TW589570B - Low-complexity bit-parallel systolic multiplier over GF(2m) - Google Patents

Low-complexity bit-parallel systolic multiplier over GF(2m) Download PDF

Info

Publication number
TW589570B
TW589570B TW91124418A TW91124418A TW589570B TW 589570 B TW589570 B TW 589570B TW 91124418 A TW91124418 A TW 91124418A TW 91124418 A TW91124418 A TW 91124418A TW 589570 B TW589570 B TW 589570B
Authority
TW
Taiwan
Prior art keywords
array
multiplier
cell
finite field
complexity
Prior art date
Application number
TW91124418A
Other languages
Chinese (zh)
Inventor
Chiou-Ying Lee
Eri-Huei Lu
Original Assignee
Chiou-Ying Lee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiou-Ying Lee filed Critical Chiou-Ying Lee
Priority to TW91124418A priority Critical patent/TW589570B/en
Application granted granted Critical
Publication of TW589570B publication Critical patent/TW589570B/en

Links

Landscapes

  • Complex Calculations (AREA)

Abstract

The present invention relates to a low-complexity bit-parallel systolic multiplier over GF(2m). The multiplier includes a multiplication unit and a base transformation unit. The circuit architecture of the multiplication unit is composed of m<2> identical cells. Each cell is composed of 2-input AND gate, 2-input XOR gate, and 1-bit register. The base transformation unit is composed of tree-type 2-input XOR gates. When the generation polynomial of the finite field is non-factorable all one polynomial (AOP) or power-three polynomial x<m>+x<n>+1 where 1 <= n <= upper bound of (m/2). The multiplier generates very low system complexity and very low propagation delay. The computing delay of this circuit requires only m+1 or m+2 pulse cycles, thereby achieving the effects of low computing delay and high output speed.

Description

589570 A7 B7 五、發明説明(I ) 技術領域 (請先閎讀背面之注意事項再填寫本頁) 本發明係一種有限場GF(2m)之低複雜的心臟收縮陣列式 雙重基底乘法器,尤指一種可提升有限場GF(2m)之乘法器 速度的創新技術。 發明背景 目前我國揭橥於中華民國專利公報中的『乘法器』相關 發明專利技術,較相關者槪可列舉如下: 1、 公告編號第3 8 2 0 8 8號『有限場GF(2m)的細胞陣列 次方和電路』發明專利案。 2、 公告編號第4 4 0 7 8 9號『乘法器』發明專利案。 3、 公告編號第2 5 5 9 5 7號『t位元半平行處理式格羅 瓦揚乘法器之設計方法』發明專利案。 4、 公告編號第3 6 0 8 4 5號『陣列式乘法器架構及其方 法』發明專利案。 5、 公告編號第4 0 5 0 8 6號『快速正規乘法器架構』發 明專利案。 經濟部智慧財產局員工消費合作社印製 在這個有限場GF(2m),有效的代數運算(含加法、乘法 、除法、及指數等運算)廣泛地被應用於錯誤更正碼和密碼 技術,舉凡二進位BCH碼(Binary BCH Code)之解碼、RS碼 (Reed-Solomon Code)之編碼與解碼及在安全通信(secure Communication)上數位信息的加密與解密(Encryption and Decryption)。儘管如此,GF(2m)的乘法及求反元素的運算仍然 相當複雜。針對GF(2m)中的乘法運算陸續有學者提出快速演 算法及快速電路,例如Itoh-Tsujii、Sunar-Koc、Hasan。這 3 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 589570 A7 __B7_ 五、發明説明(2 ) 些乘法器架構均基於特別的多項式,它包括全一多項式 (AOP),等距多項式和三項多項式。Gu◦和Wang發展二段 (請先閱讀背面之注意事項再填寫本頁) 式乘法器,這是使用一般乘法單元和降次方的處理單元所構 成的。儘管上面所述低複雜性乘法器是很適合於密碼技術, 但其電路結構並非心臟收縮陣列電路,假如m很大就會產生 很長的傳播耽擱。有關低複雜性乘法器可以參考下列文獻: [1] E. R. Berlekamp, Algebraic Coding Theory, New York:McGraw-Hill, 1968 [2] D. E. R. Denning, Cryptography and Data Security, Reading, MA: Addison-Wesley,1983.589570 A7 B7 V. Description of the invention (I) Technical field (please read the notes on the back before filling this page) The present invention is a low-complexity systolic array type double base multiplier with limited field GF (2m), especially Refers to an innovative technology that can increase the multiplier speed of a finite field GF (2m). BACKGROUND OF THE INVENTION At present, China's patent technology related to the "multiplier" disclosed in the Republic of China Patent Gazette can be listed as follows: 1. Announcement No. 3 8 2 0 8 8 "Finite Field GF (2m) Cell array power and circuit "invention patent case. 2. Announcement No. 4 0 7 8 9 "Multiplier" invention patent case. 3. Announcement Patent No. 2 5 5 9 5 7 "Design method of t-bit semi-parallel processing Growayan multiplier". 4. Announcement No. 3 6 0 8 4 5 "Panel array multiplier architecture and method" invention patent case. 5. Announced patent case No. 4 0 5 0 8 6 "Fast Regular Multiplier Architecture". Printed in this limited field GF (2m) by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, effective algebra operations (including operations such as addition, multiplication, division, and exponent) are widely used in error correction codes and cryptographic techniques. Decoding of binary BCH code, encoding and decoding of RS code (Reed-Solomon Code), and encryption and decryption of digital information on secure communication (Encryption and Decryption). Nevertheless, the operations of multiplication and negation of GF (2m) are still quite complicated. For multiplication in GF (2m), some scholars have proposed fast algorithms and fast circuits, such as Itoh-Tsujii, Sunar-Koc, Hasan. These 3 paper sizes are applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 589570 A7 __B7_ V. Description of the invention (2) These multiplier architectures are based on special polynomials, which include all-one-polynomial (AOP), isometric Polynomial and trinomial polynomial. Gu◦ and Wang developed the second stage (please read the notes on the back before filling out this page), a multiplier, which is composed of a general multiplication unit and a power reduction processing unit. Although the low complexity multiplier described above is very suitable for cryptographic technology, its circuit structure is not a systolic array circuit. If m is large, it will cause a long propagation delay. For the low complexity multiplier, please refer to the following literatures: [1] E. R. Berlekamp, Algebraic Coding Theory, New York: McGraw-Hill, 1968 [2] D. E. R. Denning, Cryptography and Data Security, Reading, MA: Addison-Wesley, 1983.

[3] M. Y. Rhee, Cryptography and Secure Communications, McGraw-Hill, Singapore, 1994.[3] M. Y. Rhee, Cryptography and Secure Communications, McGraw-Hill, Singapore, 1994.

[4] T· Itoh and S. Tsujii,&quot;Structure of Parallel Multipliers for a Class of Finite Fields GF(2m),&quot; Information and Computation, Vol. 83, pp. 21-40, 1989. 經濟部智慧財產局員工消費合作社印製 [5] M.A. Hasan, M. Wang, and V.K. Bhargava, r,A Modified Massey-Omura Multiplier for a Class of Finite Fields,&quot; IEEE Trans. Computers, Vol. C-41, No.8, PP. 962-972, Aug. 1992.[4] T. Itoh and S. Tsujii, "Structure of Parallel Multipliers for a Class of Finite Fields GF (2m)," Information and Computation, Vol. 83, pp. 21-40, 1989. Intellectual Property of the Ministry of Economic Affairs Printed by the Bureau ’s Consumer Cooperatives [5] MA Hasan, M. Wang, and VK Bhargava, r, A Modified Massey-Omura Multiplier for a Class of Finite Fields, &quot; IEEE Trans. Computers, Vol. C-41, No. 8, PP. 962-972, Aug. 1992.

[61]C. K. Koc and B. Sunar, &quot;Low Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,丨'IEEE Trans. Computers,Vol. 47, No. 3, PP. 353〜356, Mar. 1998.[61] CK Koc and B. Sunar, &quot; Low Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields, 丨 'IEEE Trans. Computers, Vol. 47, No. 3, PP. 353 ~ 356, Mar. 1998.

[7]B. Sunar and C.K. Koc, MMastrovito Multiplier for All Trinomials,&quot; IEEE Trans· Computers,Vol. 48, No· 5, PP. 522- ____I____4_ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 589570 A7 _________ 五、發明説明) 527, May 1999.[7] B. Sunar and CK Koc, MMastrovito Multiplier for All Trinomials, &quot; IEEE Trans · Computers, Vol. 48, No · 5, PP. 522- ____I____4_ This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 (Mm) 589570 A7 _________ V. Description of Invention) 527, May 1999.

[8]J. H. Guo and C.L. Wang, &quot;Low-Complexity Power-Sum Circuit for GF(2m) and Its Applications&quot;,IEEE Trans. Circuits and Systems-II,Vol. 47, No· 10, PP. l〇91_l〇97, 〇ct. 2000· 在超大規模積體電路技術中,陣列式處理器具有簡單和規 則的電路系統,包括三個類型電路架構心臟收縮(syst〇llc) 、細胞(cellular)和管道(pipeline)。陣列式處理器的優點是可 定義成一個基本細胞(basic cell)或者一些細胞。對於有限 場GF(2m)的現存收縮乘法器大多數基於二個演算法一第一位 元首先輸入(most significant bit first)陣列和最後一位元首 先輸入(least significant bit ;first)陣列一來計算有限場的兩 個元素之積。這些乘法器適合於在錯誤更正碼方面應用,但 是,這些收縮乘法器就密碼應用而言具有很複雜的電路和較長 的計算延遲。例如Wei’s的乘法器的等待時間需要3m脈波 延遲;Guo-Wang的乘法器的等待時間需要2.5m脈波延遲。相 關的心臟收縮乘法器可以參考下列文獻: [1] S. W. Wei, MA Systolic Power-Sum Circuit for GF(2m),M IEEE Trans. Computers, Vol. 43, No. 2, PP. 226-229, Feb. 1994.[8] JH Guo and CL Wang, &quot; Low-Complexity Power-Sum Circuit for GF (2m) and Its Applications &quot;, IEEE Trans. Circuits and Systems-II, Vol. 47, No. 10, PP. L〇91_l 〇97, 〇ct. 2000 · In the ultra-large-scale integrated circuit technology, the array processor has a simple and regular circuit system, including three types of circuit architecture: cardiac contraction (systollc), cells (cellular), and ducts ( pipeline). The advantage of the array processor is that it can be defined as a basic cell or some cells. Existing shrinking multipliers for finite field GF (2m) are mostly based on two algorithms-a first significant bit first array and a last significant bit first array. Calculates the product of two elements of a finite field. These multipliers are suitable for applications with error correction codes, but these shrink multipliers have very complicated circuits and long calculation delays for cryptographic applications. For example, the wait time of Wei's multiplier requires a 3m pulse delay; the wait time of Guo-Wang's multiplier requires a 2.5m pulse delay. Related systolic multipliers can refer to the following documents: [1] SW Wei, MA Systolic Power-Sum Circuit for GF (2m), M IEEE Trans. Computers, Vol. 43, No. 2, PP. 226-229, Feb . 1994.

[2] C· S. Yeh,S· Reed,and 丁· K· Truong,&quot;Systolic Multipliers for Finite Fields GF(2m),M IEEE Trans. Computers, Vol. C-33, PP. 357-360, Apr. 1984· [3] C· Y. Lee,E. H· Lu,and J· Y· Lee,,,Bit-Parallel Systolic Multipliers for GF(2m) Fields Defined by All-One and Equally-Spaced Polynomials,,f IEEE Trans. Computers, No. 5, PP. 385- _ _5__ 本紙張尺度適用中國國家標準(CNS ) A4規格(21 OX297公釐) (請先閲讀背面之注意事項再填寫本頁) L·. 訶 經濟部智慧財產局員工消費合作社印製 7C 5 9 8 5 A7 B7 五、發明説明(j ) 393, May 2001. (請先閱讀背面之注意事項再填寫本頁) [4]C.Y. Lee, E.H. Lu, and L.F. Sun, &quot;Low-Complexity Bit-Parallel Systolic Architectures for Computing AB2+C in a Class of Finite Field GF(2m) n, IEEE Trans. CS-II, No. 5, PP. 519-523, May 2001· 對於有限場GF(2m),元素的表示式主要包含有多項式基 底(標準基底,standard basis or polynomial basis ),雙重基 底(dual basis)和正規基底(normal basis)。在雙重基底中,根 據線性回饋’追串聯式Belekamp乘法器是有很效地被實現 。Wang發展了另外一類型雙重基礎乘法器使用自身雙重的正 規基底(self-dual normal basis)。前不久,Wu-Hasan-Blake 使用雙重基底來設計低複雜性位元並列式乘法器。[2] C. Yeh, S. Reed, and D. K. Truong, &quot; Systolic Multipliers for Finite Fields GF (2m), M IEEE Trans. Computers, Vol. C-33, PP. 357-360, Apr. 1984 · [3] C. Y. Lee, E. H. Lu, and J. Y. Lee ,,, Bit-Parallel Systolic Multipliers for GF (2m) Fields Defined by All-One and Equally-Spaced Polynomials, , f IEEE Trans. Computers, No. 5, PP. 385- _ _5__ This paper size applies to China National Standard (CNS) A4 specification (21 OX297 mm) (Please read the precautions on the back before filling this page) L · Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 7C 5 9 8 5 A7 B7 V. Invention Description (j) 393, May 2001. (Please read the notes on the back before filling this page) [4] CY Lee, EH Lu, and LF Sun, &quot; Low-Complexity Bit-Parallel Systolic Architectures for Computing AB2 + C in a Class of Finite Field GF (2m) n, IEEE Trans. CS-II, No. 5, PP. 519-523 , May 2001 · For the finite field GF (2m), the expression of the element mainly includes a polynomial basis (standard basis or polynomial basis), double Bottom base (dual basis) and the substrate normal (normal basis). In the double base, the linear-feedback Belekamp multiplier is effectively implemented according to linear feedback. Wang has developed another type of dual-base multiplier that uses its own dual-normal basis. Not long ago, Wu-Hasan-Blake used a dual base to design a low-complexity bit multiplier.

Fenii提出了雙重和標準基底之間的轉換關係,他也提出 位元平行式和串連式的雙重基底乘法器。有關雙重基底的乘 法器可以參考下列文獻: 經濟部智慧財產局員工消費合作社印製 [1] J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian, Applications of finite fields, Kluwer Academic, 1993.Fenii proposed a conversion relationship between double and standard bases. He also proposed bit-parallel and serial double-base multipliers. For the multiplier with double bases, please refer to the following documents: Printed by the Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs [1] J. Menezes, IF Blake, X. Gao, RC Mullin, SA Vanstone, and T. Yaghoobian, Applications of finite fields Kluwer Academic, 1993.

[2] E.R. Belekamp,&quot;Bit-Serial Reed-Solomon Encoders,&quot; IEEE Information Theory,Vol. 28, PP· 869-974,1982· [3] M. Morii,K. Kasahara,and D丄· Whiting, &quot;Efficient Bit-Serial Multiplication and Discrete-Time Wiener-Hoph Equation over Finite Fields,&quot; IEEE Trans· Information Theory,Vol. 35, PP.1177-1184, 1989. __^_6_ 本紙張尺度適用中國國家標準(CNS ) A4規格(21 OX297公釐) 589570 經濟部智慧財產局員工消費合作社印製 A7 B7___五、發明説明(f ) [4] Μ· Wang and I.F. Blake,&quot;Bit Serial Multiplication in Finite Fields/,SIAM Discrete Math. Vol. 3, No. 1,PP. 140-148, Feb. 1990. [5] C.C. Wang, nAn Algorithm to Design Finite Field Multipliers Using a Self-Dual Normal Basis,&quot; IEEE Trans. Computers,Vol· 38, No. 10, PP. 1457-1459, Oct. 1989. [6] H. Wu, M. A. Hasan, and L. F. Blake, M New Low-Complexity Bit-Parallel Finite Field Multipliers Using Weakly Dual Bases,&quot; IEEE Trans· Computers,Vol· 47, No· 11,PP. 1223〜1234, Nov. 1998. [7] S.t.J Fenn, M. Benaissa, and D. Taylor, nGF(2m) Multiplication and Division over the Dual Basisf, IEEE Trans. Computers, Vol. 45, No. 3, PP. 319-327, Mar· 1996· [8] S.t.J Fenn, M. Benaissa, and D. Taylor, MA Dual Basis Systolic Multipliers for GF(2m)&quot; IEE Proc-Comp. Digit· Tech·,vol· 144, no. 1, PP.43-46, 1997 有限場GF(2m)簡介 假設有限場GF(2m)是被不可分解的多項式F(x) = xm +fm-…+flX+f。產生的,其中所有係數均fi爲0或1。假設α 是F〇〇的一個根,GF(2m)的元素能夠被表示如下: A=a〇+ aia+ ...+am-iam·1 其中所有係數均爲0或1且基底稱之標 準基底或多項式基底。此外,標準基底對應之雙重基底的 形式{β。,βν··,βπ^}有下列特性: ________7_ 本紙張尺度適用中國國家標準(CNS ) Α4規格(21 ΟΧ297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂 暴· __·· · Π4 589570 A7 B7 五、發明説明(6 ) ΊΗγα%) if i = j ⑴ [〇 if i ^ j 其中 Tr(·)是追蹤功能(trace function),且 YeGF(2m),Y#0 。對於AEGF(2m),^ = 5其中⑴和分別 爲兀素Α的多項式基底與雙重基底之對應係數。從 ,我們得到 m-lΤΓ(γαίΑ) = ΤΓ(γαίνα]β]) m-l a]Tr(Ya^j) 7 (2) (請先閲讀背面之注意事項再填寫本頁) a, 從F(a)=0,我們可獲得下列關係式 m-Y m-Γ[2] ER Belekamp, &quot; Bit-Serial Reed-Solomon Encoders, &quot; IEEE Information Theory, Vol. 28, PP · 869-974, 1982 · [3] M. Morii, K. Kasahara, and D 丄 · Whiting , &quot; Efficient Bit-Serial Multiplication and Discrete-Time Wiener-Hoph Equation over Finite Fields, &quot; IEEE Trans · Information Theory, Vol. 35, PP.1177-1184, 1989. __ ^ _ 6_ This paper standard applies to Chinese national standards (CNS) A4 specification (21 OX297 mm) 589570 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7___ V. Invention Description (f) [4] M. Wang and IF Blake, &quot; Bit Serial Multiplication in Finite Fields /, SIAM Discrete Math. Vol. 3, No. 1, PP. 140-148, Feb. 1990. [5] CC Wang, nAn Algorithm to Design Finite Field Multipliers Using a Self-Dual Normal Basis, &quot; IEEE Trans. Computers, Vol · 38, No. 10, PP. 1457-1459, Oct. 1989. [6] H. Wu, MA Hasan, and LF Blake, M New Low-Complexity Bit-Parallel Finite Field Multipliers Using Weakly Dual Bases, &quot; IEEE Trans · Computers, Vol · 47, No. 11, PP. 1223 ~ 1234, Nov. 1998. [7] StJ Fenn, M. Benaissa, and D. Taylor, nGF (2m) Multiplication and Division over the Dual Basisf, IEEE Trans. Computers, Vol. 45, No. 3, PP. 319-327, Mar · 1996 · [8] StJ Fenn, M. Benaissa, and D. Taylor, MA Dual Basis Systolic Multipliers for GF (2m) &quot; IEE Proc-Comp. Digit · Tech ·, vol · 144, no. 1, PP.43-46, 1997 Introduction to the finite field GF (2m) Assume that the finite field GF (2m) is a nondecomposable polynomial F (x) = xm + fm -... + flX + f. Produced, where all coefficients are fi or 0. Assuming α is a root of F〇〇, the element of GF (2m) can be expressed as follows: A = a〇 + aia + ... + am-iam · 1 where all coefficients are 0 or 1 and the base is called the standard base Or polynomial basis. In addition, the standard base corresponds to the form of the double base {β. , Βν ··, βπ ^} have the following characteristics: ________7_ This paper size is applicable to the Chinese National Standard (CNS) Α4 specification (21 〇 × 297 mm) (Please read the precautions on the back before filling this page) Ordering storms __ ·· · Π4 589570 A7 B7 V. Description of the invention (6) ΊΗγα%) if i = j ⑴ [〇if i ^ j where Tr (·) is the trace function, and YeGF (2m), Y # 0. For AEGF (2m), ^ = 5 where ⑴ and are the corresponding coefficients of the polynomial basis and the double basis of the element A. From, we get m-lΤΓ (γαίΑ) = ΤΓ (γαίνα] β]) ml a] Tr (Ya ^ j) 7 (2) (Please read the precautions on the back before filling this page) a, from F (a ) = 0, we can get the following relation mY m-Γ

m-Ym-Y

Ja 訂 a /n+l 5(c+/:/,(v ϊ-ΓJa order a / n + l 5 (c + /: /, (v ϊ-Γ

/(V (3) s&gt;. a m-V 2m-2 _ /*(^-2) 經濟部智慧財產局員工消費合作社印製 其中所有係數都等於1或〇。假設元素 Β=ώ0β〇+1)ΐβΐ+是以雙重基底表7]~ς式,應用追縱功能 於方程式(3)之兩邊可得 Tr{yalB)^bi ? i=0,1,…,m-1 及 (4a) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29?公釐 589570 A7 B7 五、發明説明( m_l 7&gt;W5) = J//—〜·,i=m、m+1、…、2m-2 (4b) /«0 假設ί ,i=0、卜…、2m-2。假如元素C是兩 元素A及B之積,則有下列關係式 ^0 ^1 〜〜h b./ (V (3) s &gt;. a mV 2m-2 _ / * (^-2) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, where all coefficients are equal to 1 or 0. Assume the element Β = ώ0β〇 + 1) ΐβΐ + is based on the double-basis table 7] ~ ς. Applying the tracking function to both sides of equation (3) gives Tr {yalB) ^ bi? i = 0,1, ..., m-1 and (4a) paper The scale is applicable to the Chinese National Standard (CNS) A4 specification (210X29? 589570 A7 B7 V. Description of the invention (m_l 7 &gt; W5) = J // — ~ ·, i = m, m + 1, ..., 2m-2 ( 4b) / «0 Suppose ί, i = 0, Bu ..., 2m-2. If element C is the product of two elements A and B, then there is the following relationship ^ 0 ^ 1 ~~ h b.

bm 一'K ax ym-l J2m - 2 a m-l C0 C1 m-l c 中尽=rr(yaj)(i=〇, 1,2, .^2111-2),c^TKy^C) (i-0, 1, 2, • ••,m-l),且 ^ :bm a'K ax ym-l J2m-2 a ml C0 C1 ml c Extremity = rr (yaj) (i = 〇, 1, 2,. ^ 2111-2), c ^ TKy ^ C) (i-0 , 1, 2, • ••, ml), and ^:

(5) (請先閱讀背面之注意事項再填寫本頁) 綜合上述,計算C=AB有下列兩步驟:(5) (Please read the notes on the back before filling in this page) To sum up, calculating C = AB has the following two steps:

^SJ 1、 使用方程式(4),計算β,0^U2m-2 2、 使用方程式(5),計算Ci,OsUm_l 雙重某底乘法的計算法則 右 A=a〇+aicx+a2Cx+.&quot;+am-i〇c 及 B=b〇P〇+biPi+b2P2+.&quot;+bm- 爲GF(2m)的非零兩元素,其分別揭示標準基底與雙重基 底的元素表示式。首先,假設計算ί =7&gt;(yaW),i=m、m+l、 …、2m-2,已經藉由方程式⑷被決定,因此,根據方程式(5) ’假如兀素C^CoPo + ClPl+CzP〗 + ···+〇ηι·ΐβπι_1是兩兀素A和B之積 ,則 m-l m-l ϋΑ+Λ ⑹ 爲了設計心臟收縮式雙重基底乘法器,新的演算法需要 下面的推導過程。 PX A = 3.0 + fllCX + &amp;2CX +...+ 3.m*l(X 及 B = 1)〇β。+ bl β 1 + 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐)^ SJ 1. Use equation (4) to calculate β, 0 ^ U2m-2 2. Use equation (5) to calculate Ci, OsUm_l The calculation rule of a double bottom multiplication method right A = a〇 + aicx + a2Cx +. &Quot; + am-i〇c and B = b〇P〇 + biPi + b2P2 +. &quot; + bm- are two non-zero elements of GF (2m), which respectively reveal the element expressions of the standard base and the double base. First, suppose the calculation of ί = 7 &gt; (yaW), i = m, m + 1,…, 2m-2, has been determined by equation ⑷. Therefore, according to equation (5), 'if the element C ^ CoPo + ClPl + CzP〗 + ··· + 〇ηι · ΐβπι_1 is the product of the two elements A and B, then ml ml ϋΑ + Λ ⑹ In order to design a systolic double-base multiplier, the new algorithm needs the following derivation process. PX A = 3.0 + fllCX + & 2CX + ... + 3.m * l (X and B = 1) 〇β. + bl β 1 + This paper size applies to China National Standard (CNS) Α4 size (210X297 mm)

1T S. 經濟部智慧財產局員工消費合作社印製3&amp; 589570 五、發明説明(1T S. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 3 &amp; 589570

均爲GF(r)的兩元素。從方程式⑹,雙 重土底的,,成兩部分:偶數i+j及奇數⑷,即 …7— Hdd 以下我們將依據方程式(7)說明雙重基底乘法 1)偶數i+j 假設j和k同爲偶數或奇數,其中及 ’且1是被選擇成i=&lt;G-k)/2&gt;以滿足i+j爲偶數 ,其中&lt;θ&gt;被表示爲ein〇dm。那麼,將i=&lt;(j-k)/2&gt;代 入方程式(7)之右邊第一項,我們可得 (請先聞讀背面之注意事項再填寫本頁) i+j is even m—丄 1 i +k is even ⑻Both elements are GF (r). From the equation ⑹, which has a double earth bottom, it is divided into two parts: the even number i + j and the odd number ⑷, that is, 7—Hdd. Now we will explain the double base multiplication according to equation (7). 1) The even numbers i + j assume that j and k are the same Is an even number or an odd number, where and 'and 1 are selected so that i = &lt; Gk) / 2 &gt; to satisfy i + j as an even number, where &lt; θ &gt; is expressed as ein〇dm. Then, substituting i = &lt; (jk) / 2 &gt; into the first term on the right side of equation (7), we can get (please read the notes on the back before filling this page) i + j is even m— 丄 1 i + k is even ⑻

IT 2)奇數i+j 假設j是偶數(或奇數),且k是奇數(或偶數),其中 O^k^n-Ι 且 ,且 i 是被選擇爲 izz&lt;-(j+k+l)/2&gt;以滿足 i+j等於奇數。因此,將i=&lt;-(j+k+l)/2&gt;代入方程式(7)之右邊 第二項,我們可得 άφ. 經濟部智慧財產局員工消費合作社印製 /71-1IT 2) Odd number i + j Suppose j is even (or odd), and k is odd (or even), where O ^ k ^ n-I and, and i is selected as izz &lt;-( j + k + l ) / 2 &gt; so that i + j is equal to an odd number. Therefore, substituting i = &lt;-( j + k + l) / 2 &gt; into the right side of equation (7) The second term, we can get άφ. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs / 71-1

i + j is odd αΑ+/^/=y y.a&lt;i + j is odd αΑ + / ^ / = y y.a &lt;

A :1/=0 λ=0 i+k is odd 因此,乘法能夠推導如下:A: 1 / = 0 λ = 0 i + k is odd Therefore, multiplication can be derived as follows:

AB i + j is odd b + a&lt;-(i+y+l)/2&gt;^&lt;-(/+y+l)/2&gt; + ; i+j is even (9) (10) 本紙張尺度適用中國國家標準(CNS ) A4規格(210XM7公釐) 589570 經濟部智慧財產局員工消費合作社印製 A7 B7_ 五、發明説明(7 ) 範例 1 :假設 A=a〇+aia+a2a2+a3〇c3+a4a4和 B=b〇p〇+b^+b^+b^+b#4是有限場GF(25)的兩元素;且假設 C=c〇P〇+c^+c^+c3p3+c4p4是相乘兩元素A及B之結果。若 S;=7&gt;(yaj),i=〇、卜2、…、2m-2,已經藉由方程式⑷完成 計算。因此,利用方程式(10)來計算雙重基底乘法,假如元 素OC^+C^l + C^+.H+Cn^nM被表示爲兩元素之積,則A和 B的乘積被獲得如下: ;β〇 βχ β2 /^4 β〇5〇 aA a3b6 a3b7 〜〜 〜〜〜 〜〜 〜〜〜 + «2b2 fl2Z?3 a^3 a^4 a〇Z?4 ^ 緣是於此,本發明之目的在於提出了一種具有很低的計 算延遲及很高的輸出速度的GF(2m)乘法器。 爲達上述之目的,本發明提出一種有限場GF(2m)之低複 雑的心臟收縮陣列式雙重基底乘法器,其電路特性是包含有 一裝置,用以錯誤控制編碼之資料解碼及密碼技術之加 解密中,該乘法器係對有限場GF(2m)中之一第一元素A與一 第二元素B進行乘積運算以得到一第三元素C,其中元素A 是以多項式基底(Ι,α,α2,···#1™)之表示式,元素Β·及C是 以雙重基底之表示式,該有限場〇F(2m)爲不可分解之多項式 ______η_ ___ 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇X297公着) (請先閲讀背面之注意事項再填寫本頁)AB i + j is odd b + a &lt;-( i + y + l) / 2 &gt; ^ &lt;-(/ + y + l) / 2 &gt;+; i + j is even (9) (10) paper The standard applies to the Chinese National Standard (CNS) A4 specification (210XM7 mm) 589570 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7_ V. Invention Description (7) Example 1: Assume A = a〇 + aia + a2a2 + a3〇 c3 + a4a4 and B = b〇p〇 + b ^ + b ^ + b ^ + b # 4 are two elements of the finite field GF (25); and it is assumed that C = c〇P〇 + c ^ + c ^ + c3p3 + c4p4 is the result of multiplying two elements A and B. If S; = 7 &gt; (yaj), i = 0, Bu 2, ..., 2m-2, the calculation has been completed by equation ⑷. Therefore, using equation (10) to calculate the double base multiplication, if the element OC ^ + C ^ l + C ^ +. H + Cn ^ nM is expressed as the product of two elements, the product of A and B is obtained as follows: β〇βχ β2 / ^ 4 β〇5〇aA a3b6 a3b7 ~~~~~~~~~~ + «2b2 fl2Z? 3 a ^ 3 a ^ 4 a〇Z? 4 ^ This is the reason for the invention The purpose is to propose a GF (2m) multiplier with low calculation delay and high output speed. In order to achieve the above-mentioned object, the present invention proposes a low-complexity systolic array-type double base multiplier with a low field of finite field GF (2m). The circuit characteristic includes a device for error-control encoding of data decoding and encryption technology. In decryption, the multiplier performs a product operation on a first element A and a second element B in the finite field GF (2m) to obtain a third element C, where the element A is based on a polynomial basis (I, α, α2, ··· # 1 ™), the elements B · and C are expressions with double bases, and the finite field OF (2m) is an indecomposable polynomial ______ η_ ___ This paper standard applies Chinese national standard ( CNS) A4 specification (21〇297297) (Please read the precautions on the back before filling this page)

589570 A7 B7__ ___ 五、發明説明(/0 ) (請先聞讀背面之注意事項再填寫本頁) 所產生的,及α爲該不可分解的多項式之根;該第一元素A 被表示爲一 m位元A= a〇 +aia +a2〇c2 +…+am]am] ’ §亥桌一兀素 B 被表示爲一 m 位元 Β= Νβο+Ι^β ^ +b2p2+…+ΐ3〇Μβπ^,該第二 元素 C 被表示爲—^ Π1 位兀 C = C〇P。+ 〇ΐβ 1 + C2 02 +···+ “.如·1 ’ 其 中所有元素的係數是等於〇或1,該乘法器包括兩個單元·· 雙重基底乘法及雙重基底轉換; 該雙重基底乘法單元的電路結構是由m2相同的小細胞所 組成,形成m x m陣列; 每一小細胞包含有三(或四)個輸入信號線及三(或四)個輸 出信號線, 每一小細胞包含一個AND閘,一個X0R閘和三(或四) 個一位元暫存器; 該雙重基底轉換單元的電路結構是由樹狀式2-input X0R 閘所構成。 經濟部智慧財產局員工消費合作社印製 有利的是,該乘法器的乘法單元包含有兩種小細胞(V及 U細胞)的陣列細胞,其中每一V細胞是執行 〜=\_({.+;.+1)/21(1.+;+1)/2&gt;+; + q 的計算;每一 U 細胞是執行 〔广 α&lt;(ί·_;)/2Λ(Η)/2&gt;+;· + c;•的計算。 其中,該陣列細胞Uu之輸出信號A連接至該陣列細胞 Ui+u+i之輸入信號a,該陣列細胞Uu之輸出柄號;B連接至該 陣列細胞Ui.m之輸入信號B ;該陣列細胞Vu之輸出信號a 連接至該陣列細胞Vuu。之輸入信號A,該陣列細胞Vu之輸 出信號B連接至該陣列細胞Vm,,+1之輸入信號B。 其中,若有限場GF(2m)的所有元素是由不可分解的三項 ^紙張尺度適用中國國家標^了(:抓)八4規格(210/297公釐) &quot; ' ~' 7 589570 A7 ___B7 五、發明説明(I丨) 多項式xm+xn+l所產生的,其中gcd(m,n)=l,第二元素B的係 數是以也⑼\(1)…的排列方式進入該基底轉換陣列處 理器。 其中,該基底轉換陣列處理器的輸出信號是以 (心_ &amp;—···、-_)的方式輸出。 其中,若有限場GF(2m)的所有元素是由不可分解的三項 多項式xm+x”+l所產生的,其中gcd(m,n)=l及r&gt;2,第二元 素B的係數分成i組,,每一組係數是以 也的排列方式進入次基底轉換陣列處理器 〇 其中,第二元素Β的係數,第i組係數,O^Ur-2,輸入 至修正後的次基底轉換陣列處理器,該次基底轉換陣列處理 器的輸出爲第i=r-1組係數輸入 至次基底轉換陣列處理器,該次基底轉換陣列處理器的輸出 爲化1)+/ +mr (2)+i+mr ^K(m-l)+i+mr) 其中,該陣列細胞Uu,假如i+j=偶數,該陣列細胞Uu 之輸出信號A連接至該陣列細胞Umw之輸入信號A,該陣 列細胞Uu之輸出信號B連接至該陣列細胞之輸入信號 B;假如1+:j=奇數,該陣列細胞Uu之輸出信號A連接至該陣 列細胞之輸入信號A,該陣列細胞Uu之輸出信號B連 接至該陣列細胞U1+u+1之輸入信號B。 其中,當i+j=奇數時,每一 U細胞是執行 ς·=次-㈣的儿㈣⑽乂的計算;當1♦偶數時,每一 u細胞 是執行 ς· = 4(W)/2&gt;5&lt;(WV2&gt; + ς·的計算。 _^_13 __ 本紙張尺度適用中國國家標準(CNS ) Α4規格(210 X 297公釐) / ' (請先閱讀背面之注意事項再填寫本頁) 訂 ά0. 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 589570 A7 _____B7 五、發明説明((2) 其中,若有限場GF(2m)的所有元素是由不可分解的全一 多項式(AOP)所產生的,該乘法器的結構僅包含雙重基底 乘法器,該乘法器的計算延遲僅需要m+1脈波週期。 其中,該乘法器組成(m+l)x(m+l)之陣列細胞,其中每 一細胞包含一個AND閘,一個XOR閘和三個一位元暫存器 〇 其中,該三個一位元暫存器,其中第一元素A被表示爲 一 m+1 位元(Α= Αο+Αια + A2a2+.&quot;+Amam),該第二元素 B 被表示爲一 m+1位元Β= Βοβο+Βφ i+B$2+...+Bmpm,該第三元 素 C 被表示爲一 m+1 位元 C=C〇p〇+ Οβ C2p2 +·_.+ Cmpm。 其中,每一脈波週期的傳波延遲最大需要一個AND邏 輯閘及一個X0R邏輯閘的計算時間。 其中,若有限場GF(2m)的所有元素是由不可分解的三項 多項式xm+x+l所產生的,該乘法器的計算延遲僅需要m+l 脈波週期;若有限場GF(2m)的所有元素是由不可分解的三項 多項式xm+xn+l所產生的,其中2^n^「m/2l,該乘法器的計算 延遲僅需要m+2脈波週期。 爲讓本發明之上述目的、特徵、和優點能夠明顯易懂, 下文特舉一較佳實施例,並配合所附圖式,作詳細說明如下 ’以期B旨使熟悉本發明相關技術之人士,得依本說明書之陳 述據以實施。 胤式說明 第一圖:係本發明之心臟收縮式雙重基底乘法器之架構圖。 第二圖··係本發明之基底轉換單元之電路的示意圖。 (請先閎讀背面之注意事項再填寫本頁)589570 A7 B7__ ___ V. Description of the invention (/ 0) (Please read the notes on the back before filling this page), and α is the root of the indecomposable polynomial; the first element A is represented as a m-bit A = a〇 + aia + a2〇c2 + ... + am] am] '§ Table I element B is expressed as an m-bit B = Νβο + Ι ^ β ^ + b2p2 + ... + ΐ3〇Μβπ ^, The second element C is represented as-^ Π1 position C = Cop. + 〇ΐβ 1 + C2 02 + ·· + ". Such as · 1 'where the coefficients of all elements are equal to 0 or 1, the multiplier includes two units. · Double-base multiplication and double-base conversion; The double-base multiplication The circuit structure of the unit is composed of small cells with the same m2 to form an mxm array. Each small cell contains three (or four) input signal lines and three (or four) output signal lines. Each small cell contains an AND. Gate, one X0R gate and three (or four) one-bit registers; the circuit structure of the dual-base conversion unit is composed of a tree-type 2-input X0R gate. The multiplication unit of this multiplier contains two array cells of small cells (V and U cells), where each V cell performs ~ = \ _ ({. +;. + 1) / 21 (1. +; + 1) / 2 &gt;+; + q calculations; each U cell performs the calculation of [广 α &lt; (ί · _;) / 2Λ (Η) / 2 &gt;+; · + c; •. Where The output signal A of the array cell Uu is connected to the input signal a of the array cell Ui + u + i, and the output handle of the array cell Uu; B is connected to the array. Input signal B of Ui.m; output signal a of the array cell Vu is connected to the array cell Vuu. Input signal A, output signal B of the array cell Vu is connected to the array cell Vm, and +1 input signal B . Among them, if all the elements of the finite field GF (2m) are composed of three items that cannot be decomposed ^ The paper scale is applicable to the national standard of China ^: (grabbing) 8 4 specifications (210/297 mm) &quot; '~' 7 589570 A7 ___B7 V. Description of the invention (I 丨) The polynomial xm + xn + l is generated, where gcd (m, n) = 1, and the coefficient of the second element B is entered in an arrangement of ⑼ \ (1) ... Basis conversion array processor. Among them, the output signal of the base conversion array processor is output in the form of (heart_ & —..., -_). Where all elements of the finite field GF (2m) are determined by Generated by the indecomposable trinomial polynomial xm + x ”+ l, where gcd (m, n) = 1 and r &gt; 2, the coefficients of the second element B are divided into i groups, and each group of coefficients is arranged in the same order The method enters the subbase conversion array processor. Among them, the coefficient of the second element B, the coefficient of the i-th group, O ^ Ur-2, is input to the modified subbase. Conversion array processor, the output of the sub-base conversion array processor is the i = r-1 set of coefficients input to the sub-base conversion array processor, and the output of the sub-base conversion array processor is 1) + / + mr ( 2) + i + mr ^ K (ml) + i + mr) where the array cell Uu, if i + j = even, the output signal A of the array cell Uu is connected to the input signal A of the array cell Umw, the The output signal B of the array cell Uu is connected to the input signal B of the array cell; if 1+: j = odd, the output signal A of the array cell Uu is connected to the input signal A of the array cell, and the output signal of the array cell Uu B is connected to the input signal B of the array cell U1 + u + 1. Among them, when i + j = odd, each U cell performs the calculation of ς · = 次 -㈣'s daughter-in-law; when 1 ♦ even number, each u cell executes ς · = 4 (W) / 2 &gt; 5 &lt; (WV2 &gt; + Calculation of ς ·. _ ^ _ 13 __ This paper size applies to the Chinese National Standard (CNS) Α4 size (210 X 297 mm) / '(Please read the precautions on the back before filling this page) Άά0. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by 589570 A7 _____B7 V. Description of the invention ((2) Where all elements of the finite field GF (2m) are indecomposable The structure of the multiplier includes only a double-base multiplier, and the calculation delay of the multiplier only needs m + 1 pulse periods. Among them, the multiplier consists of (m + 1) x (m + 1) array cells, where each cell contains an AND gate, an XOR gate, and three one-bit registers, where the three one-bit registers, where the first element A is represented Is a m + 1 bit (Α = Αο + Αια + A2a2 +. &Quot; + Amam), the second element B is represented as a m + 1 bit B = Βοβο + Βφ i + B $ 2 + ... + Bmpm, the third element C is represented as an m + 1 bit C = C〇p〇 + Οβ C2p2 + · _. + Cmpm Among them, the propagation delay of each pulse period requires the calculation time of an AND logic gate and an X0R logic gate. Among them, if all elements of the finite field GF (2m) are composed of an indecomposable trinomial polynomial xm + x + l, the calculation delay of this multiplier only needs m + l pulse period; if all elements of the finite field GF (2m) are generated by the indecomposable trinomial polynomial xm + xn + l, 2 ^ n ^ "m / 2l, the calculation delay of the multiplier only needs m + 2 pulse wave periods. In order to make the above-mentioned objects, features, and advantages of the present invention obvious and understandable, a preferred embodiment is given below, and In conjunction with the attached drawings, the detailed description is as follows: 'With a view to B, people who are familiar with the related technology of the present invention can implement it according to the statements in this specification. Formula Description 1 Figure: The systolic double-basis multiplication of the present invention Structure diagram of the device. The second figure ... is a schematic diagram of the circuit of the base conversion unit of the present invention. (Please read the Precautions to fill out this page)

/0%. 5 9 A7 ______B7 五、發明説明(丨)) 第三圖:係本發明較佳實施例之雙重基底乘法單元之逐次計 算過程。 第四圖:係本發明較佳實施例之雙重基底乘法單元之GF(25) 心臟收縮架構圖。 第五圖:係詳細的U細胞電路。 第六圖:係詳細的V細胞電路。 第七圖:係本發明較佳實施例之三項多項式χ7+χ4+1之詳細 的基底轉換器電路。 第八圖:(a)係本發明較佳實施例之三項多項式Χΐ2+Χ3+1之 詳細的次基底轉換電路;(b)係本發明較佳實施例之 三項多項式xl2+x3+l之修正後的次基底轉換電路。 第九圖:係本發明較佳實施例之三項多項式xl2+x3+l之基底 轉換器的電路架構。 第十圖:有限場GF(24)元素之多項式循環基底與多項式基底 的表示式之對應表。 第i^一圖:係本發明較佳實施例之AOP-based的雙重基底乘 法器之GF(24)心臟收縮架構圖。 詳細說明 這部分描述新的位元並列心臟收縮式雙重基底收縮乘法 器,它包括二個單元雙重基底轉換和雙重基底乘法,圖一 顯示整個雙重基底乘法器的功能塊圖。在圖一中,Dk表示m- bit暫存器且該站存器的延遲爲雙重基底轉換單元的計算時間 。雙重基底轉換單元是依據方程式(4)來計算 m^i^2m-2 ,其中元素 B=b〇p〇+biPi+b2p2 + …是以雙重 _____15_______ 本紙張尺度適用中國國家標準(cys ) A4規格(210 X 297公釐) &quot; — (請先閲讀背面之注意事項再填寫本頁)/ 0%. 5 9 A7 ______B7 V. Description of the invention (丨)) Figure 3: This is the sequential calculation process of the double base multiplication unit of the preferred embodiment of the present invention. Figure 4: GF (25) systolic architecture diagram of the dual base multiplication unit of the preferred embodiment of the present invention. Fifth figure: Detailed U-cell circuit. Figure 6: Detailed V-cell circuit. Fig. 7 is a detailed base converter circuit of the trinomial polynomial χ7 + χ4 + 1 of the preferred embodiment of the present invention. Eighth diagram: (a) is a detailed subbase conversion circuit of the trinomial polynomial χΐ2 + χ3 + 1 of the preferred embodiment of the present invention; (b) is a trinomial polynomial xl2 + x3 + l of the preferred embodiment of the present invention The modified sub-base conversion circuit. The ninth figure: the circuit structure of the base converter of the trinomial polynomial xl2 + x3 + 1 in the preferred embodiment of the present invention. Figure 10: Correspondence table between the polynomial cyclic basis and the expression of the polynomial basis of the finite field GF (24) element. FIG. I ^ 1 is a GF (24) systolic architecture diagram of an AOP-based dual base multiplier according to a preferred embodiment of the present invention. Detailed description This section describes the new bit-parallel systolic double-basis contraction multiplier, which includes two-unit double-basis conversion and double-basis multiplication. Figure 1 shows the functional block diagram of the entire double-basis multiplier. In Figure 1, Dk represents the m-bit register and the delay of the register is the calculation time of the double base conversion unit. The double base conversion unit calculates m ^ i ^ 2m-2 according to equation (4), where the element B = b〇p〇 + biPi + b2p2 +… is double _____15_______ This paper scale applies Chinese national standard (cys) A4 Specifications (210 X 297 mm) &quot; — (Please read the notes on the back before filling this page)

1T 經濟部智慧財產局員工消費合作社印製 589570 五 A7 B7 、發明説明(#) 基底之元素表示式且Y£GF(2m)。雙重基底乘法單元是依據方 程式(10)來執行兩元素之積運算。 首先,依據方程式(4) ’轉換單元包含有m-1模組,每 一模組是被建立成XOR邏輯閘之樹狀結構,如圖二所示。 因此,這個電路是由(m-l)22-inputX〇R邏輯閘、2m(m-l) 2-input AND邏輯閘、及(m-1)2 l-bit暫存器所構成的,轉 換單元電路的計算延遲僅需要fl〇g2ml脈波週期。 其次,爲了簡單說明,乘法單元是以有限場GF(25)爲例 。假日曼 A= a〇 + aicx + a2〇c + a3a + a4(x4 及 B = b〇p〇 + + b2p2 + b3p3+b$4EGF(2m),且計算 ,已經透過 轉換單兀兀成g十算。右Ci = CiOp〇+ 〇ηβΐ+ Ci2P2+ Ci3P3+ Ci4p4表示 爲第i次兩元素之積。假如設起始値C〇=0 ,則乘法的逐次 計算過程顯示如圖三所示。 依據圖二所顯不之§十算過程,圖四揭示位元並列式心臟 收縮乘法器,該電路包含有25個基本細胞(14個U細胞及 11個V細胞),每一 U細胞是被定義成一個2-input XOR閘 、一個2-input AND閘' 及三個i-bit暫存器,如圖五所示 ;每一 V細胞是被定義成一個2-input XOR閘、一個2-input AND閘、及四個Ι-bit暫存器,如圖六所示。 在圖四中,Uu細胞中的所有係數均存在於對角鄰近細胞 內從範例一可知。例如,Uu細胞是定義兩係數a3及|35的 乘積’且係數a3存在於U(u及u2,3細胞,同理,係數 b5也存在於U2“及U(u細胞中。同理,Vu細胞中的所有係數 均存在於對角鄰近細胞內從範例一可知。特別注意,兩係 (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 589570 5 A7 B7, Invention Description (#) The element expression of the base and Y £ GF (2m). The double base multiplication unit performs the product of two elements according to equation (10). First, according to equation (4) ', the conversion unit contains m-1 modules, and each module is built into a tree structure of XOR logic gates, as shown in Figure 2. Therefore, this circuit is composed of (ml) 22-inputX〇R logic gate, 2m (ml) 2-input AND logic gate, and (m-1) 2 l-bit register, the calculation of the conversion unit circuit The delay only requires a pulse period of f0g2ml. Second, for simplicity, the multiplication unit is based on the finite field GF (25) as an example. Holiday Man A = a〇 + aicx + a2〇c + a3a + a4 (x4 and B = b〇p〇 + + b2p2 + b3p3 + b $ 4EGF (2m), and calculated that it has been converted to g by ten Calculate. Right Ci = CiOp〇 + 〇ηβΐ + Ci2P2 + Ci3P3 + Ci4p4 is expressed as the product of the i-th two elements. If the initial 値 C〇 = 0 is set, the sequential calculation process of multiplication is shown in Figure 3. Based on Figure 2 The ten-calculation process shown in Figure §. Figure 4 reveals a bit-wise parallel systolic multiplier. This circuit contains 25 basic cells (14 U cells and 11 V cells). Each U cell is defined as a 2-input XOR gate, a 2-input AND gate 'and three i-bit registers, as shown in Figure 5; each V cell is defined as a 2-input XOR gate, a 2-input AND gate , And four 1-bit registers, as shown in Figure 6. In Figure 4, all coefficients in Uu cells exist in diagonally adjacent cells. We can see from example 1. For example, Uu cells define two coefficients a3 And the product of | 35 'and the coefficient a3 exists in U (u and u2,3 cells. Similarly, the coefficient b5 also exists in U2 "and U (u cells. Similarly, all coefficients in Vu cells Exist in a diagonal neighboring cells from within a paradigm known. Special attention, two-line (please read the Notes on the back to fill out this page) Order Ministry of Economic Affairs Intellectual Property Office employees consumer cooperatives printed

589570 A7 五、發明説明() 數,ζ及進入V細胞時,其中兩係數之—提供該細胞 之乘法運算。該陣列細胞Uu之輸出信號Α連接至該陣列細 胞U1+u+1之輸入信號a,該陣列細胞Uu之輸出信號Β連接至 該陣列細胞Um,w之輸入信號β ;該陣列細胞Vu之輸出信號 A連接至該陣列細胞Vi u i之輸入信號a,該陣列細胞之 fe出5虎B連接至該陣列細胞Vi+i j+i之輸入信號B。每一 v 細胞是執行c;· = ㈣+1),2五+㈣〜的計算;每—U細胞是執 ^ Cj ^ a&lt;(i-j)/2&gt;^&gt;&lt;(i-j)/2&gt;+j + C;•的計算。如上所述,該乘法的計算延遲 僅需要m脈波週期。 綜合上述結論,依此演算法,提出的雙重基底心臟收縮 乘法器的計算延遲僅需要m+『log2ml脈波週期,且每一細胞 需要一個2-input AND邏輯閘及一個2-_utX〇R邏輯閘之 計算延遲。因此,本專利所提出的GF(2m)乘法器具有很低 的計算延遲及很高的輸出速度。 爲了進一步降低電路複雜度,以下利用兩個多項式,三 項多項式及全一多項式,來分析及討論乘法器的複雜度。 (1)不可分解的三項多項式 多項式的形式爲xm+xn+l,稱之三項多項式。假設不可分 解的三項多項式用來產生有限場GF(2m)之所有元素,從乘法 演算法依據方程式(10),對於m次方不同的三項多項式所產 生的有限場GF(2m),雙重基底乘法單元具有相同的乘法單元 的結構從方程式(5)可知,然而,雙重基底轉換單元電路確 有不同的計算延遲及電路複雜度從方程式(4)可知。因此’ 我們將藉由不可分解的三項多項式來分析轉換單元的電路複 17 本紙張尺度適用中國國家榇準(CNS ) A4規格(210 X 297公釐) |_ . ^-- (請先閲讀背面之注意事項再填寫本頁) -訂 雜· 經濟部智慧財產局員工消費合作社印製 589570 Α7 Β7 五 、發明説明(μ) 雜度。 首先,我們定義π⑴爲模m之最小非負整數,即 Jt(i)=m-l+i(m-n)mod m (11) 其中lsnsm-1及OsUm-1。假設η被設定於Unsm-1區 間之任意一整數且gcd(n,m)=l,對於〇si&lt;p^m-l,則m-l + I(m-n) mod m# m-l+p(m-n) mod m。因止匕,{ m-l+i(m-n) mod Π1 } i = 〇, 1,2,…,m-1 — {0,1,· · ·,ΓΠ-1 } 0 從方程式(11),{〇,1,2,…,m-1}集合的一整數i能夠被對 應於Jt(i)。使用這個轉換,高次項a〃m,j=〇,l,.··,m-2,能夠 被轉換成απ(1)+ΙΏ,^1,_··,ιη-1。假設a是不可分解的三項多項 式P(x)=xm+xn+l之根,則我們可得P(o〇=am+an+l=〇及 am=an+l。爲了降低高次項απω+ίη,首先,我們定義下列方程 式來執行高次項的降次方運算: α&quot;+π(0=αη+π(0+απ(05 Ui^m-1 ⑴) 依據方程式(11),元素B也能夠被表示成B = ΐ3π(〇φπω) + 1)π(ι)β π(υ+ ···+1}π(ηι-ι)β π(πι·υ。利用方程式(2),方程式(12)可變 成589570 A7 V. Description of the invention () number, ζ and when entering V cell, one of the two coefficients-provides the multiplication operation of the cell. The output signal A of the array cell Uu is connected to the input signal a of the array cell U1 + u + 1, and the output signal B of the array cell Uu is connected to the input signal β of the array cell Um, w; the output of the array cell Vu The signal A is connected to the input signal a of the array cell Vi ui, and the output signal B of the array cell is connected to the input signal B of the array cell Vi + i j + i. Each v cell is performing the calculation of c; · = ㈣ + 1), 2 five + ㈣ ~; each U cell is performing ^ Cj ^ a &lt; (ij) / 2 &gt; ^ &gt; &lt; (ij) / 2 &gt; + j + C; • calculation. As mentioned above, the calculation delay of this multiplication requires only m pulse periods. Based on the above conclusions, according to this algorithm, the calculation delay of the proposed double-basis systolic multiplier only needs m + "log2ml pulse wave period, and each cell requires a 2-input AND logic gate and a 2-_utX〇R logic gate The calculation is delayed. Therefore, the GF (2m) multiplier proposed in this patent has very low calculation delay and high output speed. In order to further reduce the complexity of the circuit, the following uses two polynomials, trinomial polynomials, and all-in-one polynomials to analyze and discuss the complexity of the multiplier. (1) Unresolvable trinomial polynomial The form of the polynomial is xm + xn + l, which is called a trinomial polynomial. Assume that an indecomposable trinomial polynomial is used to generate all elements of the finite field GF (2m). From the multiplication algorithm according to equation (10), for the finite field GF (2m) generated by a trinomial with a different power of m, the double The structure of the base multiplication unit having the same multiplication unit is known from equation (5), however, the double base conversion unit circuit does have different calculation delays and circuit complexity from equation (4). Therefore, we will analyze the circuit complex of the conversion unit by using a non-decomposable trinomial polynomial. 17 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) | _. ^-(Please read first Note on the back, please fill out this page again)-Ordering and Miscellaneous · Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 589570 Α7 Β7 V. Invention Description (μ) Miscellaneous. First, we define π⑴ as the smallest non-negative integer of module m, that is, Jt (i) = m−l + i (m-n) mod m (11) where lsnsm-1 and OsUm-1. Suppose that η is set to any integer in the Unsm-1 interval and gcd (n, m) = 1. For si &lt; p ^ ml, ml + I (mn) mod m # m-l + p (mn) mod m. As a result, {m-l + i (mn) mod Π1} i = 〇, 1, 2, ..., m-1 — {0, 1, · · ·, ΓΠ-1} 0 From equation (11), An integer i of the set of {0, 1, 2, ..., m-1} can be corresponding to Jt (i). Using this conversion, the higher-order terms a〃m, j = 0, 1, ..., m-2, can be converted into απ (1) + 1Ώ, ^ 1, _..., ιη-1. Assuming that a is the root of the indecomposable trinomial polynomial P (x) = xm + xn + l, we can get P (o〇 = am + an + l = 〇 and am = an + l. In order to reduce the higher-order term απω + ίη, first, we define the following equation to perform the power reduction operation of the higher-order term: α &quot; + π (0 = αη + π (0 + απ (05 Ui ^ m-1 ⑴) According to equation (11), element B Can also be expressed as B = ΐ3π (〇φπω) + 1) π (ι) β π (υ + ··· + 1) π (ηι-ι) β π (πι · υ. Using equation (2), the equation (12) can become

Tr(am+7T(i)rB) = ΤΓ(αη+π(ί)γΒ) + Τν{απ(ί)γΒ) = 7&gt;(W)沖)+ \(〇 (13) αη+π(1)在方程式(13)存在有兩種類型:(a)n+JC⑴&lt;m及 (b) n+Jt(i)^:m。根據方程式(12) ’ ΐΓ(αη+πωγΒ)有下列特性: (a) n+ji(i)&lt;m 從方程式(11),我們可直接獲得Tr (am + 7T (i) rB) = ΤΓ (αη + π (ί) γΒ) + Τν (απ (ί) γΒ) = 7 &gt; (W) impulse) + \ (〇 (13) αη + π (1 ) There are two types in equation (13): (a) n + JC⑴ &lt; m and (b) n + Jt (i) ^: m. According to equation (12) 'ΐΓ (αη + πωγΒ) has the following characteristics: (a) n + ji (i) &lt; m From equation (11), we can directly obtain

Jt(i)=m -η+π(ί-1) (⑷ I--·----------‘I— 訂------Μ9! (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 18Jt (i) = m -η + π (ί-1) (⑷ I-- · ---------- 'I— Order ------ Μ9! (Please read the note on the back first Please fill in this page for further information) Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 18

589570 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(^ ) 方程式(14)之兩邊同時加一整數η,則 Jt(i)+n =m +Jt(i-1) 因此,假如,則我們可得 ΤΓ(αη+π(ι)γΒ)= Tr(am+π(1'°γΒ) 利用方程式(12)之特性,αη+π(1)能夠被轉換成 Τν{αη+π{ί)γΒ) = Τφ^^γΒ) + Ττ(απ{ί-ι)γΒ) = 7&gt;(α_ ㈣淖)4Λ(μ) (b) n+Jt(i)&gt;m 從方程式(11),我們知道0^:(化111-1&gt;0,1,一,111-1’假如 n+Jt(i)&lt;m,貝[J π(ί-1)= m-l+(i-l)(m-n) mod m =n-l+i(m-n) mod m =n+m-l+i(m-n) mod m =η+π(ί) 因此 ΤΓ(αη+π{ί\Β)^ΤΓ(απ{ί-χ)γΒ) q6) 由上述之特性,假如高次方項cxm+Jt⑴,,依據方 程式(12)能夠被降次方k次,則可變成如下 Τν{απ^ΜγΒ) = bK{i) + Tr{a^nyB) (15) (17) (請先閱讀背面之注意事項再填寫本頁) 〜)+νι) + ··· + ν_+7&gt;(α jt(i 一 k +1)+η γΒ) 當透過方程式(12)作k次降次方運算,方程式 (17)中的jt(i-k+l)+n値會小於m,因此,利用方程式(16)之 19 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) / ' 589570 i___ 經濟部智慧財產局員工消費合作社印製 /2)+7=/0)+/1)+^(2) α-(3)+7=α,(2)+α,(3) ^ α^4^7 = απ(2) + απ(3) + απ(4) α-(5)+7=α,(4)+α,(5) α·7=α〜)+α_+α46) Α7 Β7 發明説明(|g ) 特性,7&gt;(c^&gt;wy5)可得到下列關係式: ΊΥ(απ(0+ηιγβ) = ㈣ + ·. · + 1?π(ί, (18) 特別注意,高次項απα)+ΙΏ的降次運算是依據方程式 (12)逐次的運算操作,且降次方的次數是大於或等於一。假 設k定義爲降次方的次數,則k將有如下關係式 (19) m-n 如上所述,讓我們針對三項多項式之三種情況分別說明 乘法器的複雜度:(i)xm+xn+l 且 gcd(m,n)=l ; (ii)xmi+xni:+l 且 gcd(m,n)=l 及 r&gt;2 〇 (i)xm+xn+l 且 gcd(m,n)=l 爲了方便說明乘法器的結構,我們將以三項多項式 x7+x4+l爲例來說明轉換單元的電路結構,其中m=7且n=4 。從方程式(11)我們得知Jt(i)= m-l+i(m-n) mod,π(〇)=6, π(1)=2,π(2)=5,jc(3)=1,π(4)=4,π(5)=0,且 π(6)=3 均 可直接求出。假設α是χ7+χ4+1之根;απω+7,i=l,2,3,4,5,6 ,模多項式有下列結果 απ(1)+7=α9=α6+α2 α^+7=α12=α6+α2+α5 απ(3)+7 =α8 =α5 +α απ{4)+Ί ^α11 =α5 + α + α4 α&quot;(5&gt;+7=α7=α4+1 α,(6)+7=α10=α4+1 + α3 藉由方程式(11)之特性,元素B=b〇P〇+biPi+…+b6P6也 能夠被表示成6=13一队(。)+1^〇々洲+〜+1^61(6)。因此,依 據方程式(2),上述的方程式能被計算如下: 20 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)589570 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Both sides of equation (14) of the invention description (^) add an integer η, so Jt (i) + n = m + Jt (i-1). Suppose, we can get ΓΓ (αη + π (ι) γΒ) = Tr (am + π (1 '° γΒ). Using the characteristics of equation (12), αη + π (1) can be converted into τν {αη + π {ί) γΒ) = Τφ ^^ γΒ) + Ττ (απ {ί-ι) γΒ) = 7 &gt; (α_ ㈣ 淖) 4Λ (μ) (b) n + Jt (i) &gt; m from the equation ( 11), we know that 0 ^ :( Hua 111-1 &gt; 0, 1, 1, 111-1 'if n + Jt (i) &lt; m, shell [J π (ί-1) = m-l + (il ) (mn) mod m = n-l + i (mn) mod m = n + m-l + i (mn) mod m = η + π (ί) Therefore ΤΓ (αη + π {ί \ Β) ^ ΤΓ (απ {ί-χ) γΒ) q6) From the above characteristics, if the higher-order term cxm + Jt , can be reduced to the k-th power according to equation (12), it can become the following τν {απ ^ ΜγΒ) = bK (i) + Tr (a ^ nyB) (15) (17) (Please read the precautions on the back before filling out this page) ~) + νι) + ·· + ν_ + 7 &gt; (α jt (i 一k +1) + η γΒ) When performing k-th power reduction through equation (12), jt (i-k + l) + n 値 in equation (17) becomes smaller In m, therefore, the paper size of 19 in Equation (16) applies the Chinese National Standard (CNS) A4 specification (210X297 mm) / '589570 i___ Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives / 2) + 7 = / 0) + / 1) + ^ (2) α- (3) + 7 = α, (2) + α, (3) ^ α ^ 4 ^ 7 = απ (2) + απ (3) + απ (4 ) α- (5) + 7 = α, (4) + α, (5) α · 7 = α ~) + α_ + α46) Α7 Β7 Description of the invention (| g) Characteristics, 7 &gt; (c ^ &gt; wy5 ) Can be obtained as follows: ΊΥ (απ (0 + ηιγβ) = ㈣ + ·. · + 1? Π (ί, (18) Note that the lower-order operation of the higher-order term απα) + Ι + is based on equation (12) The operation is performed successively, and the power of the power is greater than or equal to one. Assuming k is defined as the power of the power, k will have the following relationship (19) mn As mentioned above, let's focus on three types of three-term polynomials The situation respectively illustrates the complexity of the multiplier: (i) xm + xn + l and gcd (m, n) = l; (ii) xmi + xni: + l and gcd (m, n) = l and r &gt; 2 〇 (i) xm + xn + l and gcd (m, n) = l In order to explain the structure of the multiplier conveniently, we will take the trinomial polynomial x7 + x4 + l as an example to illustrate the circuit structure of the conversion unit. m = 7 and n = 4. From equation (11) we know that Jt (i) = m-l + i (mn) mod, π (〇) = 6, π (1) = 2, π (2) = 5, and jc (3) = 1 , Π (4) = 4, π (5) = 0, and π (6) = 3 can be directly calculated. Suppose α is the root of χ7 + χ4 + 1; απω + 7, i = l, 2,3,4,5,6, and the modular polynomial has the following result απ (1) + 7 = α9 = α6 + α2 α ^ + 7 = α12 = α6 + α2 + α5 απ (3) +7 = α8 = α5 + α απ (4) + Ί ^ α11 = α5 + α + α4 α &quot; (5 &gt; + 7 = α7 = α4 + 1 α, ( 6) + 7 = α10 = α4 + 1 + α3 With the characteristics of equation (11), the element B = b〇P〇 + biPi + ... + b6P6 can also be expressed as 6 = 13 a team (.) + 1 ^ 〇 々 洲 + ~ + 1 ^ 61 (6). Therefore, according to equation (2), the above equation can be calculated as follows: 20 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read first (Notes on the back then fill out this page)

589570 經濟部智慧財產局員工消費合作社印製 A7 _______B7 五、發明説明(丨f ) 1 ζτ ⑴+7 = ~(〇) + ~ ⑴=办6 + 办2 \(2)+7 二 \⑼ + \(1) + \(2)=办6 + 办2 + 办5 = \(1)+7 + 办5 t ⑶+7 ⑺ +\(3)=办5 +Α ^:(4)+7=^1:(2)+^(3)+^(4)=05+6+64=^(3)+7+64 \(5)+7 = \(4) + \(5)-办4 + 办〇 1(6)+7 二匕(4) + &amp;π(5) + b,) = b4 + b0 + b3 = &amp;π(5)+7 + b3 圖六揭示計算&amp;&gt;7, 1:=1,2,…,6被獲得從上述方程式。由 上述之降次方的過程,對於三項多項式的形式xm+x+l,處理 降次方的過程只需要一次;對於三項多項式的形式Xm + Xn+1, 2sn4m/2l,處理降次方的過程只需要二次。因此,對於有限 場GF(2m)的產生多項式爲三項多項式,假如高次項需要k次 的降次方過程,則整個乘法器如下的複雜度 總計算延遲:m+k脈波週期 總 2-input XOR 邏輯閘數:m2+m 總2-input AND邏輯閘數:m2 (ii) xmr+xnr+l 且 gcd(m,n)=l 及 rd 多項式的形式g〇〇=p(x&gt;i+xn^r稱之等距的三項多項 式(r-equally space trinomial,r_EST),其中 gcd(m,n)=l 且 P(x)爲m次方的三項多項式。假如g(x)是不可分解的三項多 項式且gcd(m,n)=l,則p(x)也是一不可分解的多項式,特別 注意,r-EST的形式g〇〇=xm+xm/2+l是不可分解的三項多項式 假如m=2.3j,&gt;1。對於mr次方不可分解的r-EST ,可能的 (mr,nr)配對包含如下:(6,3),(12,3),(12,9),(18,3),…。 假設有限場GF(2m^)是依據mr次方的r-EST所產生的, 元素也能夠被表示成 21 争紙張尺度適用中國國家標準(CNS ) A4規格(210'〆297公釐) (請先閱讀背面之注意事項再填寫本頁) •裝· -訂 589570 A7 B7 五、發明説明(2〇 ) B~B〇 +B1+...+ Br-i (20) 其中 ,〇心r_l (21) 從4j)被定義於方程式(11),π〇)也能夠改寫成n(j)=r(m-l)+jr(m-n) mod mr。因此,Bi,OsUr-1,也能夠表不爲 /π-1 -名办π(/)+!· Ar(y)+’ ° 從ζ =7&gt;〇αζ‘β)之計算,〇sU2mr-2,我們將ξ分成r組,良P ’弟i組办/包含有长,民+i,…,5(2/„令+丨} ’其中〇si&lt;r-l。當i=r-l ’办(2讲-1&gt;+卜1 = 〇 ’ 也就是說,第r-1組ί僅包含 如i 4+丨…办(2m-2)r+:· I ’ = Γ - 1 依據a(j)=r(m-l)+jr(m-n),每一組 良L·,…,1如丨可轉換成 |〜〜〜 ~ |589570 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 _______B7 V. Description of Invention (丨 f) 1 ζτ ⑴ + 7 = ~ (〇) + ~ ⑴ = Office 6 + Office 2 \ (2) +7 2 \ ⑼ + \ (1) + \ (2) = do 6 + do 2 + do 5 = \ (1) +7 + do 5 t ⑶ + 7 ⑺ + \ (3) = do 5 + Α ^ :( 4) +7 = ^ 1: (2) + ^ (3) + ^ (4) = 05 + 6 + 64 = ^ (3) + 7 + 64 \ (5) +7 = \ (4) + \ (5) -do 4 + Office 〇1 (6) +7 Two dagger (4) + &amp; π (5) + b,) = b4 + b0 + b3 = &amp; π (5) +7 + b3 Figure 6 reveals the calculation &amp; &gt; 7, 1: = 1, 2, ..., 6 are obtained from the above equation. From the above-mentioned process of power reduction, for the form of the trinomial polynomial xm + x + l, the process of processing power reduction needs only one time; for the form of the trinomial polynomial Xm + Xn + 1, 2sn4m / 2l, processing power reduction The square process only needs to be performed twice. Therefore, for a finite field GF (2m), the polynomial is a trinomial polynomial. If the higher-order terms require k-order power reduction processes, the delay of the entire multiplier is always calculated as follows: m + k pulse period total 2- input XOR number of logic gates: m2 + m total 2-input AND number of logic gates: m2 (ii) xmr + xnr + l and gcd (m, n) = l and the form of rd polynomial g〇〇 = p (x &gt; i + xn ^ r is called an r-equally space trinomial (r_EST), where gcd (m, n) = l and P (x) is a trinomial polynomial of m power. If g (x) Is an indecomposable trinomial polynomial and gcd (m, n) = l, then p (x) is also an indecomposable polynomial. Pay special attention to the form of r-EST g〇〇 = xm + xm / 2 + l is not Decomposed trinomial polynomial if m = 2.3j, &gt; 1. For m-th power unresolvable r-EST, possible (mr, nr) pairings include the following: (6,3), (12,3), ( 12,9), (18,3), ... Assuming that the finite field GF (2m ^) is generated according to r-EST of the power of mr, the element can also be expressed as a 21-sheet paper scale applicable to the Chinese National Standard (CNS ) A4 size (210'〆297mm) (Please read the note on the back first Please fill in this page again for the items) • Equipment · -Order 589570 A7 B7 V. Description of the invention (2〇) B ~ B〇 + B1 + ... + Br-i (20) Among them, 〇 心 r_l (21) from 4j) was Defined in equation (11), π〇) can also be rewritten as n (j) = r (ml) + jr (mn) mod mr. Therefore, Bi, OsUr-1 can also be expressed as / π-1-the name of the office π (/) +! · Ar (y) + '° calculated from ζ = 7> 〇αζ'β), 〇sU2mr- 2. We divide ξ into r groups, and the good P 'is organized / contained by Chang, Min + i, ..., 5 (2 / „令 + 丨}' where 〇si &lt; rl. When i = rl 'do ( Lecture 2 -1> + Bu 1 = 〇 'In other words, the r-1 group ί contains only i 4+ 丨… ((2m-2) r +: · I' = Γ-1 according to a (j) = r (ml) + jr (mn), each group of good L ·, ..., 1 such as 丨 can be converted into | ~~~~ |

|^π(0)+ι &gt; (1)++/ ? , ^7r(m-l)+/ ?^r(0)+/+mr ^ ^n(m-l)+i+mr J 依據方程式(20-21),每一組ζ之値可利用下列方程式求 得 KU)+i=Tr(Ya7t{j)+lBi)^bK{j)+i ^ 〇^j^m-l ? 0^i^r-l (22) bjr(j)+i+mr = 7&gt;(yc^)+i+/Mr4),,〇sUr-2 (23) 心尽),Ujsm],i=r-l (24) 由於方程式(22)是不用計算,因此,根據方程式(23-24) ,基底轉換單元的結構可分爲r個次基底轉換單元,每一次 基底轉換單元的結構是依據xm+xn+l所建構的基底轉換單元 。爲了方便說明,我們將以三項多項式x12+xVl,m=4、n=l 、r=3,爲例來說明基底轉換單元的結構。 從Jt(j)= r(m-l)+jr(m-n) mod mr,方程式(24)之計算可得如 22 (請先閲讀背面之注意事項再填寫本頁) -、v&quot;^ π (0) + ι &gt; (1) ++ /?, ^ 7r (ml) + /? ^ r (0) + / + mr ^ ^ n (ml) + i + mr J According to the equation (20 -21), the 値 of each group of ζ can be obtained by the following equation: KU) + i = Tr (Ya7t (j) + lBi) ^ bK {j) + i ^ 〇 ^ j ^ ml? 0 ^ i ^ rl ( 22) bjr (j) + i + mr = 7 &gt; (yc ^) + i + / Mr4), 〇sUr-2 (23) Exhausted), Ujsm], i = rl (24) Since equation (22) is No calculation is required. Therefore, according to equation (23-24), the structure of the base conversion unit can be divided into r sub-base conversion units. For the convenience of explanation, we will take the trinomial polynomial x12 + xVl, m = 4, n = l, r = 3 as examples to illustrate the structure of the base conversion unit. From Jt (j) = r (m-l) + jr (m-n) mod mr, the calculation of equation (24) can be obtained as 22 (Please read the precautions on the back before filling this page)-, v &quot;

T 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(21 OX 297公釐) 589570 A7 B7 i、發明説明(α| ) 下: (1) +14 = 办20 =办 11 +办8 〜〜 (2) +14 = \l = + 〜〜 ^(3)+14 =&amp;14 +fo2 如上述之方程式,該次基底轉換單元揭示如圖八(b)所示 。我們發現,該次基底轉換單元的結構是相同於三項多項式 x4+x+l所設計的基底轉換單元。 當i=〇,方程式(23)之計算可得如下: ^π(0)+12 ~ 办21 =办9 +办12 k ⑴+12 = 办 18 =办9 +办6 (2) +12 = ^15 = ^6 + ^3 〜〜 (3) +12 二 b12 = b3 + 如上述之方程式,依據方程式(24)所建構的次基底轉換 單元,該次基底轉換單元可被修正如圖八(a)所示。.圖九揭示 整個基底轉換單元的輸出與輸入係數的關係。 如上所述,對於三項多項式的形式;τ+π+ι且 gcd(m,n)=l及,該基底轉換單元能夠使用較小的基底轉換 器來實現。因此,對於有限場GF(2m)的產生多項式爲三項多 項式Χ^+χ〃+1,假如高次項需要k次的降次方過程,則整個 乘法器如下的複雜度 總計算延遲:m+k脈波週期 總 2-input XOR 邏輯閘數:m2+m 總2-input AND邏輯閘數:m2 ⑵AOP-based心臟收縮雙重基底乘法器 多項式的形式P(x)=xm+xm_1+…+x+l稱之全一多項式(也 23 本紙張尺度適用中國國家標準(CNS ) A4規格(210Χ297公釐) . — - * (請先閲讀背面之注意事項再填寫本頁) •打 經濟部智慧財產局員工消費合作社印製 4-5Θ. 589570 經濟部智慧財產局員工消費合作社印製 A7 _B7_______ 五、發明説明(22) one polynomial,AOP)。讓有限場GF(2m)是由不可分解多項式 P(x)所產生的,GF(2m)的元素A能夠被表示爲:A=a〇+aicx+&quot;- + am-iam·1 ,ai={l or 0},其中a爲P(x)的根。很遺憾地,並不是 對於任意的m次全一多項式都具有不可分解的特性’從〇到 100之間整數爲不可分解全一多項式的m値如:2、4、10 ' 12、18、28、52、58、60、66、82、100。因爲a爲 P(x)的根 ,故ρ(α)=0。當P(a)=〇,我們可得到an+l=〇或〇^=1。因此透 過乂=1這個特性,我們可以很輕易地化簡ap,pa m這樣的高 次項。爲了降低電路複雜度,有限場的元素A=a〇+aicx +…+ am-ioT1 均被表示爲 A^Ao+AiCx +···+ Amam,其中 AiEGF⑵及 H+1,且基底{1,〇^2,...,〇^稱之多項式基底{1,《,...,〇^}的 擴充基底,也稱之多項式循環基底。對於所有元素的對應關 係如圖十所示。通常不失此特性,這個元素也能夠表示成擴 充的雙重基底。當cxm+1=l會產生am+1=aM, Uism-l,假設 B^Bopo+B^+.u+Bmpm 是0?(201)的元素, 因此,計算0&lt;U2m,我們可得 ζ = Sm+i+1 = Bt ? 〇&lt;i&lt;m-1 及 K =Bm 由上述元素表示式,根據方程式(10),AOP-based心臟收 縮乘法器的電路僅需要雙重基底乘法單元,且它的結構可以 從mxm延伸至(m+l)x(m+l)之陣列,每個細胞被定義成U細 胞。 我們以 m=4 爲例,若 A=A〇+Ai〇c + A2〇c2+ A3〇c3+ A4〇x4及 B = ________24__ 本紙張尺度適用中國國家標準(CNS ) A4規格(21 OX 297公瘦1 tmMmmmmf tmmmmmmmmm n-MBBl In imte —i^i 11 am— flu m 11 1_ϋ· ϋ·— V 廣 * (請先閲讀背面之注意事項再填寫本頁) 589570 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(:3) Β〇β〇+ Βφβ Β2β2 + Β3β3 + Β4β4爲 GF(24)的兩元素,假設 c = C〇P〇+ Clpl + C202 + C303 + C404是兩元素A及B之積,依據方 程式(10)之乘法計算法則,則我們可得下列結果 β〇 βΐ β2 /¾T Printed by the Intellectual Property Bureau of the Ministry of Economy ’s Consumer Cooperatives. The paper size applies to Chinese National Standards (CNS) A4 specifications (21 OX 297 mm) 589570 A7 B7 i. Invention description (α |) Under: (1) +14 = Office 20 = do 11 + do 8 ~~ (2) +14 = \ l = + ~~ ^ (3) +14 = &amp; 14 + fo2 As the above equation, the subbase conversion unit is revealed as shown in Figure 8 (b) As shown. We find that the structure of the subbase conversion unit is the same as the base conversion unit designed by the trinomial polynomial x4 + x + l. When i = 〇, the calculation of equation (23) can be obtained as follows: ^ π (0) +12 ~ Office 21 = Office 9 + Office 12 k ⑴ + 12 = Office 18 = Office 9 + Office 6 (2) +12 = ^ 15 = ^ 6 + ^ 3 ~~ (3) +12 b12 = b3 + As the above equation, the subbase conversion unit constructed according to equation (24) can be modified as shown in Figure 8 ( a) shown. Figure 9 reveals the relationship between the output and input coefficients of the entire base conversion unit. As described above, for the form of a trinomial polynomial; τ + π + ι and gcd (m, n) = 1 and the basis conversion unit can be implemented using a smaller basis converter. Therefore, for a finite field GF (2m), the polynomial generated is a trinomial polynomial χ ^ + χ〃 + 1. If a higher-order term requires k-order power reduction, the complexity of the entire multiplier is always delayed as follows: m + k pulse period total 2-input XOR logic gates: m2 + m total 2-input AND logic gates: m2 ⑵AOP-based systolic double base multiplier polynomial form P (x) = xm + xm_1 + ... + x + l Called the all-in-one polynomial (also 23 paper sizes are applicable to the Chinese National Standard (CNS) A4 specification (210 × 297 mm). —-* (Please read the precautions on the back before filling out this page) • Call the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by employees 'cooperatives 4-5Θ. 589570 Printed by employees' cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 _B7_______ V. Description of the invention (22) one polynomial (AOP). Let the finite field GF (2m) be generated by the indecomposable polynomial P (x). The element A of GF (2m) can be expressed as: A = a〇 + aicx + &quot;-+ am-iam · 1, ai = {l or 0}, where a is the root of P (x). Unfortunately, it is not indecomposable for any m-degree congruent polynomials. 'Integers from 0 to 100 are indecomposable congruent polynomials, such as: 2, 4, 10' 12, 18, 28 , 52, 58, 60, 66, 82, 100. Because a is the root of P (x), ρ (α) = 0. When P (a) = 0, we can get an + 1 = 0 or 0 ^ = 1. Therefore, through the characteristic of 乂 = 1, we can easily simplify higher-order terms such as ap and pa m. In order to reduce the complexity of the circuit, the elements of the finite field A = a〇 + aicx + ... + am-ioT1 are all represented as A ^ Ao + AiCx + ·· ++ Amam, where AiEGF⑵ and H + 1, and the basis {1, 〇 ^ 2, ..., 〇 ^ are called the polynomial base {1, ", ..., 〇 ^} extended base, also known as the polynomial cycle base. The corresponding relationship for all elements is shown in Figure 10. Usually without losing this feature, this element can also be expressed as an extended double base. When cxm + 1 = l will produce am + 1 = aM, Uism-l, assuming B ^ Bopo + B ^ +. U + Bmpm is an element of 0? (201). Therefore, calculating 0 &lt; U2m, we can get ζ = Sm + i + 1 = Bt? 〇 &lt; i &lt; m-1 and K = Bm are expressed by the above elements. According to equation (10), the circuit of the AOP-based systolic multiplier requires only a double base multiplication unit, and Its structure can be extended from mxm to an array of (m + 1) x (m + 1), and each cell is defined as a U cell. We take m = 4 as an example, if A = A〇 + Ai〇c + A2〇c2 + A3〇c3 + A4〇x4 and B = ________24__ This paper standard applies to China National Standard (CNS) A4 specification (21 OX 297 male thin 1 tmMmmmmf tmmmmmmmmm n-MBBl In imte —i ^ i 11 am— flu m 11 1_ϋ · ϋ · — V Guang * (Please read the notes on the back before filling this page) 589570 A7 B7 Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs System five, description of the invention (: 3) Β〇β〇 + Βφβ Β2β2 + Β3β3 + Β4β4 are the two elements of GF (24), assuming c = C〇P〇 + Clpl + C202 + C303 + C404 is the two elements A and B Product, according to the multiplication calculation rule of equation (10), we can get the following results β〇βΐ β2 / ¾

AqBq A4Bq A4Bi A3B2 a4b4 a0b, a3b0 a4b2 A2Bx 乂界 ^B4 AqB2 AJo A4B3 Λ3Β3 A1B2 A2B4 A0B3 ΑλΒ0 + A2B2 A2B3 Αβ3 AtB4 A0B4 Q C; Q~~C3Q~ 根據上述乘法結果,圖^ '顯市AOP-based心臟收縮式 雙重基底乘法器。在圖十一中,該陣列細胞Uu,假如i+j^g 數,該陣列細胞Uu之輸出信號A連接至該陣列細胞 輸入信號A,該陣列細胞Uu之輸出信號B連接至該陣列,細 胞Um+i之輸入信號B ;假如i+j=奇數,該陣列細胞U㈩之輸 出信號A連接至該陣列細胞Uhh之輸入信號A,該陣列糸^ 胞Uu之輸出信號B連接至該陣列細胞Ui+1,j+1之輸入信號B。 當i+j=奇數時,每一 U細胞是執行9心+;+1)/2儿(“㈣/2&gt;+c的 計算;當i+j=偶數時,每一 U細胞是執行ς.=Λ^/)/2;Λ(^2; +(: 的計算。 ; 另外,値得一提的是,對於不同的m値,其單一單元的 電路都.相同。不同的,只是單元組合後的大小而已,故在電 路設計的成本上,亦是非常低廉。 綜上所述,雖然本發明已以較佳實施例揭露如上,然其 25 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先聞讀背面之注意事項再填寫本頁} -、可 589570 A7 B7 五、發明説明(〇4) 並非用以限定本發明,任何熟習此技藝者,在不脫離本發明 之精神與範圍,當可作各種之更動與潤飾,因此本發明之保 護範圍以申請專利範圍所界定者爲準。 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)AqBq A4Bq A4Bi A3B2 a4b4 a0b, a3b0 a4b2 A2Bx 乂 界 ^ B4 AqB2 AJo A4B3 Λ3B3 A1B2 A2B4 A0B3 ΑλΒ0 + A2B2 A2B3 Αβ3 AtB4 A0B4 ~ CQ ~ QC ~ QC-based QC graph; Dual base multiplier. In Figure 11, the array cell Uu, if i + j ^ g number, the output signal A of the array cell Uu is connected to the array cell input signal A, and the output signal B of the array cell Uu is connected to the array. The input signal B of Um + i; if i + j = odd, the output signal A of the array cell U㈩ is connected to the input signal A of the array cell Uhh, and the output signal B of the array U 糸 is connected to the array cell Ui +1, j + 1 input signal B. When i + j = odd, each U cell executes the calculation of 9 hearts +; + 1) / 2 children ("㈣ / 2 &gt; + c; when i + j = even, each U cell executes ς . = Λ ^ /) / 2; calculation of Λ (^ 2; + (:.); In addition, it is worth mentioning that for different m 値, the circuit of a single unit is the same. The difference is only the unit The size of the combination is very low, so the circuit design cost is also very low. In summary, although the present invention has been disclosed as above with a preferred embodiment, its 25 paper standards are applicable to the Chinese National Standard (CNS) A4 Specifications (210X297mm) (Please read the precautions on the back before filling out this page}-、 可 589570 A7 B7 V. Description of the invention (〇4) It is not intended to limit the present invention. Anyone skilled in this art will not leave The spirit and scope of the present invention can be modified and retouched. Therefore, the scope of protection of the present invention is defined by the scope of the patent application. (Please read the precautions on the back before filling this page) Bureau of Intellectual Property, Ministry of Economic Affairs The paper size printed by the employee consumer cooperative is applicable to China National Standard (CNS) A4 (210X297) %)

Claims (1)

589570 A8 B8 C8 D8 六、申請專利範圍 (請先閱讀背面之注意事項再填寫本頁) 1、 一種有限場GF(2m)之低複雜的心臟收縮陣列式雙重 基底乘法器,其電路特性是包含有: 一裝置’用以錯誤控制編碼之資料解碼及密碼技術之加 解密中’該乘法器係對有限場GF(2m)中之一第一元素A與一 第二元素B進行乘積運算以得到一第三元素C,其中元素A 是以多項式基底(Ι,α,α2,···,^1)之表示式,元素B及C是 以雙重基底之表示式,該有限場GFCr)爲不可分解之多項式 所產生的’及α爲該不可分解的多項式之根;該第一元素A 被表示爲一 m位元A= a〇+aia +a2〇c2+··. ,該第二元素 B 被表示爲一m 位元 BzzboPo+b^!,該第三 兀素 C 被表不爲一m 位元 C = C〇pG + (:ΐβ 1 + C2p2 +···+ Cm.lpm.l,其 中所有元素的係數是等於〇或1,該乘法器包括兩個單元: 雙重基底乘法及雙重基底轉換; 該雙重基底乘法單元的電路結構是由m2相同的小細胞所 組成,形成m X m陣列; 每一小細胞包含有三(或四)個輸入信號線及三(或四)個輸 出信號線; 經濟部智慧財產局員工消費合作社印製 每一小細胞包含一個AND聞,一個X〇R閘和三(或四) 個一位元暫存器; 該雙重基底轉換單元的電路結構是由樹狀式2-input X0R 閘所構成。 2、 如申請專利範圍第1項所述有限場GF(2m)之低複雜 的心臟收縮陣列式雙重基底乘法器,該乘法器的乘法單元包 含有兩種小細胞(V及U細胞)的陣列細胞,其中每一 V細胞 27___i__—___ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 589570 A8 B8 C8 D8 六、申請專利範圍 是執行= w又㈣_&gt;+,· + 的計算;每一u細胞是執行 S· - β&lt;Η)/2Α(Η)/2&gt; + ;· + 勺的計算。 3、 如申請專利範眉第2項所述有限場GF(2m)之低複雜 的心臟收縮陣列式雙重基底乘法器,該陣列細胞Uu之輸出 信號A連接至該陣列細胞Ui+u+i之輸入信號A,該陣列細胞 Uu之輸出信號B連接至該陣列細胞Ukw之輸入信號b ;該 陣列細胞Vu之輸出信號a連接至該陣列細胞Vhh之輸入信 號A ’該陣列細胞νϋ之輸出信號b連接至該陣列細胞Vi+1,j+1 之輸入信號B。 ’ 4、 如申請專利範圍第1項所述有限場GF(n之低複雜 的心臟收縮陣列式雙重基底乘法器,若有限場GF(2m)的所有 元素是由不可分解的三項多項式χ%χη+1所產生的,其中 gcd(m,n)=l,第二元素B的係數是以也⑼久⑴…的排列 方式進入該基底轉換陣列處理器。 5、 如申請專利範圍第4項所述有限場GF(2m)之低複雜 的心臟收縮陣列式雙重基底乘法器,其中該基底轉換陣列處 理器的輸出ig號是以\(2)+m…)的方式輸出。 6、 如申請專利範圍第1項所述有限場GF(2m)之低複雜 的心臟收縮陣列式雙重基底乘法器,若有限場GFG111)的所有 元素是由不可分解的三項多項式χ^+χΜ+Ι所產生的,其中 gcd(m,n)=l及r^2,第二元素Β的係數分成i組,O^Ur-1,每 一組係數是以也咖\(1)+ί…k(/n_1)+i·)的排列方式進入次基底轉 換陣列處理器。 7、 如申請專利範圍第6項所述有限場GF(2m)之低複雜 • 28 __:__________________ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) Γ 經濟部智慧財產局員工消費合作社印製 589570 A8 B8 C8 D8 六、申請專利範圍 的心臟收縮陣列式雙重基底乘法器,其中第二元素B的係數 ’第i組係數,OsUr-2,輸入至修正後的次基底轉換陣列處 理器,該次基底轉換陣列處理器的輸出爲 (π(〇)·Η·+/Π,办π ⑴U»);第i=r-l組係數輸入至次基底轉 換陣列處理器,該次基底轉換陣列處理器的輸出爲. ^π(1)+ζ+/ηΓ ^π(2)+ΐ+ηΐΓ ^r(m-l)+/+;7ir) 〇 8、 如申請專利範圍第7項所述有限場GF(2m)之低複雜 的心臟收縮陣列式雙重基底乘法器,其中該陣列細胞Uu,假 如i+j=偶數’該陣列細胞Uu之輸出信號A連接至該陣列細 胞Ui+1,w之輸入信號A,該陣列細胞Uu之輸出信號B連接至 該陣列細胞之輸入信號B ;假如:奇數,該陣列細胞 队』之輸出信號A連接至該陣列細胞Uaw之輸入信號A,該 障列細胞Uu之輸出信號B連接至該陣列細胞仏+^之輸入信 號B。 9、 如申請專利範圍第8項所述有限場GF(2m)之低複雜 的心臟收縮陣列式雙重基底乘法器,當i+j=奇數時,每一 U 細胞是執行c广七㈣+ι)/2:Λ»1)/2&gt;+ς·的計算;當i+j=偶數時,每 〜U細胞是執行c广&lt;(w)/2A(w)/2&gt; + C/的計算。 1 〇、如申請專利範圍第1項所述有限場GF(2m)之低複 雜的心臟收縮陣列式雙重基底乘法器,若有限場GF(2m)的所 有元素是由不可分解的全一多項式(AOP)所產生的,該乘 法器的結構僅包含雙重基底乘法器,該乘法器的計算延遲僅 需要m+1脈波週期。 1 1、如申請專利範圍第1 〇項所述有限場GF(2m)之低 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) T 經濟部智慧財產局員工消費合作社印製 4' 589570 A8 B8 C8 D8 六、申請專利範圍 複雜的心臟收縮陣列式雙重基底乘法器,該乘法器組成 (m+l)x(m+l)之陣列細胞,其中每一細胞包含一個AND閘, 一個XOR閘和三個一位元暫存器。 1 2、如申請專利範圍第1 1項所述有限場GF(2m)之低 複雜的心臟收縮陣列式雙重基底乘法器,該三個一位元暫存 器,其中第一兀素A被表示爲一 m+1位元(Α= Α〇+Αια + A2CX2+&quot;.+Amam) ’該第一兀素Β被表不爲一m+Ι位元Β= Βοβο+Βφ ι+Β2β2+···+ΒΓηβ,,該第三元素c被表示爲一 m+1位元 C = C〇P〇+ ClP 1++···+ CmPm 0 1 3、如申請專利範圍第1項所述有限場GF(2m)之低複 雜的心臟收縮陣列式雙重基底乘法器,每一脈波週期的傳波 延遲最大需要一個AND邏輯閘及一個X0R邏輯閘的計算時 間。 1 4、如申請專利範圍第1項所述有限場GF(2m)之低複 雜的心臟收縮陣列式雙重基底乘法器,若有限場GF(2m)的所 有元素是由不可分解的三項多項式xm+x+l所產生的,該乘法 器的計算延遲僅需要m+1脈波週期;若有限場GF(2m)的所有 元素是由不可分解的三項多項式xm+xn+l所產生的,其中 2^i&lt;m/2l,該乘法器的計算延遲僅需要m+2脈波週期。 ________ 30 — 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) i——訂 經濟部智慧財產局員工消費合作社印製589570 A8 B8 C8 D8 6. Scope of patent application (please read the precautions on the back before filling this page) 1. A low-complexity systolic array-type double-basis multiplier with limited field GF (2m), its circuit characteristics include There are: a device 'data decoding for error control encoding and encryption / decryption of cryptography' The multiplier performs a multiplication operation on a first element A and a second element B in a finite field GF (2m) to obtain A third element C, where element A is an expression with a polynomial basis (I, α, α2, ..., ^ 1), elements B and C are an expression with a double basis, and the finite field GFCr) is impossible The 'and α produced by the decomposed polynomial are the roots of the indecomposable polynomial; the first element A is represented as an m-bit A = a〇 + aia + a2〇c2 + ·., And the second element B is Expressed as a m-bit BzzboPo + b ^ !, the third element C is expressed as a m-bit C = C〇pG + (: ΐβ 1 + C2p2 + ·· ++ Cm.lpm.l, where The coefficients of all elements are equal to 0 or 1. The multiplier includes two units: double base multiplication and double base conversion; The circuit structure of the double base multiplication unit is composed of small cells of the same m2 to form an m X m array; each small cell contains three (or four) input signal lines and three (or four) output signal lines; Ministry of Economic Affairs Printed by the Intellectual Property Bureau's Consumer Cooperative, each small cell contains an AND, an XOR gate and three (or four) one-bit registers; the circuit structure of the dual-base conversion unit consists of a tree-like 2- Input X0R gate. 2. Low-complexity systolic array type double base multiplier with limited field GF (2m) as described in the first patent application scope. The multiplication unit of this multiplier contains two small cells (V And U cells), each V cell is 27___i______ This paper size applies to Chinese National Standards (CNS) A4 specifications (210X 297 mm) 589570 A8 B8 C8 D8 6. The scope of application for patents is enforcement = w 又 ㈣_ &gt; +, · + Calculations; each u cell performs the calculation of S ·-β &lt; Η) / 2Α (Η) / 2 &gt;+; · + scoop. 3. The low-complexity systolic array-type double base multiplier of the finite field GF (2m) as described in the second item of the patent application, the output signal A of the array cell Uu is connected to the array cell Ui + u + i. Input signal A, the output signal B of the array cell Uu is connected to the input signal b of the array cell Ukw; the output signal a of the array cell Vu is connected to the input signal A of the array cell Vhh 'the output signal b of the array cell v 细胞Input signal B connected to the array cells Vi + 1, j + 1. '' 4. As described in the first item of the scope of the patent application, the finite field GF (n is a low-complexity systolic array type double base multiplier. If all the elements of the finite field GF (2m) are composed of the indecomposable trinomial polynomial χ% χη + 1 is generated, where gcd (m, n) = 1, and the coefficient of the second element B enters the base conversion array processor in an arrangement of ⑼ ⑴. 5. As the fourth item in the scope of patent application The low-complexity systolic array-type double base multiplier of the finite field GF (2m), wherein the output ig number of the base conversion array processor is output in the manner of (2) + m ... 6. The low-complexity systolic array-type double base multiplier of the finite field GF (2m) as described in the first item of the scope of the patent application, if all the elements of the finite field GFG111) are composed of the indecomposable trinomial polynomial χ ^ + χΜ +1, where gcd (m, n) = 1 and r ^ 2, the coefficient of the second element B is divided into i groups, O ^ Ur-1, each group of coefficients is also ca \ (1) + ί The arrangement of k (/ n_1) + i ·) enters the sub-base conversion array processor. 7. The low complexity of the limited field GF (2m) as described in item 6 of the scope of the patent application • 28 __: __________________ This paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back first (Fill in this page again) Γ Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 589570 A8 B8 C8 D8 VI. Patent-Patented Systolic Array Double Base Multiplier, where the coefficient of the second element B is the 'i-th group coefficient, OsUr -2, input to the modified subbase conversion array processor, the output of this subbase conversion array processor is (π (〇) · Η · + / Π, π ⑴U »); the i = rl group coefficient input To the subbase conversion array processor, the output of the subbase conversion array processor is. ^ Π (1) + ζ + / ηΓ ^ π (2) + ΐ + ηΐΓ ^ r (ml) + / +; 7ir) 〇 8. The low-complexity systolic array type double base multiplier with a finite field GF (2m) as described in item 7 of the scope of the patent application, wherein the array cell Uu, if i + j = even number, the output signal of the array cell Uu A is connected to the input signal A of the array cell Ui + 1, w. The output signal B of Uu is connected to the input signal B of the array cell; if an odd number, the output signal A of the array cell team is connected to the input signal A of the array cell Uaw, and the output signal B of the barrier cell Uu is connected to The input signal B of the array cell 仏 + ^. 9. As the low-complexity systolic array double-basis multiplier with a finite field GF (2m) as described in item 8 of the scope of the patent application, when i + j = odd, each U cell executes c + 7 ++ ) / 2: Λ »1) / 2 &gt; + ς · 's calculation; when i + j = even number, every ~ U cells are executed by C &lt; (w) / 2A (w) / 2 &gt; + C / Calculation. 10. The low-complexity systolic array-type double base multiplier of the finite field GF (2m) as described in item 1 of the scope of the patent application, if all elements of the finite field GF (2m) are indecomposable all-one polynomials ( AOP), the structure of the multiplier only includes a double base multiplier, and the calculation delay of the multiplier only needs m + 1 pulse wave periods. 1 1. As the paper size of the limited field GF (2m) as described in Item 10 of the scope of patent application, the Chinese National Standard (CNS) A4 specification (210X297 mm) is applicable (please read the precautions on the back before filling this page) ) T Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 4 '589570 A8 B8 C8 D8 VI. Patent application with complex systolic array type double base multiplier, the multiplier consists of (m + l) x (m + l) Array cells, each of which contains an AND gate, an XOR gate, and three bit registers. 1 2. The low-complexity systolic array type double base multiplier with a finite field GF (2m) as described in item 11 of the scope of the patent application, the three one-bit register, in which the first element A is represented Is an m + 1 bit (Α = Α〇 + Αια + A2CX2 + &quot;. + Amam) 'The first element B is represented as an m + 1 bit B = Βοβο + Βφ ι + Β2β2 + ·· · + ΒΓηβ, the third element c is expressed as a m + 1 bit C = C〇P〇 + ClP 1 ++ ... CmPm 0 1 3. The finite field as described in the first item of the scope of patent application GF (2m) low-complexity systolic array type double base multiplier. The propagation delay of each pulse period requires a calculation time of an AND logic gate and an X0R logic gate. 14. As in the low-complexity systolic array type double base multiplier of the finite field GF (2m) described in the first item of the scope of the patent application, if all the elements of the finite field GF (2m) are composed of the unresolvable trinomial polynomial xm + x + l, the calculation delay of this multiplier only needs m + 1 pulse period; if all elements of the finite field GF (2m) are generated by the indecomposable trinomial polynomial xm + xn + l, Among them 2 ^ i &lt; m / 2l, the calculation delay of the multiplier only needs m + 2 pulse wave periods. ________ 30 — This paper size applies to Chinese National Standard (CNS) A4 (210 X 297 mm) (Please read the notes on the back before filling out this page) i——Order Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs
TW91124418A 2002-10-18 2002-10-18 Low-complexity bit-parallel systolic multiplier over GF(2m) TW589570B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91124418A TW589570B (en) 2002-10-18 2002-10-18 Low-complexity bit-parallel systolic multiplier over GF(2m)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91124418A TW589570B (en) 2002-10-18 2002-10-18 Low-complexity bit-parallel systolic multiplier over GF(2m)

Publications (1)

Publication Number Publication Date
TW589570B true TW589570B (en) 2004-06-01

Family

ID=34057919

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91124418A TW589570B (en) 2002-10-18 2002-10-18 Low-complexity bit-parallel systolic multiplier over GF(2m)

Country Status (1)

Country Link
TW (1) TW589570B (en)

Similar Documents

Publication Publication Date Title
EP2283417B1 (en) Implementation of arbitrary galois field arithmetic on a programmable processor
Lee Low complexity bit-parallel systolic multiplier over GF (2m) using irreducible trinomials
EP1859452A4 (en) Multiply redundant raid system and xor-efficient implementation
Rashidi Throughput/area efficient implementation of scalable polynomial basis multiplication
Barenghi et al. Evaluating the trade-offs in the hardware design of the ledacrypt encryption functions
Lee Low-Latency Bit-Parallel Systolic Multiplier for Irreducible x m+ x n+ 1 with gcd (m, n)= 1
TW589570B (en) Low-complexity bit-parallel systolic multiplier over GF(2m)
Cazaran et al. An algorithm for computing the minimum distances of extensions of BCH codes embedded in semigroup rings
Liu et al. A high speed VLSI implementation of 256-bit scalar point multiplier for ECC over GF (p)
Lee et al. Low-complexity bit-parallel systolic architectures for computing A (x) B2 (x) over GF (2m)
Popovici et al. Algorithm and architecture for a Galois field multiplicative arithmetic processor
Reyhani-Masoleh et al. Low complexity sequential normal basis multipliers over GF (2/sup m/)
Zhang et al. Low-complexity transformed encoder architectures for quasi-cyclic nonbinary LDPC codes over subfields
Martínez et al. The syndromes decoding algorithm in group codes
Chiou et al. Palindromic-like representation for Gaussian normal basis multiplier over GF (2m) with odd type t
Lee et al. Digit-serial Gaussian normal basis multiplier over GF (2m) using Toeplitz matrix-approach
Tujillo-Olaya et al. Hardware architectures for elliptic curve cryptoprocessors using polynomial and Gaussian normal basis over GF (2 233)
TWI330333B (en)
Trujillo-Olaya et al. Half-matrix normal basis multiplier over GF ($ p^{m} $)
Lee et al. Fault-tolerant bit-parallel multiplier for polynomial basis of GF (2m)
Wolf Efficient circuits for multiplying in GF (2m) for certain values of m
TW527561B (en) Low-complexity bit-parallel systolic multiplier over GF (2m)
TW588280B (en) General finite-field multiplier
Shaik Novel Implementation of Finite Field Multipliers over GF (2m) for Emerging Cryptographic Applications
US7167886B2 (en) Method for constructing logic circuits of small depth and complexity for operation of inversion in finite fields of characteristic 2

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees