0C(0)Ph 72c 52 9 f-Bu Ο H2NM〇Me 0.5 100 10 coc; 60" 83 11 6d'c 7 3 i-Bu y \ H2N^ OH a除非另外說明,係使用1.5個當量之酐。b分離的產量與 藉分光鏡描寫特徵。°在50°C下THF中進行,且具有2 mol% 催化劑d該反應處標記星號。e關於有效的單醯化作用,使 用0.95個當量之酐。Record matrix a time, hourly yield /% 1 Ph (CH2) 2OH 26 92 2 ca0H 80 99 3 Cp OH 96 99 4 caNH2 96 99 5 (/ -Pr) 2NH 18 95 6 OCX 96 96 7 T ^ rZ-BuSH 36 97 8 (7〇H v0C (0) Ph 72c 52 9 f-Bu 〇 H2NM〇Me 0.5 100 10 coc; 60 " 83 11 6d'c 7 3 i-Bu y \ H2N ^ OH a Unless otherwise specified, use 1.5 equivalents of anhydride. B Separated yield and descriptive characteristics by spectroscope. ° Performed in THF at 50 ° C with 2 mol% catalyst. D The reaction is marked with an asterisk. E For effective monofluorination, use 0.95 equivalent of anhydride.

23twenty three

Claims (1)

593ZB 公告本I —~ ~ 1 補充___ 六、申請專利範圍 第091 105433號專利申請案申請專利範圍修正本 修正曰期:93年4月 1 · 一種利用一含活性氫化合物來進行一酐之醯基取代反 應的方法,其包含在一氧釩鹽催化劑的存在下,以該含 活性氫化合物來與該酐反應,其中該氧釩鹽催化劑具有 下列化學式: (vo)x2 其中X2係擇自於由下列所構成之群組:(〇Tf)2、s〇3_ 芳基、S〇4、(acac)2、(CH3C02)2、(f)2、(ci)2、(Br)2、 (I)2、A1203、(N3)2、SbF6、HP04、M〇04、(Nb03)2、(N03)2、 C204、(C104)2、Se04、Pt(CN)4、Ti03、W04 及 Zr03。 2·依據申請專利範圍第丨項所述之方法,其中該含活性氫 化合物具有以下之化學式: (Rik-RHn-C-YH 其中 Y係擇自於由下列所構成之群組:Ο、NH及S ; R為伸經基(hydrocarbylene)基團; 母一 Ri係分別擇自於由下列所構成之群組:烯要 素、Ss要素、内酯要素、嗣要素、亞胺要素、丙_化合 物要素以及羥基醛要素; m 為 0、1、2 或 3 ; η為0、1、2或3;且 m+n 為 3。 3 ·依據申明專利範圍第1項所述之方法,其中該酐具有以 -25- " - 蘇 補充 六593ZB Announcement I — ~ ~ 1 Supplement ___ VI. Application for Patent Scope No. 091 105433 Patent Application Amendment for Patent Scope Amendment Date: April 1993 1 · A method of using an active hydrogen-containing compound to perform an anhydride A method for a fluorenyl substitution reaction, which comprises reacting the anhydride with the active hydrogen-containing compound in the presence of a monooxanadium salt catalyst, wherein the vanadium salt catalyst has the following chemical formula: (vo) x2 where X2 is selected from In the group consisting of: (〇Tf) 2, so3_aryl, S04, (acac) 2, (CH3C02) 2, (f) 2, (ci) 2, (Br) 2, (I) 2, A1203, (N3) 2, SbF6, HP04, M04, (Nb03) 2, (N03) 2, C204, (C104) 2, Se04, Pt (CN) 4, Ti03, W04, and Zr03 . 2. The method according to item 丨 in the scope of the patent application, wherein the active hydrogen-containing compound has the following chemical formula: (Rik-RHn-C-YH, where Y is selected from the group consisting of: 0, NH And S; R is a hydrocarbylene group; the parent-Ri is selected from the group consisting of an olefin element, an Ss element, a lactone element, a pyrene element, an imine element, and a propyl compound Element and hydroxy aldehyde element; m is 0, 1, 2 or 3; η is 0, 1, 2 or 3; and m + n is 3. 3 according to the method described in the first patent claim, wherein the anhydride With -25- "-Su added six 申清專利範圍 下之化學式: (R,C0)20 其中每一 R,係分別擇自於由下列所構成之群組:非 環狀脂要素、環脂要素以及芳香族要素。 4·依據中請專利範圍第i項所述之方法,其中該反應步驟 係於氯化亞甲基之存在下被進行。 5. 依據中請專利範圍第丨項所述之方法,其中該氧飢鹽係 為二II曱基續酸氧飢鹽。 6. 依據申請專利範圍第5項所述之方法,其中該三氟甲基 磺酸氧釩鹽係藉由反應硫酸氧釩鹽與三氟曱基磺酸鋇 而被產生。 7·依據申請專利範圍第5項所述之方法,其中該三氟甲美 磺酸氧釩鹽係藉由反應氧化釩與一過量之三氟甲基碚 酸而被產生。 8. 依據申請專利範圍第1項所述之方法,其中該方法係為 擇自於由下列所構成之群組中之至少一者的醯化作 用·山梨糖醇、甘油、脂肪酸以及]二曱基苯甲酸。 9. 依據申請專利範圍第1項所述之方法,其中該方法係為 @1類之一酿化作用。 10·依據申請專利範圍第1項所述之方法,其中該方法係 為胜肽之一合成作用。 ·The chemical formula under the patent claim range: (R, C0) 20 Each R is selected from the group consisting of: non-cyclic lipid element, cyclolipid element, and aromatic element. 4. The method according to item i of the patent claim, wherein the reaction step is performed in the presence of methylene chloride. 5. The method according to item 丨 of the patent application, wherein the oxygen starved salt is a di-II-fluorenyl acid salt. 6. The method according to item 5 of the scope of patent application, wherein the vanadyl trifluoromethanesulfonate is generated by reacting vanadyl sulfate and barium trifluoroammonium sulfonate. 7. The method according to item 5 of the scope of the patent application, wherein the vanadyl triflate is produced by reacting vanadium oxide with an excess of trifluoromethylphosphonic acid. 8. The method according to item 1 of the scope of patent application, wherein the method is a tritiated reaction selected from at least one of the group consisting of: sorbitol, glycerol, fatty acids, and Benzoic acid. 9. The method according to item 1 of the scope of patent application, wherein the method is a brewing effect of one of the @ 1 categories. 10. The method according to item 1 of the scope of patent application, wherein the method is a synthesis of one of the peptides. ·
TW91105433A 2002-03-21 2002-03-21 Process for acyl substitution of anhydride by vanadyl salt catalyst TW593273B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91105433A TW593273B (en) 2002-03-21 2002-03-21 Process for acyl substitution of anhydride by vanadyl salt catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91105433A TW593273B (en) 2002-03-21 2002-03-21 Process for acyl substitution of anhydride by vanadyl salt catalyst

Publications (1)

Publication Number Publication Date
TW593273B true TW593273B (en) 2004-06-21

Family

ID=34075469

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91105433A TW593273B (en) 2002-03-21 2002-03-21 Process for acyl substitution of anhydride by vanadyl salt catalyst

Country Status (1)

Country Link
TW (1) TW593273B (en)

Similar Documents

Publication Publication Date Title
CN100465182C (en) Cyclo palladium diferrocenyl imine amino phosphine compound and its application
US7323565B2 (en) Method for the catalytic production of hydrocodone and hydromorphone
CN112920066A (en) Alpha-substituted-alpha-amino acid ester compound and preparation method thereof
Mansour et al. Dendritic effects in catalysis by Pd complexes of bidentate phosphines on a dendronized support: Heck vs. carbonylation reactions
TW593273B (en) Process for acyl substitution of anhydride by vanadyl salt catalyst
WO2005085180A1 (en) Method of amidocarbonylation reaction
JP2804605B2 (en) 1,3-Di-arylmethoxy-4,6-dinitro-benzenes, their production method, and production method of 4,6-diaminoresorcinol
KR101615157B1 (en) Production method for 2-alkenylamine compound
US20040044189A1 (en) Process for the preparation of anthracycline derivatives
JPH04149160A (en) Production of 1-amino-4-alkoxybenzene compounds
AU712906B2 (en) Preparation of substituted aromatic amines
Drymona et al. An In‐Situ‐Formed Copper‐Based Perfluorinated Catalytic System for the Aerobic Oxidation of Alcohols
JPS6372658A (en) Production of nitrodiphenylamines
KR20010015673A (en) Method For Producing Phosphabenzene Compounds
JP2002539216A (en) Phosphabenzol compounds and their use as ligands for hydroformylation catalysts
CN103764613B (en) Production method for 2-alkenylamine compound
US5925790A (en) Preparation of substituted aromatic amines
US6229035B1 (en) Preparation of substituted aromatic amines
Ma et al. Pd-catalysed cross-coupling of allenylic carbonates with gem-diborylalkanes: efficient synthesis of isoprenylboronates
KR920001667B1 (en) Method for regenerating n.n'-dipenylurea-catalyst
Mitra et al. Ruthenium-and osmium-promoted oxidation of aromatic amines. Some observations in the area of metal-diimines
Young et al. Self-Supported Heterogeneous Dirhodium (II) Catalyst for Nitrene and Carbene Transfer Reactions
JP2900565B2 (en) Method for producing aminoanthraquinone
US20240033721A1 (en) Method for recovering and reusing selective homogeneous hydrogenation catalyst
Giunta New approaches to catalytic CH and CC bond cleavage with Ruthenium complexes

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent