TW591246B - Optical film with high contrast - Google Patents
Optical film with high contrast Download PDFInfo
- Publication number
- TW591246B TW591246B TW91123826A TW91123826A TW591246B TW 591246 B TW591246 B TW 591246B TW 91123826 A TW91123826 A TW 91123826A TW 91123826 A TW91123826 A TW 91123826A TW 591246 B TW591246 B TW 591246B
- Authority
- TW
- Taiwan
- Prior art keywords
- optical
- optical system
- light
- light source
- particles
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/021—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
- G02B5/0226—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0273—Diffusing elements; Afocal elements characterized by the use
- G02B5/0278—Diffusing elements; Afocal elements characterized by the use used in transmission
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/54—Accessories
- G03B21/56—Projection screens
- G03B21/60—Projection screens characterised by the nature of the surface
- G03B21/62—Translucent screens
- G03B21/625—Lenticular translucent screens
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Elements Other Than Lenses (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Illuminated Signs And Luminous Advertising (AREA)
Abstract
Description
(4) (4)591246 個光學透射顆粒係部份地嵌入該光學吸收層中, 〜々 便传該等 顆粒之一部份仍保持曝露至該觀看位置。自一 ) A 曰 九源入射至 該基板上之光線的一部份將透射通過該基板及該等顆粒而 朝向该觀看位置。 、 本發明之又一構想中,一光學膜包括一光學透射基板、 一光學吸收層、複數個顆粒、及複數個顯示器圖形=該光 學吸收層係施加至該基板上。該等顆粒係部份地庐入泫光 學吸收層中,使得該等顆粒之一部份仍保持曝露^一=看 位置。該等顯示器圖形係施加至該基板及/或該等顆粒上。 該光學膜係使接收自該基板側之光線透射通過該等顆粒而 朝向該觀看位置。 圖式簡單說明 考慮以下結合了隨附圖式之本發 _ „ +奴月合具體貫施例的詳細 祝明,將可更完整地了解及明白本發明,其中: 圖1係顯示依據本發明之一光學系統的概略視圖; 圖2係顯示使用準直入射弁结 y 耵九線之本發明一具體實施例; 圖3係顯示使用漫射入射氺蝻 … 耵九線之本發明一具體實施例; 圖4係顯示光錐角及視角之概念; 圖5係顯示依據本發明一且种 略視圖· /、體貫轭例之一光學系統的概 圖6A係顯示依據本發明一呈 R如、a门 肢貧鈿例之一光學膜的放大 局部視圖; 圖6B係顯示圖6A中之光學蹬糾、,隹士 ^ L 尤予膜對準直入射光線的光學透 射比; -9-(4) (4) 591,246 optically transmissive particles are partially embedded in the optical absorption layer. ~ 々 It is said that a part of these particles remains exposed to the viewing position. From a) A: A part of the light incident on the substrate by the nine sources will be transmitted through the substrate and the particles toward the viewing position. In another conception of the present invention, an optical film includes an optical transmission substrate, an optical absorption layer, a plurality of particles, and a plurality of display patterns = the optical absorption layer is applied to the substrate. The particles are partially put into the optical absorption layer, so that a part of the particles remains exposed. The display graphics are applied to the substrate and / or the particles. The optical film transmits the light received from the substrate side through the particles toward the viewing position. The drawings are briefly explained. Considering the following detailed combination of the following embodiments combined with the accompanying drawings, the following will explain the present invention more completely: Figure 1 shows the invention according to the present invention. 1 is a schematic view of an optical system; FIG. 2 shows a specific embodiment of the present invention using a collimated incident yoke 耵 耵 线 line; FIG. 3 shows a specific implementation of the present invention using a diffuse incident 氺 蝻 ... 氺 蝻 线 9 line Fig. 4 shows the concept of light cone angle and viewing angle; Fig. 5 shows a schematic view of the optical system according to the present invention; A magnified partial view of an optical film, a case of a poor limb; Figure 6B shows the optical transmission ratio of the optical step shown in Figure 6A, and the optical transmission of the film ^ L is especially directed to the incident light; -9-
591246 100A而進入該光學膜且透射該光學膜。該透射光線將經由 輸出面100B而朝向觀看位置15〇出射離開光學膜1〇〇。射線 103係概略地代表呈現於光學膜1〇〇之觀看者側上且入射於 一 該光學膜之輸出面10〇3上的環境光線。 依據本發明一特殊具體實施例之一光學膜100對漫射入 射光線之一總體光學透射比係較對準直入射光線者高,其 中孩入射光線係源自光源丨〇 i。更,光學膜i 〇〇對於自觀看 側入射至輸出面100B上的漫射光線具有超過5〇%之一總體 · 光學吸收。在某些範例中,該總體光學吸收可超過6〇%。 在又其他範例中’該總體光學吸收可超過7〇%。此外,在 本發明之一特殊具體實施例中,光學膜1〇〇對源自於光源 101之漫射入射光線的透射光線視角係小於入射光錐角之 依據本發明一特殊具體實施例之光學膜丨00係與建立一 成像平面的一結構互相結合,且該成像平面係設於輸出面 100B上且更作為一抗眩光結構。換言之,該結構係提供一 漫射表面400B,以減少或消除對表面4〇〇B作額外抗眩光處 修 理的而求。結果,光學膜丨〇〇對漫射入射光線之一光學透射 比係軏對準直入射光線者高,且與具有極低鏡面反射比的 · 一輸出表面400B互相結合。光學膜1〇〇之鏡面反射比典型地 係小於2%。在某些範例中,該鏡面反射比係小於1%。在& - 其他範例中,該鏡面反射比係小於〇〇5%。源自於光源1〇1 且入射至光學膜100輸入面100A上的光線可準直或漫射, · 這將於稍後作更完整地說明。 - -11 ·591246 100A enters the optical film and transmits the optical film. This transmitted light will exit the optical film 100 toward the viewing position 150 through the output surface 100B. The ray 103 represents the ambient light which is presented on the viewer side of the optical film 100 and incident on an output surface 1003 of the optical film. According to a special embodiment of the present invention, one of the optical transmission ratios of the diffused incident light rays of the optical film 100 is higher than those directed to the incident incident light rays, wherein the incident incident light rays originate from the light source. Furthermore, the optical film i has an overall optical absorption of more than 50% for the diffused light incident on the output surface 100B from the viewing side. In some examples, the overall optical absorption can exceed 60%. In yet other examples' the total optical absorption may exceed 70%. In addition, in a special embodiment of the present invention, the angle of transmitted light of the optical film 100 to diffuse incident light originating from the light source 101 is smaller than the cone angle of the incident light. The film 00 is combined with a structure that establishes an imaging plane, and the imaging plane is disposed on the output surface 100B and serves as an anti-glare structure. In other words, the structure provides a diffusive surface 400B to reduce or eliminate the need for additional anti-glare treatment of the surface 400B. As a result, the optical film has a higher optical transmission ratio than one directed to the incident light, and is combined with an output surface 400B having an extremely low specular reflection ratio. The specular reflectance of the optical film 100 is typically less than 2%. In some examples, the specular reflection ratio is less than 1%. In &-other examples, the specular reflection ratio is less than 0.05%. The light originating from the light source 101 and incident on the input surface 100A of the optical film 100 may be collimated or diffused. This will be explained more fully later. --11 ·
591246 興圖2係概略顯示一光學膜2〇〇對一準直入射光線之總體光 學透射比。具有一輸入面200A及一輸出面200B的光學膜 200係定位於一光源201與一觀看位置25〇之間。射線2〇2係 大體上互相平行,且構成源自於光源2〇1的一準直光線射線 陣列並且入射至光學膜200之輸入面2〇〇a上。一入射射線 202A係與軸210夾一入射角α,且其中軸21〇係與輸入面 200Α正交。如圖2中所示,射線202具有一非零的入射角。 通常,射線202之入射角可假設為JO度至+90度之任何數值 。射線202係由透射光學膜200且經由輸出面2〇〇β出射離開 該光學膜而朝向觀看位置250。光學膜200對一準直入射光 線之總體光學透射比係藉由以出射離開光學膜2〇〇之總體 光功率除以入射於該光學膜上且源自於光源2〇丨之總體光 功率而計算得。 圖3係概略顯示一光學膜3〇〇對一漫射入射光線之總體光 學透射比。具有一輸入面30 0Α及一輸出面300Β的光學膜 300係定位於一光源301與一觀看位置350之間。射線302係 構成源自於光源3 01的一漫射光線射線陣列且入射至光學 膜300之輸入面300Α上。一入射射線302Α係與軸310夾一入 射角冷,且其中軸310係與輸入面300A正交。通常,對於 一漫射入射光線,不同的射線具有不同的入射角。一給定 入射射線302A之入射角可假設自-90度至+90度的任何數值 。射線302係由透射光學膜300且經由輸出面300B出射離開 該光學膜而朝向觀看位置350。光學膜300對一漫射入射光 線之總體光學透射比係藉由以出射離開光學膜300之總體 -12-591246 Figure 2 shows the overall optical transmittance of an optical film 200 to a collimated incident ray. The optical film 200 having an input surface 200A and an output surface 200B is positioned between a light source 201 and a viewing position 250. The rays 2002 are substantially parallel to each other, and constitute a collimated light ray array derived from the light source 2001 and are incident on the input surface 2000a of the optical film 200. An incident ray 202A is at an incident angle α with the axis 210, and the axis 21O is orthogonal to the input surface 200A. As shown in FIG. 2, the ray 202 has a non-zero incident angle. Generally, the incident angle of the ray 202 can be assumed to be any value from JO degrees to +90 degrees. The ray 202 is transmitted from the optical film 200 and exits the optical film through the output surface 200β, and is directed toward the viewing position 250. The overall optical transmittance of the optical film 200 to a collimated incident ray is calculated by dividing the total optical power exiting the optical film 200 by the total optical power incident on the optical film and originating from the light source 200. Calculated. Fig. 3 is a diagram showing the overall optical transmittance of an optical film 300 to a diffuse incident light. An optical film 300 having an input surface 300A and an output surface 300B is positioned between a light source 301 and a viewing position 350. The ray 302 forms a diffused ray ray array originating from the light source 301 and is incident on the input surface 300A of the optical film 300. An incident ray 302A is cold with an incident angle between the axis 310, and the axis 310 is orthogonal to the input surface 300A. Generally, for a diffuse incident light, different rays have different angles of incidence. The angle of incidence of a given incident ray 302A can assume any value from -90 degrees to +90 degrees. The ray 302 is emitted from the optical film 300 through the output surface 300B and exits the optical film toward the viewing position 350. The overall optical transmittance of the optical film 300 to a diffuse incident ray is the total of the optical film 300 exiting the optical film 300 by exiting -12-
591246 。基板510具有一輸入面51〇a及一輸出面51〇8。輸入面51〇八 係面對著光源501。顆粒530之曝露表面係面對著觀看位置 55〇、及可能出現的任何環境光線5〇4。如圖5中所示之本發 明特殊具體實施例係將接收自光源5 〇 1之光線,以高對比、 降低之眩光、且通常已受控制之視角顯示至觀看位置550。 過去業已討論過用作為一後側投影顯示器中之一後側投 影幕、且其結構相似於圖5之光學膜5〇〇者的光學膜。美國 專利案第5,563,738號中係揭露一範例。當用作為一後側投 · 影幕時,光學膜5〇〇係設置於一光源與一觀看位置之間,使 得顆粒530之曝露表面將面對著該光源,而同時該基板將面 對著該觀看位置。在這種結構中,源自該光源之入射光線 必須大致準直,以使該投影幕之總體光學透射比最佳化。 相對地’依據本發明一具體實施例,該光源係位於該光學 膜之基板側上’且該等曝露顆粒係面對著該觀看位置。在 這種結構中’源自該光源之入射光線較佳地將漫射,以使 該光學膜之總體光學透射比最大化。 當用作為一投影幕時,如同美國專利案第5,563,738號所 · 揭露之在一薄膜中的顆粒係作為聚焦透鏡,其需要準直入 射光線’以使入射光線有效率地聚焦及透射。美國專利案 . 第5,563,738號所揭露之投影幕的總體光學透射比,係當入 射光線變得更漫射時大體上降低。相對地,在本發明一具 — 體貫施例中’光學膜500之顆粒530係使入射光線部份地準 . 直。依據本發明之該具體實施例中,對於漫射入射光線的 準直更具效率,且該光學膜之總體光學透射比係當入射光 、 •14- (10) 線變得更漫射時大體上增加。依據本發明一具體實施例之 光學膜500係使自光源入射之漫射光線以高效率透射、吸收 大部份之環境光線、且具有自觀看者側觀之的極低鏡面 反射比’而以高對比將資訊顯示至觀看位置55〇。 在圖5配置中使用一薄膜之優點在於,設計與製造具有漫 射光線輸出之一光源較具有準直光線輸出者容易。更,使 一準直光線漫射通常較使一漫射光源準直容易。這在光源 為擴展光源而非一點光源時尤然。典型地係運用譬如光 學透鏡等額外的光學元件來將一漫射光源輸出準直。譬如 ’在一後側投影顯示器中係運用一菲涅耳透鏡(fresne;nens) 來使光源之輸出光線準直。本發明上述具體實施例之一明 顯優點在於,該光學膜之總體光學透射比係當入射光線變 得更漫射時增高。因此,該光學膜特別適宜結合包括一漫 射擴展光源之一漫射光源使用。 回頭參考圖5,光學吸收層520係設置於基板51〇之輸出表 面5 10B上。顆粒530係部份地嵌入光學吸收層52〇中。希望 顆粒530與表面510B緊密靠近或光學接觸,以提高光學膜 500之總光學透射比。圍繞著顆粒53〇之光學吸收層52〇係在 接近輸出面510B的區域中定義出一有效入射孔口 531,且該 孔口係用於該顆粒自光源501接收到之光線。自光源5〇1入 射至輸入表面510A且與正交於表面51〇A之方向夾一入射 角α的射線502係在界面510A處折射且透射顆粒53〇及光 學層540。該透射射線將出射離開光學膜5〇〇,而成為與正 向夾一角度/3的射線503。出射角卢主要係由^、顆粒'53〇 (Π) 折射率及基板510之折射率決定。由於顆粒53〇之準直 :應因此角度占通常小於角度α。是以,對於入射至光 于膜500上且源自於光源5〇1的一漫射光線,該透射光線之 視角通[]、於入射光線的入射光錐角之半。更,光學膜綱 對’又射入射光線之總體光學透射比係大於其對準直入射 光線者。以下將參考圖6Α、圖6Β、及圖6(:作更進一步說明 〇 ,參考圖6Α,相似於圖5光學膜之一光學膜6〇〇係定位於一 光源601與一觀看位置65〇之間。光線係自光源6〇1入射至該 光學膜且出射離開該光學膜而朝向觀看位置65〇。光學膜 6〇〇包括一基板610、一光學吸收層62〇、及複數個顆粒63〇 圖5之選擇性光學層54〇並未包括於圖6α至圖中,以便 於发月且不致減損其普遍性。基板61〇具有一輸入面 及一輸出面610Β。輸入面61〇Α係面對著光源6〇1。顆粒63〇 之曝露表面係面對著觀看位置65〇。環繞著顆粒63〇之光學 吸收層620在接近輸出面61〇Β的區域中定義出一有效入射 孔口 631,且該孔口係用於該顆粒自光源6〇1接收到之光線 。顆粒630之曝露表面係形成通常大於入射孔口 631的一出 射孔口 632。入射孔口 631將部份地決定自光源6〇1接收到之 光線經由顆粒6 3 0透射後的光線量。 圖6Β係顯不光學膜6〇〇對一準直入射光線的一總體光學 透射比。射線633係構成源自於光源6〇1且入射至輸出表面 610Β上的一陣列準直光線射線。可由圖⑽理解到,僅射至 入射孔口 631内之譬如射線633Β等入射射線係透射顆粒63〇 591246 超過20%。在某些應用中,該總體光學透射比係超過3〇%。 在又某些其他應用中,該總體光學透射比係超過4〇%。在 又某二/、他應用中,s亥總體光學透射比係超過5〇%。射線 · 035當離開光源6〇1時可能漫射。另一選擇為,射 $舍 . 開光源6〇1時可能準直或較不漫射,且當透射通過一光^漫 射基板610後變得漫射或更為漫射。另一選擇為,未顯示於 圖6中的一額外光學漫射層可放置於基板61〇與光源6〇ι之 間’以使源自於光源6 01之光線漫射。 春 回頭參考圖5 ,光學膜500之總體光學透射比係當入射光 線變得更漫射時大致增加。此外,對於入射至光學膜5〇〇 上且源自於光學膜501的一漫射光線,透射光線之視角大體 上係小於入射光錐角之半。因此,對於一漫射光源或著對 於結合了一漫射基板510的一鏡面光源、或結合了未在圖5 中顯不出之一光學漫射器的一鏡面光源,光學膜5〇〇係以狹 窄視角顯示高光學流通量。光學膜5〇〇之狹窄視角特性在設 计用於船舶、飛機、機動車輛、或相似者中之一儀錶組時 特別有用。在一機動車輛之情況下,一儀錶組中之一習知 · 顯不器的視角通常相當大。結果,來自該顯示器之光線將 可到達前擋風玻璃及側窗,且可反射至駕駛者或其他乘客 · 而造成眩光。為了減少視角,儀錶組通常凹陷於一外殼中 ,而導致該機動車輛儀錶板之足印增大。將光學膜5〇〇結合 · 入一儀錶組中,可使用於該儀錶中之顯示器的視角減小。 因此’不太需要或無需將顯示器凹陷於一外殼中。 光學吸收層520係設計成,可吸收入射至光學膜5〇〇觀看 · -18- (14)591246591246. The substrate 510 has an input surface 510a and an output surface 5108. The input surface 5108 faces the light source 501. The exposed surface of the particles 530 faces the viewing position 55 °, and any ambient light 504 that may appear. A particular embodiment of the present invention as shown in FIG. 5 displays the light received from the light source 501 to a viewing position 550 with a high contrast, reduced glare, and usually a controlled viewing angle. An optical film which has been used in the past as one of the rear projection screens in a rear projection display and whose structure is similar to that of the optical film 500 of FIG. 5 has been discussed in the past. An example is disclosed in U.S. Patent No. 5,563,738. When used as a rear-side projection screen, the optical film 500 is placed between a light source and a viewing position, so that the exposed surface of the particles 530 will face the light source, and at the same time the substrate will face The viewing position. In this structure, the incident light from the light source must be approximately collimated to optimize the overall optical transmittance of the projection screen. On the contrary, according to a specific embodiment of the present invention, the light source is located on the substrate side of the optical film and the exposed particles face the viewing position. In this structure, the incident light from the light source is preferably diffused to maximize the overall optical transmittance of the optical film. When used as a projection screen, as disclosed in U.S. Patent No. 5,563,738, the particle system in a thin film is used as a focusing lens, which needs to collimate the incident light 'in order to efficiently focus and transmit the incident light. The overall optical transmittance of the projection screen disclosed in U.S. Patent No. 5,563,738 is generally reduced as the incident light becomes more diffuse. In contrast, in one embodiment of the present invention, the particles 530 of the 'optical film 500' partially collimate the incident light. In this specific embodiment of the present invention, the collimation of diffused incident light is more efficient, and the overall optical transmittance of the optical film is generally when the incident light, the 14- (10) line becomes more diffuse. Increase. The optical film 500 according to a specific embodiment of the present invention transmits diffused light incident from a light source with high efficiency, absorbs most of the ambient light, and has a very low specular reflection ratio viewed from the side of the viewer. High contrast displays information to viewing position 55. The advantage of using a film in the configuration of Figure 5 is that it is easier to design and manufacture a light source with a diffused light output than a collimated light output. Furthermore, diffusing a collimated light is usually easier than collimating a diffuse light source. This is especially true when the light source is an extended light source rather than a point light source. Typically, additional optical components such as optical lenses are used to collimate the output of a diffused light source. For example, a Fresne lens is used in a rear projection display to collimate the output light from the light source. One of the above-mentioned specific embodiments of the present invention has a significant advantage in that the overall optical transmission ratio of the optical film is increased when the incident light becomes more diffuse. Therefore, the optical film is particularly suitable for use with a diffusion light source including a diffusion extended light source. Referring back to FIG. 5, the optical absorption layer 520 is disposed on the output surface 5 10B of the substrate 51. The particles 530 are partially embedded in the optical absorption layer 52. The particles 530 are expected to be in close proximity or in optical contact with the surface 510B to increase the total optical transmittance of the optical film 500. The optical absorption layer 52o surrounding the particle 53o defines an effective entrance aperture 531 in a region close to the output surface 510B, and the aperture is used for the light received by the particle from the light source 501. The ray 502 incident from the light source 501 to the input surface 510A and having an incident angle α with the direction orthogonal to the surface 510A is refracted at the interface 510A and transmits the particles 53 and the optical layer 540. This transmitted ray will exit the optical film 500 and become a ray 503 at an angle of / 3 from the normal direction. The exit angle is mainly determined by the refractive index of the particles, the refractive index of the particles '53 ° (Π), and the refractive index of the substrate 510. Due to the collimation of the particles 53 °, the angle occupancy is usually smaller than the angle α. Therefore, for a diffused light incident on the film 500 and originating from the light source 501, the angle of view of the transmitted light is [], which is half the cone angle of the incident light of the incident light. Moreover, the total optical transmittance of the optical film pair ′ and incident incident light is greater than that which is directed toward the incident incident light. 6A, FIG. 6B, and FIG. 6 (: for further explanation. Referring to FIG. 6A, an optical film 600 similar to the optical film of FIG. 5 is positioned between a light source 601 and a viewing position 65. The light is incident from the light source 601 to the optical film and exits the optical film and faces the viewing position 65. The optical film 600 includes a substrate 610, an optical absorption layer 62, and a plurality of particles 63. The selective optical layer 54 in FIG. 5 is not included in FIGS. 6α to 6 in order to facilitate the development of the moon without detracting from its universality. The substrate 61 has an input surface and an output surface 610B. The input surface 61〇A is a surface It faces the light source 60.1. The exposed surface of the particle 630 faces the viewing position 650. The optical absorption layer 620 surrounding the particle 630 defines an effective entrance aperture 631 in the area close to the output surface 61〇B And the aperture is used for the light received by the particle from the light source 601. The exposed surface of the particle 630 forms an exit aperture 632 that is usually larger than the entrance aperture 631. The entrance aperture 631 will partially determine the The light received by the light source 601 is transmitted through the particles 630. Figure 6B shows the overall optical transmittance of the optical film 600 to a collimated incident light. The ray 633 constitutes an array collimation derived from the light source 601 and incident on the output surface 610B. Straight rays. As can be understood from Figure ⑽, only incident rays such as rays 633B, etc., which penetrate into the entrance aperture 631, are more than 20%. In some applications, the overall optical transmission ratio is more than 3%. %. In still some other applications, the overall optical transmittance is more than 40%. In yet another application, the overall optical transmittance is more than 50%. Ray · 035 when leaving the light source 6 〇1 may be diffusive. Another option is to shoot. She may be collimated or less diffusive when the light source 601 is turned on, and becomes diffused or more diffused after passing through a light diffusing substrate 610. Diffuse. Another option is that an additional optical diffusing layer not shown in FIG. 6 can be placed between the substrate 61 and the light source 60 to 'diffuse the light from the light source 60 01. Spring back Referring to FIG. 5, the overall optical transmittance of the optical film 500 is when the incident light becomes more diffuse In addition, for a diffused light incident on the optical film 500 and originating from the optical film 501, the angle of view of the transmitted light is generally less than half the cone angle of the incident light. Therefore, for a diffuse light source or For a specular light source combined with a diffusing substrate 510 or a specular light source combined with an optical diffuser not shown in FIG. 5, the optical film 500 displays a high optical flux at a narrow viewing angle The narrow viewing angle characteristic of the optical film 500 is particularly useful when designing an instrument cluster for a ship, an aircraft, a motor vehicle, or the like. In the case of a motor vehicle, one of the instrument clusters is known · The angle of view of the monitor is usually quite large. As a result, the light from the display can reach the front windshield and side windows and can be reflected to the driver or other passengers, causing glare. In order to reduce the viewing angle, the instrument cluster is usually recessed in a housing, which causes the footprint of the instrument panel of the motor vehicle to increase. Integrating the optical film 500 into an instrument group can reduce the viewing angle of the display used in the instrument. It is therefore not necessary or necessary to recess the display in a housing. The optical absorbing layer 520 is designed to absorb the incident incident to the optical film 500. · -18- (14) 591246
者側上的一大部份環境光線。參考圖5,一環境射線504係 自觀看者側進入光學層54〇,且透射通過顆粒53〇而進入光 :吸收層520中,並且可在該光學吸收層處大體上吸收該環 境射線。光學膜5〇〇係吸收一大部份的環境光線,因此即使 出現大量環境光線,仍可藉由高對比將資訊顯示至觀看位 置550。譬如,結合了光學膜5⑻的一機動車輛儀錶組係吸 收大#伤環丨兄光線,因此即使出現大量環境光線,仍可 藉由问對比將資訊顯示至譬如一駕駛者。光學膜5〇〇對自觀 看側入射之光線的光學吸收部份地係根據光學吸收層52〇 之吸收係數及厚度而定。該光學吸收層之光學吸收係數可 介於0·01至10微米分之一的範圍内。更佳地,該光學吸收 係數係介於〇· 1至5微米分之一的範圍内。又更佳地,該光 學吸收係數係藉於〇.3至1微米分之一的範圍内。該光學吸 收層之厚度部份地係由顆粒530之平均大小尺寸以及顆粒 大小尺寸之標準差決定。該光學吸收層之厚度可介於〇11>A large part of the ambient light on the user's side. Referring to FIG. 5, an ambient ray 504 enters the optical layer 54 from the viewer's side, and passes through the particles 53 to enter the light: absorbing layer 520, and the ambient ray can be substantially absorbed at the optical absorbing layer. The optical film 500 absorbs a large part of the ambient light, so even if there is a lot of ambient light, the information can be displayed to the viewing position 550 with high contrast. For example, a motor vehicle instrument cluster that incorporates an optical film 5 大 absorbs large #trauma ring brother light, so even if there is a large amount of ambient light, information can still be displayed to, for example, a driver by asking and comparing. The optical absorption of the optical film 500 for the light incident from the viewing side is partially determined by the absorption coefficient and thickness of the optical absorption layer 52. The optical absorption coefficient of the optical absorption layer may be in a range of 0.01 to 1 micron. More preferably, the optical absorption coefficient is in the range of 0.1 to 5 micrometers. Still more preferably, the optical absorption coefficient is in the range of 0.3 to 1 micron. The thickness of the optical absorption layer is determined in part by the average size of the particles 530 and the standard deviation of the size of the particles. The thickness of the optical absorption layer may be between 〇11 >
至0·9γ之範圍内,且其中^係顆粒530之平均半徑。在某些範 例中’該厚度可介於〇 31:至〇 71<之範圍内。在又其他範例中 ’該厚度可介於〇·4γ至〇.6r之範圍内。 儘管在某些應用中可使用多層顆粒,但仍希望顆粒5 3 〇形 成為具有高封裝密度的一單一層,以使光學膜5〇〇之總透射 比最佳化。光學膜5〇〇之一特殊優良特性在於,顆粒53〇之 表面在該光學膜面對著觀看者的輸出側上將形成一霧面表 面。換言之,顆粒530係使漫射入射光線以高流通量及高對 比透射至觀看位置550,且同時顆粒530將形成一霧面表面 -19- 591246 。該霧面表面係減少或消除眩光(亦即,具有-非常小的鏡 面反射比)。依據本發明之一具體實施例,該光學膜輸出表 面之霧面表面處理將減少或消除對該光學膜實施額外抗眩 光處理之需求。在成像平面(亦即,顯示出影像之平面)與 顆粒530緊搶罪近或相互重疊之應用中,光學膜輸出側 之霧面表面將僅造成少量或無任何解析度損失。可由顆粒 530曝露表面達成之眩光減少主要係根據顆粒大小尺寸以 及顆粒大小尺寸之分佈而定。一般而言,較小的顆粒對於 減y眩光或鏡面反射比更為有效。由觀看者側觀之的光學 膜500鏡面反射比典型地係小於2%。在某些範例中,該鏡 面反射比係小於1%。在又其他範例中,該鏡面反射比係小 於0.05/。光學膜500之極低鏡面反射比將使該光學膜非常 適合於極度不希望眩光出現的顯示器應用中。光學膜5〇〇 特別適用於戶外使用之顯示器、或極明亮之環境光線可能 造成大量且極度不希望出現之眩光的應用場合中之顯示器 。譬如,結合了光學膜500之一機動車輛儀錶組僅需要少許 或甚至不需要任何額外的抗眩光處理,即可大幅減少或消 除眩光。更,當顆粒530係構成該成像平面、或緊密靠近該 成像平面時,將不致損失或僅損失少許解析度。在無光學 層540之情況下,由觀看者側觀之的光學膜5⑻之漫射反射 比典型地係小於1 〇%。在某些範例中,該漫射反射比係小 於8%。在又其他範例中,該漫射反射比係小於。光學層 540較佳地係一高度光線透射層,該層較佳地係順應外型地 塗佈於顆粒530之曝露區域及光學吸收層520上且意欲改良 -20- 591246It is in the range of 0 · 9γ, and the average radius of ^ is the particle 530. In some examples, the thickness may be in the range of 31: to 71 <. In yet other examples, the thickness may be in the range of 0.4γ to 0.6r. Although multilayer particles may be used in some applications, it is desirable that the particles be shaped as a single layer with a high packing density to optimize the total transmittance of the optical film of 500. One of the special excellent characteristics of the optical film 500 is that the surface of the particles 53 will form a matte surface on the output side of the optical film facing the viewer. In other words, the particles 530 transmit the diffused incident light to the viewing position 550 with a high flow rate and a high contrast ratio, and at the same time, the particles 530 will form a matte surface -19-591246. The matte surface reduces or eliminates glare (i.e., has-a very small specular reflection ratio). According to a specific embodiment of the present invention, the matte surface treatment of the output surface of the optical film will reduce or eliminate the need to perform an additional anti-glare treatment on the optical film. In applications where the imaging plane (that is, the plane on which the image is displayed) and the particles 530 are close or overlapping each other, the matte surface on the output side of the optical film will cause only a small or no loss of resolution. The reduction in glare that can be achieved by the exposed surface of particles 530 is mainly based on the size and distribution of particle size. In general, smaller particles are more effective at reducing glare or specular reflection ratio. The specular reflection ratio of the optical film 500 viewed from the side of the viewer is typically less than 2%. In some examples, the specular reflection ratio is less than 1%. In yet other examples, the specular reflection ratio is less than 0.05 /. The extremely low specular reflectance of the optical film 500 will make the optical film very suitable for display applications in which glare is extremely undesirable. The optical film 500 is particularly suitable for displays for outdoor use, or displays in applications where extremely bright ambient light may cause large and extremely undesirable glare. For example, a motor vehicle instrument cluster incorporating an optical film 500 can significantly reduce or eliminate glare with little or even no additional anti-glare treatment. Furthermore, when the particles 530 form the imaging plane or are close to the imaging plane, no loss or only a small amount of resolution will be lost. Without the optical layer 540, the diffuse reflection ratio of the optical film 5 viewed from the side of the viewer is typically less than 10%. In some examples, the diffuse reflection ratio is less than 8%. In yet other examples, the diffuse reflection ratio is less than. The optical layer 540 is preferably a highly light-transmitting layer, and the layer is preferably applied to the exposed area of the particles 530 and the optical absorption layer 520 in conformity with the shape and is intended to be improved -20- 591246
(16) 光學膜500之總性能。光學層540可為一硬塗覆,以增加光 學膜500之财久性。光學層540可為一抗反射塗覆層,以增 ,· 加光學膜500之總光學流通量,且同時減少由觀看者側觀之 的光學膜5 0 0總反射比。在這種情況下,由觀看者側觀之的 光學膜500漫射反射比典型地係小於8%。在某些範例中, 該漫射反射比係小於4%。在又其他範例中,該漫射反射比 係小於2%。光學層540亦可具有光學漫射特性,以更進一 步控制光線出射離開該光學膜之視角。光學層5 4 〇亦可包括 · 一著色劑。 一般而言,由觀看者側觀之的高鏡面及漫射反射比將減 低一顯示器的對比。依據本發明一具體實施例之光學膜5〇〇 將吸收一大部份的環境光線以具有低的總體(即,鏡面加上 漫射)反射比’且在其輸出側上結合一霧面表面以具有低的 鏡面反射比。依據本發明該具體實施例之光學膜5〇〇將具有 低的鏡面反射比,以藉由高對比顯示出資訊。 基板510較佳地具有高光學透射。該基板可清澈透光或漫 射。該基板本身可藉由體積及/或表面漫射來漫射光線。可 · 藉由使表面510A成為霧面來達成表面漫射。基板51〇可為 柔軟或堅硬者’且可具有一著色劑以使出射離開光學膜5〇〇 參 而朝向觀看者550之光線的顏色最佳化。基板510可為大體 上透射光線的任何適當材料。特別適合作為一基板的材料 ’ $巳例包括聚乙烯對苯二甲酯(PET)、聚碳酸酯、丙烯酸系、 玻璃、及其他相似的基板材料。 光學吸收層520典型地包括散佈於一黏結劑中之一光線 · -21 . (17)591246 吸收材料合物。特別適合之光線吸收材料包括碳煙粉、 譬如黑色染料及其他相似光學吸收染料等光線吸收染料、 及其他類似光線吸收材料。特別適合的黏結劑範例包括熱 塑性塑膠、輻射硬化或熱硬化丙烯酯、樹脂、以矽酮為基 楚之材料感壓性黏著劑、及其他相似的黏結劑材料。亦 包括譬如分散劑、表面活性劑、黏度修飾劑、硬化劑、及 其他相似者等其他材料。(16) The overall performance of the optical film 500. The optical layer 540 may be hard-coated to increase the longevity of the optical film 500. The optical layer 540 may be an anti-reflection coating layer to increase the total optical flux of the optical film 500 and at the same time reduce the total reflection ratio of the optical film 500 viewed by the viewer. In this case, the diffuse reflectance of the optical film 500 viewed from the side of the viewer is typically less than 8%. In some examples, the diffuse reflectance is less than 4%. In yet other examples, the diffuse reflection ratio is less than 2%. The optical layer 540 may also have an optical diffusing property to further control the viewing angle of light exiting from the optical film. The optical layer 540 may also include a colorant. In general, the high specular and diffuse reflectance viewed from the side of the viewer will reduce the contrast of a display. An optical film 500 according to a specific embodiment of the present invention will absorb a large portion of the ambient light to have a low overall (ie, mirror surface plus diffuse) reflectance 'and combine a matte surface on its output side To have a low specular reflectance. The optical film 500 according to this embodiment of the present invention will have a low specular reflection ratio to display information with a high contrast. The substrate 510 preferably has high optical transmission. The substrate can be clear, transparent or diffuse. The substrate itself can diffuse light by volume and / or surface diffusion. Surface diffusion can be achieved by making the surface 510A matte. The substrate 51 may be soft or hard, and may have a colorant to optimize the color of the light rays exiting the optical film 500 and toward the viewer 550. The substrate 510 may be any suitable material that transmits light generally. Examples of materials that are particularly suitable as a substrate include polyethylene terephthalate (PET), polycarbonate, acrylic, glass, and other similar substrate materials. The optical absorption layer 520 typically includes one of the light rays interspersed in an adhesive. -21. (17) 591246 Absorptive material composition. Particularly suitable light absorbing materials include carbon tobacco powder, light absorbing dyes such as black dyes and other similar optical absorbing dyes, and other similar light absorbing materials. Examples of particularly suitable adhesives include thermoplastics, radiation- or heat-curable acrylates, resins, silicone-based materials, pressure-sensitive adhesives, and other similar adhesive materials. Other materials such as dispersants, surfactants, viscosity modifiers, hardeners, and the like are also included.
可由巧澈透光且尚度光線透射之任何適當材料製作顆粒 530。特別適合之材料範例包括各種玻璃,包括聚甲基丙烯 μ I/日(ΡΜΜΑ)、聚苯乙烯、兩個或更多不同材料混合物等 承σ材料,及其他相似的顆粒材料。該等顆粒較佳地係呈The particles 530 may be made of any suitable material that is transparent and has a high degree of light transmission. Examples of particularly suitable materials include various glasses, including polymethacryl μ I / day (PMMA), polystyrene, two or more different material mixtures, and other sigma-bearing materials, and other similar particulate materials. The particles are preferably
…开7仁可具有包括橢圓形或其他所需外型的其他適 當外型。-橢圓形顆粒530可用於在譬如水平及垂直^向或 二他方向等一個或更多方向上調整出射離開光學膜500之 光線的視角。可較佳地選擇顆粒530之直徑範圍及光學吸收 之厚度使得大多數顆粒可部份地嵌入光學吸收層 520中’以使光學流通量最佳化,且同時保持高對比。當該 增加時,顯示至觀看者之資訊看起來將更為粒子 /、有較低的解析度。另一方面,倘若顆粒530之直徑過 :顆it:比可維持時,光學膜之光學流通量謝 視角$一 ^型地具有可提供譬如一所需光學透射比及/或 於1 3至3:斤需光學性能的一折射率。顆粒530可具有範圍介 收芦之厚产、了且大較佳地介於h3至2.4的一折射率。該光學吸 曰 又可大於平均顆粒半徑,以增加光學膜5〇〇之耐久 -22-… Kai 7 Ren may have other suitable shapes including oval or other desired shapes. -The elliptical particles 530 can be used to adjust the angle of view of the light exiting the optical film 500 in one or more directions, such as horizontal and vertical directions or other directions. The diameter range of the particles 530 and the thickness of the optical absorption can be better selected so that most of the particles can be partially embedded in the optical absorption layer 520 'to optimize the optical throughput while maintaining high contrast. As it increases, the information displayed to the viewer will look more granular / lower resolution. On the other hand, if the diameter of the particles 530 is too large: the particle it: ratio can be maintained, the optical flux of the optical film can be provided at a viewing angle of $ 1 ^, which can provide, for example, a desired optical transmittance and / or between 13 and : A refractive index of optical properties is required. The particles 530 may have a refractive index ranging from the thick yield of ash, and preferably between h3 and 2.4. The optical absorption can be larger than the average particle radius to increase the durability of the optical film -22 -22-
591246 性。另一選擇為,該厚度可小於平均顆粒半徑,以增加光 .學膜500之總體光學透射比。 .· 光源501可為一單一光源或一陣列的各別獨立光源。光源 : 50 1可為一點光源或一擴展光源。源自於光源5〇丨且入射至 顆粒530上的光線較佳地係漫射,以使光學膜5〇〇之光學流 通i最佳化。光源5 0 1可藉一準直或漫射型式放射出光線。 倘若光源501並非充份地漫射,則可將基板51〇製成充份地 度射。另一選擇為,可將一適當的額外漫射器設置於光源 · 5〇1與輸入面510A之間, 光源501可以或不可顯示一影像。可顯示一影像之一光源 範例包括液晶顯示器、發光二極體顯示器、電漿顯示器、 有機發光顯示器、場致發射顯示器、電致發光顯示器、及 其他適當的影像形成顯示器。不顯示一影像之光源範例包 括燈泡、發光二極體、及其他不顯示一影像的適當光源。 倘右光源50 1顯示一影像,則一顯示出之影像的視角最好較 大,以使光學膜500之光學流通量最佳化,且介於光源5〇1 成像平面與顆粒530之間的距離最好較小,以保持影像品質 · 及解析度。 圖7係顯示依據本發明另一具體實施例之概略圖式。一光 > :〜成900係定位於一光源9〇1與一觀看位置95〇之間。光線 係自光源901入射至光學總成9〇〇上,且出射離開該光學總 . j而朝向觀看位置95〇。環境光線係自觀看者側入射至光學 _ …成900上。光學總成9〇〇包括一個或更多顯示器構件9又$ 基板910、一光學吸收層92〇、複數個顆粒93〇、及一選 · -23- 591246591246 sex. Alternatively, the thickness may be smaller than the average particle radius to increase the overall optical transmittance of the optical film 500. The light source 501 may be a single light source or an array of individual light sources. Light source: 50 1 can be a point light source or an extended light source. The light originating from the light source 50 and incident on the particles 530 is preferably diffused to optimize the optical flow i of the optical film 500. The light source 501 can radiate light by a collimating or diffusing type. If the light source 501 is not sufficiently diffused, the substrate 51 can be made sufficiently radiated. Alternatively, an appropriate additional diffuser may be disposed between the light source 501 and the input surface 510A, and the light source 501 may or may not display an image. Examples of a light source that can display an image include liquid crystal displays, light emitting diode displays, plasma displays, organic light emitting displays, field emission displays, electroluminescent displays, and other suitable image forming displays. Examples of light sources that do not display an image include light bulbs, light emitting diodes, and other suitable light sources that do not display an image. If the right light source 501 displays an image, the angle of view of a displayed image is preferably large to optimize the optical flux of the optical film 500 and be between the imaging plane of the light source 501 and the particles 530. The distance is preferably small to maintain image quality and resolution. FIG. 7 is a schematic diagram showing another embodiment according to the present invention. A light >: ~ 900 series is positioned between a light source 901 and a viewing position 95. The light is incident on the optical assembly 900 from the light source 901, and exits from the optical assembly j toward the viewing position 95. Ambient light is incident from the viewer's side onto the optical _ ... into 900. The optical assembly 900 includes one or more display members 910, a substrate 910, an optical absorption layer 9200, a plurality of particles 930, and a selection of -23-591246.
(19) 擇性的光學層940。基板910具有一輸入面910A及一輸出面 9 10B。顆粒930係部份地嵌入光學吸收層920中且較佳地係 ·· 緊密靠近基板910之輸出面91 0B,以使光學總成900之總光 學流通量最佳化。 依據圖7,顯示器構件9 1 5係定位於光源90 1與基板9 1 〇輸 入面91 0A之間。另一選擇為,顯示器構件915或一額外的 顯示器構件91 5可定位於顆粒930與觀看位置950之間。顯示 器構件915包括一選擇性的顯示器層905及複數個顯示器圖 · 幵> 906。顯示器層905具有一輸入面905 A及一輸出面905B。 顯示器圖形906係形成於表面905A及/或表面905B上。圖8 、圖9、與圖1〇中顯示出三種顯示器圖形。圖8係顯示在背 景1013上之一左箭頭指示器1〇11及一右箭頭指示器1〇12的 月’J側概略圖式。圖9係顯示在背景丨122上的複數個字母與數 字Π21、以及複數個指示器1123的前側概略圖式。圖1〇係 顯不在背景1232上之一電池指示器1231的前側概略圖式。 圖8、圖9、及圖10中顯示出之圖形可為一機動車輛、一飛 機、一船舶儀錶組之一顯示器中,或任何其他使用顯示器 · 圖形之顯示器中的一部份。 回頭參考圖7,顯示器構件91 5可使用譬如一感壓性黏著 劑等一^黏著劑而積層至基板91〇。另一選擇為,顯示器構件 * 915可藉由機械式裝置、音波熔接、或其他適當裝置而接合 · 至基板910。另一選擇為,顯示器圖形可形成於基板gw之 輸入面910A上。另一選擇為,顯示器圖形可形成於顆粒93〇 , 之表面上。顯不器圖形可藉由譬如印刷、光微影術、或其 ’ -24- (20)591246 他適當方法等方法形成。該等顯示器圖形上之特徵可為清 破透光、具有顏色、透明、或不透明。 '' ”、、員示器層905可為柔軟或堅硬者。顯示器層9〇5可為大體 上,射光線的任何適當材料。適當材料之範例包括聚乙烯 對本一曱酯(PET)、聚碳酸酯、丙烯酸系、玻璃、及其他適 當的基板材料。(19) Optional optical layer 940. The substrate 910 has an input surface 910A and an output surface 9 10B. The particles 930 are partially embedded in the optical absorption layer 920 and are preferably close to the output surface 9100B of the substrate 910 to optimize the total optical flux of the optical assembly 900. According to FIG. 7, the display member 9 1 5 is positioned between the light source 90 1 and the substrate 9 1 0 input surface 9 10A. Alternatively, the display member 915 or an additional display member 915 may be positioned between the particle 930 and the viewing position 950. The display member 915 includes a selective display layer 905 and a plurality of display maps 幵 > 906. The display layer 905 has an input surface 905 A and an output surface 905B. The display pattern 906 is formed on the surface 905A and / or the surface 905B. Three display patterns are shown in FIG. 8, FIG. 9, and FIG. Fig. 8 is a schematic diagram showing the month'J side of one of the left arrow indicator 1011 and one right arrow indicator 1012 on the background 1013. FIG. 9 is a schematic front view of a plurality of letters and numbers Π21 and a plurality of indicators 1123 on the background 122. FIG. FIG. 10 is a schematic front view of a battery indicator 1231 that is not shown on the background 1232. The graphics shown in Figures 8, 9, and 10 can be part of a display on a motor vehicle, an aircraft, a ship's instrument cluster, or any other display using graphics. Referring back to FIG. 7, the display member 9115 can be laminated to the substrate 91 using an adhesive such as a pressure-sensitive adhesive. Alternatively, the display member * 915 may be bonded to the substrate 910 by a mechanical device, sonic welding, or other appropriate devices. Alternatively, a display pattern may be formed on the input surface 910A of the substrate gw. Alternatively, a display pattern may be formed on the surface of the particles 93 °. The monitor pattern can be formed by methods such as printing, photolithography, or other appropriate methods thereof. These display graphics can be characterized as clear, transparent, colored, transparent, or opaque. The indicator layer 905 may be soft or hard. The display layer 905 may be generally any suitable material that radiates light. Examples of suitable materials include polyethylene, poly (ethylene) ester (PET), polymer Carbonate, acrylic, glass, and other suitable substrate materials.
光學層940較佳地係一高度光線透射層,該層較佳地係順 f外型地塗佈於顆粒930之曝露區域及光學吸收層92〇上且 意欲改良光學膜900之總性能。光學層94〇可為一硬塗覆, 以增加光學膜900之耐久性。光學層94〇可為一抗反射塗覆 層,以增加光學膜900之總光學流通量,且同時減少由觀看 者側繞之的光學膜9〇〇總反射比。光學層940亦可具有光學 >艾射特性,以更進一步控制光線出射離開該光學膜之視角 。光學層940亦可包括一著色劑。The optical layer 940 is preferably a highly light-transmitting layer, which is preferably applied on the exposed area of the particles 930 and the optical absorption layer 920 in an outward shape and is intended to improve the overall performance of the optical film 900. The optical layer 940 may be a hard coating to increase the durability of the optical film 900. The optical layer 94 may be an anti-reflection coating layer to increase the total optical flux of the optical film 900 and at the same time reduce the total reflectance of the optical film 900 which is wound by the viewer side. The optical layer 940 may also have optical > emissive properties to further control the viewing angle of light exiting the optical film. The optical layer 940 may also include a colorant.
光學總成900尚包括一可旋轉式指針925。指針925可為譬 如一轉速計、一燃油量錶、或著任何使用一指針之其他量 錶或儀錶等一儀錶組的一部份。指針925包括可環繞一樞軸 927旋轉的一指針臂926。指針925通常係定位於光源9〇 1與 觀看位置950之間。依據圖9,指針925係定位於光源9〇1與 顯示器構件915之間。另一選擇為,指針925可定位於光學 總成900之觀看者側上、顆粒93〇與觀看位置95〇之間,在這 種情況下之光學總成900在該指針與該觀看位置之間尚包 括一光學透射層,以保護該指針免於受損。指針925可為清 澈透光、或透明、或不透明。指針925可由除了光源9〇1以 -25 - (21)591246The optical assembly 900 further includes a rotatable pointer 925. The pointer 925 may be part of an instrument cluster such as a tachometer, a fuel gauge, or any other gauge or meter that uses a pointer. The pointer 925 includes a pointer arm 926 that is rotatable about a pivot 927. The pointer 925 is usually positioned between the light source 901 and the viewing position 950. According to FIG. 9, the pointer 925 is positioned between the light source 901 and the display member 915. Alternatively, the pointer 925 can be positioned on the viewer side of the optical assembly 900, between the particles 93 and the viewing position 95. In this case, the optical assembly 900 is between the pointer and the viewing position. An optical transmission layer is also included to protect the pointer from damage. The pointer 925 may be clear and transparent, or transparent, or opaque. The pointer 925 can be made by the light source 901 to -25-(21) 591246
外之一光源照射。美國專利案第4,959,759號中係揭露一範 例。可理解到,光學總成9〇〇係以高對比、低眩光、且通常 以減小的視角將資訊及圖形顯示至觀看位置95〇。 儘&上述中已參考各具體實施例來說明本發明,然而不 應以該等特殊具體實施例為限H欲完全涵蓋如隨附 申請專利範圍所定義之發明。An external light source illuminates. An example is disclosed in U.S. Patent No. 4,959,759. It can be understood that the optical assembly 900 displays information and graphics to a viewing position 95 with high contrast, low glare, and usually with a reduced viewing angle. As far as possible, the present invention has been described with reference to specific embodiments. However, these specific embodiments should not be limited. It is intended to completely cover the invention as defined by the scope of the accompanying patent application.
圖式代表符號說明 光學膜 100 、 200 、 300 、 400 、 500 ^ 600 100a 、 200a 、 300a 、 400a、610a、905a、 輸入面(輸入表面) 910a 輪出面(輸出表面) 光源Description of the symbols of the diagrams Optical film 100, 200, 300, 400, 500 ^ 600 100a, 200a, 300a, 400a, 610a, 905a, input surface (input surface) 910a Wheel output surface (output surface) Light source
100b ' 200b 、 300b 、 510b 、 610b 、 905b 、 910b 101 、 201 、 301 、 401 、 501 、 601 、 901 103、202、302、402a、 射線 402b 、 502 、 503 、 633 、 633a 、 633b 、 633c 、 635 150、250、350、450、 觀看位置 550 、 650 、 950 202a ' 302a 入射射線 210 > 310 轴 -26- 591246 (22) 400b 漫射表面(輸出面) 400c 點 402 射線(入射射線) 403 射線(透射射線) 504 環境光線(環境射線) 510、 610、 910 基板 510a 輸入表面(界面)輸入面 520 > 620 > 920 光學吸收層 530、 630 > 930 顆粒 53卜 631 (有效)入射孔口 540、 940 (選擇性的)光學層 632 出射孔口 634 636 900 光學總成 905 (選擇性的)顯示器層 906 顯示器圖形 915 顯示器構件 925 (可旋轉式)指針 926 指針臂 927 樞軸 1011 左箭頭指示器 1012 右箭頭指示器 1013 、1122 、1232 背景100b '200b, 300b, 510b, 610b, 905b, 910b 101, 201, 301, 401, 501, 501, 601, 901 103, 202, 302, 402a, Ray 402b, 502, 503, 633, 633a, 633b, 633c, 635 150, 250, 350, 450, viewing position 550, 650, 950 202a '302a incident ray 210 > 310 axis-26- 591246 (22) 400b diffuse surface (output surface) 400c point 402 ray (incident ray) 403 ray (Transmitted ray) 504 Ambient light (Ambient ray) 510, 610, 910 Substrate 510a Input surface (interface) Input surface 520 > 620 > 920 Optical absorption layer 530, 630 > 930 Particles 53b 631 (effective) entrance hole 540, 940 (optional) optical layer 632 exit aperture 634 636 900 optical assembly 905 (optional) display layer 906 display graphic 915 display member 925 (rotatable) pointer 926 pointer arm 927 pivot 1011 left Arrow indicator 1012 Right arrow indicator 1013, 1122, 1232 Background
-27--27-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US846701A | 2001-11-09 | 2001-11-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW591246B true TW591246B (en) | 2004-06-11 |
Family
ID=21731761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91123826A TW591246B (en) | 2001-11-09 | 2002-10-16 | Optical film with high contrast |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1444537A2 (en) |
JP (1) | JP2005509894A (en) |
CN (1) | CN1592857A (en) |
AU (1) | AU2002331871A1 (en) |
TW (1) | TW591246B (en) |
WO (1) | WO2003042725A2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7248406B2 (en) | 2004-10-15 | 2007-07-24 | Hewlett-Packard Development Company, L.P. | Projection screen |
DE102006000993B4 (en) * | 2006-01-05 | 2010-12-02 | Merck Patent Gmbh | OLEDs with increased light output |
KR20080099080A (en) * | 2007-05-08 | 2008-11-12 | 삼성에스디아이 주식회사 | Filter and plasma display apparatus having the same |
US8405895B2 (en) | 2007-11-26 | 2013-03-26 | 3M Innovative Properties Company | Optical system with high contrast |
US8000006B2 (en) * | 2009-07-02 | 2011-08-16 | Morgan Adhesives Company | Rear-projection screen |
US20110170194A1 (en) * | 2009-12-25 | 2011-07-14 | Tsuyoshi Kashiwagi | Optical sheet and display device including the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2539491Y2 (en) * | 1991-10-09 | 1997-06-25 | 惠和商工株式会社 | Light diffusion sheet material |
EP0627638A1 (en) * | 1993-06-02 | 1994-12-07 | Hughes Aircraft Company | Elliptical diffuser |
US6344263B1 (en) * | 1998-03-30 | 2002-02-05 | 3M Innovative Properties Company | Light dispersing film and method of manufacture |
JP3822361B2 (en) * | 1998-07-10 | 2006-09-20 | 株式会社日立製作所 | Light distribution control element and display device including the same |
US6278546B1 (en) * | 1999-04-01 | 2001-08-21 | Honeywell International Inc. | Display screen and method of manufacture therefor |
JP2001281420A (en) * | 2000-03-29 | 2001-10-10 | Fuji Photo Film Co Ltd | Light diffusing body and method for use of the same |
-
2002
- 2002-09-18 CN CN 02822147 patent/CN1592857A/en active Pending
- 2002-09-18 WO PCT/US2002/029580 patent/WO2003042725A2/en not_active Application Discontinuation
- 2002-09-18 AU AU2002331871A patent/AU2002331871A1/en not_active Abandoned
- 2002-09-18 EP EP02768865A patent/EP1444537A2/en not_active Withdrawn
- 2002-09-18 JP JP2003544502A patent/JP2005509894A/en active Pending
- 2002-10-16 TW TW91123826A patent/TW591246B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP2005509894A (en) | 2005-04-14 |
CN1592857A (en) | 2005-03-09 |
WO2003042725A3 (en) | 2004-02-12 |
WO2003042725A2 (en) | 2003-05-22 |
EP1444537A2 (en) | 2004-08-11 |
AU2002331871A1 (en) | 2003-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11604306B2 (en) | Anti-peeping film and method for manufacturing same, and backlight module and display apparatus | |
WO2015046439A1 (en) | Prism sheet, area light source device, image source unit, and liquid crystal display device | |
JP2004062099A (en) | Visibility improving sheet, display using the same and a transmission type projection screen | |
US8922888B2 (en) | Front projection screen with high contrast | |
WO2006032002A1 (en) | High contrast optical path corrected screen | |
TW200408887A (en) | Display device and electronic apparatus | |
CN109388012B (en) | Projection screen and projection system | |
TWI255356B (en) | Light guide plate and plane light source using the same | |
CN102341752A (en) | Front projection screen with high contrast | |
JP2017167224A (en) | Space floating video display device | |
TW591246B (en) | Optical film with high contrast | |
JP2000039581A (en) | Information display device | |
US20030107691A1 (en) | Semi-transmissive liquid crystal display device | |
US8405895B2 (en) | Optical system with high contrast | |
JPH1114986A (en) | Illumination device, liquid crystal display device and electronic instrument | |
JP5287147B2 (en) | Optical sheet and image display device | |
JP2015180952A (en) | Prism sheet, surface light source device, video source unit, and liquid crystal display device | |
JP6932977B2 (en) | Image source unit and liquid crystal display device | |
JP2022056362A (en) | Optical sheet, backlight unit, and liquid crystal display device | |
JP2016151710A (en) | Optical sheet, video source unit, and video display device | |
CN218763000U (en) | Light scattering assembly and LED display screen | |
WO2023181743A1 (en) | Optical element for aerial display device, and aerial display device | |
WO2023140106A1 (en) | Light diffusion film laminate for reflective display device, and reflective display device using same | |
WO2009070389A2 (en) | Optical system with high contrast | |
JP2018136423A (en) | Optical sheet, surface light source device, video source unit, and display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |