TW558636B - Antiresonant reflecting optical waveguide (ARROW) surface plasmon resonance (SPR) sensors - Google Patents

Antiresonant reflecting optical waveguide (ARROW) surface plasmon resonance (SPR) sensors Download PDF

Info

Publication number
TW558636B
TW558636B TW91102976A TW91102976A TW558636B TW 558636 B TW558636 B TW 558636B TW 91102976 A TW91102976 A TW 91102976A TW 91102976 A TW91102976 A TW 91102976A TW 558636 B TW558636 B TW 558636B
Authority
TW
Taiwan
Prior art keywords
optical waveguide
resonance
reflective optical
waveguide
item
Prior art date
Application number
TW91102976A
Other languages
Chinese (zh)
Inventor
Yang-Tung Huang
Wei-Zung Chang
Original Assignee
Yang-Tung Huang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang-Tung Huang filed Critical Yang-Tung Huang
Priority to TW91102976A priority Critical patent/TW558636B/en
Application granted granted Critical
Publication of TW558636B publication Critical patent/TW558636B/en

Links

Abstract

This surface plasmon resonance (SPR) sensor which is based on an antiresonant reflecting optical waveguide (ARROW) is used to sense the variation of the refractive index of the environment for chemical and biochemical applications. It consists of three sections: input, sensing, and output sections. All the three sections are effectively single-mode ARROW waveguides of the same structure except that the sensing section has an additional metal layer on top of it's core to excite the surface plasmon wave (SPW), which can be coupled with the ARROW waveguide. In order to optimize the sensitivity and tune the operation range into the most sensitive region, a dielectric overlay is coated upon the metal.

Description

558636 五、發明說明(1) 【發明背景】 化學與生化感測器在環保、自動化製程、醫學與生物科 技等領域皆有重要且關鍵性的應用,近年來,感測系統傾 向於微小化,因而各種運用電化學原理的半導體感測器與 利用光譜學原理的光纖感測器,便愈來愈受重視。 相較於半導體感測器,光纖感測器除了易於達成微小化 又可用於遙感探測(remote sensing)外,還具有不受外 在電磁波干擾、可在較大溫度範圍與較惡劣環境下操作等 優點’而配合波長區分多工(wavelength division multiplexing,WDM)技術,更可應用於同時探測多種物 質0 然而,傳統以光纖製作的光纖感測器,因製程繁複且不 易精準控制,使其難以大量製造、降低成本,而利用成熟 積體電路技術製造的積體光波導感測器,不僅能精確控^ 元件的結構參數,增加大量製造時的穩定度,還擁有^ 型、質輕、、可與光纖耦合達成遙感探測等優點,必要 可與其他感測或訊號處理電路積體化,組成光電積體電 (opto-electronic integrated circuits ,〇EIC、 - 件,增加其應用的彈性。 70 由於積體光波導 因而能與光纖尺寸 擇,同時其傳輸損 基片上的積體單模 之應用常須與光纖 及折射率匹配的光 耗率也必須夠低。 光波導的波導尺寸 矽 做輸入、輸出耦合 波導材料為最佳選 然而,傳統製作於 較單模光纖小了許558636 V. Description of the invention (1) [Background of the invention] Chemical and biochemical sensors have important and critical applications in the fields of environmental protection, automated processes, medicine and biotechnology. In recent years, sensing systems have tended to be miniaturized. Therefore, various semiconductor sensors using the electrochemical principle and optical fiber sensors using the principle of spectroscopy have become more and more important. Compared with semiconductor sensors, fiber optic sensors are not only easy to achieve miniaturization and can be used for remote sensing, but also have no interference from external electromagnetic waves, can operate in a wide temperature range and harsh environments, etc. Advantages' and wavelength division multiplexing (WDM) technology can be applied to detect multiple substances at the same time. However, traditional fiber optic sensors made with optical fibers are difficult to accurately control due to the complicated process and difficult to accurately control. Manufacturing, reducing costs, and the integrated optical waveguide sensor manufactured using mature integrated circuit technology can not only accurately control the structural parameters of ^ components, increase the stability during mass manufacturing, but also has ^ type, light weight, Coupling with optical fiber to achieve remote sensing detection and other advantages, if necessary, it can be integrated with other sensing or signal processing circuits to form opto-electronic integrated circuits (oEIC,-), which increases the flexibility of its application. 70 Bulk optical waveguides can therefore be selected with the fiber size. At the same time, the application of the integrated single mode on the substrate with transmission loss must often be matched with the optical fiber and Light reflectance consumption rate must be low enough to match the optical waveguide of the silicon waveguide dimensions as input, output coupling waveguide material is the best choice, however, the conventional single-mode fiber fabricated smaller than Xu

558636 五、發明說明(2) ^ ’不易與光纖高效率耦合,加上為了達到低傳輸損耗, 隔離層必須製作得非常厚才行,如此便增加了製作上的困 ’ 一種稱為抗諧振反射光波導(antiresonant reflecting 0pticai waveguides,ARROW)的新型光波導 結構被提出[1],並經驗證具有下列優點:(1 ) 低傳輸損 耗·’( 2 ) 單模傳輸;(3 ) 可彈性地選擇光波導層的厚度與 材料折射率,以配合輸出、入光纖的厚度與折射率,達到 最高的輸出、入耦合效率;及(4)可製作於高折射率基片 上。利用這些優點設計出的抗諧振反射光波導感測元件, 便能克服半導體、光纖與傳統光波導感測器之諸多限制, 滿足化學與生化感測之需求。 就化學與生化光感測而言,由於表面電漿子共振 (surface plasmon resonance ,SPR)擁有即時 (real-time )感測與不須標記(label )等特點[2],遂 成為近年來廣受矚目的感測機制,並已發展出稜鏡(如圖 一)與傳統光波導(如圖二)等表面電漿子共振感測元件 型態,且部份已商品化[2][3]。 有鑑於光波導表面電漿子共振感測元件擁有前述光波導 感測器的多項優點,本發明乃將抗諧振反射光波導與表面 電漿子共振感測機制結合’設計出擁有許多優點的抗諧振 反射光波導表面電漿子共振感測元件,並設計出適合於水 中環境感測的實施例。558636 V. Description of the invention (2) ^ 'It is not easy to couple with the fiber with high efficiency, and in order to achieve low transmission loss, the isolation layer must be made very thick, so it increases the difficulty in production.' A type is called anti-resonance reflection Optical waveguides (antiresonant reflecting 0pticai waveguides, ARROW) have been proposed [1], and have been verified to have the following advantages: (1) low transmission loss · '(2) single-mode transmission; (3) can be selected elastically The thickness of the optical waveguide layer and the refractive index of the material are matched to the thickness and refractive index of the output and input fibers to achieve the highest output and input coupling efficiency; and (4) can be fabricated on a high refractive index substrate. Using these advantages to design anti-resonance reflective optical waveguide sensing elements, it can overcome many limitations of semiconductors, optical fibers and traditional optical waveguide sensors, and meet the needs of chemical and biochemical sensing. In terms of chemical and biochemical light sensing, because surface plasmon resonance (SPR) has the characteristics of real-time sensing and no labeling [2], it has become widely used in recent years. The attention-grabbing sensing mechanism has developed surface plasmon resonance sensing elements such as 稜鏡 (see Figure 1) and traditional optical waveguides (see Figure 2), and some have been commercialized [2] [3 ]. In view of the fact that the optical waveguide surface plasmon resonance sensing element has many advantages of the aforementioned optical waveguide sensor, the present invention combines the anti-resonance reflective optical waveguide with the surface plasmon resonance sensing mechanism to design an anti-resonance with many advantages. An embodiment of a plasmon resonance sensing element on the surface of the resonant reflection optical waveguide is designed to be suitable for sensing in the underwater environment.

第6頁 558636Page 6 558636

【發明概述】 本發明提出之抗諧振反射光波導表面電漿子共振 的結構如圖三(a)所示,在輸入與輸出區域為一 ^型^比^ 反射光波導’而感測區域則為覆蓋一薄層金屬的B型士比 振反射光波導,其上可再加一介電薄膜以調整感 插作範圍與感測特性’如圖三(b )所示。 ^ 採用B型抗諧振反射光波導的原因是表面電聚子波(surface plasmon wave,SPW)為 TM 模態傳輪之電磁 ^,而傳統之抗諧振反射光波導對於TM模態的傳輪損耗太 高’不適合用於表面電漿子共振感測元件,而B型抗諧振 反射光波導對於TE、TM兩種模態的基模(fundamental mode )都具有低傳輸損耗之特性⑷,故可應用於表面電 漿子共振感測元件之設計。 本發明之抗諧振反射光波導 工^原理可簡述如後:光由輸 ,高階模態的傳輸損耗遠高於 高階模態所攜帶之能量多已散 @損耗之基模可有效耦合至感 於感測區域内傳播,持續激發 輸至'感測區域末端並耦合至輸 出光訊號之能量變化,測知待 由於產生表面電漿子共振的 導本身的傳播常數(propagat 表面電漿子共振感 入區域之光波導耦 基模’經輸入區域 逸至高折射率基板 測區域之基模,並 出表面電漿子波, 出區域,吾人可藉 測環境之改變。 條件為表面電衆子 i on constant )相 測元件的 合輸入’ 之傳播, ,僅低傳 隨著光波 當光波傳 由偵測輸 波與光波 等,在此[Summary of the Invention] The structure of the plasmon resonance on the surface of the anti-resonant reflective optical waveguide proposed by the present invention is shown in Fig. 3 (a). In order to cover a thin layer of metal B-type Reflective Reflective Optical Waveguide, a dielectric film can be added thereon to adjust the range of sensing operation and sensing characteristics' as shown in Figure 3 (b). ^ The reason for adopting the B-type anti-resonant reflective optical waveguide is that the surface plasmon wave (SPW) is the electromagnetic of the TM mode transmission wheel ^, while the traditional anti-resonant reflective optical waveguide has the TM mode transmission loss Too high 'is not suitable for surface plasmon resonance sensing elements, and the B-type anti-resonance reflective optical waveguide has low transmission loss characteristics for both TE and TM fundamental modes, so it can be applied Design of surface plasmon resonance sensing element. The principle of the anti-resonance reflective optical waveguide of the present invention can be briefly described as follows: light is transmitted, and the transmission loss of the high-order mode is much higher than the energy carried by the high-order mode. Propagate within the measurement area, continuously excite the energy change input to the end of the sensing area and couple to the output optical signal, and measure the propagation constant of the conductance itself due to the surface plasmon resonance (propagat surface plasmon resonance induction area) The optical waveguide coupling fundamental mode 'escapes to the fundamental mode of the high-refractive-index substrate measurement area through the input area, and the surface plasma wave is output. Out of the area, we can borrow to measure the change of the environment. The condition is that the surface electrical mode is on constant) phase The transmission of the combined input of the measuring element is only low-pass along with the light wave. When the light wave passes by the detection input wave and light wave, etc., here

第7頁 558636 9!年#曰修正/更止/補充 _案號91102976_年月曰 修正_ 五、發明說明(4) 條件下,光波導基模與表面電漿子波的耦合效率最高,有 相當之能量可耦合至表面電漿子波傳播,當待測環境折射 率改變,因耦合狀態隨之改變,造成輸出之光訊號能量也 產生變化。 與傳統光波導表面電漿子共振感測元件相比,本發明獨 具的優點為,抗諧振反射光波導的尺寸與材料折射率之選 擇具有相當彈性,可兼顧激發表面電漿子共振,以及與光 纖輸出入耦合之需要,而沒有傳統光波導尺寸過小的限 制;此外,本發明針對水中環境操作所設計出的抗諧振反 射光波導表面電漿子共振感測元件,可偵測出較其他型式 表面電漿子共振感測元件優異的1 0_5折射率變化。 【發明之詳細說明】 本發明之抗諧振反射光波導表面電漿子共振感測元件的 結構如圖三(a)所示,可區分為前、後端的輸入、輸出區 域,與中央之感測區域。在輸入與輸出區域皆為一 B型抗 諧振反射光波導,包含一波導核心層、一折射率低於核心 層之第一隔離層、一折射率與核心層相等或較高之第二抗 諧振隔離層,以及一高折射率基底;而感測區域則是在前 述之B型抗諧振反射光波導上覆蓋一薄層金屬,其上可視 實際應用需要再加一介電薄膜,以調整感測元件的操作範 圍與特性,如圖三(b )所示。 首先,依應用需求選定搭配所用光波之工作波長的波導PAGE 7 558636 9! 年 #revised correction / changeover / addition_case number 91102976_year month revision_ 5. Description of the invention (4) Under the condition, the coupling efficiency of the optical waveguide fundamental mode and the surface plasma wave is the highest, A considerable amount of energy can be coupled to the surface plasmon wave propagation. When the refractive index of the environment to be measured changes, the coupling state changes accordingly, resulting in a change in the output optical signal energy. Compared with the traditional optical waveguide surface plasmon resonance sensing element, the unique advantage of the present invention is that the size of the anti-resonance reflective optical waveguide and the choice of the refractive index of the material are quite flexible, which can take into account the excitation of the surface plasmon resonance, and The need for coupling with the input and output of the optical fiber, without the limitation of the size of the traditional optical waveguide being too small. In addition, the anti-resonance reflective optical waveguide surface plasmon resonance sensing element designed by the present invention for underwater operation can detect Excellent surface plasmon resonance sensing element with excellent 10-5 refractive index change. [Detailed description of the invention] The structure of the plasmon resonance sensing element on the surface of the anti-resonance reflective optical waveguide of the present invention is shown in Figure 3 (a), which can be divided into front and rear input and output areas, and the central sensing region. A B-type anti-resonant reflective optical waveguide is included in the input and output regions, and includes a waveguide core layer, a first isolation layer having a refractive index lower than that of the core layer, and a second anti-resonance having a refractive index equal to or higher than that of the core layer. An isolation layer and a high-refractive index substrate; and the sensing area is covered with a thin layer of metal on the aforementioned B-type anti-resonant reflective optical waveguide, and a dielectric film may be added to adjust the sensing depending on the actual application needs The operating range and characteristics of the components are shown in Figure 3 (b). First, select the waveguide with the working wavelength of the light wave used according to the application needs

第8頁 2002. 09. 09. 008 558636 五、發明說明(8) 【檢索資料】 1. M. A. Duguay, Y. Kokubun, Τ. L. Koch, and L. Preiffer, “Antiresonant reflecting optical waveguides in Si02-Si multi layer structures,,’Page 8 2002. 09. 09. 008 558636 V. Description of the invention (8) [Retrieval information] 1. MA Duguay, Y. Kokubun, T. L. Koch, and L. Preiffer, "Antiresonant reflecting optical waveguides in Si02- Si multi layer structures ,, '

App1. Phys. Lett., vo1. 49, pp. 13-15, 1986. 2. J· Homola, S· S· Yee, and G· Gauglitz, “Surface plasmon resonance sensors : review,” Sensors and Actuators B, vo1. 54, pp. 3-15, 1999. 3. R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors, ” Sensors and Actuators B,vo1· 29,pp. 2 6 1 -2 6 7, 1 9 9 5. 4· Τ· Baba and Υ· Kokubun, “New polarization-insensitive ant i resonant reflecting optical waveguide (ARROW-B), ” IEEE Photon.App1. Phys. Lett., Vo1. 49, pp. 13-15, 1986. 2. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B, vo1. 54, pp. 3-15, 1999. 3. RD Harris and JS Wilkinson, “Waveguide surface plasmon resonance sensors,” Sensors and Actuators B, vo1 · 29, pp. 2 6 1 -2 6 7, 1 9 9 5. 4 · T · Baba and Υ · Kokubun, "New polarization-insensitive ant i resonant reflecting optical waveguide (ARROW-B)," IEEE Photon.

Technol· Lett. , vo 1. 1,pp. 232-234,1 9 8 9. 5. Y. -T. Huang, W. -Z· Chang, S· -H. Hsu, C. -H.Technol Lett., Vo 1. 1, pp. 232-234, 1 9 8 9. 5. Y. -T. Huang, W. -Z · Chang, S · H. Hsu, C. -H.

Chen, and J. -C. Chen, “Antiresonant reflecting optical waveguide surface plasmon resonance sensors, ” SPIE’s International Symposium onChen, and J. -C. Chen, “Antiresonant reflecting optical waveguide surface plasmon resonance sensors,” SPIE ’s International Symposium on

第12頁 558636 五、發明說明(9)Page 12 558636 V. Description of the invention (9)

Microelectronics and MEMS (MICRO/MEMS 2001), Adelaide, Australia, Dec. 2001. 6. J· Ctyroky, J· Homola, and M· Skalsky, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor, ” Electron. Lett., vo1. 33, pp. 1 24 6- 1 248, 1 9 9 7.Microelectronics and MEMS (MICRO / MEMS 2001), Adelaide, Australia, Dec. 2001. 6. J. Ctyroky, J. Homola, and M. Skalsky, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett., Vo1. 33, pp. 1 24 6- 1 248, 1 9 9 7.

第13頁Page 13

Claims (1)

558636 年飞广π:ρ:……誠 _案號91102976_年月曰 修正_ 六、申請專利範圍 1 . 一種抗諧振反射光波導表面電漿子共振感測元件,包含 一輸入區域、一感測區域及一輸出區域,各區域皆包含一 抗諧振反射光波導,於感測區域内的抗諧振反射光波導上 另覆蓋有一金屬層。 2. 如申請專利範圍第1項所述之抗諧振反射光波導表面電 漿子共振感測元件,係藉由金屬層與抗諧振反射光波導之 結合,使傳播於抗諧振反射光波導的光波可適當耦合至表 面電聚子波(s u r f a c e ρ 1 a s m ο n w a ν e ),藉待測環境折射率 變化對耦合狀態的改變,以達到感測之目的。 3. 如申請專利範圍第1項所述之抗諧振反射光波導表面電 漿子共振感測元件,其中之抗諧振反射光波導包含一波導 核心層(core)及兩層以上之抗譜振(antiresonance)隔離 層(cladding),使傳播於波導核心層區之光波於介面有高 反射率。 4 ·如申請專利範圍第3項所述之抗諧振反射光波導表面電 漿子共振感測元件,其中抗諧振反射光波導之波導核心層 材料及尺寸可彈性選擇、設計成與輸入及輸出光纖相匹 配。 5.如申請專利範圍第1項所述之抗諧振反射光波導表面電 漿子共振感測元件,其中之抗諧振反射光波導為B型抗諧558636 Feiguang π: ρ: …… Cheng_Case No. 91102976_Year Month Amendment_ VI. Patent Application Scope 1. An anti-resonance reflective optical waveguide surface plasmon resonance sensing element, including an input area, a sense The measurement area and an output area, each of which includes an anti-resonant reflective optical waveguide, and the anti-resonant reflective optical waveguide in the sensing area is covered with a metal layer. 2. The plasmon resonance sensing element on the surface of the anti-resonance reflective optical waveguide as described in item 1 of the scope of the patent application, is a combination of a metal layer and the anti-resonance reflective optical waveguide, so that the light waves propagating in the anti-resonance reflective optical waveguide can be transmitted. It can be appropriately coupled to the surface polycondensation wave (surface ρ 1 asm ο nwa ν e), to achieve the purpose of sensing by changing the coupling state of the refractive index of the environment to be measured. 3. The anti-resonance reflective optical waveguide surface plasmon resonance sensing element according to item 1 of the scope of the patent application, wherein the anti-resonant reflective optical waveguide includes a waveguide core layer and two or more layers of anti-spectral vibration ( antiresonance) cladding, so that the light waves propagating in the core area of the waveguide have a high reflectivity at the interface. 4 · The plasmonic resonance sensing element on the surface of the anti-resonance reflective optical waveguide as described in item 3 of the scope of patent application, wherein the material and size of the waveguide core layer of the anti-resonance reflective optical waveguide can be elastically selected and designed to match the input and output fibers Match. 5. The anti-resonance reflective optical waveguide surface plasma resonance sensing element according to item 1 of the scope of the patent application, wherein the anti-resonant reflective optical waveguide is a B-type anti-resonant 物636 正/更正f充月 礞 申請專利範圍 、一低折射率第一隔 高且厚度滿足抗諧振 第一隔離層。 振反射光波導,包含一光波導核心層 離層’及一折射率與核心層相等或車交 條件(antiresonance condition)之 6雷Π Li: ί圍ί1或5項所述之抗譜振反射光波導表面 電水子共振感測疋件,*中抗諧振反射光波導之橫向 (transverse magnetic,ΤΜ)模態傳輪為單模 型態,僅可低損耗傳輪橫向磁場(τμ)基模 (典&的傳輸&耗低於1 dB/cm),其餘 模態皆無法低損耗傳輸(典型為高於10 dB/cm)w " Γ·如申請專利範圍第5項所述之抗諧振反射光波導表面電 漿子共振感測元件,其中之第二隔離層之折射率若選擇與 核心層相等,則厚度為核心層的一半以滿足抗諧振條件。 8 ·如申清專利範圍第1項所述之抗諧振反射光波導表面電 漿子共振感測兀件,其中覆蓋於感測區域抗諧振反射光波 導之波導核心層上的金屬層材料,以可以形成耦合表面電 漿子波為準則。Object 636 positive / correction f charge month 范围 The scope of patent application, a low refractive index first barrier, and the thickness meets the anti-resonance first isolation layer. Vibration-reflecting optical waveguide, including an optical waveguide core layer separated from the layer and a 6-ray index of refraction equal to that of the core layer or antiresonance condition Π Li: ί Enclosing anti-spectral vibration reflected light according to item 1 or 5 The electro-hydraulic resonance sensor on the surface of the waveguide. The transverse (TM) mode transmission wheel of the anti-resonance reflective optical waveguide is a single-mode state. Only the low-loss transmission transverse magnetic field (τμ) fundamental mode ( Code & Transmission & Consumption is less than 1 dB / cm), the other modes are not able to transmit with low loss (typically higher than 10 dB / cm) w " Γ · Resistance as described in item 5 of the scope of patent application If the refractive index of the second isolation layer is the same as that of the core layer, the thickness of the second isolation layer is half of the thickness of the core layer to meet the anti-resonance condition. 8 · The plasmon resonance sensing element on the surface of the anti-resonance reflective optical waveguide as described in item 1 of the patent application, wherein the metal layer material covering the core layer of the waveguide of the anti-resonant reflective optical waveguide in the sensing area is A coupling surface plasmon wave can be formed as a criterion. 9.如申請專利範圍第1項所述之抗諧振反射光波導表面電 聚子共振感測元件,其中之波導核心層為二氧化矽(s i 〇2 )、金屬層材料為金(Au),其厚度介於3〇〜4〇 nm。9. The anti-resonance reflective optical waveguide surface electropolymer resonance sensing element according to item 1 of the scope of the patent application, wherein the waveguide core layer is silicon dioxide (si 〇2) and the metal layer material is gold (Au), Its thickness is between 30 and 40 nm. 第17頁 558636 年月 曰修正/更正/補充 _案號91102976_年月曰 修正_ 六、申請專利範圍 1 0.如申請專利範圍第1項所述之抗諧振反射光波導表面電 漿子共振感測元件,於感測區域内的抗諧振反射光波導之 波導核心層上之金屬層表面可再覆蓋一介電層,藉由改變 該額外介電層之材料折射率與厚度,可調整抗諧振反射光 波導表面電漿子共振感測元件的操作範圍與感測特性。 11.如申請專利範圍第1 0項所述之抗諧振反射光波導表面 電漿子共振感測元件,其中波導核心層為二氧化矽(S i 02 )、金屬層為厚度30〜40 nm之金(Au),用於水中環境(折 射率1 . 3 3 2 )感測時,覆蓋於金屬層上之介電層材料為氧化 鋁(Al2〇3),其厚度介於12〜18 nm。Page 17 558636 Revised / Corrected / Additional_Case No. 91102976_ Revised / Revised_ 6 、 Applicable patent scope 1 0. The plasmon resonance on the surface of the anti-resonant reflective optical waveguide as described in item 1 of the patent scope The sensing element may further be covered with a dielectric layer on the surface of the metal layer on the waveguide core layer of the anti-resonant reflective optical waveguide in the sensing area. By changing the refractive index and thickness of the material of the additional dielectric layer, the resistance can be adjusted. Operating range and sensing characteristics of the plasmon resonance sensing element on the surface of the resonant reflection optical waveguide. 11. The anti-resonance reflective optical waveguide surface plasmon resonance sensing element according to item 10 of the patent application scope, wherein the waveguide core layer is silicon dioxide (Si02) and the metal layer is 30 to 40 nm thick. Gold (Au) is used for sensing in the water environment (refractive index 1.32). The material of the dielectric layer covering the metal layer is aluminum oxide (Al203), and the thickness is between 12 and 18 nm. 第18頁 558636 案號 91102976 修正 圖式 1 4匚 «1 4 -^ 折射率Page 18 558636 Case No. 91102976 Correction Scheme 1 4 匚 «1 4-^ Refractive index 感測區域 輸出區域 輸入區域Sensing area Output area Input area 34 33 32 36 37 35 I 4 «c di匚 ηι 4 % -> 折射率 圖三(b ) 第 頁 558636 案號91102976 分y年jT月(.7曰 修正 式 圖 ο ο ο ο 5 0 5 I 1 1 I 細 η c 934 33 32 36 37 35 I 4 «c di 匚 ηι 4%-> Refractive index diagram three (b) Page 558636 Case No. 91102976 minutes jT month (.7 correction chart) ο ο ο ο 5 0 5 I 1 1 I fine η c 9 1.30 1.32 1.34 1.36 1.38 1.40 1.42 待測環境折射率 圖四1.30 1.32 1.34 1.36 1.38 1.40 1.42 Refractive index of the test environment Figure 4
TW91102976A 2002-02-20 2002-02-20 Antiresonant reflecting optical waveguide (ARROW) surface plasmon resonance (SPR) sensors TW558636B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91102976A TW558636B (en) 2002-02-20 2002-02-20 Antiresonant reflecting optical waveguide (ARROW) surface plasmon resonance (SPR) sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91102976A TW558636B (en) 2002-02-20 2002-02-20 Antiresonant reflecting optical waveguide (ARROW) surface plasmon resonance (SPR) sensors

Publications (1)

Publication Number Publication Date
TW558636B true TW558636B (en) 2003-10-21

Family

ID=32311158

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91102976A TW558636B (en) 2002-02-20 2002-02-20 Antiresonant reflecting optical waveguide (ARROW) surface plasmon resonance (SPR) sensors

Country Status (1)

Country Link
TW (1) TW558636B (en)

Similar Documents

Publication Publication Date Title
Tsurimaki et al. Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection
US9285534B2 (en) Fiber-optic surface plasmon resonance sensor and sensing method using the same
US7212692B2 (en) Multiple array surface plasmon resonance biosensor
US8655115B2 (en) Integrated polymer optical waveguide current sensor
Paliwal et al. Refractive index sensor using long-range surface plasmon resonance with prism coupler
CN112881339B (en) Solution concentration sensor of lateral coupling waveguide resonant cavity based on Fano resonance
WO2017215426A1 (en) Optical resonance apparatus, force measurement apparatus and method, modulus measurement method and display panel
SG188759A1 (en) Optical circuit for sensing a biological entity in a fluid and method of configuring the same
Goyal et al. Porous photonic crystal structure for sensing applications
Ameen et al. Studying the effect of quantum dots and parity-time symmetry on the magnification of topological edge state peak as a pressure sensor
Manolis et al. Plasmonics co-integrated with silicon nitride photonics for high-sensitivity interferometric biosensing
JP6269008B2 (en) Electromagnetic wave-surface polariton conversion element.
TW558636B (en) Antiresonant reflecting optical waveguide (ARROW) surface plasmon resonance (SPR) sensors
KR100994980B1 (en) Optical waveguide temperature sensor based on long range surface plasmon
Levy et al. Design of a single-channel modal interferometer waveguide sensor
Oh et al. Integrated refractometric sensor utilizing a triangular ring resonator combined with SPR
Tamura et al. Analysis of metal–insulator–metal structure and its application to sensor
Xiong et al. Sensing performance of temperature insensitive microring resonators with double-layer U-shaped waveguide
Luan et al. Advances in silicon photonic sensors using sub-wavelength gratings
Chu et al. Surface plasmon resonance sensors using silica‐on‐silicon optical waveguides
Chyou et al. Fabrication and metrology of an electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance
CN111948175A (en) high-Q high-FoM metal medium auxiliary GMR refractive index sensing chip
Mendez-Astudillo et al. Optical refractive index biosensor using evanescently coupled lateral Bragg gratings on silicon-on-insulator
JP2004333158A (en) Mach-zehnder interferometer type temperature sensor
KR20160056218A (en) Surface Plasmonic Sensor Using Surface Plasmonic Sensor Chip

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees