TW576928B - Process and system of coupled real-time GPS/IMU simulation with differential GPS - Google Patents
Process and system of coupled real-time GPS/IMU simulation with differential GPS Download PDFInfo
- Publication number
- TW576928B TW576928B TW90116794A TW90116794A TW576928B TW 576928 B TW576928 B TW 576928B TW 90116794 A TW90116794 A TW 90116794A TW 90116794 A TW90116794 A TW 90116794A TW 576928 B TW576928 B TW 576928B
- Authority
- TW
- Taiwan
- Prior art keywords
- gps
- imu
- real
- simulation
- data
- Prior art date
Links
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
576928 五、發明說明(1) 名稱:耦合實時全球定位系統/慣性測量組件及差分全球 定位系統模擬方法和系統 有關應用的交叉索引: 這是一個正規應用,應用號碼為6 0 / 2 1 2 8 8 6,文件日 期為2 0 0 0年6月1 9日。 該項發明的領域: 該項發明與全球定位系統GPS和接收機的仿真及陀螺 和加速度計(I M U )的仿真有關。特別是與地面測試回路 中有硬件的全藕合實時差分GPS/ IMU組合定位系統仿真有 關。 上試 }測 輛真 車仿 和物 只實 船室 、驗 器實 行和 飛試 如測 C面 體地 動 運行 面進 地統 或系 行航 :飛導 明對和 說在位 景 定 背 的 位 定 球 全 而 態 狀 。止 題靜 問於 難處 困體 Aw L、 CiSiLJ 決運 解因 未, 尚中 多試 諸測 著面 在地 存在 時 統 器系 性位 慣定 的球 足全 ^Ιπτ , 個號 一信 是電 器態 感動 傳生 性產 慣能 中不 統器 系感 合傳 組性 航慣 導此 性故 貫 ’ 與件 止行 靜進 體統 動系 運合 當組 ,性 之慣 言與 換位 。定 號球 信全 量的 測上 態體 jdjJaJ 出運 輸在 能裝 不對 也法 機無 收, 接時 P G體 合 藕 對 能 不; 態IN 靜S/ bp ^ G 因合 。藕 試將 測了 度為 精。 和估 能評 性行 -PS· 於 用 應 進之 度用 精應 的際 NS實 r在576928 V. Description of the invention (1) Name: Coupling index of real-time GPS / inertial measurement component and differential GPS simulation method and system-related applications: This is a regular application with application number 6 0/2 1 2 8 86, the file date is June 19, 2000. Field of the invention: The invention is related to the simulation of GPS and receiver of global positioning system and the simulation of gyroscope and accelerometer (IMU). In particular, it is related to the simulation of a fully integrated real-time differential GPS / IMU combined positioning system with hardware in the ground test loop. Test on the test) The real vehicle is tested in the real ship room, the tester is implemented, and the flight test is performed, such as measuring the C-plane, moving the plane into the ground, or sailing: the flight guide is right and the position is determined. The ball is full. The question was quietly asked about the difficult body Aw L, CiSiLJ. The cause of the problem was not resolved, and many attempts were made to test the ball's full set of the system's system position when the ground exists ^ Ιπτ. The number and letter are electrical appliances. The sensation of metamorphosis and transmission of inertial energy is inductive, and the combination of sexual navigation and inertial navigation is consistent with this nature, and the static movement of the system is combined with the operation of the system, the habit of sex and transposition. The full number of the state jdjJaJ of the number ball is measured. The shipment can be installed or not, and the machine is not received. When the connection is made, the P G body is compatible.藕 The test will be fine. And evaluation can evaluate the behavior-PS
11
第5頁 576928 五、發明說明(2) 前需進行系列動態試驗。 考慮測試費用,地面上測試全藕合定位系統成本低。 如果慣性傳感器,全球定位系統接收機以及全球定位和慣 性組合系統裝在地面運動體上,如車輛等,低成本之動態 測試仍可通過實際地面運動進行。但如果運動體是一架飛 機,實際飛行測試所需費用和勞動力將是極其昂貴的。有 必要將主要部件陀螺儀、加速度計、以及GPS接收機經歷 與實際任務一致的執跡,仿真測試是滿足低成本和短時間 的可靠測試。 產生動態慣性測量值的直接方法是將實際慣性傳感器 放在運動測試平台上。這種方法可靠,但有許多缺點,描 述如下: 1.需要大量測試設備 2運行費用非常高 3. 動態範圍有限 4. 測試過程中數據採集不方便 5. 不能用於同時產生動態全球定位系統接收機測量 丨值。 | 一些全球定位系統信號仿真系統產生擴展頻譜的無線Page 5 576928 V. Description of the invention (2) A series of dynamic tests are required. Considering the test cost, the cost of testing the full-coupling positioning system on the ground is low. If inertial sensors, GPS receivers, and GPS and inertial combination systems are mounted on ground moving bodies, such as vehicles, low-cost dynamic tests can still be performed through actual ground motion. But if the moving body is an aircraft, the cost and labor required for actual flight testing will be extremely expensive. It is necessary to subject the main components of the gyroscope, accelerometer, and GPS receiver to consistent with the actual task. Simulation testing is a reliable test that meets low cost and short time. The direct method for generating dynamic inertial measurements is to place the actual inertial sensor on a motion test platform. This method is reliable, but has many disadvantages, which are described as follows: 1. A large number of test equipment is needed 2. The running cost is very high 3. The dynamic range is limited 4. The data collection is inconvenient during the test 5. It cannot be used to generate dynamic GPS reception Machine to measure the value. | Some GPS Signal Simulation Systems Generate Spread Spectrum Wireless
丨電射頻(RF)仿真信號用於測試全球定位系統接收機。無線 i電射頻輸出仿真由全球定位系統衛星發射的全球定位系統 信號。全球定位系統衛星將隨機噪聲碼和導航數據,如星 歷表,時鐘參數、以及大氣數據等,調制在L波段載頻 (Lll. 5 7 5 42 GHz與L2 1. 2 2 76 0 GHz)。仿真信號具有與現實信丨 Electrical radio frequency (RF) simulation signals are used to test GPS receivers. The wireless i electric RF output simulates GPS signals transmitted by GPS satellites. GPS satellites modulate random noise codes and navigation data, such as ephemeris, clock parameters, and atmospheric data, at L-band carrier frequencies (Lll. 5 7 5 42 GHz and L2 1. 2 2 7 0 GHz). Simulation signals have
第6頁 576928 五、發明說明(3) ' · 號一樣的幅值和信噪比,這樣可通過天線端口直接將仿真 的射頻信號注入全球定位系統接收機。 為了仿真實際GPS測量,6D0F執跡產生器提供實時執 跡數據,實時GPS衛星星座的仿真,SA仿真,IF信號和GPS 跟蹤回路的仿真,以便產生基於GPS模型和接收機模型的 仿真GPS測量數據(偽距,相位和多普勒頻移),並輸 出。同時,採用6 DOF執跡根據相應的測量和誤差模型產生 動態陀螺和加速度計的輸出。仿真的測量數據輸入到全藕 合定位系統。因此採用動態實物仿真可以在實驗室評估全 藕合定位系統。 這項發明是美國專利(定位系統的藕合實時仿真方法 )的擴展。仿真方法基於GPS接收機。採用偽距測量,卡 爾曼濾波器估計單接收機的位置,其精度為1 0 0米。因此 前面專利只能估計低精度的全藕合定位系統。 發明之目的: 本發明之目的是除了採用卡爾曼濾波器估計單接收機 的位置外,基於兩接收機的差分GPS的仿真是其一特點。 因此增加了應用範圍,還可以評估藕合定位系統的高精度 定位。 本發明之再一目的是在全竊合定位系統應用差分GPS 定位來測試高精度定位系統的可靠性。採用仿真如站和移__ 動站的數據,給定如站位置,移動站位置用差分並行卡爾 曼濾波器估出。差分濾波器的輸入是如站和移動站的相位Page 6 576928 5. Description of the invention (3) '· The same amplitude and signal-to-noise ratio, so that the simulated RF signal can be directly injected into the GPS receiver through the antenna port. In order to simulate actual GPS measurements, the 6D0F tracking generator provides real-time tracking data, real-time GPS satellite constellation simulation, SA simulation, simulation of IF signals and GPS tracking loops in order to generate simulated GPS measurement data based on the GPS model and receiver model. (Pseudorange, phase, and Doppler shift) and output. At the same time, the 6 DOF track is used to generate the output of the dynamic gyroscope and accelerometer according to the corresponding measurement and error models. The simulated measurement data is input to a fully integrated positioning system. Therefore, the use of dynamic physical simulation can evaluate a fully coupled positioning system in the laboratory. This invention is an extension of the US patent (Coupled Real-Time Simulation Method for Positioning System). The simulation method is based on a GPS receiver. Using pseudorange measurement, the Kalman filter estimates the position of a single receiver with an accuracy of 100 meters. Therefore, the previous patent can only estimate a low-precision fully coupled positioning system. Object of the invention: The object of the present invention is to use a Kalman filter to estimate the position of a single receiver, and a simulation of differential GPS based on two receivers is one of its characteristics. Therefore, the application range is increased, and the high-precision positioning of the coupled positioning system can also be evaluated. Another object of the present invention is to apply the differential GPS positioning to the total steal position system to test the reliability of the high-precision positioning system. Using simulation data such as station and mobile station, given the station position, the mobile station position is estimated using a differential parallel Kalman filter. The input of the differential filter is the phase of the station and mobile station
第7頁 576928 五、發明說明(4) 測量。 本發明之另一目的在於提供可靠實時仿真動態GPS和 慣性測量評估全藕合定位系統。這樣使得接下來的真實飛 行測試更安全,並極大地降低真實飛行測試次數。仿真方 法的運行與開消費用低,因為在測試系統中不需昂貴的運 動設備。測試系統的維護也得到了簡化。 本發明之又一目的在於根據六自由度(6D0F)執跡產 生器的實時軌跡數據產生移動站位置和如站位置,根據全 球定位系統模型與接收機模型產生動態全球定位系統測量 值。仿真實際GPS測量,6D0F執跡產生器提供實時執跡數 據,實時GPS衛星星座的仿真,SA仿真,IF信號和GPS跟蹤 回路的仿真,以便產生基於GPS模型和接收機模型的仿真 GPS測量數據(偽距,相位和多普勒頻移)。 | 本發明之又一目的是基於陀螺儀測量模型和誤差模型 !和六自由度(6D0F)軌跡,IMU仿真法產生動態慣性測量和Page 7 576928 V. Description of the invention (4) Measurement. Another object of the present invention is to provide a reliable real-time simulation dynamic GPS and inertial measurement evaluation fully coupled positioning system. This makes the subsequent real flight tests safer and greatly reduces the number of real flight tests. The simulation method has low running and development costs because no expensive moving equipment is required in the test system. Maintenance of the test system has also been simplified. Yet another object of the present invention is to generate a mobile station position and a station position based on real-time trajectory data of a six-degree-of-freedom (6D0F) track generator, and generate a dynamic global positioning system measurement value according to a global positioning system model and a receiver model. To simulate actual GPS measurements, the 6D0F tracking generator provides real-time tracking data, real-time GPS satellite constellation simulation, SA simulation, simulation of IF signals and GPS tracking loops in order to generate simulated GPS measurement data based on GPS models and receiver models ( Pseudorange, phase, and Doppler shift). Another object of the present invention is based on a gyroscope measurement model and error model! And a six-degree-of-freedom (6D0F) trajectory, the IMU simulation method generates dynamic inertial measurements and
I | GPS仿真測量。 本發明之又一目的在於六自由度(6D0F)執跡代替實 :際任務軌跡,全藕合定位系統可以用不同的情況來評估。 |該方法允許進行無限次的全藕合定位系統動態測試。 | 本發明之又一目的在於支持耦合實時仿真系統的開 發,調試和集成。因此耦合實時仿真系統在實際應用中工 作正常。本發明集中在陀螺,加速度計和耦合系統該系統 的仿真。 本發明之又一目的在於至少一台計算機作為耦合實時I | GPS simulation measurement. Another object of the present invention is to replace the real-world mission track with a 6 DOF track, and the full-coupling positioning system can be evaluated in different situations. | This method allows an unlimited number of dynamic tests of fully coupled positioning systems. Another object of the present invention is to support the development, debugging and integration of coupled real-time simulation systems. Therefore, the coupled real-time simulation system works normally in practical applications. The present invention focuses on the simulation of the gyroscope, accelerometer, and coupling system. Another object of the present invention is at least one computer as a coupled real-time
第8頁 576928 五、發明說明(5) 1 仿真系統的計算平台。在一台計算機情況下仿真GPS和慣 性測量。對於兩台計算機,一台仿真G P S,另一台仿真陀 螺和加速度計。慣性傳感器與全球定位系統通過RS- 2 3 2串 行接口輸出。 圖號說明: 10-六自由度軌跡產生器20-實時GPS/IMU仿真系統 21-Ethernet網絡控制器22 -GPS/IMU仿真計算機 23- GPS/IMU仿真接口板 24_連接器 24— 2-串行信號調節器 24 — 3 -連接器 2 5-同步模塊 30 -組合GPS / INS系統 31-GPS接收機 32 - IMU器件 3 3-GPS / INS導航計算機 40 -數據採集和性能評估系統 5 0 _輸入信號仿真模塊 5 1 _噪聲產生器 5 2-載波產生器 53 - —碼產生器 54-第一乘法器 55 -第二乘法器 6 0 -跟蹤回路和信號處理仿真模塊 6 5 -碼產生器 6 6 -信號處理模塊 7 1 -雙差寬道模糊解模塊7 2 -模糊區域確定模塊 7 3 -最小二乘搜索估計器7 4 -位置計算模塊 7 5 -次雙差寬道模糊解模塊 7 6-超寬道技術模塊 77-L1和L2模糊解模塊 211-星歷表數據庫 212-GPS衛星星座仿真模塊 2 13-用戶初始位置模塊 2 14-GPS衛星預測模塊Page 8 576928 V. Description of the invention (5) 1 Computing platform of simulation system. Simulate GPS and inertial measurements with a computer. For two computers, one simulates G PS and the other simulates a gyroscope and accelerometer. The inertial sensor and global positioning system output via RS-232 serial interface. Description of drawing number: 10-six degrees of freedom trajectory generator 20-real-time GPS / IMU simulation system 21-Ethernet network controller 22-GPS / IMU simulation computer 23- GPS / IMU simulation interface board 24_connector 24— 2-string Line signal conditioner 24 — 3-connector 2 5- synchronization module 30-combined GPS / INS system 31-GPS receiver 32-IMU device 3 3-GPS / INS navigation computer 40-data acquisition and performance evaluation system 5 0 _ Input signal simulation module 5 1 _Noise generator 5 2-Carrier generator 53-Code generator 54-First multiplier 55-Second multiplier 6 0-Tracking loop and signal processing simulation module 6 5-Code generator 6 6-Signal processing module 7 1-Double-difference wide-channel fuzzy solution module 7 2-Fuzzy region determination module 7 3-Least square search estimator 7 4-Position calculation module 7 5-Secondary double-difference wide-channel fuzzy solution module 7 6-Ultra-wide channel technology module 77-L1 and L2 fuzzy solution module 211-Ephemeris database 212-GPS satellite constellation simulation module 2 13-User initial position module 2 14-GPS satellite prediction module
第9頁 576928 五、發明說明(6) 21 5-GPS誤差模型 2 1 7 -原始數據產生模塊 2 1 8 -干擾模型和效應仿真 221-差分GPS仿真模塊 231- GPS輸入/輸出接口 2 1 6 1 -開關 2 1 6 3 -卡爾曼濾波器 2165-權庫 2172-GPS接收機 2 2 2 2 -陀螺儀誤差模型 2224 -加速度計誤差模型 2 3 2 — 1 -模擬信號接口 2 3 2 - 3 -脈衝信號接口 2 3 2 — 1 1 -總線接口電路 232— 13-中斷接口 2 1 6 -估計器 2 1 9 -數據格式模塊 模塊 2 2 2 - I M U仿真模塊 2 3 2 - IMU輸入/輸出接口 2 1 6 2 _差分濾波器 2 1 6 4 -卡爾曼濾波器 2171-移動GPS接收機 2 2 2 1 -陀螺儀測量模型 2 2 2 3 -加速度計測量模型 2 2 2 5 -IMU信號合成模塊 2 3 2 - 2 -串行信號接口 232 — 4-並行數字信號接口 2 3 2 - 1 2 -DMA 接口 2 3 2 — 1 6 -時序電路 2 3 2 — 1 4 -先進先出(FIFO )電路 2 3 2 - 1 5 -多通道DA轉換電路 232 — 21-總線接口電路 232 — 22 -中斷接口電路 232—23 -邏輯電路 232—24 - RS — 485接口電路 232 — 31-總線接口電路 232—32-中斷接口 232—33-多通道數字頻率轉換電路 232 — 41a-第一套中斷接口 232—41b-第二套中斷接口 2 3 2 — 4 2 a -總線接口電路 2 3 2 — 4 2 b總線接口電路Page 9 576928 V. Description of the invention (6) 21 5-GPS error model 2 1 7-Raw data generation module 2 1 8-Interference model and effect simulation 221-Differential GPS simulation module 231-GPS input / output interface 2 1 6 1-Switch 2 1 6 3-Kalman Filter 2165-Weight Library 2172-GPS Receiver 2 2 2 2-Gyroscope Error Model 2224-Accelerometer Error Model 2 3 2 — 1-Analog Signal Interface 2 3 2-3 -Pulse signal interface 2 3 2 — 1 1-Bus interface circuit 232 — 13-Interrupt interface 2 1 6-Estimator 2 1 9-Data format module module 2 2 2-IMU simulation module 2 3 2-IMU input / output interface 2 1 6 2 _Differential filter 2 1 6 4-Kalman filter 2171-Mobile GPS receiver 2 2 2 1-Gyro measurement model 2 2 2 3-Accelerometer measurement model 2 2 2 5-IMU signal synthesis module 2 3 2-2-Serial signal interface 232 — 4- Parallel digital signal interface 2 3 2-1 2-DMA interface 2 3 2 — 1 6-Sequence circuit 2 3 2 — 1 4-First-in-first-out (FIFO) circuit 2 3 2-1 5-Multi-channel DA conversion circuit 232 — 21 — Bus interface circuit 232 — 22 — Interrupt interface circuit 232 — 23 — Logic circuit 232 —24-RS — 485 interface circuit 232 — 31 — Bus interface circuit 232 — 32 — Interrupt interface 232 — 33 — Multi-channel digital frequency conversion circuit 232 — 41a — First set of interrupt interfaces 232 — 41b — Second set of interrupt interfaces 2 3 2 — 4 2 a-bus interface circuit 2 3 2-4 2 b bus interface circuit
第10頁 576928 五、發明說明(7) . 詳細說明: 本發明係有關於耦合實時全球定位系統與慣性測量單 元(GPS/IMU )仿真的方法和系統。本技術涉及IM測量建 模’ IMU誤差建模,gps接收機建模,GPS誤差建模,以及 仿真數據格式化等。在實物測試過程中,一個六自由度執 跡產生器驅動本系統產生動態IMlJ電信號和GPS測量值。這 些仿真數據與信號被注入組合全球定位系統與慣性導航系 統( GPS / INS )。應用本發明的技術有以下優點: (1 )用軟件實時仿真動態[M U測量值; (2) 用軟件實時仿真以^接收機在動態與干擾 (jamming )環境中的行為;Page 10 576928 V. Description of the invention (7). Detailed description: The present invention relates to a method and system for coupling real-time global positioning system and inertial measurement unit (GPS / IMU) simulation. This technology involves IM measurement modeling, IMU error modeling, GPS receiver modeling, GPS error modeling, and simulation data formatting. During the physical test, a six-degree-of-freedom track generator drives the system to generate dynamic IMlJ electrical signals and GPS measurements. These simulation data and signals are injected into a combined Global Positioning System and Inertial Navigation System (GPS / INS). The application of the technology of the present invention has the following advantages: (1) real-time simulation of dynamic [M U measured values with software; (2) real-time simulation with software to analyze receiver behavior in a dynamic and jamming environment;
(3) 用同步技術實現同時仿真GPS與IMU ; (4) 仿真差分gps評估GPS/INS系統的高精度應用; (5) 結合一六自由度執跡產生器,具有無限次的動態 IMU傳感器與GPS接收機仿真能力; (6) 提供費用低廉的GPS/INS組合導航系統測試手段, 且維護費用低。(3) Simultaneous simulation of GPS and IMU with synchronous technology; (4) Simulate differential GPS to evaluate high-precision applications of GPS / INS system; (5) Combine a six-degree-of-freedom track generator with unlimited dynamic IMU sensors GPS receiver simulation capability; (6) Provide low-cost GPS / INS integrated navigation system test methods, and low maintenance costs.
本發明能真正解決運動體上的組合差分GPS/INS導航 系統在進行地面測試與實物測試中的問題。在地面測試 中’因為運動體是靜止的,導航系統中的IMlJ不能產生電 信號’因為它是一自足器件。同樣GPS接收機不能輸出動 態GPS觀測值,主要在於其不感受一條運動軌跡。為了在 地面進行組合GPS/ INS導航系統的動態測試,本發明提供 ,個耦合實時IMU與GPS仿真方法與系統。本系統激活安裝 576928 五、發明說明(8) ' 於運動體的組合GPS/ INS系統,通過用偶合GPS/IMU仿真系 統替代IMU和GPS接收機來預測與評估GPS/INS系統的動態 性能。該方法使接下來的真實飛行測試更安全,並將大大 減少飛行次數,及相應的測試費用。 盡管本發明主要是為GPS/INS導航系統測試,它也可 用於其它需要慣性傳感器的領域對慣性傳感器進行仿真。 本發明基於先進的實時仿真,計算機與電子技術。GPS模 型,差分GPS模型與IMU模型内置在主計算機中。GPS模型 由一信號產生模塊和兩個GPS接收機模型組成。信號產生 器模塊用來仿真中頻GPS信號。其中第一GPS接收機模型是 一個簡化模型,沒有跟蹤回路仿真,第二GPS接收機模型 是一個完整的模型並含有跟蹤回路上的相關器模型。兩者 都能進行GPS接收機動態性能仿真與抗干擾性能仿真。 差分GPS模型提供兩台GPS接收機測量的在線整周模糊 度的解算,其中一台裝在運載體上,另一台固定作為如 站。本發明仿真移動站和如站的GPS接收機能夠測試差分 GPS\ IMU導航系統。IMU模型包括一個陀螺模型,一個加速 度模型和一組陀螺加速度計的誤差模型。 | 同步是實時GPS/IMU仿真系統中的一個關鍵問題,它 I可由本專利的耦合方法解決。對由一台計算機仿真GPS與 I IMU的情況,用六自由度執跡數據觸發與數據輸出同步模 塊來實現同步。來自六自由度執跡產生器的實時執跡數據φ 同時驅動G P S仿真模塊以及I M U仿真模塊,也即對應一個時 刻的同一執跡數據用於根據GPS衛星星座模型與GPS接收機The invention can truly solve the problems of the combined differential GPS / INS navigation system on a moving body in performing ground tests and physical tests. In the ground test 'because the moving body is stationary, the IMlJ in the navigation system cannot generate electrical signals' because it is a self-contained device. Similarly, the GPS receiver cannot output dynamic GPS observations, mainly because it does not feel a motion trajectory. In order to perform a dynamic test of a combined GPS / INS navigation system on the ground, the present invention provides a coupled real-time IMU and GPS simulation method and system. This system is activated and installed 576928 V. Description of the invention (8) '' The combined GPS / INS system for moving bodies, predicts and evaluates the dynamic performance of the GPS / INS system by replacing the IMU and GPS receiver with a coupled GPS / IMU simulation system. This method makes subsequent real flight tests safer, and will greatly reduce the number of flights and the corresponding test costs. Although the present invention is mainly for testing GPS / INS navigation systems, it can also be used to simulate inertial sensors in other areas where inertial sensors are required. The invention is based on advanced real-time simulation, computer and electronic technology. The GPS model, differential GPS model, and IMU model are built into the host computer. The GPS model consists of a signal generation module and two GPS receiver models. The signal generator module is used to simulate the IF GPS signal. The first GPS receiver model is a simplified model without tracking loop simulation, and the second GPS receiver model is a complete model and contains the correlator model on the tracking loop. Both can simulate the dynamic performance and anti-jamming performance of GPS receivers. The differential GPS model provides online ambiguity calculations measured by two GPS receivers, one of which is mounted on a carrier and the other is fixed as a station. The invention simulates a mobile station and a GPS receiver such as a station capable of testing a differential GPS \ IMU navigation system. The IMU model includes a gyro model, an acceleration model, and a set of gyro accelerometer error models. Synchronization is a key issue in real-time GPS / IMU simulation systems. It can be solved by the coupling method of this patent. For a case where the GPS and I IMU are simulated by a computer, a six-degree-of-freedom tracking data trigger and data output synchronization module is used to achieve synchronization. The real-time tracking data φ from the six-degree-of-freedom tracking generator simultaneously drives the G PS simulation module and the I M U simulation module, that is, the same tracking data corresponding to a moment is used for the GPS satellite constellation model and the GPS receiver.
第12頁 576928 五、發明說明(9) 模型計算GPS測量值,也用於根據IMU測量模型與誤差模 型,即陀螺儀模型,加速度計模型,以及其誤差模型計算 IMU測量值。這些仿真的GPS數據和IMU數據僅由一台計算 機計算。Page 12 576928 V. Description of the invention (9) The model calculates GPS measurement values. It is also used to calculate IMU measurement values based on IMU measurement models and error models, that is, gyroscope models, accelerometer models, and their error models. These simulated GPS and IMU data are calculated by only one computer.
計算既可先計算IMU數據,也可先計算GPS測量值數 據。任一種方式對本發明的耦合實時仿真方法都適用。先 計算哪一項都必須等待第二項仿真數據,即I MU數據或GPS 測量值數據。同步軟體模塊調節仿真的IMU數據和GPS測量 值數據以同步方式輸出。如第二圖,仿真的GPS測量值數 據通過GPS輸入/輸出接口 231送出,仿真的IMU數據通過 IMU輪入/輸出接口 2 3 2送出。仿真的IMU數據和GPS測量值 數據放在緩衝區等待觸發信號。觸發信號由計算機時鐘提 供或來自外部同步信號。在觸發時刻,仿真的GP S測量值 和I MU數據被同步送出。 這樣,本發明之搞合G P S和I M U仿真方法用一台計算機 !以序列方式用同一時刻的執跡數據計算GPS仿真測量值和 I M U仿真數據,並在同一時刻輸出這些仿真的數據。 實時GPS/IMU仿真也可用兩台計算機實現,一台用作 為GPS仿真,另一台用作為IMU仿真。同步也是由兩台計算 機組成的實時GPS/ I MU仿真系統的一個關鍵問題,它也可 由本專利中的耦合仿真方法得到。對於用兩台計算機仿真 GPS和IMU的情況,來自一六自由度軌跡產生器的實時軌跡<· 數據同時驅動兩台計算機分別仿真GPS測量值和IMU數據。 即兩台計算機用同一軌跡數據,並根據GPS衛星星座模型The calculation can either calculate the IMU data first or the GPS measurement data first. Either way is applicable to the coupled real-time simulation method of the present invention. To calculate first, you must wait for the second simulation data, that is, I MU data or GPS measurement data. The synchronization software module adjusts the simulated IMU data and GPS measurement data to output in a synchronized manner. As shown in the second figure, the simulated GPS measurement data is sent through the GPS input / output interface 231, and the simulated IMU data is sent through the IMU wheel input / output interface 2 3 2. The simulated IMU data and GPS measurement data are placed in a buffer waiting for a trigger signal. The trigger signal is provided by the computer clock or from an external synchronization signal. At the trigger time, the simulated GPS measurement values and I MU data are sent out simultaneously. In this way, the GPS and IMU simulation method of the present invention uses a computer to calculate GPS simulation measurement values and IMU simulation data in a sequential manner using the tracking data at the same time, and outputs these simulated data at the same time. Real-time GPS / IMU simulation can also be implemented with two computers, one for GPS simulation and the other for IMU simulation. Synchronization is also a key issue of a real-time GPS / I MU simulation system consisting of two computers, and it can also be obtained by the coupled simulation method in this patent. For the case of simulating GPS and IMU with two computers, the real-time trajectory from a six-degree-of-freedom trajectory generator < · data simultaneously drives the two computers to simulate GPS measurements and IMU data respectively. That is, two computers use the same trajectory data, and according to the GPS satellite constellation model
第13頁 576928 五、發明說明(ίο) 和GPS接收機模型計算GPS測量值,根據IMU測量模型與誤 差模型,也即陀螺儀模型,加速度計模型,以及其誤差模 型計算IMU測量值。GPS測量值和IMU測量值的計算在同一 時間進行。 GPS與IMU仿真也可以不在同一時刻完成。無論哪一項 先計算完,都必須等待第二項仿真數據,IMU數據或GPS測 量數據。同樣,同步模塊以同步方法調節仿真的I Μϋ數據 和G P S測量數據。仿真的G P S測量數據通過G P S輸入/輸出接 口送出,仿真的IMU數據通過IMU輸入/輸出接口送出。仿 真的IMU數據和GPS測量數據存放在缓衝區中等待觸發信 號。觸發信號可由兩台計算機之中的任一台的時鐘提供, 或來自外部共同的同步信號。在觸發時刻,仿真的GPS測 量值與IMU數據同步發送。 由此,使用兩台計算機之GPS和IMU耦合仿真方法是利 ;用同一軌跡數據,在同一時刻分別在不同的計算機上計算 i G P S測量值與I M U數據’並在同一時刻輸出這些仿真的數 I據。 t 一些測試設備提供一個IRIGB時間發生器。在這種情 i況中,仿真的GPS測量值和IMU數據在發送時將標上IRIGB I時間標簽。使用I R I GB時間產生器有利於在大型測試和仿 |真場合中的所有計算機的同步。 為處理本發明之疋位與導航系統(如第一圖所示)的編 合實時GPS/IMU仿真方法,一六自由度執跡產生器1〇被連 接到一實時GPS/IMU仿真系統20。仿真系統之輸出繞過組Page 13 576928 V. Description of Invention (ίο) and GPS receiver model to calculate GPS measurement value, calculate IMU measurement value according to IMU measurement model and error model, that is, gyroscope model, accelerometer model, and its error model. The calculations of GPS and IMU measurements are performed at the same time. GPS and IMU simulations can also be done at different times. No matter which one is calculated first, you must wait for the second simulation data, IMU data or GPS measurement data. Similarly, the synchronization module adjusts the simulated IM and GP measurement data in a synchronized manner. The simulated GPS measurement data is sent through the GPS input / output interface, and the simulated IMU data is sent through the IMU input / output interface. The simulated IMU data and GPS measurement data are stored in the buffer and wait for the trigger signal. The trigger signal can be provided by the clock of either of the two computers, or a synchronization signal from a common external source. At the moment of triggering, the simulated GPS measurements are sent synchronously with the IMU data. Therefore, it is advantageous to use two computers to simulate the coupling of GPS and IMU; use the same trajectory data to calculate i GPS measurements and IMU data on different computers at the same time and output these simulated numbers I at the same time according to. t Some test equipment provides an IRIGB time generator. In this case, the simulated GPS measurements and IMU data will be tagged with the IRIGB I time stamp when sent. Using the I R I GB time generator facilitates the synchronization of all computers in large-scale testing and simulation scenarios. In order to process the combined real-time GPS / IMU simulation method of the positioning and navigation system of the present invention (as shown in the first figure), a six-degree-of-freedom tracking generator 10 is connected to a real-time GPS / IMU simulation system 20. Output bypass group of simulation system
第14頁 576928 五、發明說明(11) 合GPS / INS系統30中的實際GPS接收機31和IMU32直接注入 組合GPS/ INS系統30。 依據本發明,用於定位與導航系統(如組合GPS/INS系 統)動態測試之執合實時G P S / I M U仿真方法由以下步驟構 成: (1 )根據待測試的組合GPS / I NS系統30的實際IMU器件 32輸入IMU測量模和IMU誤差模型到實時GPS/IMU仿真系統 2 0。I M U測量模型由陀螺儀測量模型和加速度計測量模型 組成。這些模型由慣性傳感器原理確定。I MU誤差模型由 陀螺儀誤差模型與加速度計誤差模型組成。這些誤差模型 由用戶根據待測試組合GPS / INS系統30中的真實IMU器件32 定義。 j (2)由該六自由度轨跡產生器1〇產生實時執跡數據, I並將實時轨跡數據送到實時GPS / IMU仿真系統20產生動態 | GPS測量值和由用戶定義的如站GPS測量值或和IMU信號, 丨就象運動體真正沿用戶定義的執跡運動一樣。 I (3)採用差分GPS仿真模塊221的估計器216中的差分濾 I波器2162估計移動站位置,其中估計器216是來自移動GPS |接枚機2171和如站GPS接收機2172的原始測量。如第七圖 |所示,在估計器庫中並行運行系列卡爾曼濾波器2164-1到 | 2164〜L。每個卡爾曼濾波器有自己的GPS載波整周模糊集 N。權庫2 1 6 5中所有權之和為1。在估計器庫2 1 6 4中如何選 擇L和N是實際應用中的關鍵部分。估計器庫越大,計算時 間越長。本發明提供了新的過程構造差分濾波器2 1 6 2。Page 14 576928 V. Description of the invention (11) The actual GPS receiver 31 and IMU 32 in the integrated GPS / INS system 30 are directly injected into the combined GPS / INS system 30. According to the present invention, the implementation of a real-time GPS / IMU simulation method for dynamic testing of a positioning and navigation system (such as a combined GPS / INS system) consists of the following steps: (1) According to the actual situation of the combined GPS / I NS system 30 to be tested The IMU device 32 inputs the IMU measurement mode and the IMU error model to the real-time GPS / IMU simulation system 2 0. The I M U measurement model consists of a gyroscope measurement model and an accelerometer measurement model. These models are determined by the inertial sensor principle. The I MU error model consists of a gyroscope error model and an accelerometer error model. These error models are defined by the user based on the actual IMU device 32 in the combined GPS / INS system 30 to be tested. j (2) The six-degree-of-freedom trajectory generator 10 generates real-time tracking data, and I sends the real-time trajectory data to the real-time GPS / IMU simulation system 20 to generate dynamics | GPS measurements and user-defined such as station GPS measurement or IMU signal, just like the moving body really moves along the user-defined track. I (3) The differential filter I waver 2162 in the estimator 216 of the differential GPS simulation module 221 is used to estimate the mobile station position, where the estimator 216 is the original measurement from the mobile GPS . As shown in the seventh figure, a series of Kalman filters 2164-1 to 2164 ~ L are run in parallel in the estimator library. Each Kalman filter has its own GPS carrier full-cycle fuzzy set N. The sum of ownership in the rights bank 2 1 6 5 is 1. How to choose L and N in the estimator library 2 1 6 4 is a key part in practical application. The larger the estimator library, the longer the calculation time. The present invention provides a new process for constructing a differential filter 2 1 6 2.
第15頁 576928 五、發明說明(12) (4)產生輸出數據,這些數據包括由實時GPS/IMU仿真 系統2 0得到的並與真實I M U器件一致的實時I M U數據,以及 由GPS / IMU仿真系統20中的GPS接收機模型得到的仿真的 GPS測量值。 (5 )將仿真的G P S測量值數據格式化,並由實時 GPS/IMU仿真系統20中的IMU信號發生器將仿真的IMU數據 轉換成IMU仿真電信號。事實上,IMU信號產生器是實時 GPS / IMU仿真系統20中仿真計算機的一塊接口板。IMU信號 產生器產生仿真的IMU電信號,這些仿真的電信號與組合 GPS/INS系統30中的實際IMU器件32產生的信號一致。 (6 )處理仿真的G P S測量值,由一標準接口和一調節器 和連接器電路產生仿真的IMU電信號,以滿足要求的適當 , |的電氣規範和連接器管腳安排,並與組合GPS / INS系統30 I相匹配。 (7 )將仿真的G P S測量值和仿真的I M U電信號注入到組 合GPS/INS系統30。當在動態操作中激活組合GPS/INS系統 3 0時,其動態性能可被測試和評價,就好像進行一個真實 運輸/飛行測試一樣。 (8 )在測試過程中,由一數據採集和性能評估系統4 〇 收集來自組合G P S / I N S系統3 0的定位與導航數據。該系統 包括一台計算機。通常,通過比較如由六自由度執跡產生 器10產生的實時軌跡數據與組合GPS/ INS解出的運動體軌修 跡數據以確定組合GPS/INS系統30是否工作正常,以及評 | 價其性能。Page 15 576928 V. Description of the invention (12) (4) Generate output data, which includes real-time IMU data obtained by real-time GPS / IMU simulation system 20 and consistent with real IMU devices, and GPS / IMU simulation system The simulated GPS measurements obtained from the GPS receiver model in 20. (5) Format the simulated GPS measurement data, and convert the simulated IMU data into an IMU simulated electrical signal by the IMU signal generator in the real-time GPS / IMU simulation system 20. In fact, the IMU signal generator is an interface board of a simulation computer in the real-time GPS / IMU simulation system 20. The IMU signal generator generates simulated IMU electrical signals that are consistent with signals generated by the actual IMU device 32 in the combined GPS / INS system 30. (6) Process the simulated GPS measurement values, and generate a simulated IMU electrical signal from a standard interface and a regulator and connector circuit to meet the requirements of the appropriate electrical specifications and connector pin arrangements, and combine with GPS / INS system 30 I matches. (7) The simulated GPS measurement value and the simulated IM electrical signal are injected into the combined GPS / INS system 30. When the combined GPS / INS system 30 is activated in dynamic operation, its dynamic performance can be tested and evaluated as if it were a real transport / flight test. (8) During the test, a data acquisition and performance evaluation system 40 collects positioning and navigation data from the combined GPS / INS system 30. The system includes a computer. In general, it is determined whether the combined GPS / INS system 30 is working normally by comparing the real-time trajectory data generated by the six-degree-of-freedom track generator 10 with the moving body track tracking data solved by the combined GPS / INS, and evaluating performance.
第16頁 576928 五、發明說明(13) 對GPS測量,L1和L2的雙差標量方程為 dpCk l^MP:mr^sP:mr ^kmr = Pir^Pcmr ^ XkN kmr ^ JT ^ Tmr ^dpc"mr ^ M + L ^ = ^2) 其中(·)1 表示雙差以(上一〇卜〇;4):的形式形成。 下標Μ和R表示兩個接收機,參考台和運動台。上標I 和J表示兩個不同的GPS衛星。Ρ和Φ 分別為偽距和相位 距離測量。ρ是兩個天線相位中心(用戶G P S接收機和G P S 衛星),在名義時間上的幾何距離。p c為名義幾何距離 的修正量。;I表示波長。< 是雙差整周模糊P.16 576928 V. Description of the invention (13) For GPS measurement, the double difference scalar equation of L1 and L2 is dpCk l ^ MP: mr ^ sP: mr ^ kmr = Pir ^ Pcmr ^ XkN kmr ^ JT ^ Tmr ^ dpc " mr ^ M + L ^ = ^ 2) where (·) 1 means that the double difference is formed in the form of (previous 10b 0; 4) :. The subscripts M and R denote two receivers, a reference station and a motion station. The superscripts I and J indicate two different GPS satellites. P and Φ are the pseudo-range and phase-distance measurements, respectively. ρ is the geometric distance between the two antenna phase centers (user GPS receiver and GPS satellite) in nominal time. p c is the correction for the nominal geometric distance. ; I represents the wavelength. < is double-difference integer ambiguity
IIII
mr7F 是L1和 L 2頻率電離層效應的雙差殘數。=是同溫層效應的雙差 殘數。、w為相位中心變化的雙差殘數。从(i為多路徑效應 的雙差殘數。窄道和寬道相位長度的測量分別定義為 Φ VV Φ·,mr7F is the double-difference residual of the ionospheric effect at L1 and L2 frequencies. = Is the double-difference residual of the stratosphere effect. And w are double-difference residuals whose phase centers change. From (i is the double-difference residual of the multipath effect. The phase length measurements of narrow and wide channels are defined as Φ VV Φ ·,
A /,-ΛA /ι+Λ -φ: /丨-Λ Λ /ι +Λ φί1} 1 η Φ 對應整周模糊分別為 ΝJmr = N'Jmr -NlmrA /,-ΛA / ι + Λ -φ: / 丨 -Λ Λ / ι + Λ φί1} 1 η Φ corresponds to the whole cycle of blurring, respectively ΝJmr = N'Jmr -Nlmr
第17頁 576928Page 17 576928
第18頁 576928 五、發明說明(15) A2 fl /〖2 - Λ2 .IL· /i2-/22fl < Π lmr y;2 - λ2 < 如第三圖所示,在步驟3中,差分濾波器2 1 6 2由估計 器庫2 164,相應的權庫2165,一個中間模糊搜索策略IASS 和一個搜索窗組成。它包含很多時間歷元。基本上,IASS 包含簡化的最小二乘法和超寬道技術,如第五圖所示。在 應用最小二乘法搜索模糊解之前,兩天線,如台和運動 台,共同可觀測的衛星可分為兩組:主衛星和次衛星。因 為應用雙差方程,有最大高度角的衛星被定義為如衛星。 主衛星包括接著四個有較大高度角的衛星,這樣有四個獨 立的雙差方程。其餘可觀測的衛星歸於次衛星類。 如第五圖所示,IASS過程包含一個雙差寬道模糊解模 |塊71,一個模糊區域確定模塊72,一個最小二乘搜索估計 丨器73,一個位置計算模塊74,一個次雙差寬道模糊解模塊 | | 75,一個超寬道技術模塊76,和一個L1和L2模糊解模塊 77。IASS過程的第一步是在主雙差寬道模糊解模塊71,解 主雙差寬道模糊。關於運動台位置的預先信息,從無電離 層的偽距測量獲得,和近似的雙差寬道相位長度測量方程 !相結合形成即時方程。同時,關於運動台位置的預先信息 也可由導航處理器31的輸出給出。應用最小方差與預先信 息估計運動台位置和主雙差寬道模糊解。 在估計主雙差寬道模糊解之後,該估計的主雙差寬道Page 18 576928 V. Description of the invention (15) A2 fl / 〖2-Λ2 .IL · / i2- / 22fl < Π lmr y; 2-λ2 < As shown in the third figure, in step 3, the difference The filter 2 1 6 2 is composed of an estimator library 2 164, a corresponding weight library 2165, an intermediate fuzzy search strategy IASS, and a search window. It contains many time epochs. Basically, IASS includes simplified least squares and super wide track techniques, as shown in Figure 5. Before applying the least square method to search the fuzzy solution, the two observable satellites, such as the station and the mobile station, can be divided into two groups: the primary satellite and the secondary satellite. Because of the application of the double-difference equation, a satellite with a maximum altitude angle is defined as a satellite. The main satellite consists of four satellites with larger elevation angles followed by four independent double-difference equations. The remaining observable satellites fall into the sub-satellite category. As shown in the fifth figure, the IASS process includes a double-difference wide-channel fuzzy demodulation | block 71, a fuzzy region determination module 72, a least squares search estimator 73, a position calculation module 74, and a secondary double-difference width Road fuzzy solution module | | 75, an ultra-wide track technology module 76, and an L1 and L2 fuzzy solution module 77. The first step in the IASS process is to resolve the main double-difference wide-path blurring module 71 to resolve the main double-difference wide-path blur. The advance information about the position of the moving table is obtained from the pseudorange measurement without ionosphere and combined with the approximate double-difference wide-track phase length measurement equation! To form an instant equation. At the same time, advance information about the position of the stage can also be given by the output of the navigation processor 31. The minimum variance and prior information are used to estimate the motion station position and the main double-difference wide-channel fuzzy solution. After estimating the main double-difference wide-channel fuzzy solution, the estimated main double-difference wide-channel
第19頁 576928 五、發明說明(16) 模糊解和相應的協因子陣被送入模糊區域確定模塊7 2,在 其中,基於估計的雙差寬道模糊解和相應的協因子陣,建 立一個模糊搜索區域。該模糊搜索區域被送入最小二乘搜 索估計器7 3。應用一個標準的最小二乘搜索方法,在最小 二乘搜索估計器7 3中,搜索模糊集。並且,標準的最小二 乘搜索方法可被簡化,以加速模糊搜索。簡化的最小二乘 搜索方法定義為直接搜索模糊集,最小化二次型形式的殘 差 其中%是雙差 是在搜索區域的雙 道模糊解估計的協 器庫2164和相應的 確定的主雙差 算運動台的位置。 糊解模塊7 5,應用 寬道相位測量,以 把求得的雙差 雙差窄道模糊解。 (奇),則相應的窄 寬道技術,可在寬 以,在L 1和L 2模糊 寬道模糊 差寬道模 因子陣, 權庫2 1 6 5 寬道模糊 求得的運 寬道模糊 確定次雙 寬道模糊 超寬道技 道模糊解 道技術模 解模塊77 解實數的最優 糊解向量,\ 沒有統計或經 將執行確認的 解被送給位置 動台的位置送 確定的運動台 差寬道模糊解 解代入方程2 術指出,如果 為奇(偶),否 塊76中求得窄 中,L1和L2模 估計向量,h 是對應於雙差寬 驗測試因為估計 任務。 計算模塊7 4,計 給次雙差寬道模 的位置給次雙差 〇 1可求得近似的 寬道模糊解為偶 則相反。應用超 道模糊解。所 糊解從寬道模糊Page 19 576928 V. Description of the invention (16) The fuzzy solution and the corresponding co-factor matrix are sent to the fuzzy region determination module 72, where based on the estimated double-difference wide-channel fuzzy solution and the corresponding co-factor matrix, a Blur the search area. The fuzzy search area is sent to a least square search estimator 73. Applying a standard least square search method, the least square search estimator 7 3 searches for a fuzzy set. Also, the standard least square search method can be simplified to speed up fuzzy searches. The simplified least squares search method is defined as directly searching the fuzzy set, minimizing the residuals of the quadratic form, where% is the double difference is the coordinator library 2164 of the two-path fuzzy solution estimation in the search area and the corresponding determined main and double Calculate the position of the motion table. The obfuscation module 75 applies a wide-channel phase measurement to obfuscate the obtained double-difference double-difference narrow-track. (Odd), then the corresponding narrow and wide channel technology can be obtained from the wide channel blur factor in the wide channel, L 1 and L 2 fuzzy wide channel mode factor matrix, weight library 2 1 6 5 wide channel blur. Determine the second double-wide channel fuzzy ultra-wide channel technology channel fuzzy solution technology module solution module 77 Optimal solution vector for real numbers, \ No statistics or the position of the execution confirmation solution is sent to the position of the moving platform to determine the motion The solution of the stage wide track fuzzy solution is substituted into Equation 2. The technique indicates that if it is odd (even), the narrow, L1 and L2 modulus estimation vectors are obtained in block 76, and h is corresponding to the double-difference test because of the estimation task. The calculation module 74 calculates the position of the secondary double-difference wide-channel module and gives the secondary double-difference 〇 1 to obtain an approximate wide-channel fuzzy solution as even. The opposite is true. Apply superchannel fuzzy solution. So ambiguous
第20頁 576928Page 576928
五、發明說明(17) 解和窄道模糊解的組合求得,其分別對應於和V. Description of the invention (17) It is obtained by the combination of the solution and the narrow-path fuzzy solution, which respectively correspond to and
元 歷 個 N 含 :包 驟口 步窗 列索 下搜 成個 分一 可立 2建 驟 \)/ 步1 此3 因C 第6 的2 I1L 窗庫 Λ 搜計 在估 S前 As段 5時 應一 第 2在 3為 C因 Ο 集 糊 模 整 索 搜 段 時 糊 模 整 員 成 有 沒 中 ^5, 測中 位65 相21 和庫 £-、 -uuul 奢權 糊在據 模著根 於接算 基,計 。解的 員糊權 成模。 個的示 一定所 的確圖 4置七 6 21位第 庫台如 器動, 計運權 估計的 為估應 成,相 集量算 II 扣Λ \—/Λ yΛYuan N N Contains: Include the steps and steps to search the window and divide it into two points to establish 2 steps \) / Step 1 This 3 because of C 6 6 2 I1L window library Λ is calculated in the As section 5 before the evaluation S The time should be 2nd at 3 for C due to the set of molds. 0 The molder is not successful when searching for the section ^ 5, the median 65 phase 21 and the library £-, -uuul extravagant right in the mold. Based on the accounting base, count. The members of the solution are confused. It is shown in Figure 4 that the 6th and 21st positions of the warehouse are moved, and the right to calculate and transport is estimated to be estimated. The phase ensemble calculation II is deducted Λ \ — / Λ yΛ
II (3) » 其中II (3) »where
^(ζΙΦ,ΊΝ^ pm(zl0jzl0,.pzl^,.2...^^pNjpm(zlCi|Ni·), ’ = 1,U (4) 乘積的第一項可表示為 •exp^ (ζΙΦ, ΊΝ ^ pm (zl0jzl0, .pzl ^ ,. 2 ... ^^ PNjpm (zlCi | Ni ·), ′ = 1, the first term of the product of U (4) can be expressed as • exp
^(2π)Γ dQt(cov(A0k))=1,2,...,-D^ (2π) Γ dQt (cov (A0k)) = 1,2, ...,-D
第21頁 (Page 21 (
I 576928I 576928
五、發明說明(18) 其被假設定義為高斯分布。方程4表明了 ρ;η(ΔΦ:|Ν;) 、 加特性,其中〜(ΔΦ:|〜)代表測量序列的累 當前時刻tk在單個模糊集Ni條件下的概率函數。換而+直到 之,權的計算不僅取決於當前時段的數據,而且 '取令5、、 前時段的數據。det(·)和C·)-1分別表示矩陣的行列式》和於以 是tk時刻最優測量殘差,測量值減去最優計算值。X 逆。 c〇v(Ad>J =冲乂是測量在tk時刻的方差陣。r是^每一 測量的維數。對搜索窗的第一時段個時段 成為 n方程4(概率)V. Description of the invention (18) It is assumed to be defined as a Gaussian distribution. Equation 4 shows ρ; η (ΔΦ: | N;) and additive characteristics, where ~ (ΔΦ: | ~) represents the cumulative function of the measurement sequence at the current time tk under a single fuzzy set Ni condition. Change to + until it, the calculation of the weight not only depends on the data of the current period, but also 'fetch 5, and the data of the previous period. det (·) and C ·) -1 denote the determinant of the matrix, respectively, and so the optimal measurement residual at tk is the measured value minus the optimal calculated value. X inverse. c〇v (Ad &J; J = impulse is the variance matrix measured at time tk. r is the dimension of each measurement. For the first period of the search window, it becomes n Equation 4 (probability)
Pm λΙ{2π)Γ dQi(cov(A0k)) •exp ζ^οον^Φ,^ζ, 2~— (5) 當然’在權庫中唯一的權D = i方程3之值為i。 & |時段中,最優的運動台位置為運動台的位置乘以相1 權。基於最優的運動台位置和多普勒頻移,估叶運:△太 I度。 ㊉。卞連動台速Pm λΙ {2π) Γ dQi (cov (A0k)) • exp ζ ^ οον ^ Φ, ^ ζ, 2 ~ — (5) Of course, the only weight in the weight library D = i is the value of Equation 3, i. & | The optimal stage position is the stage position times the weight of phase 1. Based on the optimal motion table position and Doppler frequency shift, estimate Ye Yun: △ too I degree. Alas.卞 Linked speed
I (3 . 3 )在搜索窗的第二時段,用I A s s搜索模 隹 可能發生兩種情形: 、^木。 3 · 3 - 1當整周模糊集與前面某一時段時段1相同時,估 計器庫2164中的卡爾曼濾波器的數目仍然是1 ,如第六圖 下半部所示。基於模糊集和相位測量時段2,可估計運動 台的位置模糊確定的解及累加性的計算在權庫2 1 6 5中相應I (3. 3) In the second period of the search window, I A s s is used to search the module 两种 Two situations may occur:, ^ ^. 3 · 3-1 When the whole week fuzzy set is the same as period 1 in a certain period, the number of Kalman filters in the estimator bank 2164 is still 1 as shown in the lower half of the sixth figure. Based on the fuzzy set and phase measurement period 2, the solution to the fuzzy determination of the position of the estimated mobile station and the calculation of the accumulativeness are corresponding in the weight library 2 1 6 5
第22頁 576928 五、發明說明(19) 的權即方程3和4,其中D = 1 。時段2的最優的運動台的位置 等於運動台的位置乘以相應的權自然,中這種情形下權值 等於1 。基於最優的運動台位置和多普勒頻移,估計運動 台速度。 3 . 3 - 2當整周模糊集與前面某一時段時段1不同時,當 前模糊集估計器的一個新成員,即估計器庫2 1 6 4中的卡爾 曼濾波器的數目是2,如第六圖上半部所示。基於每一個 模糊集和相同的相位測量時段2,可估計單個運動台位置 模糊確定的解,在權庫2165中每一個相應權的計算基於方 程3和5 ,其中D = 2。換而言之,當新的模糊集被求解時,Page 22 576928 V. The weight of invention description (19) is equations 3 and 4, where D = 1. The optimal position of the stage in period 2 is equal to the position of the stage multiplied by the corresponding weights. In this case, the weight is equal to 1. Based on the optimal mobile station position and Doppler frequency shift, the mobile station speed is estimated. 3.3-2 When the whole week fuzzy set is different from the previous period and period 1, a new member of the current fuzzy set estimator, that is, the number of Kalman filters in the estimator library 2 1 6 4 is 2, such as Shown in the upper half of the sixth figure. Based on each fuzzy set and the same phase measurement period 2, the solution of the fuzzy determination of the position of a single motion station can be estimated. The calculation of each corresponding weight in the weight library 2165 is based on equations 3 and 5, where D = 2. In other words, when a new fuzzy set is solved,
在權庫2 1 6 5中每一個相應的權從頭計算。時段2上,運動 台最優位置等於單個運動台位置乘以相應權的和。基於最 優的運動台位置和多普勒頻移,估計運動台速度。 (3 · 4 )對搜索窗的其餘時段,應用與步驟(3 · 4 )相 同的過程。在搜索窗的最後一個時段,時段N,I ASS搜索 之後,估計器庫2164和權庫2165被完全建立(如第七圖所 示)。 (3 · 5 )先在N + 1時刻接步驟2,相位測量輸入到差分 濾波器,每一個卡爾曼濾波器有它自己的模糊集。基於每 一個模糊集和相位測量,可估計單個運動台位置模糊確定 的解,可累加計算在權庫中每一個相應權的基於方程3和 4。因此,運動台最優位置等於單個運動台位置乘以相應 _ 權的和。基於最優的運動台位置和多普勒頻移,估計運動 台速度。Each corresponding weight in the weight library 2 1 6 5 is calculated from scratch. During period 2, the optimal position of a sports platform is equal to the position of a single sports platform times the sum of corresponding weights. Based on the optimal station position and Doppler frequency shift, the station speed is estimated. (3 · 4) For the rest of the search window, the same process as step (3 · 4) is applied. In the last period of the search window, period N, I ASS search, the estimator library 2164 and the weight library 2165 are completely established (as shown in Figure 7). (3 · 5) First go to step 2 at the time of N + 1 and the phase measurement is input to the differential filter. Each Kalman filter has its own fuzzy set. Based on each fuzzy set and phase measurement, the solution of the fuzzy determination of the position of a single motion station can be estimated, and each corresponding weight in the weight library can be cumulatively calculated based on Equations 3 and 4. Therefore, the optimal position of the stage is equal to the sum of the individual stage positions times the corresponding weights. Based on the optimal mobile station position and Doppler frequency shift, the mobile station speed is estimated.
第23頁 576928 五、發明說明(20) (3 · 6 ) N +1歷元後按照(3 · 5 )描述這個手續確定整 周模糊集’直到滿足一個判據,該判據定義為: ^其中C是一個很大的不確定數,以保證模糊集足夠的 穩減。這一判據滿足之後,估計器庫2 1 6 4和權庫2 1 6 5停止 工作。在確認期間(從搜索窗的第一時段到當估計器庫 2 164和權庫2 165停止工作的時段),估計器庫2164和權庫 2 165識別正確的整周模糊集,並實時估計運動台的位置。 估汁器庫2 1 6 4和權庫2 1 6 5的一重要特點是,權庫中相應於 估計器庫中的正確的整周模糊的權趨近於1 ,而其它的權 趨近於0。也就是說,正確的(選種的)整周模^數是趨 近與1的權所對應的那個整周模糊數。P.23 576928 V. Description of the invention (20) (3 · 6) After N + 1 epoch, determine the whole week fuzzy set according to the procedure described in (3 · 5) until a criterion is met, which is defined as: ^ Among them, C is a large uncertainty number to ensure that the fuzzy set is sufficiently stable to reduce. After this criterion is met, the estimator library 2 1 64 and the weight library 2 1 6 5 stop working. During the confirmation period (from the first period of the search window to when the estimator library 2 164 and weight library 2 165 stop working), the estimator library 2164 and weight library 2 165 identify the correct whole week fuzzy set and estimate the motion in real time The location of the platform. An important feature of the estimator bank 2 1 6 4 and the weight bank 2 1 6 5 is that the weights corresponding to the correct integer ambiguity in the estimator bank approach 1 and the other weights approach 0. That is to say, the correct (selected) whole week modulo number is a fuzzy number that approaches the whole week corresponding to the weight of 1.
I (3 · 7 )整周模糊集確定後,採用最小二成估計移動 站位置和速度。如果出現新的衛星或周跳,算法從新初始 化(步驟(3.7) - (3.7)),如第八圖所示。 ^ 如第一圖和第二圖所示,上述耦合實時GPS/IMU仿真 系統2 0由一 E t h e r n e t網絡控制器2 1 ,G P S / I M U仿真計算機 22 ’ 一 GPS/IMU仿真接口板23,一信號調節器和連接器 24,以及一同步模塊25組成。該〇?3/1乂11仿真計算機22由 進行GPS仿真計算的一GPS仿真模塊22 1和進行IMU仿真計算 的一 IMU仿真模塊2 22組成。〇?3/1頁11接口板23包括一〇?3仿 真輪入/輸出接口231和一 IMU仿真輸入/輸出接口232組After I (3 · 7) the whole week fuzzy set is determined, the least 20% is used to estimate the mobile station position and velocity. If a new satellite or cycle slip occurs, the algorithm is newly initialized (steps (3.7)-(3.7)), as shown in Figure 8. ^ As shown in the first and second figures, the aforementioned coupled real-time GPS / IMU simulation system 20 is composed of an Ethernet network controller 21, a GPS / IMU simulation computer 22 ', a GPS / IMU simulation interface board 23, and a signal The regulator and the connector 24 are composed of a synchronizing module 25. The 3/11/11 simulation computer 22 is composed of a GPS simulation module 22 1 for performing GPS simulation calculations and an IMU simulation module 2 22 for performing IMU simulation calculations. 〇? 3/1 page 11 interface board 23 includes 10 ~ 3 simulation wheel input / output interface 231 and an IMU simulation input / output interface 232 group
Η 第24頁 576928 五、發明說明(21) 成。GPS仿真模塊221接收來自六自由度軌跡產生器1 0的實 時飛行數據,並生成動態GPS測量值,包括偽距,載波相 位’多普勒頻移,以及定位信息,包括位置和速度信息。 這些數據連同星歷表,以及大氣參數被格式化來仿真真實 的GPS測量值。格式化後的數據通過GPS仿真輸入/輸出接 口 231傳送。該接口是一連接到組合GPwINs系統30的一標 準RS2 3 2接口。對於緊耦合GPS / INS組合系統,來自組合 GPS / INS系統30的速度信息由同一接口送給GPS仿真模塊 221。這個反饋速度信息可用於緊耦合GPS/INS組合系統的 GPS接收機跟蹤回路辅助。 IMU仿真模塊222接收來自六自由度執跡產生器10的實 時飛行數據,並產生仿真的IMU測量值。IMU仿真輸入/輸 _ 出接口 2 3 2將I M U仿真測量值轉換成特定的仿真的I M U電信 I號。仿真的GPS測量值與仿真的IMU電信號同時被注入組合 卜GPS / INS系統30,驅使該組合GPS / INS系統工作在進行真實 |飛行狀態。由此,本發明之耦合實時GPS/IMU仿真方法可 丨有效地用於對已裝G P S / I N S導航系統的地面測試,實驗室 |實物動態仿真,以及G N C系統分析與開發。 | G P S仿真模塊2 2 1由一 G P S衛星系統模型和一 g P S接收機Η Page 24 576928 V. Description of the invention (21). The GPS simulation module 221 receives real-time flight data from the six-degree-of-freedom trajectory generator 10 and generates dynamic GPS measurements, including pseudorange, carrier phase 'Doppler frequency shift, and positioning information, including position and velocity information. This data along with the ephemeris and atmospheric parameters are formatted to simulate real GPS measurements. The formatted data is transmitted through the GPS simulation input / output interface 231. This interface is a standard RS2 3 2 interface connected to the combined GPwINs system 30. For the tightly coupled GPS / INS combined system, the speed information from the combined GPS / INS system 30 is sent to the GPS simulation module 221 through the same interface. This feedback speed information can be used to assist the GPS receiver tracking loop of the tightly coupled GPS / INS combined system. The IMU simulation module 222 receives real-time flight data from the six-degree-of-freedom tracking generator 10 and generates simulated IMU measurements. IMU simulation input / output _ output interface 2 3 2 Converts the I M U simulation measurement value into a specific simulated I M U telecommunication I number. Simulated GPS measurements and simulated IMU electrical signals are injected into the combined GPS / INS system 30 at the same time, driving the combined GPS / INS system to work in a real | flight state. Thus, the coupled real-time GPS / IMU simulation method of the present invention can be effectively used for ground testing of installed GPS / INS navigation systems, laboratory | physical dynamic simulation, and analysis and development of GPS systems. G P S simulation module 2 2 1 consists of a G P S satellite system model and a g P S receiver
|模型組成。依據本發明有兩種GPS仿真方法:(1)無gps |信號產生與GPS接收機跟蹤回路仿真的簡化仿真方法;(2 )有GPS信號產生與GPS接收機跟蹤回路仿真的完整仿直方 法0 V 第三圖給出簡化的GPS仿真方法。一六自由度執跡產| Model composition. According to the present invention, there are two GPS simulation methods: (1) simplified simulation method without GPS | signal generation and GPS receiver tracking loop simulation; (2) complete simulation method with GPS signal generation and GPS receiver tracking loop simulation V The third figure shows a simplified GPS simulation method. 16 degrees of freedom
第25頁 576928 五、發明說明(22) 生器10觸發一GPS衛星星座仿真模塊212。GPS衛星星座仿 真模塊2 12從存儲在GPS/IMU仿真計算機22的一星歷表數據 庫211讀取軌道參數,衛星時鐘參數,以及大氣參數。GPS 衛星星座仿真模塊212計算所有GPS衛星的地心地固(ECEF )坐標系中的位置與速度矢量。GPS衛星星座是時間和星 歷表數據的函數。其時間也從六自由度執跡產生器10得 到。Page 25 576928 V. Description of the invention (22) The generator 10 triggers a GPS satellite constellation simulation module 212. The GPS satellite constellation simulation module 2 12 reads orbital parameters, satellite clock parameters, and atmospheric parameters from an ephemeris database 211 stored in the GPS / IMU simulation computer 22. The GPS satellite constellation simulation module 212 calculates the position and velocity vectors in the geocentric geostationary (ECEF) coordinate system of all GPS satellites. GPS satellite constellation is a function of time and ephemeris data. The time is also obtained from the six-degree-of-freedom track generator 10.
如第三圖所示,用戶初始位置模塊2 13由六自由度軌 跡數據和如站位置計算用戶的位置。移動站位置假定為實 時執跡數據,如站仿真六自由度產生器1〇的實時軌跡附近 數據。GPS衛星預測模塊214利用GPS衛星星座仿真模塊2 12 和用戶初始位置模塊2 1 3的信息確定可見的GP S衛星,以及 這些衛星的仰角,方位角和多普勒頻移。GPS誤差模型2 15 I用GPS衛星星座仿真模塊2 12及用戶初始位置模塊213的信 息計算誤差校正項,包括衛星時鐘校正,相對論校正,電 離層延遲,對流層延遲,以及群延遲。 中性大氣(即非電離部分)效應記為對流層折射。中 性大氣相對高達1 5 G Η z頻率的無線電波是非擴散介質,因 此其轉播是與頻率無關的。這樣,不必區分由不同載波L 1 |或L 2 V出的載波相位和碼延遲。As shown in the third figure, the user initial position module 213 calculates the position of the user from the six degrees of freedom orbit data and the position of the station, for example. The position of the mobile station is assumed to be real-time tracking data, such as the data near the real-time trajectory of the station simulation six-degree-of-freedom generator 10. The GPS satellite prediction module 214 uses information from the GPS satellite constellation simulation module 2 12 and the user's initial position module 2 1 3 to determine the visible GPS satellites, as well as the elevation, azimuth, and Doppler frequency shifts of these satellites. The GPS error model 2 15 I calculates error correction terms using information from the GPS satellite constellation simulation module 2 12 and the user initial position module 213, including satellite clock correction, relativistic correction, ionospheric delay, tropospheric delay, and group delay. The effect of the neutral atmosphere (ie, the non-ionizing portion) is recorded as tropospheric refraction. Radio waves with a frequency of up to 15 G Η z in the neutral atmosphere are non-diffusive media, so their retransmission is independent of frequency. In this way, it is not necessary to distinguish the carrier phase and code delay from different carriers L 1 | or L 2 V.
潮濕部分與乾燥部分造成大氣延遲。由於水汽的不確 定’潮濕部分就非常難以建模。幸運的是它僅僅占丨0 %, 9 0%是干延遲。干延遲不僅是沿Gps信號傳播路徑的溫度, 壓力’相對濕度的函數,而且是信號方向的函數,特別是Wet and dry parts cause atmospheric delay. Due to the uncertainty of water vapor, the 'wet part' is very difficult to model. Fortunately, it only accounts for 0%, and 90% is dry delay. Dry delay is not only a function of temperature, pressure ’relative humidity along the Gps signal propagation path, but also a function of the signal direction, especially
第26頁 )/6928 五、發明說明(23) ~ ^ 函 #生的高度角。本發明描述的Marini模型是上述因素的 致^ 0 斜流層延遲與載體頻率無關,它可根據GPS接收機天 數高度以及衛星仰角進行計算。運動體的位置由實時軌跡 據提供。這裡,假設GPS接收機天線與運動體的位置一 ^ ’這樣不會引入誤差,因為位置偏差相對與衛星距離來 "尤可忽略不計。仰角由衛星位置和運動體位置導出。 電離層從地球上空大約5 0公里延伸到1 〇 〇 〇公里的不同 層面’它相對GPS無線電信號是一擴散介質。對於在頂點° 的衛星,下面公式給出了碼偽距的電離層延遲:、 ”’ k iono 40.3Page 26) / 6928 V. Description of the Invention (23) ~ ^ Letter # Health height angle. The Marini model described in the present invention is due to the above factors. The tropospheric delay has nothing to do with the carrier frequency. It can be calculated based on the number of days of the GPS receiver and the elevation of the satellite. The position of the moving body is provided by real-time trajectory data. Here, it is assumed that the position of the GPS receiver antenna and the moving body will not introduce errors because the position deviation is relatively negligible relative to the satellite distance. The elevation angle is derived from the satellite position and the position of the moving body. The ionosphere extends from about 50 kilometers above the earth to different levels of 1000 kilometers, and it ’s a diffusion medium relative to GPS radio signals. For satellites at the apex °, the ionospheric delay of the code pseudorange is given by the following formula: ”’ k iono 40.3
TEC 其中,f代表載波頻率L 1或L 2 ; T E C是總的電子容量 (total election content) 對於載波偽距,電離層延遲的計算式與上式#式― 樣二但相差一負號。對於任意視線,衛星的頂ς』ς二須 考慮進去,即 、 cosz' /2TEC Among them, f represents the carrier frequency L 1 or L 2; T E C is the total electronic content (total election content). For the carrier pseudo range, the calculation formula of the ionospheric delay is the same as the above formula #-the second difference but a negative sign. For any line of sight, the satellites must be considered, that is, cosz '/ 2
Δ,ολο = \——:±TEC 式中 是載波頻率,L 1,L 2Δ, ολο = \ ——: ± TEC where is the carrier frequency, L 1, L 2
第27頁 576928 五、發明說明(24) t TEC沿GPS信號傳播路徑的電子量。 G P S信號通過大氣層,電離層將延遲嗎相位,爾以相 同的幅度超前載波相位。因此對於相位測量,電離層延遲 與前面方程相同,符號相反。 在本發明中,電離層延遲是根據衛星方位角,GPS時 間,運動體的經度和緯度,衛星仰角,以及衛星發送數據 字 αη和Κη=0, 1,2, 3)計算出來。 - 選擇可用性(Selective Avalability, SA)是由美國 國防部(D 0 D)為非授權用戶設置的有意定位精度衰減。當 S A打開時,典型的定位精度是1 〇 〇米。選擇可用性仿真使 用一2 P皆高斯-馬爾可夫(Gauss - Markov)模型,為 RTCA\D0-208 。 · SA的效應被仿真為(丨)一2階Gauss_Markov過程與 (2 ) —隨機常數的和。二階Gauss-Markov過程由下面的 |功率譜密度描述: ! , ί ιϊίώ;) = —:—— m"/(rad/sec) ί ωΛ ^ω0 ! . ! where c" =0.002585/71- ω0 =0.012rai//sec 二階過程的平方根(R M s )值是2 3米,其時間常數為 118米。該隨機常數具有均值為〇,標準偏差為23米的標準 正態分布特徵。Page 27 576928 V. Description of the invention (24) t TEC The electronic quantity along the GPS signal propagation path. The G P S signal passes through the atmosphere, and the ionosphere will delay the phase, leading the carrier phase by the same amplitude. So for phase measurements, the ionospheric delay is the same as the previous equation, with the opposite sign. In the present invention, the ionospheric delay is calculated based on satellite azimuth, GPS time, longitude and latitude of the moving body, satellite elevation, and satellite transmission data words αη and κη = 0, 1, 2, 3). -Selective Avalability (SA) is an intentional positioning accuracy attenuation set by the United States Department of Defense (D 0 D) for unauthorized users. When SA is turned on, the typical positioning accuracy is 1000 meters. The usability simulation was selected using a 2 P Gauss-Markov model, RTCA \ D0-208. · The effect of SA is simulated as (丨) a 2nd-order Gauss_Markov process and (2) —the sum of random constants. The second-order Gauss-Markov process is described by the following | power spectral density:! The square root (RM s) value of the 0.012rai // sec second-order process is 23 meters, and its time constant is 118 meters. This random constant has a standard normal distribution characteristic with a mean value of 0 and a standard deviation of 23 meters.
第28頁 576928 五、發明說明(25) 干擾模犁和效應仿真模塊2 1 8用於仿真干擾對G p s信號 接收的干擾作用。由位置,類型及有效輻射功率定義的干 擾陳列被構造,並輸入到干擾模型和效應仿真模塊2 1 8。 干擾的類型包栝脈衝式,連續波(C W ),以及窄帶寬信 號。根據GPS接收機天線方向圖和干擾信號入射角確定接 收機接收GPS信號的衰減。為了分析干擾陳列的集合效 應,假設干擾信號不相關地加入。該模型為每個發射機/ 接收機對計算干擾相對於信號功率的比率(J / S ) 。J / s比 是干擾類型,干擾輻射功率,發射機與GPS接收機間的距 離’GPS跟蹤頻率,以及接收機天線方向圖的函數。在GPS 接收機3 1中的干擾效應,表現為從數據完全丟失到降低跟 蹤性能與退化測量精度。干擾的位置,類型,和有效輻射 功率由用戶通過交互式操作確定。 原始數據產生模塊2丨7利用來自GPS衛星預測模塊 214,GPS誤差模型215,以及干擾模型與效應仿真模塊2 18 !的信息來為所有可見衛星計算仿真的偽距,載波相位,距 i離變化。偽距數據是根據衛星位置,運動體位置,電離層 延遲,對流層延遲,以及干擾效應算出。衛星時鐘誤差由 I衛星時鐘參數算出。多普勒頻移是根據衛星速度和運動體 的運動計算出。 卡爾曼濾波器2 1 6根據仿真數據計算接收機的位置和 速度。仿真的原始數據,包括偽距、載波相位、距離變 化。數據格式模塊2 1 9根據一定的協議將位置和速度信 息,仿真的原始數據,連同星歷數據格式化。不同廠家生Page 28 576928 V. Description of the invention (25) The interference mold plough and effect simulation module 2 1 8 is used to simulate the interference effect of interference on G p s signal reception. Interference displays defined by location, type, and effective radiated power are constructed and input into the interference model and effect simulation module 2 1 8. The types of interference include pulsed, continuous wave (C W), and narrow bandwidth signals. Determine the attenuation of the GPS signal received by the receiver based on the GPS receiver antenna pattern and the incident angle of the interference signal. In order to analyze the aggregate effect of the interference display, it is assumed that the interference signals are added uncorrelatedly. This model calculates the ratio of interference to signal power (J / S) for each transmitter / receiver pair. The J / s ratio is a function of the type of interference, the interference radiated power, the distance between the transmitter and the GPS receiver, the GPS tracking frequency, and the receiver antenna pattern. The interference effect in the GPS receiver 31 is manifested from the complete loss of data to a reduction in tracking performance and degradation of measurement accuracy. The location, type, and effective radiated power of the interference are determined by the user through interactive operations. The raw data generation module 2 丨 7 uses the information from the GPS satellite prediction module 214, the GPS error model 215, and the interference model and effect simulation module 2 18 to calculate the simulated pseudorange, carrier phase, and distance variation for all visible satellites . Pseudorange data is calculated based on satellite position, moving body position, ionospheric delay, tropospheric delay, and interference effects. The satellite clock error is calculated from the I satellite clock parameter. The Doppler shift is calculated based on the satellite speed and the motion of the moving body. The Kalman filter 2 1 6 calculates the position and velocity of the receiver based on the simulation data. The raw data of the simulation, including pseudorange, carrier phase, and distance changes. The data format module 2 1 9 formats the position and velocity information, the simulated raw data, and the ephemeris data according to a certain protocol. Produced by different manufacturers
第29頁 576928 五、發明說明(26) 產的GPS接收機以不同格式輸出GPS觀測量。數據格式化模 塊219是一必不可少的部分,它用來保證仿真的GPS觀測量 有與用於組合GPS/INS導航系統中的真實GPS接收機31有相 同的格式。 如第四圖,詳細的“3接收機模型用一輸入信號仿真 模塊5 0,和一跟蹤回路和信號處理仿真模塊60來代替第三圖 中的簡化模型中的原始數據產生模塊2 1 7。跟蹤回路和作回 號處理仿真模塊60可精確地仿真GPS接收機31的特徵和& 能。. 如第五圖,輸入信號仿真模塊5 〇在中頻(I F )產生 GPS擴展頻譜信號。輸入信號仿真模塊50包括利用隨機數 方法產生白噪聲的一噪聲產生器51,在中頻產生正弦波作 號的一載波產生器52,用於產生粗捕獲(C/A)碼或輪確° I (P)碼的一碼產生器53,用於來自噪聲產生器51的=噪 I聲與來自載波產生器5 2的正弦波信號相乘的第一乘法器木 i 54,和用於來自碼產生器53的C/A碼或p碼同第一乘法^54 丨輸出相乘的第二乘法器55。輸入信號仿真模塊50的輪出為 | 一調制的中頻信號,它又是跟蹤回路和信號處理仿真模塊 60的輸入。信號處理模塊66驅動一載波DC〇62在跟蹤頻'率 產生一正弦波。該跟蹤頻率靠近中頻,它們之間的偏差叫 做頻率跟蹤誤差。信號處理模塊6 6同時也驅動碼產生器6 5 產生與碼產生器53產生的一樣的c/A碼或P碼。 ° 如第七圖,示於第二圖的IMU仿真模塊2 2 2包括—陀螺 儀測量模型2 2 2 1,一陀螺儀誤差模型2 2 2 2,和一加速^計Page 29 576928 V. Description of the invention (26) The GPS receiver produced by the GPS outputs GPS observations in different formats. The data formatting module 219 is an essential part to ensure that the simulated GPS observations have the same format as the real GPS receiver 31 used in the integrated GPS / INS navigation system. As shown in the fourth figure, the detailed "3 receiver model" uses an input signal simulation module 50 and a tracking loop and signal processing simulation module 60 instead of the original data generation module 2 1 7 in the simplified model in the third figure. The tracking loop and response number processing simulation module 60 can accurately simulate the characteristics and performance of the GPS receiver 31. As shown in the fifth figure, the input signal simulation module 50 generates a GPS spread spectrum signal at an intermediate frequency (IF). Input The signal simulation module 50 includes a noise generator 51 that generates white noise by using a random number method, and a carrier generator 52 that generates a sine wave at an intermediate frequency for generating a coarse acquisition (C / A) code or a round number. I A code generator 53 of the (P) code, a first multiplier Mu i 54 for multiplying the noise I from the noise generator 51 with a sine wave signal from the carrier generator 52, and a code multiplier 54 from the code. The C / A code or p code of the generator 53 is the same as the first multiplication ^ 54. The second multiplier 55 is the output multiplication. The rotation of the input signal simulation module 50 is | a modulated intermediate frequency signal, which is also a tracking loop. And the input of the signal processing simulation module 60. The signal processing module 66 drives Moving a carrier DC062 generates a sine wave at the tracking frequency. The tracking frequency is close to the intermediate frequency, and the deviation between them is called the frequency tracking error. The signal processing module 6 6 also drives the code generator 6 5 to generate and code. The same c / A code or P code generated by the transmitter 53. ° As shown in the seventh figure, the IMU simulation module 2 2 2 shown in the second figure includes a gyroscope measurement model 2 2 2 1 and a gyroscope error model 2 2 2 2, and an acceleration ^ meter
576928 五、發明說明(27) 測量模型2 2 2 3,——加速度計誤差模型2 2 2 4,和一 I MU信號 合成模塊2 225。六自由度執跡產生器1〇產生的六自由度執 跡數據驅動陀螺儀測量模型2 2 2 1和陀螺儀誤差模型2 2 2 2來 仿真真實的陀螺測篁值和誤差。陀螺儀測量值和誤差在一 加法器相加。六自由度執跡數據同時驅動加速度計測量模 型2223和加速度計誤差模型2225來仿真真實加速度計的特 徵和性能,並生成仿真的加速度計測量值和誤差。加速度 計測量值和誤差再由一加法器相加。仿真的陀螺儀和加速 度計觀測量由I M U信號合成模塊2 2 2 5處理以滿足特定的協 議0 如第二圖所示用於IMU仿真的IMU輸入/輸出接口232包 括一模擬信號接口 2 3 2 — 1 (示於第八圖),一串行信號接 _ 口 232 — 2 (示於第九圖),一脈衝信號接口232-3 (示於 第十圖)和一並行數字信號接口232—4 (示於第十一圖 )。這些接口將仿真的I M U測量值轉換為一種可以注入組 合GPS/ I NS導航系統的一種信號形式。產生的信號必須與 被GPS / IMU仿真系統20所代替的真實IMU裝置32所產生的信 號完全一致。因此’ G P S / I M U仿真系統2 0的關鍵技術之一 是電信號的產生及其與安裝好的組合GPS / INS導航系統30 的接口。軟體實現I M U測量值仿真,硬體將仿真的I M U輸出 轉換為電信號並注入安裝好的組合GPS/INS導航系統30。 注入的信號必須與機載GPS/ INS導航系統的電氣性能兼 容,注入方法必須保證對安裝好的組合G P S / I N S導航系統 3 0造成最小的侵入。 576928 五、發明說明(28) 一般來說,真實IMU裝置32的輸出是模擬信號,特別 是對於低性能的I MU更是如此。低性能的I MU往往用來同 GP S接收機組合形成一組合系統。模擬接口 2 3 2〜1是一多 通道DA轉換電路板用於產生IMU模擬信號,它包括—總、線 接 口電路 232 —11 ,一 DMA 接口 232—12,和一中斷接口^32 —13,如第八圖所示。所有的這些接口 232 — 11 ,232 — 12,2 3 2 — 1 3都連接到GPS/IMU仿真計算機22的標準總線。 模擬接口232 —1更包括一先進先出(FIFO)電路232 — 1 4 ’它連接於總線接口電路2 3 2 — 1 1,一多通道d a轉換電 路2 3 2 — 1 5,它連接在先進先出(FIFO )電路23 2 — 1 4和信 5虎調節器和連接器24的一模擬信號調節器和/或隔離5|24 一1之間’一時序電路232—16,它連接在DMA接口232—12 · 和多通道DA轉換電路2 3 2 — 1 5之間。 響 大多數IMU製造商趨向於嵌入一個高性能的微處理機在[Mu |裝置中,做成一所謂的”智能”ΙΜϋ。在這種IMU里,微處理 i機通過一標準的串行或總線接口 ,如,RS—422/485, 丨1 5 5 3總線等,如第九圖所示。串行接口 2 3 2 — 2是一多通道 丨RS—422/485通信控制電路板,用於產生IMU串行信號。該 |串行接口包括一連接於GPS/IMU仿真計算機的標準總線的 總線接口電路2 3 2 — 2 1、連接於總線接口電路2 3 2 一21和 G P S / I M U仿真计算機標準總線之間的中斷接口電路2 3 2 — 2 2、連接於總線接口電路2 3 2 — 2 1和信調節和連接電路板 24的_行信號調節器和連接器24—2的邏輯電路232 — 23、鲁 連接於線接口電路232—21和信號調節器和連接器電路板576928 V. Description of the invention (27) Measurement model 2 2 2 3—accelerometer error model 2 2 2 4 and an I MU signal synthesis module 2 225. The six degree of freedom tracking data generated by the six degree of freedom tracking generator 10 drives the gyro measurement model 2 2 2 1 and the gyro error model 2 2 2 2 to simulate real gyro measurement values and errors. The gyroscope measurement and error are added in an adder. The six-degree-of-freedom tracking data simultaneously drives the accelerometer measurement model 2223 and the accelerometer error model 2225 to simulate the characteristics and performance of a real accelerometer and generate simulated accelerometer measurements and errors. The accelerometer measurement and error are added by an adder. The simulated gyroscope and accelerometer measurements are processed by the IMU signal synthesis module 2 2 2 5 to meet specific protocols. 0 As shown in the second figure, the IMU input / output interface 232 for IMU simulation includes an analog signal interface 2 3 2 — 1 (shown in Figure 8), a serial signal interface _ 232 — 2 (shown in Figure 9), a pulse signal interface 232-3 (shown in Figure 10) and a parallel digital signal interface 232 — 4 (shown in Figure 11). These interfaces convert simulated I M U measurements into a signal form that can be injected into a combined GPS / I NS navigation system. The generated signal must be exactly the same as the signal generated by the real IMU device 32 replaced by the GPS / IMU simulation system 20. Therefore, one of the key technologies of the GPS / IMU simulation system 20 is the generation of electrical signals and its interface with the installed combined GPS / INS navigation system 30. The software implements the simulation of the I M U measurement value, and the hardware converts the simulated I M U output into an electrical signal and injects it into the installed integrated GPS / INS navigation system 30. The injected signal must be compatible with the electrical performance of the on-board GPS / INS navigation system, and the injection method must ensure minimal intrusion into the installed combined GPS / INS navigation system 30. 576928 V. Description of the invention (28) Generally, the output of a real IMU device 32 is an analog signal, especially for a low-performance I MU. Low-performance I MUs are often used in combination with GPS receivers to form a combined system. The analog interface 2 3 2 ~ 1 is a multi-channel DA conversion circuit board for generating IMU analog signals. It includes—the main line interface circuit 232-11, a DMA interface 232-12, and an interrupt interface ^ 32-13. As shown in the eighth figure. All of these interfaces 232 — 11, 232 — 12, 2, 3 2 — 1 3 are connected to the standard bus of the GPS / IMU simulation computer 22. The analog interface 232 — 1 also includes a first-in-first-out (FIFO) circuit 232 — 1 4 'It is connected to the bus interface circuit 2 3 2 — 1 1, a multi-channel da conversion circuit 2 3 2 — 1 5 and it is connected to the advanced First-out (FIFO) circuit 23 2-1 4 and an analog signal conditioner of the Tiger 5 regulator and connector 24 and / or isolation 5 | 24-1 'a timing circuit 232-16, which is connected to the DMA interface 232—12 · and multi-channel DA conversion circuit 2 3 2 — 1 5. Response Most IMU manufacturers tend to embed a high-performance microprocessor in a [Mu | device, making it a so-called "smart" IMMU. In this kind of IMU, the microprocessor i passes through a standard serial or bus interface, such as RS-422 / 485, 1 5 5 3 bus, etc., as shown in the ninth figure. The serial interface 2 3 2 — 2 is a multi-channel 丨 RS-422 / 485 communication control circuit board for generating IMU serial signals. The serial interface includes a bus interface circuit 2 3 2 — 2 1 connected to a standard bus of a GPS / IMU simulation computer, and connected between the bus interface circuit 2 3 2 — 21 and a standard bus of a GPS / IMU simulation computer. Interrupt interface circuit 2 3 2 — 2 2. Connected to the bus interface circuit 2 3 2 — 2 1 Hexin adjusts and connects the _line signal conditioner of the circuit board 24 and the logic circuit 232 — 23 of the connector 24 — Lu connects to Line interface circuit 232-21 and signal conditioner and connector circuit board
第32頁 576928 五、發明說明(29) 2二串二信號調節器和連接器24 -2之間的RS _ 48 5接口電 大多數南性能陀螺儀和加速度計提供的是脈衝輸出, RLG和FOG本質上是數字傳感器,許多高性能的機電陀螺儀 和加速度計都有一個脈衝調制的力反饋再平衡回路。同 時’脈衝輸出與模擬信號輪出相比有許多優點。如第十圖 所不’脈衝信號接口232—3是一多通道數控頻率產生電路 板’用來產生IMU脈衝輸出信號,它包括連接於GPS/IMu仿 真計异機2 2的一總線接口電路2 3 2 — 3 1、連接於總線接口Page 32 576928 V. Description of the invention (29) 2 RS_48 5 interface between the two-string two-signal conditioner and connector 24-2 Most South-performance gyroscopes and accelerometers provide pulse output, RLG and FOG is essentially a digital sensor. Many high-performance electromechanical gyroscopes and accelerometers have a pulse-modulated force feedback rebalance circuit. At the same time, the 'pulse output' has many advantages over analog signal rotation. As shown in the tenth figure, the "pulse signal interface 232-3 is a multi-channel numerically controlled frequency generating circuit board" for generating IMU pulse output signals, and it includes a bus interface circuit 2 connected to the GPS / IMu simulation differentiator 2 2 3 2 — 3 1. Connect to the bus interface
電路2 3 2 - 3 1和GPS/IMU仿真計算機22的標準總線之間的一 t斷接口232—32、連接於總線接口232-31的一多通道數 字頻率轉換電路2 3 2 — 3 3、連接於多通道數字頻率轉換電 路2 32—33和信號調節器和連接器電路板2 4的一脈衝信號 調節器和連接器2 4 — 3之間的加減脈衝隔離電路2 3 2 — 3 3。Circuit 2 3 2-3 1 is a t-break interface 232-32 between the standard bus of the GPS / IMU simulation computer 22 and a multi-channel digital frequency conversion circuit connected to the bus interface 232-31 2 3 2 — 3 3. A pulse signal conditioner connected between the multi-channel digital frequency conversion circuit 2 32-33 and the signal conditioner and connector circuit board 2 4 and the addition and subtraction pulse isolation circuit 2 3 2-3 3.
一些IMU内部嵌入了邏輯電路和微處理機,可以輸出 並行數字信號,甚至可以實現一標準並行總線。這類I M U 能向組合GPS/ I NS計算機的並行接口或導航系統的主板總 線發送信號。如第十一圖所示,並行數字信號接口 232 — 4 包括第一套中斷接口232 —41a和總線接口電路232 —42a、 第二套中斷接口232 - 41b和總線接口電路2 32 — 42b。其 中,第一套中斷接口 232 —41a和總線接口電路23 2 —42a互 相連接,並分別與G P S / I M U仿真計算機2 2的標準總線相連; 第二套中斷接口232 — 41b和總線接口電路232 —42b互相連 接,並分別與G P S / I N S導航計算機3 3的標準總線相連;第Some IMUs have built-in logic circuits and microprocessors that can output parallel digital signals and even implement a standard parallel bus. This type of I M U can send signals to the parallel interface of a combined GPS / I NS computer or the motherboard bus of a navigation system. As shown in the eleventh figure, the parallel digital signal interface 232-4 includes a first set of interrupt interfaces 232-41a and a bus interface circuit 232-42a, a second set of interrupt interfaces 232-41b and a bus interface circuit 2 32-42b. Among them, the first set of interrupt interfaces 232 — 41a and the bus interface circuit 23 2 — 42a are connected to each other, and are connected to the standard bus of the GPS / IMU simulation computer 22; 42b are connected to each other and to the standard bus of the GPS / INS navigation computer 33 respectively;
第33頁 576928 五、發明說明(30) 一套總線接口電路2 3 2 — 42 a與第二套總線接口電路2 3 2 — 4 2 b相連。 根據I M U輸出信號的要求,設計了不同類型的信號產 生電路,以便產生特定仿真任務所要求的特定的類型信 號。這些信號產生電路被設計成一系列可選的模塊。信號 模塊設計是基於模塊化的G P S / I M U仿真計算機2 2的結構設 計。根據被仿真的實際I M U產品,選定一種特定類型的信 號產生電路,以便產生要求饋入GPS/INS導航系統計算機 3 3的電子信號。 如第二圖所示,Ethernet網絡控制器21用於接收來自 六自由度執跡產生器10的實時載體飛行執跡數據。六自由 度軌跡產生器10和實時IMU仿真系統20也可根據應用要 求,通過標準串行通信口如RS - 422/ 4 85相連。 如第八圖至十一圖所示,信號調節器和連接器24用於 將信號產生器產生的信號轉換為要求的電氣標準,並形成 一個適當的連接插頭,以便可將信號饋入裝在載體上的 | GNC系統的GPS/INS導航計算機33,即,組合GPS/INS導航 系統30。信號調節器和連接器板24根據用戶使用的特定 I M U設計。這是因為即使兩個I M U有相同的輸出信號類型, 但通常有不同的信號範圍、刻度系數、電壓、電流和不同 的插接頭布局。信號調節器和連接器板24通常包括一個放 大器、缓衝器、耦合器、和一些邏輯電路,並為特定的機 載系統形成一個適當的接插頭,以便直接替換實際的 IMU °Page 33 576928 V. Description of the invention (30) One set of bus interface circuits 2 3 2 — 42 a is connected to the second set of bus interface circuits 2 3 2 — 4 2 b. According to the requirements of the I M U output signal, different types of signal generation circuits are designed to produce the specific types of signals required for specific simulation tasks. These signal generating circuits are designed as a series of optional modules. The design of the signal module is based on the structure of a modular GPS / IMU simulation computer 22. According to the actual I M U product being simulated, a specific type of signal generating circuit is selected in order to generate an electronic signal which is required to be fed into the GPS / INS navigation system computer 3 3. As shown in the second figure, the Ethernet network controller 21 is configured to receive real-time carrier flight track data from the six-degree-of-freedom track track generator 10. The six-degree-of-freedom trajectory generator 10 and the real-time IMU simulation system 20 can also be connected through a standard serial communication port such as RS-422 / 485 according to the application requirements. As shown in Figures 8-11, the signal conditioner and connector 24 is used to convert the signal generated by the signal generator to the required electrical standard and form an appropriate connection plug so that the signal can be fed into the The GPS / INS navigation computer 33 of the GNC system on the carrier, that is, the combined GPS / INS navigation system 30. The signal conditioner and connector board 24 is designed according to the specific I M U used by the user. This is because even though two I M Us have the same output signal type, they usually have different signal ranges, scale factors, voltages, currents, and different plug layouts. The signal conditioner and connector board 24 usually includes an amplifier, buffer, coupler, and some logic circuits, and forms a suitable plug for a specific on-board system to directly replace the actual IMU °
第34頁 576928 五.、發明說明(31) 偶合實時IMU和GPS仿真是非常複雜的。原因在於 GPS/INS系統中的實際IMU是一自足的裝置。在載體不運動 時,GPS/INS系統中的GPS接收機無法產生動態測量。IMU 可以自身產生慣性測量而不需要從外部接收任何信號。當 載體處於定常狀態時,實際IMU裝置32和GPS接收機31的輸 出是常數,因此,在動態測試組合GPS/INS系統30時,裝 在載體上的實際IMU裝置32和GPS接收機31必須從系統中分 離開,並用本發明的偶合實時GPS/IMU仿真系統20所代 替’這一替代將對已安裝的航空電子系統造成侵入,也就 是組合GPS/INS系統30造成 侵入。Page 34 576928 V. Description of the invention (31) Coupling real-time IMU and GPS simulation is very complicated. The reason is that the actual IMU in the GPS / INS system is a self-contained device. When the carrier is not moving, the GPS receiver in the GPS / INS system cannot produce dynamic measurements. The IMU can generate inertial measurements by itself without receiving any signals from the outside. When the carrier is in a steady state, the outputs of the actual IMU device 32 and the GPS receiver 31 are constant. Therefore, when the combined GPS / INS system 30 is dynamically tested, the actual IMU device 32 and GPS receiver 31 mounted on the carrier must be from The system is separated and replaced by the coupled real-time GPS / IMU simulation system 20 of the present invention. This substitution will cause intrusion to the installed avionics system, that is, the combined GPS / INS system 30 will cause intrusion.
另外,目前對IMU信號和接口還沒有界面標準。有不 同廠家生產的許多類型的陀螺儀和加速度計,並有各種信 號類型及接口要求。因此,偶合實時GPS/ INS仿真系統2〇 的核心技術之一是電子信號的產生及它與已裝組合 GPS / INS系統30之間的接口。仿真的imu測量值可由IMU仿 真模塊根據實時六自由度執跡數據,傳感器模型和誤差模 塊通過軟件計算得到。被仿真的丨MU輸出將通過硬件轉換 成電信號並被注入到已裝的組合GPS/INS系統30。所輸入 的信號必須與機載組合GPS/ INS系統30兼客。輸入方法必 須使Ϊ十組合G P S / I N S系統3 0的侵入最小。耦合實時G P S / I N S 仿真糸統2 0是解決所有這些問題的實際可行的裝置。In addition, there are currently no interface standards for IMU signals and interfaces. There are many types of gyroscopes and accelerometers produced by different manufacturers, and there are various signal types and interface requirements. Therefore, one of the core technologies of the coupled real-time GPS / INS simulation system 20 is the generation of electronic signals and the interface between it and the installed combined GPS / INS system 30. The simulated imu measurement values can be calculated by the IMU simulation module based on real-time six-degree-of-freedom tracking data, and the sensor model and error module calculated by software. The simulated MU output will be converted into electrical signals by hardware and injected into the installed integrated GPS / INS system 30. The input signal must be combined with the onboard GPS / INS system 30. The input method must minimize the invasion of the G10 / GPS / INS system 30. Coupling real-time G P S / I N S simulation system 20 is a practical and feasible device to solve all these problems.
值得一提的是偶合實時GPS/INS仿真系統20軟件可以 被改進以產生更有效的用戶接口。甚至可以包括一個六自 由度執跡產生器。It is worth mentioning that the coupled real-time GPS / INS simulation system 20 software can be improved to produce a more efficient user interface. It can even include a six degree of freedom track generator.
第35頁 576928 五、發明說明(32) '^-- $第一圖所示,一個數據採集和性能評估系統4 〇被獨 連接在六自由度執跡產生器10和組合GPS/INS系統30 之間,這樣,一個如執跡可以被送到數據採集和性能評估 系統4 0 ’並與機載系統解進行比較。這種執跡比較用於以 下兩種,形’一是驗證偶合實時Gps/IMlJ仿真系統2〇的精 度;一是用於測試和評估組合GPS/INS系統3〇的性能。 如第四圖所示,本發明在兩種模式下工作。當工作在 模式1 ,開關2 1 6 1送出仿真GPS測量數據到卡爾曼濾波器 21 63。在模式1只有移動站GPS接收機在“^仿真模塊中仿 真。當工作在模式2,開關2161送出仿真移動站和如站gps 測量數據到差分濾波器2 1 6 2。在模式2差分G P S接收機在 GPS仿真模塊中仿真來測試更高精度的差分GPS\ IMU導航系 統。 在對組合G P S / I N S系統3 0進行性能評估時,六自由度 執跡產生器1 0所輸出的數據是理想的如量。用被仿真的實 時GPS和IMU信號,組合GPS/INS系統30可以求解運動軌 跡。組合系統的性能可通過比較理想軌跡和系統所解出的 執跡而得出。通常,六自由度軌跡數據可產生以下飛行數 據: (1 )時間標簽。 (2 )地理位置,包括高度、經緯度、海拔高度。 (3 )在地球中心慣性系(E C I Z )中的位置矢量。 (4 )在地球中心慣性系(E C I Z )中的速度矢量。 (5 )在地球中心慣性系(EC I Z )中的的加速度速度矢Page 35 576928 V. Description of the invention (32) '^-$ As shown in the first figure, a data acquisition and performance evaluation system 4 is independently connected to the six-degree-of-freedom track generator 10 and the combined GPS / INS system 30 In this way, a track record can be sent to the data acquisition and performance evaluation system 40 'and compared with the airborne system solution. This tracking comparison is used for the following two types. One is to verify the accuracy of the coupled real-time GPS / IMlJ simulation system 20; the other is to test and evaluate the performance of the combined GPS / INS system 30. As shown in the fourth figure, the present invention works in two modes. When working in mode 1, switch 2 1 6 1 sends simulated GPS measurement data to Kalman filter 21 63. In mode 1, only the GPS receiver of the mobile station is simulated in the simulation module. When working in mode 2, the switch 2161 sends the gps measurement data of the simulated mobile station and the station to the differential filter 2 1 6 2. In mode 2 the differential GPS receiver The machine is simulated in the GPS simulation module to test a higher-precision differential GPS \ IMU navigation system. When evaluating the performance of the combined GPS / INS system 30, the data output by the six-degree-of-freedom track generator 10 is ideal. For example, using the simulated real-time GPS and IMU signals, the combined GPS / INS system 30 can solve the motion trajectory. The performance of the combined system can be obtained by comparing the ideal trajectory and the solution trajectory solved by the system. Generally, six degrees of freedom The trajectory data can generate the following flight data: (1) Time label. (2) Geographical location, including altitude, latitude, longitude, and altitude. (3) Position vector in the Earth Center Inertial System (ECIZ). (4) At the Earth Center Velocity vector in the inertial frame (ECIZ) (5) Acceleration speed vector in the earth center inertial frame (EC IZ)
第36頁 576928 五、發明說明(33) 量。 (6 )從地球中心慣性系(EC I Z )中到體軸系(B )的旋 轉矩陣。 (7 )在地球中心慣性系(EC I Z )中觀測並在體軸系(B )投影的角速度矢量。 (8 )在地球中心慣性系(EC I Z )中觀測並在體軸系(B )投影的角加速度矢量。 組合GPS / INS系統30可產生輸出: (1 )地理位置,包括高度、經緯度、海拔高度。 (2 )在N系中的速度矢量。 (3)在N系中的加速度矢量。 (4 )從N系到體軸系之間的旋轉矩陣。 (5 )在N系中觀測並在體軸系中投影的角加速度矢量。 應該注意,經過一些坐標系變換,大多數執跡變量可直接 比較。通常,我們可以得到位置精度,高度精度,航向角 精度,姿態精度,以及速度精度以評估系統性能。Page 36 576928 V. Description of the invention (33) Quantity. (6) The rotation matrix from the Earth's central inertial system (EC I Z) to the body axis system (B). (7) The angular velocity vector observed in the Earth's central inertial system (EC I Z) and projected on the body axis system (B). (8) The angular acceleration vector observed in the Earth's central inertial system (EC I Z) and projected on the body axis system (B). The combined GPS / INS system 30 can produce outputs: (1) geographical location, including altitude, latitude and longitude, and altitude. (2) Velocity vector in N system. (3) The acceleration vector in the N system. (4) Rotation matrix from N system to body axis system. (5) The angular acceleration vector observed in the N system and projected in the body axis system. It should be noted that after some coordinate system transformations, most tracking variables can be directly compared. Generally, we can get position accuracy, altitude accuracy, heading angle accuracy, attitude accuracy, and speed accuracy to evaluate the system performance.
第37頁 576928 圖式簡單說明 圖示說明: 第一圖:是方塊流程圖,顯示一耦合實時仿真系統, 依據本發明的優選實現方案該系統配有一六自由度執跡產 生器,一數據採集和性能評估系統,和一個全輕合 GPS / INS組合定位與導航系統。 第二圖:是方塊流程圖,顯示依據本發明的優選實現 方案的耦合實時仿真系統。 第三圖:是依據本發明的優選實現方案的一簡化模型 的G P S實時仿真模塊方塊流程圖。 第四圖··是依據本發明的優選實現方案的具有跟蹤回 路模型的GPS實時仿真模塊方塊流程圖。 第五圖:依據本發明的優選實現方案實時全球定位系 統估計方法(OTF )的立即模糊度搜索法方塊流程圖。 第六圖:依據本發明的優選實現方案實時全球定位系 統估計方法估計庫和權庫的形成過程方塊流程圖。 第七圖:依據本發明的優選實現方案實時全球定位系 統估計方法的差分慮波器方塊流程圖。 第八圖:依據本發明的優選實現方案實時全球定位系 統估計方法的差分G P S方塊流程圖。 第九圖:依據本發明的優選實現方案實時全球定位系 統估計方法的跟蹤回路模型方塊流程圖。 第十圖··依據本發明的優選實現方案實時全球定位系丨H 統估計方法的信號產生方塊流程圖。 第十一圖:是依據本發明的優選實現方案第四圖中的Page 576928 Brief description of the diagram: The first diagram: a block diagram showing a coupled real-time simulation system. According to the preferred implementation of the present invention, the system is equipped with a six-degree-of-freedom track generator, a data Acquisition and performance evaluation system, and an all-light GPS / INS combined positioning and navigation system. Figure 2: Block diagram showing a coupled real-time simulation system according to a preferred implementation of the present invention. FIG. 3 is a block diagram of a GPS real-time simulation module according to a simplified model of the preferred implementation scheme of the present invention. Figure 4 is a block flow diagram of a GPS real-time simulation module with a tracking circuit model according to a preferred implementation of the present invention. FIG. 5 is a block diagram of an instant ambiguity search method of a real-time global positioning system estimation method (OTF) according to a preferred implementation scheme of the present invention. FIG. 6 is a block flow chart of the formation process of the estimation library and the weight library of the real-time global positioning system estimation method according to the preferred implementation scheme of the present invention. FIG. 7 is a block diagram of a differential wave filter for a real-time global positioning system estimation method according to a preferred implementation scheme of the present invention. FIG. 8 is a flowchart of a differential GPS block of a real-time global positioning system estimation method according to a preferred implementation scheme of the present invention. Figure 9: Block diagram of a tracking loop model of a real-time global positioning system estimation method according to a preferred implementation of the present invention. Tenth Fig. · The block diagram of the signal generation method of the real-time global positioning system H-system estimation method according to the preferred implementation scheme of the present invention. The eleventh figure is the fourth figure according to the preferred implementation scheme of the present invention.
第38頁 576928 圖式簡單說明 全球定位系統的跟蹤回路仿真方塊流程圖。 第十二圖:是依據本發明的優選實現方案的一慣性傳 感器I M U仿真模塊的方塊流程圖。 第十三圖··是依據本發明的優選實現方案的一模擬信 號接口的方塊流程圖。 第十四圖:是依據本發明的優選實現方案的一串行信 號接口的方塊流程圖。 第十五圖:是依據本發明的優選實現方案的一脈衝信 號接口的方塊流程圖。 第十六圖:是依據本發明的優選實現方案的一並行數 字信號接口的方塊流程圖。Page 38 576928 Schematic description block diagram of GPS tracking loop simulation. Figure 12: A block flow diagram of an inertial sensor I M U simulation module according to a preferred implementation of the present invention. Figure 13 is a block flow diagram of an analog signal interface according to a preferred implementation of the present invention. Figure 14 is a block flow diagram of a serial signal interface according to a preferred implementation of the present invention. Fig. 15 is a block diagram of a pulse signal interface according to a preferred implementation of the present invention. Figure 16 is a block flow diagram of a parallel digital signal interface according to a preferred implementation of the present invention.
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/611,568 US6735523B1 (en) | 2000-06-19 | 2000-07-07 | Process and system of coupled real-time GPS/IMU simulation with differential GPS |
Publications (1)
Publication Number | Publication Date |
---|---|
TW576928B true TW576928B (en) | 2004-02-21 |
Family
ID=32851206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90116794A TW576928B (en) | 2000-07-07 | 2001-07-06 | Process and system of coupled real-time GPS/IMU simulation with differential GPS |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW576928B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI509223B (en) * | 2014-07-29 | 2015-11-21 | Univ Chung Hua | Combined navigation system |
US9297659B2 (en) | 2014-07-29 | 2016-03-29 | Chung Hua University | Composite navigation system |
TWI632390B (en) * | 2017-12-13 | 2018-08-11 | 財團法人車輛研究測試中心 | Adaptive weighting positioning method |
CN112882069A (en) * | 2021-01-12 | 2021-06-01 | 湖南矩阵电子科技有限公司 | Single-flow multi-index test evaluation method and system for satellite navigation terminal |
-
2001
- 2001-07-06 TW TW90116794A patent/TW576928B/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI509223B (en) * | 2014-07-29 | 2015-11-21 | Univ Chung Hua | Combined navigation system |
US9297659B2 (en) | 2014-07-29 | 2016-03-29 | Chung Hua University | Composite navigation system |
TWI632390B (en) * | 2017-12-13 | 2018-08-11 | 財團法人車輛研究測試中心 | Adaptive weighting positioning method |
CN112882069A (en) * | 2021-01-12 | 2021-06-01 | 湖南矩阵电子科技有限公司 | Single-flow multi-index test evaluation method and system for satellite navigation terminal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6735523B1 (en) | Process and system of coupled real-time GPS/IMU simulation with differential GPS | |
TW455692B (en) | Coupled real time emulation method for positioning and location system | |
US7868820B2 (en) | Ionosphere modeling apparatus and methods | |
Schumacher | Integration of a gps aided strapdown inertial navigation system for land vehicles | |
EP1901088A1 (en) | Integrated mobile-terminal navigation | |
JP3499742B2 (en) | Satellite navigation device and satellite navigation | |
Cassel et al. | Impact of improved oscillator stability on LEO-based satellite navigation | |
EP0986733A1 (en) | Robust accurate gps time reference for space application | |
CN117388881B (en) | Method and system for tracing satellite-borne atomic clock of low-orbit satellite to UTC (k) | |
US5757317A (en) | Relative navigation utilizing inertial measurement units and a plurality of satellite transmitters | |
Chiaradia et al. | Onboard and Real‐Time Artificial Satellite Orbit Determination Using GPS | |
Othieno et al. | Combined Doppler and time free positioning technique for low dynamics receivers | |
TW576928B (en) | Process and system of coupled real-time GPS/IMU simulation with differential GPS | |
Wägli | Trajectory determination and analysis in sports by satellite and inertial navigation | |
Williamson et al. | Carrier phase differential GPS/INS positioning for formation flight | |
Liduan et al. | Enhanced GPS measurements simulation for space-oriented navigation system design | |
Olsen et al. | Long-baseline differential GPS based relative navigation for spacecraft with crosslink ranging measurements | |
CN111538045A (en) | On-orbit precision pre-evaluation method for satellite-borne navigation receiver | |
Biswas et al. | Space-borne GNSS based orbit determination using a SPIRENT GNSS simulator | |
Alsaif | New algorithms to solve the positioning problem of outdoor localization using constrained and unconstrained optimization techniques | |
Hansen | Incorporation of Carrier Phase Global Positioning System Measurements into the Navigation Reference System for Improved Performance | |
Cook et al. | Characterizing the impact of precision time and range measurements on network position solutions | |
Weiss et al. | GPS Receivers and Relativity | |
Prasad et al. | Design of a Real‐Time GPS Satellite Signal Simulator on the MULTISHARC Parallel Processing System | |
Handley et al. | Hardware-in-the-loop testing of the NATO standardisation agreement 4572 interface using high precision navigation equations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |