1 五、發明說明( 【發明領域】 本發明是有關於一 制系統,特別是指一種不/外感測器之無刷直流馬達控 馬達轉子位置Λ絲4、外加任何感測元件即可偵測 5達控制系統。 、、並且減少製造成本之無刷直流馬 【發明背景】 各種達:中於:積小、效率高而被廣泛使用於 置亦被廣泛研究其中無感測器之無刷直流馬達控制裝 〇第-圖是習知一種無刷直流馬* 1及 2’其中該控制系統2包含有 :控制系統 -驅動電路裝置22 冑控Μ唬產生震置21、 衣置22、一電源及功率元 波裝置24、複數線電流感測器25、26、:7及雷一滤 流感測器28。由於一般二相古士 & 及—電源電 5是採用兩相調變法,|s 刷馬達之控制通常 定子=相後:! 瞬間(區間)僅控制馬達 ^ :線圈中的兩相導通,並使另-相維持浮接狀 :二此’-開始控制信號產生裝置21會根據一外部 及:率1元產件V7制信號經由驅動電路裝置22驅動電源 及力率7G件裝置23中六個做為切換開關之功率元 |2〇使上臂開關u+、v+、w+配合下臂開關u ' v - W ,以 輪流兩相送電方式,使電源VDC之電流在各區間狀_態從 一輸入相定子線圈流入,由另一輸出相定子線圈流出, 如第二圖所示,而分別在各浮接相定子線圈上產生^ 一反 電勢Vu、vv及vw,且該等反電勢Vu、Vv月Λ/ ^ ν久V w被分 25別送入控制信號產生裝置21中與一參考電壓U比 本紙張尺度適用中國國家標準(CNS) A4規格(21〇X 297公釐) 第4頁 588505 A? B7 五、發明說明(2 較,以判斷各浮接相的反電勢裳 父越點,並藉此笪 達轉子轉速與轉子磁極位置,逵 猎此估异馬 反電勢零交越點的目的。然而一私^办 彳貝列疋子 故反電勢零交越點彳自泪,丨 時常會出現浮接相雜訊,該浮接相 、 5 予钱相雜訊可區分為功率元 件切換雜訊與飛輪路徑電流雜邙 雜況。功率元件切換雜訊乃 由於電源及功率元件裝置23做 又逍斷切換時,在馬達之 各相線圈上的反電勢產生之雜訊 代以彺解決功率元件切 換雜訊的方法為加入濾波裝置24 ,加廿n 4 但其缺點為濾波裝 置24内部的電容並不適合積體 谓艘電路製程而必需外部接 線,使得製程複雜化且電路&法右 ^次有效縮小。而飛輪路徑 電流雜訊之導因乃是馬達之定子始 ^ &卞綠圈為電感性負載,因 此當浮接相之電流是由電源 v .. 疋田电你VDC流出時,電流會流經 D4、d5或d6 ’導致浮接相電位低於電源負端約n 而當〉于接相電流由電源VDC流入時,電流會流經Di、 〇2或Da,導致浮接相電位高於電源正端約〇·7ν,且此 飛輪路徑電流會導致反電勢零交越點偵測誤判。故以往 技術的排除方法之一是由線電流感測器25、26、27或 電源電流感測裝置28感測電流,然後取該電流做判 斷,例如中華民國發明專利第194562號「未具位置感 20測器之無刷直流馬達及其控制裝置」以及中華民國發明 專利第423205號「無感測器馬達驅動器」,據此取得 飛輪路徑電流放盡之時間,並以此為反電勢零交越點偵 測之掩罩信號’用以掩罩飛輪路徑電流未放盡前之誤 判。 25 但是,上述第194562號專利的缺點是需要使用霍 本紙張尺度適用中國國家標準(CNSyk4規格(210χ 297公爱) 第5頁 a. ·η 五、發明說明(3 爾元件,即線電流感測器25〜27去產生掩罩信號。而上 述第423205號專利雖然以電源電流感測裝置(電阻 取代第194562號真刹由沾堂迅 , 观寻利中的霍爾元件,但電源電流感測 裝置(電阻)2 8卻會造成大量的熱散逸。 5 【發明概要】 因此,本發明之目的,即在提供一種無感測器之無 刷直流馬達控制系統,其不需外加任何感測元件而能減 少製造成本,並於偵測馬達之浮接相反電勢零交越點的 同時,產罩信冑與觸發信冑消除纟電勢冑交越點 1 〇測時遭遇之浮接相雜訊。 於是,本發明無感測器之無刷直流馬達控制系統, 包括一電壓比較裝置、一取樣觸發信號產生裝置、'二反 電勢零交越點偵測裝置、一區間狀態轉換與重置裝置及 一驅動及控制信號產生裝置。該電壓比較裝置與2述無 15刷直流馬達連接,用以將馬達在不同區間狀態之浮接^ 所產生的反電勢分別與一參考電壓進行比較,以對應產 生一比較信號。該取樣觸發信號產生裝置產生2掩 罩信號及一掩罩後觸發信號,用以掩罩該等比較信號中 之浮接相雜訊。該反電勢零交越點偵測裝置根據上述掩 2〇罩後觸發信號產生一最終觸發信號,並以該最終觸發作 號伯測該等比較信號以產生一反電勢零交越點回授# 號。該區間狀態轉換與重置裝置用以對應上述馬達之區 間狀態適時重置並轉換取樣觸發信號產生裂置與反電 勢零交越點偵測裝置之區間狀態,使進行下一反電勢零 2 5交越點偵測。該驅動及控制信號產生裝置根據上述反電 本紙張尺度適用中國國家標準(CNS) A4規格(210x 297公釐) 第6頁 588505 B7 五 、發明說明 ( 4 ) 勢 零 交 越 點 回 授信號判斷馬達轉速,以根據該轉速產 生 一 掩 罩 時 間 判 別信號給上述取樣觸發信號產生裝置, 使 根 據 該 掩 罩 時 間判別信號適時調整該掩罩信號之掩 罩 時 間 長 度 〇 5 [ 圖 式 之 簡 單 說明】 本發 明 之 其他技術内容、特徵及優點,在以下配 合 參 考 圖 式 之 較 佳實施例的詳細說明中,將可清楚的 呈 現 9 在 圖 式 中 : 第 圖 是 習知一種三相直流無刷馬達之控制系統 ► » 10 第 二 圖 是 第一圖之控制系統所產生的六種控制 區 間 狀 態 以 及 在 每一區間狀態中馬達的三相定子繞組 狀 態 9 是 第 二 圖 是 本發明無感測器之無刷直流馬達控制 系 統 的 一 較 佳 實 施例之電路圖; 15 第 四 圖 顯 示本較佳實施例之驅動及控制信號產 生 裝 置 針 對 八 種 區間狀態對應產生一區間狀態信號Μ 1 以 及 對 應 每 一 間狀態輸入該零交越點偵測裝置之比 較 信 號 A7 ; 第 五 圖 是 本較佳實施例之零交越點偵測裝置的 内 20 部 電 路 圖 第 六 圖 是 本較佳實施例產生之各種控制信號示 意 圖 f 及 第 七 圖 是 本較佳實施例產生之掩罩信號的掩罩 時 間 長 度 取 決 於 馬達轉子轉速之一說明圖例。 25 [ 發 明 之 詳 細 說明】 本紙張尺度適用中國國家標準(CNS) A4規格(210x 297公釐) 第7頁 5885051 V. Description of the Invention ([Field of the Invention] The present invention relates to a one-system system, particularly a brushless DC motor without a sensor, and the position of the rotor of the motor. The wire can be detected by adding any sensing element. 5 DC control system. Brushless DC horses that reduce manufacturing costs [Background of the invention] Various types of: Medium in: Low volume, high efficiency, widely used in homes, and widely researched among them sensorless brushless DC The motor control device is the conventional brushless DC horse * 1 and 2 ′. The control system 2 includes: control system-driving circuit device 22, which controls the vibration generator 21, the clothing device 22, and a power supply. And power element wave device 24, complex line current sensors 25, 26,: 7, and thunder one filter flu detector 28. Because the general two-phase ancients & and-the power supply 5 uses a two-phase modulation method, | s The control of the brush motor is usually stator = phase after :! Only momentarily (interval) controls the motor ^: The two phases in the coil are turned on, and the other phase is maintained in a floating state: the two'-start control signal generating device 21 will External and: Rated 1 yuan production V7 system signal via drive The drive power of the device 22 and the power rate of the 7G pieces of the device 23 are six power elements of the switch. 20 The upper arm switches u +, v +, and w + are matched with the lower arm switches u 'v-W, and the two-phase power transmission is used in turn. The current of the power supply VDC flows from one input phase stator coil in each section state, and flows out from the other output phase stator coil, as shown in the second figure, and generates a back electromotive force Vu on each floating phase stator coil, respectively. , Vv, and vw, and the back-EMFs Vu, Vv, Λ / ^ ν long V w are divided into 25 and sent to the control signal generating device 21 to a reference voltage U. This paper size applies Chinese National Standard (CNS) A4 Specifications (21〇X 297 mm) Page 4 588505 A? B7 V. Description of the invention (2 comparisons, to determine the counterpoint of the back-EMF of each floating phase, and to reach the rotor speed and rotor magnetic pole position, I am trying to estimate the purpose of the zero-crossing point of the back-EMF of horses. However, a private person does not know how to reverse the zero-crossing point of the back-EMF. , 5 Yu Qian phase noise can be divided into power component switching noise and flywheel path current noise. The rate component switching noise is due to the noise generated by the back electromotive force on the coils of each phase of the motor when the power supply and the power component device 23 are switched again and again. The method to solve the noise switching of the power component is to add a filtering device 24 Add 廿 n 4 but its disadvantage is that the internal capacitance of the filter device 24 is not suitable for the integrated circuit manufacturing process and external wiring is required, which complicates the process and the circuit & method effectively reduces the number of times. The current noise of the flywheel path The cause is the start of the stator of the motor ^ & The green circle is an inductive load, so when the current of the floating phase is from the power supply v .. Putian Power Your VDC flows out, the current will flow through D4, d5 or d6 ' The floating phase potential is lower than the negative terminal of the power supply by about n. When the phase current flows from the power supply VDC, the current will flow through Di, 〇2, or Da, resulting in a floating phase potential higher than the positive terminal of the power supply by about 0 · 7ν. And this flywheel path current will cause false detection of back-EMF zero crossing point detection. Therefore, one of the elimination methods of the prior art is to sense the current by the line current sensor 25, 26, 27 or the power supply current sensing device 28, and then use this current to make a judgment. For example, the Republic of China Invention Patent No. 194562 "No Position "Brushless DC motor with 20 sensors and its control device" and Republic of China Invention Patent No. 423205 "Sensorless Motor Driver", based on which the current of the flywheel path is exhausted and this is used as the zero potential of the back-EMF The mask signal of cross-point detection is used to mask the misjudgment before the current of the flywheel path is exhausted. 25 However, the disadvantage of the above-mentioned patent No. 194562 is that it is necessary to use the Chinese paper standard (CNSyk4 specification (210x297)). Page 5 a. · Η 5. Description of the invention (3 er element, that is, line current sense Detectors 25 to 27 generate mask signals. Although the above-mentioned patent No. 423205 uses a power supply current sensing device (resistance replaces No. 194562 Zhensha Youzhantang Xun, looking at the Hall element in the profit, but the power supply current sense However, the purpose of the present invention is to provide a brushless DC motor control system without a sensor, which does not require any additional sensing. Components can reduce the manufacturing cost, and at the same time detect the floating potential of the motor, the opposite potential zero crossing point, while producing the mask signal and the trigger signal to eliminate the "potential" crossing point, the floating phase noise encountered during the measurement Therefore, the sensorless brushless DC motor control system of the present invention includes a voltage comparison device, a sampling trigger signal generation device, a 'two back-EMF zero-crossing point detection device, and an interval state transition and repetition. Device and a driving and control signal generating device. The voltage comparison device is connected to the 15 brushless DC motor described in 2 to compare the back-EMF generated by the motor in different intervals ^ with a reference voltage, A comparison signal is generated correspondingly. The sampling trigger signal generating device generates a 2 mask signal and a post-mask trigger signal to mask floating phase noise in the comparison signals. The back-EMF zero-crossing point detection The testing device generates a final trigger signal according to the trigger signal after the mask is masked, and measures the comparison signals with the final trigger number to generate a back-EMF zero-crossing point feedback # sign. The setting device is used to reset and timely switch the sampling trigger signal to correspond to the interval state of the above motor to generate the interval state of the split and back-EMF zero crossing point detection device, so that the next back-EMF zero-crossing point detection is performed. The driving and control signal generating device is in accordance with the above-mentioned anti-electricity paper size and applies the Chinese National Standard (CNS) A4 specification (210x 297 mm) Page 6 588505 B7 V. Description of the invention (4) The potential zero crossing point feedback signal is used to determine the rotation speed of the motor to generate a masking time determination signal to the sampling trigger signal generating device according to the rotation speed, so that the masking time length of the masking signal is adjusted according to the masking time determination signal in a timely manner. 〇5 [Brief description of the drawings] Other technical contents, features, and advantages of the present invention will be clearly presented in the following detailed description of the preferred embodiment with reference to the drawings. 9 In the drawings: The figure is Know the control system of a three-phase DC brushless motor ► »10 The second diagram is the six control section states generated by the control system of the first diagram and the three-phase stator winding state of the motor in each section state 9 is the first The second figure is a circuit diagram of a preferred embodiment of the sensorless brushless DC motor control system of the present invention; the fourth figure shows that the driving and control signal generating device of the preferred embodiment generates a Interval status letter M 1 and the comparison signal A7 of the zero-crossing point detection device are input corresponding to each state; the fifth diagram is the internal 20 circuit diagram of the zero-crossing point detection device of the preferred embodiment; the sixth diagram is the comparison The schematic diagram f and the seventh diagram of the various control signals generated by the preferred embodiment are one of the explanatory examples of the masking time length of the mask signals generated by the preferred embodiment depending on the motor rotor speed. 25 [Detailed description of the invention] This paper size applies to Chinese National Standard (CNS) A4 (210x 297 mm) Page 7 588505
五、發明說明C 5 ) 參閱第三圖所示,是本發明無感測器之無刷直流馬 達控制系統3的一較佳實施例’其中該無刷直流馬達 30是一三相無刷直流馬達,其受一電源及功率元件骏 置4控制,且如前面習知技術所述’該電源及功率元件 5裝置4包括一直流電源VDC及三個與直流電源VDC並聯 之橋臂,每一橋臂具有兩個串聯之功率開關元件,分别 為上臂元件u+、v+、w+及下臂元件u·、v·、,以 及與各該上臂元件u+、V+、W+及下臂元件UL、V-及 W _反向並聯之一飛輪二極體D。三相直流無刷馬達3 〇 10之定子三相線圈Lu、Lv及Lw分別與電源及功率元件裝 置4之該等橋臂連接,以經由各橋臂之上臂元件u+、 V+、W+及下臂元件u_、V-及W-與直流電源VDC導接。 且該電源及功率元件裝置4是受一驅動裝置5驅動而驅 使馬達30運轉,驅動裝置5驅動電源及功率元件裝置 15 4中的六個功率開關元件(即上臂元件u+、V+、W +與下 臂元件U_、V-、W-),使電源VDc適時流過馬達定子線 圈 Lu、Lv 及 Lw。 而本較佳實施例之無刷直流馬達控制系疵3包括 一驅動及控制信號產生裝置6,一電壓比較裝置7,一 20區間狀態轉換與重置裝置8,一取樣觸發信據崖生裝置 9,以及一反電勢零交越點偵測裝置1 〇。 該驅動及控制信號產生裝置6與驅動裝釁5連接’ 用以產生一控制信號給驅動裝置5,使驅動装糞5根據 該控制信號驅動電源及開關裝置4中六個功率開關元 25件(上臂元件U+、V+、W +及下臂元件U_、V_、W-)啟閉。 未紙張尺度適用中國國家標準(CNS) A4規格(21Gx 297公楚)" 'V. Description of the invention C 5) Referring to the third figure, it is a preferred embodiment of the sensorless brushless DC motor control system 3 of the present invention, wherein the brushless DC motor 30 is a three-phase brushless DC The motor is controlled by a power source and power element Jun 4 and the power source and power element 5 device 4 includes a DC power source VDC and three bridge arms connected in parallel with the DC power source VDC. The arm has two power switching elements connected in series, which are the upper arm element u +, v +, w + and the lower arm element u ·, v ·, and the upper arm element u +, V +, W +, and the lower arm element UL, V-, and W _ one flywheel diode D in antiparallel. The stator three-phase brushless motors of three-phase DC brushless motors 〇10 are connected to the bridge arms of the power supply and power element device 4 respectively, via the upper arm elements u +, V +, W + and the lower arm of each bridge arm. The components u_, V- and W- are connected to a DC power supply VDC. And the power source and power element device 4 is driven by a driving device 5 to drive the motor 30, and the driving device 5 drives the six power switching elements (ie, the upper arm elements u +, V +, W + and The lower arm elements U_, V-, W-) allow the power VDc to flow through the motor stator coils Lu, Lv and Lw in a timely manner. The brushless DC motor control system defect 3 of this preferred embodiment includes a driving and control signal generating device 6, a voltage comparison device 7, a 20-segment state transition and reset device 8, and a sampling triggering device. 9, and a back-EMF zero crossing point detection device 10. The driving and control signal generating device 6 is connected to the driving device 5 to generate a control signal to the driving device 5 so that the driving device 5 drives six power switching elements in the power supply and the switching device 25 according to the control signal ( The upper arm elements U +, V +, W + and the lower arm elements U_, V_, W-) are opened and closed. Non-paper size applies Chinese National Standard (CNS) A4 specification (21Gx 297 cm) " '
頁 588505 B7 ---------------------一 五、發明說明(6 ) 且如前面習知技術所述,本發明係採用兩相調變法控制 馬達30運轉,亦即於某一瞬間(區間)僅控制馬達定子 三相線圈Lu、Lv及Lw中的兩相導通,並使另一相呈淨 接狀態。為此,驅動及控制信號產生裝置6根據一外部 5電壓命令S1產生如第四圖所示之八種區間狀態,包栝 區間狀態?1〜卩6及1^八8^:(在第三圖中以標號89表示), 而輪流以定子線圈兩相送電方式產生六個功率元件控 制信號S 3送至驅動裝置5,使適時驅動電源及功率元 件裝置4内的六個功率開關元件啟閉,以決定馬達定子 10三相線圈Lu、Lv及Lw之輸入相、輸出相及浮接相,使 電源VDc電流從輸入相定子線圈流入,由輸出相定子線 圈流出’而在轉態時在各浮接相定子線圈上產生一反電 勢(或稱浮接相電壓)Vu、Vv、Vw,且其波形變化如第 六圖所示。而且,驅動及控制信號產生裝置6產生一脈 15寬調變信號M6經由驅動裝置5對在每一區間狀態作動 之功率開關元件進行脈寬調變控制。此外,如第六圖所 示’驅動及控制信號產生裝置6更根據脈寬調變信號 M6之下降緣產生一取樣觸發信號S2,該取樣觸發信號 S2可用以掩罩電源及功率元件裝置4之該等功率開關 20元件進行脈寬調變控制時產生之功率元件切換雜訊。該 驅動及控制信號產生裝置6並且根據馬達轉子轉速產 生一掩罩時間判別信號M4,且令該掩罩時間判別信號 M4在轉子高速運轉時呈低電位,而轉子在低速運轉時 則呈高電位。 25 該電壓比較裝置7與上述馬達30之定子連接,其 表紙張尺度適用中國國家標準(CNS) A4規格(210x 297公釐) ' — & 第9頁 588505 _ B7五、發明說明(7 ) 包括三個比較器71、72、73,當馬達3〇之定子三相線 圈Lu、Lv、Lw產生反電勢(浮接相電壓)γυ、Vv、Vw 時,該等反電勢Vu、Vv、Vw即被分別送入該等比較器 71、72、73中分別與一參考電壓~^進行比較,該參 5考電壓Vref可以是電源中性點VN、馬達中性點VcT或 馬達等效中性點vc。如第六圖所示,為該等反電勢Vu、 Vv、Vw與參考電壓Vref經比較器71、72、73比較後 產生之比較信號A6U、A6V及A6W,且該等比較信號 A6U、A6V及A6W接著被送入該反電勢零交越點偵測 10 裝置10中。 該區間狀態轉換與重置裝置8與上述驅動及控制 k號產生襄置6連接’且如第四圖所示,其主要根據驅 動及控制信號產生裝置6之區間狀態S9產生一區間狀 態、號Μ 1,並以三個位元〇 0 0〜111表示八種區間狀態 15 F1〜F6及MASK,並根據該等區間狀態產生一區間狀態 重置信號M2,如第六圖所示,且區間狀態信號M1及 區間狀態重置信號M2被分別送入反電勢零交越點彳貞測 裝置10中。 此外,由於電源及功率元件裝置4在驅動馬達定子 2 0 三相線圈時,該等功率元件U+、V+、W+及u_、、W 在進行轉態切換以及脈寬調變控制而不斷啟閉之動作 會產生所謂的浮接相雜訊(包括飛輪路徑電流雜訊與功 率元件切換雜訊)。因此,為了消除飛輪路徑電流雜訊, 該取樣觸發信號產生裝置9分別與驅動及控制信號產 25 生裝置6和區間狀態轉換與重置裝置8連接,以根據該 本紙張尺度適用中國國家標準(CNS) A4規格(210x 297公釐)第10頁 588505Page 588505 B7 --------------------- One or five, description of the invention (6) and as described in the conventional technology, the present invention uses two-phase modulation control The motor 30 runs, that is, at a certain moment (interval), only two phases of the three-phase coils Lu, Lv, and Lw of the motor stator are controlled to conduct, and the other phase is in a net connection state. To this end, the driving and control signal generating device 6 generates eight interval states as shown in the fourth figure according to an external 5 voltage command S1, including the interval states? 1 ~ 卩 6 and 1 ^ 八 8 ^: (represented by reference numeral 89 in the third figure), and in turn, six power element control signals S 3 are generated by the stator coil two-phase power transmission mode and sent to the driving device 5 to drive at a timely time. The six power switching elements in the power source and power element device 4 are turned on and off to determine the input phase, output phase, and floating phase of the three-phase coils Lu, Lv, and Lw of the motor stator 10, so that the power VDc current flows from the input phase stator coil. When the output phase stator coil flows out ', a counter-electromotive force (or floating phase voltage) Vu, Vv, Vw is generated on each floating phase stator coil during the transition, and its waveform changes are shown in the sixth figure. In addition, the driving and control signal generating device 6 generates a pulse of 15-width modulation signal M6 and performs pulse-width modulation control on the power switching element operating in each section state through the driving device 5. In addition, as shown in the sixth figure, the driving and control signal generating device 6 further generates a sampling trigger signal S2 according to the falling edge of the pulse width modulation signal M6. The sampling trigger signal S2 can be used to mask the power supply and the power component device 4. The power element switching noise generated when these power switch 20 elements perform pulse width modulation control. The driving and control signal generating device 6 generates a masking time determination signal M4 according to the rotation speed of the motor rotor, and makes the masking time determination signal M4 assume a low potential when the rotor is running at a high speed, and the rotor assumes a high potential when operating at a low speed. . 25 The voltage comparison device 7 is connected to the stator of the above-mentioned motor 30, and the paper size of the table applies to the Chinese National Standard (CNS) A4 specification (210x 297 mm) '— & page 9 588505 _ B7 V. Description of the invention (7) Including three comparators 71, 72, 73, when the stator three-phase coils Lu, Lv, Lw of the motor 30 generate back-EMF (floating phase voltage) γυ, Vv, Vw, these back-EMF Vu, Vv, Vw That is, they are sent to these comparators 71, 72, and 73 respectively to be compared with a reference voltage ~ ^. The reference voltage Vref can be the power supply neutral point VN, the motor neutral point VcT, or the motor equivalent neutral. Point vc. As shown in the sixth figure, the comparison signals A6U, A6V, and A6W are generated after the back-EMFs Vu, Vv, Vw and the reference voltage Vref are compared by the comparators 71, 72, 73, and the comparison signals A6U, A6V, and A6W is then sent to the back-EMF zero crossing point detection device 10. The interval state transition and reset device 8 is connected to the above-mentioned drive and control k-number generation unit 6 and as shown in the fourth figure, it mainly generates an interval state and number based on the interval state S9 of the drive and control signal generation device 6. Μ 1, and three bits 0 0 0 ~ 111 represent eight interval states 15 F1 ~ F6 and MASK, and generate an interval state reset signal M2 according to the interval states, as shown in the sixth figure, and the interval The state signal M1 and the interval state reset signal M2 are sent to the back-EMF zero-crossing point detection device 10, respectively. In addition, when the power source and power element device 4 drives the motor three-phase three-phase coils, the power elements U +, V +, W +, u_, and W are continuously switched on and off by performing state switching and pulse width modulation control. The action will generate so-called floating phase noise (including flywheel path current noise and power component switching noise). Therefore, in order to eliminate the current noise of the flywheel path, the sampling trigger signal generating device 9 is respectively connected to the driving and control signal generating device 6 and the interval state switching and resetting device 8 so as to apply the Chinese national standard ( CNS) A4 size (210x 297 mm) page 10 588505
重置信號M2、取樣觸發作鲈Q 赞彳°唬S2及掩罩時間判別信號 M4產生:掩罩信號S5,用以掩罩飛輪路徑電流雜訊。 :圖所$ 4使掩罩信號§5之掩罩時間長度 可Ik者馬達轉子轉速同步調整而 门堂而達到完全掩罩效果,在 5取樣觸發錢產生裝置9内部更㈣掩罩信號85設計 有DA = 5〇ns及DB = 75ns兩種掩罩時間長度使如第七 圖所示,當驅動及控制信號產生裝置6輸出之掩罩時間 判別信號M4為高電位η時,表示當時馬達轉子在低轉 速,則令掩罩信號S5之掩罩時間為DA,而當掩罩時間 〇判別信號Μ4為低電位L時,表示當時馬達轉子為高轉 速,則令掩罩信號S5之掩罩時間為DB,藉此根據馬達 轉速適時調整掩罩信號S5之掩罩時間,以在馬達轉速 改變時能適時消除飛輪路徑電流雜訊。 20 且為了在偵測馬達定子線圈浮接相的反電勢零交 5越點時能躲避飛輪路徑電流雜訊,取樣觸發信號產生裝 置9更根據掩罩信號S5及取樣觸發信號S2產生一掩罩 後觸發信號S 6送入反電勢零交越點偵測裝置1 〇中。如 第五圖所示,是反電勢零交越點偵測裝置1 〇的内部電 路圖,其主要包括三個反相器101、102、103,一多工 器104、一第一正反器105及一第二正反器106。由電 壓比較裝置7輸入之比較信號A6U、A6V及A6W經反 相器101、102、103反相產生 I、、及,且此 六組信號A6U、A6V、A6W及 I、、及被送至 多工器1 04之輸入端由區間狀態信號Μ1控制選擇輪出 25 至第一正反器1〇5的輸入端,區間狀態重置信號M2控 本紙張尺度適用中國國家標準(CNS) Α4規格(210χ 297公釐) 第11頁 588505 _ B7五、發明說明(9 ) 制第一正反105及第一正反1§ 1〇6的清除端clrn, 且第二正反器106的輸出---零交越點回授信號S8經一 反相器107反相後與掩罩後觸發信號S6共同輸入一及 閘108產生一最終觸發信號M5控制第一正反器1〇5的 5 觸發端。因此,當Ml控制六組比較信號A6U、A6V、 A 6 W及必[/、乂 6K、及乂6^其中之一輸出時,該被輸出 之比較信號,例如A6U,表示馬達目前受驅動的區間狀 態為F 1,同時,區間狀態重置信號M2發出一觸發信號 (Pulse)將第一及第二正反器105、106的輸出端Q清除 10 為0,使第二正反器106的輸出·—零交越點回授信號S8 經過反相器107反相變為1並與掩罩後觸發信號S6經 及閘108 “AND”後產生一最終觸發信號M5去取樣觸發 第一正反器105,以取得第一正反器1〇5輸入端D的資 料A7,且在本例子中,該資料A7為比較信號A6U的 15 波形變化,亦即在區間F1之定子浮接相線圈上的反電 勢波形變化,如第六圖所示。因此,以最終觸發信號 M5對A6U進行取樣時,當反電勢Vu小於參考電壓VREF 時,A6U = 0,以最終觸發信號M5取樣觸發將使第一正 反器105的輸出 M9 = 0,反電勢零交越點回授信號 20 S8 = 0,直到反電勢Vu大於參考電壓VREF時,A6U=1, 最終觸發信號M5取樣觸發將使第一正反器1〇5的輸出 M9 = l,且反電勢零交越點回授信號S8=l並鎖住,以在 偵測反電勢零交越點後強迫掩罩之後的雜訊,據此,產 生反電勢零交越點回授信號S8,且該反電勢零交越點 25回授信號S8由〇變1處即為反電勢零交越點。而該重 本紙張尺度適用中國國家標準(CNS) A4規格(210χ 297公董) 第12頁 588505 B7 五、發明說明(10 ) 置信號M2則在區間狀態F1結束時即輸出下一觸發信 —e)告知第一及第二正反器1〇5、1〇6將輸出端清 除(重置)為0,以重新等待下一反電勢零交越點偵測。 因此,藉由上述偵測過程,偵測每一區間狀態?1〜%之 5反電勢零父越點產生之反電勢零交越點回授信號s8, 將可得知在每一區間狀態F1〜F6中的反電勢零交越 點。而且,由於最終觸發信號M5是由掩罩後觸發信號 S6與反相後的反電勢零交越點回授信號S8所產生,因 此其對比較信號A6U〜A6W及:^7〜石承進行取樣時,可 0同時掩罩在比較信號上因為脈波寬度調變產生之功率 元件切換雜訊,而能夠對該等比較信號A6U〜A6w及 乂6[/〜進行更準確的取樣。 然後,由零交越點偵測裝置1〇產生之反電勢零交 越點回授信號S8被回授送入驅動及控制信號產生装置 5 6中,驅動及控制信號產生裝置,6以一計數器(圖中未示) 20 計數獲得該反電勢零交越點回授信號S8中兩兩零交越 點間之時間差並記錄,以根據記錄值E(k)判斷馬達轉子 轉速及磁極位置,而從中求得馬達轉速,並根據該馬達 轉速產生掩罩時間判別信號M4提供給取樣觸發信號產 生裝置9,使如前所述,根據馬達轉速改變掩罩信號 的掩罩時間長度(即掩罩脈波寬度),例如第七圖所示, 假設在驅動及控制信號產生裝置6預設有一轉速參# 指標EA = 200 /z s,當記錄值E(k)及E(k+1)<轉速參考指 標EA = 200 // s時,表示馬達在低轉速,此時驅動及^ 2 5制信號產生裝置6即令掩罩時間判別信號]VI4輪出古電 本紙張尺度適用中國國家標準(CNS) A4規格(210χ 297公釐) 第13頁 588505 五、發明說明(11 位’取樣觸發信號產生裝置9即根據該掩罩時間判別信 號M4,,令掩罩信號S5的掩罩時間卜da(5〇w),反 之’當馬達在高轉速時’驅動及控制信號產生裝置6即 令掩罩時間判別信號M4輸出低電位,令掩罩信號s5 5的掩罩時間D(n) = DB(75ns),藉此,根據不斷回授之反 電勢零交越點回授信號S8持續判斷馬達轉速,以根據 馬達轉速即時調整掩罩信號S5,使掩罩信號S5之掩罩 時間長度能適時掩罩馬達運轉時產生之飛輪路徑電流 雜訊。 10 當然,在該驅動及控制信號產生裝置6中亦可設定 複數個轉速參考指標EA1、EA2、EA3、…,並以該等 轉速參考指標EA1、EA2、EA3、·.·與馬達轉速相比1 , 以根據比較結果對應調整該掩罩時間判別信號M4的脈 波寬度’使取樣觸發信號產生裝置9可根據該掩罩時間 15判別信號M4之不同脈波寬度(即不同轉速參考指標)隨 機調整該掩罩信號S5之掩罩時間長度,使得掩罩信號 S5之掩罩時間可隨著馬達轉速做多段調整,藉而更準 確地掩罩馬達運轉時產生之飛輪路徑電流雜訊。 由上述說明可知’本發明提供一種不需外加習知電 20流感測元件、位置電流感測元件與濾波電容的無刷直流 馬達控制系統,不但可大量減少製造成本,並且藉由產 生掩罩信號S5及取樣觸發信號S2來躲避反電勢彳貞測時 遭遇之飛輪路徑雜訊與功率元件切換雜訊,使反電勢零 交越點的偵測更為準確,並藉此輪流彳貞測馬達定子各才目 25 線圈產生之反電勢零交越點,而即時估算馬達轉速及轉 表紙張尺度it用中國國家標準(CNS) A4規格(210x 297公釐) ~~----— 443 第14頁 588505 B7五、發明說明(l2 ) 子磁極位置。 惟以上所述者,僅為本發明之較佳實施例而已,當 不能以此限定本發明實施之範圍,即大凡依本發明申請 專利範圍及發明說明書内容所作之簡單的等效變化與 5 修飾,皆應仍屬本發明專利涵蓋之範圍内。 本紙張尺度適用中國國家標準(CNS) A4規格(210x 297公釐) 第15頁 588505 Λ 7 Β7 5 驅動裝置 7 電壓比較裝置 3 0三相無刷直流馬達 71〜73比較器 101〜103,107反相器 105第一正反器 108及閘 D 飛輪二極體 Lu、Lv、Lw三相線圈 S 1外部電壓命令 S2取樣觸發信號 S5掩罩信號 S9區間狀態 Μ 1區間狀態信號 Μ4掩罩時間判別信號 Μ6脈寬調變信號 Vref參考電壓 V c τ馬達中性點 A6U〜A6W比較信號 V + V. W+ W. 46C7、i、及;反相之比較信號 五、發明說明(l3 ) 元件標號對照】 無感測器之無刷直流馬達控制系統 電源及功率元件裝置 驅動及控制信號產生裝置 8 區間狀態轉換與重置震置 9 取樣觸發信號產生裝置 1 0反電勢零交越點偵測裝置 104多工器 106第二正反器 vDC直流電源 上臂(功率)元件U + 下臂(功率)元件u_ F1〜F6,MASK區間狀態 S3控制信號 S6掩罩後觸發信號 S8反電勢零交越點回授信號 M2區間狀態重置信號 Μ 5最終觸發信號The reset signal M2, the sampling trigger is the bass Q, S2, and the masking time discrimination signal M4 are generated: the masking signal S5 is used to mask the current noise of the flywheel path. : The figure 4 makes the masking signal § 5 the masking time length can be adjusted synchronously with the rotor speed of the Ik motor and the door can achieve a complete masking effect. The masking signal 85 is more designed in the 5 sampling trigger money generating device 9 There are two masking time lengths DA = 50ns and DB = 75ns. As shown in the seventh figure, when the masking time determination signal M4 output by the driving and control signal generating device 6 is a high potential η, it indicates that the motor rotor at that time At low speeds, let the masking time of the masking signal S5 be DA, and when the masking time 0 determines that the signal M4 is a low potential L, it means that the motor rotor is at a high speed at that time, then let the masking time of the masking signal S5 be It is DB, so that the masking time of the masking signal S5 can be adjusted according to the motor speed in time, so as to eliminate the flywheel path current noise in time when the motor speed is changed. 20 In order to avoid the current noise of the flywheel path when detecting the back-EMF zero crossing 5 of the floating phase of the motor stator coil, the sampling trigger signal generating device 9 generates a mask based on the mask signal S5 and the sampling trigger signal S2. The post-trigger signal S 6 is sent to the back-EMF zero-crossing point detection device 10. As shown in the fifth figure, it is an internal circuit diagram of the back-EMF zero-crossing point detection device 10, which mainly includes three inverters 101, 102, 103, a multiplexer 104, and a first flip-flop 105. And a second flip-flop 106. The comparison signals A6U, A6V, and A6W input from the voltage comparison device 7 are inverted by inverters 101, 102, and 103 to generate I, and, and the six sets of signals A6U, A6V, A6W, and I, and are sent to the multiplexer. The input terminal of the device 1 04 is controlled by the interval state signal M1 and selected to turn out 25 to the input terminal of the first flip-flop 105. The interval state reset signal M2 is controlled by the paper size. Applicable to China National Standard (CNS) A4 specification (210χ 297 mm) Page 11 588505 _ B7 V. Description of the invention (9) The clearing end clrn of the first positive and negative 105 and the first positive and negative 1§ 106, and the output of the second positive and negative inverter 106 --- The zero-crossing point feedback signal S8 is inverted by an inverter 107 and is input together with the post-masking trigger signal S6 to generate a final trigger signal M5 to control the 5 trigger terminal of the first flip-flop 105. Therefore, when M1 controls one of the six sets of comparison signals A6U, A6V, A 6 W, and one of the required [/, 乂 6K, and 乂 6 ^, the output comparison signal, such as A6U, indicates that the motor is currently driven. The interval state is F 1, and at the same time, the interval state reset signal M2 sends a trigger signal (Pulse) to clear the output terminals Q of the first and second flip-flops 105 and 106 to 10 to make the second flip-flop 106 Output · —The zero-crossing point feedback signal S8 is inverted by the inverter 107 to become 1 and is masked with the trigger signal S6 and the gate 108 “AND” to generate a final trigger signal M5 to sample and trigger the first positive and negative 105 to obtain the data A7 of the input terminal D of the first flip-flop 105, and in this example, the data A7 is the 15 waveform change of the comparison signal A6U, that is, the stator floating phase coil in the interval F1 The back EMF waveform changes as shown in Figure 6. Therefore, when sampling A6U with the final trigger signal M5, when the back EMF Vu is less than the reference voltage VREF, A6U = 0. Sampling and triggering with the final trigger signal M5 will make the output of the first flip-flop 105 M9 = 0. The zero-crossing point feedback signal 20 S8 = 0, until the back-EMF Vu is greater than the reference voltage VREF, A6U = 1, and the final trigger signal M5 sampling trigger will make the output of the first flip-flop 105 M9 = l, and the reverse The potential zero-crossing point feedback signal S8 = 1 and locked to detect the noise after forced masking after the back-EMF zero-crossing point, and accordingly, the counter-electromotive zero-crossing point feedback signal S8 is generated, and The back-EMF zero-crossing point 25 feedback signal S8 changes from 0 to 1 to become the back-EMF zero-crossing point. And this duplicate paper size applies the Chinese National Standard (CNS) A4 specification (210χ 297 public director) Page 12 588505 B7 V. Description of the invention (10) The setting signal M2 will output the next trigger letter at the end of the interval state F1— e) Tell the first and second flip-flops 105 and 106 to clear (reset) the output to 0 to wait for the next back-EMF zero-crossing point detection again. Therefore, through the above detection process, to detect the status of each interval? The counter-electromotive force zero crossing point feedback signal s8 generated by the counter-electromotive force zero crossing point of 1 to 5% will know the counter-electromotive force zero-crossing point in each interval state F1 to F6. Moreover, because the final trigger signal M5 is generated by the masked trigger signal S6 and the back-EMF zero-crossing point feedback signal S8 after inversion, it samples the comparison signals A6U ~ A6W and: ^ 7 ~ 石 承At the same time, the comparison signal A6U ~ A6w and 乂 6 [/ ~ can be more accurately sampled by masking the noise of the power element switching generated by the pulse width modulation on the comparison signal at the same time. Then, the counter-electromotive force zero-crossing point feedback signal S8 generated by the zero-crossing point detection device 10 is fed back to the driving and control signal generating device 56, where the driving and control signal generating device 6 uses a counter (Not shown in the figure) 20 Count the time difference between the two zero-crossing points in the back-EMF zero-crossing point feedback signal S8 and record them to judge the motor rotor speed and magnetic pole position based on the recorded value E (k), and The speed of the motor is obtained from it, and a masking time determination signal M4 is generated according to the speed of the motor and is provided to the sampling trigger signal generating device 9 so that the masking time length of the masking signal is changed according to the speed of the motor (that is, the masking pulse). (Wave width), for example, as shown in the seventh figure, assuming that the driving and control signal generating device 6 is preset with a speed parameter # indicator EA = 200 / zs, when the recorded values E (k) and E (k + 1) < speed Reference indicator EA = 200 // s, indicating that the motor is at a low speed. At this time, the drive and ^ 2 5 system signal generating device 6 will make the mask time discriminating signal.] VI4 rounds of ancient electricity. This paper applies the Chinese National Standard (CNS). A4 specifications (210 x 297 mm) Page 13 588505 V. Description of the invention (11-bit 'sampling trigger signal generating device 9 judges the signal M4 according to the mask time, and makes the mask time S5 of the mask signal S5 (50W), otherwise' when the motor is at a high speed The driving and control signal generating device 6 causes the masking time discrimination signal M4 to output a low potential, and makes the masking time of the masking signal s5 5 D (n) = DB (75ns). The zero-crossing point feedback signal S8 continuously judges the motor speed to adjust the mask signal S5 in real time according to the motor speed, so that the mask time length of the mask signal S5 can mask the flywheel path current noise generated by the motor in time. Of course, the driving and control signal generating device 6 may also set a plurality of speed reference indexes EA1, EA2, EA3, ..., and compare these speed reference indexes EA1, EA2, EA3, ... with the speed of the motor 1 According to the comparison result, the pulse wave width of the masking time discrimination signal M4 is adjusted accordingly, so that the sampling trigger signal generating device 9 can determine different pulse wave widths of the signal M4 (that is, different speed reference indicators) randomly according to the masking time 15 Adjust the masking time length of the masking signal S5, so that the masking time of the masking signal S5 can be adjusted in multiple stages with the speed of the motor, thereby more accurately masking the flywheel path current noise generated when the motor is running. It can be seen from the description that the present invention provides a brushless DC motor control system that does not need to be equipped with a conventional electric 20 flu detection element, a position current sensing element, and a filter capacitor, which can not only greatly reduce the manufacturing cost, but also generate a mask signal S5 and Sampling the trigger signal S2 to avoid the noise of the flywheel path and power element switching noise encountered during the back-EMF measurement, which makes the detection of the zero-crossing point of the back-EMF more accurate. Head 25 The zero-crossing point of the back-EMF generated by the coil, and the motor speed and the paper size of the turn table are estimated immediately using the Chinese National Standard (CNS) A4 specification (210x 297 mm) ~~ ----— 443 Page 14 588505 B7 V. Description of the invention (l2) Sub-pole position. However, the above are only the preferred embodiments of the present invention. When the scope of implementation of the present invention cannot be limited by this, that is, the simple equivalent changes and 5 modifications made according to the scope of the patent application and the content of the invention specification of the present invention , All should still fall within the scope of the invention patent. This paper size applies the Chinese National Standard (CNS) A4 specification (210x 297 mm) Page 15 588505 Λ 7 Β7 5 Drive device 7 Voltage comparison device 3 0 Three-phase brushless DC motor 71 ~ 73 Comparator 101 ~ 103,107 Inverter Inverter 105 first flip-flop 108 and brake D flywheel diode Lu, Lv, Lw three-phase coil S 1 external voltage command S2 sampling trigger signal S5 mask signal S9 interval state M 1 interval state signal M4 mask time discrimination signal Μ6 Pulse width modulation signal Vref Reference voltage V c τ Motor neutral point A6U ~ A6W comparison signal V + V. W + W. 46C7, i, and; inverting comparison signal V. Description of the invention (l3) Component label comparison] Sensorless brushless DC motor control system Power supply and power element device Drive and control signal generation device 8 Interval state transition and reset vibration reset 9 Sampling trigger signal generation device 1 0 Back-EMF zero-crossing point detection device 104 The upper and lower arm (power) element U + lower arm (power) element u_ F1 to F6 of the second flip-flop of the industrial unit 106 and the trigger signal S8 of the back-EMF zero crossing point of the MASK interval state S3 control signal S6 M2 section state reset signal eventually trigger Μ 5
Vu、Vv、Vw反電勢 VN電源中性點 V c馬達等效中性點 本紙張尺度適用中國國家標準(CNS) A4規格(210x 297公釐) 第16頁Vu, Vv, Vw back-EMF VN power supply neutral point V c motor equivalent neutral point This paper size applies to China National Standard (CNS) A4 (210x 297 mm) Page 16