TW580564B - Fluidic flow meter - Google Patents

Fluidic flow meter Download PDF

Info

Publication number
TW580564B
TW580564B TW91138079A TW91138079A TW580564B TW 580564 B TW580564 B TW 580564B TW 91138079 A TW91138079 A TW 91138079A TW 91138079 A TW91138079 A TW 91138079A TW 580564 B TW580564 B TW 580564B
Authority
TW
Taiwan
Prior art keywords
fluid
flow
jet
micro
sensing element
Prior art date
Application number
TW91138079A
Other languages
Chinese (zh)
Other versions
TW200411146A (en
Inventor
Shiang-Fu Chen
Shih-Chi Kuo
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW91138079A priority Critical patent/TW580564B/en
Application granted granted Critical
Publication of TW580564B publication Critical patent/TW580564B/en
Publication of TW200411146A publication Critical patent/TW200411146A/en

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

There is provided a fluidic flow meter, which includes three major components: a buffering chamber, a micro flow channel and a fluid oscillating chamber. The buffering chamber makes the fluid smoothly enter the fluidic flow meter from a flow field. Next, the fluid enters the micro flow channel from the buffering chamber. A multi-line micro flow-meter sensor is arranged in the micro flow channel for detecting the value of the micro flow. Finally, the fluid enters into the fluid oscillating chamber via the micro flow channel. When the Reynolds number of the flow field reaches a status of transition flow, the fluid is unstable. By measuring the frequency of the fluid oscillation, it is able to estimate the numeric flow field of the middle and high flows. This fluidic flow meter is combined with the measurements of micro flow and flows of middle and high flow fields to expand the dynamic measurement range of the flow meter.

Description

580564 ___事號 91138079 车月日 修正 五、發明說明(1) 【發明所屬之技術領域】 本發明是關於一種射流流量計,應用於瓦斯表。 【先前技術】 目前流Ϊ什的應用範圍非常廣泛,例如:在日常生活 中母個家庭都會使用到的瓦斯表、醫院所使用的呼吸器中 之的氣體流量控制、汽車用的空氣調節器、實驗室或是工 廠中氣瓶之流量計等,都需使用到流量計。然而,針對不 同領域之應用,會有不同需求的流量計量範圍。580564 ___ Incident No. 91138079 Car Moon Day Amendment V. Description of the Invention (1) [Technical Field to which the Invention belongs] The present invention relates to a jet flow meter, which is applied to a gas meter. [Previous technology] At present, the application range of flow is very wide, for example: gas meters used by mothers and families in daily life, gas flow control in respirators used in hospitals, air conditioners for automobiles, Flowmeters for gas cylinders in laboratories or factories need to use flowmeters. However, for different applications, there will be different flow measurement ranges.

目前研發出來的流量計主要是應用於瓦斯表中,以下 針對不同型式的流量計結構及其量測原理作一簡介:The currently developed flowmeters are mainly used in gas meters. The following is a brief introduction to the structure of different types of flowmeters and their measuring principles:

(j)美國專利第4, 244, 230號所提出來的射流震盪流量計, 睛參考「第1圖」所示,首先,在流體的入口丨〇處形成一 個鬲深寬比的流道’此流道的截面形狀既窄又深,以使流 餐其中的流體形成一個面的流體喷出來。當流體喷出來的 日守候’在出口 2 0漸縮到漸寬的地方,由於主喷流撞擊阻擋 體30之凹槽31會造成流體不穩定的現象,而產生流體震盪 的效應’會造成流體偏擺的現象,在流體由出口 2 〇喷出的 第一瞬間,流體可能會往左擺,或是往右擺,此現象即為 孔達效應(Coanda Effect)。而在凹槽31的左右兩侧設置 有兩個流體震盪感測器4 0,由於流體震盪感測器4 〇感測到 的流體震靈頻率’與流體的體積流率呈線性關係,因此, 可由流體震盪頻率推算得出流體的質量流率。當流阻越大 時,流體震盪效果越好,而流體震盪感測器4 〇感測的效果 也越佳,所以此專利在流體出口 2 〇的前端設置有阻擋體 3 〇 ’以增加流體的不穩定性。本發明的缺點是必須以流阻(j) The jet oscillating flowmeter proposed in U.S. Patent No. 4,244,230, as shown in Fig. 1, firstly, a 鬲 depth-width ratio flow channel is formed at the fluid inlet. The cross-sectional shape of this flow channel is both narrow and deep, so that the fluid in the flowing meal forms a surface and the fluid is sprayed out. When the fluid sprays out, it will wait at the outlet 20 to gradually shrink to a wider place, because the main jet impacts the groove 31 of the blocking body 30, which will cause fluid instability, and the fluid shock effect will cause fluid. The phenomenon of deflection, at the first moment when the fluid is ejected from the outlet 20, the fluid may swing to the left or to the right. This phenomenon is called the Coanda Effect. On the left and right sides of the groove 31, two fluid vibration sensors 40 are provided. Since the fluid vibration frequency detected by the fluid vibration sensor 40 is linearly related to the volume flow rate of the fluid, The fluid mass flow rate can be calculated from the fluid oscillating frequency. When the flow resistance is larger, the fluid oscillating effect is better, and the fluid oscillating sensor 4 〇 is also better, so this patent is provided with a blocking body 3 ′ at the front end of the fluid outlet 2 〇 to increase the fluid Instability. The disadvantage of the present invention is that

第5頁 580564Page 5 580564

__案號 9113807& 五、發明說明(2) 來換取顯著的震盪效應,而且必須要有足夠的壓損 (pressure loss)才會造成流體震盪的效果。 、 (2 )由美國專利第5,3 9 6,8 0 9號所揭露之流量計,嗜參考 「第2圖」所示,其設計原理與前述專利相同,但^/與前 述專利敢大的不同點在於:此專利在震堡室凹槽3 1的正中 間再加入一個流體震盪感測器40,其主要的作9用在於提高 流體晨盪的感測解析度,尤其是在流體流量較小、震壤不 甚明顯的時候,即可有效的改善並提高流量計的精確性。 (3 )而在美國專利第5,3 6 3,7 0 4號所揭露之流量計,請參考 「第3圖」所示,此專利的主要目的在於改善美國專利第 5,3 9 6,8 0 9號所揭露之流量計的缺點:因為當流體的流速變 快時,雖然流體震後的效果變好,但是在凹槽3 1内卻會產 生紊亂的渦流(v 〇 r t e X ),此渦流會使凹槽3 1内的流體變得 更加混亂’連帶影響流體震盪感測器4 〇所量測之訊雜比變 得不明顯。所以此專利為改善這個缺點,便在凹槽3丨的兩 側各挖一個旁通道(Bypass ) 32,使凹槽3 1内所產生的渦流 可由旁通道32流出,降低凹槽31内流體的亂流,以提高流 體產生震盪時的訊雜比。 (4)根據美國專利第5, 1 57, 9 74號所揭露之小型化微電腦瓦 斯表’請參考「第4圖」所示,其核心技術即為射流流量 計’將射流流量計應用於瓦斯表中的最大好處在於:瓦斯 基本上並不甚乾淨,且容易囤積雜質於流量計結構中,而 射流流量計可以利用流體的震盪藉以清洗瓦斯表内部,使 流量計的量測能更加的準確。此射流流量計是將流體震I 感’則杰4 0放置於流道5 q的出口處,當流體通過此流道5 〇__Case No. 9113807 & V. Description of the invention (2) In exchange for a significant oscillating effect, and there must be sufficient pressure loss to cause the fluid oscillating effect. (2) The flow meter disclosed in US Patent No. 5, 3,96,809 is referenced to the "Figure 2", the design principle is the same as the aforementioned patent, but ^ / dare to be larger than the aforementioned patent The difference is that this patent adds a fluid shock sensor 40 in the middle of the groove 31 of the shock castle chamber. Its main purpose is to improve the sensing resolution of the fluid morning shock, especially in the fluid flow rate. When the earthquake is small and the soil is not obvious, the accuracy of the flowmeter can be effectively improved. (3) For the flowmeter disclosed in U.S. Patent No. 5,3 6 3,704, please refer to "Figure 3", the main purpose of this patent is to improve U.S. Patent No. 5, 3,96, Disadvantages of the flowmeter disclosed in No. 8 0 9: because when the fluid flow speed becomes faster, although the effect of the fluid after the shock becomes better, a turbulent vortex (v 〇 rte X) will be generated in the groove 31. This eddy current will make the fluid in the groove 31 more chaotic, which will affect the signal-to-noise ratio measured by the fluid shock sensor 40. Therefore, in order to improve this shortcoming, a bypass 32 is dug on each side of the groove 31, so that the vortex generated in the groove 31 can flow out of the side passage 32, thereby reducing the fluid in the groove 31. Turbulent flow to increase the signal-to-noise ratio of the fluid when it oscillates. (4) According to the miniaturized microcomputer gas meter disclosed in U.S. Patent No. 5, 1 57, 9 74 ', please refer to "Figure 4", the core technology of which is a jet flow meter. Apply a jet flow meter to gas The biggest advantage in the table is that the gas is basically not very clean and it is easy to accumulate impurities in the flowmeter structure. The jet flowmeter can use the vibration of the fluid to clean the interior of the gas meter, so that the measurement of the flowmeter can be more accurate. . This jet flow meter is to place the fluid shock I ′ Zejie 40 at the outlet of the flow channel 5 q. When the fluid passes through this flow channel 5 〇

580564 ^S_1U38079 五、發明說明(3) ¥ ’由t、流Ι5 〇突然擴張所產生的流體不穩定現象’因而 產生流體的擺動震盪,經由流體震盪感測器4 0所量測到的 讯號’計异流體的瞬時流速,即可換算成流體的流量。此 項專利的發明相對於前述的專利而言,主要是為了避免當 流體震盈的現象發生時,所產生的紊流會造成訊雜比的降 低。但是’此項專利的發明卻也造成了另一個缺點:震盪 Λ该;的減弱’所以,此專利所提出來的想法,並不能有效 且明顯地提高訊雜比。 (5) 而在日本專利第Jp4 —26 2 2〇9號所揭露的流量計,請參 考「第5圖」所示,其結構設計大致與美國專利第 5,1 5 7,9 7 4號所揭露之小型化微電腦瓦斯表相同,其主要 的構想是將流體震盪感測器4 〇設置於震盪室入口 6 〇 a、 6〇b的位置’其主要的目的在於增加感測流體震盪的頻 率。但此專利的缺點是:只要上游流場之壓力發生變動, 可月b就會造成訊號的誤判而造成流量數值計量的不準確。 (6) 在日本專利第Jp2〇〇丨—“”乃號所揭露的流量計,其結 構之立體圖請參考「第6圖」所示,此專利的基本原理依 然疋利用流體不穩定的現象,來推算流體之質量流率。此 漸縮段7 0先造成流體的加速,再經由高深寬比的流道迭成 所謂的近似二維流場,以產生流體不穩定的現象,並=成 流體週期性的震盪,而達到流體計量的功能。但此項$利 與前述日本專利第JP4-262 20 9號所揭露的流量計有相同的 缺點:此流量計易受到上游流場壓力的影響,而造 、 命、、I n ^、, 感測580564 ^ S_1U38079 V. Description of the invention (3) ¥ 'fluid instability caused by the sudden expansion of t, flow I5 〇', thus causing the fluid to oscillate and oscillate, the signal measured by the fluid oscillating sensor 40 'Calculate the instantaneous flow rate of different fluids, which can be converted into the fluid flow rate. Compared with the aforementioned patents, the invention of this patent is mainly to avoid the turbulence caused by the fluid turbulence, which will cause the signal-to-noise ratio to decrease. However, the invention of this patent also caused another disadvantage: the weakening of the shock; the idea proposed by this patent could not effectively and obviously improve the signal-to-noise ratio. (5) For the flowmeter disclosed in Japanese Patent No. Jp4-26 2209, please refer to "Figure 5". Its structure design is roughly the same as that of US Patent No. 5, 1 5 7, 9 7 4 The disclosed miniaturized microcomputer gas meter is the same. The main idea is to set the fluid shock sensor 40 at the entrance of the shock chamber 60a, 60b. Its main purpose is to increase the frequency of sensing fluid shock . However, the disadvantage of this patent is that as long as the pressure of the upstream flow field changes, the month b will cause a misjudgment of the signal and cause an inaccurate measurement of the flow value. (6) For the flowmeter disclosed in Japanese Patent No. Jp200-0— "", please refer to "Figure 6" for the structure of the flowmeter. The basic principle of this patent still does not use the phenomenon of fluid instability. To estimate the mass flow rate of the fluid. This tapered section 70 first causes the acceleration of the fluid, and then superimposes the so-called approximately two-dimensional flow field through the high-aspect-ratio flow channel to produce a fluid instability phenomenon, and the fluid oscillates periodically to reach the fluid. Metering functions. However, this $ profit has the same disadvantages as the flowmeter disclosed in the aforementioned Japanese Patent No. JP4-262 20 9: This flowmeter is easily affected by the pressure of the upstream flow field, and the flow rate of the flowmeter is affected by the pressure of the flowmeter. Measurement

第7頁 580564 案號 91138079 年 曰Page 7 580564 Case No. 91138079

修J 五、發明說明(4) 量測到一個較大的流量範圍。而且’當須量測微流量數值 時,所使用的管徑也必須跟著減小’如此一來,會造成復 大的壓力損失。 而且,目前一般家用流量計所需量測的範圍為〇 · 3公 升/小時〜30 0 0公升/小時,其動態量測範圍(dynamic range)達到1 0 0 0 0 : 1,然而目前所研發出的流量計,並無 任何單一的流量計可量測到如此大的範圍。 【發明内容】 鑒於以上習知技術的問題,本發明之目的在於提供— 種射流流3:計’其結合3:測微流里的微管道及多線型汽、、宁 量感測元件,與量測中高流量的流體震盪器,以達到較2 的動態量測範圍。 本發明之射流流量計’其包括有三個主要的部份· 衝室、微流道及流體震盪室。缓衝室是使由流場進入·'、’、六 J量計中之流體平順,接著’流體進入與其::接的= 在微流道内設置有多線型微流量感測元件,用、_、 微流量之流體;最後,流體進入流體震盪 A以感測 I祐數到達過渡流(Transit ion flow)的狀態時,流雕 w產生不穩定的現象,而造成流體之偏擺黨爪使 2體震逢的頻率,即可推算中高流量流體=測利用量測 $ ^之計算是以流體流經微流道之流速及微 =2二 度為計算基準。 &lt;〈知欲長 (1 本發明所研發之射流流量計具有下列之優點·.Rev. J. Description of the invention (4) A large flow range was measured. In addition, when the value of the micro flow rate must be measured, the diameter of the pipe used must be reduced accordingly. This will cause a large pressure loss. In addition, the measurement range of a general domestic flowmeter currently ranges from 0.3 liters / hour to 300 liters / hour, and its dynamic measurement range (dynamic range) reaches 1 0 0 0: 1, however, it is currently being developed There is no single flowmeter that can measure such a wide range of flowmeters. [Summary of the Invention] In view of the problems of the above-mentioned conventional technology, the object of the present invention is to provide-a kind of jet stream 3: meter 'combination 3: micro-pipes and multi-line steam, micro-sensors, Measure medium and high flow fluid oscillators to achieve a dynamic measurement range of 2. The jet flow meter of the present invention includes three main parts: a flushing chamber, a micro-fluid channel and a fluid oscillating chamber. The buffer chamber smooths the fluid entering the flowmeter from the flow field, ",", and the six-J meter, and then the fluid enters it :: connected = a multi-line micro-flow sensing element is set in the microfluidic channel. , Micro-fluid fluid; finally, when the fluid enters the fluid oscillation A to sense the I number and reach the state of the transition flow (Transit ion flow), the flow sculpt w produces an unstable phenomenon, which causes the fluid to deflect the party claws to make 2 The frequency of body shocks can be used to calculate the medium-to-high-flow fluid = measurement using measurement $ ^. The calculation is based on the flow velocity of the fluid through the microchannel and micro = 2 degrees. &lt; <Knowledge Long (1) The jet flow meter developed by the present invention has the following advantages.

任付不j司於一般的瓦斯流量計,此射流流量計^内部沒有 件’因此’不會因為長久的使^而造成量測的 BBmm I!Ren Fubu is a general gas flow meter. There is no internal part in this jet flow meter. Therefore, it will not cause BBmm I due to long-term measurement!

580564 -----案號 91138079 五、發明說明(5)580564 ----- Case No. 91138079 V. Description of Invention (5)

修正 誤差,且所產生的壓損較小。 (2 )針對量測中高流量的流體震盪室的部份’其對於不同 種類液體的流量量測,只需將量測的結采乘上一個校正口 子(即液體的密度)便可得到其流量,不f像一般的浮子流 量計還需依照不同的液體更換不同的浮孑,可方便使用者 之操作,且大大地提升量測的準確性。除此之外,當流體 在流體震盪室中產生震盪時,亦可清除涑量計内的癖東 西’以維持量測時的準確性。 (3)由於此射流流量計在微流量量測時,係利用多線型的 流量感測元件並配合飛行時間(T i m e 〇 f f 1 i 丨)原理進行 量測,所以能精確地量測到流體瞬時的速度。 (4 )本發明之微管道中設置的多線型微流量感測元件’與 流體震靈室中所使用的單線型流體震盡感測元件,皆係利 用多晶矽材質製作,所以其具有低耗電量、高靈敏度的特 f生’且易於和互補式金氧半導體(Compienientary Metal Oxide Semiconductor; CMOS)電路相整合。 (5) —般所見的流量計通常都會造成流體極大的壓力損 Ϊ垃=本發明之射計其體積輕巧、成本低廉、,可 直接串連於管路中且不會造成管路的壓阻。 (6 )本發明之射流流量計應用於瓦 之膜式氣量計巾,因其機械或可動斤杜表/,可以消除習知 隙所造成之内部泡漏的問題。動件模組的磨擦阻力或空Correct the error and the resulting pressure loss is small. (2) For the measurement of high-fluid fluid oscillation chambers, the flow measurement of different types of liquids can be obtained by simply multiplying the measured results with a correction port (ie, the density of the liquid). Unlike ordinary float flow meters, different floats need to be replaced according to different liquids, which is convenient for users to operate and greatly improves the accuracy of measurement. In addition, when the fluid oscillates in the fluid oscillating chamber, it is also possible to remove the pitfalls in the meter to maintain the accuracy of the measurement. (3) Because this jet flow meter uses a multi-line flow sensing element in conjunction with the time-of-flight (T ime 〇ff 1 i 丨) measurement during micro-flow measurement, the fluid can be accurately measured Instantaneous speed. (4) The multi-line type micro-flow sensing element provided in the micro-pipe of the present invention and the single-line type fluid shock detection element used in the fluid shock chamber are both made of polycrystalline silicon material, so it has low power consumption. High-quality, high-sensitivity, and easy to integrate with complementary metal oxide semiconductor (CMOS) circuits. (5)-The flowmeters that are commonly seen usually cause great pressure loss of the fluid. Ϊ = The radiometer of the present invention is light in weight, low in cost, and can be directly connected to the pipeline without causing pressure resistance in the pipeline. . (6) The jet flow meter of the present invention is applied to a film-type gas meter towel of a tile. Because of its mechanical or movable meter, it can eliminate the problem of internal leakage caused by the conventional gap. Friction resistance or empty of moving part module

為使對本發明的目的、構造特 ’兹配合圖示詳細說明如下. 徵及其功能有進一步的 【實施方式】.In order to make the object of the present invention, the structure and features are described in detail as follows. There are further [embodiments] for its features and functions.

580564 一 案號91138079_年月 a 修正 ____ 五、發明說明(6) 本發明所研發之射流流量計,係裝設於流场中,以量 測流場内之流體流量,請參考「第7圖」及「第8圖」所 示,係分別為本發明射流流量計之立體分解圖及其上視 圖,流量計本體1 2 0包括有三個主要的部份:缓衝室8 q、微 流道9 0,以及流體震盪室1 〇 〇 ;流體是由進口 1 2 1流入流量 計,再由出口 1 22流出流量計。此缓衝室8〇的主要功能是 將流進此射流流量計的流場穩定,使其平順地流進射流流 量計中,而不要直接衝入微流道9 〇中,以免影響量測之結 果0 而在微流道9 0的部份,主要是藉由/些設置於微流道 90中的感測元件,量測微流量之流體;當微流道9〇中的感 測元件已無法感測到流體的流速時,便藉由與其相連接的 流體震盡室1 0 0來量測中高流量的流體。所以,此射流流 量計不僅可量測微流量的數值,還可量測中高流量的數 值’其涵蓋的動態量測範圍較習知之流量計廣。 在緩衝室80中,其包括有第一入口81、第一出口82, 及個叹置於鄰近第一入口 8 1處的擋體8 3,流體是由進口 121^入^ 一入口 81,再由第一入口 81進入緩衝室80中, =::“月』3的没置可使流體平順地進入緩衝室8 〇,而不 會直接衝到微流道9〇中。 、 入宜微逼9 連接於緩衝室80的第一出口 81,而使流體流 二 第出口 81連接到微流道9 0的地方是以漸縮管 置右體!動加速流過微流道90。此微流道90中設 . 夕、?聖铽机置感測元件9 1,透過量測流體之飛行時間 C Τ 1 in 6 〇 f αλ --——方式,可量測微流量之流體。Case No. 580564 91138079_year a amendment____ V. Description of the invention (6) The jet flowmeter developed by the present invention is installed in the flow field to measure the fluid flow in the flow field. Please refer to "Section 7 Figures "and" Figure 8 "are respectively three-dimensional exploded views and top views of the jet flow meter of the present invention. The flow meter body 120 includes three main parts: buffer chamber 8 q, micro-flow Channel 90 and the fluid oscillating chamber 100; the fluid flows into the flowmeter from the inlet 12 and flows out of the flowmeter from the outlet 1222. The main function of the buffer chamber 80 is to stabilize the flow field flowing into the jet flow meter, so that it flows smoothly into the jet flow meter, instead of rushing directly into the micro flow channel 90, so as not to affect the measurement. The result is 0. In the part of the microchannel 90, the microfluid is mainly measured by the sensing elements provided in the microchannel 90. When the sensing element in the microchannel 90 has been When the flow velocity of the fluid cannot be sensed, the medium-high flow fluid is measured by the fluid shock chamber 100 connected to it. Therefore, this jet flow meter can measure not only the value of micro flow, but also the value of medium and high flow. It covers a wider dynamic measurement range than the conventional flow meter. In the buffer chamber 80, it includes a first inlet 81, a first outlet 82, and a baffle body 8 3 placed adjacent to the first inlet 81. The fluid flows from the inlet 121 to the inlet 81, and then Entering the buffer chamber 80 from the first inlet 81, the absence of = :: "month" 3 allows the fluid to smoothly enter the buffer chamber 80, instead of rushing directly into the micro-channel 90. 9 is connected to the first outlet 81 of the buffer chamber 80, and the second flow outlet 81 of the fluid flow is connected to the microchannel 90. The tapered tube is placed on the right body! The flow is accelerated through the microchannel 90. This microflow In the road 90, there is a sensor device 9 1 installed on the holy machine. Through measuring the time of flight of the fluid C T 1 in 6 〇f αλ ---, the micro-fluid flow can be measured.

Bill J ILILAiMU. U. 11 ji u .. . .. . . — _________ _ 一Bill J ILILAiMU. U. 11 ji u ...... — _________ _ 1

第10頁 580564Page 580564

睛芩考「第9圖」所示,此多線型微流量感測元件9工 、由數個感測元件所組成,當流體流入微流道9 0時,其第 i個接觸到的感測元件是一個加熱元件(He a ter) 91a,而 /、下游/又置有與加熱元件9 1 a不同距離的溫度感測元件 9 一1 b ’當流體的流速改變時,可以在不同位置的溫度感測 元件9 1 b感測到其速度。 其^測流體之流量的原理為:將此加熱元件9丨a瞬時加 熱一段時間,而在加熱元件9 1 a上所產生的熱波會隨著流 體的移動而往下游移動,而在微流道9〇下游的溫度感測^ lb便會感測到此熱波。由於在設置此溫度感測元件 時,我們便知道每個溫度感測元件9 lb與加熱元件91a間的 距離大小,且也知道加熱元件9丨a加熱與溫度感測元件g】b 感測到熱波中間的時間差,如此一來,便可計算流體之流 速’進而推算出流體之流量。 流體震i室1〇〇中包括有第二入口 、第二出口 1 0 2 ’及一個相對稱的障礙物1 〇 3。此第二入口 1 q 1與微流 道9 0的另一端相連接,以使流體流入流體震盪室丨〇 〇中, 而第二出口102則是連接至出口122,使流體流出流量計本 體1 2 0,並與流場相連通。 而設置此障礙物1 〇 3的目的,是將此流體震盪室1 〇 〇區 隔成二個回饋流旁通道1 〇 4,流體經由這二個回饋流旁通 道1 0 4分別由鄰近第二出口 1 〇 2處沿著此障礙物丨〇 3的外緣 而回到第二入口1〇1 ;而在其中一個障礙物1〇3上,或是可 以在二個障礙物1 〇 3上,設置有單線型流體震盪感測元件 1 0 3 a,此單線型流體震盪感測元件1 〇 3 a係為壓力感測器。As shown in "Figure 9", this multi-line micro-flow sensing element is composed of several sensing elements. When the fluid flows into the microchannel 90, the i-th sensing The element is a heating element (He a ter) 91a, and /, downstream / is provided with a temperature sensing element 9-1 b at a different distance from the heating element 9 1 a. When the fluid flow rate is changed, it can be at different positions. The temperature sensing element 9 1 b senses its speed. The principle of measuring the flow rate of a fluid is: the heating element 9 丨 a is heated instantaneously for a period of time, and the heat wave generated on the heating element 9 1 a will move downstream with the movement of the fluid, and in the microflow The temperature wave ^ lb downstream of channel 90 will sense this heat wave. Because when setting this temperature sensing element, we know the distance between each temperature sensing element 9 lb and the heating element 91a, and also know the heating element 9 丨 a heating and temperature sensing element g] b sensed The time difference in the middle of the heat wave, so that the flow velocity of the fluid can be calculated and the flow rate of the fluid can be calculated. The fluid shock chamber 100 includes a second inlet, a second outlet 10 2 ′, and a symmetric obstacle 103. The second inlet 1 q 1 is connected to the other end of the microchannel 90 to allow fluid to flow into the fluid oscillating chamber. The second outlet 102 is connected to the outlet 122 to allow the fluid to flow out of the flowmeter body 1. 2 0 and communicate with the flow field. The purpose of setting the obstacle 103 is to separate the fluid oscillating chamber 100 into two feedback flow passages 104, and the fluid passes through the two feedback flow passages 104 respectively from adjacent second passages. Exit 100 goes back to the second entrance 101 along the outer edge of this obstacle, and it can be on one of the obstacles, or on the two obstacles. A single-line fluid oscillating sensing element 1 0 3 a is provided, and this single-line fluid oscillating sensing element 1 0 3 a is a pressure sensor.

第11頁 580564 反、發明說明(8) 當流體由微流道9 0進入流體震盪室1 0 〇時,若此時流 場的雷諾數到達過渡流的狀態(即流體的流量到達中高流 量),流體便會產生不穩定的現象,此即為孔達效應。此 效應會使得由第二入口1〇1流入的喷流左右震盪,而藉由 流經兩回饋流旁通道1 04之流體,可激發此喷流穩定且持 續地左右震盪。 當此噴流往右震盪或是往左震盪時,設置於障礙物 1 03上的單線型流體震盪感測元件l〇3a會明顯地感測到有 流體流過來C因為如果沒有流體擺動過來,流體的流量會 很小)由於此單線型流體震盈感測元件l〇3a是一個壓力 感測裔’因此,它對於有沒有流體經過可以很敏感地感測 出來’如此一來,便可有效提高訊雜比,而提高流量計的 精準度。且本發明在流體震盪室1〇〇的第二出口1〇2處,設 計成漸縮管的結構,使其可以在較小的流量時便能開始發 生震盤現象。 依知、=刖的技術,我們已知:流場中由孔達效應所產 生的流體震盪之頻率和流體的體積流率呈線性關係,因 此:可以由單線型流體震盪感測元件1 0 3a所量測到喷流的 震盪頻率,推算此流體的體積流率,再將此體積流 流體的密度即可得到流體的質量流率。 、 當流體的流量較小時,由於此時流場的 達過渡流的狀態,因此流體震盪室丨〇 〇不I ^ 'Page 11 580564 Anti-Instruction of the Invention (8) When the fluid enters the fluid oscillating chamber 100 from the microfluidic channel 90, if the Reynolds number of the flow field reaches the state of the transitional flow (that is, the fluid flow reaches the middle and high flow) , The fluid will produce an unstable phenomenon, this is the Kongda effect. This effect will cause the jet flowing from the second inlet 101 to oscillate left and right, and the fluid flowing through the two bypass side passages 104 will excite this jet to steadily and continuously oscillate left and right. When this jet oscillates to the right or to the left, the single-line fluid oscillation sensing element 103a disposed on the obstacle 103 will obviously detect the fluid flowing over C because if there is no fluid swinging over, the fluid The flow rate will be very small.) Because this single-line fluid shock sensing element 103a is a pressure sensor, it can be sensitively sensed if there is any fluid passing through it. Signal-to-noise ratio, which improves the accuracy of the flowmeter. In addition, the present invention is designed as a tapered tube structure at the second outlet 100 of the fluid oscillating chamber 100, so that it can start the occurrence of a vibrating disk phenomenon at a small flow rate. According to the known technology, we know that the frequency of fluid oscillations generated by the Kongda effect in the flow field and the volumetric flow rate of the fluid have a linear relationship, so: single-line fluid oscillation sensing elements 1 0 3a The measured oscillation frequency of the jet flow is used to estimate the volume flow rate of the fluid, and then the density of the volume flow fluid can be used to obtain the mass flow rate of the fluid. When the flow rate of the fluid is small, the fluid oscillating chamber is not due to the state of the flow field at this time.

的現象,此時流體之流量計量是以微流道▲肢震盪 流量感測元件9 1進行量測。當流場中的淹i中的多線型微 時(即其雷諾數到達過渡流的狀態),,到達中局流量 --- — 氣為例,當流速 第12頁At this time, the flow rate of the fluid is measured by the micro-flow channel ▲ limb vibration flow sensing element 91. When the multi-line micro in the flood field i (that is, the state where the Reynolds number reaches the transitional flow), the flow reaches the central station ----for example, when the flow rate page 12

修正 五、發明說明(9) 大於0.1公升/八i 士 始產生震盪的f知時’此時流體震盪室1 0 0中之流體便開 造成的週% ♦、θ象’而其量測則改為以流體震盪室1 〇 〇所 流量計算邏鉍立、手 计&quot;r § 4的瞬時體積流率,再經由 而此雷ΐ!呈式換算成瞬時流量。 狀況為基準,η t ’疋Μ被測流體流經微流道9 0處之 因此* , 1、去穿曰 、 之流速,而其 ,迷度即為被測流體流經微流道9 0時 請參考^ ,係以微流道9〇之特徵長度為計算基準。 體圖,圖中微管件一」所示,係為本發明射流流量計之實 積為22. 5 X /〇:逼之截面尺寸為1 · 5公釐X 1 5公釐(截面 流量計量剛「附件方A尺),而「附件二」所示,為利用濕式 (流量範圍由工5八—」之射流流量計其出口 1 22處之流量 多線型微流量=升/小時至3〇〇〇公升/小時)及所對應之 盪感測元件1〇3a 2凡件91量測到的電壓(微流量)與流體震 圖。 里’則到之震盪頻率(中高流量)輸出之關係 此關係圖係結人 流量之量树所得σ利用多線型微流量感測元件91進行微 V ο 11 a g e、縱袖單人色虛線曲線(橫轴單位係為電壓— 在流體震盪室丨〇〇係為體積流率-L/hr)及利用量測流體 之量測所得之黑所造成的週期震盪頻率進行中高流量 Frequency、縱轴^線,曲線(橫軸單位係為震盪頻率— 流場中微流量\係為體積流率—L/hr)二個部份。 時,多線型微流量咸里,則部份是藉由流體流經微管道9 〇 12〇之出口 122處所元件91所測得之電壓與流量計本體 微流量感測元件91 =件之流量成正比;因此,可由多線型Amendment V. Description of the invention (9) When the vibration f is greater than 0.1 liters / eighth when the shock starts, the cycle% caused by the fluid in the fluid shock chamber 100 will be opened. Instead, calculate the instantaneous volume flow rate of logical bismuth, manual meter &quot; r § 4 with the flow rate of 1000 in the fluid oscillating chamber, and then convert this instantaneous flow rate into instantaneous flow rate. The condition is the benchmark, η t '疋 M the measured fluid flows through the micro-channel 90 so the flow rate is *, 1, and the flow velocity is passed through, and the ambiguity is the measured fluid flowing through the micro-channel 90 Please refer to ^ when calculating the characteristic length of the microchannel 90. The volume diagram, shown in the figure of the "microtubules one", is the actual product of the jet flowmeter of the present invention is 22. 5 X / 〇: the cross-section size is 1.5 mm X 1 5 mm "A square of the accessory", and "Annex II" shows a multi-line micro-flow with a flow rate of 1 to 22 at the outlet of a jet flow meter using a wet type (flow range from 5 to 8- "= liter / hour to 3 %. 〇litres / hour) and the corresponding voltage (microflow) and fluid shock diagrams measured by the corresponding oscillating sensor element 103a 2 91. Here the relationship between the oscillation frequency (medium and high flow) output and the relationship diagram is obtained by combining the quantity tree of human flow σ using a multi-line micro flow sensing element 91 to perform micro V ο 11 age, vertical sleeve single-color dashed curve ( The unit on the horizontal axis is voltage—in the fluid oscillating chamber (the volume flow rate is -L / hr) and the periodic oscillating frequency caused by the black measured by the measurement fluid. Medium and high flow Frequency, vertical axis ^ line The curve (the unit of the horizontal axis is the oscillation frequency-the micro-flow in the flow field \ is the volume flow rate-L / hr). In the case of multi-line micro-flow, the voltage measured by the fluid flowing through the micro-pipe 9 0120 ’s outlet 122 element 91 is partially equal to the flow rate of the micro-flow sensing element 91 of the flow meter body. Proportional; therefore, multi-line

第13頁 之電壓推算而得微流量流體之體 580564 曰 修正 ^^J1138079 五、發明說明(10) 積流率。 而流場之φ古、+ 體震盪室100時间單Ά置H部份^是藉由量測流體流經流 流體震盪頻率鱼法旦f 盥t測元件103a所測得之 成正比·因此、机里5十本脰1 20之出口 1 22處所測得之流量 $泣轉#湯@、可由單線型流體震盪感測元件1 0 3a所測得 μ 2二1* 2率推算而得中高流量流體之體積流率。 、、焉,量數值之量測方面,流量計本體120之出口 1、延所1得之流量(體積流率)範圍是從最低量測流量9 0 0 Λ ^ /小日守至最高量測流量3 0 0 0公升/小時。由於流體之體 積流率(Q)等於截面積(A)與流速(V)之乘積(Q = A X V)因此, 可由此流量範圍推得流體流經微流道9 0之流速範圍。 最低量測流量所對應之微流道9 0流速為: Q = 9 0 0公升/小時=2. 5 X ΙΟ-4立方公尺/秒 V = Q / A = ( 2 · 5 X 1 〇-4 ) / ( 2 2 · 5 X 1 0—6 )二 11 · 1 (公尺 / 秒) 而最高量測流量所對應之微流道9 0流速為: Q二3 0 0 0公升/小時=8. 33 χ 1 〇_4立方公尺/秒 V 二 Q/A=(8.33x 1〇-4)/(22·5χ 10-6)二37(公尺/ 秒) 由於雷諾數(Re)之計算係為: V :流速 L ··特徵長度 ^ ••動態黏滯係數 此實驗所採用之工作流體為空氣,而空氣動悲黏滯係 數1&quot;為1 · 4 5 4 X 1 〇_5平方公尺/秒。因此,可由所推得之流速The body of the micro-fluid is obtained by the voltage calculation on page 13. 580564 Modification ^^ J1138079 V. Description of the invention (10) The accumulated flow rate. The φ ancient and + body vibration chambers of the flow field are placed in the H part for 100 hours. It is directly measured by measuring the frequency of the fluid flowing through the fluid. The frequency is measured by the measuring element 103a. Therefore, 、 The measured flow rate at the exit of 50 points in the machine, 50 points in the machine, 1 20 points, $ 转 ## @, can be estimated from the single-line fluid shock sensor 1 0 3a, μ 2 2 1 * 2 rate can be calculated to be high Volume flow rate of flow fluid. 、, 焉, the measurement of the quantity value, the flow rate (volume flow rate) of the outlet 1 and the extension 1 of the flowmeter body 120 is from the lowest measurement flow rate 9 0 0 Λ ^ / small day guard to the highest measurement The flow is 3 0 0 liters / hour. Since the volumetric flow rate (Q) of the fluid is equal to the product of the cross-sectional area (A) and the flow velocity (V) (Q = A X V), the flow velocity range of the fluid flowing through the microchannel 90 can be derived from the flow range. The minimum flow rate corresponding to the minimum flow rate of the flow channel 90 is: Q = 9 0 0 liters / hour = 2. 5 X ΙΟ-4 cubic meters / second V = Q / A = (2 · 5 X 1 〇- 4) / (2 2 · 5 X 1 0—6) 2 11 · 1 (meters / second) and the micro flow channel 9 0 corresponding to the highest measured flow rate is: Q 2 3 0 0 0 liters / hour = 8. 33 χ 1 〇_4 cubic meters / second V 2 Q / A = (8.33x 1〇-4) / (22 · 5χ 10-6) 2 37 (meters / second) Due to Reynolds number (Re) The calculation system is: V: velocity L ·· characteristic length ^ •• dynamic viscosity coefficient The working fluid used in this experiment is air, and the air dynamic viscosity coefficient 1 &quot; is 1 · 4 5 4 X 1 〇_5 Square meters / second. Therefore, from the obtained flow velocity

580564 ___案號9113807Q 年月日 ___ 五、發明說明(11) 計算微流道90内最低雷諾數(RelQW)及最高雷諾數》^!^^^): Relow-(ll. lx 1. 5 x 1 0-3 )/( 1. 4 5 4 x 1 0~5 )-1146. 2 Rehlgh =(37 x 1.5x 1 〇-3 ) / ( 1. 454 x 1 〇-5)-3817 由實驗數據可知:利用本發明射流流量計中之流體震 盡室1 0 0所量測到流體之雷謹數範圍為11 4 6 · 2至3 81 7 ’因 此,當流體之雷諾數大於過渡流而到達亂流(T u r b u 1 e n t F 1 οw)的狀況時(即Re&gt;3 〇 〇 0 ),流場中仍會有因孔達效應所 產生之流體震盪,並可藉由量測流體震盪的頻率以推算中 高流量之數值。 由「附件二」之實驗數據可知:此射流流量計可量測 之流量範圍介於1. 5公升/小時至3 0 0 0公升/小時,而以微 流道9 0作為雷諾數計算之基準可推得其可量測之雷諾數範 圍係介於1.9 08 5及3817之間,不論流場的雷諾數是屬於亂 流、過渡流、層流的狀況皆可進行量測。 因此’本發明所研發之射流流量計其動態量測範圍較 大’可涵蓋大甲小流量(亂流、過渡流、層流)的數值量 測’且其機械結構簡單,體積相當於現在所使用的浮子流 量計之大小,因此,可直接串接於流場管路中。 除此之外,在流量感測元件的部分,其材料是使用多 晶石夕取代傳统的白金,使製作出來的加熱元件、溫度感測 器具有低耗電量、高靈敏度及易於和互補式金氧半導體電 路相整合的特性。 本發明之射流流量計其應用範圍很廣泛,例如··瓦斯 表氣量計、呼吸器、車用氣體控制器、質流量控制器等, ,吏用它來量測流場中流體之瞬時流量。580564 ___Case No. 9113807Q YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY etc. 5 x 1 0-3) / (1. 4 5 4 x 1 0 ~ 5) -1146. 2 Rehlgh = (37 x 1.5x 1 〇-3) / (1.454 x 1 〇-5) -3817 by From the experimental data, it can be known that the range of the thunder number of the fluid measured by the fluid shakeout chamber 100 in the jet flow meter of the present invention is 11 4 6 · 2 to 3 81 7 '. Therefore, when the Reynolds number of the fluid is greater than the transient flow When reaching the condition of Turbulent flow (Turbu 1 ent F 1 οw) (that is, Re &gt; 3 00), there will still be fluid shock due to the Kongda effect in the flow field, and the fluid shock can be measured by measuring The frequency is used to estimate the value of medium and high flow. From the experimental data of "Annex II", it can be known that the flow range that this jet flow meter can measure ranges from 1.5 liters / hour to 3 0 0 liters / hour, and the microchannel 90 is used as the basis for calculating the Reynolds number. It can be deduced that the measurable range of Reynolds number is between 1.9 08 5 and 3817. It can be measured regardless of whether the Reynolds number of the flow field is turbulent, transient, or laminar. Therefore, 'the jet flow meter developed by the present invention has a larger dynamic measurement range' can cover the numerical measurement of small flow (turbulent flow, transitional flow, laminar flow), and its mechanical structure is simple and its volume is equivalent to that The size of the float meter used can be directly connected in series in the flow field pipeline. In addition, in the part of the flow sensing element, the material is polycrystalline stone instead of traditional platinum, so that the manufactured heating element and temperature sensor have low power consumption, high sensitivity, and easy and complementary Integrated characteristics of metal oxide semiconductor circuits. The jet flow meter of the present invention has a wide range of applications, such as gas meters, respirators, vehicle gas controllers, mass flow controllers, etc., which are used to measure the instantaneous flow of fluid in a flow field.

580564 案號91138079 年月日 修正580564 Case No. 91138079 Amendment

第16頁Page 16

580564 _案號9Π38079_年月曰 修正_ 圖式簡單說明 第1圖為習知之射流震盪流量計的結構示意圖; 第2圖為習知之流量計的結構示意圖; 第3圖為習知之流量計的結構示意圖; 第4圖為習知之小型化微電腦瓦斯表的結構示意圖; 第5圖為習知之流量計的結構示意圖; 第6圖為習知之流量計的結構示意圖; 第7圖為本發明之射流流量計的立體分解圖;及 第8圖為本發明之射流流量計之上視圖; 第9圖為本發明之微管道的示意圖;580564 _Case No. 9Π38079_ Year Month Revision _ Brief Description of Drawings Figure 1 is a schematic diagram of the structure of a conventional jet oscillating flowmeter; Figure 2 is a schematic diagram of a structure of a conventional flowmeter; Figure 3 is a diagram of a conventional flowmeter Schematic diagram; Figure 4 is a schematic diagram of a conventional miniaturized microcomputer gas meter; Figure 5 is a schematic diagram of a conventional flowmeter; Figure 6 is a schematic diagram of a conventional flowmeter; and Figure 7 is a jet of the present invention A three-dimensional exploded view of the flow meter; and FIG. 8 is a top view of the jet flow meter of the present invention; FIG. 9 is a schematic view of a micro-pipe of the present invention;

附件一為本發明射流流量計之實體圖;及 附件二為利用附件一之射流流量計對流體進行實際流量量 測所得之實驗數據。 【圖式符號說明】 10 入口 2 0 出口 30 阻擋體 31 凹槽 32 旁通道 40 流體震盪感測器 50 流道Attachment 1 is the physical diagram of the jet flow meter of the present invention; and Attachment 2 is the experimental data obtained from the actual flow measurement of the fluid using the jet flow meter of Annex 1. [Illustration of Symbols] 10 inlet 2 0 outlet 30 blocking body 31 groove 32 side channel 40 fluid shock sensor 50 flow channel

60a 震盪室入口 60b 震盪室入口 70 漸縮段 80 緩衝室 81 第一入口60a shock chamber entrance 60b shock chamber entrance 70 tapered section 80 buffer chamber 81 first entrance

第17頁 580564 案號91138079_年月日 修正 圖式簡單說明 82 第一出口 83 擋體 90 微管道 91 多線型微流量感測元件 91a 加熱元件 91b 溫度感測元件 100 流體震盪室 101 第二入口 102 第二出口 103 障礙物 103a 單線型流體震盪感測元件 104 回饋流旁通道 120 流量計本體 121 進口 122 出口Page 17 580564 Case No. 91138079_Year Month and Day Revised Schematic Brief Description 82 First Exit 83 Block 90 Micro-pipe 91 Multi-line Micro Flow Sensing Element 91a Heating Element 91b Temperature Sensing Element 100 Fluid Oscillation Chamber 101 Second Entrance 102 Second outlet 103 Obstacle 103a Single-line fluid vibration sensing element 104 Bypass channel 120 Flowmeter body 121 Inlet 122 Outlet

第18頁Page 18

Claims (1)

580564 _案號91138079_年月曰 修正_ 六、申請專利範圍 1 . 一種射流流量計,裝設於一流場,用以量測該流場内之 流體的流量,其包括有: 一緩衝室,其包括有一第一入口、一第一出口以及 鄰近該第一入口的一擋體,該流體由該第一入口進入該 緩衝室,並受到該擋體之阻擋而平順地進出該缓衝室; 一微流道,連接於該緩衝室之該第一出口,而使該 流體加速流過,且該微流道中設置有一多線型微流量感 測元件;以及580564 _Case No. 91138079_ Modification of Year of the Month _ 6. Scope of Patent Application 1. A jet flow meter installed in a first-class field to measure the flow of fluid in the flow field, including: a buffer chamber, which It includes a first inlet, a first outlet, and a blocking body adjacent to the first inlet. The fluid enters the buffer chamber through the first inlet, and is smoothly blocked by the blocking body to enter and exit the buffer chamber. A micro-flow channel connected to the first outlet of the buffer chamber to accelerate the flow of the fluid, and a multi-line micro-flow sensing element is disposed in the micro-flow channel; and 一流體震盪室,其包括有一第二入口與第二出口, 該第二入口與該微流道的另一端相連接,而該第二出口 連通於該流場,且該流體震盪室内設置有二相對稱之障 礙物,而將該流體震盪室區隔形成二個回饋流旁通道, 該流體經由二該回饋流旁通道分別由鄰近該第二出口處 沿著二該障礙物外緣而回到該第二入口;A fluid oscillating chamber includes a second inlet and a second outlet, the second inlet is connected to the other end of the microfluidic channel, and the second outlet is connected to the flow field, and the fluid oscillating chamber is provided with two The fluid oscillating chamber is partitioned into two opposite flow barriers, and the fluid passes through the two feedback flow bypass channels and returns along the outer edges of the obstacles adjacent to the second outlet. The second entrance; 其中一該障礙物設置有一單線型流體震盪感測元 件,當該流體流入該回饋型流體震盪室時,由於孔達效 應的作用,會使該流體形成一喷流且左右震盪,藉由流 經各該回饋流旁通道之流體使該喷流穩定震盪,由該單 線型流體震盪感測元件所量測之該喷流的震盪頻率即可 推算該流體之流量,而該流體經由該第二出口流出該射 流流量計;且該多線型微流量感測元件係用以量測微流 量之流體,當其無法量測該流體之流量時,即由該流體 震盪室所量測之該喷流的震盪頻率推算該流體之流量。 2.如申請專利範圍第1項所述之射流流量計,其中另一該One of the obstacles is provided with a single-line fluid shock sensor. When the fluid flows into the feedback fluid shock chamber, the fluid will form a jet and oscillate left and right due to the effect of the Kongda effect. The fluid of each of the feedback bypass channels makes the jet oscillate stably, and the oscillation frequency of the jet measured by the single-line fluid oscillation sensing element can estimate the flow rate of the fluid, and the fluid passes through the second outlet Out of the jet flowmeter; and the multi-line micro-flow sensing element is used to measure a micro-flow fluid. When it is unable to measure the flow of the fluid, it is the jet flow measured by the fluid oscillation chamber. The oscillating frequency estimates the flow of the fluid. 2. The jet flowmeter as described in item 1 of the patent application scope, wherein another 第19頁 580564 案號911狀079 六、申請專利範圍 障礙物亦設置有該單線型流體震盪感測元件,藉由二該單 線型流體震盪感測元件所量測之該噴流的震盪頻率可推算 該流體之流量。 3 ·如申請專利範圍第1項所述之射流流量計,其中該第一 出口係為漸縮管的型式。 4·如申請專利範圍第1項所述之射流流量計,其中該第二 出口係為漸縮管的型式。 5 ·如申w專利範圍第1項所述之射流流ϊ:计’其中該多線 变微流量感測元件包括有複數個微流量感測元件。 6 ·如申β專利範圍第4項所述之射流流置計’其中該流體 流經該微流道中第一個接觸的該微流量感測元件係為一加 熱70件^而其餘之該微流量感測元件係為溫度感測元件。 7 ·如申請專利範圍第4項所述之射流流量計,其中該加熱 τϋ件係由多晶矽材質所組成。 其中該溫度 8·如申請專利範圍第4項所述之射流流量計, 感測元件係由多晶矽材質所組成。 其中該單線 9· ΐ 1請專利範圍第1項所述之射流流量計, 髮^胜震盪感測元件係由多晶矽材質所組成Page 19 580564 Case No. 911-like 079 6. The patent application scope obstacles are also provided with the single-line fluid vibration sensing element, and the vibration frequency of the jet measured by the two single-line fluid vibration sensing element can be estimated The flow of the fluid. 3. The jet flow meter as described in item 1 of the scope of patent application, wherein the first outlet is a type of tapered tube. 4. The jet flowmeter according to item 1 of the scope of patent application, wherein the second outlet is a type of a tapered tube. 5. The jet flow meter as described in item 1 of the patent application, wherein the multi-linear variable micro-flow sensing element includes a plurality of micro-flow sensing elements. 6 · The jet flow meter as described in item 4 of the patent scope of claim β, wherein the fluid flows through the microfluidic channel, the first contacting microfluidic sensing element is a heating element of 70, and the remaining microfluidic elements The flow sensing element is a temperature sensing element. 7. The jet flowmeter according to item 4 of the scope of patent application, wherein the heating τϋ member is composed of polycrystalline silicon material. Wherein the temperature 8. As described in the jet flow meter described in item 4 of the scope of patent application, the sensing element is composed of polycrystalline silicon material. The single wire 9 · 9 1 please use the jet flow meter described in item 1 of the patent scope. The vibration sensing element is composed of polycrystalline silicon material.
TW91138079A 2002-12-31 2002-12-31 Fluidic flow meter TW580564B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91138079A TW580564B (en) 2002-12-31 2002-12-31 Fluidic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91138079A TW580564B (en) 2002-12-31 2002-12-31 Fluidic flow meter

Publications (2)

Publication Number Publication Date
TW580564B true TW580564B (en) 2004-03-21
TW200411146A TW200411146A (en) 2004-07-01

Family

ID=32924204

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91138079A TW580564B (en) 2002-12-31 2002-12-31 Fluidic flow meter

Country Status (1)

Country Link
TW (1) TW580564B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11656032B2 (en) 2019-09-27 2023-05-23 Industrial Technology Research Institute High temperature flow splitting component and heat exchanger and reforming means using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11656032B2 (en) 2019-09-27 2023-05-23 Industrial Technology Research Institute High temperature flow splitting component and heat exchanger and reforming means using the same

Also Published As

Publication number Publication date
TW200411146A (en) 2004-07-01

Similar Documents

Publication Publication Date Title
US8091434B2 (en) Fluidic oscillator flow meter
US10066976B2 (en) Vortex flow meter with micromachined sensing elements
US8201462B2 (en) Recirculation type oscillator flow meter
CN103453959A (en) Micro flow sensor
CN105758470B (en) Distributed force target type meter
CN108680208A (en) A kind of hot type flux of vortex street metering device, flowmeter and its flow-measuring method
KR101178038B1 (en) Differential pressure-type mass flow meter with double nozzles
RU2005115481A (en) VORTEX FLOW TRANSMITTER
WO2004013580A1 (en) Restriction flowmeter
GB2161941A (en) Mass flow meter
KR20110120424A (en) Air flow rate sensor
TW580564B (en) Fluidic flow meter
AU600409B2 (en) Trapped-vortex pair flowmeter
ES2199134T3 (en) GAS COUNTER
CN112964323B (en) Saturated wet steam mass flow and dryness measuring device and measuring method
CN208187473U (en) A kind of hot type flux of vortex street metering device and flowmeter
CN209416421U (en) A kind of orifice plate balance flow meter
CN1527029A (en) Fluidic flowmeter
RU123939U1 (en) SENSOR FOR ULTRASONIC FLOW METER
JP3398251B2 (en) Flowmeter
JPS61253424A (en) Vortex flowmeter
JP3530645B2 (en) Flow meter structure
JP2984689B2 (en) Fluid meter
Likai et al. RESEARCH PROGRESS OF LIQUID MICRO-FLOW MEASUREMENT TECHNIQUES
JPH08247806A (en) Flowmeter

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent