TW571126B - Beam expansion - Google Patents

Beam expansion Download PDF

Info

Publication number
TW571126B
TW571126B TW90125074A TW90125074A TW571126B TW 571126 B TW571126 B TW 571126B TW 90125074 A TW90125074 A TW 90125074A TW 90125074 A TW90125074 A TW 90125074A TW 571126 B TW571126 B TW 571126B
Authority
TW
Taiwan
Prior art keywords
light
patent application
area
scope
radiation
Prior art date
Application number
TW90125074A
Other languages
Chinese (zh)
Inventor
Niall Anthony Gallen
Timothy York
Adrian Robert Leigh Travis
Original Assignee
Screen Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Technology Ltd filed Critical Screen Technology Ltd
Application granted granted Critical
Publication of TW571126B publication Critical patent/TW571126B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • G02B6/0048Tapered light guide, e.g. wedge-shaped light guide with stepwise taper

Abstract

A large-area collimated beam of radiation is formed by re-directing a beam of small projected area off one or two orthogonal surfaces which are faceted or have a non-specular reflection angle and which spatially distribute the incoming beam across their surface area. Preferably there are two expansion stages, one for each dimension. If the input beam is linearly polarised then the output beam will also be polarised. The polarisation will undergo a rotation through 90 degrees. The beam expander is compact and suitable for use in liquid-crystal flat-panel displays.

Description

五、發明説明(1 ) 發明背景 發明領域 本發明關於一種產生具有很截面積之光束的方法。 這種光束對顯示器而言是特別有用的,且本發明係結合 如專利申請案第WO95/27920號文件(Crossland等人) 中所揭示之PL-LCD (光致發光型液晶顯示器)加以陳述 的。這裡係將UV紫外光輸入到一種將影像資訊加到 光上的液晶調制器上,然後令經調制的UV光打在RGB 磷光質面板上而產生彩色的顯示。 爲了使這種系統發揮最好的效用,正常情況下爲近-可見光之紫外光或藍光的入射光應該是多少呈平行 的。這會給出更好的光電性能並使串音問題最小化(亦 即來自給定調制器畫素的光會打在錯誤的磷光質上)。 吾人能夠藉由各磷色質本身的近朗伯特徵依與該輸入 紫外光無關的方式確保最終影像具有寬廣視野角度,亦 即正常情況下顯示器中所必要的。 相關技術說明 吾人能夠藉由以各透鏡的對應陣列使來自各點光源 之二維陣列的光準直化而產生大面積準直光線。吾人 也許能夠藉由遮蔽一擴散光源而產生各點光源,不過, 這種配置是不充分的且惹出校準的問題。 發明之扼要說明 本發明係有關一種在可能具有孔徑也可能不具有孔 徑下使具有良好定義的準直光束產生二維擴展的方 571126 五、發明説明(2 ) 法。該準直光束係由一種在透過本發明的裝置送出之 前已準直化之點光源形成的。這種主意是和很小二維 光束在極大面積上之反射作用有關的,該面積的定位方 式是使該反射表面的平面中垂線會與該光束之投影面 積的中垂線夾某一角度。這會造成具有均勻(或幾乎均 勻的)強度之準直波前平面的較小面積撞擊到較大的面 積且產生橫遍該較大面積的分布。 根據本發明,提供了一種用來從窄小的光束製造出準 直光之大面積光束的準直光產生器,係包括兩個具有傾 斜反射表面的平臺,其中第一平臺會依使之沿著某—— 維尺度擴展的方式反射該光束,而第二平臺會依使之沿 著正交一維尺度擴展的方式反射該光束,因此產生一種 呈二維擴展的光束。 各傾斜表面可能是例如一系列呈鋸齒形式而基本上 會使光束分離成一組經平行反射之子光束的有角度鏡 面刻面。每一個這種子光束本身則會受到該第二平臺 的分離作用而產生由各子光束構成的二維陣列。可替 代地,各傾斜反射器可能含有具繞射光柵以便使光束產 生必要之重新引導其方向的表面。 吾人能夠方便地藉由雷射產生輸入光束,但是也能夠 使用任何小面積光源。吾人能夠將該光源用於液晶顯 示器,但是吾人也能夠將之用在一般照明或是其他種類 的調制器上。 圖式簡述 -4- 571126 五、發明説明(3 ) 爲了對本發明的各實施例獲致更好的了解,現在吾人 將參照各附圖藉由實例說明本發明。 第1圖係用以顯示透過某一角度對面積進行投影的 示意圖。 第2圖係用以顯示入射輻射因爲含刻面的反射表面 而重·新引導其方向的示意圖。 第3圖係用以顯不一種能夠使準直光束維持偏極性 並產生旋轉之擴展作用的示意圖。 第4圖係用以顯不一種根據本發明依互爲正交的方 式放置之二光束擴展用錐體的示意圖。 第5圖係用以顯示一種用來改變各反射性刻面節距 之效應的示意圖。 第6圖係用以顯不一種類似第5圖但是具有另一種 反射性刻面之配置的示意圖。 第7圖係用以顯示一種具有正交錐體之光束擴展裝 置的示意圖。 第8圖係用以顯示一種替代實施例的示意圖。 第9圖係用以顯示一種使用本發明的光束擴展裝置 對顯示裝置進行照明的示意圖。 第1 0圖係用以顯示一種用來擴展準直化二維光源之 方法的市意圖。 第1 1圖係用以顯示一種將本發明應用在PL-LCD上 之實施例的示意圖。 第1 2圖係用以顯示一種在第1 〇圖的實施例上使用 571126 五、發明説明(4 ) 複數面板之變型的示意圖。 第1 3圖係用以顯不一種利用本發明使光束依扇形方 式擴展開之實施例的示意圖。 第1 4圖係用以顯示一種將本發明應用在反射性顯示 器上之實施例的示意圖。 較佳實施例的詳細說明 對具有定義爲L〇乘之矩形投影面積人1而通量爲 Φ 〇的準直水束(第1圖中的1)而言,若使之入射到其尺 度爲L〇乘L2且面積A2大於Ai之水平矩形(第1圖中 的2)上,則會有相同的通量Φ。落在較大的面積上。投 影面積A,內的通量係等於面積A2內的通量。也就是 說, Φ 0 ( A 1 ) = Φ 0 ( A 2 ) (i) 亦即 EiAi = E2A2 (ii) 其中: φ cUd指的是投影面積a!內的通量: φ c(A2)指的是抵達面積A2表面的通量; E!指的是跨越面積Al之準直光束的幅射率·, e2指的是跨越面積A2之準直光束的幅射率。 若將第1圖中由3定義出的角度標示爲符號第1 圖),則由下列幾何給出^與A2之間的關係: A 1 = A2c〇 s Θ (iii) 而給出 EcEzeos 0 (lV) 這是某一種形式的朗伯定律。依這種方式能夠藉由 571126 五、發明説明(5 ) 使0變大且因此使e2變小使呈很小矩形的準直光束撞 擊到大很多的面積上。根據該狀況的對稱性以及反射 定律,若輻射撞擊到平坦的反射性表面上,則該反射光 束的投影面積會回到原點Ai上。吾人應該注意的是兩 個矩形中某一尺度是相等的(L〇),因此在該表面上只會 沿著另一尺度面擴展(Li/L2)。若該表面是有刻面的,則 吾人能夠在A2的不同位置上使原始的小光束投影面積 沿著Li區域性地重新引導其方向。依這種方式,吾人能 夠藉由在已於較大面積上被分離或散佈之後的反射作 用重新引導具有很小尺度且具有良好定義之準直強力 光束的方向。令此實例中的各刻面爲一系列具有等間 隔而相對於A2夾有角度的平行面,如第2圖所示。由 方程式(ii),該平坦反射性表面上每單位面積的輻射率 爲: E2 = (E2A2)/Al (V) 對N個刻面而言,受到每一個刻面反射的輻射率比例 爲EWN。第2圖中係將該入射輻射7上某一部分的截 面圖示顯示爲將要以角度β入射到包括一系統平行面 的表面上。各平行刻面都會延伸到紙面之內。 吾人應該注意的是該輸入光束的投影面積並非完全 準直化,且吾人能夠將相同的論點單獨地應用在每一個 照射角上。 各刻面皆係沿著如第1圖所示之L!的某一片段而形 成的。在該面積的此一片段內,該進入光束△ a (7)係跨 -7- 571126 五、發明説明(6 ) 越 兩 個 單 獨 刻 面 9 而 散 佈的且會因爲來自有角度表面 的 反 射 作 用 而 重 新 引 導 其方向,使得吾人能夠將△ a分 離 爲 空 間 上 分 開 的 兩 個 準直光束。 第 3 圖 顯 示 的 是 一 種 具有單一刻面的錐體(或是有角 度 的 表 面 ),其- 1: 1 系, 以 泪? 討於該準直光束投影面積之中 垂 線 的 角 度 Θ 受 到 照 射 。這種準直光束可能包括具有 線 性 偏 極 性 的 輻 射 ,如第3圖所示。當該光束的每一部 分 入 射 到 該 含 刻 面 的 表 面上時,會根據各相鄰刻面的間 隔 而 重 新 引 導 其 方 向 且 在空間上被間隔開。L2是以入 射 輻 射 相 對 於 該 含 刻 面 表面的入射角加以描繪的。 第 4 圖 顯 示 的 是 一 種 在區段及平面上的完整策略。 令 該 原 始 準 直 光 束 的 投 影面積1以相對於該表面中垂 線 的 某 — 角 度 入 射 到 含 刻面表面1 1上,且因爲各刻面 而 重 WJi 引 導 其 方 向 以 便 產生一系列的反射光束8。然 後 使 這 種 已 重 新 引 導 其 方向的輻射入射到具有刻面的 第 二 有 角 度 表 面 1: 1此表面會再次重新引導該輻射的方 向 而 變 成 一 系 列 的 反 射 光束13。 各 刻 面 可 能 具 有 尺 度 ,其訂定方式是使得較之它們有 意 施 行 照 射 的 最 小 面 積 ,用來接收該入射輻射的各面積 以 及 這 類 面 積 之 間 的 距 離都是很小的。例如,在由畫素 構 成 之 二 維 陣 列 的 眧 明 上,吾人能夠將如第5圖所示之 反 射 性 刻 面 節 距 製 作 成 比該陣列內的任何元件還小。 第 5 圖 中 受 到 該 進 入 光 束13(以14標示其中的h並以 15 標 :示 :其 中 的 P2)E 猜E 泪的面積代表的是該含刻面表面 -8-5. Description of the invention (1) Background of the invention Field of the invention The present invention relates to a method for generating a light beam with a very large cross-sectional area. This light beam is particularly useful for displays, and the invention is described in conjunction with a PL-LCD (Photoluminescence Liquid Crystal Display) as disclosed in Patent Application No. WO95 / 27920 (Crossland et al.) . Here, UV light is input to a liquid crystal modulator that adds image information to the light, and then the modulated UV light is hit on the RGB phosphorescent panel to produce a color display. In order for this system to work best, normally the incident light of near-visible UV or blue light should be approximately parallel. This will give better optoelectronic performance and minimize crosstalk issues (ie, light from a given modulator pixel will hit the wrong phosphorescence). We can ensure that the final image has a wide viewing angle by means of the near-Lambertian characteristics of each phosphor in a way that is independent of the input UV light, which is necessary in a display under normal circumstances. Description of Related Technology We can produce a large area of collimated light by collimating light from a two-dimensional array of point light sources with a corresponding array of lenses. We may be able to generate point light sources by shielding a diffuse light source, but this configuration is inadequate and raises calibration issues. Brief Description of the Invention The present invention relates to a method for generating a two-dimensional expansion of a well-defined collimated light beam with or without an aperture. 571126 V. Description of the Invention (2) Method. The collimated beam is formed by a point light source that has been collimated before being transmitted through the device of the present invention. This idea is related to the reflection of a very small two-dimensional beam over a very large area. The area is positioned in such a way that the vertical line in the plane of the reflective surface will be at an angle with the vertical line in the projection area of the beam. This will cause a smaller area of the collimated wavefront plane with uniform (or almost uniform) intensity to hit a larger area and produce a distribution across the larger area. According to the present invention, a collimated light generator for producing a large-area beam of collimated light from a narrow beam is provided. The collimator includes two platforms with inclined reflective surfaces. The beam is reflected in a certain-dimensional expansion manner, and the second platform reflects the beam in such a manner that it expands along an orthogonal one-dimensional scale, thus generating a two-dimensionally expanded beam. Each inclined surface may be, for example, a series of angled mirror facets in the form of a sawtooth which substantially separates the beam into a set of parallel-reflected sub-beams. Each such sub-beam itself is subjected to the separation of the second platform to generate a two-dimensional array composed of each sub-beam. Alternatively, each tilted reflector may contain a surface with a diffractive grating to cause the light beam to redirect its direction as necessary. We can easily generate the input beam by laser, but we can also use any small area light source. I can use this light source for liquid crystal displays, but I can also use it for general lighting or other types of modulators. Brief description of the drawings -4- 571126 V. Description of the invention (3) In order to gain a better understanding of the embodiments of the present invention, we will now explain the present invention by examples with reference to the drawings. Figure 1 is a schematic diagram showing the projection of the area through a certain angle. Figure 2 is a schematic diagram showing the direction of the incident radiation re-oriented due to the reflective surface with facets. Fig. 3 is a schematic diagram showing an expansion effect capable of maintaining the polarization of the collimated beam and generating a rotation. Fig. 4 is a schematic view showing a cone for expanding two beams placed in a mutually orthogonal manner according to the present invention. Figure 5 is a schematic diagram showing the effect of changing the pitch of reflective facets. Fig. 6 is a schematic diagram showing a configuration similar to Fig. 5 but having another reflective facet. Fig. 7 is a schematic diagram showing a beam expanding device having an orthogonal cone. Figure 8 is a schematic diagram showing an alternative embodiment. Fig. 9 is a schematic view showing a display device illuminated by using the beam expanding device of the present invention. Figure 10 shows the market intention of a method for extending the collimated two-dimensional light source. FIG. 11 is a schematic diagram showing an embodiment in which the present invention is applied to a PL-LCD. Fig. 12 is a schematic diagram showing the use of 571126 in the embodiment of Fig. 10 V. Description of the invention (4) A modification of a plurality of panels. Figure 13 is a schematic diagram showing an embodiment in which the light beam is expanded in a fan-shaped manner by using the present invention. Figure 14 is a schematic diagram showing an embodiment in which the present invention is applied to a reflective display. Detailed description of the preferred embodiment For a collimated water beam (1 in Fig. 1) having a rectangular projection area of person 1 defined by L0 and a flux of Φ 0, if it is made incident on its scale as L0 multiplied by L2 and the area A2 is larger than Ai on the horizontal rectangle (2 in Figure 1), there will be the same flux Φ. Landed on a larger area. The flux in the projection area A is equal to the flux in the area A2. That is, Φ 0 (A 1) = Φ 0 (A 2) (i), that is, EiAi = E2A2 (ii) where: φ cUd refers to the flux in the projection area a !: φ c (A2) refers to Is the flux that reaches the surface of area A2; E! Refers to the radiance of the collimated beam across the area Al; e2 refers to the radiance of the collimated beam across the area A2. If the angle defined by 3 in Figure 1 is marked as the symbol Figure 1), the relationship between ^ and A2 is given by the following geometry: A 1 = A2c〇s Θ (iii) and EcEzeos 0 ( lV) This is a form of Lambert's law. In this way, 571126 V. Invention description (5) Make 0 larger and therefore e2 smaller so that a collimated beam with a small rectangle hits a much larger area. According to the symmetry of this situation and the law of reflection, if radiation hits a flat reflective surface, the projection area of the reflected light beam will return to the origin Ai. I should note that one of the two rectangles is equal in scale (L0), so on this surface it will only expand along the other scale plane (Li / L2). If the surface is faceted, we can redirect the original small beam projection area along Li regionally at different positions of A2. In this way, we can redirect the direction of a collimated powerful beam with a small scale and a well-defined, by the effect of reflection after it has been separated or spread over a large area. Let each facet in this example be a series of parallel faces with equal intervals and an angle with respect to A2, as shown in Figure 2. From equation (ii), the emissivity per unit area on the flat reflective surface is: E2 = (E2A2) / Al (V) For N facets, the proportion of emissivity reflected by each facet is EWN . In Fig. 2, a sectional view of a portion of the incident radiation 7 is shown as being incident on a surface including a system parallel plane at an angle β. Each parallel facet extends into the paper surface. I should note that the projection area of the input beam is not completely collimated, and I can apply the same argument to each irradiation angle individually. Each facet is formed along a segment of L! As shown in Figure 1. In this segment of the area, the incoming light beam Δ a (7) is across -7- 571126. 5. Description of the invention (6) is spread over two separate facets 9 and will be reflected by reflections from angled surfaces. Redirecting its direction allows us to separate △ a into two collimated beams that are spatially separated. Figure 3 shows a cone with a single facet (or an angled surface), which is a 1: 1 system, and the angle Θ of the vertical line in the projected area of the collimated beam is irradiated with tears. This collimated beam may include radiation with linear polarization, as shown in Figure 3. When each part of the beam is incident on the facet-containing surface, its direction is redirected and spaced apart according to the interval of adjacent facets. L2 is depicted as the incident angle of the incident radiation relative to the faceted surface. Figure 4 shows a complete strategy in sections and planes. Let the projected area 1 of the original collimated beam be incident on the faceted surface 1 1 at an angle relative to the vertical line in the surface, and be weighted by each facet WJi to guide its direction so as to generate a series of reflected beams 8 . This redirected radiation is then made incident on a second angular surface with a facet 1: 1: this surface will redirect the direction of the radiation again and become a series of reflected light beams13. Each facet may have a scale, and it is set in such a way that the area used to receive the incident radiation and the distance between such areas are very small compared to the minimum area where they intentionally perform the irradiation. For example, on a two-dimensional array composed of pixels, we can make the reflective facet pitch as shown in Figure 5 smaller than any element in the array. Received the incoming light beam 13 (marked with h in 14 and marked with 15 in Figure 5: Indication: P2 of it) E Guess E The area of tears represents the faceted surface -8-

571126 五、發明説明(7 ) 之總面積的不同部分並給出兩種可能結構的實例。不 過,吾人能夠藉由等角三角形(第5圖中的陰影面積)顯 示出,對半節距(P2)而言,其面積是較大節距(Pd面積的 一半,這意指從兩個節距爲P2之刻面反射出來的以及從 一個節距爲P!之刻面反射出來的是相同的輻射量。從 第5圖可以看出,兩個三角形都含有一個等於90°- 0的 角度以及另一個由該反射性刻面之斜率定義出的角度 (這對兩種節距而言是相等的)。由於某一三角形的某 一邊長是另一三角形上對應邊長的兩倍(Pi = 2P2),吾人 能夠證明對較大節距的例子而言受到照明的面積是較 小節距例子之受照明面積的兩倍。 第6圖顯示的是一種用於兩種節距而具有不同形式 的刻面。此例中,各反射性刻面都是如第5圖所示,但 是現在係將位於有用來接數部分入射輻射之各刻面面 積之間的結構製作成平行於該入射光束方向1 3。這類 部位係顯示成粗黑線1 6。這是另一種形式的刻面。角 度P可能落在從0到0的範圍內,如同先前其中0是入 射光束相對於由刻面陣列構成之平面中垂線的夾角。 如第6圖所描繪之形式的優點是整個表面皆呈反射性 的,於是該結構能夠爲抵達表面1 7之輻射扮演著含刻 面的平面鏡角色。這能夠在反射式顯示器內用來傳回 環境光線,而允許在低光位準的環境中對相同的顯示器 進行照明。可替代地,吾人能夠使位於反射性刻面之間 的各面積製作成吸收性的以減少透過某一裝置而產生 -9, 571126 五、發明説明(8 ) 的散射作用或是環境反射作用。 第7圖顯示的是兩種正交錐體,這類錐體能夠藉由來 自會重新引導該輻射方向之結構的反射作用,首先利用 某一表面1 8然後再利用另一表面1 9沿著除了能夠利 用平面表面8達成之方向外的方向,擴展矩形投影面積 1的輸入射束。這類表面可能也可能不是呈正交的。 吾人能夠依先前的形式(第3到6圖)、依反射式繞射 光柵(閃耀或非閃耀)的形式、或是依全像反射或布雷 格光柵的形式對各表面進行刻面。吾人應該注意的是 如圖所示的符號20係用以顯示輻射之線性偏極化輸入 光束的旋轉方向。 第8圖顯示的是如何套入一系列的裝置以致能夠由 數個小面積光源達成一種高強度的大面積光源。各初 階擴展裝置會一起產生進入大型二階擴展裝置的連續 輸入,這是藉由使用有角度的平面而不是一種錐體而達 成的,因此能夠使用於某一初階擴展裝置的光源位於相 鄰的有角度平面底下。圖中小型光源22會對應地照射 錐體2 1而位於第二錐體底下。這允許吾人利用一系列 的小型光源產生一種複合式的無縫大面積輸出。此例 中,該錐體係藉由使某一表面產生角度而製成的。 第9圖顯示的是一種用來對諸如各顯示裝置中所用 裝置之類快門陣列23進行照明的裝置。將小型的準直 光源散佈在含畫素光閥的整個輸入平面上。吾人能夠 使其準直化作用稍微鬆驰以獲致均勻的照度。對PL- -10- 571126 五、發明説明(9 ) LCD而言這並非同等重要。因爲抵達該磷體的輻射會 造成擴散式放射作用。特別是在各PL-LCD裝置中,吾 人能夠擴展來自紫外線發射器的光並透過該液晶層重 新引導其方向。這麼做可能有改良液晶之光學回應的 有利效應。允許穿透該液晶層的輻射將會撞擊在該屏 幕磷光質之上並激發它們以進行朗伯放射。於習知液 晶裝置中,必要時吾人能夠在屏幕上使用漫射器以增加 與高度準直化有關的窄小觀測角。 第1 0圖顯示的是畫素型的輸入端如何在輸出端上產 生呈軸向倒置的畫素型影像,光源之平面1內的每一個 面積係映射到輸出平面1 a內的相關位置內。若觀測者 的觀測方式是使圖中箭號會朝向觀測者抵達其眼睛,則 該影像會呈左右相反。依這種方式,給定適當(亦即呈 軸向逆轉)的輸入,則吾人能夠利用本發明擴展其影 像。依這種方式,吾人能夠由例如反射性快速位元平面 裝置擴展出完整的影像。這在圖中係描繪成擴展表爲 四個方形區塊的四個畫素,以便在透過該擴展系統受到 反射亦即在表面1 8和1 9上受到反射之後產生在空間 上間隔開的各畫素25a。 本實施例係包括一種會形成能夠藉由應用正交錐體 光束擴展總成加以擴展之微型準直化影像的小面積調 制機制。利用該調制機制形成的影像可能是一種利用 彩色畫素影像的彩色影像或是可能落在或不落在紫外 線範圍內的單色光影像。在該裝置的輸出平面上配置 -11- 571126 五、發明説明(10 ) 有漫射屏幕或磷光質屏幕。這種配置係簡略地顯示於 第1 0圖中。輸入到光束擴展系統1之內的影像係含有 將要顯示的資訊。請注意輸入平面2 5內的各調制位置 會因爲一種簡單的含刻面反射結構而在輸出平面25a 內變成在空間上間隔開的。若該輸出平面內之節距亦 即這類畫素位置之間的距離最小於所需要的節距則這 是可接受的。 於所有前述說明中,係將輸出輻射描繪成離開該反射 結構而平行於該表面中垂線的。雖則這使吾人更容易 製造出輕巧的平坦光源,然而並非必要的情況。所選擇 的反射角是一種和該反射性/方向重新引導性表面之設 計以及入射光束之輸入角有關的函數。在某些情況下, 該輸出可能需要接受準直化但是係落在相對於最後反 射性表面中垂線的某一角度上。同時吾人應該提到的 是可以使用第一或第二反射性表面1 9,以便利用跨越該 表面在不同位置上各不相同的折射性、繞射性、或全 像性結構產生不同的空間及角度分布。當作實例,能夠 使來自第一方向重新引導性表面抵達第7圖中第二表 面上的準直光束聚集到由各光點構成的陣列。 該輸入光可能是未完全準直化的。也就是說該輸入 光可能有角度分布。來自該第一和第二面的輸出會反 映出這種分布:在含刻面之反射器的例子裡藉由含有角 度分布且在繞射或全像性光柵的例子裡藉由含有角度 分布及方向重新引導效率。吾人可能使或者可能不使 -12- 571126 五、發明説明(11 ) 該輸入輻射完全遮蓋住各反射性表面。 吾人能夠結合會收集並整理該輸出的光學元件使用 一種裝置,其中該裝置係包含兩個作空間配置的有角度 表面,使得從其上兩個表面的方向重新引導作用會造成 該入射光束投影面積以及其二維空間分布的擴展,且包 Q兩組有角度的表面,其中每一組有角度表面都會擴展 該入射光束投影面積以及其一維空間分布。當作實例, 撞擊在透鏡陣列上的準直化輸出會產生一種由聚焦光 點構成的陣列。 所有前述說明都是和對諸如液晶之類以快門陣列爲 基礎之顯示裝置進行照明有關的。特別是,使用窄小激 態波長範圍的PL-LCD裝置可能使用經擴展而遮蓋住 全部或部分顯示面積的單一點光源。吾人能夠依這裡 所描述的方式擴展多個點光源且並排放置各點光源以 形成一種大面積光源。現在吾人將要說明各種用於該 擴展裝置的特定應用。 於第1 1圖的實施例中係將描述如上的裝置用在PL-LCD結構中。使用該裝置以擴展會放射落在3 5 0奈米 到4 1 0奈米區域內之輻射的強力紫外線光源。這種經 擴展光束係定位在如第1 1圖所示之調制器Μ後方。 對經擴展光源的調制作用係發生在光穿透一種層膜組 合時,其中該層膜組合係包括偏極性層26、三夾於兩透 明層2 7之間的液晶層2 8、當作用於經調制輻射之分 析器的第二偏光器29、以及有已透射之經調制輻射信 -13- 571126 五、發明説明(12 ) 號入射其上的畫素型磷光質或是非畫素層30。藉由調 制來自光源而穿透偏光器2 6之輻射的偏極化方向,根 據磷光質層上所需要影像產生空間變化的透射率可能 是單色或是多色的。可以同時使用一個以上的正交錐 體光束擴展裝置以遮蔽該調制設計的輸入平面。例如, 吾人能夠使用第8圖中所說明的方法以便藉由利用一 個以上紫外線光源的經擴展輸出照射該平面上各分開 面積以便對整個顯示器輸入平面進行照明。 第1 2圖顯示的是如第1 〇圖所示之裝置的一種變形, 其中使用的是一種能夠使該輻射產生區域性發散的光 學表面。吾人能夠將兩個這類經擴展的影像並排放置, 因此形成一種鋪排式複合影像。圖中係依先前的方式 標示出一種具有由很小輸入2 5構成之經擴展影像2 5 a 的擴展單元。在其後方顯示的是一種會產生影像2 5 a ’ 的第二擴展單位。光源平面1係放置在每一個擴展單 位上能夠經由該錐體後方之空間而接近的輸入角落 上。該兩個經擴展影像係藉由對應到兩個單位沿此接 觸之線段上的接縫26而間隔開的。依這種方式,吾人 能夠使用一系列的經擴展影像以形成較大的影像。 該裝置的另一實施例是一種用於從單一輸入產生一 輸出陣列的元件。吾人係將這種產生作業顯示於第1 3 圖中,其中輻射27的輸入光束採行的一種具有良好定 義的準直化平面波前,且如前所述係透過表面1 8和1 9 上的光束擴展元件受到反射/方向重新引導。該輸出係 -14- 571126 五、發明説明(13 ) 描繪成一種大面積平面28,其中係允許該輸出穿透圖中 具有正常功能且會將來自該光束擴展裝置的輸出聚焦 成平面3 0中點陣列的光學層29。這種系統的有用實 例是產生具有均等之波長及能量的輸入陣列,使之具有 跨越某一平面的空間分布以便輸入到扇出/扇入光學切 換機構之內。 可替代地,若該光學元件2 9是一種由光學調制器構 成的陣列則該原始光束2 7的強度可能會有極大數目的 灰階光點加在其上。依這種方式,吾人能夠將資訊書寫 到光束上,然後該光束會進行另一種資訊處理。 另一實施例係將該光束擴展裝置用在反射性顯示器 的照明上。各反射性顯示器係定義成那些使用來自其 周遭的照明以在屏幕上產生資訊的顯示器。一種能夠 達成這種目的的方法,係藉由諸如落在跨越該顯示面積 之必要位置上的微型面鏡裝置之類機械機制選擇性地 反射光線因此產生該影像。這種元件可以稱作是動態 元件。也可能存在有靜態版本,例如手錶的錶面。吾人 可以將手錶的前方錶面設計成會在沒有選擇且與跨越 該顯示面積之任何定位作業無關下於特殊角度或方向 上產生選擇性地的反射。 這些能夠藉由各種方式達成,且所有這類元件係簡略 地表爲第14圖中的未定義元件31。 以上兩種說明中,都需要一種反射性表面以便重新引 導該環境光的方向使之朝向觀測者。不過在低環境光 -15- 571126 五、發明説明(14 ) 戕中,在可見度上其反差會大幅削減及/或其顯示器亮 度會減低以致無法自其上取得任何有用的資訊。在這 類狀況中,極爲有用的是使該顯示器具有照明機制。有 關這一點,使用的型式是已於第6圖中解釋過的含刻面 結構,如同第1 4圖所表出的。位於各刻面之間用於光 束擴展處理的面積也是反射性的。環境光會穿透該調 制器層3 1且如同於正常的反射性顯示器內一般會受到 反射。不過在遇到低環境光時,吾人能夠使用光源1 3 a 以便藉由使其強度跨越觀測面積1 3 b而分布對顯示器 進行照明。 符號說明 " 1 ...準直光束 la...輸出平面 2.. .水平矩形 3 ...入射角 7.. .入射輻射 8.. .經反射光束 9…平行刻面 1 1…含刻面的表面 12···第二有角度表面 1 3…經反射光束 1 3 a ...光源 13b…觀測面積 1 4,1 5…大面積表面 -16- 571126 五、發明説明(15 ) 1 7 ...表面 1 8…第一表面 19.. .第二表面 2 0 ...線性偏極化方向 21…錐體 22.. .小型光源 23.. .快門陣列 25.. .輸入平面 2 5 a…畫素 2 6…偏極性層 27…透明層 2 8...液晶層 2 9…第二偏光器 30…非畫素層 3 1 ...調制器層 -17-571126 V. Description of the invention (7) The different parts of the total area and examples of two possible structures are given. However, we can show by the equiangular triangle (the shaded area in Fig. 5) that for half pitch (P2), the area is larger (half the Pd area, which means from two The same amount of radiation is reflected from a facet with a pitch of P2 and from a facet with a pitch of P !. From Figure 5, it can be seen that both triangles contain a value equal to 90 °-0 Angle and another angle defined by the slope of the reflective facet (this is equal for both pitches). Since the length of one side of a triangle is twice the length of the corresponding side of the other triangle ( Pi = 2P2), I can prove that for the larger pitch example, the illuminated area is twice the illuminated area for the smaller pitch example. Figure 6 shows a model with two pitches. Different forms of facets. In this example, each reflective facet is shown in Figure 5, but now the structure located between the facet areas that are used to receive a portion of the incident radiation is made parallel to the Incident beam direction 1 3. Such parts are shown as thick black lines 1 6 This is another form of facet. The angle P may fall in the range from 0 to 0, as previously where 0 is the angle of the incident beam with respect to the perpendicular in the plane formed by the facet array. As depicted in Figure 6 The advantage of the form is that the entire surface is reflective, so the structure can play the role of a faceted mirror for the radiation reaching the surface 17. This can be used to reflect ambient light in reflective displays, while allowing low The same display is illuminated in a light-level environment. Alternatively, we can make the areas between reflective facets absorbent to reduce the transmission through a device. -9, 571126 V. Invention Explain the scattering effect of (8) or the environmental reflection effect. Figure 7 shows two orthogonal cones. Such cones can use the reflection effect from a structure that will redirect the radiation direction. Surface 18 then uses another surface 19 to extend the input beam of rectangular projection area 1 in a direction other than the direction that can be achieved with planar surface 8. Such surfaces may also It is not orthogonal. We can use the previous form (Figures 3 to 6), the form of reflection diffraction grating (blaze or non-blaze), or the form of phantom reflection or Bragg grating. The surface is faceted. I should note that the symbol 20 shown in the figure is used to show the rotation direction of the linearly polarized input beam of radiation. Figure 8 shows how to fit a series of devices so that A small-area light source achieves a high-intensity large-area light source. Each primary expansion device together produces a continuous input into a large second-order expansion device, which is achieved by using an angled plane instead of a cone, so it can The light source used in a preliminary expansion device is located under the adjacent angled plane. In the figure, the small light source 22 will illuminate the cone 21 correspondingly and be located under the second cone. This allows us to use a series of small light sources to produce a composite seamless large-area output. In this example, the cone system is made by making an angle on a surface. Fig. 9 shows a device for illuminating the shutter array 23 such as a device used in each display device. Spread small collimated light sources over the entire input plane containing the pixel light valve. I was able to loosen the collimation a little to get uniform illumination. For PL--10- 571126 V. Description of the Invention (9) LCD is not equally important. This is because the radiation reaching the phosphor can cause diffuse radiation. Especially in each PL-LCD device, we can expand the light from the ultraviolet emitter and redirect its direction through the liquid crystal layer. This may have the beneficial effect of improving the optical response of the liquid crystal. The radiation allowed to penetrate the liquid crystal layer will impinge on the screen phosphorescence and excite them for Lambertian emission. In the conventional liquid crystal device, when necessary, we can use a diffuser on the screen to increase the narrow observation angle related to high collimation. Figure 10 shows how the pixel-type input generates an axially inverted pixel-type image on the output. Each area in plane 1 of the light source is mapped to the relevant position in output plane 1 a. . If the observer is observing in such a way that the arrow in the figure will reach the observer's eyes, the image will be left and right. In this way, given the appropriate (i.e., axially reversed) inputs, we can use the invention to expand its image. In this way, we can expand a complete image from, for example, a reflective fast bit plane device. This is depicted in the figure as the four pixels of the expansion table as four square blocks, so that after being reflected through the expansion system, that is, reflections on the surfaces 18 and 19, each spaced apart is generated. Pixel 25a. This embodiment includes a small-area modulation mechanism that forms a micro-collimated image that can be expanded by applying an orthogonal cone beam expansion assembly. The image formed by this modulation mechanism may be a color image using color pixel images or a monochrome light image that may or may not fall within the ultraviolet range. Configuration on the output plane of the device -11- 571126 V. Description of the invention (10) There is a diffuse screen or a phosphor screen. This arrangement is shown briefly in Figure 10. The image input into the beam expansion system 1 contains information to be displayed. Note that the modulation positions in the input plane 25 will be spatially spaced in the output plane 25a due to a simple faceted reflection structure. This is acceptable if the pitch in the output plane, i.e. the distance between such pixel positions is less than the required pitch. In all of the foregoing descriptions, the output radiation is depicted as exiting the reflective structure and parallel to the perpendicular to the surface. Although this makes it easier for us to make lightweight flat light sources, it is not necessary. The selected reflection angle is a function of the design of the reflective / directional redirecting surface and the input angle of the incident beam. In some cases, the output may need to be collimated but is at an angle relative to the perpendicular in the final reflective surface. At the same time, I should mention that the first or second reflective surface 19 can be used in order to use different refractive, diffractive, or holographic structures at different locations across the surface to generate different spaces and Angular distribution. As an example, a collimated beam from the redirecting surface in the first direction to the second surface in Fig. 7 can be collected into an array of light spots. This input light may not be fully collimated. In other words, the input light may have an angular distribution. The output from the first and second faces will reflect this distribution: in the case of reflectors with facets by including the angular distribution and in the case of diffraction or holographic gratings by including the angular distribution and Direction redirection efficiency. I may or may not use -12- 571126 V. Description of the invention (11) The input radiation completely covers all reflective surfaces. We can use a device with optical elements that collect and organize the output, where the device contains two angled surfaces that are spatially configured so that the redirection of the direction from the two upper surfaces will cause the incident beam projection area And the expansion of its two-dimensional spatial distribution, and including two groups of angled surfaces of Q, each of which has an angled surface will expand the incident beam projection area and its one-dimensional spatial distribution. As an example, the collimated output impinging on the lens array produces an array of focused spots. All of the foregoing descriptions are related to the illumination of a shutter array-based display device such as a liquid crystal. In particular, a PL-LCD device using a narrow excitation wavelength range may use a single point light source that is expanded to cover all or part of the display area. We can expand multiple point light sources in the manner described here and place each point light source side by side to form a large area light source. Now I will explain various specific applications for this expansion device. In the embodiment of FIG. 11, the device described above is used in a PL-LCD structure. Use this device to extend a powerful ultraviolet light source that emits radiation falling in the region of 350 nm to 4100 nm. This expanded beam is positioned behind the modulator M as shown in FIG. The modulation effect on the extended light source occurs when light penetrates a layer and film combination, wherein the layer and film combination includes a polarized layer 26, three liquid crystal layers 28 sandwiched between two transparent layers 27, and is used as The second polarizer 29 of the modulated radiation analyzer, and the modulated radiation signal 13-571126 which has transmitted the pixel type phosphorescence or non-pixel layer 30 onto which the invention description (12) number is incident. By adjusting the polarization direction of the radiation from the light source that penetrates the polarizer 26, the transmittance that produces spatial variation according to the desired image on the phosphorescent layer may be monochromatic or polychromatic. More than one orthogonal cone beam expansion device can be used simultaneously to mask the input plane of the modulation design. For example, we can use the method illustrated in Figure 8 to illuminate separate areas on the plane by using the expanded output of more than one ultraviolet light source to illuminate the entire display input plane. Fig. 12 shows a modification of the device shown in Fig. 10, in which an optical surface is used which can cause the radiation to diffuse locally. We were able to place two such expanded images side by side, thus forming a paving compound image. In the figure, an expansion unit with an extended image 2 5 a composed of very small inputs 25 is marked in the previous manner. Shown behind it is a second extended unit that produces the image 2 5 a ′. The light source plane 1 is placed on the input corner of each expansion unit that can be accessed through the space behind the cone. The two expanded images are spaced apart by seams 26 corresponding to the two units along the line of contact. In this way, we can use a series of expanded images to form larger images. Another embodiment of the device is an element for generating an output array from a single input. We show this generation in Figure 13 where a well-defined collimated plane wavefront taken by the input beam of radiation 27 is transmitted through the surfaces 18 and 19 as described above. The beam expanding element is redirected / redirected. The output system is -14-571126. 5. The description of the invention (13) is described as a large-area plane 28, which allows the output to penetrate the diagram with normal functions and focus the output from the beam expansion device into plane 30. Optical layer 29 of dot array. A useful example of such a system is to generate an input array with equal wavelengths and energy, with a spatial distribution across a plane for input into a fan-out / fan-in optical switching mechanism. Alternatively, if the optical element 29 is an array formed by an optical modulator, the intensity of the original light beam 27 may have a great number of gray-scale light spots added thereto. In this way, we can write information onto the light beam, and the light beam will then perform another information processing. Another embodiment is to use the beam expanding device for the illumination of a reflective display. Reflective displays are defined as those that use illumination from their surroundings to produce information on the screen. One way to achieve this is to produce the image by selectively reflecting light through a mechanical mechanism such as a miniature mirror device that falls on a necessary position across the display area. Such elements can be referred to as dynamic elements. There may also be static versions, such as the surface of a watch. We can design the front surface of the watch to produce selective reflections at a specific angle or direction without choice and regardless of any positioning operation across the display area. These can be achieved in various ways, and all such components are briefly represented as undefined components 31 in FIG. In both cases, a reflective surface is required to redirect the direction of the ambient light towards the observer. However, in the low ambient light -15- 571126 V. Description of the Invention (14), the contrast in visibility will be greatly reduced and / or the brightness of its display will be reduced so that no useful information can be obtained from it. In such situations, it is extremely useful to provide the display with a lighting mechanism. In this regard, the type used is the faceted structure already explained in Fig. 6 as shown in Fig. 14. The area between the facets for the beam expansion process is also reflective. Ambient light will penetrate the modulator layer 31 and be reflected as in a normal reflective display. However, when encountering low ambient light, we can use the light source 1 3 a to illuminate the display by distributing its intensity across the observation area 1 3 b. Explanation of symbols " 1 ... collimated beam la ... output plane 2... Horizontal rectangle 3 ... incident angle 7... Incident radiation 8... Reflected beam 9 ... parallel facet 1 1 ... Faceted surface 12 ... Second angled surface 1 3 ... Reflected beam 1 3a ... Light source 13b ... Observation area 1 4,1 5 ... Large area surface-16- 571126 V. Description of the invention (15 ) 1 7 ... surface 1 8 ... first surface 19... 2 second surface 20 ... linear polarization direction 21 ... cone 22... Small light source 23.... Shutter array 25... Input plane 2 5 a ... Pixel 2 6 ... Polarity layer 27 ... Transparent layer 2 8 ... Liquid crystal layer 2 9 ... Second polarizer 30 ... Non-pixel layer 3 1 ... Modulator layer-17-

Claims (1)

571126 ·ι_·朋 nil in a, ijji 丨 Mi-i^ST: 六、申請專利範圍 第90125074號「光束擴展裝置及光束擴展方法」專利 案 (9 1年1 2月修正) τ\申請專利範圍: 1. 一種光引導裝置,用來產生適用於顯示裝置之二維的 實質準直化光束,藉反射或重新引導來自光源的輻射 而以一小面積準直化光源的兩個方向進行擴展,其中 該光引導裝置包括兩個光學連續表面或表面組 (1 2,1 4 ),各以一個別之方向擴展來自該光源的輻射 截面。 2. 如申請專利範圍第1項之光引導裝置,其中各表面都 是屬於折射性、繞射性、或全像性的大面積表面 (1 4,1 5 ),係在某一角度下進行各表面的照明其方式 是使光束的投影面積跨越第一表面而散佈且自每一 部分表面重新引導出的輻射則轉而沿著每一個表面 的某一尺度被分割成在空間上間隔開的各光束。 3. 如申請專利範圍第1項之光引導裝置,其中能夠跨越 該小面積光源之面積映射出不同的位置,以致該擴展 輸出是其輸入的放大版本。 4. 如申請專利範圍第1項之光引導裝置,其中各表面皆 係相對於另一表面具有角度的,以致該輸出係沿著兩 個方向散佈而形成一種大面積光束。 5.如申請專利範圍第1項之光引導裝置,其中該第一表 571126 六、申請專利範圍 面會沿著某一尺度擴展光束且該第二表面會沿著另 一尺度擴展光束,且這類尺度係呈相互正交的。 6·如申請專利範圍第1項之光引導裝置,其中被引導到 該裝置之內具線性偏極化通量的光束會維持其偏極 性且其偏極性會在每一次重新引導其方向之後旋轉 90度,而最終輸出光束則係一種大面積偏極化光束 〇 7. 如申請專利範圍第1項之光引導裝置,係用來產生包 括具有相等或幾乎相等通量之較小光束的經空間擴 展光束。 8. 如申請專利範圍第1項之光引導裝置,其中來自該光 源的輸入輻射是單色的。 9. 如申請專利範圍第1項之光引導裝置,係用來產生一 種空間上不變的光束擴展作用。 10. —種光束源,係包含用來產生窄小準直光束的光源以 及如申請專利範圍第1項之光引導裝置且其配置方 式是能夠沿著兩個尺度擴展該光束。 11. 如申請專利範圍第1 〇項之光束源,其中來自該光源 的輻射是相干的。 12. —種液晶顯示器,其使用前述申請專利範圍中第1至 1 1項中的裝置或光束源。 13. —種光學總成,其使用申請專利範圍第1到9項中任 一項之裝置並結合一種單一或複數個光學元件或是 571126 六、申請專利範圍 一種光學元件陣列以便在空間上改變或重新引導或 聚焦該輸出光束。 14· 一種產生光束的方法,其係藉由沿著兩個垂直方向的 擴展作用,將從輕準直化的點光源或是具有很小角度 發散之尺度光源藉由兩個表面的反射或是任何形式 的方向重新引導作用,轉而產生一種大面積準直光束 或是具有很小角度範圍的大面積光束,亦即一種具有 由較小準直光束構成之二維陣列的合成。 15. —種使用申請專利範圍第1到9項中任一項之光引 導裝置得到集中光束的方法,其中係透過該裝置向後 引導輻射,其方式是使呈光學連續的各表面沿著某一 方向爲來自該表面的輻射進行截面收縮。571126 · ι_ · 朋 nil in a, ijji 丨 Mi-i ^ ST: VI. Patent Application No. 90125074 "Beam Expansion Device and Beam Expansion Method" Patent Case (Amended in February 2011) τ \ Scope of Patent Application : 1. A light guiding device for generating a two-dimensional substantially collimated light beam suitable for a display device, which expands in two directions of a small area collimated light source by reflecting or redirecting radiation from the light source, The light guiding device includes two optically continuous surfaces or surface groups (12, 1 4), each of which expands a radiation cross section from the light source in a different direction. 2. For example, the light guiding device of the scope of patent application, wherein each surface is a large-area surface (14, 15) that is refractive, diffractive, or holographic, and is performed at a certain angle. Each surface is illuminated in such a way that the projected area of the beam spreads across the first surface and the radiation redirected from each part of the surface is turned into a spaced apart space along a certain dimension of each surface. beam. 3. For example, the light guiding device of the scope of patent application, which can map different positions across the area of the small area light source, so that the extended output is an enlarged version of its input. 4. For example, the light guiding device of the scope of patent application, wherein each surface is angled relative to the other surface, so that the output is spread in two directions to form a large-area light beam. 5. The light guide device according to item 1 of the scope of patent application, wherein the first table 571126 6. The scope of the patent application will expand the beam along a certain scale and the second surface will expand the beam along another scale, and The scales are orthogonal to each other. 6. The light-guiding device according to item 1 of the scope of patent application, wherein a light beam with linearly polarized flux guided into the device will maintain its polarization and its polarization will rotate after each redirection of its direction 90 degrees, and the final output beam is a large-area polarized beam. 7. The light guiding device, such as the first patent application, is used to generate a warp space including smaller beams with equal or nearly equal flux. Expanded beam. 8. The light-guiding device of item 1 of the patent application, wherein the input radiation from the light source is monochromatic. 9. The light-guiding device, such as the one in the scope of patent application, is used to produce a spatially constant beam expansion effect. 10. A beam source comprising a light source for generating a narrow collimated beam and a light guiding device such as the one in the scope of patent application and configured in such a way that the beam can be expanded along two dimensions. 11. The beam source of item 10 as claimed in the patent application, wherein the radiation from the light source is coherent. 12. A liquid crystal display using a device or a beam source according to items 1 to 11 in the scope of the aforementioned patent application. 13. An optical assembly that uses the device of any one of the claims 1 to 9 in combination with a single or multiple optical elements or 571126 6. The patent applies an optical element array to change in space Or redirect or focus the output beam. 14. · A method of generating light beams, which is based on the effect of expansion along two vertical directions, from point light sources that are collimated from light, or light sources with a small angle of divergence, reflected or reflected by two surfaces, or Any form of directional redirection, in turn, produces a large-area collimated beam or a large-area beam with a small angular range, that is, a composition with a two-dimensional array of smaller collimated beams. 15. —A method for obtaining a concentrated beam using the light guiding device of any of claims 1 to 9 of the scope of patent application, wherein the radiation is guided backward through the device by making optically continuous surfaces along a certain The direction is that the radiation from this surface shrinks in section.
TW90125074A 2000-10-11 2001-10-11 Beam expansion TW571126B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0024945A GB0024945D0 (en) 2000-10-11 2000-10-11 Beam expansion

Publications (1)

Publication Number Publication Date
TW571126B true TW571126B (en) 2004-01-11

Family

ID=9901101

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90125074A TW571126B (en) 2000-10-11 2001-10-11 Beam expansion

Country Status (5)

Country Link
EP (1) EP1327102A2 (en)
AU (1) AU2001294005A1 (en)
GB (1) GB0024945D0 (en)
TW (1) TW571126B (en)
WO (1) WO2002031405A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI425254B (en) * 2004-12-13 2014-02-01 Nokia Corp Method and system for beam expansion in a display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101812299B1 (en) 2010-07-06 2017-12-27 시리얼 테크놀로지즈 에스.에이. Beam divergence and various collimators for holographic or stereoscopic displays
US9857523B2 (en) 2014-11-24 2018-01-02 Electronics And Telecommunications Research Institute Apparatus for controlling light beam path
KR20180072356A (en) 2016-12-21 2018-06-29 삼성전자주식회사 Backlight unit and three-dimensional image display apparatus including the same
CN108153054A (en) * 2018-01-03 2018-06-12 京东方科技集团股份有限公司 Backlight module and display device
US11619825B2 (en) 2019-04-10 2023-04-04 Electronics And Telecommunications Research Institute Method and apparatus for displaying binocular hologram image

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874228A (en) * 1987-03-24 1989-10-17 Minnesota Mining And Manufacturing Company Back-lit display
US5054885A (en) * 1988-10-11 1991-10-08 Minnesota Mining And Manfuacturing Company Light fixture including a partially collimated beam of light and reflective prisms having peaks lying on a curved surface
GB9406742D0 (en) * 1994-04-06 1994-05-25 Crossland William A Thin panel display screen
JPH10260405A (en) * 1997-03-18 1998-09-29 Seiko Epson Corp Lighting device, liquid-crystal display device, and electronic equipment
JP3743990B2 (en) * 1997-04-10 2006-02-08 オムロン株式会社 Surface light source device
JP3379043B2 (en) * 1998-06-29 2003-02-17 ミネベア株式会社 Planar lighting device
US6222971B1 (en) * 1998-07-17 2001-04-24 David Slobodin Small inlet optical panel and a method of making a small inlet optical panel
US6940570B1 (en) * 1998-11-27 2005-09-06 Sharp Kabushiki Kaisha Lighting element for liquid crystal display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI425254B (en) * 2004-12-13 2014-02-01 Nokia Corp Method and system for beam expansion in a display device

Also Published As

Publication number Publication date
WO2002031405A3 (en) 2003-01-16
WO2002031405A2 (en) 2002-04-18
EP1327102A2 (en) 2003-07-16
AU2001294005A1 (en) 2002-04-22
GB0024945D0 (en) 2000-11-29

Similar Documents

Publication Publication Date Title
CN1243577B (en) Illuminating optical system and projection type display
US8690341B2 (en) Image projector and an illuminating unit suitable for use in an image projector
JP3409587B2 (en) Optical path conversion optical element, image display device, and light projector
US20100177253A1 (en) Coherent imaging method of laser projection and apparatus thereof
EP2482117A1 (en) Three-dimensional display device based on random constructive interference principle
US8331006B2 (en) Display device and a method for illuminating a light modulator array of a display device
WO2012153626A1 (en) Illumination device, projection-type image display device, and optical device
US20150378080A1 (en) Volume hologram for optic illumination
US20190086598A1 (en) Display for two-dimensional and/or three-dimensional images
CN110431482A (en) Light supply apparatus, projector and speckle reduction method
KR20080082345A (en) Display apparatus of the diffractive optical modulator having multiple light source for reducing the speckle
KR20010042282A (en) Projector and display both comprising optical element for diffraction and scattering
KR100395149B1 (en) Projection-type display device and illumination optical system therefor
JP2008041513A (en) Lighting apparatus and projector
US20080158906A1 (en) Back light unit
WO2018180094A1 (en) Image display device and image display element
JP3888121B2 (en) Illumination device and image display device using a plurality of beams
TW571126B (en) Beam expansion
JP6544520B2 (en) Lighting device and projector
KR100501789B1 (en) Compact lighting device
US20040012832A1 (en) Beam expansion
JP5262850B2 (en) projector
JP2017156389A (en) Optical element, illumination device, image display device and projector
JP2017146553A (en) Illumination device and projector
JP2001116908A (en) Optical sheet and display using same

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees