TW569417B - Integrated circuit chip and protection method for preventing an NMOS of a core circuit from ESD damage - Google Patents
Integrated circuit chip and protection method for preventing an NMOS of a core circuit from ESD damage Download PDFInfo
- Publication number
- TW569417B TW569417B TW91114697A TW91114697A TW569417B TW 569417 B TW569417 B TW 569417B TW 91114697 A TW91114697 A TW 91114697A TW 91114697 A TW91114697 A TW 91114697A TW 569417 B TW569417 B TW 569417B
- Authority
- TW
- Taiwan
- Prior art keywords
- gate
- type metal
- oxide semiconductor
- electrostatic discharge
- metal oxide
- Prior art date
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
569417 五、發明說明(1) 發明背景 本發明係有關於一種靜電放電保護方法,尤直是一種 =止内部電路中的N型金屬氧化物半導體元件(NM〇s)受到 靜電放電损壞的保護方法,其使用一具隔離/緩衝功能之 元件,以避免發生内部裝置(c〇re devices)受到過度電性 應力(electrical 〇verstress)破壞而失效的情形。 靜電放電會造成互補型金屬氧化物半導體積體電路 (CMOS 1C)的損壞,進而產生眾所皆知的可靠度問題。當 CMOS製程技術縮小到次微米階段,先進的製程技術,例 如,更薄的閘極氧化層、更短的通道長度、更淺的沒極/ 源極接面深度、低摻雜濃度汲極(LDD)結構及金屬矽化物 (siliC1ded)擴散層等,這些先進的製程反而嚴重地降低 次微米CMOS I C的靜電放電保護能力。 "第1圖係一包含一典型靜電放電保護裝置的互補型金 屬軋化物半導體(CMOS)電路的方塊圖。在第i圖中,本電 路包含一輸入(出)接腳或墊片(input/〇utput pins 〇r569417 V. Description of the invention (1) Background of the invention The present invention relates to a method for protecting against electrostatic discharge, in particular, to protect the N-type metal oxide semiconductor element (NM0s) in the internal circuit from damage caused by electrostatic discharge. Method, which uses an element with an isolation / buffering function to avoid the occurrence of failure of internal devices (core devices) from being damaged by excessive electrical stress. Electrostatic discharge can cause damage to complementary metal-oxide-semiconductor integrated circuits (CMOS 1C), leading to well-known reliability issues. As CMOS process technology shrinks to the sub-micron stage, advanced process technologies, such as thinner gate oxide layers, shorter channel lengths, shallower electrode / source junction depth, and low doping concentration drain ( LDD) structure and metal silicide (siliC1ded) diffusion layer, etc. These advanced processes have seriously reduced the electrostatic discharge protection of sub-micron CMOS ICs. " Figure 1 is a block diagram of a complementary metal rolled semiconductor (CMOS) circuit including a typical electrostatic discharge protection device. In Figure i, this circuit contains an input (out) pin or pad (input / 〇utput pins 〇r
PadS)11,靜電放電保護裝置13、16及一位於内部電路的 實體 π 件(physical element)(本例中為一CM〇s 元件)15, 其中裝置13連接至元件",|置16跨接於輸入操作電壓 CoreVdd及CoreVss之間。如第丨圖所示,典型的靜電放 ^護裝置的設計’大多配置在輸人(出)接腳或 邊及内部操作電壓,以分別 (出,腳或墊片及内部電路,避免受到直接或間接的: 放電破壞。然❿’此種保護方式對於上述的次微 =PadS) 11, electrostatic discharge protection devices 13, 16 and a physical element (a CMO element in this example) 15 in the internal circuit, where the device 13 is connected to the component " Connected between the input operating voltage CoreVdd and CoreVss. As shown in Figure 丨, the design of a typical electrostatic discharge protection device is mostly configured on the input (out) pin or side and the internal operating voltage to separate (out, pin or pad and the internal circuit to avoid being directly affected. Or indirect: discharge damage. However, 'this protection method for the above-mentioned minor =
569417 五、發明說明(2) 1Ϊ製夠的。例如,這類_積體電路⑽越做 物丰導f而t作電壓corevdd也變小,p型及n型金屬氧化 ΐ Ϊ牛_及_)以、N1的閘極薄氧化層(gate 。:1士m來越薄,因而使得cm〇s ic内部電路的運算速 2:”。但是,也因為閘極薄氧化層(gate 〇xide)越 ίί:财,ΐΐ受靜電放電的影[而超出閘極氧化崩潰 電I的ί文此力而引發產品可靠度的問題。例如, 米技術_,為了克服所謂熱載子(hot_carrier)問題,常 會在CMOS製程中增加上述的低摻雜濃度汲極(L則結構。 杜、,上述LDD結構係做在金屬氧化物半導體⑽S)元 ^通^的兩端,LDD的深度只有約〇.〇2微米(#„),這個等 :文於=汲極與源極兩端形成兩個尖端,使得類 放靜電現象便容易發生在LDD這個尖端結構 :件用於上述議輸出級15時,元件N1上的薄問極、氧種化D 二’。例=,在0.25 的CMOS製程下的閘極氧化層只有5〇 矣(A )左右,這個厚度對於閘極直接連接至一内部正電壓 源的NM0S結構而言,很容易在例如元件充電模式⑽㈧ 下,經由LDD元件被靜電放電所破又, 接接觸人手以致被靜電放電所破;二= ^疋上:、置16_包含一直接連接至正操作電壓的NM0S元件 時,如弟2圖所示的虛擬元件(dummy element),對豆執 :電放電測試(ESD test)可發現如第3圖所示的測試結 果。這是由於這類靜電放雷仅罐壯班 ,丄 PN,大多具有較内=距Γ本例中的元件 %吩八的师局間距(spacing),所以 第6頁 0503-8133TW ; TSMC2002-0142 ; Sue.ptd 569417 五、發明說明(3) 大多在電壓4V以上才開始作用,而 件,如本例中的N2,卻因為使用最 佑路中的關⑽疋 到4V時就崩潰導通,這種情形被電放,會在不 丨、, 咕Α Γ电;損壤的可能枓士 J代表一内部電路的靜電放電保護裝置在不同f 私下,電流對返驰電屢的關係圖。第 = 累積失敗率對崩潰電㈣㈣關係圖。比較仏及04sb兀圖件中的 :票號A所指示的地方,其中,目中所示的標號a是分別指向 静電放電保護裝置及NMOS元件的開始作用起始點,分別約 為4. 2 V(見第4a圖)及3. 9 V(見第4b圖)左右。因此,雖秋輸 出入部分的靜電可順利地經由裝置13排出(pASS),但=^ 在^部電源接腳(core power pins)的測試部分,只有閘 極崩潰電壓(drain breakdown)較高的PM0S元件會經裝置 PN將靜電排出,也就是上述元件p2可通過放電測s試,&而另 一 NMOStg件N2 ’將其連接的電壓Vss接地後,外加一正的 靜電放電電壓經電壓線C 0 r e v d d來做測試時,由於裝置p n 未開始作用而使元件N 2的薄閘極遭到破壞,致使整個晶片 無法通過靜電放電測試(第2圖的測試位置7 )。 有鑑於此,本發明之一目的係提供一種防止内部電路 (core circuit)中的n型金屬氧化物半導體元件(NM〇s)受 到#電放電損壞的保護方法,其使用一具緩衝功能之元件 (buffering device),以避免發生内部裝置(c〇re devices)^:到過度電性應力(electricai 〇verstress)破 壞而失效的情形。 本發明之另一目的係提供一種防止内部電路(core569417 V. Description of the invention (2) 1 is enough. For example, this type of integrated circuit is more and more conductive and the core voltage is smaller as t is the voltage. The p-type and n-type metal oxides (yak and yak) and N1 are gate thin oxide layers (gate). : The thinner the thickness is, the faster the operating speed of the internal circuit of cm〇s ic is 2: ". However, the thinner the gate oxide layer (gate 〇xide) becomes, the more the property is affected by the electrostatic discharge. Exceeding the power of the gate oxidation breakdown voltage causes product reliability issues. For example, in order to overcome the so-called hot carrier problem, the Mi-Tech technology often adds the above-mentioned low doping concentration in the CMOS process. (L is the structure. Du, the above-mentioned LDD structure is made at both ends of the metal oxide semiconductor ⑽S) element, the depth of the LDD is only about 0.02 microns (# „), this and so on: Wen Yu = The two ends of the drain electrode and the source electrode form two tips, so that the static discharge phenomenon easily occurs at the tip structure of LDD: When the device is used in the above-mentioned output stage 15, the thin interrogation electrode on the element N1 and the oxygen seeding D2 ' Example = The gate oxide layer under 0.25 CMOS process is only about 50 矣 (A), this thickness is directly connected to the gate For an NMOS structure with an internal positive voltage source, it is easy to be broken by electrostatic discharge through LDD components in the component charging mode ⑽㈧, for example, and contact with human hands to be broken by electrostatic discharge; two = ^ 疋 上:, set 16 _Including an NMOS device directly connected to the positive operating voltage, such as the dummy element shown in Figure 2, the test results can be found in the ESD test (Figure 3) This is because this type of electrostatic lightning is only used in strong tanks, 丄 PN, most of which have a division distance of 吩 from the component% in this example. Therefore, page 6 0503-8133TW; TSMC2002- 0142; Sue.ptd 569417 V. Description of the invention (3) Most of them only start to work when the voltage is above 4V, but the components, such as N2 in this example, collapse and turn on because of the use of the gate in the most favorable road to 4V, In this case, it will be discharged without electricity. The possible damage to the soil J represents an internal circuit of the electrostatic discharge protection device. The relationship between the current and the return current is different. = Cumulative failure rate vs. breakdown voltage. Comparison In the 04sb figure: the place indicated by ticket number A, where the symbol a shown in the head points to the starting point of the electrostatic discharge protection device and the NMOS element, which are about 4. 2 V ( (See Fig. 4a) and 3.9 V (see Fig. 4b). Therefore, although the static electricity in the autumn input and output part can be smoothly discharged through the device 13 (pASS), but ^ is at the core power pin (core power pins) test part, only PM0S elements with higher gate breakdown voltage will discharge static electricity through the device PN, that is, the above-mentioned element p2 can pass the discharge test s test, and another NMOStg part N2 'will After the connected voltage Vss is grounded and a positive electrostatic discharge voltage is applied for testing through the voltage line C 0 revdd, the thin gate of the component N 2 is damaged because the device pn has not begun to function, making the entire wafer unable to pass. Electrostatic discharge test (test position 7 in Figure 2). In view of this, an object of the present invention is to provide a protection method for preventing an n-type metal oxide semiconductor element (NM0s) in an internal circuit from being damaged by #electric discharge, which uses a buffering element (buffering device) to avoid the occurrence of internal devices (core devices) ^: to excessive electrical stress (electricai stress) failure and failure. Another object of the present invention is to provide an internal circuit (core
569417 五、發明說明(4) 損 11) 1 型金屬氧化物半導體元件(關0s)受到靜電 法’其不須額外的製程(Wslng)即 T強化上述的靜電放電保護。 #开m係:種防止内部電路中的N型金屬氧化物半導 體兀件(NMOS)受到靜電放電損壞的保護方法 (a protection method for preventing an NMOS of a569417 V. Description of the invention (4) Damage 11) Type 1 metal oxide semiconductor device (off 0s) is subjected to the electrostatic method ', which requires no additional process (Wslng), ie T to strengthen the above-mentioned electrostatic discharge protection. # 开 m 系: A protection method for preventing an NMOS of a N-type metal oxide semiconductor element (NMOS) in an internal circuit from being damaged by electrostatic discharge
Cirult ir⑽ESD damage),其包含下列步驟: 測(detect)内部電路(c〇re circuit)中,所有具有一直 輯:準為1:電壓的薄閘極_型金屬氧化物半 入屬4仆物::,將檢測出的上述所有具有薄閘極的Ν型 至屬軋化物丰V體(NM0S)的閘極分 P型金屬氧化物半導俨ΓΡΜΠΟ叙祐s 具有尽間極的 愿.Λ卜Λ Λ 上述邏輯位準為1的電 的間極接地’如此,可利用上述具有厚間極二金屬』 化物:導體(PM0S)的較高㈣氧化崩潰電壓(⑽〇 V.〇1^/e) ^ ^ ^ ^ t ^ t 〇 車乂佳貫施例之砰細說明 電仵ί5Λ係實根/^發明顯示一防止内部電路中的靜電放 隱元件以及瞻元件⑽的閉極不再直接連接至:= 至—CM〇S反相器51,並將這⑽^反相 為51中的PM0S凡件PU_S元件N5的閘極同時接地。如第 5圖所不’如上述的這類電路結構就可避免元件 到正的靜電放電的雷擊(zap)。因為’ MGU件的特性係經 nm 0503-8133TW ; TSMC2002-0142 ; Sue.ptd 第8頁 1 569417 五、發明說明(5) 二閘時極的二電f位準來決定導通與否。若輸入電麼位準 為〇 k PMOS兀件將會導通,反之,關〇s元件係作 極輸入電壓位準為1時。所以’將CMOS的閉極接地可使二 ”壓Va的位準維持在〇,使得元件” 一直保持導::: ,,如,,在遇到來自電壓源(c〇reVdd)的正靜電放電 日:’如箭頭所示’先經過元件P5,以產生隔離/緩衝效 果,再流到使元件N2導通。 第6a及6b圖分別顯示第5圖的靜電放電保護裝置 作,理。第6a圖代表—_s元件中的p井的累積失敗; 對崩潰電壓vbd關係的曲線圖。第讣圖代表pM〇s元件 井的累積失敗率CF對崩潰電壓Vbd關係的曲線圖。 ,及6b圖中的B點’可知在相同累積失敗率(。刪如… faUurOCF下,下圖所示的pM〇s元件具有比上圖所示 NM0S元件高的崩潰電壓Vbd(作用點),大致上約相差〇 V左右(約為一個二極體的操作電壓),利用這個較高的 潰電壓,可以提升整個元件對靜電放電的耐度,避 ,電的破壞。上述反相器可以是薄氧化層形式也可以 氧化層形式。 子 此外’為了達成隔離/緩衝效果,避免靜電放 ^擊_S元件N2的薄閑極氧化層’也可使用一剛8通問元 件(pass gate device)。第7圖係根據本發明顯示另一 止内部電路中的靜電放電保護裝置實施例。在第7 將第5圖中的反相器以一PM0S通閘元件71取代之,並 件71的閘極接地,使上述PM0S通閘元件71維持於導通狀% °5〇3-8133TW ; TSMC2002-0142 ; Sue.ptd 第9頁 569417 五、發明說明(6) 態。如第7圖所示,其操 PMOS元件71具有較高崩潰相同於第5圖,也是利用 靜電放電的耐度,避# 1、寺性,以提升整個元件對 電路中的虛擬元件;;X:放電的錢,尤其是避免内部 述PMOS元件71可以是雙^ :,致使整個兀件遭到破壞。上 式。 疋“化臈形式也可以是厚氧化膜形 此外帛8圖係根據本發明顯示又 的靜電放電保護裒置實施例方亡::電路中 化層,也可使用- = 接衝擊刪元㈣的薄間極氧 於正摔作電壓源及:Γ 可變電阻器(未顯示)連接 於正如:冤[源及内部電路的閘 操作電壓及内部電路的声擗„ Μ。 >—、疋連接於正 極之間。如第8圖所亍'虛擬 v S S接地)的操作^圍目前常用的單電壓源(即 值約為1K左右,電^ ’上述電阻器最佳的電阻 的壓降,而使二==二易在電阻器上造成過大 鎖失真的問題;反之,若電阻值太小,使電阻器上= 壓降過t二則無法有效降低靜電放電的高電壓以避免内部 兀件的t壞。因此,本例實作上發現以電阻值約為1 κ左右 的電阻=的執行效率(performance)最好。然而,上述電 阻值僅疋做為說明使用,其值可依實務上的需求做改 不限於1K左右的電阻器。 第9 0係根據本發明顯示一防止内部電路中的n型金屬 氧化物半導體元件(NM0S)受到靜電放電損壞的保護方法的 Μη 第10頁 0503-8133TW ; TSMC2002-0142 ; Sue.ptd 569417 五、發明說明(7) 流程圖。如第9圖所示,使用於上述靜電放電保護裝置的 保護方法包括檢測(detect)内部電路(core circuit)中, 所有具有一直接連接到一邏輯位準為丨的電壓的薄閘極的N 型金屬氧化物半導體(NMOS )元件(S 1 );將檢測出的上述所 有具有薄閘極的N型金屬氧化物半導體(NM〇s)的閘極分別 透過一具有厚閘極的P型金屬氧化物半導體(pM〇s)耦接至 上述邏輯位準為!的電壓(S2);及將上述具有厚閑極的 金屬氧化物半導體(PMOS)的閘極耦接至一邏輯位準為〇 電壓(S3),如此,可利用上述具有厚閘極阶型金屬氧化 物半導體(PMOS)的較高閘極氧化崩潰電壓(gate breakdown v〇ltage)來加強全晶片的靜電放電保護能力。 由於本發明的保護方法所使用的元件 增加額外的製程一Slng),只需於積體二製;須 t,依上述方法做處理即可達到加強正操作f壓源及 埠間的具有薄閘極且可能直接承受一正靜電放電電擊的 型金屬乳化物半導體元件的靜電放電保護能力。尤盆曰 一向為人所疏忽的内部電路中的虛擬元件部分。, 電路中的虛擬元件大多做為開關/選擇,甚至是 放内部 :護作用’因此,對於晶片是否能發揮功用,也是佔放電 :性” 。然而,這部分的保護機制(Mans) ’、 略,為此,使用本發明方法,可在不增加成本 皮^ (lay〇Ut area)的情形下,得到全晶 局面積 :免晶片因薄的閉極氧化層受到損壞而使整個晶;動 第11頁 0503-8133TW ; TSMC2002-0142 ; Sue.ptd 569417 五、發明說明(8) 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟知此技術之人士,在不脫離本發明 之精神及範圍内,當可做更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。Cirult ir⑽ESD damage), which includes the following steps: Detect the internal circuit (coor circuit), all of which have a constant series: a thin gate_type metal oxide with a voltage of exactly 1: semi-entry 4 servants: :, Will detect all of the above-mentioned N-type thin gates with a gate electrode P-type metal oxide semiconducting metal oxide semiconductor ΠΓΡΠΠΟ 佑 s have the best wishes. Λ 卜Λ Λ The ground of the above-mentioned electrical level of the logic level is 1 '. Thus, the above-mentioned thick bipolar metal: the higher oxidative breakdown voltage of the conductor (PM0S) (⑽〇V.〇1 ^ / e ) ^ ^ ^ ^ t ^ t 〇 The detailed description of the example of the car 乂 贯 贯 5 系 series solid root / ^ invention shows that to prevent the electrostatic discharge components in the internal circuit and the closed pole of the observation component 不再 are no longer directly connected To: = to —CMOS inverter 51, and inverting it to the gates of the PM0S PU_S element N5 in 51 at the same time. As shown in Fig. 5, a circuit structure as described above can prevent the component from being subjected to a positive electrostatic discharge (zap) from the electrostatic discharge. Because the characteristics of ’MGU parts are determined by nm 0503-8133TW; TSMC2002-0142; Sue.ptd Page 8 1 569417 V. Description of the invention (5) The second electric f level of the second gate is used to determine whether it is conducting or not. If the input voltage level is 0 k, the PMOS element will be turned on. On the contrary, when the OFF element is at the input voltage level of 1. Therefore, 'grounding the closed pole of the CMOS can maintain the level of the two "voltage Va at 0, so that the device" always remains conductive :: ,, for example, when encountering a positive electrostatic discharge from a voltage source (coreVdd) Day: 'as shown by the arrow' first passes through element P5 to produce an isolation / buffering effect, and then flows to make element N2 conductive. Figures 6a and 6b show the operation of the ESD protection device of Figure 5 respectively. Figure 6a represents the cumulative failure of the p-well in the _s element; a graph of the relationship of the breakdown voltage vbd. The second graph represents a plot of the cumulative failure rate CF versus the breakdown voltage Vbd of the pM0s element well. , And point B in the figure 6b shows that at the same cumulative failure rate (. Delete ... under faUurOCF, the pM0s element shown in the figure below has a higher breakdown voltage Vbd (action point) than the NMOS device shown in the figure above, The difference is about 0V (about the operating voltage of a diode). With this higher breakdown voltage, the resistance of the entire component to electrostatic discharge can be improved, and electrical damage can be avoided. The above inverter can be The thin oxide layer can also be in the form of an oxide layer. In addition, 'in order to achieve the isolation / buffering effect to avoid electrostatic discharge ^ thin element oxide layer of _S element N2' can also use a pass gate device Fig. 7 shows another embodiment of the electrostatic discharge protection device in the internal circuit according to the present invention. In Fig. 7, the inverter in Fig. 5 is replaced by a PM0S switching element 71, and the gate of the combination 71 The pole is grounded, so that the above-mentioned PM0S on-gate element 71 is maintained in a conductive state of% ° 0〇3-8133TW; TSMC2002-0142; Sue.ptd page 9 569417 5. State of the invention (6). As shown in FIG. 7, Operating the PMOS element 71 has a higher breakdown. Use electrostatic discharge resistance to avoid # 1, temples, in order to improve the entire component to the virtual component in the circuit; X: Discharge money, especially to avoid the internal PMOS element 71 can be double ^ :, causing the entire element Damaged. The above formula. "The chemical form can also be in the form of a thick oxide film. In addition, the figure 8 shows an embodiment of the electrostatic discharge protection device according to the present invention. The chemical layer in the circuit can also be used- = The thin interlayer oxygen connected to the shock delete element is a positive voltage source and: Γ The variable resistor (not shown) is connected to the source: the gate operating voltage of the source and the internal circuit and the sound of the internal circuit. Μ ≫ —, 疋 are connected between the positive poles. As shown in Figure 8 虚拟 'virtual v SS grounding' operation ^ around the single voltage source commonly used (that is, the value is about 1K, electrical ^ 'the above resistor is the best The voltage drop of the resistor makes two == two easy to cause the problem of excessive lock distortion on the resistor; conversely, if the resistance value is too small, so that the voltage drop across the resistor can not effectively reduce the high electrostatic discharge. Voltage to avoid the t of the internal components. Therefore, the implementation of this example found The performance with a resistance value of about 1 κ = performance is the best. However, the above resistance value is only used for illustration purposes, and its value can be changed according to practical needs. It is not limited to about 1K resistors. No. 90 is based on the present invention, which shows a protection method for preventing an n-type metal oxide semiconductor element (NM0S) in an internal circuit from being damaged by electrostatic discharge. Page 10 0503-8133TW; TSMC2002-0142; Sue.ptd 569417 5. Invention Description (7) Flow chart. As shown in FIG. 9, the protection method used in the above-mentioned electrostatic discharge protection device includes detecting a core circuit. All N having a thin gate electrode directly connected to a voltage at a logic level Type metal oxide semiconductor (NMOS) element (S 1); each of the detected N-type metal oxide semiconductor (NM0s) gates having a thin gate is passed through a P-type metal having a thick gate, respectively An oxide semiconductor (pM〇s) is coupled to the above logic level! Voltage (S2); and the gate of the metal oxide semiconductor (PMOS) having a thick free pole is coupled to a logic level of 0 voltage (S3), so that the above-mentioned metal having a thick gate step type can be used The higher gate breakdown voltage of the oxide semiconductor (PMOS) enhances the full-chip ESD protection capability. Because the components used in the protection method of the present invention add an additional manufacturing process (Slng), it only needs to be manufactured in the integrated system; it must be processed in accordance with the above method to achieve positive operation. Electrostatic discharge protection capability of a metal-emulsion semiconductor device that is extremely likely to directly endure a positive electrostatic discharge shock. Youpen Yue The virtual component part of the internal circuit that has always been overlooked. Most of the virtual components in the circuit are used as switches / selections, and even put inside: protection. Therefore, whether the chip can function or not, it also accounts for discharge: nature. ”However, this part of the protection mechanism (Mans), omitted For this reason, using the method of the present invention, a full crystal local area can be obtained without increasing the cost of the surface area (layout area): to prevent the wafer from being damaged due to the thin closed-electrode layer being damaged; 11 pages 0503-8133TW; TSMC2002-0142; Sue.ptd 569417 V. Description of the invention (8) Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention. Changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be determined by the scope of the attached patent application.
0503-8133TW ; TSMC2002-0142 ; Sue.ptd 第12頁 569417 圖式簡單說明 為讓本發明之上述及豆 而易見,下文特兴#被、與優點能更顯 細說明如下 舉一較佳貫施例’並配合所附圖式,作詳 第1圖係一包含一典型靜 屬氧化物半導體(CMOS)電路的方塊圖呆^置的互補型金 保護含虛擬元件⑷啊^如)的靜電放電0503-8133TW; TSMC2002-0142; Sue.ptd Page 12 569417 The diagram is briefly explained in order to make the above and the beans of the present invention easy to see. The following special #quilt and advantages can be more clearly explained as follows. Example 'and in conjunction with the attached drawings, detailing FIG. 1 is a block diagram of a typical static oxide semiconductor (CMOS) circuit. A complementary gold protects the static electricity containing virtual components. Discharge
Sa圖第2圖電路的靜電放電測試結果表格;Electrostatic discharge test result table for the circuit in Fig.
下電,爪對返馳電壓的關係圖; 个UU 第4 b圖係—Ν Μ Ω S分/生上人田 關係圖; 勺累積失敗率對崩潰電壓Vbd的 第5圖係根據本發 — 氧化物半導體元件(NM()s;l不一防止内部電路中的N型金屬 施例; 件(NM〇S)雙到靜電放電損壞的保護電路實 苐6a圖代表一 ΝΜΓΚ - al 潰電壓Vbd關係的曲線圖凡中的P井的累積失敗率CF對崩 第6b圖代表pM〇s元""件 電壓Vbd關係的曲線圖;T的1^井的累積失敗率CF對崩潰 第7圖係根據本二明一 第8圖係根據本發明:另一保護電路實施例; 第9圖係根據本發明:Τ:一保護電路實施例; 氧化物半導體元件(ΝΜ〇心不一防止内部電路中的Ν型金屬 流程圖。 笑到靜電放電損壞的保護方法的Power-down, the relationship between the claw and the flyback voltage; Figure Ub 4b—the relationship between the NM Ω S points and the birth of the human field; Figure 5 of the cumulative failure rate versus the breakdown voltage Vbd is based on this issue— Oxide semiconductor elements (NM () s; different types of N-type metal preventive circuits in internal circuits; components (NM0S) double to electrostatic discharge damage protection circuit. Figure 6a represents a NMΓκ-al breakdown voltage Vbd The graph of the relationship between the cumulative failure rate CF of well P and collapse in Fig. 6b represents the graph of the relationship between pMos element " " voltage Vbd; the cumulative failure rate CF of well 1 ^ of T versus collapse 7 The diagram is according to the present invention. The eighth diagram is according to the present invention: another embodiment of the protection circuit. The ninth diagram is according to the present invention: T: an embodiment of the protection circuit; the oxide semiconductor element (NM0) is different to prevent the internal N-type metal flow chart in the circuit. Laughing at the protection method of electrostatic discharge damage
0503-8133TW ; TSMC2002-0142 ; Sue.ptd 第13頁 569417 圖式簡單說明 [符號說明] 11〜輸入接腳或墊片; 1 3、1 6〜靜電放電保護裝置; 15〜内部電路中的互補型金屬氧化物半導體實體元 件; 2卜内部電路中的互補型金屬氧化物半導體虛擬元 件; 5 1〜反相器; 71、P1、P2、P5、PN〜P型金屬氧化物半導體;0503-8133TW; TSMC2002-0142; Sue.ptd Page 13 569417 Brief description of the drawing [Symbol description] 11 ~ input pins or pads; 1 3, 1 6 ~ ESD protection device; 15 ~ Complementary in internal circuit Solid metal oxide semiconductor solid element; 2 complementary metal oxide semiconductor virtual elements in the internal circuit; 5 1 ~ inverter; 71, P1, P2, P5, PN ~ P type metal oxide semiconductor;
N1、N2、N5〜N型金屬氧化物半導體; R〜電阻器; C 〇 r e V d d〜正操作電壓源;N1, N2, N5 ~ N type metal oxide semiconductors; R ~ resistors; C 0 r e V d d ~ positive operating voltage source;
CoreVdd〜負操作電壓源。CoreVdd ~ negative operating voltage source.
0503-8133TW ; TSMC2002-0142 ; Sue.ptd 第14頁0503-8133TW; TSMC2002-0142; Sue.ptd p. 14
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91114697A TW569417B (en) | 2002-07-03 | 2002-07-03 | Integrated circuit chip and protection method for preventing an NMOS of a core circuit from ESD damage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91114697A TW569417B (en) | 2002-07-03 | 2002-07-03 | Integrated circuit chip and protection method for preventing an NMOS of a core circuit from ESD damage |
Publications (1)
Publication Number | Publication Date |
---|---|
TW569417B true TW569417B (en) | 2004-01-01 |
Family
ID=32590395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91114697A TW569417B (en) | 2002-07-03 | 2002-07-03 | Integrated circuit chip and protection method for preventing an NMOS of a core circuit from ESD damage |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW569417B (en) |
-
2002
- 2002-07-03 TW TW91114697A patent/TW569417B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9478979B2 (en) | Semiconductor ESD circuit and method | |
US5907464A (en) | MOSFET-based power supply clamps for electrostatic discharge protection of integrated circuits | |
US7705404B2 (en) | Electrostatic discharge protection device and layout thereof | |
US5946175A (en) | Secondary ESD/EOS protection circuit | |
US9843183B2 (en) | ESD protection circuit | |
JP4402109B2 (en) | Low voltage NMOS type electrostatic discharge clamp | |
US20090268359A1 (en) | Electrostatic discharge power clamp with improved electrical overstress robustness | |
JP2007531284A (en) | Method and apparatus for protecting gate oxide using source / bulk pumping | |
US9466978B2 (en) | Electrostatic discharge protection for level-shifter circuit | |
TW200814290A (en) | ESD protection circuit using self-biased current trigger technique and pumping source mechanism | |
US20050045952A1 (en) | Pfet-based esd protection strategy for improved external latch-up robustness | |
US20080055805A1 (en) | Semiconductor device having electro static discharge detection circuit | |
TWI244194B (en) | Charge-device model electrostatic discharge protection using active devices for CMOS circuits | |
TW201019461A (en) | ESD protection circuit and circuitry of IC | |
US7532446B2 (en) | Protection circuit for electro static discharge | |
JP2011071502A (en) | Method for designing integrated electronic circuit having esd protection and circuit obtained thereof | |
US9799573B2 (en) | Method and apparatus for bond-pad charging protection of reference transistor test structures | |
US6934136B2 (en) | ESD protection of noise decoupling capacitors | |
CN107204326A (en) | A kind of static discharge ESD protective circuit applied to integrated circuit | |
US8040646B2 (en) | Input/output buffer and electrostatic discharge protection circuit | |
Okushima | ESD protection design for mixed-power domains in 90nm CMOS with new efficient power clamp and GND current trigger (GCT) technique | |
TW569417B (en) | Integrated circuit chip and protection method for preventing an NMOS of a core circuit from ESD damage | |
Ker et al. | Substrate-triggered ESD protection circuit without extra process modification | |
US7733618B2 (en) | Electrostatic discharge device | |
TW544899B (en) | Integrated circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |