TW564505B - Single electron transistor and fabrication method thereof - Google Patents

Single electron transistor and fabrication method thereof Download PDF

Info

Publication number
TW564505B
TW564505B TW91123150A TW91123150A TW564505B TW 564505 B TW564505 B TW 564505B TW 91123150 A TW91123150 A TW 91123150A TW 91123150 A TW91123150 A TW 91123150A TW 564505 B TW564505 B TW 564505B
Authority
TW
Taiwan
Prior art keywords
layer
silicon
item
electron transistor
electron
Prior art date
Application number
TW91123150A
Other languages
Chinese (zh)
Inventor
Shu-Fen Hu
Wei-Je Weng
Original Assignee
Nat Science Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Science Council filed Critical Nat Science Council
Priority to TW91123150A priority Critical patent/TW564505B/en
Application granted granted Critical
Publication of TW564505B publication Critical patent/TW564505B/en

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

The single electron transistor (SET) of the present invention is fabricated by using electron beam lithography. After many times of photolithography, etching and oxidation processes, a silicon island with very small dimension is formed as the quantum well, two mutually isolated silicides or doped polysilicon spacers on both sides of the silicon island are utilized as the drain and source of the single electron transistor respectively. The silicon substrate functions as the bottom gate, so as to form a single electron transistor comprising a silicon substrate; a quantum well; a first dielectric layer; a silicon nitride layer and two spacers. The surface of the silicon substrate is an oxide layer. The quantum well is located on the oxide layer. The dielectric layer is passivated on the quantum well. The silicon nitride layer is passivated on the first dielectric layer. The two spacers are located on both sides of the quantum well. The two second dielectric layers are located between the quantum well and the spacer, which functions as the potential barrier layer between the source, drain and the quantum well of the single electron transistor.

Description

564505 A7 p—_______B7___ 五、發明説明(i ) 曼2月領域 本發明係關於一種半導體電晶體及其製作方法,特別是 關於一種單電子電晶體之製作方法。 t明背景 積體電路(1C)製程技術在過去的20年間進展神速,目前 已邁入〇_15、0.13甚至0.1微米(micrometer,μιη )的奈米 (nanometer,nm )世代。基於對於電子元件體積小,更經濟 及功能更強大等需求,更加快了積體電路尺寸微縮競賽的 腳步。然而,高密度I C的傳統基本元件一場效電晶體一其 製程的極限預計將於2 0 0 7至2 0 1 0年來臨。這是因為半導 體元件電路的電子傳輸最終將面臨物理定律中量子效應的 限制,導致1C之閘極寬度或線寬將無法低於〇.07 μιη。 在積體電路積集化的競賽中,另一個面臨到的主要問題 是複雜電路中的耗電量及所衍生出散熱的問題。舉例來 說,1毫安培(mA )電流流經截面積為2 0 〇 X 2 0 0奈米見方 的導體時,將會產生2 5安培/平方毫米的電流密度。傳統 電路需要傳輸非常大量的載子才可在電路中產生一最小電 流。如在記憶體D R A Μ中一個簡簡單單的位元其背後所代 表的是1 0 0,0 0 0個電子的傳輸。而元件所消耗的功率又與 形成電流之電子數目成正比。因此,在高積集化I C應用 中,進一步地降低其電流密度是必要的。 由於上述的問題,在下個世紀初I C產業近逼量子的世界 時,單電子元件是目前認為最可能於取代積體電路中的場 效電晶體元件。這些所謂的「單電子電晶體(Single H:\Hu\tys\NDL 中說\80766\80766.doc - 4 - 本紙張尺度適用中國國家標竿(CNS) A4規格(210X 297公釐) ' ~ 裴 訂 564505 A7 B7 五、發明説明(2 )564505 A7 p —_______ B7___ V. Description of the Invention (i) MAN February Field The present invention relates to a semiconductor transistor and a method for manufacturing the same, and particularly to a method for manufacturing a single electron transistor. The background The integrated circuit (1C) process technology has made rapid progress in the past 20 years, and has now entered the nanometer (nm) generation of 0.15, 0.13, and even 0.1 micrometers (micrometers). Based on the demand for smaller electronic components, more economical and more powerful functions, the pace of the miniaturization of integrated circuit size has been accelerated. However, the high-density IC's traditional elementary field effect transistor and its process limit are expected to come from 2007 to 2010. This is because the electronic transmission of semiconductor element circuits will eventually face the limitation of quantum effects in the laws of physics, resulting in the gate width or line width of 1C cannot be lower than 0.07 μm. In the competition of integration of integrated circuits, another major problem is the power consumption in complex circuits and the resulting heat dissipation problems. For example, a current of 1 milliampere (mA) flowing through a conductor with a cross-sectional area of 200 nanometers square will result in a current density of 25 amperes per square millimeter. Traditional circuits need to transmit a very large number of carriers to generate a minimum current in the circuit. For example, a simple bit in the memory DRAM is represented by a transmission of 100, 000 electrons. The power consumed by the component is directly proportional to the number of electrons forming the current. Therefore, in high accumulation IC applications, it is necessary to further reduce its current density. Because of the above problems, when the IC industry is approaching the quantum world at the beginning of the next century, single-electronic components are currently considered to be the most likely to replace field-effect transistor components in integrated circuits. These so-called "Single Electron Transistors (Single H: \ Hu \ tys \ NDL said \ 80766 \ 80766.doc-4-This paper size applies to China National Standard (CNS) A4 (210X 297 mm) '~ Pei Ding 564505 A7 B7 V. Description of Invention (2)

Electron Transistor,SET )」元件是基於「庫佘阻斷效應 (Coulomb Blockage Effect )」的物理學原理所發展出來的。 在傳統的場效電晶體中,閘極電極控制自源極流至汲極 的電流。而單電子電晶體的不同處在於一其包含一個量子 點或浮閘,而僅以一穿隧位能障礙(量子井,Quantum well)連接於源極與汲極之間;即單電子場效電晶體所仰賴 的是電子電荷的量子化。倘若此浮閘夠小,因為需要充電 電能(庫侖能量)e2/2C,僅管只是想多加上一個電子也不 行,所以也就不會有電流的流動。電晶體可經由於閘極外 加正向電壓降低浮閘的位能而打開。若固定閘極電壓而改 變源極-汲極電壓,這會導致源極-汲極電流作階梯狀的增 加(即所謂的庫侖階梯,Coulomb-staircase )。因此,當給 予源極負電壓時,使得電子位能大於e2/2C,造成浮閘近源 極側位能障壁較低,單一個電子可穿透低能量障壁而進入 此浮閘,此時浮閘之量子井的電位能(potential energy )升 高,使第二個電子不能進入,即為所謂的「庫倫阻斷」。 當浮閘之量子井的電位能升高時,相對的右邊的位能障壁 則降低,此時電子將可從浮閘穿透右邊的位量障壁進入另 一接合線到汲極,如此反覆循環,形成在浮閘内,一次只 能通過一個電子,因之稱為單電子電晶體。單電子場效電 晶體具低消耗功率及高密度組裝之優點,若與現今之場效 電晶體搭配使用,則可擁有高速率、低消耗功率與高元件 密度之積體電路。 在應用上,由於單電子電晶體源汲極間的電流,一次只 H:\Hu\tys\NDL 中說\80766\80766.doc - 5 一 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 564505 A7 _____ B7 五、發明説明(3~T ' " 能通過一個電子,因此其將可探討量子力學内最基礎的問 題’並能作為極佳之基礎物理研究用的元件。除了做基礎 科學之探討外’單電子電晶體亦為具應用價值的電子元 件’如其為最靈敏的電荷感應器,所以在很多情況下,它 能取代目前場效電晶體的功能,並可作低雜訊的光學感測 器。又因其電子電荷是量化的,故其線路可用來做邏輯運 算的單元,也是做記憶體元件的最佳資源。此外,單電子 電晶體因能利用加在閘極的電壓r大小來「鎖住」一個一個 電子通過的頻率,故也可以作為「標準電流器」。 然而,庫侖阻斷效應只能在電容值非常低的元件中觀察 得到。這是由於熱動能(Kt)會造成干擾,幫助電子穿透 位能井,減低了阻斷的效果。因此,充電能量必需遠大於 熱動能值,即 kT < < e2 / 2C 其中C為元件的電容 所以,為了要於室溫下達到此一元件的特性需求,所涉 及的電容(C )必需低至1 〇 -18法拉第(F )。即,物體的尺 寸必需不可超過幾個奈米(5奈米),這是無法以傳統微 影技術甚或電子直寫(direct write )(解析度約1 0至2 0奈 米)所能達成的解析度。 近年來 Choi 等人於 1998 年 ’’Semicond, Sci. Technol.”發表 之 ’’Fabrication of a dual-gate-controlled Coulomb blockade transistor based on a silicon-on-insulator structure”文中揭示一利 用電子束微影製程來製作由閘極控制之單電子電晶體結 構。但若利用此法製作兩個分立之閘極,因電子束微影本 H:\Hu\tys\NDL 中說\80766\80766.doc - 6 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 裝 訂 線 564505 A7 _B7_ 五、發明説明(4 ) 身近階放應(Proximity Effect )的影響,將造成兩閘極彼此 間距過大(約為100nm),進而造成電荷之量子井電容過 大,而只能於極低溫1 5 X 1 (Γ 3 ° K量測到單電予效應。此 外,由電子束微影及蝕刻製作之閘極圖案,極易發生不對 稱的情況,進而造成電性的失真。 發明之簡要說明 有鑑於此,本發明同樣利用電子束微影的方式,經過多 次微影、蝕刻及氧化製程後形成尺寸極小的矽島,其長小 於5 0 n m、寬小於3 0 n m、高小於3 0 n m。利用兩旁相互隔 絕的金屬矽化物或摻雜多晶矽間隙壁(spacer ),分別作為 電晶體之汲極和源極,藉由此法可得到尺寸更小、更明確 的量子井電容,以提高操作溫度。再輔以絕緣層上有矽 (Silicon on Insulator,SOI)晶圓底部的石夕底材為底部閘極, 或在其頂端製作一金屬或多晶矽閘極以調變矽島的電位, 形成一完整的單電子電晶體。其整體製程符合現今超大型 積體電路的製程,未來可應用於單電子電晶體之製作,故 極具產業應用價值。 本發明之較佳實施例之單電子電晶體包含一矽基板、一 量子井、一第一介電層、一氮化碎層及兩間隙壁。該碎基 板之表面為一氧化層。該量子井係位於該氧化層上。該第 一介電層係覆蓋於該量子井上。該氮化矽層係覆蓋於該第 一介電層上。該兩間隙壁係位於該量子井兩側,分別作為 該單電子電晶體之源極和汲極。該兩第二介電層係位於該 量子井及該間隙壁之間,分別作為該單電子電晶體之源極 H:\Hu\tys\NDL 中說\80766\80766.doc " 7 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 564505"Electron Transistor (SET)" element is developed based on the physics principle of "Coulomb Blockage Effect". In traditional field effect transistors, the gate electrode controls the current flowing from the source to the drain. The single electron transistor is different in that it contains a quantum dot or a floating gate, and is only connected between the source and the drain with a tunneling potential barrier (quantum well); that is, a single electron field effect The transistor relies on the quantization of electronic charge. If this floating gate is small enough, because it needs to be charged with electric energy (Coulomb energy) e2 / 2C, it just won't work just to add one more electron, so there will be no current flowing. The transistor can be turned on by applying a forward voltage to the gate to reduce the potential of the floating gate. If the gate-voltage is fixed and the source-drain voltage is changed, this will cause the source-drain current to increase stepwise (the so-called Coulomb-staircase). Therefore, when a negative voltage is applied to the source, the potential energy of the electron is greater than e2 / 2C, resulting in a low potential barrier near the source side of the floating gate. A single electron can penetrate the low energy barrier and enter the floating gate. The potential energy of the quantum well of the gate rises, making the second electron inaccessible, which is the so-called "Coulomb block". When the potential energy of the quantum well of the floating gate rises, the potential barrier on the right side decreases. At this time, electrons can pass from the floating gate to the right barrier barrier and enter another bonding line to the drain electrode. , Formed in the floating gate, can only pass one electron at a time, so it is called a single electron transistor. Single-electron field-effect transistors have the advantages of low power consumption and high-density assembly. If used with today's field-effect transistors, they can have integrated circuits with high speed, low power consumption, and high component density. In application, due to the current between the drains of the single electron transistor source, only H: \ Hu \ tys \ NDL says \ 80766 \ 80766.doc at a time-a paper size applies to the Chinese National Standard (CNS) A4 specification ( 210X297 mm) 564505 A7 _____ B7 V. Description of the invention (3 ~ T '" Can pass an electron, so it will be able to explore the most basic problems in quantum mechanics' and can be used as an excellent element for basic physical research. In addition to discussing basic science, 'single-electron transistors are also valuable electronic components', as they are the most sensitive charge sensors, so in many cases, they can replace the current field-effect transistors and can be used as Low-noise optical sensor. Because its electronic charge is quantified, its circuit can be used as a unit for logical operations, and it is also the best resource for memory components. In addition, single-electron crystals can be used to add The voltage r of the gate “locks” the frequency at which one electron passes, so it can also be used as a “standard current”. However, the Coulomb blocking effect can only be observed in components with very low capacitance values. This It is because the thermal kinetic energy (Kt) will cause interference, help the electrons penetrate the potential energy well, and reduce the blocking effect. Therefore, the charging energy must be much larger than the thermal kinetic energy value, that is, kT < < e2 / 2C where C is the element Therefore, in order to meet the characteristics of this component at room temperature, the capacitance (C) involved must be as low as 10-18 Faraday (F). That is, the size of the object must not exceed a few nanometers ( 5 nanometers), which is a resolution that cannot be achieved with traditional lithographic techniques or even electronic direct write (resolutions of about 10 to 20 nanometers). In recent years Choi et al. "Semicond, Sci. Technol." Published "Fabrication of a dual-gate-controlled Coulomb blockade transistor based on a silicon-on-insulator structure". The article discloses an electron beam lithography process to make a single electron controlled by a gate. Transistor structure. However, if two discrete gates are produced by this method, the electron beam lithography H: \ Hu \ tys \ NDL says \ 80766 \ 80766.doc-6-This paper standard is applicable to Chinese national standard (CNS ) A4 size (210X297 male ) Binding line 564505 A7 _B7_ V. Description of the invention (4) The effect of the proximity effect (Proximity Effect) will cause the two gates to be too far apart (about 100nm), which will cause the quantum well capacitance of the charge to be too large, which can only be The single-charge effect was measured at a very low temperature of 1 5 X 1 (Γ 3 ° K. In addition, the gate patterns made by electron beam lithography and etching are extremely prone to asymmetry, which can cause electrical distortion. Brief description of the invention In view of this, the present invention also uses the electron beam lithography method to form a silicon island with a very small size after multiple lithography, etching and oxidation processes, with a length of less than 50 nm, a width of less than 30 nm, The height is less than 30 nm. Using metal silicide or doped polysilicon spacers isolated on both sides as the drain and source of the transistor, respectively, this method can obtain a smaller and clearer quantum well capacitor to increase the operating temperature. . Supplemented with a silicon on insulator (SOI) wafer at the bottom of the substrate as the bottom gate, or a metal or polysilicon gate on the top of it to adjust the silicon island potential to form a complete Single electron transistor. The overall process is in line with the current ultra-large integrated circuit process. It can be applied to the production of single electron transistors in the future, so it has great industrial application value. The single-electron transistor of a preferred embodiment of the present invention includes a silicon substrate, a quantum well, a first dielectric layer, a nitrided layer, and two spacers. The surface of the broken substrate is an oxide layer. The quantum well system is located on the oxide layer. The first dielectric layer covers the quantum well. The silicon nitride layer is overlying the first dielectric layer. The two spacers are located on both sides of the quantum well and serve as the source and drain of the single electron transistor, respectively. The two second dielectric layers are located between the quantum well and the gap wall, and serve as the source of the single-electron transistor. H: \ Hu \ tys \ NDL says \ 80766 \ 80766.doc " 7-This Paper size applies to China National Standard (CNS) A4 (210X 297 mm) 564505

和沒極與閘極間的能量阻障層。 上述之f子井可為由矽組成之一矽島,兩間隙壁可由鈦 夕化物、組矽化物或鉛矽化物等金屬矽化物,或摻雜硼、 鱗或绅等摻雜多晶矽組成。 本發明之較佳實施例之單電子電晶體之製作方法包含下 列步驟·(1)提供一包含一氧化層且表面為一矽層之矽基 板’(2 )利用電子束微影及蝕刻技術,使該矽層成為長條 狀;(3)生成一第一介電層於該矽層表面;(4)覆蓋一氮化 秒層於該第一介電層;(5 )利用電子束微影及蝕刻技術, 使该矽層形成一矽島,作為該單電子電晶體之量子井;(6 ) 生成兩個第二介電層,其分別位於該矽島之兩側;(7 )覆 盖一多晶硬層;(8)蚀刻該多晶矽層,使其於該矽島兩側 形成兩多晶矽間隙壁,分別作為該單電子電晶體之源極和 沒極;(9 )覆蓋一金屬層;及(1 〇 )進行回火,使該多晶秒 間隙壁成為金屬矽化物間隙壁,以降低其電阻。 該多晶矽間隙壁亦可摻雜硼、磷或砷而形成摻雜多晶矽 間隙壁來降低電阻值,以取代金屬矽化物間隙壁。 凰式之簡軍說明 本發明將依照後附圖式加以說明,其中: 圖 1U)、圖 2(a)、圖 3(a)、圖 4、圖 5、圖 6(a)、圖 7、 圖8(a)、圖9及圖10顯示本發明之單電子電晶體之製作流 程;及 圖1(b)、圖2(b)、圖3(b)、圖6(b)及圖8(b)分別為圖 1(a)、圖2(a)、圖3(a)、圖6(a)及圖8(a)之俯視圖。 H:\Hu\tys\NDL 中說\80766\80766.doc - 8 _ 本纸張尺度適用中國國家標竿(CNS) A4規格(210X297公爱] "'' ----— 564505 五、發明説明( 錢 10 半導體元件 12 SOI基板 101 矽底材 102 埋入氧化層 103 碎層 103, 矽島 104 第一介電層 105 氮化矽層 106 第二介電層 107 多晶秒層 107' 多晶矽間隙壁 107, •間隙壁 108 金屬層 109 上多晶矽閘 110 多晶矽焊墊 110, 矽化物焊塾 較倖复說明 本焱明將依照單電子電晶體製程各步驟及其相對應圖式 說明如下: 參照圖1(a),首先,在一 S0I基板12之一矽層1〇3上成 長氧化秒,藉此將原本約5 〇 n m厚之矽層1 〇 3減薄至小於 3〇nm。利用電子束微影技術將該矽層1〇3蝕刻成線寬小於 50 nm之長條細線,之後再利用稀釋氫氟酸(hf)去除該矽 層1 〇 3表面之氧化碎,同時將該珍層1 〇 3之線寬進一步縮 減至小於30nm,至此形成一包含一矽底材101、一埋入氧 化層102、一矽層1〇3之半導體元件1〇。圖丨⑼)係圖1(^) 之俯視圖,為求圖式之清晰及便於與後續圖式比對說明, 圖1(b)中僅顯示該蝕刻後呈現長條狀之該矽層1〇3,而該 碎基板101及埋入氧化層102則未顯示出。 參照圖2 ( a ),接著進爐管以熱氧化的方式,將該矽層 103表面生成一厚度介於5-10nm之一第一介電層1〇4。之 H:\Hu\tys\NDL 中說\80766\80766.doc - 9 ~ 本紙張尺度適用中國國家標竿(CNS) A4規格(210X297公釐) 564505 A7An energy barrier between the sum pole and the gate. The f-well mentioned above may be a silicon island composed of silicon, and the two spacers may be composed of metal silicides such as titanium compounds, group silicides, or lead silicides, or doped polycrystalline silicon doped with boron, scale, or silicon. A method for manufacturing a single electron transistor according to a preferred embodiment of the present invention includes the following steps: (1) providing a silicon substrate including an oxide layer and a silicon layer on its surface; (2) using electron beam lithography and etching techniques, Make the silicon layer long; (3) Generate a first dielectric layer on the surface of the silicon layer; (4) Cover a nitride layer on the first dielectric layer; (5) Use electron beam lithography And etching technology, the silicon layer is formed into a silicon island as a quantum well of the single electron transistor; (6) two second dielectric layers are generated, which are respectively located on both sides of the silicon island; (7) covering one A polycrystalline hard layer; (8) etching the polycrystalline silicon layer to form two polycrystalline silicon spacers on both sides of the silicon island, which serve as a source and an electrode of the single electron transistor, respectively; (9) covering a metal layer; and (10) Tempering is performed to make the polycrystalline second spacer wall a metal silicide spacer wall to reduce its electrical resistance. The polycrystalline silicon spacer can also be doped with boron, phosphorus or arsenic to form a doped polycrystalline silicon spacer to reduce the resistance value to replace the metal silicide spacer. Brief description of the Phoenix style The present invention will be described in accordance with the following drawings, in which: Figure 1U), Figure 2 (a), Figure 3 (a), Figure 4, Figure 5, Figure 6 (a), Figure 7, Fig. 8 (a), Fig. 9 and Fig. 10 show the manufacturing process of the single electron transistor of the present invention; and Fig. 1 (b), Fig. 2 (b), Fig. 3 (b), Fig. 6 (b) and Fig. 8 (b) Top views of Figs. 1 (a), 2 (a), 3 (a), 6 (a), and 8 (a), respectively. H: \ Hu \ tys \ NDL says \ 80766 \ 80766.doc-8 _ This paper size is applicable to China National Standard (CNS) A4 (210X297 public love) " '' -------- 564505 V. DESCRIPTION OF THE INVENTION (Qian 10 Semiconductor element 12 SOI substrate 101 Silicon substrate 102 Buried oxide layer 103 Fragment layer 103, Silicon island 104 First dielectric layer 105 Silicon nitride layer 106 Second dielectric layer 107 Polycrystalline second layer 107 ' Polycrystalline silicon spacers 107, • spacers 108, metal layers 109, polysilicon gates 110, polycrystalline silicon pads 110, and silicide pads. Fortunately, this description will be based on the steps of the single-electron crystal process and its corresponding diagrams as follows: Referring to FIG. 1 (a), first, an oxidation second is grown on a silicon layer 10 of a SOI substrate 12 to thereby reduce the thickness of the silicon layer 10, which is originally about 50 nm, to less than 30 nm. Electron beam lithography technology etched the silicon layer 10 into long thin lines with a line width of less than 50 nm, and then used diluted hydrofluoric acid (hf) to remove the oxidized debris on the silicon layer 103 surface. The line width of layer 103 was further reduced to less than 30 nm, and a silicon substrate 101 and an embedded oxygen layer were formed. The semiconductor element 10 of the layer 102 and a silicon layer 103 is shown in the top view of FIG. 1 (^). In order to obtain clarity of the diagram and facilitate comparison with subsequent diagrams, FIG. 1 (b) Only the silicon layer 10 that is long after the etching is shown, and the broken substrate 101 and the buried oxide layer 102 are not shown. Referring to FIG. 2 (a), then the furnace tube is thermally oxidized. A first dielectric layer 104 having a thickness of 5-10 nm is formed on the surface of the silicon layer 103. H: \ Hu \ tys \ NDL says 8080 \ 80766.doc-9 ~ This paper is applicable to China National Standard (CNS) A4 (210X297 mm) 564505 A7

该弟一介電層104表面沈積一厚度介於5 0-15 〇nm< 氮化砂層105。圖2(b)係圖2⑷之上視圖,同樣為求圖式 之清晰,僅列出該秒層1〇3及覆蓋於其上之該氮化砂層 1 0 5 ,而得清楚得知其相對位置關係。 參照圖3⑷及其俯視圖之圖3(b),利用電子束微影技 術,沿著垂直於長條狀之該矽層1〇3之縱向方向,將該氮 化矽層105、第一介電層1〇4及矽層1〇3構成之堆疊結構蝕 刻成長度小於50謂的細線,此時該矽層1〇3經過這兩次蝕 刻後已經變成埋在該氮化矽層i 〇 5下的小方塊了,此由多 晶矽組成的小方塊即稱為矽島1〇3,,作為單電子電晶體之 量子井。該珍島1〇3’之長小於5〇nm,寬小於3〇nm或介於 l〇-2〇nm之間,高即為該矽層1〇3之厚度,即小於 3 0 nm 〇 參照圖4,接著再一次進爐管,使得該矽島丨〇 3,外露的 邵分形成厚約2-5nm之第二介電層106。因熱氧化的原理 是利用於爐管中通入氧氣來結合該矽島1〇3,表面之矽而產 生孩第二介電層丨〇 6 ,故該矽島丨〇 3,表面之矽將被消耗, 而得進一步再縮減矽島i 〇 3,體積,即縮短該矽島i 〇 3,之長 度,並於該矽島103’兩側形成電子穿隧之能障。 參照圖5,沈積一層厚約1 〇 〇 _ 3 〇 〇 n m之多晶矽層i 〇 7。 參照圖6(a)及圖6(b),圖6(b)係圖6(a)之俯視圖。蝕 刻該多晶矽層1 0 7,而於該矽島丨〇 3,兩側形成兩多晶矽間 隙壁(spacer ) 1 0 7 ’。因該多晶矽層丨〇 7本身具有高低差 (topography),在靠近該矽島丨〇3,之膜厚較厚,故經適當 H:\Hu\tys\NDL 中說\80766\80766.doc - 10 _ :木紙張尺度適财關家標準(CNS) Μ規格(,哪公爱) ~—------- 564505 A7A silicon nitride sand layer 105 is deposited on the surface of the dielectric layer 104 to a thickness of 50 to 150 nm. Fig. 2 (b) is the top view of Fig. 2 (b). Similarly, for the sake of clarity, only the second layer 103 and the nitrided sand layer 105 covered thereon are listed. Positional relationship. Referring to FIG. 3 (b) and FIG. 3 (b) of the top view, using the electron beam lithography technology, the silicon nitride layer 105 and the first dielectric The stacked structure composed of the layer 104 and the silicon layer 103 is etched into a thin line with a length of less than 50 nanometers. At this time, the silicon layer 10 has been buried under the silicon nitride layer i 05 after these two etchings. The small block made of polycrystalline silicon is called silicon island 103, as a quantum well for a single electron crystal. The length of the Zhendao 103 ′ is less than 50nm, the width is less than 30nm or between 10-20nm, and the height is the thickness of the silicon layer 103, which is less than 30nm. FIG. 4, then enter the furnace tube again, so that the exposed silicon particles of the silicon island 〇 03 form a second dielectric layer 106 with a thickness of about 2-5 nm. Due to the principle of thermal oxidation, the second dielectric layer is formed by combining silicon on the silicon island 103 and silicon on the surface by introducing oxygen into the furnace tube. Therefore, the silicon island on the surface will be silicon After being consumed, it is necessary to further reduce the silicon island i 〇3, the volume, that is, shorten the length of the silicon island i 0 3, and form an energy barrier for electron tunneling on both sides of the silicon island 103 ′. Referring to FIG. 5, a polycrystalline silicon layer i 07 having a thickness of about 100 nm to about 300 nm is deposited. 6 (a) and 6 (b), FIG. 6 (b) is a top view of FIG. 6 (a). The polycrystalline silicon layer 10 is etched, and two polycrystalline silicon spacers 1 0 7 ′ are formed on both sides of the silicon island. Because the polycrystalline silicon layer 〇〇7 itself has a topography, the film thickness is relatively thick near the silicon island 〇〇3, so after appropriate H: \ Hu \ tys \ NDL said \ 80766 \ 80766.doc- 10 _: Wood and Paper Standards (CNS) Μ Specifications (, which public love) ~ ----------- 564505 A7

時間的蚀刻’可自然形成該多晶矽間隙壁ι〇7,。因其不需 要光阻,且蚀刻後之結構具有對稱之特性,又稱為自我^ 準蚀刻(self-aligned etching) *。另夕卜,亦可事先利用微影 技術定義一光阻圖案,而於蝕刻該多晶矽層1〇7以形成咳 多晶珍間隙壁i 0 7,時同時形成兩個多晶碎焊塾(b〇nding pad) 110。因該焊墊110與該矽島1〇31係屬於橫向之相對 位置,為便於說明,故僅於圖6(b)中表示,。 參照圖7,然後再利用物理氣相沉積方式(physkal Deposition,PVD )濺鍍一厚度約介於5 〇_丨〇 〇nm之金屬層 1〇8,其可由鈦、妲或鈷等金屬組成。 參照圖8(a)及圖8(b),其中圖8(b)係圖8(a)之俯視 圖。接著進行回火製程,藉由該多晶矽間隙壁1〇7,與該金 屬層1 0 8間原子的擴散及結合,形成金屬矽化物而成為間 隙壁1 0 7 ",以作為源極及汲極之用;該焊墊丨丨〇則形成矽 化物焊墊1 1 〇,,即進行所謂的自行對準矽化物(以仏 aligned Sihcide ’ Salicide )製程,以進一步降低結構之電阻 值。然後再將該埋入氧化層丨〇 2上之該金屬層i 〇 8利用雙 氧水(出〇2 )及氨水(NH4〇h)等混合溶液以濕蝕刻的方式 去除。另外,該間隙壁1 〇 7,,亦可由摻雜多晶矽(d〇ped polysilicon )組成’即利用摻雜(doping )技術將該多晶碎間 隙壁1 0 7 ’形成掺雜多晶矽,此時即不需沈積該金屬層 1 〇 8。該多晶矽間隙壁1 〇 7,可依元件設計需求摻入磷或砷 以形成η型矽,或摻入硼以形成p型矽。 至此’本發明之單電子電晶體之結構已完成,以下係主 裝 訂Etching over time can naturally form the polycrystalline silicon spacer wall 107. Because it does not require photoresist, and the etched structure is symmetrical, it is also called self-aligned etching *. In addition, a photoresist pattern can also be defined in advance using lithography technology, and when the polycrystalline silicon layer 107 is etched to form a polycrystalline silicon barrier wall i 0 7, two polycrystalline shattered solder pads are simultaneously formed (b 〇nding pad) 110. Because the pad 110 and the silicon island 1031 are relative positions in the lateral direction, for the convenience of explanation, they are only shown in FIG. 6 (b). Referring to FIG. 7, a physical vapor deposition method (physkal deposition (PVD)) is then used to sputter a metal layer 108 with a thickness of about 50 nm, which may be composed of metals such as titanium, hafnium, or cobalt. 8 (a) and 8 (b), FIG. 8 (b) is a top view of FIG. 8 (a). Next, a tempering process is performed, and through the diffusion and bonding of atoms between the polycrystalline silicon spacer wall 107 and the metal layer 108, a metal silicide is formed to become the spacer wall 107 as a source and a sink. This pad is used to form a silicide pad 1 1 10, which is a so-called self-aligned silicide ("aligned Sihcide 'Salicide") process to further reduce the resistance of the structure. Then, the metal layer i 08 embedded in the oxide layer 02 is removed by wet etching using a mixed solution of hydrogen peroxide (out 02) and ammonia (NH 4 0h). In addition, the partition wall 107 may also be composed of doped polysilicon. That is, the polycrystalline broken partition wall 107 is formed into doped polycrystalline silicon by using doping technology. It is not necessary to deposit the metal layer 108. The polycrystalline silicon spacers 107 can be doped with phosphorus or arsenic to form n-type silicon or boron to form p-type silicon according to the design requirements of the device. So far, the structure of the single electron transistor of the present invention has been completed, and the following is the main binding

564505564505

要屬於源極、汲極及閘極之連線製程,其主要係關於各元 件或導線於該S 〇 J基板i 2平面上之相互關係,故直接利用 孩半導體元件1 〇之俯視圖加以說明。 參照圖9,接著再利用一道微影及其後續之蝕刻步驟將 作為源極及汲極之位於該矽島! 〇 3 ’兩側的間隙壁丨〇 7 "隔絕 開,形成電晶體之源極及汲極各自連接至該矽化物焊墊 1 1 〇 ’乏導電通路,以避免短路。 參照圖1 0,最後利用習知的半導體製程技術,製作上多 晶矽閘109、接觸洞(contact)及其後續之金屬導線連線製 程’將該半導體元件1 〇的各端點以金屬線外接出來,而完 成單電子電晶體的製作。實際上,亦可將該矽底材丨〇 i直 接作為閘極以調整該矽島丨〇 3,之電位。 上述實施例係利用S 0 I基板來製作單電子電晶體,其實 亦可使用於一矽晶圓上直接成長厚度為2〇〇·3〇〇ηιη之氧 化層所形成之一矽基板替代,換言之,只要是表面具有一 一氧化層之矽基板即可使用。該第一介電層1〇4及第二介 電層106可由氧化矽組成。 本發明之技術内容及技術特點巳揭示如上,然而熟悉本 項技術之人士仍可能基於本發明之教示及揭示而作種種不 背離本發明精神之替換及修飾。因此,本發明之保護範圍 應不限於實施例所揭示者,而應包括各種不背離本發明之 替換及修飾,並為以下之申請專利範圍所涵蓋。 H:\Hu\tys\NDL 中說\80766\80766.doc - 12- 7紙張尺度適财關家辟(⑽)^規格(祕挪公着)To belong to the connection process of the source, drain, and gate, it is mainly related to the mutual relationship of each element or wire on the plane of the S o substrate i 2, so the top view of the semiconductor device 10 is used to explain it directly. Referring to FIG. 9, a lithography and subsequent etching steps will be used as the source and drain of the silicon island! The spacers on both sides of 〇 3 ′ are isolated, and the source and drain of the transistor are respectively connected to the silicide pad 1 1 ′ ′ lacking a conductive path to avoid a short circuit. Referring to FIG. 10, finally, a conventional semiconductor process technology is used to fabricate an upper polysilicon gate 109, a contact, and a subsequent metal wire connection process. The terminals of the semiconductor element 10 are externally connected with metal wires. , And complete the production of a single electron transistor. In fact, the silicon substrate can also be directly used as a gate electrode to adjust the potential of the silicon island. The above embodiment uses a S 0 I substrate to make a single electron transistor. In fact, it can also be replaced by a silicon substrate formed by directly growing an oxide layer with a thickness of 200.300 nm on a silicon wafer, in other words As long as it is a silicon substrate with an oxide layer on the surface, it can be used. The first dielectric layer 104 and the second dielectric layer 106 may be composed of silicon oxide. The technical content and technical features of the present invention are disclosed as above. However, those skilled in the art may still make various substitutions and modifications based on the teaching and disclosure of the present invention without departing from the spirit of the present invention. Therefore, the protection scope of the present invention should not be limited to those disclosed in the embodiments, but should include various substitutions and modifications that do not depart from the present invention, and are covered by the following patent application scope. H: \ Hu \ tys \ NDL says \ 80766 \ 80766.doc-12- 7 Paper size is suitable for financial affairs and family (⑽) ^ Specifications

Claims (1)

564505 A8 B8 C8 D8 六、申請專利範圍 1 · 一種單電子電晶體,包含: 石夕基板’其表面為一氧化層; 一量予井,位於該氧化層上; 一第一介電層,覆蓋於該量子井上; 一氮化矽層,覆蓋於該第一介電層上; 兩間隙壁,位於該量子井兩側,分別作為該單電子電 晶體之源極和汲極;及 兩第二介電層,位於該量子井及該間隙壁之間,分別 作為該單電子電晶體之源極和汲極與量子井間的能量阻 障層。 2 ·如申請專利範圍第丨項之單電子電晶體,其中該矽基板 係一 S 0 I基板。 3 ·如申請專利範圍第1項之單電子電晶體,其中該量子井 係一由矽組成之矽島。 4 ·如申請專利範圍第3項之單電子電晶體,其中該矽島之 長度小於5 Onm,寬度小於3 Onm,高度小於3 〇nm。 5 .如申清專利範圍第1項之單電子電晶體,其中該間隙壁 係由金屬矽化物組成。 6 .如申請專利範圍第1項之單電子電晶體,其中該間隙壁 係包含鈦矽化物、钽矽化物及鈷矽化物中之_者。 7 ·如申請專利範圍第1項之單電子電晶體,其中該間隙壁 係由摻雜多晶矽組成。 8 ·如申請專利範圍第7項之單電子電晶體,其中該摻雜多 晶矽係摻雜磷、砷及硼中之一者。 H:\Hu\tysVNDL 中說\80766\8〇766d〇e - 13 _ 本紙張尺度適用fii^_(CNS)A4規格㈣χ挪公& '請先M.讀背面之注意事項再填寫本頁) - -------^---------^ I 經濟部智慧財產局員工消費合作社印製 564505 8888 ABCD 六、申請專利範圍 9 ·如申請專利範圍第1項之單電子電晶體,其中 電層係由氧化矽組成。 10 ·如申請專利範圍第1項之單電予電晶體,其中該 電層之厚度介於5-i〇nm。 ii.如申請專利範圍第i項之單電子電晶體,其中該氮化 層之厚度介於50-150nm。 如申請專利範圍第i項之單電子電晶體,其中該第二 電層係由氧化矽組成。 13·如申請專利範圍第i項之單電子電晶體,其中該第二 電層之厚度介於2-5nm。 1 4 · 一種單電子電晶體之製作方法,包含下列步驟· 提供一包含一氧化層且表面為一矽層之碎基板. 利用電子束微影及蝕刻技術,使該矽層成為 介 介 矽 介 介 (‘請先閱·讀背面之注音?事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 妝· 長條 生成一第一介電層於該矽層表面; 覆蓋一氮化矽層於該第一介電層; 利用電子束微影及蝕刻技術,使該矽層形成— 島; y矽 生成兩個第二介電層,其分別位於該矽島之兩側,· 覆蓋一多晶矽層; 触刻該多晶石夕層,使其於該砂島兩側形成兩多晶碎 間隙壁; 覆蓋一金屬層;及 進行回火,使該多晶矽間隙壁成為金屬矽化物間隙 H:\Hu\tys\NDL 中說\80766\80766.doc _ _ 14 · 私紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公髮) Α» Β8 C8 D8564505 A8 B8 C8 D8 VI. Patent application scope 1 · A single electron transistor including: Shi Xi substrate 'the surface of which is an oxide layer; a quantity of wells located on the oxide layer; a first dielectric layer, covering On the quantum well; a silicon nitride layer covering the first dielectric layer; two gap walls, located on both sides of the quantum well, respectively serving as a source and a drain of the single electron transistor; and two second A dielectric layer is located between the quantum well and the gap wall, and serves as an energy barrier layer between the source and the drain of the single electron transistor and the quantum well, respectively. 2. The single-electron transistor according to item 丨 of the patent application, wherein the silicon substrate is a S 0 I substrate. 3. The single-electron transistor according to item 1 of the patent application, wherein the quantum well is a silicon island composed of silicon. 4. The single-electron transistor according to item 3 of the patent application, wherein the silicon island has a length of less than 5 Onm, a width of less than 3 Onm, and a height of less than 30 nm. 5. The single electron transistor of claim 1 in the patent scope, wherein the spacer is composed of a metal silicide. 6. The single-electron transistor according to item 1 of the application, wherein the spacer comprises one of titanium silicide, tantalum silicide, and cobalt silicide. 7. The single-electron transistor according to item 1 of the application, wherein the spacer is composed of doped polycrystalline silicon. 8. The single-electron transistor according to item 7 of the application, wherein the doped polycrystalline silicon is doped with one of phosphorus, arsenic, and boron. H: \ Hu \ tysVNDL says \ 80766 \ 8〇766d〇e-13 _ This paper size applies to the fii ^ _ (CNS) A4 specification 4χ Norwegian & 'Please read M. Cautions on the back before filling this page )-------- ^ --------- ^ I Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 564505 8888 ABCD VI. Scope of patent application 9 · If the list of item 1 of the scope of patent application An electronic transistor in which the electrical layer is composed of silicon oxide. 10. The single electric pre-transistor according to item 1 of the patent application, wherein the thickness of the electric layer is between 5 and 100 nm. ii. The single-electron transistor according to item i of the patent application, wherein the thickness of the nitride layer is between 50-150 nm. For example, the single-electron transistor of the scope of application for item i, wherein the second electrical layer is composed of silicon oxide. 13. The single-electron transistor according to item i of the application, wherein the thickness of the second electrical layer is between 2-5 nm. 1 4 · A method for manufacturing a single electron transistor, including the following steps: · Provide a broken substrate including an oxide layer and a silicon layer on the surface. The electron beam lithography and etching technology are used to make the silicon layer a dielectric silicon dielectric. ('Please read the note on the back? Matters and then fill out this page) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Makes a long strip of a first dielectric layer on the surface of the silicon layer; Layer on the first dielectric layer; using electron beam lithography and etching technology to form the silicon layer-island; y silicon generates two second dielectric layers, which are located on both sides of the silicon island, respectively, covering one Polycrystalline silicon layer; contacting the polycrystalline stone layer to form two polycrystalline broken spacers on both sides of the sand island; covering a metal layer; and tempering the polycrystalline silicon spacer into a metal silicide gap H: \ Hu \ tys \ NDL says \ 80766 \ 80766.doc _ _ 14 · Private paper standards are applicable to China National Standard (CNS) A4 (210 X 297 public) Α »Β8 C8 D8 、申請專利範圍 經濟部智慧財產局員工消費合作社印製 壁。 1 5 ·如申請專利範圍第1 4項之單電子電晶體之製作方法, 其中該多晶矽層之厚度介於l00-30()nm。 16 ·如申請專利範圍第14項之單電子電晶體之製作方法, 其中該金屬層係利用物理氣相沈積方法形成。 17 ·如申請專利範圍第14項之單電子電晶體之製作方法, 其中該金屬層係由鈦、鈕及鈷中之一者組成。 1 8 ·如申請專利範圍第i 4項之單電子電晶體之製作方法, 其中該金屬層之厚度大於50nm。 1 9 ·如申請專利範圍第丨4項之單電子電晶體之製作方法, 其中該矽層之厚度小於30nm。 20 ·如申請專利範圍第丨4項之單電子電晶體之製作方法, 其中该矽層係另經由一表面氧化步驟以降低其厚度。 21·如申請專利範圍第14項之單電子電晶體之製作^法, 其中孩矽層係另經由一氫氟酸蝕刻步騾以減低其寬 度。 …、 22·如申請專利範圍第14項之單電子電晶體之製作方法, 其中蝕刻該多晶碎層以形成該多晶珍間碎壁時,亦同 時形成兩焊墊。 23.如申請專利範圍第14項之單電子電晶體之製作方法, 其另包含一濕蚀刻步驟以去除於冑氧化層±之該金屬 層。 24_如申請專利範圍第14項之單電子電晶體之製作方法, 其另包含-微影及蝕刻步驟以隔開該兩間隙壁之導電 H:\Hu\tys\NDL 中說\80766\80766.dnr. _ ^ - 本紙張尺度_頂_鮮(CNS)A4驗(成了挪公^ (請先閱讀背面之注意事項再填寫本頁)Scope of patent application Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 15 · The method for manufacturing a single-electron crystal according to item 14 of the scope of patent application, wherein the thickness of the polycrystalline silicon layer is between 100 and 30 () nm. 16. The method for manufacturing a single electron transistor according to item 14 of the application, wherein the metal layer is formed by a physical vapor deposition method. 17. The method for manufacturing a single-electron crystal according to item 14 of the application, wherein the metal layer is composed of one of titanium, a button, and cobalt. 18 · The method for manufacturing a single electron transistor according to item i 4 of the scope of patent application, wherein the thickness of the metal layer is greater than 50 nm. 19 · The method for manufacturing a single-electron crystal according to item 4 of the patent application, wherein the thickness of the silicon layer is less than 30 nm. 20 · The method for manufacturing a single-electron transistor according to item 4 of the patent application, wherein the silicon layer is further subjected to a surface oxidation step to reduce its thickness. 21. The method for manufacturing a single-electron crystal according to item 14 of the patent application, wherein the silicon layer is further subjected to a hydrofluoric acid etching step to reduce its width. …, 22 · The method for manufacturing a single electron transistor according to item 14 of the application, wherein when the polycrystalline broken layer is etched to form the polycrystalline intercrystalline broken wall, two solder pads are also formed at the same time. 23. The method for fabricating a single electron transistor according to item 14 of the application, further comprising a wet etching step to remove the metal layer from the hafnium oxide layer. 24_ If the method for manufacturing a single electron transistor according to item 14 of the scope of the patent application, it further comprises-lithography and etching steps to separate the two conductive walls of the conductive H: \ Hu \ tys \ NDL said \ 80766 \ 80766 .dnr. _ ^-This paper size _ top _ fresh (CNS) A4 inspection (become a Norwegian ^ (Please read the precautions on the back before filling in this page) 564505564505 六、申請專利範圍 通路 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 A如中請專利範圍第14項之單電予電晶體之製作、、 其中該第-介電層係一利用熱氧化法 :去, 層。 < ^化矽 26. 如申請專利範圍第14項之單電子電晶體之製作方、、 其中該第一介電層之厚度介於去, 27. 如申請專利範圍第14項之單電子電晶體之 其中該第二介電層係一利用熱氧化形成之氧化發^法, 28. 如申請專利範圍第14項之單電子電晶體之製作方曰法 其中該第二介電層之厚度介於2_5nm。 彳’ 29·如申請專利範圍第14項之單電子電晶體之製作方法, 其中該多晶矽間隙壁係利用自我對準蝕刻法製成。 3 0 · —種單電子電晶體之製作方法,包含下列步驟: 提供一包含一氧化層且表面為一矽層之矽基板; 利用電子束微影及蚀刻技術,使該碎層成 狀; 生成一第一介電層於該矽層表面; 覆蓋一氮化矽層於該第一介電層; 利用電子束微影及蝕刻技術,使該矽層形成—妙 島; 生成兩個第二介電層,其分別位於該矽島之兩侧· 覆蓋一多晶碎層; I虫刻該多晶妙層,使其於該梦島兩侧形成兩多晶砂 間隙壁;及 -16 - _H:\Hu\tys\NDL 中說\80766\80766.doc - 16 _ 本紙張尺度適用中關家標準(CN$A4規格(21()x297公髮) (請先閱讀背面之注音P事項再填寫本頁) ¾. -------訂---------I 564505 B8 C8 D8 六、申請專利範圍摻雜該多晶矽間隙壁,使其成為摻雜多晶矽間隙 〇3 1 .如專利申請範圍第3 0項之單電子電晶體之製作方法, 其中該摻雜多晶矽間隙壁係摻雜硼、磷及砷中之一 者0 Γ請先閱•讀背面之注意事項再填寫本頁) 訂---------線! 經濟部智慧財產局員工消費合作社印製 H:\Hu\tvs\NDL 中說\80766\80766.doc 17- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)Sixth, the scope of application for patents is printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. A. The production of a single electric transistor in the scope of the patent No. 14 is required. , Floor. < ^ Silicon 26. If the producer of the single-electron crystal of item 14 of the patent application, where the thickness of the first dielectric layer is between, 27. Among the crystals, the second dielectric layer is an oxidative oxidation method formed by thermal oxidation. 28. For example, the method for manufacturing a single-electron crystal in the scope of application for patent No. 14 is a method in which the thickness of the second dielectric layer is At 2_5nm.彳 '29. The method for manufacturing a single-electron transistor according to item 14 of the application, wherein the polycrystalline silicon spacer is made by a self-aligned etching method. 3 0 · — A method for manufacturing a single electron transistor, including the following steps: providing a silicon substrate including an oxide layer and a silicon layer on the surface; using electron beam lithography and etching technology to form the broken layer into a shape; generating A first dielectric layer on the surface of the silicon layer; covering a silicon nitride layer on the first dielectric layer; using electron beam lithography and etching technology to form the silicon layer—Miao Island; generating two second dielectrics Electrical layers, which are located on the two sides of the silicon island, respectively, and covered with a polycrystalline debris layer; I engraved the polycrystalline layer to form two polycrystalline sand barriers on both sides of the dream island; and -16-_H : \ Hu \ tys \ NDL said \ 80766 \ 80766.doc-16 _ This paper size applies the Zhongguanjia standard (CN $ A4 specification (21 () x297)) (please read the note P on the back before filling (This page) ¾. ------- Order --------- I 564505 B8 C8 D8 Sixth, the scope of the patent application is doped with the polycrystalline silicon spacer, making it a doped polycrystalline silicon gap 031. For example, a method for manufacturing a single-electron transistor in the scope of patent application No. 30, wherein the doped polycrystalline silicon spacer is doped with one of boron, phosphorus, and arsenic. 0 Γ • Read the first reading of the Notes on the back to fill out this page) book --------- line! Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs H: \ Hu \ tvs \ NDL said 8080 \ 80766.doc 17- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
TW91123150A 2002-10-07 2002-10-07 Single electron transistor and fabrication method thereof TW564505B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91123150A TW564505B (en) 2002-10-07 2002-10-07 Single electron transistor and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91123150A TW564505B (en) 2002-10-07 2002-10-07 Single electron transistor and fabrication method thereof

Publications (1)

Publication Number Publication Date
TW564505B true TW564505B (en) 2003-12-01

Family

ID=34617954

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91123150A TW564505B (en) 2002-10-07 2002-10-07 Single electron transistor and fabrication method thereof

Country Status (1)

Country Link
TW (1) TW564505B (en)

Similar Documents

Publication Publication Date Title
TWI685967B (en) Epitaxial structures in complementary field effect transistors
TW506085B (en) Method of forming semiconductor device having GAA type transistor
JP5553266B2 (en) Fabrication method of nanowire field effect transistor
JP6035245B2 (en) Method of manufacturing a field effect transistor device
CN102074584B (en) Air-gap grapheme transistor and manufacturing method thereof
TW578201B (en) Semiconductor device having patterned silicon on insulator structure and method for manufacturing semiconductor device
US7652322B2 (en) Split gate flash memory device having self-aligned control gate and method of manufacturing the same
JP2002343938A (en) Single electronic memory element comprising quantum point between gate electrode and single electronic storage element, and manufacturing method thereof
US20080277719A1 (en) Non-volatile memory cell and method of manufacturing the same
CN103563080A (en) Self-aligned carbon electronics with embedded gate electrode
TWI291217B (en) Phase change memory device and method of manufacturing
CN109524465A (en) Semiconductor devices and its manufacturing method
EP0718894B1 (en) Coulomb-blockade element and method of manufacturing the same
TW474006B (en) Permanent semiconductor memory-cell and its production method
CN110534563A (en) A kind of transistor and preparation method thereof with autoregistration feedback grid
TW200527610A (en) Nonvolatile semiconductor memory device having double floating gate structure and method of manufacturing the same
Zhu Semiconductor nanowire MOSFETs and applications
JP2011014753A (en) Semiconductor device
US5972744A (en) Quantum effect device, method of manufacturing the same
JP5841013B2 (en) Semiconductor device
TW564505B (en) Single electron transistor and fabrication method thereof
KR100418182B1 (en) Method for manufacturing a silicon single electron transistor memory device
TWI227516B (en) Nano-electronic devices using discrete exposure method
CN110993694B (en) Two-dimensional thin film field effect transistor for preparing sub-10 nm channel by autoxidation mode
CN110491940B (en) Nanowire transistor based on resonant tunneling and preparation method thereof

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees