TW561552B - Optical grading layer and its manufacturing method - Google Patents

Optical grading layer and its manufacturing method Download PDF

Info

Publication number
TW561552B
TW561552B TW91122293A TW91122293A TW561552B TW 561552 B TW561552 B TW 561552B TW 91122293 A TW91122293 A TW 91122293A TW 91122293 A TW91122293 A TW 91122293A TW 561552 B TW561552 B TW 561552B
Authority
TW
Taiwan
Prior art keywords
layer
scope
item
forming
patent application
Prior art date
Application number
TW91122293A
Other languages
Chinese (zh)
Inventor
Shiue-Li Chen
Wan-Da Fan
Tz-Jian Wang
Ben-Chang Chen
Jung-Yi Shie
Original Assignee
Nat Science Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Science Council filed Critical Nat Science Council
Priority to TW91122293A priority Critical patent/TW561552B/en
Application granted granted Critical
Publication of TW561552B publication Critical patent/TW561552B/en

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A kind of method of forming optical grading layer suitable for use on a substrate is disclosed in the present invention. The invention contains the following steps: forming a dielectric layer on the substrate, in which the dielectric layer contains an upper surface and a lower surface, and the lower surface has an interface with the substrate; and using a gas plasma containing oxygen atoms to process the dielectric layer, so as to form an optical grading layer that is used as an antireflection layer, and has an oxidizing reaction decreasing downwards from the surface during the oxidization procedure. The invention also includes an optical grading layer formed on a substrate and a dielectric layer containing an upper surface and a lower surface, in which the lower surface has an interface with the substrate. The optical grading layer is formed by using gas plasma containing oxygen atoms to process the dielectric layer, and is used as an antireflection layer, so as to have an oxidizing reaction decreasing downwards from the surface during the oxidization procedure.

Description

561552561552

發明領域 本發明係關於半導體微影製程,特別有關於微影製程 =抗反射層,更明破而言,係有關於—種光 其製作方法。 罈队 發明背景 、在微影製程中,為了增加解析度,曝光所需要的光源 便逐漸由G線(波長436 nm)和I線(波長365 nm)波長縮短至 小於250 nm的光源,例如深紫外光的氟化氬(ArF)雷射 (193 nm)及真空紫外光的氟(I?2)雷射(157 nm)等光源。由 於多數的基材例如高反射基材,特別是在深紫外光及真空 紫外光波段處,其反射問題都大過可見光波段,因此其導 ,光阻層發生駐波效應和凹缺(n〇tching)效應將會更加 嚴重’使得微影程序時的圖案轉移可信度大幅降低。此外 由於在此深紫外光波段,工業界生產多使用化學增幅 (Chemical Amplified)型光阻,此種光阻對於微小曝光量 的變化十分敏感,因此,在深紫外光及真空紫外光波段如 何製造高效能的光阻抗反射層是非常重要的。 為了改善特別是高反射基材在利用低波長光源進行微 影時產生如上所述缺點,便有許多方法被提出,其中之一 便是被工業界廣泛使用的底部抗反射層(BARC),它主要是 用來減小阻劑/基材界面間的反射光。 第1圖係顯示習知的一種利用底抗反射層來改善阻劑/ 基材界面間的反射光之底部抗反射結構剖面圖,其中標號 1 0為一基材’例如矽或金屬等高反射基材。為了消除此高FIELD OF THE INVENTION The present invention relates to a semiconductor lithography process, and more particularly to a lithography process = an anti-reflection layer. More specifically, it relates to a kind of light and a method for making the same. Background of the altar team. In the lithography process, in order to increase the resolution, the light source required for exposure is gradually reduced from G-line (wavelength 436 nm) and I-line (wavelength 365 nm) to less than 250 nm, such as deep Ultraviolet light argon fluoride (ArF) laser (193 nm) and vacuum ultraviolet light fluorine (I? 2) laser (157 nm). Since most substrates, such as highly reflective substrates, especially in the deep ultraviolet and vacuum ultraviolet light bands, have reflection problems that are larger than those in the visible light band, their guiding, standing wave effects and notches in the photoresist layer (n. The "tching" effect will be more serious, which greatly reduces the reliability of pattern transfer during the lithography process. In addition, because of the use of chemically amplified photoresistors in the production of deep ultraviolet light in this industry, this type of photoresist is very sensitive to small exposure changes. Therefore, how to make it in deep ultraviolet and vacuum ultraviolet light High-efficiency optical impedance reflective layers are very important. In order to improve the disadvantages mentioned above when lithography using low-wavelength light sources, especially for highly reflective substrates, many methods have been proposed. One of them is the bottom anti-reflection layer (BARC), which is widely used in the industry. It is mainly used to reduce the reflected light at the resist / substrate interface. Figure 1 is a cross-sectional view of a conventional anti-reflection structure at the bottom using an anti-reflection layer to improve the reflected light at the resist / substrate interface, where reference numeral 10 is a substrate, such as silicon or metal, with high reflection Substrate. To eliminate this height

〇522-8457TWF(N);dwwang.ptd 第 5 頁 561552 五、發明說明(2) 反射基材在微影時產生反光,而造成如上所述之駐波效應 以及凹缺(notching)效應,乃在基材10表面覆蓋一底部 抗反射層11 ,然後再塗佈一阻劑層1 2於底部抗反射層11 上。藉此方式,在微影程序時,底部抗反射層Η的存在可 使在阻劑層1 2 /底部抗反射層11界面的反射光與底部抗反 射層11/基材10界面的反射光產生破壞性干涉,將可降低 基材10產生的反射光,避免產生會影響微影可信度之駐波 和凹缺(notching)效應。 然而,上述傳統的底部抗反射層通常僅包括單一層, 且為了使在阻劑層12/底部抗反射層11界面的反射光與底 部抗反射層11/基材10界面的反射光產生破壞性干涉,底 部抗反射層1 1的厚度必須依照入射光(未顯示於圖面)的波 長與底部抗反射層11的折射率精準控制,但是底材10常因 前製程的因素造成表面有各種凹凸的現象,而使底部抗反 射層11的厚度因在底材1〇上位置的不同而有變動而難以控 制’而使上述降低基材10產生的反射光以避免產生會影響 微影可信度之駐波和凹缺效應的效果不佳。 有鑑於此,雙層或多層結構的底部抗反射層被發展出 來,例如第2圖所示,基材20上的底部抗反射層21共有 21a、21b、21c、21d、21e等五層結構。而該雙層或多層 結構的底部抗反射層中,各層之間的光學性質差異通常係 以上層為消光係數(Extinction Coefficient)及折射率較 小的材料,愈下層的材料,則消光係數及折射率愈大,以 達到理想的消除微影製程反射光的目的。而上述雙層或多〇522-8457TWF (N); dwwang.ptd Page 5 561552 5. Description of the invention (2) The reflective substrate generates light reflection during lithography, which causes the standing wave effect and the notching effect as described above. A surface of the substrate 10 is covered with a bottom anti-reflection layer 11, and then a resist layer 12 is coated on the bottom anti-reflection layer 11. In this way, during the lithography process, the presence of the bottom antireflection layer Η can cause the reflected light at the interface of the resist layer 1 2 / bottom antireflection layer 11 and the reflected light at the bottom antireflection layer 11 / substrate 10 interface to generate. Destructive interference can reduce the reflected light generated by the substrate 10 and avoid standing wave and notching effects that can affect the reliability of lithography. However, the above-mentioned conventional bottom anti-reflection layer usually includes only a single layer, and in order to make the reflected light at the interface of the resist layer 12 / bottom anti-reflection layer 11 and the reflected light at the interface of the bottom anti-reflection layer 11 / substrate 10 destructive. Interference, the thickness of the bottom anti-reflection layer 11 must be accurately controlled according to the wavelength of the incident light (not shown in the figure) and the refractive index of the bottom anti-reflection layer 11, but the substrate 10 often has various irregularities on the surface due to the factors of the previous process Phenomenon, and the thickness of the bottom anti-reflection layer 11 is changed due to the difference in position on the substrate 10, which is difficult to control. Therefore, the above-mentioned reduction of the reflected light generated by the substrate 10 is avoided to avoid affecting the reliability of lithography. The standing wave and notch effects are not as effective. In view of this, the bottom anti-reflection layer of a double-layer or multi-layer structure has been developed. For example, as shown in FIG. 2, the bottom anti-reflection layer 21 on the substrate 20 has five layers such as 21a, 21b, 21c, 21d, and 21e. In the bottom anti-reflection layer of the double-layer or multi-layer structure, the difference in optical properties between the layers is usually that the upper layer is a material with an extinction coefficient and a lower refractive index, and the lower the material, the extinction coefficient and refraction The larger the rate, the better the purpose of eliminating the reflected light in the lithography process. And the above two layers or more

0522-8457TWF(N);dwwang.p t d 5615520522-8457TWF (N); dwwang.p t d 561552

層結構的底部抗反 薄膜光學特性不同 複雜度、與成本。 太多,通常不大於 射層必須經由製程條 的目的,如此也增加 因此實際應用上,所 五層。 件的改變,來達到 了製程時間、製程 製作的層數也不會 而本發明的特徵之一,係提供一種光學漸變層及装制 作方法,以含氧原子的氣體電漿來處理單層的底:反土 層,得到無限多層的光學漸變層,其抗:邛抗反射 从苗成—▲ 丹沉反射的效果較傳娇The anti-reflection film at the bottom of the layer structure has different optical characteristics, complexity, and cost. Too much, usually no larger than the purpose of the radiation layer must go through the process bar, so it also increases so in practical applications, all five layers. Changes in the components are achieved to achieve the process time and the number of layers produced by the process. One of the features of the present invention is to provide an optically graded layer and a method for manufacturing the same. Bottom: Anti-soil layer, get infinite multilayer optical gradient layer, its anti: 邛 anti-reflection from Miaocheng-▲ Dan Shen reflection effect is better than Chuanjiao

=底部抗反射層為㊣,且製程複雜度較 H 層結構的底部抗反射層為低,且製程時間與成本降多 低0 干 社谨ΐϊΐ利用料外光微影製程定義小於180⑽ :構時’ Α 了減少高反射底材所造成阻劑内曝光不均的現 象,通常外加的底部抗反射層為氮氧化矽為基礎的材料, 但是這些材料在微影製程中曝後烘烤(PEB)步驟時會釋 放出鹼性物質,因此會破壞化學增幅型光阻的解析度。若 是使用單層的有機底部抗反射層,則必須開發出新的適用 於深紫外光的有機材料與製程。 而本發明的特徵之二,係提供一種光學漸變層及其製 作方=,以含氧原子的氣體電漿來處理單層的底部抗反射 層’得到無限多層的光學漸變層的同時也對底部抗反射層 的表面進行改質,使上述光學漸變層在微影製程中曝後烤 步驟時’減少驗性物質的釋放,避免化學增幅型光阻的解 析度受到破壞。 發明簡述= The bottom anti-reflection layer is ㊣, and the process complexity is lower than the bottom anti-reflection layer of the H-layer structure, and the process time and cost are reduced. 0 Ganshe would like to use the out-of-light lithography process definition to be less than 180⑽ 'Α Reduces the uneven exposure in the resist caused by highly reflective substrates. Usually the bottom anti-reflection layer is a silicon oxynitride-based material, but these materials are baked after exposure in the lithography process (PEB). The alkaline substance is released during the step, which will destroy the resolution of the chemically amplified photoresist. If a single-layer organic bottom anti-reflection layer is used, new organic materials and processes for deep ultraviolet light must be developed. The second feature of the present invention is to provide an optically graded layer and its preparation method. A single-layer bottom anti-reflection layer is treated with a gas plasma containing oxygen atoms to obtain an infinite number of optically graded layers. The surface of the anti-reflection layer is modified, so that the optical gradient layer in the photolithography process is exposed during the post-baking step to 'reduce the release of diagnostic substances and avoid the resolution of the chemically amplified photoresist from being damaged. Brief description of the invention

0522-8457TWF(N);dwwang.ptd 第7頁 5615520522-8457TWF (N); dwwang.ptd Page 7 561552

本發明之目的係提供一種光學漸變層及其製作方法, 以含氧原子的氣體電漿來處理單層的底部抗反射層,得到 多層的光學漸變層,其抗反射的效果較傳統的單層底 部抗反射層為佳,且製程複雜度較製備雙層或多層結構的 底部抗反射層為低,且製程時間與成本也可降低。 、本發,之另一目的係提供一種光學漸變層及其製作方 ^以含氧原子的氣體電漿來處理單層的底部抗反射層, 得到無限多層的光學漸變層的同時也對底部抗反射層的表 面進行改質,使上述光學漸變層在微影製程中曝後烤步驟 $,減少鹼性物質的釋放,避免化學增幅型光阻的解析度 為了達成本發明之上述目 光學漸變層之方法,適用於一 於上述基材上形成一介電質, 其中上述下表面係與上述基材 氣體電聚處理上述介電質,以 質漸次變化的光學漸變層。 的,本發明係提供一種形成 基材之上,包含下列步驟: 包含一上表面與一下表面, 交界,以及以一含氧原子的 形成一作為抗反射層,且材 成於另1 卜从本發明更以上述方法提供—種光學漸變層,形 成^-基材之上,包括:於上述基材上形成有— = 面與一下表面,*中上述下表面係與上述基材 = 以一含氧原子的氣艎電漿處理上述介電質所形 成的一作為抗反射層,且氧化程度由上 降低的光學漸變層。 k上表面向下逐漸 實施例The object of the present invention is to provide an optically graded layer and a method for manufacturing the same. The bottom layer of a single layer is treated with a gas plasma containing oxygen atoms to obtain a multilayered optically graded layer. The bottom anti-reflection layer is better, and the process complexity is lower than that of the bottom anti-reflection layer for preparing a double-layer or multi-layer structure, and the process time and cost can also be reduced. Another purpose of the present invention is to provide an optically graded layer and a method for making the same ^ A single-layer bottom anti-reflection layer is treated with a gas plasma containing oxygen atoms to obtain an infinite number of optically graded layers while also resisting the bottom The surface of the reflective layer is modified, so that the optical gradient layer is baked in the photolithography process after the exposure step, reducing the release of alkaline substances, and avoiding the resolution of the chemically amplified photoresist. The method is suitable for forming a dielectric on the substrate, wherein the lower surface is an optically graded layer in which the dielectric is electropolymerized with the substrate gas to change the quality gradually. The present invention provides a method for forming a substrate, including the following steps: including an upper surface and a lower surface, an interface, and an oxygen-containing atom-forming layer as an anti-reflection layer, and the material is formed in another The invention further provides the above-mentioned method—an optically graded layer formed on a substrate, including: on the substrate, a surface and a lower surface are formed, the lower surface of the above and the substrate are formed by An optically-graded layer in which an oxygen atom gas plasma is used to treat one formed by the above dielectric as an anti-reflection layer, and the degree of oxidation is reduced from above. k the upper surface gradually downwards

561552 五、發明說明(5) " " ' " ----- /第3圖所示為在本發明之較佳實施例中,光學漸變層 之形成步驟與結構。 曰 。月參考第3A圖,在基材30,可以是金屬或半導體基 材’例如碎基材上,形成有厚度為約15 nm〜100 ηπι , ί好 為約30 nm、材質可為氮化物、碳化物、氮氧化物、碳氧 化物或上述之組合,較好為氮氧化矽的單層介電質抗反射 層31。再以含氧原子的氣體電漿33,較好為使用 2〇電漿,處理單層介電質抗反射層31 ;其中將含氧原子/ 的氣體電漿33的功率設定為100〜80 0瓦,較好為1〇〇〜4〇〇 瓦’處理時間為約2〜30分鐘,較好為2〜1〇分鐘;可處理的 深度可為1 nm~100 nm,視單層介電質抗反射層31的厚度 ,製程需要而定。只須施以簡單的電漿處理步驟,就可以 得到如第3B圖所示之光學漸變層34。 卜接下來請參考第4圖,第4亂所示為在本發明之較佳實 轭例中,沿第3B圖中之線段a A, C氧原子含量變化。其中 縱座標為氧原子含量數量百分比,以線性座標標示;橫座 標為光學漸變層34之縱深,以A點原點,b點為縱深約3〇 咖處、,以線性座標標示。其中在本發明之較佳實施例中, 在縱深為3〜10 nm範圍内,氧原子含量係漸次變化,可得 到層數相當於無限多層之光學漸變層。 接下來清參考第5圖,第5圖所示為在本發明之較佳實 施例中,在不同微影光線的入射光波長下,比較底部抗反 射層在電漿處理前後的反射率;其中縱座標為反射率,以 線性座標標示;而橫座標為微影入射光波長,以線性座標561552 V. Description of the invention (5) " " '" ----- / Figure 3 shows the steps and structure of forming the optically graded layer in the preferred embodiment of the present invention. Said. Referring to FIG. 3A, the substrate 30 may be a metal or semiconductor substrate. For example, a broken substrate is formed with a thickness of about 15 nm to 100 nm, preferably about 30 nm, and the material may be nitride or carbonized. It is preferably a single-layer dielectric anti-reflection layer 31 made of silicon nitride oxide, carbon oxide, or a combination thereof. Then, a single-layer dielectric anti-reflection layer 31 is treated with a gas plasma 33 containing oxygen atoms, preferably a 20 plasma; wherein the power of the gas plasma 33 containing oxygen atoms / is set to 100 ~ 80 0 Watts, preferably 100 to 400 Watts' processing time is about 2 to 30 minutes, preferably 2 to 10 minutes; the processing depth can be 1 nm to 100 nm, depending on the single-layer dielectric The thickness of the anti-reflection layer 31 depends on the manufacturing process. By simply applying a simple plasma treatment step, the optically graded layer 34 shown in Fig. 3B can be obtained. Next, please refer to FIG. 4, which shows the change of the oxygen atom content along the line a, C in FIG. 3B in the preferred yoke example of the present invention. Among them, the vertical coordinate is the percentage of the content of oxygen atoms, which is indicated by a linear coordinate; the horizontal coordinate is the depth of the optical gradient layer 34, which is at the origin of point A, and the point b is about 30 cm in depth, and is indicated by a linear coordinate. Among them, in a preferred embodiment of the present invention, the oxygen atom content is gradually changed in a range of 3 to 10 nm in depth, and an optically graded layer with an equivalent number of layers can be obtained. Next, reference is made to FIG. 5, which shows the reflectance of the bottom anti-reflection layer before and after the plasma treatment at different wavelengths of the incident light of the lithographic light in a preferred embodiment of the present invention; The vertical coordinate is the reflectivity, which is indicated by a linear coordinate; and the horizontal coordinate is the wavelength of the lithographic incident light, which is indicated by a linear coordinate.

561552 五、發明說明(6) 禚不。其中特別在波長小於200 nm的光源下,光學漸變層 34的反射率均遠較單層介電質抗反射層31的反射率為低。 ^接下來請參考第6圖,第6圖所示為在本發明之較佳實 知例中,比較在k影製程中曝後烘烤步驟時,以單層介電 =抗反射層31作為底部抗反射層與以光學漸變層34作為底 L Ϊ f射層’在不同烘烤溫度T,底部抗反射層所釋出驗 的離子強度。其中縱座標為離子強度(Α),以線性 ^標示;烘烤溫度(。〇,以線性座標標示。其中 作為底部抗反射層時,其所釋出驗性物質的離 f、&於1X 10 1G A,特別在一般烘烤溫度90 °C〜120 的離子漸變層34作為底部抗反射層所釋出鹼性物質 的離子強度遠低於以單層介電質抗反射層31作為底 射層所釋出鹼性物質的離子強度。 ^ 本發明係以一光學漸變層形於一 述光學漸變層來作Λ外少制> # 何上符別係以上 I作為谜衫1私時,阻劑之底部抗反射層。 ^成f法為於上述基材上形成-介電質,包含一上表面 一含氧;f子的ϋί係與上述基材交界;以及以 二:原子的就體電聚處理上述介電質 變層。上述光化,相當於無限多層的光學漸 微影光4 在以波長小於2°。光源為 層,在上述同波長ίίίΐ以單層介電質作為底部抗反射 微影製程中曝源下的反射率為低。且在後續 抗反射層時,所釋出二私4以上述光學漸變層作為底部 所釋出的鹼性離子強度,遠較上述以單層介 第10頁 0522-8457TWF(N);dwwang.Ptd 561552561552 V. Description of invention (6) No. Among them, especially under a light source having a wavelength of less than 200 nm, the reflectance of the optically graded layer 34 is much lower than that of the single-layer dielectric anti-reflection layer 31. ^ Please refer to FIG. 6, which shows a comparison of the single-layer dielectric = anti-reflective layer 31 as the single-layer dielectric = anti-reflective layer 31 in the preferred practical example of the present invention. At different baking temperatures T, the bottom anti-reflection layer and the optically graded layer 34 are used as the bottom L 射 f emissive layer, the ionic strengths released by the bottom anti-reflection layer are different. The vertical coordinate is the ionic strength (Α), which is indicated by a linear ^; the baking temperature (.0, is indicated by a linear coordinate. When used as the bottom anti-reflection layer, the ion f, & 10 1G A, especially at a general baking temperature of 90 ° C ~ 120. The ion intensity of the alkaline substance released from the bottom anti-reflection layer is much lower than that of the single-layer dielectric anti-reflection layer. The ionic strength of the alkaline substance released by the layer. ^ The present invention uses an optically graded layer in the form of an optically graded layer to make Λ outside reduction > The anti-reflection layer at the bottom of the resist. The f-forming method is to form a dielectric on the above-mentioned substrate, including an upper surface containing oxygen; the fluorene of the fonium is at the boundary with the above-mentioned substrate; The above dielectric change layer is processed in bulk. The above actinization is equivalent to infinite multilayer optical gradation light 4 at a wavelength of less than 2 °. The light source is a layer, and at the same wavelength, a single-layer dielectric is used as the bottom impedance. The reflectivity under the exposure source in the reflection lithography process is low, and in the subsequent anti-reflection layer At the time, the release of Erxin 4 with the above-mentioned optical gradient layer as the bottom released the basic ionic strength, which was much higher than that of the single layer described above. Page 10 0522-8457TWF (N); dwwang.Ptd 561552

五、發明說明(7) 電貝作為底部抗反射層時’所釋出的驗性離子強度為低。 如上所述,本發明係達成一種光學漸變層及其製作方 =,以含氧原子的氣體電漿來處理單層的底部抗反射層, 知到無限多層的光學漸變層,其抗反射的效果較傳統的單 層底部抗反射層為佳,且製程複雜度較製備雙層或多層結 構的底部抗反射層為低,且製程時間與成本也可降低。 另外,本發明亦能達成一種光學漸變層及其製作方 j ’以含氧原子的氣體電漿來處理單層的底部抗反射層, 得到,限多層的光學漸變層的同時也對底部抗反射層的表 =進行改質,使上述光學漸變層在微影製程中曝後烤步驟 ,,減^鹼性物質的釋放,避免化學增幅型光阻的解析度 t然本發明以較佳實施例揭露如丨,然其並非用以限 2 r ’圍:ί何熟悉此項技藝者,在不脫離本發明之精神 ® ^ ^ ^ ^ -V ^ 一 °午更動與满飾,因此本發明之保護範 圍當視錢之巾請專利“所界定者為準。V. Description of the invention (7) When the electric shell is used as the bottom anti-reflection layer, the ionic strength released is low. As mentioned above, the present invention achieves an optical gradient layer and its preparation method. The bottom anti-reflection layer of a single layer is treated with a gas plasma containing oxygen atoms. The anti-reflection effect of an infinite number of optical gradient layers is known. It is better than the traditional single-layer bottom anti-reflection layer, and the process complexity is lower than that of the bottom anti-reflection layer of double-layer or multi-layer structure, and the process time and cost can also be reduced. In addition, the present invention can also achieve an optical gradient layer and its producer j 'using a gas plasma containing oxygen atoms to process a single layer of the bottom anti-reflection layer, to obtain that the multi-layer optical gradient layer is also anti-reflection to the bottom. The surface of the layer is modified so that the optically graded layer is exposed to light during the photolithography process and then baked, thereby reducing the release of alkaline substances and avoiding the resolution of the chemically amplified photoresist. However, the present invention is a preferred embodiment. The disclosure is like 丨, but it is not intended to limit 2 r 'Wai: ί He who is familiar with this art, does not depart from the spirit of the invention ® ^ ^ ^ ^ -V ^ Noon changes and decorations, so the invention of The scope of protection shall be subject to the definition of the "scarves of money" patent.

0522-8457TWF(Ν);dwwang.p t d 第11頁 5615520522-8457TWF (N); dwwang.p t d p. 11 561552

為了讓本發明之上述目的、特徵、及優點能更明顯易 、以下配合所附圖式,作詳細說明如下·· 圖式簡單說明 第1圖所示為習知的一單層的底層抗反射層之結構。 第2圖所示為習知的一多層的底層抗反射層之結構。 第3 A及3 B圖所示為在本發明之較佳實施例中,光學漸 變層之形成步驟與結構。 第4圖所示為在本發明之較佳實施例中,沿第3B圖中 之線段AA’之氧原子含量變化。 、,第5圖所示為在本發明之較佳實施例中,在不同微影 光線的人射光波長下,比較底部抗反射層在電裝處理前後 的反射率。 第6圖所示為在本發明之較佳實施例中,比較在微影 L程=:烤步驟時’""單層介電質抗反射層31作為底 邓柷反射層與以光學漸變層34作為底部抗反射層,在不同 烘,溫度下,底部抗反射層所釋出鹼性物質的^子強度。 10〜基材、 11〜單層底部抗反射層、 1 2〜阻劑、 20〜基材、 21〜多層底部抗反射層、 21a〜多層底部抗反射層之第一層、 21b〜多層底部抗反射層之第二層、In order to make the above-mentioned objects, features, and advantages of the present invention more obvious and easy, the following detailed description is made with the accompanying drawings as follows: The drawings are briefly explained. Figure 1 shows a conventional single-layer anti-reflection of the bottom layer. Layer structure. FIG. 2 shows a conventional structure of a multi-layered bottom anti-reflection layer. Figures 3A and 3B show the steps and structure of forming an optical gradient layer in a preferred embodiment of the present invention. Fig. 4 shows the change in the oxygen atom content along the line AA 'in Fig. 3B in the preferred embodiment of the present invention. Fig. 5 shows the reflectance of the bottom anti-reflection layer before and after the electrical processing at the wavelength of human light emitted by different lithographic rays in a preferred embodiment of the present invention. FIG. 6 shows the comparison of the single-layer dielectric anti-reflection layer 31 as the bottom Deng Ying reflection layer and the optical The graded layer 34 serves as a bottom anti-reflection layer. Under different baking and temperature conditions, the intensity of the alkaline substance released by the bottom anti-reflection layer is low. 10 ~ substrate, 11 ~ single-layer bottom anti-reflection layer, 12 ~ resist, 20 ~ substrate, 21 ~ multilayer bottom anti-reflection layer, 21a ~ first layer of multilayer bottom anti-reflection layer, 21b ~ multilayer bottom anti-reflection layer The second layer of the reflective layer,

561552 圖式簡單說明 21c . 〜多層底部抗反射層之第三層、 21d, 〜多層底部抗反射層之第四層、 21e, 〜多層底部抗反射層之第五層、 30〜 基材、 31〜 單層介電質抗反射層、 33〜 02電漿處理、 34〜 光學漸變層。 ΙΙΙϋ·! 0522-8457TWF(Ν);dwwang.ρ td 第 13 頁561552 Schematic description of 21c. ~ The third layer of the multilayer bottom antireflection layer, 21d, ~ The fourth layer of the multilayer bottom antireflection layer, 21e, ~ The fifth layer of the multilayer bottom antireflection layer, 30 ~ substrate, 31 ~ Single-layer dielectric anti-reflection layer, 33 ~ 02 plasma treatment, 34 ~ optical gradient layer. ΙΙΙϋ! 0522-8457TWF (N); dwwang.ρ td page 13

Claims (1)

561552 六、申請專利範圍 i 一種形成光學漸變層之方法,適用於一基材之上, 包含下列步驟: 於該基材上形成一介電質,包含一上表面與一下表 面’其中該下表面係與該基材交界;以及 &以一含氧原子的氣體電漿處理該介電質,以形成一作 為抗反射層,且氧化程度由該上表面向下逐漸降低的光學 漸變層。 、2·如申請專利範圍第1項所述之形成光學漸變層之方 法’其中該介電質係擇自氮化物、碳化物、氮氧化物、碳 氧化物或上述之組合。561552 6. Scope of patent application i A method for forming an optical gradient layer, which is applicable to a substrate, includes the following steps: forming a dielectric on the substrate, including an upper surface and a lower surface, wherein the lower surface And the substrate is treated with an oxygen atom-containing gas plasma to form an optically-graded layer that acts as an anti-reflection layer and whose degree of oxidation gradually decreases downward from the upper surface. 2. The method of forming an optically graded layer as described in item 1 of the scope of the patent application, wherein the dielectric is selected from nitrides, carbides, oxynitrides, oxycarbides, or a combination thereof. 、3·如申請專利範圍第2項所述之形成光學漸變層之方 法’其中在電漿處理的過程中係以氧原子取代該介電質分 子中的該氮原子或碳原子,取代的比例由該上表面向下逐 漸減少。 4·如申請專利範圍第1項所述之形成光學漸變層之方 法’其中該含氧原子的氣體電漿係擇自N2〇電漿或〇2電漿。 5·如申請專利範圍第1或4項所述之形成光學漸變層之 方法,其中該含氧原子的氣體電漿的功率為100瓦〜800 瓦。3. The method of forming an optically graded layer as described in item 2 of the scope of the patent application, 'wherein the nitrogen or carbon atoms in the dielectric molecule are replaced with oxygen atoms during the plasma treatment process, and the proportion of substitution It gradually decreases from the upper surface downward. 4. The method for forming an optically graded layer as described in item 1 of the scope of the patent application, wherein the gas plasma containing oxygen atoms is selected from a N2 plasma or a 02 plasma. 5. The method for forming an optically graded layer as described in item 1 or 4 of the scope of the patent application, wherein the power of the gas plasma containing oxygen atoms is 100 watts to 800 watts. 6·如申請專利範圍第1或4項所述之形成光學漸變層之 方法’其中以該含氧原子的氣體電漿處理該介電質抗反射 層的時間為2〜3 0分鐘。 7 ·如申請專利範圍第1項所述之形成光學漸變層之方 法’其中該光學漸變層的厚度為15 nm〜100 nm。6. The method for forming an optically graded layer as described in item 1 or 4 of the scope of the patent application, wherein the dielectric anti-reflection layer is treated with the oxygen-containing gas plasma for a time of 2 to 30 minutes. 7 · The method of forming an optically graded layer as described in item 1 of the scope of patent application ', wherein the thickness of the optically graded layer is 15 nm to 100 nm. 0522-8457TWF(N);dwwang.ptd 第14頁0522-8457TWF (N); dwwang.ptd Page 14 561552 六、申請專利範圍 8 ·如申請專利範圍第1項所述之形成光學漸變層之方 法’其中該含氧原子的氣體電漿處理可到達的深度為i nm 〜1 Ο 0 nm 〇 9· 一種光學漸變層,形成於一基材之上,包括: 於該基材上形成有一介電質,包含一上表面與一下表 面 其中違下表面係與該基材交界,以及 以一含氧原子的氣體電漿處理該介電質所形成的一作 為抗反射層,且氧化程度由該上表面向下逐漸降低的光學 漸變層。 10·如申請專利範圍第9項所述之光學漸變層,其中在 該介電質的材質係擇自氮化物、碳化物、氮氧化物、碳氧 化物或上述之組合。 11·如申請專利範圍第10項所述之光學漸變層,其中 在該光學漸變層的材質係以氧原子取代該介電質材質分子 中的氮原子或碳原子所組成,取代的比例由該上表面向下 逐漸減少。 12·如申請專利範圍第9或丨丨項所述之光學漸變層,其 中該光學漸變層的厚度為i 5 nm〜1 〇 〇 nm。 13·如申請專利範圍第9項所述之光學漸變層,其中受 到該含氧原子的氣體電漿處理的深度為1 nm〜1 0 0 nm。 14. 一種形成光學漸變層之方法,適用於一半導體基 材之上,包含下列步驟: 於該半導體基材上形成一介電質,包含一上表面與一 下表面’其中該下表面係與該半導體基材交界,而該介電561552 VI. Application for patent scope 8 · The method for forming an optically graded layer as described in item 1 of the scope of patent application 'wherein the oxygen atom-containing gas plasma treatment can reach a depth of i nm to 100 nm 0 9 · An optical graded layer formed on a substrate includes: forming a dielectric on the substrate, including an upper surface and a lower surface, wherein a lower surface is an interface with the substrate, and an oxygen-containing atom is formed on the substrate; An optically graded layer formed by processing the dielectric material as an anti-reflection layer with an oxidizing degree gradually lowered downward from the upper surface. 10. The optically graded layer according to item 9 in the scope of the patent application, wherein the material of the dielectric is selected from nitride, carbide, oxynitride, carbide, or a combination thereof. 11. The optical gradient layer according to item 10 in the scope of the patent application, wherein the material of the optical gradient layer is composed of oxygen atoms replacing nitrogen atoms or carbon atoms in the molecules of the dielectric material, and the substitution ratio is determined by the The upper surface gradually decreases downward. 12. The optical gradient layer according to item 9 or 丨 丨 in the scope of application for a patent, wherein the thickness of the optical gradient layer is i 5 nm to 100 nm. 13. The optically graded layer according to item 9 of the scope of the patent application, wherein the depth of the plasma treatment with the oxygen atom-containing gas plasma is 1 nm to 100 nm. 14. A method of forming an optically graded layer, suitable for use on a semiconductor substrate, comprising the following steps: forming a dielectric on the semiconductor substrate, including an upper surface and a lower surface, wherein the lower surface is related to the Semiconductor substrate junction, and the dielectric 0522-8457TWF(N);dwwang.ptd 第15頁 5615520522-8457TWF (N); dwwang.ptd Page 15 561552 質係擇自該半導體基材的氮化物、碳化物、氮氧化物、碳 氧化物或上述之組合;以及 以一含氧原子的氣體電漿處理該介電質,以形成一作 為抗反射層,且氧化程度由該上表面向下逐漸降低的光學 漸變層。 15·如申請專利範圍第14項所述之形成光學漸變層之 方法’其中在電漿處理的過程中係以氧原子取代該介電質 分子中的氮原子或碳原子,取代的比例由該上表面向下逐 漸減少。 16·如申請專利範圍第14或丨5項所述之形成光學漸變 層之方法,其中該含氧原子的氣體電漿係擇自N20電漿或02 電漿。 17·如申請專利範圍16項所述之形成光學漸變層之方 法,其中該含氧原子的氣體電漿的功率為100瓦〜800瓦。 1 8 ·如申請專利範圍第丨6項所述之形成光學漸變層之 方法,其中以該含氧原子的氣體電漿處理該介電質抗反射 層的時間為2〜3 0分鐘。 19·如申請專利範圍第14項所述之形成光學漸變層之 方法,其中該光學漸變層的厚度為1 5 nm〜1 00 nm。 20·如申請專利範圍第14項所述之形成光學漸變層之 方法,其中該含氧原子的氣體電漿處理可到達的深度為1 nm 〜100 nm 〇 21· —種光學漸變層,形成於/半導體基材之上,包 括:The substrate is selected from the group consisting of nitride, carbide, oxynitride, carbon oxide, or a combination thereof; and the dielectric is treated with an oxygen atom-containing gas plasma to form an anti-reflection layer. , And the degree of oxidation gradually decreases from the upper surface downward. 15. The method of forming an optically graded layer as described in item 14 of the scope of the patent application, wherein in the plasma treatment process, nitrogen atoms or carbon atoms in the dielectric molecule are replaced with oxygen atoms, and the substitution ratio is determined by the The upper surface gradually decreases downward. 16. The method for forming an optically graded layer as described in item 14 or 5 of the scope of the patent application, wherein the gas plasma containing oxygen atoms is selected from N20 plasma or 02 plasma. 17. The method for forming an optically graded layer as described in item 16 of the scope of patent application, wherein the power of the gas plasma containing oxygen atoms is 100 watts to 800 watts. 18 · The method for forming an optically graded layer as described in item 6 of the scope of the patent application, wherein the dielectric anti-reflection layer is treated with the oxygen atom-containing gas plasma for a time of 2 to 30 minutes. 19. The method for forming an optically graded layer as described in item 14 of the scope of patent application, wherein the thickness of the optically graded layer is 15 nm to 100 nm. 20. The method for forming an optically graded layer as described in item 14 of the scope of the patent application, wherein the oxygen plasma-containing gas plasma treatment can reach a depth of 1 nm to 100 nm 〇21 · —an optically graded layer formed on / On semiconductor substrates, including: 0522-8457TWF(N);dwwang.ptd 第16頁 561552 六、申請專利範圍 於該半導體基材上形成有一介電質,包含一上表面與 一下表面’其中該下表面係與該半導體基材交界,而該介 係擇自該半導體基材的氮化物、碳化物、氮氧化物、 碳氧化物或上述之組合;以及 以一含氧原子的氣體電漿處理該介電質所形成的一作 為抗反射層,且氧化程度由該上表面向下逐漸降低的光學 漸變層。 22·如申請專利範圍第21項所述之光學漸變層,其中 在該光學漸變層的材質係以氧原子取代該介電質材質中的 氣原子或碳原子,取代的比例由該上表面向下逐漸減少。 23·如申請專利範圍第21項所述之光學漸變層,其中 该光學漸變層的厚度為15 nm〜100 nm。 ^ 24·如申請專利範圍第21項所述之光學漸變層,其中 受到該含氧原子的氣體電漿處理的深度為1 nm〜100 nm。 25· —種形成光學漸變層之方法,適用於一金屬基材 之上,包含下列步驟: 於該金屬基材上形成一介電質,包含一上表面與一下 表面,其中該下表面係與該金屬基材交界,而該介電質係 擇自該金屬基材的氮化物、碳化物、氮氧化物、碳氧化物 或上述之組合;以及 以一含氧原子的氣體電漿處理該介電質,以形成一作 為抗反射層’且氧化程度由該上表面向下逐漸降低的光學 漸變層。 26·如申請專利範圍第25項所述之形成光學漸變層之0522-8457TWF (N); dwwang.ptd Page 16 561552 6. The scope of the patent application A dielectric is formed on the semiconductor substrate, including an upper surface and a lower surface, where the lower surface is at the interface with the semiconductor substrate And the medium is selected from the group consisting of nitride, carbide, oxynitride, oxycarbide, or a combination of the foregoing; and an action formed by treating the dielectric with a gas plasma containing an oxygen atom. An anti-reflection layer, and an optically graded layer whose oxidation degree gradually decreases from the upper surface downward. 22. The optical gradient layer according to item 21 of the scope of application for a patent, wherein the material of the optical gradient layer is to replace oxygen or carbon atoms in the dielectric material with oxygen atoms, and the substitution ratio is from the upper surface to Down gradually decreases. 23. The optical gradient layer according to item 21 of the scope of application for a patent, wherein the thickness of the optical gradient layer is 15 nm to 100 nm. ^ 24. The optically graded layer according to item 21 of the scope of patent application, wherein the depth of the plasma treatment with the oxygen atom-containing gas plasma is 1 nm to 100 nm. 25 · —A method for forming an optical gradient layer, which is applicable to a metal substrate and includes the following steps: forming a dielectric on the metal substrate, including an upper surface and a lower surface, wherein the lower surface is connected with The metal substrate is bordered, and the dielectric is selected from the group consisting of nitride, carbide, oxynitride, carbon oxide, or a combination thereof; and the dielectric is treated with a gas plasma containing oxygen atoms An electric substance is formed to form an optically graded layer as an anti-reflection layer, and the degree of oxidation gradually decreases downward from the upper surface. 26. Forming an optical gradient layer as described in item 25 of the scope of patent application 561552 六、申請專利範圍 方法,其中在電漿處理的過程中係以氧原子取代該介電質 分子中的氮原子或碳原子,取代的比例由該上表面向下逐 漸減少。 27·如申請專利範圍第25或26項所述之形成光學漸變 層之方法,其中該含氧原子的氣體電漿係擇自比〇電漿或〇2 電漿。 28·如申請專利範圍第27項所述之形成光學漸變層之 方法,其中該含氧原子的氣體電漿的功率為1〇〇瓦〜800 瓦。 29·如申請專利範圍第27項所述之形成光學漸變層之 方法,其中以該含氧原子的氣體電漿處理該介電質抗反射 層的時間為2〜3 0分鐘。 30·如申請專利範圍第25項所述之形成光學漸變層之 方法,其中該光學漸變層的厚度為15 nm〜100 nm。 31 ·如申請專利範圍第2 5項所述之形成光學漸變層之 方法,其中該含氧原子的氣體電漿處理可到達的深度為1 nm 〜1〇〇 nm 〇 32· —種光學漸變層,形成於一金屬基材之上,包 括: 於该金屬基材上形成有一介電質’包含一*上表面與一 下表面,其中該下表面係與該金屬基材交界,而該介電質 係擇自該金屬基材的氮化物、碳化物、氮氧化物、碳氧化 物或上述之組合;以及 以一含氧原子的氣體電漿處理該介電質所形成的一作561552 VI. Application for patent method In the process of plasma treatment, oxygen atoms are used to replace nitrogen or carbon atoms in the dielectric molecule, and the proportion of substitution is gradually reduced from the upper surface downward. 27. The method for forming an optically graded layer as described in item 25 or 26 of the scope of the patent application, wherein the gas plasma containing oxygen atoms is selected from a ratio plasma or a plasma plasma. 28. The method for forming an optically graded layer as described in item 27 of the scope of patent application, wherein the power of the oxygen atom-containing gas plasma is 100 watts to 800 watts. 29. The method for forming an optically graded layer as described in item 27 of the scope of patent application, wherein the dielectric anti-reflection layer is treated with the oxygen-containing gas plasma for a time of 2 to 30 minutes. 30. The method for forming an optically graded layer as described in item 25 of the scope of patent application, wherein the thickness of the optically graded layer is 15 nm to 100 nm. 31. The method for forming an optically graded layer as described in item 25 of the scope of the patent application, wherein the reachable depth of the oxygen plasma-containing gas plasma treatment is 1 nm to 100 nm 〇32 · —an optically graded layer And formed on a metal substrate, including: forming a dielectric material on the metal substrate including an upper surface and a lower surface, wherein the lower surface is at the boundary with the metal substrate, and the dielectric material Selected from the group consisting of nitrides, carbides, oxynitrides, oxycarbides, or a combination of the foregoing; and a process formed by treating the dielectric with a gas plasma containing oxygen atoms 0522-8457TWF(N);dwwang.p t d 第18頁 561552 六、申請專概"" · 為抗反射層,且氧化程度由該上表面向下逐漸降低的光學 漸變層。 ^ 33·如申請專利範圍第32項所述之光學漸變層,其中 在該光學漸變層的材質係以氧原子取代該介電質材質中的 氣原子或碳原子,取代的比例由該上表面向下逐漸減少。 34·如申請專利範圍第32項所述之光學漸變層,其中 該光學漸變層的厚度為15 nm〜1〇〇 nm。 35.如申請專利範圍第32項所述之光學漸變層,其中 受到該含氧原子的氣體電漿處理的深度為1 nm〜1〇〇 nm。0522-8457TWF (N); dwwang.p t d p.18 561552 VI. Application Outline " " An optically graded layer that is an anti-reflective layer and whose degree of oxidation gradually decreases from the top surface downward. ^ 33. The optical gradient layer according to item 32 of the scope of the patent application, wherein the material of the optical gradient layer is to replace gas atoms or carbon atoms in the dielectric material with oxygen atoms, and the replacement ratio is determined by the upper surface. Gradually decrease. 34. The optical gradient layer according to item 32 of the scope of application for a patent, wherein the thickness of the optical gradient layer is 15 nm to 100 nm. 35. The optically graded layer according to item 32 of the scope of patent application, wherein the depth of the plasma treatment with the oxygen atom-containing gas plasma is 1 nm to 100 nm. 0522-8457TWF(N);dwwang.ptd 第19頁0522-8457TWF (N); dwwang.ptd Page 19
TW91122293A 2002-09-27 2002-09-27 Optical grading layer and its manufacturing method TW561552B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91122293A TW561552B (en) 2002-09-27 2002-09-27 Optical grading layer and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91122293A TW561552B (en) 2002-09-27 2002-09-27 Optical grading layer and its manufacturing method

Publications (1)

Publication Number Publication Date
TW561552B true TW561552B (en) 2003-11-11

Family

ID=32391282

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91122293A TW561552B (en) 2002-09-27 2002-09-27 Optical grading layer and its manufacturing method

Country Status (1)

Country Link
TW (1) TW561552B (en)

Similar Documents

Publication Publication Date Title
TW451271B (en) Method for forming fine pattern
US6316167B1 (en) Tunabale vapor deposited materials as antireflective coatings, hardmasks and as combined antireflective coating/hardmasks and methods of fabrication thereof and application thereof
TWI248668B (en) Method and apparatus for detecting endpoint during plasma etching of thin films
US7626238B2 (en) Semiconductor devices having antireflective material
JP4635610B2 (en) Reflective photomask blank, reflective photomask, and reflective photomask manufacturing method
US8658050B2 (en) Method to transfer lithographic patterns into inorganic substrates
TWI233534B (en) Photomask blank and methods of manufacturing photomask
JP6929708B2 (en) How to perform extreme ultraviolet (EUV) lithography
JP2019204088A5 (en)
JP5178996B2 (en) Reflective photomask blank, reflective photomask, and pattern transfer method using the same
TWI821155B (en) polarized photon
JPS6074529A (en) Method of forming pattern of integrated circuit by photoetching
JP5328649B2 (en) Quenchable infrared reflective layer system and method for producing the same
TWI278915B (en) Pattern forming method, lower layer film forming composition and manufacturing method of semiconductor device
TW561552B (en) Optical grading layer and its manufacturing method
JP7351864B2 (en) Reflective blank mask and photomask for extreme ultraviolet rays
US6833326B2 (en) Method for forming fine patterns in semiconductor device
EP2347304B1 (en) Method for performing photolithography using barcs having graded optical properties
JPH09171952A (en) Formation of resist pattern and production of semiconductor device employing it
TW201011335A (en) Anti-reflective surfaces and methods for making the same
Lee et al. Self‐Assembled Nanowrinkle‐Network‐Structured Transparent Conductive Zinc Oxide for High‐Efficiency Inorganic Light‐Emitting Diodes
JPH06224118A (en) Microscopic pattern forming method
JP7199563B2 (en) Novel etching pattern formation method in semiconductor manufacturing process
KR102617884B1 (en) Method for manufacturing reflective layer for lithography mask
JPS63278335A (en) Forming method for pattern by multilayer resist

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees