TW556440B - Method and device for preventing trapezoidal distortion in projected image - Google Patents

Method and device for preventing trapezoidal distortion in projected image Download PDF

Info

Publication number
TW556440B
TW556440B TW90128894A TW90128894A TW556440B TW 556440 B TW556440 B TW 556440B TW 90128894 A TW90128894 A TW 90128894A TW 90128894 A TW90128894 A TW 90128894A TW 556440 B TW556440 B TW 556440B
Authority
TW
Taiwan
Prior art keywords
image
keystone distortion
display
projected
patent application
Prior art date
Application number
TW90128894A
Other languages
Chinese (zh)
Inventor
Shuei-Lin Chen
Tzung-Hung Chen
Hou-Jiun Ding
Meng-Shan Yang
Ting-Yau Jang
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW90128894A priority Critical patent/TW556440B/en
Application granted granted Critical
Publication of TW556440B publication Critical patent/TW556440B/en

Links

Landscapes

  • Transforming Electric Information Into Light Information (AREA)
  • Projection Apparatus (AREA)

Abstract

The present invention provides a method and device for preventing the trapezoidal distortion in the projection image, wherein the projection light from the light source (102) passes a deformed image (700a) to generate a projected image (750a) to be exhibited on the display device (110) of the projector (100), and exhibited on a screen (130) in a non-vertical angle; the received original image (700) to be projected is proportional to the angular deformation of the project to generate the deformed image (700a), so that the projection can generate the projected image (750a) in a ratio closely matched with the original image (700). The original image (700) can be adjusted with the size to be stored in a storage and/or fitted in a specific area of the display (110). The device further includes a numerical conversion module (206) for receiving the original image (700) and adjusting the size for storage; and, a generator module (208) for adjusting the size of the image to be fitted with the display (110). The deformation of the original image (700) can be executed in either one or both of the numerical device (206) and the generator (208).

Description

修正曰期92.6· 30 08168twfl.doc/006 玖、發明說明: 發明背景 本發明是有關於圖像處理及投影技術,且特別是有關於 一種計算機控制的投影系統和方法所提供的一個投影無梯 形失真的圖像的系統。 圖像投影儀或投影系統常用於產生一個視頻圖像的 一個擴大型式。例如,原始圖像可以呈現在一個LCD(液晶 顯示)或其它裝置上,光線可以通過該裝置投射在一個顯 示屏上,以便放大或擴大該原始圖像。其中該投影系統被 校準,以便垂直該屏幕投影一個圖像,該投影的圖像可以 精確地再現原始圖像的比例。但是,投影系統常以一個相 對顯示屏而言呈一角度地放置。結果是,該投影圖像通常 受到被稱爲梯形失真的干擾,並因此可能實質上不同於原 始圖像。 具體地說,當系統的投影直軸不垂直於視屏時,該 投影圖像的一部分可能出現失真(例如延伸或壓縮)。比 如,如果該投影儀被置於垂直於該屏幕視域的一條直線以 下,則該圖像必須被向上投影到屏幕。結果是,該圖像的 上部分可以相對於底部分出現擴展或延伸,或該圖像的底 部份與該上部分比較可以出現緊縮或收縮。如此投影的圖 像可能具有一^個梯形或拱石的形狀。類似地’如果該投影 儀被置於在垂直於該視屏的一條線的上方或一側或其它位 置,則該投影圖像的不同部分可能出現失真。根據被投影 圖像的淸晰度或細節,這種失真可能嚴重地惡化人們對於 08168twf1. doc/006 修正日期92.6.30 g亥圖像的髮識。 由於設備的短期或臨時使用、屏幕前面缺乏空間、 例如該投影儀放置得與屏幕的中心垂直可能妨礙人們觀看 以及其他原因,投影儀可能與一視屏非垂直角度地放置。 隨者投影儀進一步從屏幕移開,可能有更大的投影圖像’ 但是該梯形失真同比例增加。 針對該梯形失真問題的一個方法包括用機械補償。 在方法中,其中提供該原始圖像、並且通過其傳光以便產 生該投影圖像的LCD面板可被轉動,使得其與該屏幕所在 的平面相並行定位。然而這種解決方案造價高,並且需要 針對不同環境而手動調整。該視屏或投影儀的每次位置變 化’ LCD面板可能都需要被機械調整。因此這類校正的完 成要花時間,並且與操作者的手動機敏性有關。 除梯形失真問題外,某些投影系統結合了多個1^(::0面 板(例如每一面板針對三基色的一個),以便改進圖像質量。 在此情況中,相對地增加了該系統的複雜性,並且進一步 弄複雜了梯形失真的校正。另外,當前的LCD投影儀系統 缺乏容易地對有用圖像做修改的能力,例如修改亮度均衡 化或可變地調整圖像的尺寸。 發明慨要 在本發明的一個實施例中,提供了調整一個圖像的 系統和方法,用於無梯形失真地投影圖像,其中該投影系 統被校準在相對於其上投影圖像的平面成非垂直的$度 上。在本實施例中,如果有必要,一個原始圖像被調整尺 08168twf1. doc/006 修正日期92· 6· 3(3 寸,並且重新成形,以便補償否則可能在該圖像的投影過 程中出現的梯形失真。具體地說,可能電子地變形或調節 一種原始圖像,以便提供在一個投影儀或投射系統之內的 一個或多個LCD上。該變形圖像的構成要使得當投影在/ 個視屏上面時,該原始圖像的重建具有放大或擴大的妤 處,並且保持該原始圖像的比例,但無明顯的梯形失真。 在本發明的本實施例中,該投影裝置的垂直補償(例 如,該裝置被關於水平軸垂直轉動)產生在該裝置的投影 軸和垂直於該視屏的直線之間的仰角β。在此情況中的# 像被向上或向下地投影到該視屏。類似地,從該裝置的水 平補償產生一個掃視角(pan angle) α (例如該裝置被關於 垂直軸水平轉動)。當仰角0和掃視角α之一或二者不等 於零時,該必要的形變操作可以分別或組合地執行。 在本發明的一個實施例中,用於防止梯形失真的一 個裝置包括一個數字轉換器模塊,其中一個原始圖像被調 整尺寸(例如抽取或縮減),以便儲存在儲存器中,以及一 個發生器模塊,其中該儲存的圖像被調整尺寸(例如擴大 或擴展),用於提供在一個顯不裝置(例如LCD板)上。可以 在這兩個模塊任一或兩者中執行爲補償或防止梯形失真的 圖像形變。如果仰角0和掃視角α都非零,則該圖像可針 對一個角度變形然後轉動(例如九十度)並且變形以便補償 另一角度。 在本發明的一個實施例中,爲防止或補償梯形失真 而執行的形變的程度和效果可取決於若干因數。這些因數 556440 修正曰期92 · 6 · 3 0 08168twf1. doc/006 可以包括仰角0或掃視角α的幅値、從投影光源到顯示裝 置(例如LCD板)的距離、原始圖像的維數、該顯示裝置的 可用域的維數等。 一個原始圖像可能逐行、逐像素或以其它基礎變形。 在本發明的一個實施例中計算若干參數,以便標示該顯示 裝置的可用域、將被提供和投影的一個圖像中的行數、在 每1行中的位置(例如像素)量等。隨後,針對該顯示裝置 的每一選擇的或有用部分(例如像素),通過應用一個或多 個幾何或數學關係標示該原始圖像(例如像素或像素組)的 對應部分。原始圖像的對應部分的特性(例如彩色、強度) 可隨後被加到該顯示裝置的選擇部分。作爲對一個原始圖 像變形並且複製其特性的結果,呈現在顯示裝置的投影在 視屏上的圖像能再生該原始圖像的比例(在一個放大的尺 度)而無顯著或可感知的梯形失真。 在本發明的一個可選實施例中,本發明的方法和裝 置還提供用於保證該投影圖像的均勻照明強度。具體地 說,呈現再用於投影目標的一個顯示裝置上的一個圖像的 光強可以衰減或相反調節,以便均衡該圖像的光強。 圖式之簡單說明: 第1A圖係顯示被校準以投影一個無梯形失真圖像的 投影系統; 第11D圖係顯示在與一個視屏非垂直地對準的一個 投影系統中的梯形失真問題, 第2圖是根據本發明的一個實施例用於防止在一個非 0 8168twf1. doc/006 修正日期92·6·3〇 校準投影系統中防止梯形失真的一個裝置的方塊圖; 第3A-3C圖係顯示第2圖裝置的數字轉換器部分及其 根據本發明的實施例對於一個原始圖像的操作; 第4Α-4Β圖係顯示第2圖裝置的發生器部分及其根據 本發明的實施例對於一個儲存圖像的操作; 第5A-5D圖係顯示根據本發明可選實施例的用於防止 梯形失真的裝置的可選實施例; 第6Α-6Β圖係顯示適於實現本發明的一個實施例的投 影系統的側視和頂視圖; 第7Α圖係顯示根據本發明的一個實施例的從原始圖 像得出顯示圖像的原理; 第7Β圖係顯示根據本發明的一個實施例由第7Α圖的 顯不以及原始圖像產生的投影圖像, 第8A-8G圖係顯示根據本發明的實施例的補償顯示圖 像; 第9Α-9Β圖係顯示適於實現本發明的一個實施例的投 影系統的側視和頂視圖; 第10圖係顯示根據本發明的實施例由數字轉換器進 行的組合的原始圖像尺寸調整和變形; 第11Α-11Β圖係顯示根據本發明的實施例由發生器進 行的圖像的尺寸調整和變形; 第12圖係顯示根據本發明的實施例構成的一個裝置 的方塊圖,當投影儀和垂直於該視屏的直線之間存在水平 和縱向角時用於防止梯形失真; 08168twf1. doc/006 修正日期92.6.30 第13A-13D圖係顯示根據本發明的實施例的顯示圖像 的得出,當投影儀和垂直於該視屏的直線之間存在水平和 縱向角時從原始圖像得出一個顯示圖像; 第14A-14F圖係顯示根據本發明可選實施例的顯示圖 像的可選得出,當投影儀和垂直於該視屏的直線之間存在 水平和縱向角時從原始圖像得出一個顯示圖像; 第15A-15E圖係顯示根據本發明可選實施例的顯示圖 像的可選得出,當投影儀和垂直於該視屏的直線之間存在 水平和縱向角時從原始圖像得出一個顯示圖像; 第16A-16B圖係顯示根據本發明實施例的在一個減小 尺寸的或中心的偏離放置的顯示圖像中的梯形失真的防 止; 第17A-17B圖係顯示根據本發明實施例的在一個減小 尺寸的或中心的偏離放置的顯示圖像中的梯形失真的防 止; 第18A-18C圖係顯示根據本發明的一個實施例的一個 原始圖像的光強的均衡; 第19圖係顯示根據本發明的實施例的一個方法和流 程圖,從一個原始圖像得到一個顯示圖像,即使有梯形失 真,也能以很少的梯形失真投影一個顯示圖像; 第20圖是根據本發明一個實施例的流程圖,演示確 定一顯不圖像的有效區域的方法; 第21圖是根據本發明一個實施例的流程圖,演示從 一個原始圖像得到一顯示圖像的方法; 556440 08168twf1. doc/00β 修正日期92.6.30 第22圖是根據本發明一個實施例的流程圖,演示從 一個原始圖像得到一顯示圖像的可選方法; 第23圖是根據本發明實施例的一個流程圖,演示當 該投影系統的水平和縱向角都非零時,從原始圖像得到顯 示圖像的一個方法;以及 第24圖是根據本發明實施例的一個流程圖,演示通 過衰減其光強而均衡一圖像的亮度和方法。 圖式標號之簡單說明= · 1〇〇投影儀 102光源 104投影軸 106焦距 110 LCD板 - 120、350、700、1000、1400、1500 原始圖像 122原始圖像平面 130屏幕 140屏幕圖像 鲁 200裝置 202 CPU接口 204、1220儲存器接口 206、1201數字化裝置 208、1250發生器 302圖像接收機 304縮減器 10 556440 08168twf1. doc/006 修正日期92·6·3〇Revised date 92.6 · 30 08168twfl.doc / 006 玖, description of the invention: Background of the invention The present invention relates to image processing and projection technology, and in particular to a computer-controlled projection system and method provided by a projection without trapezoidal Distorted image system. Image projectors or projection systems are often used to produce an enlarged version of a video image. For example, the original image can be presented on an LCD (liquid crystal display) or other device through which light can be projected onto a display screen in order to enlarge or enlarge the original image. The projection system is calibrated to project an image perpendicular to the screen, and the projected image can accurately reproduce the proportion of the original image. However, projection systems are often placed at an angle to the display. As a result, the projected image is often disturbed by what is called keystone distortion, and therefore may be substantially different from the original image. Specifically, when the projection straight axis of the system is not perpendicular to the video screen, a part of the projected image may be distorted (such as extended or compressed). For example, if the projector is placed below a straight line perpendicular to the screen's field of view, the image must be projected upwards onto the screen. As a result, the upper part of the image may expand or extend relative to the bottom part, or the bottom part of the image may shrink or shrink compared to the upper part. The image thus projected may have the shape of a trapezoid or a vault. Similarly 'if the projector is placed above or on one side or other position perpendicular to a line of the video screen, different parts of the projected image may appear distorted. According to the clarity or detail of the projected image, this distortion may seriously worsen people's recognition of the 08168twf1.doc / 006 date of revision 92.6.30 ghai. Due to short-term or temporary use of the device, lack of space in front of the screen, such as the projector being placed perpendicular to the center of the screen, which may prevent people from viewing, and other reasons, the projector may be placed at a non-vertical angle to a screen. As the projector moves further away from the screen, there may be a larger projected image 'but the keystone distortion increases in proportion. One approach to this trapezoidal distortion problem involves using mechanical compensation. In the method, the LCD panel in which the original image is provided and transmitted through it so as to produce the projected image can be rotated so that it is positioned in parallel with the plane on which the screen is located. However, this solution is expensive and requires manual adjustments for different environments. Every time the position of the video screen or projector changes, the LCD panel may need to be mechanically adjusted. Completion of this type of calibration therefore takes time and is related to the manual agility of the operator. In addition to the trapezoidal distortion problem, some projection systems combine multiple 1 ^ (:: 0 panels (such as one for each of the three primary colors) to improve image quality. In this case, the system was relatively increased Complexity and further complicates keystone distortion correction. In addition, current LCD projector systems lack the ability to easily modify useful images, such as modifying the brightness equalization or variably adjusting the size of the image. Invention SUMMARY OF THE INVENTION In one embodiment of the present invention, a system and method for adjusting an image is provided for projecting an image without keystone distortion, wherein the projection system is calibrated to be non-uniform with respect to a plane on which the image is projected. Vertical $ degrees. In this embodiment, if necessary, an original image is resized 08168twf1.doc / 006 correction date 92 · 6 · 3 (3 inches, and reshaped in order to compensate otherwise possible in the figure Keystone distortion that occurs during the projection of an image. Specifically, an original image may be electronically deformed or adjusted to provide an image within a projector or projection system. Or multiple LCDs. The distorted image is structured so that when projected on a video screen, the reconstruction of the original image has an enlarged or enlarged ridge, and the proportion of the original image is maintained, but no obvious In this embodiment of the invention, the vertical compensation of the projection device (for example, the device is rotated vertically with respect to the horizontal axis) results in an elevation angle between the projection axis of the device and a straight line perpendicular to the video screen. β. The # image in this case is projected up or down onto the video screen. Similarly, a pan angle α is generated from the horizontal compensation of the device (eg the device is rotated horizontally about the vertical axis). When one or both of the elevation angle 0 and the scanning angle α are not equal to zero, the necessary deformation operation may be performed separately or in combination. In one embodiment of the present invention, a device for preventing keystone distortion includes a digitizer A module in which an original image is resized (eg, decimated or reduced) for storage in a memory, and a generator module in which the stored image is adjusted Dimensions (such as enlargement or expansion) for providing on a display device (such as an LCD panel). Can be performed in either or both of these modules to compensate or prevent keystone distortion in image distortion. If the elevation angle is 0 And both the scanning angle α are non-zero, the image can be deformed for one angle and then rotated (eg, ninety degrees) and deformed to compensate for another angle. In one embodiment of the present invention, it is performed to prevent or compensate for trapezoidal distortion. The degree and effect of the distortion can depend on a number of factors. These factors 556440 modify the date 92 · 6 · 3 0 08168twf1. Doc / 006 can include an elevation angle of 0 or a sweep angle α, from the projection light source to the display device (such as LCD Board), the dimension of the original image, the dimension of the available domain of the display device, and so on. An original image may be distorted line by line, pixel by pixel, or on some other basis. In one embodiment of the present invention, several parameters are calculated in order to indicate the available fields of the display device, the number of lines in an image to be provided and projected, the position (e.g. pixels) in each line, and the like. Subsequently, for each selected or useful portion (eg, a pixel) of the display device, a corresponding portion of the original image (eg, a pixel or group of pixels) is labeled by applying one or more geometric or mathematical relationships. The characteristics (eg, color, intensity) of a corresponding portion of the original image may then be added to a selected portion of the display device. As a result of deforming an original image and replicating its characteristics, the image projected on the screen presented on the display device can reproduce the proportion of the original image (at an enlarged scale) without a significant or perceptible trapezoid distortion. In an alternative embodiment of the present invention, the method and apparatus of the present invention further provide for ensuring a uniform illumination intensity of the projected image. Specifically, the light intensity of an image presented on a display device which is reused for projecting a target may be attenuated or adjusted inversely in order to equalize the light intensity of the image. Brief description of the drawings: Figure 1A shows the projection system calibrated to project a keystone-free image; Figure 11D shows the problem of keystone distortion in a projection system that is not aligned vertically with a video screen. FIG. 2 is a block diagram of a device for preventing keystone distortion in a calibration projection system according to an embodiment of the present invention for preventing a non-zero 8168twf1.doc / 006 correction date 92.6.30; FIGS. 3A-3C Figure 2 shows the digitizer part of the device of Figure 2 and its operation on an original image according to an embodiment of the invention; Figures 4A-4B show the generator part of the device of Figure 2 and its embodiment according to the invention Operations on a stored image; Figures 5A-5D show an alternative embodiment of a device for preventing keystone distortion according to an alternative embodiment of the invention; Figures 6A-6B show a suitable one for implementing the invention A side view and a top view of the projection system of the embodiment; FIG. 7A is a diagram showing the principle of obtaining a display image from an original image according to an embodiment of the present invention; FIG. 7B is a diagram showing a Example A projection image generated from the display of FIG. 7A and the original image, and FIGS. 8A-8G are compensation display images according to an embodiment of the present invention; and FIGS. 9A-9B are suitable for implementing the present invention. A side view and a top view of a projection system according to an embodiment of the present invention; FIG. 10 shows a combined original image size adjustment and deformation performed by a digitizer according to an embodiment of the present invention; and FIGS. 11A-11B show The embodiment of the invention is the size adjustment and deformation of the image by the generator; FIG. 12 is a block diagram showing a device constructed according to the embodiment of the invention, when the projector and a line perpendicular to the video screen exist Horizontal and vertical angles are used to prevent keystone distortion. 08168twf1. Doc / 006 Revised date 92.6.30 Figures 13A-13D are obtained by displaying a display image according to an embodiment of the present invention when the projector and When there are horizontal and vertical angles between the straight lines of the screen, a display image is obtained from the original image. Figures 14A-14F are optional results of displaying a display image according to an optional embodiment of the present invention. vertical A display image is obtained from the original image when there are horizontal and vertical angles between the straight lines of the video screen; Figures 15A-15E are optional results showing a display image according to an optional embodiment of the present invention. A display image is obtained from the original image when there are horizontal and vertical angles between the projector and a straight line perpendicular to the video screen; Figures 16A-16B show a reduced size or center according to an embodiment of the present invention Prevention of keystone distortion in a display image that is placed away from; Figures 17A-17B show the prevention of keystone distortion in a display image that is reduced in size or centered according to an embodiment of the present invention; Figures 18A-18C show the equalization of the light intensity of an original image according to an embodiment of the present invention; Figure 19 shows a method and flowchart according to an embodiment of the present invention to obtain a display from an original image An image, even with keystone distortion, can be used to project a display image with little keystone distortion; Figure 20 is a flowchart according to an embodiment of the present invention to demonstrate the determination of the effective area of a displayed image Method; FIG. 21 is a flowchart according to an embodiment of the present invention, and demonstrates a method for obtaining a display image from an original image; 556440 08168twf1. Doc / 00β Modification date 92.6.30 FIG. 22 is an implementation according to the present invention The example flowchart shows an alternative method of obtaining a display image from an original image. Figure 23 is a flowchart according to an embodiment of the present invention, showing that when the horizontal and vertical angles of the projection system are non-zero, A method for obtaining a display image from an original image; and FIG. 24 is a flowchart according to an embodiment of the present invention, which demonstrates the method and the method for equalizing the brightness of an image by attenuating its light intensity. Simple explanation of the drawing number = 100 projector 102 light source 104 projection axis 106 focal length 110 LCD panel-120, 350, 700, 1000, 1400, 1500 original image 122 original image plane 130 screen 140 screen image 200 device 202 CPU interface 204, 1220 memory interface 206, 1201 digital device 208, 1250 generator 302 image receiver 304 reducer 10 556440 08168twf1.doc / 006 Date of revision 92 · 6 · 3.

306、508、512、1206、1236 調節器 308、510、1208、1238梯形失真模塊 310控制器 352 Original-X 354 Original-Y 360、1100、1120縮小的圖像306, 508, 512, 1206, 1236 Adjuster 308, 510, 1208, 1238 Keystone module 310 Controller 352 Original-X 354 Original-Y 360, 1100, 1120 Reduced image

362 Write-X362 Write-X

364 Write-Y364 Write-Y

366 Start-Write-X366 Start-Write-X

368 Start-Write-Y 370變形圖像 402、1202、1232圖像接收器 404、1234內插器 406、1210、1240 控制器 450儲存圖像368 Start-Write-Y 370 Distorted image 402, 1202, 1232 image receiver 404, 1234 interpolator 406, 1210, 1240 controller 450 stored image

452 Read-X452 Read-X

454 Read-Y454 Read-Y

456 Start-Read-X456 Start-Read-X

458 Start-Read-Y458 Start-Read-Y

460、700a、1002、1104、1802 顯示圖像 462 Display-X 464 Display-Y 750投影的原始圖像 750a投影的顯示圖像460, 700a, 1002, 1104, 1802 Display image 462 Display-X 464 Display-Y 750 Original image projected 750a Display image projected

II 08168twf1. doc/006 修正曰期92 · 1102放大的圖像 1602顯示裝置 1804投影圖像 1900 - 2416 步驟 詳細描述 下面給出的描述使本專業技術人員能製作和使用本 發明,並且提供在本發明和其規格的具體應用的範圍中。 對於本領域技術人員將容易顯見本公開實施例的各種修 改,並且在不背離本發明精神範圍的情況下,其中定義的 一般原理能被應用到其它實施例和使用場合。因此,本發 明不打算限制到顯示的實施例,而是依照與其中公開的原 理和特點一致的最寬範圍。 其中本發明的一個示出實施例的編程環境是結合一 台通常用途的計算機或專用計算裝置說明性地執行。這種 裝置的操作細節(例如處理器、儲存器、數據儲存)是公知 的’故爲了簡潔起見而被省略。 應該理解,本發明的技術能使用多種的技術實現。 例如,其中描述的方法能以在計算機系統上執行的軟體實 施,或以利用微處理器的組合或其它專用集成電路、可編 程序邏輯器件特殊設計的硬體、或各種它們的組合實現。 具體地說,其中描述的方法可以通過駐留在儲存介質,例 如載波、盤驅動器或計算機可讀介質上的一系列計算機可 執行指令實施。示例性的載波形式可以採用沿著一個局部 網絡或公用可訪問網絡,例如互聯網絡而傳送數字數據流 556440 修正日期92.6.30 〇8168twf1. doc/006 的電、電磁或光信號的形式。 錄 下面將描述以最小化或消除梯形失真的方式把一個 圖像投影在一個視屏或其它平面上的各種裝置和方法。如 將所見的那樣,其它應用效果也可以同樣好,例如淸晰度、 對比度、位置以及一個圖像的其它特性的調整。 本發明的一個或多個實施例直接面向投影系統,其 中通過一個原始圖像把光投影在一個視屏上。該原始圖像 可以呈在透明或半透明的裝置上,例如一個或多個液晶顯 示器(LCD)上。本專業技術人員將認識的那樣,如果一個 投影系統的定向使得該投影光源的軸垂直且與該原始圖像 和該屏幕的中心垂直,則在該投影圖像中將沒有梯形失 真。然而,在投影系統置於與該視屏呈非垂直水平地和/ 或垂直角度的場合(其中任一個都是可調整的),本發明的 實施例可被應用來防止或最小化該梯形失真。其中描述的 本發明的實施例在前與後投影系統中都可以應用。 在本發明的一個實施例中,投影裝置以一個非正交角 度對於一個視屏定向,防止梯形失真的一個方法如下。從 將被投影的一個原始圖像產生一個調節或變形的圖像,將 呈現在一個LCD板並且投影在該屏幕上時,產生一個放大 的該原始圖像的視圖而很少或沒有梯形失真。該變形的圖 像可以認爲是補償或避免了否則會從該投影系統的該方位 產生的該梯形失真。從槪念上講’如果該原始圖像放大出 現在該視屏上而無將可察覺梯形失真,則提供在該LCD板 13 08168twf1.doc/006 修正日期92.6.30 上的變形圖像是該原本會出現可察覺梯形失真的原始圖像 的一個透視圖。該透視圖是在視屏並且投影光源之間的某 一位置獲得的-例如在該LCD板平面之內獲得。 梯形失真 參考第1A-1D圖可以更好地理解該梯形失真的問題, 第1A圖示出一投影系統,其中投影儀100(由光源102表示) 的投影軸104垂直於屏面130以及該原始圖像120(提供在例 如LCD板11〇的投影媒體上)。因此光源102與投影媒體以及 屏面的中心共線,所以梯形失真是處在最小。 由於光源102、LCD板110和屏幕130的垂直對準,第1A 圖可以被理解爲該投射系統的頂視或側視圖。原始圖像平 面122並行於屏幕no,投影軸1〇4正對LCD板的中心。在 此投影系統中,原始圖像被顯示在該LCD板上,來自光源 102的光通過該原始圖像投影在視屏或平面130上。光源102 是投影儀100的照明結構並且具有焦距106。 如本專業技術人員將理解的那樣,在第1A圖示出的 投影系統中,從投影儀100把LCD板110中的原始圖像120 投影在屏幕130上,原始圖像120將被放大尺寸,但將平直 地再現該原始圖像的細節及比例。因此,梯形失真將不會 嚴重地減損觀眾對投影圖像的欣賞。 容易從第1A圖理解,一旦投影儀1〇〇(即光源1〇2和LCD 板11〇)被轉動或重新安置而使得投影軸104不再垂直於屏 幕130,則LCD板110將不再並行於屏幕13〇和原始圖像平 〇8168twf1. doc/006 修1^月92 面122。防止或校正梯形失真則變成是所希望的。 述的發明的一個實施例的情況可用於從〜個原纟A ^下面描 像產生 ‘個變形或修正的圖像,該變形或修正的圖像可^ 形失真地投影,而該梯形失真將會從直接對該/被無梯 行捋彰產4:。 μ、像進 第1Β圖示出在本發明的一個實施例中的第^ a 影系統’投影儀1〇〇(仍由光源102表示)從垂直對拖 _的投 和原始圖像平面122的狀態偏移。第⑺陶可以理__幕130 本投影系統的側視圖,其中投影儀100應被看作这^表不 該光源的水平軸垂直平移或轉動,使得其現在必靖經關於 的方向投影到屏幕130。投影軸1〇4仍然經過以向上 υ板的中 心,然而其已經隨著投影儀100平移。 τ 在投影軸104和垂直屏幕130的平面的一直線之間形成 的縱向角可以稱爲仰角,並且在此處表示爲0。_似於琴 仰角可以引進一個水平角到該投影系統中,表示投影儀1〇〇 關於一個垂直軸的水平移動或旋轉。此角度被稱爲掃視 角,並且在此表示爲α。因此仰角<9表示該投影儀從該投 影軸104垂直於該原始圖像(和屏幕130)的一個位置的垂直 偏移,而α則表示水平偏移。因此第1Β圖也可被理解爲在 已經施加了一個掃視角而不是一個仰角之後的本投影系統 的頂視圖。在此情況中的仰角0應該被解釋爲掃視角α ° 從前面的討論中,將理解到梯形失真可能源於投射 軸104、LCD板110和屏幕130的未對準,如第18圖中描述 的那樣。因此,在本發明下面的一個或多個實施例中,在 556440 修正日期92·6·30 0 8168twf1. doc/〇〇6 LCD板110上顯示之前,從光源接收的原始圖像12〇被變 換變形或失真’其保持垂直於該投影軸。在第1B圖中, Image· 1表不如果並行對準於屏幕13 〇的話將出現的該原始 圖像(例如在原始圖像平面122中)。如隨後部分詳細描述的 那樣,Image-Ι提供了用於產生被呈現在lcd板上並以最小 (即使有)的梯形失真投影在該視屏上的一個變形圖像的方 便的起點。 第1C圖示範投影儀100被水平且垂直地移動或轉動 (即仰角Θ和掃視角都大於零)時,呈現在LCD板110上的 一個矩形原始圖像出現在屏幕130上的方式。具體地說, 在圖1C中,不是以一個適當變形的圖像代替該原始圖像, 而是把該原始圖像投影並且沒有校正梯形失真。投影軸104 經過原始圖像和LCD板110(第1C圖中沒示出)的中心。屏幕 圖像140出現垂直和水平失真,因爲投影儀10〇不是垂直對 準屏幕130。 在第1C圖和下面討論的本發明各實施例中,在描述 如何可以調節一個原始圖像以便防止梯形失真的過程中, 爲了參考目的使用兩個三維的座標系。第-個座標系由小 寫字母(X, y,z)表示,並且採用投影儀100的光源102作爲原 點(即該光源是〇點,具有座標(0, 0, 〇))。在該系統中,X 軸是水平於該光源,並且z軸形成通過LCD板和原始圖像 的中心投影軸104。該LCD板並行於該x-y平面,該系統中 的度量單位可以是該LCD板的像素間距單元。這可以稱爲 一個投影或光源座標系。 16 08168twfl.doc/006 修正日期92 · 6· 30 第二座標系由大寫(χ,γ,ζ)表示,具有原點0,在該原 始圖像的中心,將出現一個並行於視屏的一個平面(例如 第1Α-1Β圖中所示的原始圖像平面122)。該系統的X軸水平 延伸,Υ軸垂直延伸而Ζ軸垂直於原始圖像平面122。此座 標系可以稱爲Image-1座標。 在本發明的可選實施例中,可以採用不同座標系而 不限制本發明的範圍或限制其中一個圖像可以平移或改變 的方式。例如,在一個可選實施例中,一座標系原點可能 置於該原始圖像的一個角落,使得在Image-Ι座標系中的 所有座標都包括在一個象限中。在另一可選實施例中,座 標系可以具有定位在該LCD板中的一個原點。本專業技術 人員將了解,在一個座標系中的基準可以容易地變換到另 一座標系,並且本發明的實施例因此不限制任何特定的座 標系統。 能夠在第1B-1C圖中看到,來自投影儀1〇〇的投影光 束通過LCD板100到屏幕130,關於投影軸(即ζ軸)不均勻地 撞擊該屏幕。由於第1C圖中的傾斜和掃視角,屏幕圖像140 的右上角出現擴展,及擴大得大於該原始圖像的其它部 分。反過來,如果投影儀100位於垂直於屏幕130的一個位 置(例如第1A圖中那樣)則產生的屏幕圖像將理想地關於該 投影軸對稱。 第1D圖演示了來自第1C圖的屏幕圖像140的部分l40a 的失真。在第ID圖部分140a中被描述在原始圖像平面的座 標系(X,γ,ζ)中。除了該原始圖像座標系的和Z座標 08168twfl.doc/006 修正曰期92.6.30 軸之外,該投影系統的投影軸(該2軸)也示出向部分14(^的 右上部分延伸。還描述了仰角0和掃視角α。 第1A-1D圖示出可以由光源沿著即關於水平軸、垂直 軸或兩者位移而引起的梯形失真。如上簡要描述,在本發 明的一個實施例中,梯形失真可以通過變形該原始圖像而 被減輕’以此方式補償可能的梯形失真。具體地說,根據 角度0和α以及根據該原始圖像或顯示裝置的尺寸,通過 重新定標、扭轉、平移或其它對該原始圖像所進行的變形, 有可能實現針對由於以對於視屏的非正交角度投影一個圖 像所引起的梯形失真的容許餘量。通過在把變形圖像顯示 在LCD板110之前作必要的偏移調整,實現在屏幕130上的 投影緊密地匹配該原始圖像,尤其是在比例上十分吻合該 原始圖像。可以進行針對標準的其它校正,例如放大、移 動以及審美因素,例如亮度、淸晰度、對比度等。具體地 說,一個圖像的單獨元素(例如像素)的光強可被修正,以 便提高該投影圖像中的均勻性或特殊效果。 在本發明的一個實施例中,可以根據該投影系統的 傾斜和掃視角而變形一個原始圖像、並按需要調整該原始 圖像的尺寸以便適配LCD板110,而修正該原始圖像,實 現無梯形失真地投影。此形變的效果好像一個擴大的無梯 形失真的原始圖像的型式,在屏幕130上看到,以LCD板110 或朝向光源102收縮的該圖像的透視圖。 第6A-6B圖示出本發明實施例的依據上述座標系的一 個投影系統。在本實施例中,仰角Θ不爲零(例如光源1〇2 08168twf1. doc/006 修正日期92.6.30 已經關於該X軸轉動),但是,掃視角a是零。第6A圖是該 投射系統的一個側視圖(即沿X-和X座標軸),而第6B圖是 該系統的頂視圖(即俯視該y軸)。第6A-6B圖中沒示出屏幕 130。II 08168twf1.doc / 006 Revised Date 92 · 1102 Enlarged Image 1602 Display Device 1804 Projected Image 1900-2416 Detailed description of the steps The description given below enables those skilled in the art to make and use the invention and provides it Within the scope of the invention and the specific application of its specifications. Various modifications of the embodiments of the present disclosure will be readily apparent to those skilled in the art, and the general principles defined therein can be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Therefore, the present invention is not intended to be limited to the embodiments shown, but to follow the widest scope consistent with the principles and features disclosed therein. The programming environment of one of the illustrated embodiments of the present invention is illustratively implemented in conjunction with a general purpose computer or special purpose computing device. The operational details of such devices (e.g., processor, memory, data storage) are well known 'and are omitted for brevity. It should be understood that the techniques of the present invention can be implemented using a variety of techniques. For example, the methods described therein can be implemented in software executing on a computer system, or in a combination of microprocessors or other application specific integrated circuits, specially designed hardware with programmable logic devices, or various combinations thereof. Specifically, the methods described therein may be implemented by a series of computer-executable instructions residing on a storage medium, such as a carrier wave, a disk drive, or a computer-readable medium. Exemplary carrier forms may take the form of electrical, electromagnetic, or optical signals that transmit digital data streams along a local network or a publicly accessible network, such as the Internet. 556440 Rev. 92.6.30 〇8168twf1.doc / 006. Various devices and methods for projecting an image on a video screen or other plane in a manner that minimizes or eliminates keystone distortion are described below. As will be seen, other application effects can be equally good, such as adjustment of sharpness, contrast, position, and other characteristics of an image. One or more embodiments of the present invention are directed towards a projection system in which light is projected onto a video screen through an original image. The original image may be presented on a transparent or translucent device, such as one or more liquid crystal displays (LCDs). Those skilled in the art will recognize that if the orientation of a projection system is such that the axis of the projection light source is perpendicular and perpendicular to the original image and the center of the screen, there will be no trapezoidal distortion in the projection image. However, where the projection system is placed at a non-vertical horizontal and / or vertical angle to the video screen (any of which is adjustable), embodiments of the present invention can be applied to prevent or minimize the keystone distortion . The embodiments of the invention described therein are applicable to both front and rear projection systems. In one embodiment of the invention, the projection device is oriented at a non-orthogonal angle to a video screen, and a method of preventing keystone distortion is as follows. An adjusted or distorted image is generated from an original image to be projected, and when presented on an LCD panel and projected on the screen, an enlarged view of the original image is produced with little or no keystone distortion. The distorted image can be considered to compensate or avoid the keystone distortion that would otherwise be generated from the orientation of the projection system. In terms of thought, 'If the original image appears enlarged on the screen without noticeable keystone distortion, the distorted image provided on the LCD panel 13 08168twf1.doc / 006 correction date 92.6.30 is this A perspective view of the original image where keystone distortion was noticeable. The perspective view is obtained somewhere between the screen and the projection light source-for example, within the plane of the LCD panel. Keystone distortion can be better understood by referring to Figures 1A-1D. Figure 1A shows a projection system in which the projection axis 104 of the projector 100 (represented by the light source 102) is perpendicular to the screen 130 and the original Image 120 (provided on a projection medium such as LCD panel 110). Therefore, the light source 102 is collinear with the center of the projection medium and the screen, so the keystone distortion is at a minimum. Due to the vertical alignment of the light source 102, the LCD panel 110 and the screen 130, FIG. 1A can be understood as a top view or a side view of the projection system. The original image plane 122 is parallel to the screen no, and the projection axis 104 faces the center of the LCD panel. In this projection system, an original image is displayed on the LCD panel, and light from the light source 102 is projected on a video screen or plane 130 through the original image. The light source 102 is an illumination structure of the projector 100 and has a focal length 106. As will be understood by those skilled in the art, in the projection system shown in FIG. 1A, the original image 120 in the LCD panel 110 is projected on the screen 130 from the projector 100, and the original image 120 will be enlarged in size. But the details and proportions of the original image will be reproduced straight. Therefore, keystone distortion will not seriously detract from the viewer's appreciation of the projected image. It is easy to understand from FIG. 1A that once the projector 100 (ie, the light source 102 and the LCD panel 110) is rotated or repositioned so that the projection axis 104 is no longer perpendicular to the screen 130, the LCD panel 110 will no longer be parallel On the screen 13〇 and the original image flat 08168twf1.doc / 006 repair 1 ^ month 92 side 122. It becomes desirable to prevent or correct keystone distortion. The situation of an embodiment of the invention described above can be used to generate 'distorted or corrected images from the following images. The deformed or corrected images can be projected with distortion, and the keystone distortion will be From directly to this / by no stepping 捋 捋 Chōchan 4 :. Fig. 1B shows the image projection system 'projector 100 (still represented by the light source 102) in the embodiment of the present invention from the vertical projection and the original image plane 122. State shift.第 ⑺ 陶 可 理 __ 幕 130 This is a side view of the projection system, in which the projector 100 should be regarded as a horizontal translation or rotation of the horizontal axis of the light source, so that it must now be projected to the screen in the relevant direction. 130. The projection axis 104 still passes through the center of the upper plate, however it has been translated with the projector 100. The longitudinal angle formed by τ between the projection axis 104 and a straight line of the plane of the vertical screen 130 may be referred to as an elevation angle, and is represented here as 0. _ Similar to the piano, the elevation angle can introduce a horizontal angle into the projection system, which means that the projector 100 moves horizontally or rotates about a vertical axis. This angle is called the glance angle and is denoted here as α. Therefore, the elevation angle < 9 indicates the vertical offset of the projector from a position of the projection axis 104 perpendicular to the original image (and screen 130), and α indicates the horizontal offset. Figure 1B can therefore also be understood as the top view of the projection system after a sweep angle has been applied instead of an elevation angle. The elevation angle 0 in this case should be interpreted as the sweep angle α ° From the previous discussion, it will be understood that the keystone distortion may originate from the misalignment of the projection axis 104, the LCD panel 110 and the screen 130, as described in FIG. Like that. Therefore, in one or more of the following embodiments of the present invention, the original image 12 received from the light source is transformed before it is displayed on the LCD panel 110 at the date of 556440 correction 92 · 6 · 30 0 8168twf1.doc / 〇〇6 Distortion or distortion 'which remains perpendicular to the projection axis. In FIG. 1B, Image · 1 indicates the original image (for example, in the original image plane 122) that would appear if it was aligned on the screen 130 in parallel. As described in detail in the subsequent sections, Image-I provides a convenient starting point for generating a distorted image that is presented on an LCD panel and projected onto the screen with minimal, if any, keystone distortion. FIG. 1C illustrates the manner in which a rectangular original image on the LCD panel 110 appears on the screen 130 when the projector 100 is moved or rotated horizontally and vertically (that is, the elevation angle Θ and the scanning angle are greater than zero). Specifically, in FIG. 1C, instead of replacing the original image with an appropriately deformed image, the original image is projected and keystone distortion is not corrected. The projection axis 104 passes through the center of the original image and the LCD panel 110 (not shown in FIG. 1C). Screen image 140 appears vertically and horizontally distorted because projector 100 is not vertically aligned with screen 130. In Figure 1C and the embodiments of the invention discussed below, in describing how an original image can be adjusted to prevent keystone distortion, two three-dimensional coordinate systems are used for reference purposes. The first coordinate is represented by a lowercase letter (X, y, z), and the light source 102 of the projector 100 is used as the origin (that is, the light source is 0 point and has the coordinates (0, 0, 〇)). In this system, the X axis is horizontal to the light source, and the z axis forms a central projection axis 104 through the LCD panel and the original image. The LCD panel is parallel to the x-y plane, and the unit of measurement in the system may be a pixel pitch unit of the LCD panel. This can be called a projection or light source coordinate system. 16 08168twfl.doc / 006 Revised Date 92 · 6 · 30 The second coordinate system is represented by uppercase (χ, γ, ζ), and has an origin of 0. At the center of the original image, one will appear parallel to the video screen. Plane (for example, the original image plane 122 shown in FIGS. 1A-1B). The X axis of the system extends horizontally, the Y axis extends vertically and the Z axis is perpendicular to the original image plane 122. This coordinate system can be referred to as the Image-1 coordinate. In alternative embodiments of the present invention, different coordinate systems may be used without limiting the scope of the present invention or limiting the manner in which one of the images can be translated or changed. For example, in an alternative embodiment, a coordinate system origin may be placed at a corner of the original image so that all coordinates in the Image-1 coordinate system are included in a quadrant. In another alternative embodiment, the coordinate system may have an origin positioned in the LCD panel. Those skilled in the art will appreciate that datums in one coordinate system can be easily transformed to another coordinate system, and embodiments of the present invention therefore do not limit any particular coordinate system. It can be seen in FIGS. 1B-1C that the projection light beam from the projector 100 passes through the LCD panel 100 to the screen 130 and impinges on the screen unevenly with respect to the projection axis (ie, the z-axis). Due to the tilt and scan angles in FIG. 1C, the upper right corner of the screen image 140 expands and expands more than the other parts of the original image. Conversely, if the projector 100 is located at a position perpendicular to the screen 130 (such as in Fig. 1A), the screen image produced will ideally be symmetric about the projection axis. FIG. 1D illustrates distortion of a portion 140a of the screen image 140 from FIG. 1C. It is described in the figure 140A in the coordinate system (X, γ, ζ) of the original image plane. In addition to the original image coordinate system and the Z coordinate 08168twfl.doc / 006 modified date 92.6.30 axis, the projection axis (the 2 axis) of the projection system is also shown extending to the upper right part of the section 14 (^. The elevation angle 0 and the sweep angle α are described. Figures 1A-1D illustrate trapezoidal distortion that can be caused by displacement of the light source along, that is, about the horizontal axis, vertical axis, or both. As briefly described above, in one embodiment of the invention Keystone distortion can be mitigated by deforming the original image 'in this way to compensate for possible keystone distortion. Specifically, according to the angles 0 and α and according to the size of the original image or display device, rescaling, twisting , Translation, or other deformation of the original image, it is possible to achieve a tolerance for trapezoidal distortion caused by projecting an image at a non-orthogonal angle to the viewing screen. By displaying the deformed image in The LCD panel 110 has to make necessary offset adjustments before, so that the projection on the screen 130 closely matches the original image, especially the original image is very close to the scale. It can be targeted against the standard Other corrections, such as magnification, movement, and aesthetic factors, such as brightness, sharpness, contrast, etc. Specifically, the light intensity of individual elements (such as pixels) of an image can be corrected in order to increase the Uniformity or special effect. In one embodiment of the present invention, an original image can be deformed according to the tilt and sweep angle of the projection system, and the size of the original image can be adjusted as needed to fit the LCD panel 110, and Correct the original image to achieve projection without trapezoidal distortion. The effect of this deformation is like an enlarged version of the original image without trapezoidal distortion. Seen on the screen 130, the image shrinks with the LCD panel 110 or toward the light source 102 A perspective view of the image. FIGS. 6A-6B show a projection system according to the above-mentioned coordinate system according to an embodiment of the present invention. In this embodiment, the elevation angle Θ is not zero (for example, the light source 102 08168twf1. Doc / 006 correction date 92.6.30 has been rotated about the X axis), but the scan angle a is zero. Figure 6A is a side view of the projection system (ie, along the X- and X coordinate axes), and Figure 6B is the system A top view of the system (ie, looking down the y-axis). Screens 130 are not shown in Figures 6A-6B.

Image-1 124表示可被接收用於投影的原始圖像,由 於它可以顯現在平行於該視屏的一個平面中(例如原始圖 像平面122)。從Image-i計算一個變形圖像(下面稱之爲 Image-2),並且提供在LCD板110上,用於在屏幕13〇上投 影。 焦距106是光源1〇2的聚焦長度。爲了容易參考,把 焦距106表示爲d,LCD板的中心位於投影座標系的點a, 具有(X,y,Z)座標(〇, 〇, d)。光源座標系的原點(即光源1〇2) 表示爲點0。在lmage_;l座標系中,Image-1的中心在點〇, 具有的(X,Y,Z)座標是(〇,〇,〇)。如第6B圖所示,Image-1 的四個角表示爲點CO、Cl、C2和C3,分別定位在座標 (W,H,〇)、(W,,〇)、(-W,-H,0)和(-W,H,0)。W和Η分 別表不該原始圖像的寬度的一半和高度的一半。 在下面部分介紹用於從一個原始圖像產生用於在LCd 板上顯不―個適當變形的圖像並且投影在屏幕130上的 適f的裝置和方法。術語、、原始圖像〃是指一個從像源(例 如弟二方、圖像庫、儲存裝置)接收的並且將被投影在一 個屏面上的圖像。、'Mageq 〃是指位於平行於該屏面的一 個平^中的該原始圖像,可以使用上面介紹的Image-Ι座 I系ί田述。Image_2 〃是指該原始圖像的變形,可以說明 〇8l68twf1. doc/006 修正日期92.6.30 性地呈現在一個LCD板上,並且以最小或無梯形失真地投 影在該屏面上。Image-2還可以稱爲變形的或顯示圖像, 並且可以使用該光源座標系(上述介紹的)描述。 梯形失直調整裝置的一個實施例 可以執行各種方法和過程的順序來從一個原始圖像 (例如Image_l)構成一個變形的圖像(例如lmage-2),用於顯 示在一個LCD板並且無顯著梯形失真地投影在平面上。在 此部分中,介紹用於執行一個或多個這些方法的一個適當 的裝置和說明性的可選裝置。本發明不侷限於本節描述的 結構,可被改變或調節而產生的其它結構也是適合。 第2圖是用於從原始圖像產生顯不圖像的裝置的方塊 圖,其中該顯示圖像被提供在一個LCD板上,並且沒有可 察覺的梯形失真地投影在一個屏幕上。在第2圖中,裝置200 包括CPU接口 202、儲存器接口 204、數字化裝置206和發 生器208。在本發明的一個實施例中,裝置200可被包括在 投影儀或投影系統中。 在本實施例中,CPU接口 202耦合到可在裝置200內或 外部的一個處理器。CPU接口 202與該處理器通信,以便 協調儲存器存取(例如對於一個伽碼値表格的存取)。該處 理器可以根據一個指令序列操作,以便有助於隨後部分描 述的本發明的各種方法的一個或多個的進行。CPU接口 202 包括由一^個或多個寄存器構成的儲存益空間。 儲存器接口 204與儲存器(例如SDRAM、S GRAM、 08168twf1. doc/006 修正日期92.6.30 ROM、磁盤)連接,以便儲存並且檢索圖像。儲存器接口 204存取代表第2圖中示出的裝置200的其它成分的儲存 器。例如,數字化裝置206或CPU接口 202可以命令該儲存 器接口,以便儲存圖像數據(例如新的原始圖像的圖像數 據),假定在一個規定儲存位置的圖像數據。即,發生器208 或CPU接口 202可以指令該儲存器接口,以便檢索起始於 儲存器中的確定位置的具體量的圖像數據。 另外,可能用來從原始圖像得到Image-2的各種參數 可以儲存在由儲存器接口 204管理的儲存器中。具體地說, 數字化裝置206和/或發生器208可以從儲存器接口儲存或 接收參數,以用在圖像的尺寸調整或變形中。 由儲存器接口 204存取的儲存器可以在裝置200之內 或之外。在一個實施例中,儲存器接口 204保證所有的儲 存器請求都被迅速服務(例如在一個定時間隔中),使得圖 像處理和變形不被延遲。 儲存在通過儲存器接口 204存取的儲存器中的圖像可 以包含將要被顯示在一個LCD板或其它顯示裝置的一個原 始圖像(例如Image-1)和一個變形圖像(例如image-2)。如上 所述’如果通過投影儀直接顯示一個原始圖像則可能受梯 形失真的影響。然而,從該原始圖像產生一個適當變形的 圖像’則構成來自LCD板或其它適當裝置的幾乎沒有梯形 失真的投影。 另外’從原始圖像獲得的在原始圖像和顯示圖像之 間的一個或多個中間圖像也可以儲存在儲存器中。例如, 556440 修正曰期92.6.30 08168twf1. doc/006 如下面描述的一個或多個數字化裝置206、發生器208或其 它模塊可以在一個或多個操作中轉動、平移、收縮、擴大 或變形一個圖像,以便把該原始圖像變換成一個感覺不到 梯形失真的用於投影的適當圖像。在不超出本發明範圍的 條件下,裝置200的一個或多個組件的作用能以不同於下 面子部分的描述實施例方式合倂或分配。 數字化裝置的實施例 第3A-3B圖描述在本發明的一個實施例中數字化裝置 206的一個實施方案。在本實施方案中,原始圖像被接收 並且儲存在儲存器中。儲存之前,能以某些方式調節該原 始圖像(例如減小、放大、轉動或其它防止梯形失真或引 入其它效果的調節)。 直觀地,數字化裝置206包含圖像接收機302、縮減 器304、調節器306、梯形失真模塊308和控制器310。在該 圖示的實施例中,控制器310耦合到圖像接收機302 ;縮減 器304、調節器306、梯形失真模塊308和該原始圖像的一 個或幾個像源。另外,控制器310耦合到CPU接口 202。圖 像接收機302也耦合到該一個或幾個像源,以便接收原始 圖像數據。調節器306和梯形失真模塊308耦合到儲存器接 □ 204。 直觀地,來自一個或多個信源,例如儲存介質(磁盤 或磁帶)、處理器;一個或多個模擬數字轉換器等的原始 圖像在圖像接收器302接收。每次能從一個或多個信源接 22 556440 修正日期92·6·30 08168twfl.doc/006 收該原始圖像的一行,或針對一個彩色圖像’每次可以從 不同信源的一個像素圖接收用於一個圖像的彩色信號數 據。因此圖像接收器302的構成可以是多路複用來自多個 信源的數據,或從單一信源接收單一數據流。在示出的實 施例中,控制器310與原始圖像的信源接口,以便同步該 圖像數據的接收。在一個可選實施例中,此任務可以由該 投影裝置的另一個模塊或組件執行。 縮減器304的構成是要根據一個或多個比例在一維或 φ 多維中減小原始圖像的尺寸。可能根據幾個因數而應用該 比例縮小一給出的原始圖像(例如針對每一維、行或圖像 的其它不分的不同比例)。這些因數是該原始圖像的尺寸 和/或信源、將從其投影該修正的顯示圖像的顯示裝置的 尺寸(例如LCD板110)、儲存原始圖像的儲存器空間、仰角 ^ 0或掃視角α等。在本發明的一個實施例中,縮減比例是 一個不大於1的數値。結果是,在本實施例中的儲存在儲 存器中的圖像不大於該原始圖像。 縮減器304可以結合一個或多個儲存緩衝器(例如行緩 鲁 存器)或其它儲存裝置,針對暫存該縮小的圖像的一些部 分(例如行,像素)。這些緩存器可以是CPU接口 202或其耦 合的CPU的儲存器的一部份,或該緩存器可以是耦合到儲 存器接口 204的儲存庫的一部分,或該緩存器可以包括數 字化裝置206固有的一個或多個模塊。結合在本發明實施 例中的緩存器的數目和尺寸可能取決於儲存器存取的速 度、圖像數據被接收到數字化裝置206中的速率、原始圖 2多 08168twf1. doc/006 修正曰期92 · 6.3〇 像的預測尺寸、圖像被提供在該顯示裝置上的速率等。在 本發明的一個實施例中’每一個行緩存器大到足夠儲存用 於計算機產生的筒淸晰度(例如每一行640、800、1,〇24或 1,280像素)圖像的一個數據行,並且具有良好的彩色覆蓋 範圍(例如每一像素16或32比特)。在本發明的可選實施例 中,行緩存器的結構(例如數量、尺寸)可以是可編程的, 以便接受各種尺寸、彩色和淸晰度的原始圖像。縮減器304 還可以包含與行緩存器配合的組件(例如多路複用器、解 多路複用器),以便管理通過該行緩存器的數據流。 調節器306從縮減器304接收一個縮小的圖像(例如從 該縮減器使用的緩存器逐行接收)用於儲存在儲存器中。 另外,調節器306可被構成來變形或扭轉從縮減器304接收 的圖像的一個或多個部分。具體地說,在該示出的實施例 中,梯形失真模塊308產生一個比例或其它係數,通過該 係數將圖像一部分(例如一行)扭曲,以便防止梯形失真。 不同的比例可被應用到該圖像的不同部分。通過儲存器接 口 204,從調節器306把修正的或變形的圖像數據儲存在儲 存器中。調節器306可以採用第二組儲存(例如行)緩存器和 相關的組件,以便分割在緩存器中的圖像數據和/或重新 組合來自該緩存器的圖像數據。 在本發明的一個可選實施例中,調節器306防止梯形 失真的調整功能可以與縮減器304合倂,甚至進一步可以 在裝置200的不同部分中實施(例如在發生器208中實施)。 在本發明的另一實施例中,可以合倂數字化裝置206的其 08168twf1. doc/006 修正日期92.6· 30 它組件。 在儲存圖像之前,梯形失真模塊3〇8把適當的參數儲 存到儲存器或從儲存器取得該適當參數以便用於變形或扭 曲該圖像。該參數可以包括將要應用的必要的比例,或該 梯形失真模塊可以計算的比例,在數字化裝置2〇6中以該 比例縮小或扭曲圖像。在隨後部分中描述的不同組的參數 可被用於本發明的不同實施例。這些參數可被用於變形一 個原始圖像(例如Image-Ι)以便補償梯形失真,或確定以何 種方式變形該圖像’將要形成一個適當的顯示圖像(例如 Image-2)。如上所述,在本發明的一個可選實施例中防止 梯形失真的一個或多個操作可以在數字化裝置206的不同 部件中執行,或在除數字化裝置206以外的一個模塊中執 行。因此,在例如可以把具有類似功能模塊包括在發生器 208中的一種情況中,可以從這樣一個實施例省略梯形失 真模塊308。 第3B圖示出在本發明的一個實施例中的數字化裝置 206可以減小一個原始圖像(例如Image-Ι)的方式。如上所 述’在數字化裝置2 0 6接收直觀的_^維原始圖像3 5 0。在此 例子中,原始圖像的水平尺度被儲存在一個寄存器中(可 變的或其它數據結構)並且稱爲〇riginal-X,與第3B圖中的 參考數字352相關。原始圖像350的垂直尺度稱之爲 Original-Y,與參考數字354相關。直觀地,Original-χ和 Original-Y以Image-Ι座標系的單位表示。 當由數字化裝置206接收和處理原始圖像350時(例如 08168twf1. doc/006 修正日期92.6· 30 逐行處理),可以被儲存爲或打算儲存爲在通過儲存器接 口 204存取的儲存器中的縮小的圖像360。縮小圖像360的 水平和垂直尺度分別被存爲Write_X362和Write-Y364,指 示其中寫的儲存空間的尺度。用於儲存縮小的圖像360的 起始儲存器位置可以被存爲Start-Write-X 366和Start-Write-Y 368 。Write-X 362 與〇riginal_X 352的比例以及Image-1 124 represents the original image that can be received for projection, as it can appear in a plane parallel to the video screen (e.g., original image plane 122). A distorted image (hereinafter referred to as Image-2) is calculated from Image-i, and is provided on the LCD panel 110 for projection on the screen 130. The focal length 106 is the focal length of the light source 102. For easy reference, the focal length 106 is denoted as d, the center of the LCD panel is located at point a of the projection coordinate system, and has (X, y, Z) coordinates (0, 〇, d). The origin of the light source coordinate system (ie, the light source 102) is represented as point 0. In the lmage_; l coordinate system, the center of Image-1 is at point 0, and the (X, Y, Z) coordinates have (0, 0, 0). As shown in Figure 6B, the four corners of Image-1 are represented as points CO, Cl, C2, and C3, which are respectively located at the coordinates (W, H, 〇), (W, 〇), (-W, -H , 0) and (-W, H, 0). W and Η respectively represent half the width and half the height of the original image. Apparatuses and methods for generating an appropriately deformed image on an LCd board from a raw image and projecting it on the screen 130 are described in the following section. The term "original image" refers to an image received from an image source (such as Di Erfang, an image library, and a storage device) and will be projected on a screen. "Mageq 〃" refers to the original image in a plane parallel to the screen. You can use the Image-I Block I series described above. Image_2 〃 refers to the deformation of the original image, which can be explained. 〇8l68twf1.doc / 006 Revised date 92.6.30 is presented on an LCD panel, and is projected on the screen with minimal or no keystone distortion. Image-2 can also be called a distorted or displayed image, and can be described using this light source coordinate system (introduced above). An embodiment of the trapezoidal misalignment adjustment device can perform a sequence of various methods and processes to form a distorted image (such as lmage-2) from an original image (such as Image_l) for display on an LCD panel without significant The keystone is projected onto a plane. In this section, a suitable device and illustrative optional devices for performing one or more of these methods are described. The present invention is not limited to the structure described in this section, and other structures that can be changed or adjusted are also suitable. Fig. 2 is a block diagram of a device for generating a display image from an original image, in which the display image is provided on an LCD panel and is projected on a screen without noticeable keystone distortion. In FIG. 2, the device 200 includes a CPU interface 202, a memory interface 204, a digitizing device 206, and a generator 208. In one embodiment of the invention, the device 200 may be included in a projector or a projection system. In this embodiment, the CPU interface 202 is coupled to a processor that may be inside or outside the device 200. The CPU interface 202 communicates with the processor in order to coordinate memory access (e.g., access to a Gamma table). The processor may operate according to a sequence of instructions to facilitate the performance of one or more of the various methods of the invention described in the sections that follow. The CPU interface 202 includes a storage space composed of one or more registers. The memory interface 204 is connected to a memory (for example, SDRAM, S GRAM, 08168twf1.doc / 006, 92.6.30 ROM, disk), so as to store and retrieve images. The memory interface 204 accesses a memory representing other components of the device 200 shown in FIG. For example, the digitizing device 206 or the CPU interface 202 may instruct the memory interface to store image data (such as image data of a new original image), assuming image data at a prescribed storage location. That is, the generator 208 or the CPU interface 202 may instruct the memory interface to retrieve a specific amount of image data starting at a determined position in the memory. In addition, various parameters that may be used to obtain Image-2 from the original image may be stored in a storage managed by the storage interface 204. Specifically, the digitizing device 206 and / or the generator 208 may store or receive parameters from a memory interface for use in resizing or deforming the image. The memory accessed by the memory interface 204 may be inside or outside the device 200. In one embodiment, the memory interface 204 ensures that all memory requests are serviced quickly (e.g., at a timed interval) so that image processing and deformation are not delayed. The image stored in the memory accessed through the memory interface 204 may include an original image (such as Image-1) and a distorted image (such as image-2) to be displayed on an LCD panel or other display device. ). As described above, 'if an original image is directly displayed by a projector, it may be affected by the trapezoidal distortion. However, producing a properly deformed image 'from this original image constitutes a projection with almost no keystone distortion from the LCD panel or other suitable device. Alternatively, one or more intermediate images between the original image and the display image obtained from the original image may be stored in the memory. For example, 556440 modified date 92.6.30 08168twf1.doc / 006 One or more digitizing devices 206, generators 208, or other modules as described below can be rotated, translated, contracted, expanded, or deformed in one or more operations. Image in order to transform the original image into a suitable image for projection without feeling keystone distortion. Without departing from the scope of the present invention, the functions of one or more components of the device 200 can be combined or distributed in a manner different from the embodiments described in the following subsections. Examples of Digitizing Devices Figures 3A-3B depict an embodiment of a digitizing device 206 in an embodiment of the invention. In this embodiment, the original image is received and stored in a memory. Before storage, the original image can be adjusted in some way (such as reducing, enlarging, rotating, or other adjustments to prevent keystone distortion or introduce other effects). Intuitively, the digitizing device 206 includes an image receiver 302, a reducer 304, a regulator 306, a keystone module 308, and a controller 310. In the illustrated embodiment, the controller 310 is coupled to an image receiver 302; a reducer 304, an adjuster 306, a keystone module 308, and one or more image sources of the original image. In addition, the controller 310 is coupled to the CPU interface 202. The image receiver 302 is also coupled to the one or more image sources to receive raw image data. A regulator 306 and a keystone module 308 are coupled to the memory connection 204. Intuitively, raw images from one or more sources, such as storage media (disk or tape), processors; one or more analog-to-digital converters, etc., are received at the image receiver 302. Can receive 22 556440 from one or more sources at a time Correction date 92 · 6 · 30 08168twfl.doc / 006 Receive one line of the original image, or for a color image 'One pixel from a different source at a time The map receives color signal data for an image. Therefore, the image receiver 302 may be constituted by multiplexing data from multiple sources or receiving a single data stream from a single source. In the illustrated embodiment, the controller 310 interfaces with the source of the original image to synchronize the reception of the image data. In an alternative embodiment, this task may be performed by another module or component of the projection device. The reducer 304 is structured to reduce the size of the original image in one or more dimensions according to one or more scales. It may be applied based on several factors to reduce a given original image (for example, for each dimension, line, or other indiscriminately different scale of the image). These factors are the size and / or source of the original image, the size of the display device from which the modified display image is projected (eg, LCD panel 110), the memory space in which the original image is stored, the elevation angle ^ 0 or Sweep angle α and so on. In one embodiment of the invention, the reduction ratio is a number not greater than one. As a result, the image stored in the memory in this embodiment is not larger than the original image. The reducer 304 may combine one or more storage buffers (e.g., line buffers) or other storage devices to temporarily store portions (e.g., lines, pixels) of the reduced image. These registers may be part of the memory of the CPU interface 202 or its coupled CPU, or the registers may be part of a repository coupled to the memory interface 204, or the registers may include inherent to the digital device 206 One or more modules. The number and size of the buffers incorporated in the embodiment of the present invention may depend on the speed of storage access, the rate at which image data is received in the digitizing device 206, the original picture 2 08168twf1.doc / 006 modified date 92 · The predicted size of the 6.3 image, the rate at which the image is provided on the display device, and so on. In one embodiment of the present invention, 'Each line buffer is large enough to store one piece of data for computer-generated tube sharpness (eg, 640, 800, 1, 024, or 1,280 pixels per line) image Line, and has good color coverage (such as 16 or 32 bits per pixel). In an alternative embodiment of the invention, the structure (e.g., quantity, size) of the line buffer may be programmable to accept original images of various sizes, colors, and sharpness. The reducer 304 may also include components (e.g., multiplexers, demultiplexers) that cooperate with the line buffer to manage the flow of data through the line buffer. The adjuster 306 receives a reduced image from the reducer 304 (e.g., line-by-line from a buffer used by the reducer) for storage in a memory. Additionally, the adjuster 306 may be configured to deform or twist one or more portions of the image received from the reducer 304. Specifically, in the illustrated embodiment, the keystone module 308 generates a scale or other coefficient by which a portion (e.g., one line) of the image is distorted to prevent keystone distortion. Different scales can be applied to different parts of the image. Via the memory interface 204, the modified or distorted image data is stored from the adjuster 306 in the memory. The regulator 306 may employ a second set of storage (eg, line) buffers and related components to segment image data in the buffer and / or recombine image data from the buffer. In an alternative embodiment of the invention, the adjustment function of the adjuster 306 to prevent keystone distortion may be combined with the reducer 304, and even further implemented in different parts of the device 200 (e.g., implemented in the generator 208). In another embodiment of the present invention, 08168twf1.doc / 006 of the digitizing device 206 may be combined with 92.6 · 30 of other components. Prior to storing the image, the keystone module 308 stores or retrieves the appropriate parameters from the memory for use in deforming or distorting the image. This parameter may include the necessary scale to be applied, or a scale that can be calculated by the keystone module, in which the image is reduced or distorted in the digitizer 206. The different sets of parameters described in the subsequent sections can be used for different embodiments of the invention. These parameters can be used to deform an original image (such as Image-I) to compensate for keystone distortion, or to determine how to deform the image 'will form an appropriate display image (such as Image-2). As described above, in one alternative embodiment of the present invention, one or more operations for preventing keystone distortion may be performed in different components of the digitizing device 206, or in a module other than the digitizing device 206. Therefore, in a case where, for example, a module having similar functions can be included in the generator 208, the trapezoidal distortion module 308 can be omitted from such an embodiment. FIG. 3B illustrates the manner in which the digitizing device 206 can reduce an original image (eg, Image-1) in one embodiment of the present invention. As described above, 'the digitized device 2 0 6 receives the intuitive _ ^ dimensional original image 3 5 0. In this example, the horizontal scale of the original image is stored in a register (variable or other data structure) and is called original-X, which is related to reference number 352 in Figure 3B. The vertical scale of the original image 350 is called Original-Y, and is related to reference numeral 354. Intuitively, Original-χ and Original-Y are expressed in units of the Image-1 coordinate system. When the original image 350 is received and processed by the digitizing device 206 (eg 08168twf1.doc / 006 revision date 92.6 · 30 progressive processing), it can be stored or intended to be stored in a memory accessed through the memory interface 204 Zoomed out image 360. The horizontal and vertical scales of the reduced image 360 are stored as Write_X362 and Write-Y364, respectively, indicating the scale of the storage space written therein. The starting memory locations for storing reduced images 360 can be stored as Start-Write-X 366 and Start-Write-Y 368. The ratio of Write-X 362 to original_X 352 and

Write-Y 364 與 Original-Y 354 的比例分別被稱爲 Reduce-X 和Reduce-Y比例。這些比例是上述的縮減比例。 第3C圖示出根據梯形失真模塊308提供的比例而調節 或扭曲縮小的圖像來防止梯形失真的數字化裝置206的調 節器306的操作方式。在第3C圖中,縮小的圖像360被逐行 扭曲,以便產生變形圖像370。在本發明的一個實施例中, 變形的圖像370可以用作顯示圖像(例如Image-2),呈現在 LCD板上並投影到一個視屏。在另一個實施例中,調節的 圖像370可以被重新定標(例如擴大)以便形成一個適當的顯 示圖像。圖像被變形的方式可通過將要呈現Image-2的顯 示裝置的一部分確定。例如,在跟隨部分中描述的防止梯 形失真的方法示出了如何從Image-Ι獲得一個適當的Image-2的有效面積的方式。 因此,在下面描述的一種防止梯形失真的方法中’ 以數字化裝置206接收一個原始圖像,並且從寄存器Start-Write_X和Start-Write-Y讀出在儲存器中的開始儲存該圖 像的一個起始位置。隨後按照其儲存在儲存器中的那樣’ 該原始圖像在水平尺度以比例Reduce-X縮減而再垂直尺度 08168twf1. doc/006 修正日期92· 6· 30 以比例Reduce-Y縮減。如果這些比例的任一個等於1,則 該圖像以其在該各個尺度中的原始尺寸儲存。如果圖像將 由該數字轉換器變形,則該圖像還可以在被儲存之前在逐 行基礎上被扭曲。 除上述的縮減和調節操作之外,數字化裝置206可以 執行另一操作,例如對於一個原始圖像的各種圖像過濾功 能。例如,在下面描述的本發明的一個實施例中,原始圖 像的亮度或光強被均衡,以便產生具有均勻或接近均勻強 度的一個投影圖像。 上述各種寄存和圖像數據可以由CPU接口 202(第2圖 所不)保持’可以保持在由儲存接口裝置204管理的儲存 器中,或可以是數字化裝置206或裝置200的其它部分的一 部份。 發生器的實施例 第4A-4B圖描述了本發明的一個實施例中的裝置200 的發生器208的實施方案。在本實施例中的發生器的功能 是在LCD板、CRT屏幕等上提供一個適當的顯示圖像 (Image-2),用於在視屏或其它平面上投影,以便重建一個 沒有明顯梯形失真的原始圖像,具體地說,發生器可被構 成來定標、調整尺寸或另外地變形儲存器中的圖像數據(例 如補償或防止梯形失真),並且把該結果以特定的尺寸或 淸晰度前送到一個規定顯示裝置。即發生器可被構成來簡 單地檢取和提供一個已經由數字轉換器變形的儲存圖像。 08168twfl.doc/006 修正日期92.6·3〇 但是在本發明一個可選實施例中,數字化裝置2〇6和發生 器208都可以執行變形操作(例如仰角β和掃視角α都不 爲零)。 第4Α-4Β圖中描述的發生器被配置來以第3A-3C圖中 描述的數字化裝置206操作。因此,示出的發生器不是構 成來執行梯形失真校正,因爲該功能是由該數字轉換器執 行。 第4Α圖中的發生器208包括圖像接收器402、內插器 404和控制器406。圖像接收器4〇2可以包括一個或多個緩 存器(例如行緩存器),構成來接收和暫存從儲存器接口 2〇4 接收的圖像數據。結合在一個內插器中的行緩存器的數目 和尺寸可能取決於儲存器存取的速度、圖像數據被接收到 數字化裝置206中或從儲存器接口 204接收的速率、原始圖 像的預測尺寸、接收圖像數據的方式(例如逐行、像素)等。 內插器404構成來從儲存器接收一個圖像(例如第坨 圖的縮小的圖像360或第3C圖的變形的圖像370),必要時 用於平動或重新定標,並且傳輸到例如LCD板110的一個 顯示裝置。在本發明的一個實施例中的內插器按照規 定的比例調整該檢索圖像的尺寸(下面描述)。控制器406從 CPU接口 202(第2圖所示)接收命令,並且控制圖像接收機 402和內插器404的操作。 第4B圖描述了儲存在儲存器中的例如儲存圖像450的 圖像數據內插成顯示圖像460(Image-2)。當利用上述的數 字化裝置206時,可以採用幾個可變的或其它數據結構的 08168twf1. doc/006 修正曰期92.6.30 寄存器來把相關儲存的儲存器數據的內插儲存成將要被投 影的一個圖像。第4B圖中,Start-Read-X456和 Start-Read- Y458定義從其提取圖像數據的儲存器中的一個起始位置。 其它寄存器儲存Read-X 452和Read-Y 454,標示被讀出 的該儲存區域的尺度。進一步,Display-X 462和〇1邛1”-丫 464定義了該顯示裝置的水平和垂直尺度(即用於顯示圖像 460的顯示裝置的部分)。Display-X 462與Display-X 462的 比例以及Display-Y 454與Read-Y 464的比例可以分別標示 爲Enlarge-X和Enlarge-Y。這些比例因此確定了爲了產生 一個適當尺寸的顯示圖像而對儲存圖像450擴大或內插的 程度。直觀地,這兩個比例具有至少爲一的値。能夠隨後 看到第4A圖的發生器208的功能是調整一個儲存圖像的尺 寸,以便適合一個顯示裝置。 在內插處理期間,還可以執行其它影像增強功能, 例如調整顯示圖像的淸晰度、對比度、亮度、伽碼校正等。 本專業技術人員將理解由數字化裝置206和發生器208執行 的功能是互補的。具體地說,爲產生能以無梯形失真投影 的一個顯示圖像而由發生器208對儲存圖像所進行的修改 取決於由數字化裝置206修改的對應原始圖像的方式。連 同其改變原始圖像的尺寸和形狀的功能一起,產生該合適 的顯示圖像。 第19圖示出採用此部分和前面部分的發生器208和 數字化裝置206的一個方法,把原始圖像變換成能以很少 (即使有)的梯形失真投影的一個顯示圖像。在狀態19〇〇, 08168twf1. doc/006 修正日期92.6.30 以數字化裝置接收一個原始圖像。該圖像可被接收爲一全 套的數據或可以是每次接收和處理的一部分(例如逐行)。 必要時,在狀態1902,數字化裝置調整或重新定標 該圖像的尺寸。例如,可以縮減或抽取該原始圖像的尺度 以便把該圖像儲存在一個特定的儲存區域。可應用上述的 比例,例如Reduce-X和Reduce-Y。由該數字化裝置應用 的重新定標因數可以在原始圖像被接收之前定義和儲存, 或可以在接收圖像時確定。直觀地說,當要求較少的儲存 空間時,縮減該原始圖像使得該原始圖像的比例被保持。 在狀態1904中,該數字轉換器變換該圖像,以便補 償由一個投影系統角度(例如仰角0和/或掃視角α )引發 的梯形失真。直觀地說,此處理是在逐行基礎上根據預存 的從投影系統獲得的參數執行,描述每一行必須被調節的 方式,以便抵銷梯形失真的影響。另外,該參數可被即時 地計算。 狀態1904的形變可以按順序執行或與狀態1902的重 新定標ί架作結合執fr。並且’如下面分部描述的那樣’爲 補償或防止梯形失真的一個圖像的形變可以只在該數字化 裝置或發生器的一個或另外一個執行,或也可以在兩個模 塊中都執行。而且,在仰角和掃視角都不是零的情況中, 可以針對每一角度執行各自的變形操作,其操作可以利用 該數字化裝置或發生器的重新定標操作而再次結合,即置 於序列中。 在狀悲1906中’圖像在逐彳了基礎上被儲存在儲存挤 08168twf1. doc/006 修正日期92.6.30 中。其中儲存了圖像的儲存器可以由上述的儲存器接口 204 管理。 在狀態1908中,發生器從儲存器檢取(例如逐行)該圖 像數據。然而如下面描述的那樣,在本發明的另一個實施 例中,通過以逐列的格式讀出和編譯該儲存的圖像數據而 對於該圖像做轉動,用於附加處理(例如根據另一投影系 統角度而變形)。 在狀態1910中,發生器針對指定的顯示裝置(例如一 個或多個LCD板)而按需要重新定標該圖像。具體地說,可 利用儲存在儲存器中的或根據運行而產生的參數而定義該 顯示裝置的可用或有效面積。該發生器可以隨即調整從儲 存器檢索到的圖像的尺寸(例如擴大),以便使用可能的最 大區域或顯示裝置的一個規定區域。 在狀態1912中,變形圖像被提供在顯示裝置上,並 且在狀態1914中投影在一個屏面上。 EL選數字化裝置和發牛器的窨施例 如上所述,校正或避免梯形失真的努力可能在數字 化裝置206和發生器208任一或二者中完成。另外,梯形失 真的校正/避免功能可以由這些模塊中的不同部件執行(例 如像第3 A圖中描述)或可以與一個模塊或一個模塊的部件 的其它功能(例如縮減或擴大一個圖像)合倂。因此,現在 參照第5A-5D圖描述裝置2〇〇的可選結構。本專業技術人員 將容易地理解第19圖描述的和上述操作方法可被調節以便 08168twfl.doc/006 修正日期92 · 6 · 30 適合這些可選的裝置結構的方式。 第5A圖描述的裝置200a具有數字化裝置206a和發生 器208a,類似於第3A圖和第4A圖的數字化裝置和發生器。 像已經描述的那樣,在本實施例中的數字轉換器的主要功 能是防止梯形失真。如本專業技術人員理解的那樣,在第 5A圖的數字化裝置206a中由縮減器304和調節器306執行的 縮減和調節操作的次序在另一可選實施例中可被顛倒。 第5B圖描述了裝置200b,其中數字化裝置的圖像縮 減及防止梯形失真的功能被結合。在本實施例中數字化裝 置206b的縮減器/調節器505執行第5A圖的縮減器304和調 節器306二者的功能。縮減器/調節器505可以結合一組緩 存器(例如行緩存器),當圖像被處理之時並且在其被儲存 器接口 204儲存在儲存器中之前,儲存一圖像的一些部分。 第5C圖示出的裝置200a是當其在發生器208c中而不 是在數字化裝置206c中執行梯形失真校正時的情況。在本 實施例中,數字化裝置206c仍然在必要時縮減一個原始圖 像。當由發生器208c從儲存器檢索該縮小的圖像時,則在 被送到該顯示裝置之前,圖像以任何次序擴大和調節(例 如扭曲、變形)。調節器508和梯形失真模塊510被結合成 發生器208c,用於防止梯形失真的目的。這些部件能以類 似於第3A圖的數字轉換器206中的相應部件的方式構成和 操作。 第5D圖示出把內插和梯形失真調整功能合倂在發生 器208d中的裝置200d。具體地說,內插器/調節器512執行 556440 〇8168twf1. doc/006 修正日期92.6.30 對從儲存器檢索的一^個圖像進丫了擴大並且按照需要進丫了吾周 整以便防止梯形失真的兩個功能。 防ίΜ弟形失寘的一個方j去- 如上所述,在本發明的一個實施例中,在一個從像 源接收的一個原始圖像被提供在例如一個LCD板的一個顯 示裝置上之前,該原始圖像被變形、失真或做另外的調節。 隨即,當該顯示圖像被投影時,該投影圖像可被察覺不到 梯形失真地觀看。 第7A-7B圖演不本方法的一個效果。第7A圖以實線描 述在任何形變或改變之前可能被接收的一個原始圖像(例 如Image-Ι)的、邊界。以虛線顯示的顯示圖像7〇〇a(例如 Image_2)是從原始圖像700獲得並且提供在LCD板11 〇以便 投影在一個屏面上的圖像。直觀地說,顯示圖像70〇a是才女 需要調整原始圖像尺寸並且適當變形的結果。顯然,由點 702和702a分別表示的原始圖像700和顯示圖像700a的中心 與第7A和7B圖一致。 從Image-Ι產生Image_2的一個方法可以包括對於The ratio of Write-Y 364 to Original-Y 354 is called Reduce-X and Reduce-Y ratio, respectively. These ratios are the reduction ratios described above. FIG. 3C illustrates the operation of the regulator 306 of the digitizing device 206 that adjusts or distorts the reduced image according to the scale provided by the keystone module 308 to prevent keystone. In Figure 3C, the reduced image 360 is distorted line by line to produce a distorted image 370. In one embodiment of the present invention, the deformed image 370 can be used as a display image (eg, Image-2), presented on an LCD panel, and projected onto a video screen. In another embodiment, the adjusted image 370 may be rescaled (e.g., enlarged) to form a suitable display image. The manner in which the image is distorted can be determined by a portion of the display device that will render Image-2. For example, the method for preventing trapezoidal distortion described in the following section shows how to obtain an appropriate effective area of Image-2 from Image-1. Therefore, in a method for preventing keystone distortion described below, an original image is received with the digitizing device 206, and one of the images stored in the memory, Start-Write_X and Start-Write-Y, is read to start storing the image. starting point. Then as it is stored in the memory ', the original image is scaled down to Reduce-X on the horizontal scale and then scaled down to 08168twf1.doc / 006 on the vertical scale. If any of these ratios is equal to 1, the image is stored at its original size in the respective scale. If the image is to be transformed by the digitizer, the image can also be distorted on a progressive basis before being stored. In addition to the reduction and adjustment operations described above, the digitizing device 206 may perform another operation, such as various image filtering functions for an original image. For example, in one embodiment of the present invention described below, the brightness or light intensity of the original image is equalized to produce a projected image having a uniform or near-uniform intensity. The above-mentioned various registration and image data may be held by the CPU interface 202 (not shown in FIG. 2), may be held in a storage managed by the storage interface device 204, or may be a part of the digital device 206 or other parts of the device 200 Serving. Generator Embodiments Figures 4A-4B depict an embodiment of a generator 208 of the apparatus 200 in one embodiment of the invention. The function of the generator in this embodiment is to provide an appropriate display image (Image-2) on the LCD panel, CRT screen, etc., for projecting on a video screen or other plane in order to reconstruct an image without obvious keystone distortion The original image, specifically, the generator can be configured to scale, resize, or otherwise deform the image data in the memory (such as to compensate or prevent keystone distortion), and to transform the result to a specific size or 淸The clarity is forwarded to a prescribed display device. That is, the generator can be configured to simply retrieve and provide a stored image that has been deformed by a digitizer. 08168twfl.doc / 006 Modified date 92.6 · 3. However, in an alternative embodiment of the present invention, both the digitizing device 206 and the generator 208 can perform the deformation operation (for example, the elevation angle β and the scanning angle α are not zero). The generators depicted in Figures 4A-4B are configured to operate with the digitizer 206 described in Figures 3A-3C. Therefore, the generator shown is not configured to perform keystone correction because the function is performed by the digitizer. The generator 208 in FIG. 4A includes an image receiver 402, an interpolator 404, and a controller 406. The image receiver 400 may include one or more buffers (such as a line buffer) configured to receive and temporarily store image data received from the memory interface 204. The number and size of line buffers combined in an interpolator may depend on the speed of memory access, the rate at which image data is received in or from digitizer 206, and the prediction of the original image. Size, how image data is received (e.g. progressive, pixels), etc. The interpolator 404 is configured to receive an image from the memory (for example, a reduced image 360 of the first image or a deformed image 370 of the 3C image), and if necessary, used for translation or rescaling, and transmitted to A display device such as the LCD panel 110. The interpolator in one embodiment of the present invention adjusts the size of the retrieved image according to a prescribed ratio (described below). The controller 406 receives commands from the CPU interface 202 (shown in FIG. 2), and controls operations of the image receiver 402 and the interpolator 404. Fig. 4B illustrates the interpolation of the image data stored in the memory, such as the stored image 450, into a display image 460 (Image-2). When using the above-mentioned digitizing device 206, several variable or other data structures of 08168twf1.doc / 006 modified date 92.6.30 registers can be used to store the interpolation of the relevant stored memory data into the data to be projected An image. In Figure 4B, Start-Read-X456 and Start-Read-Y458 define a starting position in the memory from which the image data is extracted. The other registers store Read-X 452 and Read-Y 454, which indicate the dimensions of the storage area to be read. Further, Display-X 462 and 〇1 邛 1 ”-γ464 define the horizontal and vertical dimensions of the display device (ie, the portion of the display device used to display the image 460). The ratio and the ratio of Display-Y 454 and Read-Y 464 can be labeled as Enlarge-X and Enlarge-Y, respectively. These ratios therefore determine the size of the stored image 450 expanded or interpolated in order to produce a display image of a suitable size Degree. Intuitively, these two ratios have at least one 値. It can be seen later that the function of the generator 208 of FIG. 4A is to adjust the size of a stored image to fit a display device. During the interpolation process, Other image enhancement functions can also be performed, such as adjusting the sharpness, contrast, brightness, gamma correction, etc. of the displayed image. Those skilled in the art will understand that the functions performed by the digitizing device 206 and the generator 208 are complementary. Specifically That is, the modification of the stored image by the generator 208 to produce a display image that can be projected without trapezoidal distortion depends on the corresponding original modified by the digitizing device 206 This method, along with its function of changing the size and shape of the original image, produces the appropriate display image. Figure 19 shows a method using this section and the previous section of the generator 208 and digitizing device 206. The original image is transformed into a display image that can be projected with little, if any, keystone distortion. In the state 1900, 08168twf1. Doc / 006 Modified Date 92.6.30 Receives an original image with a digital device. This figure The image can be received as a complete set of data or can be part of each reception and processing (eg, progressive). If necessary, in state 1902, the digital device adjusts or rescales the image. For example, it can be reduced or Extract the scale of the original image in order to store the image in a specific storage area. The above scales can be applied, such as Reduce-X and Reduce-Y. The rescaling factor applied by the digitizer can be applied to the original image. Defined and stored before being received, or can be determined when receiving images. Intuitively, when less storage space is required, reducing the original image makes the The scale of the original image is maintained. In state 1904, the digitizer transforms the image in order to compensate for keystone distortion caused by a projection system angle (such as elevation angle 0 and / or sweep angle α). Intuitively, this Processing is performed on a line-by-line basis based on pre-stored parameters obtained from the projection system, describing how each line must be adjusted to offset the effects of keystone distortion. In addition, this parameter can be calculated in real time. The deformation of state 1904 can be Performed in order or combined with the recalibration of status 1902 fr. And 'as described in the following subsection' deformation of an image to compensate for or prevent keystone distortion can be performed only on the digitizer or generator Executed by one or the other, or by both modules. Moreover, in the case where the elevation angle and the scanning angle are not zero, respective deformation operations can be performed for each angle, and the operations can be combined again using the recalibration operation of the digital device or generator, that is, placed in the sequence. In the state of sadness 1906, the image was stored in the memory 08168twf1. Doc / 006 on a date-by-time basis, with a revision date of 92.6.30. The memory in which the images are stored can be managed by the memory interface 204 described above. In state 1908, the generator retrieves (e.g., progressively) the image data from the memory. However, as described below, in another embodiment of the present invention, the image is rotated by reading and compiling the stored image data in a column-by-column format for additional processing (for example, according to another The projection system is distorted). In state 1910, the generator rescales the image as needed for a specified display device (e.g., one or more LCD panels). Specifically, the usable or effective area of the display device may be defined using parameters stored in a memory or according to a parameter generated by operation. The generator can then resize (for example, enlarge) the image retrieved from the memory to use the largest possible area or a prescribed area of the display device. In state 1912, the deformed image is provided on the display device, and is projected on a screen in state 1914. Examples of EL Selection Digitizers and Transponders As described above, efforts to correct or avoid keystone distortion may be performed in either or both of the digitizer 206 and the generator 208. In addition, the keystone correction / avoidance function can be performed by different components in these modules (such as described in Figure 3A) or can be combined with other functions of a module or a module's components (such as reducing or enlarging an image) Together. Therefore, the optional structure of the apparatus 200 will now be described with reference to FIGS. 5A-5D. Those skilled in the art will readily understand the manner described in Figure 19 and the above method of operation that can be adjusted to 08168twfl.doc / 006 revision date 92 · 6 · 30 to suit these optional device configurations. The device 200a depicted in Figure 5A has a digitizing device 206a and a generator 208a, similar to the digitizing devices and generators of Figures 3A and 4A. As already described, the main function of the digitizer in this embodiment is to prevent keystone distortion. As understood by those skilled in the art, the order of the reduction and adjustment operations performed by the reducer 304 and the regulator 306 in the digitizing device 206a of Fig. 5A may be reversed in another alternative embodiment. FIG. 5B illustrates the device 200b, in which the functions of image reduction and keystone prevention of a digitizing device are combined. The reducer / regulator 505 of the digitizing device 206b in this embodiment performs the functions of both the reducer 304 and the regulator 306 of Fig. 5A. The reducer / regulator 505 may incorporate a set of buffers (e.g., line buffers) to store portions of an image when the image is processed and before it is stored in the memory by the memory interface 204. The device 200a illustrated in Fig. 5C is the case when it performs keystone correction in the generator 208c instead of the digitizing device 206c. In this embodiment, the digitizing device 206c still reduces an original image if necessary. When the reduced image is retrieved from the storage by the generator 208c, the image is enlarged and adjusted (e.g. distorted, deformed) in any order before being sent to the display device. The regulator 508 and the keystone module 510 are combined into a generator 208c for the purpose of preventing keystone distortion. These components can be constructed and operated in a manner similar to the corresponding components in the digitizer 206 of Fig. 3A. Fig. 5D shows a device 200d that integrates interpolation and keystone adjustment functions in the generator 208d. Specifically, the interpolator / regulator 512 executes 556440 〇8168twf1.doc / 006 Date of revision 92.6.30 A ^ image retrieved from the memory is expanded and expanded as necessary to prevent Two functions of keystone. A method to prevent the loss of the shape of the image-as described above, in one embodiment of the invention, before an original image received from an image source is provided on a display device such as an LCD panel, The original image is distorted, distorted or otherwise adjusted. Then, when the display image is projected, the projected image can be viewed without noticeable trapezoidal distortion. Figures 7A-7B show an effect of this method. Figure 7A depicts in solid lines the boundaries of an original image (such as Image-I) that may be received before any deformation or change. A display image 700a (for example, Image_2) displayed in a dotted line is an image obtained from the original image 700 and provided on the LCD panel 110 to be projected on one screen. Intuitively, the display image 70oa is the result of the talented woman needing to adjust the size of the original image and deform it appropriately. Obviously, the centers of the original image 700 and the display image 700a indicated by the points 702 and 702a, respectively, are consistent with those in Figs. 7A and 7B. One method for generating Image_2 from Image-1 can include

Image-2的正確形狀的確定,即需要補償否則可能由於仰 角0和/或掃視角^引起的任何梯形失真。如下面描述’ 可以根據Image-Ι和Image-2之間的幾何關係實現如此確 定。Image-2的形狀可以稱爲其有效面積,因爲它定義了 其中可以提供該圖像的顯示裝置的一個區域。 通過在第6A-6B圖的投影系統中把原始圖像7〇〇提供 33 08168twfl.doc/006 修正日期92 · 6 · 30 在LCD板110上、並且投影在屏幕130上而產生第7B圖以實 線描述的投影原始圖像750。人們能夠容易地察覺產生的 梯形失真。然而虛線所示的投影的顯示圖像75(^是利用同 樣的投影系統的投影顯示圖像700a的結果,並且示出本發 明一個實施例的減小或消除梯形失真的能力。 參考第1B和6A圖,在本發明的一個實施例中從原始 圖像700得出的顯示圖像700a可被顯現如下。在本實施例 中,仰角6>不爲零,而掃視角a等於0。本專業技術人員 將認識一種防止梯形失真的方法,一個掃視角或仰角可被 修正以便針對不同角度而防止梯形失真。本發明的另一實 施例是針對其中兩個角度都不爲零的投影系統。下面描述 的本發明的實施例用於抵消該仰角和掃視角之一或兩者的 影響。 在目前描述的實施例中,原始圖像被接收,似乎是 被無變形或調節地呈現在該LCD板上。從其它LCD板之內 的位置,該圖像被隨即圍繞貫穿LCD板中心並行該X軸的 一個軸轉仰角0。圖像的0角度的旋轉將其置於平行於屏 面的一個平面上。隨後沿Z軸平移圖像,保持其中心在z軸 上,在遠離該LCD板並且朝著屏幕或平面方向平移,直到 恰有該圖像的一個邊緣與該LCD板的平面重合爲止。可以 將此圖像表示爲Image_l,作爲得出Image-2的第一步驟(變 形圖像被提供並且幾乎沒有梯形失真地投影)。在此位置(例 如平行於屏幕130),Image-Ι與LCD板的平面的關係重建仰 角0 ’其中心與光源102的投影軸共線。第1 b圖示出image_ 1 08168twfl.doc/006 修正日期92.6.30 的位置,Image-1的底邊緣的該位置會合LCD板,它們之間 形成仰角0。然而應該注意,在本發明的一個可選實施例 中,該LCD板可以重疊Image-Ι,反之亦然。 通過捕獲Image-Ι的幾何透視投影,Image-2(即呈現 在LCD板上的顯示圖像)可以隨後在LCD板上產生,好像 Image-Ι朝著光源102的方向伸縮。如在第7A-7B圖中能夠 看到的,在本實施例中的Image-2的尺寸取決於仰角q,並 且將不大於Image-Ι。 因此,在本發明的一個實施例中對於一個原始圖像(如 Image-Ι)執行一系列計算,以便得到一個可被無梯形失真 地投影的一個顯示圖像(Image-2)。具體地說,對於在可被 提供以及投影的該LCD板上的每一部分(例如,點、像素) 來說,Image-Ι的對應部分被標示。對應部分的特徵(例如 彩色、光強、對比度)可以隨後被用於該LCD板。 在本發明的一個實施例中,假定在得到Image-2之前, 在光源(即,x-y-z)座標系中進一步平移或重新定位其幾何 中心,可將補償加到一個中間圖像(例如Image-Ι)。直觀地 說,補償可被表示成(r,5,λ)。第8A和8B圖示出施加一 個水平補償(即平行於X軸)以便相對於其原始方向左或右 移Image-Ι而對在屏幕130上投影的圖像的影響。回想一 下,Image-Ι的中心在其原始方向中是與投影軸對準的。 第8C和8D圖示出施加一個垂直補償(即平行於該y軸)以便 在產生Image-2之前向上或向下地滑動Image-Ι的效果。類 似地,Image-Ι可沿著Z軸補償,如第8E和8F圖示出,以便 08168twfl.doc/006 修正日期92.6.30 放大或縮小Image-2。第8E圖示出進一步遠離該LCD板平 移Image-Ι的縮小效果,而第8F圖示出朝著該LCD板的方 向平移Image-Ι的擴大效果。 然而,如果指定了太大的補償,使得Image-2的一部份 出現在該LCD板的可顯示區域之外,則該部分可被剪裁而 不是顯示或投影。例如,第8A圖中由804a、806a、808a和 810a容括的區域將不被顯示或投影,因爲其延伸超出了該 LCD板的可顯示部分。類似地,延伸到該LCD板的可顯示 區域之下的Image-2的部分不被投影。如果在一圖像的形 變之前或與一圖像的形變結合,沿著X-、y-或z-軸平移或 移位Image-Ι,本專業技術人員將理解下面描述的用於創 建一個適當的Image-2的計算方式。 另外,第8G圖示出由於向上移位而可以增加投影 Image-2的尺寸的方式,其在第8C圖中可能不明顯。被移 動之前和之後的Image-2的不同尺寸和位置可被容易地比 較。類似地,通過下移Image-Ι可投影一個較小的Image-2。 然而,當不把補償注入到計算中時,Image-Ι和Image-2 的幾何中心在來自光源102的同一個光束上重合(第7A-7B 圖中所示)。有益的是,這種對準貫穿該投影圖像,因此 幾乎不需要操作者或用戶做調整,即能確保該原始圖像的 精確再現。而且,在得到Image-2之前把Image-Ι的一個邊 緣與該LCD板的平面對準,通過採用盡可能多的該LCD板 的顯示區而最大化該產生圖像的尺寸。當然,隨著仰角0 (或掃視角α )値加大,從原始圖像獲得的顯示圖像將需要 08168twf1. doc/006 修正日期92.6.30 在尺寸上收縮。 在下面的關於從一個Image-Ι得到一個適當的Image-2 的方法的討論中,在座標系(例如光源或Image-1座標系)之 內的位置可被表示成沒有z或Z維的値。本專業技術人員將 理解,在本發明的這些實施例中,Image-Ι平面或Image-2 平面中的所有的點的座標將分別具有恒定的Z或z値。具體 地說,LCD板中的全部點在z維中具有d値(光源102的焦 距),而Image-Ι中的全部點在Z維中具有0値。 在下面的討論中應該理解,Image_l是通過再定向該 原始圖像以便出現在平行於該視屏的一個平面中而形成。 進一步,Image-2是Image-Ι或原始圖像的形變,以便配合 LCD板的適當成形的顯示區之內。image-2的成形可以從 Image-Ι和Image-2之間的幾何或空間關係獲得,並且被直 觀構成,以便實質上補償可能被引入到投影圖像中的任何 梯形失真。 IMAGE-1和IMAGE-2之間的蜱何p係 在子部分中描述採用本發明實施例的一個投影系統 中存在的幾何關係,使得存在於隨後子部分中的從Image_ 1產生Image-2的各種方法能被更好地理解。如下面描述的 那樣,這些關係可被用於對應原始圖像(即lmage_1}的部分 定位Image-2的每一部份(例如像素)。對應部分的特徵(例 如彩色、強度)則可被加到該LCD板,以便產生能以很少(即 使有)梯形失真投影的該原始圖像的一個有效修改。 08168twf1. doc/006 修正日期92.6.30 在本發明的本實施例中,Image-1和Image-2的中心與 z軸(投影軸)對準,以使該投影系統的操作者將不需要隨著 投影圖像的不同而做不斷的調整。另外,提供在LCD板(或 其它顯示裝置)上的Image-2盡可能地大;這是通過在計算 Image-2之前把Image-Ι的一個邊緣與該LCD板對準而實現 的。Image-2的尺寸(例如維數、形狀)隨著仰角0和/或掃 視角α的改變而改變。 現在描述其中可以應用本發明的一個實施例的一個 直觀投影系統,以便演示影響Image-2的得出的幾何關係。 該投影系統在第9A-9B圖中示出。在該系統中,投影儀100 的光源1〇2(第9A-9B圖中沒描述)被置於光源座標系中的點 〇(〇,〇,〇)。投影儀1〇〇的定向使得投影軸104(即2軸)形成相 對於垂直於屏幕130的一個直線的仰角6» (第9A-9B圖中也 沒所示);掃視角α是零。因此,第9A圖是投影系統的一 個側視圖而第9Β圖是投影系統的一個頂視圖。本專業技術 人員將容易地理解當前描述的方法如何可以被修正,以便 工作在具有掃視角和沒有仰角的一個投影系統中,或其中 兩個角度都不爲零的一個系統中。 LCD板110置於距該光源爲d的位置(例如光源102的焦 距),以使其中心,即第9A-9B圖中的點A在該光源座標系 中是在座標(〇,〇,d)。Image-Ι的中心被表示爲點0,在Image-1 座標系中的座標(〇,〇,〇)。在第9B圖中的Image-1的角被表示 爲點C0-C3。如上所述,Image-Ι通過轉動和平移來自LCD 板的原始圖像產生。因此,在LCD板110和Image_l之間出 08168twf1. doc/006 修正日期92.6.30 現角度0。 第9 A-9B圖中的LCD板11 〇和Image-1具有相同的尺度 (即2Wx2H),而對於本發明的其它實施例不是必需的。直 觀地說,在兩個座標系中的單元的幅値(即實際尺寸)完全 相同,因此使得LCD板110和Image-Ι的單元容易比較。The determination of the correct shape of Image-2 is to compensate for any trapezoidal distortion that might otherwise be caused by the elevation angle 0 and / or the sweep angle ^. As described below, ′ can be determined based on the geometric relationship between Image-1 and Image-2. The shape of Image-2 can be referred to as its effective area because it defines an area of a display device in which the image can be provided. The original image 700 is provided in the projection system of Figs. 6A-6B. 33 08168twfl.doc / 006 Modified date 92 · 6 · 30 on the LCD panel 110 and projected on the screen 130 to generate the 7B image to The solid line depicts the projected original image 750. One can easily perceive the resulting keystone distortion. However, the projected display image 75 (shown by the dashed line) is the result of the projected display image 700a using the same projection system, and shows the ability to reduce or eliminate keystone distortion according to an embodiment of the present invention. Figure 6A. In one embodiment of the present invention, the display image 700a derived from the original image 700 can be displayed as follows. In this embodiment, the elevation angle 6> is not zero, and the scanning angle a is equal to 0. This specialty The skilled person will recognize a method for preventing keystone distortion. A sweep angle or elevation angle can be modified to prevent keystone distortion for different angles. Another embodiment of the present invention is directed to a projection system in which both angles are non-zero. Below The described embodiments of the present invention are used to offset the effects of one or both of the elevation angle and the sweep angle. In the presently described embodiments, the original image is received and appears to be presented on the LCD panel without distortion or adjustment. From the position inside the other LCD panels, the image is then rotated around an axis running through the center of the LCD panel parallel to the X axis at an elevation angle of 0. The 0-degree rotation of the image places it parallel to the screen Then move the image along the Z axis, keeping its center on the z axis, away from the LCD panel and toward the screen or plane until just one edge of the image is on the plane of the LCD panel Until the coincidence. This image can be represented as Image_l as the first step to get Image-2 (the deformed image is provided and projected with almost no keystone distortion). At this position (for example, parallel to the screen 130), Image- The relationship between I and the plane of the LCD panel reconstructs the elevation angle 0 ', the center of which is collinear with the projection axis of the light source 102. Fig. 1b shows the position of image_ 1 08168twfl.doc / 006, date of correction 92.6.30, bottom edge of Image-1 This position meets the LCD panel, forming an elevation angle of 0 between them. However, it should be noted that in an alternative embodiment of the present invention, the LCD panel can overlap Image-I and vice versa. By capturing the geometric perspective of Image-I Projection, Image-2 (that is, the display image presented on the LCD panel) can then be generated on the LCD panel as if Image-1 was retracted toward the light source 102. As can be seen in Figures 7A-7B, Image-2 ruler in this embodiment Depends on the elevation angle q, and will not be greater than Image-1. Therefore, in one embodiment of the present invention, a series of calculations are performed on an original image (such as Image-1) in order to obtain an image that can be projected without trapezoidal distortion. A display image (Image-2). Specifically, for each part (eg, point, pixel) on the LCD panel that can be provided and projected, the corresponding part of Image-1 is marked. The corresponding part The features (such as color, light intensity, contrast) can then be applied to the LCD panel. In one embodiment of the present invention, it is assumed that before obtaining Image-2, further translations in the coordinate system of the light source (ie, xyz) or Relocating its geometric center adds compensation to an intermediate image (eg Image-I). Intuitively, compensation can be expressed as (r, 5, λ). Figures 8A and 8B illustrate the effect of applying a horizontal compensation (i.e., parallel to the X axis) to move Image-I left or right relative to its original direction on the image projected on screen 130. Recall that the center of Image-I is aligned with the projection axis in its original direction. Figures 8C and 8D show the effect of applying a vertical offset (i.e., parallel to the y-axis) to slide Image-1 up or down before generating Image-2. Similarly, Image-1 can be compensated along the Z axis, as shown in Figures 8E and 8F, so that 08168twfl.doc / 006 amends 92.6.30 to enlarge or reduce Image-2. Fig. 8E shows a zoom-out effect of panning Image-1 further away from the LCD panel, and Fig. 8F shows an enlargement effect of panning Image-I toward the LCD panel. However, if too much compensation is specified so that a portion of Image-2 appears outside the displayable area of the LCD panel, the portion can be cropped rather than displayed or projected. For example, the area enclosed by 804a, 806a, 808a, and 810a in Figure 8A will not be displayed or projected because it extends beyond the displayable portion of the LCD panel. Similarly, the portion of Image-2 extending below the displayable area of the LCD panel is not projected. If image-I is translated or shifted along the X-, y-, or z-axis before or in combination with the deformation of an image, those skilled in the art will understand the methods described below for creating an appropriate Image-2 calculation method. In addition, FIG. 8G shows a manner in which the size of the projected Image-2 can be increased due to upward displacement, which may not be obvious in FIG. 8C. The different sizes and positions of Image-2 before and after being moved can be easily compared. Similarly, a smaller Image-2 can be projected by moving Image-1 down. However, when compensation is not injected into the calculation, the geometric centers of Image-1 and Image-2 coincide on the same beam from light source 102 (shown in Figures 7A-7B). Beneficially, this alignment runs through the projected image, so little adjustment by the operator or user is required, which ensures accurate reproduction of the original image. Furthermore, an edge of Image-1 is aligned with the plane of the LCD panel before Image-2 is obtained, and the size of the generated image is maximized by using as many display areas of the LCD panel as possible. Of course, as the elevation angle 0 (or scan angle α) increases, the display image obtained from the original image will require 08168twf1.doc / 006 correction date 92.6.30 to shrink in size. In the following discussion of a method for obtaining an appropriate Image-2 from an Image-1, a position within a coordinate system (such as a light source or an Image-1 coordinate system) can be represented as a 没有 without z or Z dimensions . Those skilled in the art will understand that in these embodiments of the present invention, the coordinates of all points in the Image-1 plane or Image-2 plane will have a constant Z or z 値, respectively. Specifically, all points in the LCD panel have d 値 (focal length of the light source 102) in the z-dimension, and all points in Image-1 have 0 値 in the z-dimension. It should be understood in the following discussion that Image_1 is formed by reorienting the original image so as to appear in a plane parallel to the video screen. Further, Image-2 is the deformation of Image-1 or the original image to fit within the appropriately shaped display area of the LCD panel. The shaping of image-2 can be obtained from the geometric or spatial relationship between Image-1 and Image-2 and is constructed visually in order to substantially compensate for any keystone distortion that may be introduced into the projected image. The tick relationship between IMAGE-1 and IMAGE-2 is described in a subsection. The geometric relationship existing in a projection system using an embodiment of the present invention is described, so that the Image-2 generated from Image_1 in the subsequent subsection Various methods can be better understood. As described below, these relationships can be used to locate each part of Image-2 (such as pixels) corresponding to the part of the original image (ie, lmage_1}. Features (such as color, intensity) of the corresponding part can be added To the LCD panel in order to produce an effective modification of the original image that can be projected with little, if any, keystone distortion. 08168twf1.doc / 006 Revision Date 92.6.30 In this embodiment of the present invention, Image-1 And the center of Image-2 is aligned with the z-axis (projection axis), so that the operator of the projection system will not need to make constant adjustments according to the projected image. In addition, it is provided on the LCD panel (or other display Device) Image-2 is as large as possible; this is achieved by aligning one edge of Image-1 with the LCD panel before calculating Image-2. Size (eg dimension, shape) of Image-2 Changes with elevation angle 0 and / or sweep angle α. An intuitive projection system in which an embodiment of the present invention can be applied will now be described in order to demonstrate the geometric relationship that affects the conclusion of Image-2. 9A-9B shown in the figure In this system, the light source 102 (not shown in Figures 9A-9B) of the projector 100 is placed at point 0 (〇, 〇, 〇) in the coordinate system of the light source. The orientation of the projector 100 causes the projection The axis 104 (ie, 2 axes) forms an elevation angle 6 »relative to a straight line perpendicular to the screen 130 (also not shown in Figs. 9A-9B); the scanning angle α is zero. Therefore, Fig. 9A is a projection system Side view and Figure 9B is a top view of the projection system. Those skilled in the art will easily understand how the method currently described can be modified to work in a projection system with a swept angle and no elevation angle, or two of them In a system where the angles are not zero, the LCD panel 110 is placed at a position d from the light source (for example, the focal length of the light source 102) so that its center, that is, point A in Figs. 9A-9B in the coordinate system of the light source Is in the coordinates (0, 0, d). The center of Image-1 is represented as point 0, the coordinates (0, 0, 0) in the Image-1 coordinate system. Image-1 in Figure 9B The angles are represented as points C0-C3. As mentioned above, Image-I is generated by rotating and translating the original image from the LCD panel Therefore, 08168twf1.doc / 006 between the LCD panel 110 and Image_1 is revised at 92.6.30 and the present angle is 0. The LCD panel 11 in Figure 9 A-9B and Image-1 have the same scale (ie 2Wx2H) It is not necessary for other embodiments of the present invention. Intuitively, the widths (ie, actual sizes) of the units in the two coordinate systems are completely the same, so that the units of the LCD panel 110 and Image-1 are easy to compare.

Image_l的點P是原始圖像中的具有座標(X,Y,〇)的一個 直觀點。點Ρ’是LCD板110中的對應點(即在來自光源的同 一個光束上)。點P ’的位置在光源座標系中可以顯不爲(X,y, d)。點A因此是點P’在該z軸上的投影,而點B表示點P在該 z軸上的投影。第9A圖中,y表示投影在y-z平面上的線段 (A,P’)的長度,而X表示投射在x-z平面上的線段(A,P’)的長 度。類似地,Y表示在Y-Z平面上的線段(0,P)的長度,而X 表示在X-Z平面上的線段(0,P)的長度。 點B可以定義爲具有座標(〇, 〇, d+Yz)的光源座標系, 其中Yz表示線段(Α,Β)的長度。具體地說,三角法要求 sin(<9)=Yz/(H+Y),因此Yz=(H+Y)* sin(<9)。類似地,y-z 平面中的線段(P,B)的長度可以表示爲Yy。數學表示爲 cos(0 )=Yy/Y,並且使得Yy=Y* cos((9 )。 可以在第9A圖中看到,當Image-1被定位時(例如平行 於視屏,其中心在投影軸上,並且一個邊緣與LCD板110 的平面重合),該LCD板可以延伸超過Image-Ι的邊緣,或 反之亦然。具體地說,LCD板110和圖9A中的Image-Ι的連 接表示爲J。線段(A,J)的長度可被描述爲H’,並且因爲 cos(0 )=H’ /H,則H’ = H* cos(0 )。因此,LCD板 110延伸 556440 修正日期92.6.30 08168twfl.doc/006 超出Image-1邊緣的距離是Η·( H* C〇S(0))。 從第9A-9B圖中示出的投影系統可以獲得幾個其它的 數學關係和方程式,將在下面用於從Mage·1產生1mage_2。 首先可見三角形ΛΟΑΡ’和Λ〇ΒΡ是幾何相似的。因此,其 中Yy表示從LCD板到點的正交距離,ο Α表示線段(ο,Α) 的長度而◦ Β表示線段(ο,Β)的長度,能夠看出: x:X=y:Yy=〇A:oB·因爲線段(ο,Α)的長度等於d,並 且線段(ο,B)的長度等於(d+Yz),此比例關係可被重新寫 爲· ⑴ x:X=d:(d+Yz)=y:(Y* cos(0)) 第9A圖說明Yz等於線段(A,B)的長度,該線段能被分 成(A,0)和(0,B)。而且,線段(A,0)的長度=(H* sin(0 )), 並且線段(〇,B)的長度=(Y* sin(<9))。因此,The point P of Image_1 is an intuitive point with coordinates (X, Y, 0) in the original image. Point P 'is the corresponding point in the LCD panel 110 (i.e., on the same light beam from the light source). The position of the point P 'can be displayed as (X, y, d) in the coordinate system of the light source. Point A is therefore the projection of point P 'on the z-axis, while point B represents the projection of point P on the z-axis. In Fig. 9A, y represents the length of the line segment (A, P ') projected on the y-z plane, and X represents the length of the line segment (A, P') projected on the x-z plane. Similarly, Y represents the length of the line segment (0, P) on the Y-Z plane, and X represents the length of the line segment (0, P) on the X-Z plane. The point B can be defined as a light source coordinate system with coordinates (0, 〇, d + Yz), where Yz represents the length of the line segment (A, B). Specifically, the trigonometric method requires sin (< 9) = Yz / (H + Y), so Yz = (H + Y) * sin (< 9). Similarly, the length of the line segment (P, B) in the y-z plane can be expressed as Yy. The mathematical expression is cos (0) = Yy / Y, and Yy = Y * cos ((9). As can be seen in Figure 9A, when Image-1 is positioned (for example, parallel to the video screen, its center is at On the projection axis and one edge coincides with the plane of the LCD panel 110), the LCD panel can extend beyond the edge of Image-1, or vice versa. Specifically, the connection between the LCD panel 110 and Image-1 in FIG. 9A Expressed as J. The length of the line segment (A, J) can be described as H ', and since cos (0) = H' / H, then H '= H * cos (0). Therefore, the LCD panel 110 extends 556440 to modify Date 92.6.30 08168twfl.doc / 006 The distance beyond the edge of Image-1 is Η · (H * C0S (0)). Several other mathematical relationships can be obtained from the projection system shown in Figures 9A-9B And equations will be used below to generate 1mage_2 from Mage · 1. First of all, we can see that the triangles ΛΟΑΡ 'and Λ〇ΒΡ are geometrically similar. Therefore, Yy represents the orthogonal distance from the LCD panel to the point, and Α represents the line segment (ο , Α) and ◦ B represents the length of the line segment (ο, Β), it can be seen that: x: X = y: Yy = 〇A: oB. Because the length of the line segment (ο, Α) is equal to d, and The length of the line segment (ο, B) is equal to (d + Yz). This proportional relationship can be rewritten as: ⑴ x: X = d: (d + Yz) = y: (Y * cos (0)) Figure 9A Note that Yz is equal to the length of the line segment (A, B), which can be divided into (A, 0) and (0, B). Moreover, the length of the line segment (A, 0) = (H * sin (0)), and The length of the line segment (〇, B) = (Y * sin (< 9)). Therefore,

Yz = Η * sin( 0 ) + Y * sin( (9 ) 在方程式(1)的左側替代此Yz値,產生: X = [(d + (H + Y) * sin(0 ) * χ ] / d (2) 然而,爲了能夠確定從光源座標系(即(X,y,z)座標系) 中的一個元素的座標確定在Image· 1座標系(即(x,y,z)座標 4〇 08168twf1. doc/006 修正日期92.6.30 系)中的一種元素(例如一個像素)的座標,必需消除方程式 (2)中的Y値。把上述Yz値替代到方程式(1)的右邊,看出 d.(d+ Η * sin(0 )+ Υ * Sin(0 ) )= y: (Y cos(0 )),以使 (3) (4) γ_ (6/ + //*sin(^))*y d * cos(^) - ^ * sin(^) 並且 ^*7*cos(^) "+ *sin(^) + 7*sin(^)) 函數Ry(y)表示定標因數,可被用於把Image-2中的一 個像素的y座標(例如第9A圖中的像素P’)映射到Image-1中 的一個對應部分或像素的Y座標(例如第9A圖中的像素P)。 具體地說,Ry(y)可以協助表示或表達在Image-Ι的一條線 的定位或位置與Image-2的對應線的定位之間的關係。因 此,函數Ry(y)定義如下:Yz = Η * sin (0) + Y * sin ((9) replaces this Yz 値 on the left side of equation (1), yielding: X = [(d + (H + Y) * sin (0) * χ] / d (2) However, in order to be able to determine the coordinate of an element from the light source coordinate system (ie, (X, y, z) coordinate system), the image · 1 coordinate system (ie, (x, y, z) coordinate 4) is determined. 08168twf1. Doc / 006 To correct the coordinates of an element (for example, a pixel) in the 92.6.30 date system, you must eliminate Y 値 in equation (2). Substitute the above Yz 値 to the right of equation (1) and see d. (d + Η * sin (0) + Υ * Sin (0)) = y: (Y cos (0)) so that (3) (4) γ_ (6 / + // * sin (^)) * yd * cos (^)-^ * sin (^) and ^ * 7 * cos (^) " + * sin (^) + 7 * sin (^)) The function Ry (y) represents the scaling factor. It is used to map the y-coordinate of a pixel in Image-2 (such as pixel P 'in Figure 9A) to a corresponding part or the Y-coordinate of a pixel in Image-1 (such as pixel P in Figure 9A) Specifically, Ry (y) can assist in expressing or expressing the relationship between the positioning or position of a line in Image-1 and the positioning of the corresponding line in Image-2. Function Ry (y) is defined as follows:

Ry{y)= ά^Η^ύη{θ) i/*cos(^)-j*sin(^) 因此,方程式(3)可以簡單地表示爲Y=Ry(y)*y,並且 可被重寫,使得Y是針對給出値d、Η和0的一個y的函數: Y(y) -Ry ( y ) * y (5) 另一指定爲Rx(y)的函數採用來表不定標因數,針對 556440 修正日期92· 6·30 08168twfl.doc/006 一個給定的y-座標,用於把Image_2中的一個像素(例如像 素P’)的X-座標映射到Image-Ι中的一個對應部分或像素(例 如像素P)的X-座標。具體地說,Rx ( y )可以協助表示或表 達在Image-1的一條線的寬度,或在該線之內的一個元素 的位置與Image-2的對應線或元素之間的關係。Rx ( y )可 被定義如下:Ry {y) = ά ^ Η ^ ύη {θ) i / * cos (^)-j * sin (^) Therefore, equation (3) can be simply expressed as Y = Ry (y) * y, and can be represented by Rewrite so that Y is a function of y that gives 値 d, Η, and 0: Y (y) -Ry (y) * y (5) Another function specified as Rx (y) is used to express the scale Factor for 556440 correction date 92 · 6 · 30 08168twfl.doc / 006 a given y-coordinate, used to map the X-coordinate of a pixel (eg pixel P ') in Image_2 to one in Image-1 The X-coordinate of the corresponding part or pixel (for example, pixel P). Specifically, Rx (y) can assist in expressing or expressing the width of a line in Image-1, or the position of an element within the line, and the relationship between the corresponding line or element of Image-2. Rx (y) can be defined as follows:

Rx ( y )= Ry ( y ) * cos(e) d * cos(^) - 3; * sin(6^) 對於本專業技術人員顯見的是,針對d和H的給定値 以及給定的仰角Θ,對於一個特定的y値來說該Rx(y)是常 數(例如Image-2中的一個具體像素線之內),並且,該對應 X値正比於X (X,y)。用於Rx和/或Ry的値可被儲存在一個表 格中或儲存在其它數據結構中。 消除上述方程式(1)中的中間項,示出X : X = y ·· (γ cos (6> ));因此X=(Y * cos (0 ) * X) / y。替代方程式(5)的Y 値,得出X=( Ry(y)*cos(0 )* X ),其中X現在用X和y表示。 並且,因爲Rx(y) = (Ry (y)*cos(0 )),因此X=Rx(y)*x。此 方程式可被重新寫爲針對給定的d、Η和6»値的X和y的一個 函數: 42 556440 修正日期92.6.30 08168twfl.doc/006 X( x,y) =Rx(y)*x (6) 即,X可以用X和Y來表示,而不是用x和y來表示。具 體地說,方程式(1)的左側表明X: X = d : (d+ Yz)。因爲 Yz=(H* sin(0 )+Y* sin (0 )),可見 + sin(^) + Y * sin(^)) * x)Rx (y) = Ry (y) * cos (e) d * cos (^)-3; * sin (6 ^) It is obvious to those skilled in the art that the given 値 and the given elevation angle for d and H Θ, for a particular y 値, the Rx (y) is constant (for example, within a specific pixel line in Image-2), and the corresponding X 値 is proportional to X (X, y). Rhenium for Rx and / or Ry can be stored in a table or in other data structures. Eliminating the middle term in the above equation (1) shows X: X = y ·· (γ cos (6 >)); therefore X = (Y * cos (0) * X) / y. Substituting Y 値 in equation (5), we get X = (Ry (y) * cos (0) * X), where X is now represented by X and y. And, because Rx (y) = (Ry (y) * cos (0)), X = Rx (y) * x. This equation can be rewritten as a function of X and y for a given d, Η, and 6 »値: 42 556440 correction date 92.6.30 08168twfl.doc / 006 X (x, y) = Rx (y) * x (6) That is, X can be represented by X and Y instead of x and y. Specifically, the left side of equation (1) indicates X: X = d: (d + Yz). Because Yz = (H * sin (0) + Y * sin (0)), we can see + sin (^) + Y * sin (^)) * x)

Ji —- d 其可被重新表示爲: φ χ(χ?7)= W + (// + r)*sin_*x , d 現在可以介紹函數Rx(Y),表示可應用到Image-2中的 - 特定像素的X値,以便根據一個Y値確定Image-1中的對應 , 像素的X座標。Rx(Y)可被定義如下:Ji —- d which can be re-expressed as: φ χ (χ? 7) = W + (// + r) * sin_ * x, d can now introduce the function Rx (Y), indicating that it can be applied to Image-2 -The X 値 of a specific pixel, in order to determine the corresponding X coordinate of the pixel in Image-1 according to a Y 値. Rx (Y) can be defined as follows:

Rx(Y) = (d + (H + Y)* sin( 0 ) ) / d (7) 並且因此 X(x,Y) = Rx(Y) * x (8) 其中d、Η和0是常量値。Rx(Y)應被認爲是Υ的一個 線性函數,然而通過方程式(5)得出的、爲了使用在方程式 (8)中的Υ値不可能總是整數,因此稍微複雜化了該計算。 總之,Rx(Y)有助於計算在Image-Ι中的像素的Υ座 標,該座標對應於具有給定y座標的Image-2中的一個像 4? 修正日期92.6.30 08168twfl.doc/〇〇6 素。類似地,Rx(y)和Rx(Y)有助於分別根據^,]像素的 y広L或根據Image-Ι像素的丫_座標計算image_i像素的χ_ 座標。通過相加或相減一個增加的調整(例如,不是相乘), 計算比如Rx(y)或Rx(Y)的定標因數的計算方法描述如下。 可用於把Image-2的一個元素(例如一個像素)映射爲Rx (Y) = (d + (H + Y) * sin (0)) / d (7) and therefore X (x, Y) = Rx (Y) * x (8) where d, Η, and 0 are constants value. Rx (Y) should be considered as a linear function of Υ, however, it is not always possible to use Υ 値 in Equation (8) to be an integer for the use of 方程 in Equation (8), thus complicating the calculation slightly. In short, Rx (Y) helps to calculate the Υ coordinate of a pixel in Image-1, which corresponds to an image 4 in Image-2 with a given y coordinate. Correction date 92.6.30 08168twfl.doc / 〇 〇6 prime. Similarly, Rx (y) and Rx (Y) help to calculate the x_coordinate of the image_i pixel based on the y 広 L of the ^,] pixel or the y_coordinate of the Image-1 pixel, respectively. A method of calculating a scaling factor such as Rx (y) or Rx (Y) by adding or subtracting an increasing adjustment (eg, not multiplication) is described below. Can be used to map an element (eg a pixel) of Image-2 to

Image-1中的相應的元素的方程式在本發明的實施例中的 下面子部分的描述中被重新編號,以便容易參考: 物)=八,蝴/c, (n) (一 (12) Y(y)=Ry(y)*y (13) χ( X,y ) = Rx (y) * x (14) Rx (Y) = ( d + ( H + Y ) * sin( Θ)) / ά (15) 和 X( X,Y ) = Rx (γ) * χ· (16) 從這些方程式中,根據Image-2中的點Ρ’可以確定 Image-Ι中的一個點Ρ的座標(Χ,Υ)(第9Α_9Β圖所示)。LCD 板110中的Image-2的一些部分的特性,例如色値、焭度、 光強等,則可以從Image-Ι中的對應部分複製’以便忠貫 08168twf1. doc/006 修正日期92·6·3〇 地再生該原始圖像。當然,Image-2的特性可以被進〜步 調節或修改(例如超出或代替從Image-Ι繼承的特徵),以便 施加特定的效果或狀態。 如上簡要陳述,在本發明的一個實施例中,雖然 Image-2中的一個像素的座標可以表示爲整數形式(在該光 源座標中),但是從上述方程式計算的Image-Ι的對應部& 的座標(Image_l座標系中)可能不具有整數値。當計算的 Image-1部分不與一個像素對準或其它單獨元素將要從鄰 接像素値內插時,則對一個Image-2像素應用一個確定該 特徵的方法。在本發明的一個實施例中,所有的鄰接的像 素(例如八個像素的最大値)都被用於內插。在可選實施例 中’可以使用任何數目的像素-不局限於鄰接像素。在本 發明的另一個可選實施例中,可以採用一個求平均値法, 以便平滑附近像素的特性。 確定IMAGE-2的有效而精 在從原始圖像獲得Image-Ι之後,能以下面子部分介 紹的一種方法形成Image-2。然而在本發明的一個實施例 中,在從Image-Ι得到Image-2以前確定以吨以的可用或有 效面積。在此過程中標示的該顯示裝置的區域可以表示該 Image-2的形狀。具體地說,定義範圍的形狀可以是:當 以來自Image-Ι的圖像數據塡充時,該圖像可被投影而察 覺不到梯形失真。直觀地’沒被lmage_2佔用的該1^〇的有 用部分能以背景色或另外的圖案塡充。 08168twf1. doc/006 修正日期92.6.30 可以影響Image-2的有效面積的尺寸和尺度的某些因 素包括:仰角0、掃視角α、原始圖像(例如image-Ι)的尺 度、任何補償、施加到Image-Ι(上述)的擴大或收縮、投影 光源的焦距等。 在確定Image-2圖有效面積的一個方法中,首先根據 圖像中的行數和每一行的長度(例如由像素的數量測量的 每一行的長度)計算該圖像的輪廓。在下面計算中可以採 用若干參數以便確定Image-2的有效面積。例如,能被顯 示爲Image-2的一部份的原始圖像(即image_ ;[)的第一有效 或可用行(例如LCD板上顯示的顯示圖像的頂行)中的y-尺 度的値由 Star-Position-y標不。類似地,End· Position-y是 將要被顯示的最後行,而Dimension-y是能夠被顯示的有效 行的總數。這些參數可以分別簡潔地表示爲SPy、EPy和 Dy。注意,在這些表示中的最後的符號(即小寫字母)標示 其中該可適用的參考座標系-光源座標系。 其它參數涉及在Image-2或LCD板的有效面積之內的 各個行。因此,Star-Position-x(y)標示在行號y中的第一(例 如最左邊)可用或有效像素的X値。End- Position-x(y)標示 在行號y中的最後的像素,而Dimension-x(y)標示行y中的 像素的數量。這些參數可被簡潔地表示爲SPx(y)、EPx(y) 和 Dx(y) 〇 總而言之,參數Star-Position_y(SPy)、End-Position Y (EPy)、Star-Position-x(y) (SPx(y))、和 End· Position-x(y)The equations of the corresponding elements in Image-1 are renumbered in the description of the following subsections in the embodiment of the present invention for easy reference: 物) = 八, butterfly / c, (n) (one (12) Y (y) = Ry (y) * y (13) χ (X, y) = Rx (y) * x (14) Rx (Y) = (d + (H + Y) * sin (Θ)) / ά (15) and X (X, Y) = Rx (γ) * χ · (16) From these equations, according to the point P ′ in Image-2, the coordinates of a point P in Image-1 (X, Υ) (shown in Figures 9A-9B). The characteristics of some parts of Image-2 in the LCD panel 110, such as color tone, brightness, light intensity, etc., can be copied from the corresponding parts in Image-I to be faithful 08168twf1.doc / 006 The original image was reproduced with a revision date of 92.6.30. Of course, the characteristics of Image-2 can be further adjusted or modified (for example, exceeding or replacing features inherited from Image-1) in order to Apply a specific effect or state. As briefly stated above, in one embodiment of the present invention, although the coordinates of a pixel in Image-2 can be expressed as an integer (in the light source coordinates), but calculated from the above equation The coordinates of the corresponding Image & I & coordinates (in the Image_l coordinate system) may not have an integer 値. When the calculated Image-1 part is not aligned with a pixel or other separate elements are to be interpolated from adjacent pixels ,, A method for determining this feature is applied to an Image-2 pixel. In one embodiment of the present invention, all adjacent pixels (for example, a maximum 値 of eight pixels) are used for interpolation. In an alternative embodiment You can use any number of pixels-not limited to adjacent pixels. In another alternative embodiment of the invention, an averaging method can be used to smooth the characteristics of nearby pixels. Determine the effectiveness and precision of IMAGE-2 After obtaining Image-I from the original image, Image-2 can be formed in one of the methods described in the following subsection. However, in one embodiment of the present invention, it is determined that the available image is in tons before Image-2 is obtained from Image-I. Or effective area. The area of the display device marked in this process can represent the shape of the Image-2. Specifically, the shape of the defined range can be: when an image from Image-1 is used According to charging, the image can be projected without detecting keystone distortion. Intuitively, the useful part of the 1 ^ 〇 that is not occupied by lmage_2 can be filled with a background color or another pattern. 08168twf1. Doc / 006 Correction Date 92.6.30 Some factors that can affect the size and scale of the effective area of Image-2 include: elevation angle 0, scan angle α, scale of the original image (such as image-1), any compensation, applied to Image-1 ( (Above) expansion or contraction, focal length of the projection light source, etc. In one method of determining the effective area of an Image-2 image, the contour of the image is first calculated based on the number of lines in the image and the length of each line (for example, the length of each line measured by the number of pixels). Several parameters can be used in the following calculations to determine the effective area of Image-2. For example, the y-scale of the first valid or available line of the original image (ie, image _; [) that can be displayed as part of Image-2 (eg, the top line of the display image displayed on the LCD panel)不 Not marked by Star-Position-y. Similarly, End Position-y is the last line to be displayed, and Dimension-y is the total number of valid lines that can be displayed. These parameters can be expressed concisely as SPy, EPy, and Dy, respectively. Note that the last symbol (ie, lowercase letters) in these representations indicates where the applicable reference coordinate system-the light source coordinate system. Other parameters relate to the rows within the effective area of the Image-2 or LCD panel. Therefore, Star-Position-x (y) indicates X 値 of the first (e.g., leftmost) available or effective pixel in line number y. End- Position-x (y) indicates the last pixel in line number y, and Dimension-x (y) indicates the number of pixels in line y. These parameters can be expressed succinctly as SPx (y), EPx (y), and Dx (y). In summary, the parameters Star-Position_y (SPy), End-Position Y (EPy), Star-Position-x (y) ( SPx (y)), and EndPosition-x (y)

(EPx(y))定義了在本發明的實施例中的用於Image-2的LCD 08168twfl.doc/006 修正日期92.6.30 板的有效或可用區域。雖然在本發明的一個實施例中的 Image-2可被移到LCD板之內以便顯示圖像的不同部分’但 是被映射到此區域外面的區域的Image-1的部分不能被顯 示。 類似地參數可以引入用於Image-Ι。因此,Star-Position-y (SPy)和End- Position-Y (EPy)標示Image-1 中的 第一(例如,頂)和最後(例如,底)行,而star-Position-X (SPX)和End- Position_X (EPX)表示Image-1 的一行中的第 一和最後的位置。SPX和EPX可以是針對Image-Ι中的每一 行的常數値,其中Image-Ι在外行上是矩形。然而在本發 明的另一個實施例中,其中的Image-Ι不是矩形或對稱的, Image-Ι中的一行的開始和終點位置可以分別表示爲SPX(Y) 和EPX(Y)。 現在描述得到與這些參數的一個或多個相關的値的 一個方法。例如在第9A-9B圖中描述的本發明的實施例中, SPY=H而EPY=-H。並且,因爲這些値對應於在光源座標 系中的SPy和EPy,所以方程式(13)可被重新表示爲: Y (SPy)= Ry(SPy) * SPy - Η 和 Υ (EPy)= Ry(EPy) * EPy 二-Η 通過使用來自方程式(π)的Ry(y)的値而求解針對參 數SPy和EPy的方程式,我們看出 556440 修正日期92.6.3〇 (21) (22) 08168twf1. doc/006 6/*//*cos(^) ά + 2Η^ύη(θ) 和 EPy=(-H) *cos(0 ). 則,因爲 Dy = SPy -EPy :(EPx (y)) defines the effective or usable area of the panel 08168twfl.doc / 006 for revision image 92.6.30 for the Image-2 LCD in the embodiment of the present invention. Although Image-2 in one embodiment of the present invention can be moved into the LCD panel to display different portions of the image ', portions of Image-1 mapped to an area outside this area cannot be displayed. Similarly parameters can be introduced for Image-1. Therefore, Star-Position-y (SPy) and End- Position-Y (EPy) mark the first (eg, top) and last (eg, bottom) lines in Image-1, while star-Position-X (SPX) And End- Position_X (EPX) represent the first and last positions in a row of Image-1. SPX and EPX can be constants 値 for each row in Image-1, where Image-1 is rectangular on the outer row. However, in another embodiment of the present invention, where Image-1 is not rectangular or symmetrical, the start and end positions of a line in Image-1 can be expressed as SPX (Y) and EPX (Y), respectively. A method of obtaining a chirp associated with one or more of these parameters will now be described. For example, in the embodiment of the invention described in Figures 9A-9B, SPY = H and EPY = -H. And because these 値 correspond to SPy and EPy in the coordinate system of the light source, equation (13) can be re-expressed as: Y (SPy) = Ry (SPy) * SPy-Η and Υ (EPy) = Ry (EPy ) * EPy di-Η By solving the equations for the parameters SPy and EPy by using 値 of Ry (y) from equation (π), we see that 556440 has a correction date of 92.6.3〇 (21) (22) 08168twf1. Doc / 006 6 / * // * cos (^) ά + 2Η ^ ύη (θ) and EPy = (-H) * cos (0). Then, because Dy = SPy -EPy:

Dy = 2//*cos(^)*(^ + //*sin(^)) d + 2H^sm(0) (23) 而且第9A-9B圖中,SPX=-W而EPX=W。因此,從方程 式(14)可見:Dy = 2 // * cos (^) * (^ + // * sin (^)) d + 2H ^ sm (0) (23) And in Figure 9A-9B, SPX = -W and EPX = W. Therefore, it can be seen from equation (14):

X( SPx(y) 5 y ) = Ry (y) * SPx (y) = -WX (SPx (y) 5 y) = Ry (y) * SPx (y) = -W

而 X( EPx(y) , y ) = Rx (y) * EPx (y) = W 按照方程式(12)求解針對參數SPx(y)和Epx(y)的方程 式,得出: SPx(y)=(-dW / k ) + ( tan( 0 ) * W * y / k ) (24) 和 EPx(y)二(d*W / k ) _ ( tan( 0 ) * W * y / k ) (25) 其中 k = d + H* sin( 0 ).因此顯見,該Epx(y)=-SPx(y), 示出對於矩形原始圖像的對稱特性。並且因爲Dx (y)= 08168twf1. doc/006 修正日期92.6.30 EPx(y) - SPx(y),我們可以看出Dx (y)=2* Epx(y),即And X (EPx (y), y) = Rx (y) * EPx (y) = W Solve the equations for the parameters SPx (y) and Epx (y) according to equation (12), and get: SPx (y) = (-dW / k) + (tan (0) * W * y / k) (24) and EPx (y) (d * W / k) _ (tan (0) * W * y / k) (25 ) Where k = d + H * sin (0). Therefore, it is obvious that the Epx (y) =-SPx (y) shows the symmetrical characteristics for the rectangular original image. And because Dx (y) = 08168twf1.doc / 006, the revision date is 92.6.30 EPx (y)-SPx (y), we can see that Dx (y) = 2 * Epx (y), that is,

Dx(y)=(2*d*W / k ) (2* tan( 0 ) *y * W / k )· (26) 進一步,從方程式(26)可見Z\Dx(y),Image-2的一行 距下一行之寬度差(例如像素數目)能夠表示爲AOxb)= Dx(y) - Dx(y-l),即 △ Dx(y) = -2 * tan( (9 ) * W / k . (27) 爲了更容易定位、表示或顯示,通過上述任何方程 式得出的値可以四捨五入或捨位爲整數値。 參數 SPy、EPy、Dy、SPx(y)、Epx(y)和 Dx(y)因此定 義了在LCD板上的Image_2的有效面積,如第7A圖描述。 這些參數可被儲存在投影系統或一個相關儲存器中,或可 被按照需要針對每一接收的原始圖像計算。這些參數可以 改變,比如當仰角0或掃視角α被調節時。 弟7Α圖速不範了 Image-Ι中的點?與Image-2中的點Ρ’ 的對應方式。例如’在第9A-9B圖的描述中,image_i中的 一點7〇4能夠由座標(SPX,SPY,0 )或座標(_w,H,0 )描述。 對於點704來說的Image-2中的對應於點704a在光源座標系 中具有座標(SPx(SPy)),SPy,d)。 從前面的方程式,可以實現一個或多個考慮。具體 地說,方程式(24)和(25)示出該SPx(y)和Epx(y)相對於y的 556440 08168twf1. doc/006 修正日期92.6·30 線性改變;換言之,當Image-1(原始圖像)是矩形時,Image-2 的側面是直線。而且這些邊緣的斜率是符號相反的,從而 實現Image-2的有效面積是對稱梯形。對於非矩形的圖像 來說這一點可能不同。 第20圖是展示出標示或確定顯示裝置的有效面積或 其中可提供一個Image-2的顯示裝置的一個區域的有效面 積的一個方法。在狀態2000中,接收具有尺度〇riginal_X x Original_Y的一個原始圖像,其對應於第9A-9B圖中的 2*Wx2*H。 在狀態2002中,投影系統的角度(例如0和/或和 光源的焦距(即d)被檢索或確定。 在狀態2004中,計算lmage_2的第一(SPy)和最後行 (EPy)的位置。在本發明的一個實施例中,這些値通過應 用上述方程式(21)和(22)確定。另外,行(Dy)的總數可以 從目亥弟一^和最後之間的差或從方程式(23 )確定,其y値可被 儲存。 在狀態2006中,針對Image-2的一個或多個行、或每 一行計算SPy(y)和Epx(y)的値。從狀態2〇〇4得知Image-2的 y-座標,並且可被帶入方程式(24)和(25),以便得出必要的 値。還可以通過採用在SPx(y)和Epx(y)之間的差或通過應 用方程式(26)而計算針對具體y値的寬度,即在每一行 (Dx(y))中的位置(例如,像素)的數目。在一個可選實施例 中,Image-2中的相繼行的寬度可通過累加由方程式(27)得 出的遞增因素而確定。 50 08168twf1. doc/Ο06 修正日期92.6.30 在狀態2008中,標示或槪述Image_2的有效面積的參 數集可被保存在儲存器中。比如參數可被保存,以供當另 一相同的圖像或類似尺度的圖像被接收時使用。而且,如 果Image-Ι被平移(例如通過如上所述的圖像補償),可以通 過計算和應用調整而確定一個新的有效面積,該調整必須 對該參數集進行,以便完成該補償。 從IMAGE· 1得到IMAGE-2拉二種方法 前面子部分描述的參數(例如SPy、EPy、Dy、SPx(y)、 Epx(y)和Dx(y))提供了槪括有效或可用區域的一個方法, 其中可以平移Image_l,以便形成image_2。在本發明的一 個實施例中,將要被映射到Image-2的一個部分(例如一個 像素)的Image-Ι的每一部分可以隨即被標示。換言之,可 以計算在Image-2中的對應Image· 1中的像素(或像素組)的 每一有效像素。在本發明的實施例中,針對在該LCD板的 有效面積中的每一(x,y)坐標計算上述的方程式(11)-(14), 以便標示在1mage·1中的一個對應的(x,y)座標。Image-Ι的 像素或像素組的相關的特性(例如彩色、亮度、對比度)則 可被用於呈現〗mage-2像素。如已經描述的那樣,image_2 座標具有d(投影光源的焦距)的z-維値,而image-i座標具 有零的恒定Z-維値。 直觀可見,對應於Image-2中的定義在(x,y)的一個像 素的該Image-1的一個部分的位置可以在該Image· 1座標系 中表示爲(X+ 5 X,Y + 5 Y)。在當前描述的本發明的實 556440 修正日期92.6.30 08168twf1. doc/006 施例中,這些座標可以利用給定的θ、d和Η的値、通過應 用方程式(11)至(14)而針對在image-2的有效面積之內的一 個點(X,y)計算出來。具體地說,用於Ry(y)和Rx(y)的値可 以針對一個給定的y値計算。隨後可以根據Ry(y)和y計算 Y,並且使用Rx(y)和與該給定y値相關的每一X値計算X。 在本發明的一個可選實施例中,應用了一個稍微不 同的方法定位一個在座標(x,y)的Image-Ι像素對應於在座 標〇,y)的Image-2像素。在此可選方法中,γ可被如同以前 計算(例如使用Ry(y)和該給定的y値),在其之後可使用方 程式(15)和(16)針對每一連續X値計算rx(y)和x(x,y)。但 是,兩個方法都可能需要有效計算資源,以便使得以即時 的方式實現必要的計算。 而且,如先前描述的幾個其它參數或特徵可被用於 描述一個原始圖像是如何由一個裝置的數字化裝置部分所 儲存和/或如何由對應的發生器部分所檢索。例如,能被 回想到,在本發明的一個實施例中,當一個原始圖像儲存 在儲存器中時,Reduce-X和Reduce-Y表示用於調整(例如 縮小)一個原始圖像尺寸的水平和垂直定標因數。當從像 源接收該原始圖像時,可通過與投影裝置相關的一個處理 器計算Reduce-X和Reduce-Y。而且,其中儲存原始圖像的 儲存區域可以由 Start—Write_X、Start—Write_Y、和 Write_X 和Write_Y描述。Dx (y) = (2 * d * W / k) (2 * tan (0) * y * W / k) · (26) Further, it can be seen from equation (26) that Z \ Dx (y), Image-2 The width difference (for example, the number of pixels) of one line from the next line can be expressed as AOxb) = Dx (y)-Dx (yl), that is, △ Dx (y) = -2 * tan ((9) * W / k. ( 27) For easier positioning, representation, or display, 値 obtained by any of the above equations can be rounded or rounded to an integer 値. The parameters SPy, EPy, Dy, SPx (y), Epx (y), and Dx (y) are therefore Defines the effective area of Image_2 on the LCD panel, as described in Figure 7A. These parameters can be stored in the projection system or a related memory, or can be calculated as needed for each received original image. These parameters It can be changed, for example, when the elevation angle 0 or the scan angle α is adjusted. The speed of the 7A image is out of the range of the points in Image-1? Corresponds to the point P 'in Image-2. For example,' in Figures 9A-9B In the description, a point 704 in image_i can be described by coordinates (SPX, SPY, 0) or coordinates (_w, H, 0). For point 704, Image-2 in Image-2 corresponds to point 704a in the light source coordinates. Department has Coordinates (SPx (SPy)), SPy, d). From the previous equations, one or more considerations can be achieved. Specifically, equations (24) and (25) show that the SPx (y) and Epx (y) are linearly changed with respect to 556440 08168twf1.doc / 006 of 92.6 · 30; in other words, when Image-1 (original When the image is rectangular, the sides of Image-2 are straight. And the slopes of these edges are opposite signs, so that the effective area of Image-2 is a symmetrical trapezoid. This may be different for non-rectangular images. Fig. 20 is a diagram showing a method for marking or determining an effective area of a display device or an effective area of an area in which an Image-2 display device can be provided. In state 2000, an original image is received with the scale Origin_X x Original_Y, which corresponds to 2 * Wx2 * H in Figures 9A-9B. In state 2002, the angle of the projection system (eg, 0 and / or the focal length of the light source (ie, d) is retrieved or determined. In state 2004, the first (SPy) and last line (EPy) positions of lmage_2 are calculated. In one embodiment of the present invention, these 値 are determined by applying the above-mentioned equations (21) and (22). In addition, the total number of rows (Dy) can be determined from the difference between the first and last ends of the equation or from equation (23 ) To determine that its y 値 can be stored. In state 2006, calculate the SPy (y) and Epx (y) 针对 for one or more rows of Image-2, or each row. Known from state 2004 Image-2's y-coordinate, and can be brought into equations (24) and (25) to arrive at the necessary 値. It can also be done by taking the difference between SPx (y) and Epx (y) or by applying Equation (26) calculates the width for a specific y 値, that is, the number of positions (eg, pixels) in each line (Dx (y)). In an alternative embodiment, the successive lines in Image-2 The width can be determined by accumulating the increasing factors derived from equation (27). 50 08168twf1. Doc / Ο06 Revision date 92.6.30 In the status 2008, the label The parameter set describing the effective area of Image_2 can be stored in the memory. For example, the parameters can be saved for use when another image of the same or a similar scale is received. Moreover, if Image-I is Translation (for example, through image compensation as described above), a new effective area can be determined by calculating and applying adjustments that must be performed on the parameter set in order to complete the compensation. IMAGE-2 pull from IMAGE · 1 The parameters described in the previous subsections of the two methods (such as SPy, EPy, Dy, SPx (y), Epx (y), and Dx (y)) provide a way to enclose the valid or available area, where Image_l can be shifted so that Form image_2. In one embodiment of the present invention, each part of Image-1 to be mapped to a part (for example, a pixel) of Image-2 can be labeled immediately. In other words, the correspondence in Image-2 can be calculated Each effective pixel of a pixel (or group of pixels) in Image · 1. In the embodiment of the present invention, the above equation (11) is calculated for each (x, y) coordinate in the effective area of the LCD panel )-(14), so as to mark a corresponding (x, y) coordinate in 1mage · 1. The related characteristics (such as color, brightness, contrast) of the pixels or pixel groups of Image-1 can be used for rendering Mage-2 pixels. As already described, the image_2 coordinate has a z-dimension of d (the focal length of the projection light source), and the image-i coordinate has a constant Z-dimension of zero. Intuitively, the position of a part of the Image-1 corresponding to one pixel in (x, y) in Image-2 can be expressed in the Image · 1 coordinate system as (X + 5 X, Y + 5 Y ). In the embodiment of the presently described 556440 of the present invention, the modified date of 92.6.30 08168twf1.doc / 006, these coordinates can be targeted using the given θ, d and Η of Η by applying equations (11) to (14) A point (X, y) within the effective area of image-2 is calculated. Specifically, 値 for Ry (y) and Rx (y) can be calculated for a given y 値. Y can then be calculated from Ry (y) and y, and X is calculated using Rx (y) and each X 値 associated with that given y 値. In an alternative embodiment of the invention, a slightly different method is applied to locate an Image-1 pixel at coordinates (x, y) corresponding to an Image-2 pixel at coordinates 0, y). In this alternative method, γ can be calculated as before (eg, using Ry (y) and the given y 値), after which rx can be calculated for each successive X 値 using equations (15) and (16) (y) and x (x, y). However, both methods may require efficient computational resources in order to enable the necessary calculations in an instant manner. Moreover, several other parameters or features as previously described can be used to describe how an original image is stored by the digitized device portion of a device and / or how it is retrieved by a corresponding generator portion. For example, it can be recalled that in one embodiment of the present invention, when an original image is stored in a memory, Reduce-X and Reduce-Y represent levels for adjusting (eg reducing) the size of an original image And vertical scaling factors. When the original image is received from the image source, Reduce-X and Reduce-Y can be calculated by a processor associated with the projection device. Moreover, the storage area in which the original image is stored can be described by Start_Write_X, Start_Write_Y, and Write_X and Write_Y.

類似地,在本發明的實施例中’ Enlarge_x和Enlarge_Y 表示在把原始圖像提供在一個或多個LCD板上之前用於調 52. 556440 修正日期92.6.30 08168twfl.doc/006 整(例如擴大)一個儲存原始圖像的尺寸的水平或垂直定標 因數。從其檢索該儲存圖像的儲存器的區域可以由參數 Start—Write—X、Start—Write Y、Read—X 和 Read Y描述。 由這些參數標示的儲存區域可以對應或可能不對應最初儲 存該圖像的同一個儲存區域(例如該區域由Star*t_Wdte_X 等標示)。 然而該計算需要儲存以及檢取一個圖像,可能難於 與變形Image-Ι以便創建Image-2而所需的計算合倂。具體 地說,與基本參數組SPy、Dy、SPx(y)、Dx(y)、Y(y)、和 x(y)相關的計算往往用在一個具體尺寸(例如2Hx2W)的一 個圖像的變形中。因此,不論何時調節一個已儲存、檢取 和變形的原始圖像的尺度,該參數集可能需要被再計算。 而且,爲了連續或分別地調整該圖像尺寸以及變形該圖 像,可能需要附加硬體。例如,爲了定標(例如縮減或擴 大)一個圖像可能需要一組行緩存器,而對於該圖像的變 形可能需要另一組行緩存器。 在本發明的一個實施例中,用於從Image-Ι產生 Image-2以便從一個LCD板投影的一組參數(例如SPy、Dy、 SPx(y)、Dx(y)、Y(y)、和X(y))被儲存在儲存器中,以供 與該投影系統相關的一個處理器使用。直觀可見,這些和 /或其它參數可以在Η、W仰角0或掃視角α的値改變之時 而被再計算。爲了節約儲存器,參數可以儲存在幀儲存器 的區域中,該幀儲存器對應於在Image-2的有效面積之外 的該LCD板的非可顯示、偏離屏面的區域或部分。另外, 59 556440 修正日期92.6.30 08168twf1. doc/006 該參數可以儲存在處理器可訪問的其它區域中’例如在通 過第2圖描述的裝置200的儲存器接口 204訪問的儲存器 中。 在本發明的另一個實施例中,可以使用具有高頑磁 性的(例如一個ROM)的儲存器。在本實施例中的一個處理 器的快速計算和應用這些參數的負擔可以通過在該儲存器 中儲存預先計算的參數組而降低。儲存的參數組可以包含 針對Η、W、0和/或α的大範圍的値。 包括 Spy、Dy、SPx(y)、Dx(y)、Y(y)、和Χ(Υ)的該參 數組,或包括 Spy、Dy、SPx(y)、Dx(y)、Y(y)、和X(Y)的 該參數組可以稱作第一參數組。在下面子部分中描述的從 Image-Ι得到Image-2的可選方法採用另外的參數組,並且 可以討論一個方法(或參數組)與另一方法(或參數組)的性 能或優點的比較。 第21圖演示使用上述參數組的一個方法,在一個顯 示裝置(例如LCD板)的一個預先確定的有效面積之內產生 Image-2。將如本專業技術人員顯見的那樣,本方法中執 行的操作能以多種順序重新排列。 在狀態2100中,從一像源接收原始圖像。在狀態2102 中,必要時重新調整圖像的尺寸,用於儲存在儲存器中。 在狀態2104中,圖像直觀可見地以逐行格式儲存在儲存器 中。在狀態2106中,(例如由於其即將被投影)從儲存器檢 索該圖像。 在狀態2108中,現在可以稱之爲image-1的檢索圖像 08168twfl.doc/006 修正日期92.6· 30 根據顯示裝置的尺寸的需要調整尺寸。 在狀態2110中,計算或從儲存器檢索對應ImaSe-2的 有效面積。比如,如果原始圖像的尺度匹配先前圖像的尺 度,則用於一個適當有效面積的參數可以已經被儲存。可 以執行上述用於標示一個有效面積的方法。 在狀態2112中,通過注意其y座標,選擇Image-2的有 效面積的首行(例如頂行),可以像上面那樣稱之爲”乂。 隨後在狀態2114中,可能使用上述的方程式(Π)和(12)計 算Ry(y)、和Rx(y)的値。在狀態2116中,計算Y(y)(例如使 用方程式(13)),並且可以如上所述地表示爲(Y+5 Y),以 便協助定位對應於Image-2的當前行中的像素的Image-1的 像素。 在狀態2118中,通過其X座標選擇Image-2的行y中的 第一像素(例如SP(y))。隨後,在狀態2120中,可以通過使 用方程式(14)或類似計算來得到(X,y)。X的此値可以表示 爲(X+ 3 X),因此得出Image-Ι中對應於Image-2中的座標(X, y)的(X+ 5 X,Y+ 5 Y)的座標。用於Image-Ι的Z座標是零, 而用於Image-2的z-座標是d。 在狀態2122中,處於或最接近座標(X+5 X,Y+5 Y) 座標的Image-Ι的一個或多個特性被複製,並且用於當前 Image-2的像素。例如image-i像素的彩色或強度可被複製 並且應用。直觀可見,如果(X+δ X,Y+(5 Y)座標不緊密匹 配Image-Ι中的單個像素的座標,則多個附近像素的特性 可被複製,做平滑、平均或其他組合,並且用於lmage_2 08168twfl.doc/006 修正曰期92.6.30 像素。 在狀態2124中,確定當前像素是否爲Image-2的當前 行中的最後像素(例如,Epx(y)),如果否,示出的方法返回 狀態2118,選擇下一個像素(例如通過遞增或遞減X的値)。 如果是行y中的最後像素,則本方法進入狀態2126。 在狀態2126中,確定Image-2的最後行是否是恰好結 束(例如EPy)。如果否,示出的方法返回狀態2112,選擇 下一個行(例如通過遞增或遞減y的値)。否則,完整的 Image-2被完全地提供,並且在狀態2128中投影在一個視 屏上,沒有顯著的梯形失真。 從IMAGE· 1得到IMAGE-2的一個可潠方法 在本發明的一個可選實施例中,採用包括低計算複 雜性的方法來定位對應於Image-2中的一個像素的haged 的一個部分。本方法努力接近方程式(11)和(13)中的Ry(y) 和Y的曲線。現在說明本方法的推導和簡化,開始把方程 式(I5)應用到SPY和EPY,Image-Ι中的開始和結束行(分別 具有値Η和-H):Similarly, in the embodiment of the present invention, 'Enlarge_x and Enlarge_Y means to adjust the original image before providing the original image on one or more LCD panels. 52.556440 Revised date 92.6.30 08168twfl.doc / 006 ) A horizontal or vertical scaling factor that stores the dimensions of the original image. The area of the memory from which this stored image is retrieved can be described by the parameters Start_Write_X, Start_Write Y, Read_X, and Read Y. The storage area marked by these parameters may or may not correspond to the same storage area where the image was originally stored (for example, the area is marked by Star * t_Wdte_X, etc.). However, this calculation requires storing and retrieving an image, which may be difficult to combine with the calculations required to transform Image-1 to create Image-2. Specifically, the calculations related to the basic parameter groups SPy, Dy, SPx (y), Dx (y), Y (y), and x (y) are often used for the image Deformation. Therefore, whenever the scale of a stored, retrieved and deformed original image is adjusted, this parameter set may need to be recalculated. Moreover, in order to resize the image continuously or separately and deform the image, additional hardware may be required. For example, an image may require a set of line buffers for scaling (such as reduction or expansion), and a deformation of the image may require another set of line buffers. In one embodiment of the present invention, a set of parameters (e.g., SPy, Dy, SPx (y), Dx (y), Y (y), And X (y)) are stored in memory for use by a processor associated with the projection system. Intuitively, these and / or other parameters can be recalculated when Η, W elevation angle 0, or 値 of the scan angle α are changed. To save memory, the parameters can be stored in the area of the frame memory, which corresponds to the non-displayable area or part of the LCD panel outside the effective area of Image-2. In addition, 59 556440 amendment date 92.6.30 08168twf1.doc / 006 This parameter can be stored in other areas accessible to the processor ', such as in a memory accessed through the memory interface 204 of the device 200 described in FIG. 2. In another embodiment of the present invention, a memory having high coercivity (for example, a ROM) may be used. The burden of fast calculation and application of these parameters by a processor in this embodiment can be reduced by storing a pre-calculated parameter set in the memory. The stored parameter set may contain a large range of 値 for Η, W, 0, and / or α. This parameter set includes Spy, Dy, SPx (y), Dx (y), Y (y), and χ (Υ), or includes Spy, Dy, SPx (y), Dx (y), Y (y) This parameter group of, and X (Y) may be referred to as a first parameter group. The alternative method for obtaining Image-2 from Image-I described in the following subsection uses additional parameter groups, and can compare the performance or advantages of one method (or parameter group) with another method (or parameter group) . Figure 21 illustrates a method using the above parameter set to generate Image-2 within a predetermined effective area of a display device (such as an LCD panel). As will be apparent to those skilled in the art, the operations performed in this method can be rearranged in various orders. In state 2100, an original image is received from an image source. In state 2102, the image is resized as necessary for storage in memory. In state 2104, the images are stored visually in the memory in a progressive format. In state 2106, the image is retrieved from the memory (e.g. because it is about to be projected). In state 2108, the retrieved image which can now be called image-1 08168twfl.doc / 006 Revision date 92.6 · 30 Adjust the size according to the size of the display device. In state 2110, the effective area corresponding to ImaSe-2 is calculated or retrieved from the memory. For example, if the dimensions of the original image match the dimensions of the previous image, the parameters for an appropriate effective area may have been stored. The method described above for marking an effective area can be performed. In state 2112, by paying attention to its y-coordinate, selecting the first line (for example, the top row) of the effective area of Image-2 can be called as "乂" above. Then in state 2114, the above equation (Π ) And (12) calculate 値 for Ry (y) and Rx (y). In state 2116, calculate Y (y) (for example, using equation (13)), and can be expressed as (Y + 5 Y) to assist in locating the pixels of Image-1 corresponding to the pixels in the current row of Image-2. In state 2118, the first pixel in row y of Image-2 (for example, SP (y )). Then, in state 2120, (X, y) can be obtained by using equation (14) or similar calculations. This 値 of X can be expressed as (X + 3 X), so it is obtained that Image-I corresponds to The coordinates of (X, y) (X + 5 X, Y + 5 Y) in Image-2. The Z-coordinate for Image-1 is zero and the z-coordinate for Image-2 is d. In the state In 2122, one or more characteristics of Image-I at or closest to the coordinates (X + 5 X, Y + 5 Y) are copied and used for the current Image-2 pixels. For example, image-i pixels The color or intensity can be copied and applied. Intuitively, if (X + δ X, Y + (5 Y) coordinates do not closely match the coordinates of a single pixel in Image-1, the characteristics of multiple nearby pixels can be copied, Do smoothing, averaging, or other combinations, and use lmage_2 08168twfl.doc / 006 to modify the date 92.6.30 pixels. In state 2124, determine whether the current pixel is the last pixel in the current row of Image-2 (for example, Epx ( y)), if not, the method shown returns to state 2118, and the next pixel is selected (eg, by incrementing or decrementing 値 of X). If it is the last pixel in row y, the method enters state 2126. In state 2126 To determine if the last line of Image-2 ends exactly (eg EPy). If not, the method shown returns status 2112 and selects the next line (eg by incrementing or decrementing yy). Otherwise, complete Image-2 It is completely provided, and is projected on a video screen in state 2128, without significant keystone distortion. An alternative method of obtaining IMAGE-2 from IMAGE · 1 In an alternative embodiment of the invention, Computational complexity method to locate a portion of haged corresponding to a pixel in Image-2. This method strives to approximate the curves of Ry (y) and Y in equations (11) and (13). Now the method will be explained Derivation and simplification, start to apply equation (I5) to SPY and EPY, and start and end lines in Image-I (with 値 Η and -H, respectively):

Rx(SPY) = Rx(H) =1 + [ 2 * Η * sin( θ) / ά] 和 Rx(EPY) = Rx(-H) = 1,Rx (SPY) = Rx (H) = 1 + [2 * Η * sin (θ) / ά] and Rx (EPY) = Rx (-H) = 1,

Rx(Y)的値隨Y線性改變,被表示爲(5Rx(Y)的rx(y) 中的遞增變化能夠表示爲: 08168twfl.doc/006 修正日期92.6.30 SRx(Y) = Rx(Y + AY) - Rx(Y) = sin(^) * Δ7 / J (28) 因此,一旦針對Image_l的首行計算了 Rx(Y),例如 SPY(即Η)或EPY(即-),則通過簡單地加或減(sin( 0 )*△ Y/d) 即可計算隨後的値,而不須針對每一Y値重複上述的方程 式(15)的計算。這將簡化連續X値的確定,並且通過以相 加或相減替代方程式(15)的相乘和相除而減輕處理器的負 擔。 通過注意到用於矩形原始圖像的Image-2的有效面積 的輪廓是一個對稱梯形,可以近似方程式(28)所涉及的計 算。因此,從首行(即SPY)到最後行(即EPY),Image_2中 的相繼行之間的y尺度中的差値是常數。並且,由在y中的 變化引起的常數差,表示爲6 Rx(y),因此能夠計算: 術(29)The 値 of Rx (Y) changes linearly with Y, which can be expressed as (5Rx (Y) The incremental change in rx (y) can be expressed as: 08168twfl.doc / 006 Modification date 92.6.30 SRx (Y) = Rx (Y + AY)-Rx (Y) = sin (^) * Δ7 / J (28) Therefore, once Rx (Y) is calculated for the first line of Image_l, such as SPY (ie Η) or EPY (ie-), pass Simply add or subtract (sin (0) * △ Y / d) to calculate subsequent 値 without repeating the calculation of equation (15) for each Y 値. This will simplify the determination of continuous X 値, And by adding or subtracting the multiplication and division of equation (15) to reduce the burden on the processor. By noting that the contour of the effective area of Image-2 for a rectangular original image is a symmetrical trapezoid, you can The calculation involved in equation (28) is approximated. Therefore, from the first line (ie, SPY) to the last line (ie, EPY), the difference in the y scale between successive lines in Image_2 is constant. The constant difference caused by the change is expressed as 6 Rx (y), so it can be calculated: 术 (29)

Dy 而且,已知的是Rx(EPy) = Rx(EPY),因爲Image-2的 有效面積的底邊與Image-1的底線重合(如第9A圖所示)。並 且,上述示出該Rx(EPY) = Rx(-H)=l ;因此Rx(EPY) = 1。 隨後,以此値開始,在EPy之前的針對每一 y値的Rx(y)能 夠通過連續地加或減δ Rx(y)而計算。 可以得到顯著減少計算強度的方程式(13)的一個近 似。首先,接近匹配方程式(Π)和(13)的二階二次方程式 可被表示成: 556440 08168twf1. doc/00 6 修正日期92.6.30 = + (30) 可注意到,ΔΓ〇;) = Γ〇; + ι)-rcy),因此從此二次方程式 得到: (31) (32) ΑΥ(γ) = 2^β2^γ^(βι+β2) 和:Τ〇; + 1) = Γ〇;) + ΔΓ〇;) 並且,針對(y+l)估算方程式(31)並且簡化得出: AY(y + \) = AY(y) + 2^2 (33) 因此,從針對一個給定y的Y和AY,能夠通過加或減 該常數而獲得用於下一個y値的ay。 方程式(30)示出Y(0)=&,並且從方程式(31)得出 Δ}Λ⑼=<^+幻。注意,y=0表明本發明實施例描述的Image-2 的中間行。隨後,可以通過連續相加而計算用於y的 連續正値的^,通過連續相減而計算用於y的連續負 値的 ΔΓ。例如,Δί^) = Δ}/(0) + (2*Α),或 △八1卜(爲+/?2+(2*八))=(爲+3*/?2),而 △r(-i卜(Α + 久—(2*/?2)) = (A -Α)。 而且,從針對一個給定y的γ値,比如Y(0)= A,方 程式(32)表明可以通過對應於給定y値的ΔΥ的加減而確定 59 〇8168twf1. doc/006 修正日期92.6.30 用於相鄰丫値丫。因此,以1)=八〇)4以〇)1。+(爲+^)。而 F(-i) = F⑼ + ΔΓ⑼=/?。- (A + /?2)。 因此,通過計算或選擇適當的&、A、A的値,從1mage-2 中的一個點計算Image-1中的一個點Y値被簡化,並且需要 不太繁重的計算。在本發明的一個實施例中,使用其中 Y(SPy)=SPY=H,Y(EPy)=EPY=-H,以及 Y(0)=0的特殊情 況,從方程式(30)計算凡、Α和凡的適當的値。把這些特 定値帶入方程式(30)得出: B2*(57^)2+B1*(57» + B0 =// B2 ^(EPy)2 +B, ^(EPy) + B0=-H 和 以=〇 求解這些方程式,得出用於本實施例的適當的&、 AA的値,其可以儲存在儲存器中以便在形變一圖像的 過程中使用。可以按照(21)-(22)的每一方程式計算SPy和 EPy 〇 因此,可以產生各種可能的凡、在和久的値的一個表 格或其它集合,並且儲存,以便在從一個原始圖像得出 images的過程中使用。計算γ値的本方法允許使用相加和 相減_數而不是更複雜的嚴重耗時的操作,並且因此可以 允許彳吏用低複雜性的處理器和/或其他裝置。 IE像連續的Y値可以使用一個已知Y値以及加或減一 個增籩Δγ而被確定那樣,用於X的連續値能以類似的方式 確定。具體地說,ΔΧ (X,Y) = X(x,Y)-X(X-1,Y) = Rx(Y)以 556440 修正日期92.6.30 08168twfl.doc/006 及 ΔΧ (X,Υ+ΔΥ)二Δχ(χ,Y)+5Rx(Y),其中 5Rx(Y)能夠 用公式(28)計算,而Δγ能夠用公式(32)計算。 類似計算也同樣可以用於x(x,y)。例如δΧ(χ,ΕΡΥ) Rx(EPY) = Rx(-H) = 1(例如從公式(15)得 Si),而 ΔΧ(χ, ΕΡΥ+Δγ) = Δχ (χ5 ΕΡΥ) +5 Rx(Y) = (l+(sin(0 ) * Δγ / d)). 而且,因爲Rx(y)是能夠表示在對應於Image-2的給定 行之內X的連續値之間的差値的一個定標因數,所以一旦 已知第一個X値,所以方程式(14)可被遞歸執行爲: X(x,y) = X(x-l,y) + Rx(y) (34) 可以通過估算針對每一行y的x ( SPx(y),y)而計算X 的這樣的一個初始値。因此,方程式(34)中的Rx(y)近似於 ΔΧ(χ,y),其中Rx(y)= X(x,y) X( x_l,y)= Δχ(χ,y)。可 以遞歸形式表示爲 △Χ(χ,y) = ΔΧ( X,y+1) - 5 Rx(y) (35) 或 Rx(y) = Rx(y+1)- 5 Rx(y) 其中(5 Rx(y)可以利用方程式(29)近似。方程式(35)能 以Image_2的底行開始應用,其中Δχ(χ,EPy) = Rx(EPy) 。舉例說明,針對y的全部値的ΔΧ( x5 y)的値可以預先 60 08168twf1. doc/00 6 修正日期92.6.30 計算並且儲存在儲存器中,然後可以在該投射系統的連續 累加ΔΧ( X,y)的操作過程中確定每一X( X,y)。 因此在本發明的一個實施例中,不是針對一個給定 參數組計算每一單獨的X和Y値,而是計算在連續^和丫値 之間的差。具體地說,在本實施例的實施方案中,設置用 於Image_2的參數包括 SPy、Dy、SPx(y)、Ax(y)、ΔΥ(γ)和 △X(y)或Δχ(γ).本實施方案至少體現三個優點。 首先,圖像的形變能夠與尺寸的調整(例如縮小或擴 大)同時執行。因此實現僅以一組行緩存器滿足兩個操作 所需的便利。第二,即使顯示圖像(例如Image-2)的尺度改 變,也不必再計算整個參數組。第三,儲存這些參數需要 的空間比儲存以前參數組需要的空間小。 回想到,對應於Image-2中的一個位置的Image-Ι的部 分可以表示爲(Χ,Υ)+ (δΧ,5Υ)。在應用本發明的當前描 述的可選實施例中,(Χ,Υ)可被初始設定爲(SPX,SPY),其 等於(-W,H),並且(5X,c5 Y)可以初始設定爲(〇, 〇 )。舉 例說明,此組合是Image-Ι的左上方像素的位置,並且對 應於Image-2的左上方有效像素,其可以表示爲 (SPx(SPy),SPy)。在本實施例中的Image-Ι中的隨後位置的 計算可以取決於尺寸調整的方式(例如收縮或擴大)。 比如,如果在該數字化裝置和發生器中的水平和垂 直定標因數(例如Reduce-X,Enlarge-Y)等於1(即,圖像既 不抽取也不擴大),則可以應用下面過程。針對y的第一値(即 SPy,Image-2中的首行)和行y中的第一像素(gpsPx(y)), 556440 修正日期92.6.30 08168twfl.d〇c/〇〇6Dy Also, it is known that Rx (EPy) = Rx (EPY), because the bottom edge of the effective area of Image-2 coincides with the bottom line of Image-1 (as shown in Figure 9A). Also, the above shows that Rx (EPY) = Rx (-H) = 1; therefore, Rx (EPY) = 1. Then, starting from this 値, Rx (y) for each y 値 before EPy can be calculated by continuously adding or subtracting δRx (y). A close approximation to equation (13) can be obtained which significantly reduces the computational intensity. First, the second-order quadratic equations close to the matching equations (Π) and (13) can be expressed as: 556440 08168twf1.doc / 00 6 Date of correction 92.6.30 = + (30) Note that ΔΓ〇;) = Γ〇 + Ι) -rcy), so from this quadratic equation: (31) (32) ΑΥ (γ) = 2 ^ β2 ^ γ ^ (βι + β2) and: Τ〇; + 1) = Γ〇;) + ΔΓ〇;) Also, estimate equation (31) for (y + l) and simplify it: AY (y + \) = AY (y) + 2 ^ 2 (33) Therefore, from Y and AY can be added to or subtracted from this constant to obtain ay for the next y 値. Equation (30) shows Y (0) = &, and Δ} Λ⑼ = < ^ + magic is obtained from equation (31). Note that y = 0 indicates the middle line of Image-2 described in the embodiment of the present invention. Subsequently, ^ for continuous positive 値 for y can be calculated by continuous addition, and ΔΓ for continuous negative 値 for y can be calculated by continuous subtraction. For example, Δί ^) = Δ} / (0) + (2 * Α), or △ eight 1bu (for + /? 2+ (2 * eight)) = (for +3 * /? 2), and △ r (-i 卜 (Α + 久 — (2 * /? 2)) = (A -Α). Moreover, from γ 値 for a given y, such as Y (0) = A, equation (32) shows It can be determined by the addition and subtraction of ΔΥ corresponding to a given y 値. 59 008168twf1.doc / 006 The correction date 92.6.30 is used for the adjacent ya ya. Therefore, 1) = 80) 4 〇) 1. + (Is + ^). And F (-i) = F⑼ + ΔΓ⑼ = / ?. -(A + /? 2). Therefore, by calculating or selecting the appropriate amp of A & A, calculating a point Y 値 in Image-1 from a point in 1mage-2 is simplified and requires less heavy calculation. In one embodiment of the present invention, using the special case where Y (SPy) = SPY = H, Y (EPy) = EPY = -H, and Y (0) = 0, calculate where Van, A from equation (30) And where appropriate 値. Bringing these specific 値 into equation (30) gives: B2 * (57 ^) 2 + B1 * (57 »+ B0 = // B2 ^ (EPy) 2 + B, ^ (EPy) + B0 = -H and Solving these equations with = 0 gives the appropriate &, AA 値 for this embodiment, which can be stored in the memory for use in the process of deforming an image. It can be according to (21)-(22 Each equation of) calculates SPy and EPy. Therefore, a table or other set of various possible trivial, long, and long-lived 値 can be generated and stored for use in the process of deriving images from an original image. Calculations γ The present method of 允许 allows the use of addition and subtraction numbers instead of more complex, serious time-consuming operations, and therefore can allow 彳 officials to use processors and / or other devices of low complexity. IE like continuous Y 的 can That is, using a known Y 値 and adding or subtracting an increase γΔγ, the continuous 値 for X can be determined in a similar way. Specifically, Δχ (X, Y) = X (x, Y)- X (X-1, Y) = Rx (Y) with 556440 correction date 92.6.30 08168twfl.doc / 006 and Δχ (X, Υ + ΔΥ) two Δχ (χ, Y) + 5Rx (Y), where 5Rx ( Y) can be calculated using formula (28), and Δγ can be calculated using formula (32). Similar calculations can also be used for x (x, y). For example, δχ (χ, ΕΡΥ) Rx (EPY) = Rx (-H ) = 1 (for example, Si from formula (15)), and Δχ (χ, ΕΡΥ + Δγ) = Δχ (χ5 ΕΡΥ) +5 Rx (Y) = (l + (sin (0) * Δγ / d)). Moreover, because Rx (y) is a scaling factor capable of representing the difference between consecutive 値 of X within a given row corresponding to Image-2, once the first X 値 is known, the equation ( 14) can be executed recursively as: X (x, y) = X (xl, y) + Rx (y) (34) X can be calculated by estimating x (SPx (y), y) for each row of y Such an initial 値. Therefore, Rx (y) in equation (34) is approximately ΔX (χ, y), where Rx (y) = X (x, y) X (x_l, y) = Δχ (χ, y). It can be expressed recursively as △ AX (χ, y) = △ AX (X, y + 1)-5 Rx (y) (35) or Rx (y) = Rx (y + 1)-5 Rx (y ) Where (5 Rx (y) can be approximated by equation (29). Equation (35) can be applied starting from the bottom line of Image_2, where Δχ (χ, EPy) = Rx (EPy). For example, for all y of y of Χ (× 5 y) can be calculated in advance at 60 08168twf1. Doc / 00 6 The correction date is 92.6.30 and stored in the memory. Then, during the operation of continuously accumulating Δ × (X, y) of the projection system, each -X (X, y). Therefore, in one embodiment of the present invention, instead of calculating each individual X and Y 値 for a given set of parameters, the difference between consecutive 和 and 値 is calculated. Specifically, in the implementation of this example, the parameters set for Image_2 include SPy, Dy, SPx (y), Ax (y), ΔΥ (γ), and ΔX (y) or Δχ (γ). This embodiment embodies at least three advantages. First, the deformation of the image can be performed simultaneously with the resizing (such as reducing or expanding). Therefore, the convenience required to satisfy two operations with only one set of line buffers is achieved. Second, even if the scale of the displayed image (such as Image-2) changes, it is no longer necessary to calculate the entire parameter set. Third, the space required to store these parameters is less than the space required to store previous parameter sets. Recall that the part of Image-1 corresponding to one position in Image-2 can be expressed as (X, Υ) + (δX, 5Υ). In the currently described alternative embodiment to which the present invention is applied, (χ, Υ) may be initially set to (SPX, SPY), which is equal to (-W, H), and (5X, c5 Y) may be initially set to (〇, 〇). For example, this combination is the position of the upper left pixel of Image-1 and corresponds to the upper left effective pixel of Image-2, which can be expressed as (SPx (SPy), SPy). The calculation of subsequent positions in Image-I in this embodiment may depend on the way the size is adjusted (such as shrinking or expanding). For example, if the horizontal and vertical scaling factors (such as Reduce-X, Enlarge-Y) in the digitizer and generator are equal to 1 (that is, the image is neither decimated nor enlarged), the following procedure can be applied. For the first frame of y (ie, SPy, the first line in Image-2) and the first pixel (gpsPx (y)) in line y, 556440 the date of revision 92.6.30 08168twfl.d〇c / 〇〇6

可以使用上述提供的方程式計算χ和γ値,它們可以是已 知的(即SPX,SPY)。可以通過累加利用SPX(即-W)的AX(y) 到(Dx(y)-1),計算對應於Image-2的行y中的保持像素的X 値。 在得到Image-2中的這個首行之後,對應於Image-2中 的隨後行的隨後¥値(即在SPY* H之後)可以通過把具有 SPY的AY(y)累加次數達到(Dy-Ι)而計算。按照剛描述的方 式計算在每一隨後的行Y之內的每一X値。以此方式, Image-2以每次一行和一個像素地得到’並且通過累加ΔΥ 和AX(y)標示Image-1的每一對應部分。 然而,如果水平和垂直定標因數之一或二者都不等 於1,則該定標比例必須被結合到該計算中。具體地說’ 通過以SPX連續地累加AX(y)與水平定標因數(例如Reduce-X或Enlarge-X)的乘積而計算針對一個給定行的X値。通過 以SPY連續地累加AY(y)與垂直定標因數(例如Reduce-Y或 Enlarge-Y)的乘積而計算連續的Y値(例如Y(y+1))。 如果該Image-2的尺度被修改(例如縮小或擴大),可 以因此通過一個或幾個適當的定標因數而修改需要的參數 (例如 SPx、Dy、SPx(y)、Dx(y))。 在本發明的本實施例中,由相加ΔΧ和Δγ値計算的、 表示爲(χ+5Χ,Υ+(5 Υ )的Image_l的位置可能不與lmage-l 像素的位置精確地匹配。因此,可以通過分析(例如累加, 加權、平均)該附近的Image-Ι像素的特性而確定將要指定 到對應Image-2像素(例如在位置(x,y))的特性。 61 556440 修正日期92.6.30 08168twf1.doc/〇〇6 爲了與應用在先前子部分中的參數的設置區別’該 參數組包括 SPy、Dy、SPx(y)、Dx(y)、AY(y)和 ΔΧ(Υ),可 稱爲第二參數組。 本發明的另一可選實施例尤其適於其中顯示在1(:1)板 上的圖像(例如Image_2)很少(如果有的話)變化的一個投影 系統。採用在本實施例中的參數組包括SPy、Dy、SPx(y)、 Dx(y)、Y’(y)和X’(y),並且可以稱爲第三參數組。在本實 施例中,X’(y)和Y’(y)是來自第一參數組(前面子部分中討 論的)的X(y)和Y(y)分別與X和y尺度定標因數的乘積。因 此,本發明的這一可選實施例的一個優點是,進一步加強 了採用在本實施例中的裝置之內的功能。例如,行緩存器 的一個普通設置即足夠而可能不需要可被用於針對圖像的 每一行產生相應的定標比例的一個梯形失真模塊(例如第 3A圖的梯形失真模塊308)。根據將要被準備的定標比例的 數量(即通過把定標比例與X和Y參數組合,可能需要針對 該參數組的各種交換的輔助儲存器空間。 因此本發明技術人員將理解,使用第一、第二或第 二參數組任何之一、或使用可從這參數組之一和/或上述 方程式獲得的其它參數組,都包括折衷選擇。一個參數組 以及得到Image-2的相關的方法用硬體造價、復雜性或儲 存空間來評價可能是優良的。另一參數組或得到Image_2 的方法可能在效率、性能或其它標準上是優良的。本發明 技術人員將理解,一個參數組和方法超過另一參數組和方 法的選擇可能取決於特定的應用或將要被投影的圖像。 556440 08168twfl.doc/006 修正日期92.6.30 第22圖示出在此子部分中描述的本發明的一個方 法,其中可以使用比在前面子部分中描述方法少的計算負 擔而從Image-Ι的部分獲得Image-2數據(例如彩色、光強)。 在狀態2200中可能使用一種上述方法來確定Image-2 的有效面積。在要投影的圖像的尺度是完全相同或類似的 情況中,尤其在預先已知那些尺度的場合,能夠在接收原 始圖像以前計算Image-2的有效面積,因此降低在接收時 必須執行的計算。另外,可以計算用於多組原始圖像尺度 的有效面積。 在狀態2202中,各種參數被儲存以用於得到Image-2。 具體地說,在示出的方法中,該儲存參數包括·· Spy、Dy、 SPx(y)、Dx(y)、AY(y)和 AX(y)。如上結合方程式(30)-(32) 所述,用於Y(y)和AY(y)的値可以使用一個二次方程式產 生。因此在狀態2202中按照需要可以產生、檢索(例如從 一個表格中)或儲存用於凡、A和A的適當的値。還可以計 算和/或儲存其它參數(例如Rx(y),cJRx(y)),以便提前執 行盡可能多的必要計算。 在本發明的一個可選實施例中,在狀態2202中,一 個或多個參數可以與將要被用於一個圖像的尺寸調整或重 新定標因數結合。如上所述,這能實現所要執行的一個®| 像的任何尺寸調整都與其形變一致。 在狀態2204中,從一像源接收原始圖像。在原始ft 像的進一步處理之前,可以暫存該圖像。 在狀態2206中按照需要調整圖像的尺寸,或許在其 6f 08168twf1. doc/006 修正日期92· 6· 3〇 變形或提供之前用於暫存,或根據該顯示裝置的尺度。 在狀態2208中,選擇在Image_2的有效面積中的一行。 舉例說明,此處理能以頂行(即SPy)開始。但是在本發明 的可選實施例中,該處理能以底行(即EPy)或其它行開始(例 如,其中y=〇)。 在狀態2210中,確定Y(y)的値。如果計算必要的參數 並且提前儲存(例如在狀態2202中),這可能包括簡單地從 儲存器檢索該値。可以注意,Y(SPy)=H。可以通過相加或 相減ΔΥ(Υ)的値確定Image-2中的針對隨後行的Y値,AY(y) 的値可能已經在狀態2202中儲存。 在狀態2212中,選擇在行y中的一個位置(例如,像 素)x。舉例說明,在一行中的第一位置可以是SPx(y);在 本方法中,因此在該首行(例如SPy)中選擇的第一位置是 SPx(SPy) ° 在狀態2214中,確定X(x5 y)的値。在該首行中的第 一位置可以是X(SPx(SPy),SPy),其等於-W。用於每一行 中的第一位置的X的値可以是在由狀態2202中儲存的參 數,或可被在運行時計算。針對在行y中的隨後定位的X値 可以通過相加或相減該常量値AX(y)確定,同樣可以是在 狀態2202中儲存的參數之一。 在狀態2216中檢索Image-Ι的一部分的一個或多個特 性,並且加到定位在座標(X,y)的像素。 在狀態2218中,確定在行y中的最後位置是否已經處 理。例如,如果x=Epx(y),則本發明的方法繼續在狀態 08168twf1. doc/006 修正日期92· 6· 30 2220。否則,示出的方法返回到狀態2212,選擇另一位置。 在狀態2220中,確定在Image-2中的最後行是否已經 處理。例如,如果r=EPy,示出的方法將以狀態2222繼續; 否則,示出的方法返回到狀態2208,選擇另一行。 在狀態2222中,完成把Image-2提供在該顯示裝置上, 並且可以投影該結果。 針對仰角或掃視角的梯形失真校正 在本節中,描述當仰角0或掃視角α的一個存在(例 如不爲零)時用於防止梯形失真的各個實施例。在下面部 分中描述當存在這兩個角度時,用於防止梯形失真的本發 明的實施例。 用於實施本發明實施例的一個裝置的結構可取決於 爲產生適當顯示圖像(例如Image-2)而選擇的參數的設置。 在前面部分中描述了三個直觀的參數組。本專業技術人員 將認識到’在此部分和隨後部分描述的先前沒有描述的任 何裝置結構都可以容易地從該部分存在的結構中獲得。可 以參考第24D圖觀察取樣裝置結構。 舉例說明’爲產生該顯示圖像而對一原始圖像的形 變可以在一個適當裝置的數字化裝置或發生器模塊中執 行。如先前描述,一個數字化裝置模塊可以調整一個原始 圖像的尺寸(例如縮小)以便儲存,並且一個發生器模塊可 以調整一個儲存圖像的尺寸(例如擴大)以便提供在一個顯 示裝置上。這些模塊的任何一個都可以把形變操作與調整 〇8l68twfl.doc/006 修正日期92.6.30 尺寸的操作結合,即可以順序地執行兩個操作。 在本發明的一個實施例中,數字化裝置模塊縮小一 個原始圖像(例如,根據1^〇11^64和1^(11^心丫),以便配合 一個規定的儲存區域(例如通過儲存器接口模塊訪問的儲 存器)。隨後,該數字化裝置可以在一個單獨的操作中使 用與該尺寸調整操作相似的成分變形該縮小的圖像。在第 3B-3C圖描述的本實施例中,第一參數組(例如,Spy、Dy、 SPx(y)、Dx(y)、Y(y)和X(y))可以用於形變。可根據顯示 裝置(例如一個LCD板)的一個可用區域和傾斜或掃視角計 算在此參數組中的參數。舉例說明,通過使用參數Y(y)和 x(y)(以及也許使用Rx(y)和Rx(x))把Image-Ι的特性複製成 Image-2的計算的有效面積而每次變形該原始圖像的一 行。每一行的內容(例如從位置SPx(y)至其長度Dx(y))可以 隨即放置在儲存器中。在本發明的一個實施例中,從SPy 到EPy(即,其中EPy=SPy+Dy)的一行被連續地處置。在另 一個實施例中,以一個不同的順序處理或得到Image-2的 行。在原始圖像被尺寸調整、變形和儲存之後,發生器模 塊可以應用其擁有的重新定標因數(例如Reduce-X和 Reduce-Y),以便將該圖像數據適配到LCD板的可顯示部 分中。 在一個可選方法和裝置中,數字化裝置模塊的尺寸 調整和變形功能被合倂。具體地說,隨著原始圖像的每一 行被接收和尺寸調整(例如減小),同時使用包括AX(y)和 △Y(y)的一個參數組對其變形,以便簡化處理。圖像可隨 08168twfl.doc/006 修正曰期92·6·30 即被儲存在儲存器中。有益的是,一組硬體組件可以在一 個操作中執行這兩個功能,而不是雙倍的硬體組件用於順 序的調節尺寸和形變。當從儲存器檢索該圖像以便提供在 該顯示裝置上時,該發生器模塊照常對該圖像做尺寸調整 (例如擴大)。 本方法在第10圖中描述,示出原始圖像1000的組合 的抽取(即,縮減)和形變,以便形成顯示圖像1002,可隨 即儲存在儲存器中或傳送到一個發生器模塊。顯示圖像 1002可以具有將提供在一個顯示裝置上的同一個尺度,或 在提供顯示圖像1002之前,一個發生器模塊可以對其重新 定標。 本專業技術人員將理解,雖然第3B-3C和10圖中示出 的前述方法描述的是整個圖像作爲一個單元被擴大和/ 或變形的,但是該圖像實際上可以一次修改一個部分(例 如,行)。 在另一可選方法中和裝置中,在該發生器模塊執行 一圖像的形變。在本發明的實施例中,該數字化裝置模塊 可以執fT 一個尺寸調整(例如,縮小)操作以便把一個原始 圖像適配到一個儲存區域。當該發生器模塊接收該圖像(例 如從儲存器檢索該圖像)和調整該圖像的尺寸(例如擴大) 時,如果必要,該第一參數組被再次用於根據傾斜或掃視 角而變形在LCD板的可顯示區域之內的圖像。具體地說, 該檢索的圖像首先放大並且隨後將其特性應用到Image-2 的對應部分,其Image-2提供在*SPy、Dy、SPx(y)、和Dx(y) 08168twf1. doc/006 修正日期92.6.30 所界定的該lcd_ —個部分中。舉例_,每一行是每 次提供的一個位置,從SPX⑺到Epx(y)(其中Epx⑺= spx(y))'叫州’從第—行spy到最後行Epy。沒塡充以圖 像數據_顯示裝_部分可以_任意_定的數據提 供(例如一個背景色)。在第11A圖示出的本方法中,示出 縮小的圖像110()(可以由-個數字___建和儲存)Χ and γ 値 can be calculated using the equations provided above, which may be known (i.e., SPX, SPY). The X 値 of the holding pixels in row y corresponding to Image-2 can be calculated by accumulating AX (y) to (Dx (y) -1) using SPX (ie, -W). After getting this first line in Image-2, the subsequent ¥ 値 corresponding to the subsequent lines in Image-2 (that is, after SPY * H) can be reached by accumulating the number of times AY (y) with SPY (Dy-1 ) While calculating. Each X 値 within each subsequent line Y is calculated in the manner just described. In this manner, Image-2 obtains ′ one line and one pixel at a time and labels each corresponding portion of Image-1 by accumulating ΔΥ and AX (y). However, if one or both of the horizontal and vertical scaling factors are not equal to 1, the scaling ratio must be incorporated into the calculation. Specifically, X 通过 is calculated for a given row by continuously accumulating the product of AX (y) and a horizontal scaling factor (such as Reduce-X or Enlarge-X) in SPX. A continuous Y 値 (eg, Y (y + 1)) is calculated by continuously accumulating the product of AY (y) and a vertical scaling factor (eg, Reduce-Y or Enlarge-Y) at SPY. If the scale of this Image-2 is modified (such as reduced or enlarged), the required parameters (such as SPx, Dy, SPx (y), Dx (y)) can be modified accordingly by one or several appropriate scaling factors. In the present embodiment of the present invention, the position of Image_1, which is calculated by adding ΔX and Δγ 値 and expressed as (χ + 5χ, Υ + (5 Υ)), may not exactly match the position of the lmage-1 pixel. You can determine the characteristics to be assigned to the corresponding Image-2 pixels (for example, at position (x, y)) by analyzing (eg, accumulating, weighting, averaging) the characteristics of the nearby Image-1 pixels. 30 08168twf1.doc / 〇〇6 In order to distinguish from the parameter settings applied in the previous subsection, 'The parameter group includes SPy, Dy, SPx (y), Dx (y), AY (y), and Δχ (Υ), May be referred to as a second parameter group. Another alternative embodiment of the present invention is particularly suitable for a projection system in which the image (eg, Image_2) displayed on a 1 (: 1) plate has few, if any, changes. The parameter groups used in this embodiment include SPy, Dy, SPx (y), Dx (y), Y '(y), and X' (y), and can be referred to as a third parameter group. In this embodiment Where X '(y) and Y' (y) are the multiplication of X (y) and Y (y) from the first parameter group (discussed in the previous subsection) by the X and y scale scaling factors, respectively Therefore, one advantage of this alternative embodiment of the present invention is that the functions incorporated in the device in this embodiment are further enhanced. For example, a common setting of the line buffer is sufficient and may not require A keystone module (such as keystone module 308 in Figure 3A) that is used to generate a corresponding scale for each line of the image. According to the number of scale ratios to be prepared (that is, by comparing the scale ratio with The combination of X and Y parameters may require auxiliary storage space for various exchanges of the parameter set. Therefore, the skilled person will understand that using any one of the first, second, or second parameter set, or using the One of the groups and / or the other parameter sets obtained by the above equations include compromise choices. One parameter set and related methods for obtaining Image-2 may be excellent in terms of hardware cost, complexity, or storage space. The other The parameter set or method for obtaining Image_2 may be excellent in efficiency, performance, or other criteria. Those skilled in the art will understand that a parameter set and method Selection over another parameter group and method may depend on the particular application or image to be projected. 556440 08168twfl.doc / 006 Modified 92.6.30 Figure 22 illustrates one of the inventions described in this subsection Method, in which Image-2 data (eg, color, light intensity) can be obtained from the Image-1 part with less computational burden than the method described in the previous subsection. In state 2200, one of the above methods may be used to determine Image- Effective area of 2. In the case where the scales of the images to be projected are exactly the same or similar, especially in those cases where those scales are known in advance, the effective area of Image-2 can be calculated before the original image is received, thus reducing the Calculations that must be performed on reception. In addition, an effective area can be calculated for multiple sets of original image scales. In state 2202, various parameters are stored for obtaining Image-2. Specifically, in the method shown, the storage parameters include ... Spy, Dy, SPx (y), Dx (y), AY (y), and AX (y). As described above in connection with equations (30)-(32), 値 for Y (y) and AY (y) can be generated using a quadratic equation. Therefore, in state 2202, the appropriate units for Fan, A, and A can be generated, retrieved (eg, from a table), or stored as needed. Other parameters (such as Rx (y), cJRx (y)) can also be calculated and / or stored in order to perform as many necessary calculations as possible in advance. In an alternative embodiment of the invention, in state 2202, one or more parameters may be combined with a resizing or rescaling factor to be used for an image. As mentioned above, this enables any resizing of a ® | image to be performed consistent with its deformation. In state 2204, the original image is received from an image source. The image can be temporarily stored before further processing of the original ft image. In state 2206, the image is resized as necessary, perhaps for its temporary storage before it is deformed or provided at 6f 08168twf1.doc / 006, or according to the dimensions of the display device. In state 2208, a row in the effective area of Image_2 is selected. For example, this process can begin with the top line (ie, SPy). However, in alternative embodiments of the invention, the process can begin with the bottom line (i.e. EPy) or other lines (e.g., where y = 0). In state 2210, the 値 of Y (y) is determined. If the necessary parameters are calculated and stored in advance (for example in state 2202), this may include simply retrieving the radon from memory. Note that Y (SPy) = H. It is possible to determine by adding or subtracting 値 of ΔΥ (Υ) that Y 値 for the subsequent rows in Image-2, 値 of AY (y) may have been stored in state 2202. In state 2212, a position (e.g., pixel) x in row y is selected. For example, the first position in a row may be SPx (y); in this method, therefore, the first position selected in the first row (for example, SPy) is SPx (SPy) ° In state 2214, determine X (x5 y). The first position in the first line may be X (SPx (SPy), SPy), which is equal to -W. The 値 of X for the first position in each row may be a parameter stored in state 2202, or may be calculated at runtime. X 値 for subsequent positioning in row y can be determined by adding or subtracting the constant 値 AX (y), which can also be one of the parameters stored in state 2202. In state 2216, one or more characteristics of a part of Image-1 are retrieved and added to the pixel positioned at coordinates (X, y). In state 2218, it is determined whether the last position in line y has been processed. For example, if x = Epx (y), the method of the present invention continues in the state 08168twf1.doc / 006 correction date 92 · 6 · 30 2220. Otherwise, the method shown returns to state 2212 and another location is selected. In state 2220, it is determined whether the last line in Image-2 has been processed. For example, if r = EPy, the method shown will continue with state 2222; otherwise, the method shown returns to state 2208 and another row is selected. In state 2222, the provision of Image-2 on the display device is completed, and the result can be projected. Keystone Correction for Elevation or Sweeping Angle In this section, various embodiments for preventing keystone distortion when one of the elevation angle 0 or the scanning angle α is present (for example, non-zero) are described. Embodiments of the present invention for preventing keystone distortion when these two angles are present are described in the following sections. The structure of a device for implementing an embodiment of the present invention may depend on the setting of parameters selected to produce an appropriate display image (e.g., Image-2). Three intuitive parameter groups were described in the previous section. Those skilled in the art will recognize that any device structure not previously described described in this section and subsequent sections can be easily obtained from the structures that exist in this section. The structure of the sampling device can be observed with reference to Figure 24D. Illustrative 'deformation of an original image to produce the display image may be performed in a suitable device digitizer or generator module. As previously described, a digitizing device module can resize (eg, reduce) an original image for storage, and a generator module can resize (eg, enlarge) a stored image for providing on a display device. Any of these modules can combine the deformation operation with the adjustment operation of 〇8l68twfl.doc / 006 to correct the size of 92.6.30, that is, two operations can be performed sequentially. In one embodiment of the present invention, the digitizing device module reduces an original image (for example, according to 1 ^ 〇11 ^ 64 and 1 ^ (11 ^ 心 丫) to fit a specified storage area (for example, through a memory interface). Memory accessed by the module). The digitizing device can then transform the reduced image in a separate operation using components similar to the resizing operation. In this embodiment described in Figures 3B-3C, the first Parameter groups (for example, Spy, Dy, SPx (y), Dx (y), Y (y), and X (y)) can be used for deformation. According to an available area and tilt of a display device (such as an LCD panel) Or scan the view to calculate the parameters in this parameter group. For example, by using parameters Y (y) and x (y) (and maybe using Rx (y) and Rx (x)), the characteristics of Image-1 are copied into Image -2 of the calculated effective area, one line of the original image is deformed at a time. The content of each line (for example, from position SPx (y) to its length Dx (y)) can then be placed in memory. In the present invention In one embodiment, a row from SPy to EPy (ie, where EPy = SPy + Dy) is processed consecutively In another embodiment, the rows of Image-2 are processed or obtained in a different order. After the original image is resized, deformed, and stored, the generator module may apply the rescaling factors it has (such as Reduce- X and Reduce-Y) to fit the image data into the displayable portion of the LCD panel. In an optional method and device, the sizing and deformation functions of the digital device module are combined. Specifically, As each line of the original image is received and resized (eg, reduced), it is simultaneously deformed using a parameter set including AX (y) and △ Y (y) to simplify processing. The image can follow 08168twfl. doc / 006 Amendment date 92 · 6 · 30 is stored in memory. Beneficially, a group of hardware components can perform these two functions in one operation, instead of double the hardware components used in sequence The size and deformation of the image are adjusted. When the image is retrieved from the memory to be provided on the display device, the generator module resizes (eg, expands) the image as usual. This method is described in FIG. Out of the original Combined extraction (ie, reduction) and deformation of images like 1000 to form a display image 1002, which can then be stored in memory or transferred to a generator module. The display image 1002 can have a A generator module can be rescaled to the same scale, or before providing the display image 1002. Those skilled in the art will understand that although the foregoing methods shown in Figures 3B-3C and 10 describe the entire figure The image is enlarged and / or distorted as a unit, but the image can actually be modified one section at a time (eg, rows). In another alternative method and apparatus, deformation of an image is performed at the generator module. In an embodiment of the present invention, the digitizing device module may perform a resize (eg, reduce) operation to fit an original image into a storage area. When the generator module receives the image (eg, retrieves the image from a memory) and adjusts the size (eg, enlargement) of the image, the first parameter set is used again if necessary according to the tilt or sweep angle. An image distorted within the displayable area of the LCD panel. Specifically, the retrieved image is first enlarged and then its characteristics are applied to the corresponding part of Image-2, whose Image-2 is provided at * SPy, Dy, SPx (y), and Dx (y) 08168twf1.doc / 006 in the LCD_ section defined by 92.6.30 on the amendment date. For example, each line is a position provided each time, from SPX⑺ to Epx (y) (where Epx⑺ = spx (y)) 'called state' from the first line of spy to the last line of Epy. It is not enough to provide image data _ display equipment _ part can _ arbitrary _ provided (such as a background color). In the method shown in Figure 11A, a reduced image 110 () is shown (can be built and stored by a number ___)

被內插或放大,以便形成放大的圖像1102。舉例說明,放 大的圖像1102的尺度可以取決於該顯示裝置(例如LCD 板)。在第二操作中,放大的圖像1102被變形或扭曲, 以便形成顯示圖像1104。 因爲在本發明的本實施例中是最後執行該圖像的形 變,所以本實施例可以產生的一個投影圖像的質量高於其 中在內插(例如重新調整尺寸)圖像之前就執行圖像的形變 的那些實施例所產生的投影圖像的質量。具體地說,當在 調整尺寸以前執行影像畸變時,該調整尺寸操作可以放大 淸晰度的任何損失或由該圖像形變引起的對角線〜曲折〃。 例如,當原始圖像是矩形時,該圖像的變形的型式將通常 是具有斜對邊的對稱梯形的形狀。當該斜對邊隨後被調整 尺寸用於顯示時,該圖像被放大得越大,該側邊的不平坦 或曲折越顯眼。 在另一個可選方法和裝置中,發生器模塊的尺寸調 整和變形功能被合倂。因爲在本實施例中的發生器模塊不 是構成來減小或縮小一個圖像,Enlarge-)^aAX(y)和乘積 以及Enlarge-Y和ΔΥ(γ)的乘積應該不小於1。因爲所有的圖 08168twf1. doc/006 修正日期92.6.3〇 像縮減都因此在該數字化裝置模塊中完成,所以可以要求 在本實施例中的數字化裝置模塊比其它情況下更進一步地 縮小該原始圖像。本方法在第11B圖中描述,已經創建並 由數字轉換器模塊儲存在儲存器中的縮小的圖像1120被放 大和變形,以便在一個組合操作中產生顯示圖像1104。 本專業技術人員將理解,雖然第11A-11B圖不出整個 圖像被立即擴大和/或變形,但是該圖像實際上可以依次 修改一個部分(例如,行)。第10和11B圖中的虛線可以表 示該顯示裝置的可顯示部分的輪廓,因此示出在把圖像提 供在該裝置上的時候顯示圖像的方式。顯示裝置的無效區 域(例如在沒有該顯示圖像部分的虛線區域之內)可塡充以 近似該視屏的彩色信號數據、其他環境區域或預定的彩 色,例如灰或黑色。 本專業技術人員將理解,如果本發明的梯形失真防 止功能被停止,上述本實施例中的每一數字轉換器模塊的 功能和每一發生器模塊的功能可以是等同的。即,在每一 實施例中該數字化裝置模塊調整一個原始圖像的尺寸(例 如縮小)以便儲存在一個規定的儲存區域中,並且該發生 器模塊可以針對一個顯示裝置而調整一個儲存圖像的尺寸 (例如擴大)。舉例說明,由該數字轉換器模塊所施加的定 標比例不大於1,並且由該發生器模塊施加的定標比例不 小於1。在前述的本發明的實施例中還示出,在數字化裝 置或發生器模塊之一中執行一個圖像的形變或扭曲(即防 止梯形失真)的能力或是順序地執行,或者與每一模塊的 修正日期92.6.30 08168twf1. doc/006 調整尺寸功能合倂執行。 針對一個仰角和俯視角的梯形失真坊i 第1C圖描述一個投影系統,其中投影儀既圍繞X軸傾 斜(例如,向上的投影)又圍繞Y軸左右移動(例如從該投影 儀的角度看向右投影)。因此,仰角0角和俯視角α都存 在(即不爲零)。 在本發明的一個實施例中,當兩個角度都存在時, 通過首先從一個角度(例如仰角0 )得到補償梯形失真的一 個中間圖像而防止梯形失真。因此隨即通過轉動中間圖像 90度而重新定向該中間圖像,並且可以從另一補償梯形失 真的角度(例如仰角α )得到一個適當的顯示圖像。在本實 施例中,該中間圖像被定向在該原始圖像之內(即2 W寬度 χ2Η高度),同時該顯示圖像由於插入了圖像旋轉而配合2Η 寬度和2W高度的尺寸。 第2 3圖示出了根據本發明的本實施例的一個當仰角 和俯視角都不爲零時防止或補償梯形失真的方法。 在狀態2300中,從一個像源接收具有不爲零仰角和 俯視角的原始圖像。在狀態2302中,確定是否已經知道圖 像的有效面積。這可能包括上述的幾個參數的計算、檢索 和/或儲存,可被用於下面的形變處理。 在狀態2304中,如果有必要,針對指定的儲存區域 調整原始圖像的尺寸(例如減小)。此調整尺寸的操作可以 考慮是在圖像被儲存之前施加給該圖像一個90度的旋轉。 在狀態2306中,圖像被變形以便補償否則會從一個 556440 修正日期92·6·30 08168twfl.doc/006 第一角度(例如仰角(9 )產生的梯形失真。如上所述,一個 圖像的形變可以包括在定義的有效面積之內把該原始圖像 的特性映射到顯示圖像的對應部分。在本發明的一個實施 例中,狀態2304和2306的調整尺寸和形變操作可以被顛倒 或合倂。組合這些操作的一個方法在上面描述過,其中該 調整尺寸和形變因數或比例被結合。 在狀態2308中,圖像被隨即旋轉90度。此旋轉可以 恰好在儲存之前執行,或可在圖像被儲存在儲存器中同時 執行。例如,該儲存接口單元能以行方式從數字轉換器模 塊接收縮減和變形的圖像數據。該儲存器接口因此結束把 每一行提供到該發生器模塊作爲一列的遞送。 在狀態2310中,該發生器模塊隨後變形該旋轉的圖 像,以便補償可能由其他角度(例如俯視角α )引起的梯形 失真。在狀態2312中,發生器模塊可以根據顯示裝置需要 而調整圖像的尺寸。在本發明的一個實施例中,狀態2310 和2312的調整尺寸和形變操作可以被顛倒或合倂。組合這 些操作的一個方法在上面描述過,其中組合了該變形和因 數或比例尺寸調整。 如果是該顯示裝置是以行方式的圖像格式提供圖 像,則在狀態2314中,在該圖像被顯示之前可以與前面旋 轉的相反方向轉動90度。在一個可選實施例中,顯示裝置 本身被旋轉90度,以便免除由該發生器模塊對該圖像的最 終旋轉。此可選實施例免除了可能需要在發生器中執行圖 像旋轉的任何附加緩存或儲存器資源。 7之 08168twf1. doc/006 修正日期92 ·6· 30 在狀態23 16中,產生的圖像被投影。 第12圖是在當仰角和俯視角都存在時用來防止梯形 失真的一個裝置1200的方塊圖。數字化裝置1201和發生器 1250的每一個用於補償可能由於這兩個角度之一所引出的 梯形失真。舉例說明,通過圖像接收器1202在數字化裝置 1201接收的原始圖像由縮減器調整尺寸(例如縮小),以便 適合一個指定的儲存區域。調節器12〇6隨後根據由梯形失 真模塊1208計算或檢索的參數或比例而變形該圖像’以便 補償可能由仰角Θ引起的失真。調節器1206每次把縮減和 變形了的圖像數據的一行(例如,一直線)送到儲存接口單 元1220,其通過以列次序儲存該數據而轉動該圖像90度。 數字轉換器1201的控制器1210控制通過數字轉換器模塊並 且進入儲存接口單元1220的數據流動。 儲存的圖像由發生器1250接收在圖像接收器1232 中。隨後通過內插器1234調整圖像的尺寸,並且通過調整 器1206變形該圖像,以便補償或防止可能由俯視角α引起 的梯形失真。調節器1206根據來自梯形失真模塊1238的輸 入而變形該圖像數據,該模塊1238可以使用從儲存器檢索 或按照需要計算的參數。控制器1240控制來自儲存接口單 元並且通過發生器1250的圖像數據的流量。 在裝置1200中,在發生器模塊對圖像作尺寸調整和 變形以便補償俯視角α之後,該圖像可按照前面旋轉方向 的相反方向轉動90度,或也可以使顯示裝置本身採取或定 位在一個旋轉方向。 556440 〇8168twf1. doc/006 修正日期92·6·3〇 第imD圖示出根據本發明叫固實施例的通過一種 裝置對-麵雜行_作,__於__ _俯 視細引起_形失A。在第13,中,原始__整 尺寸(例如縮減)和變形以便補償仰角0。第〗36圖示出經 變形的圖像·9峨旋__1_雑消俯視角^ 的#響。旋轉的方向(例如順時針或逆時針方向)可以根據 α的符5虎而疋。第UC圖進一步描述了圖像的形變,以便 補丨員該俯視角並且針對選中的顯示裝置調整圖像的尺寸 (例如擴大)。桌13D圖不出該圖像旋轉的相反旋轉,以備 提供在一個顯示裝置上。 在被設計來補償梯形失真的本發明的一個可選實施 例中,當仰角和俯視角都存在時,圖像的所有尺寸調整都 是在其被變形之前執行。因此在本實施例中可能改進圖像 質量。根據本實施例得到一個顯示圖像的方法在第14A-14F 圖中示出。 在第14Α圖中,原始圖像1400在一個數字化裝置模塊 中減小,而在第14Β圖,該原始圖像1400在一個數字化裝 置模塊中擴大。第14C圖示出該圖像的隨後形變以便補償 該縱向角(例如仰角Θ )。當然此形變可以與該圖像的擴大 結合。第14D圖中,已變形圖像被轉動90度,以便準備進 一步形變。此旋轉可能通過把行方式數據轉換成一個列格 式的方法執行。補償水平角(例如掃視角α)的變形的第二 階段在第14Ε圖中示出。第14F圖示出該圖像回到其原始方 向的旋轉,或通過把該圖像數據從行格式重新編排成列格 556440 〇8168twf1. doc/006 修正日期92.6.30 式、或通過把圖像如實提供在已經轉動90度的顯示裝置 上。 本發明的另一可選實施例尤其適於當顯示裝置不能 轉動90度時而補償仰角和掃視角。在第15A-15E圖示出的 本實施例中,圖像在儲存器中旋轉兩次。首先,在第15A 圖中所示的數字轉換器模塊中’原始圖像1500被降低(例 如按比例Reduce-X和Reduce-Y縮小)。隨後,縮小的圖像 被轉動90度(例如根據掃視角α的符號)並且按比例放大(例 如根據Enlarge-X和Enlarge_Y比例),如第15Β圖所示。可 能通過讀出由數字轉換器模塊以行格式創建的縮小的圖像 的圖像數據並且將其圖像數據以列格式提供到一個發生器 模塊(用於按比例放大)的方式執行該旋轉。隨後根據如第 15C圖所示的水平角(例如掃視角α)變形該圖像。第15B到 15C圖所示的重新定標和變形可以被組合。已變形的圖像 被隨後轉動90度,到其第1 5D圖中所示的原始方向。像第1 5Ε 圖中描述的,圖像現在可被變形以便補償縱向角(例如仰 角0 )。產生的顯示圖像可隨後以傳統的行方式提供在一 個顯示裝置上。 防止..在ih的或雷新宙標圖像中的梯形失直 在本發明的一個實施例中,圖像可被要求配合顯示 裝置的特定尺寸或顯示裝置的一部分。換言之,不是變形 一個圖像和盡可能大地保持該圖像(例如完整尺寸的顯示 圖像),而是把圖像變形並且降低其尺寸,以便匹配該顯 08168twf1. doc/006 修正日期92· 6· 30 示裝置的一個指定部分或完整尺寸的顯示圖像。因此產生 的投影圖像在尺寸上較小並且/或定位在該屏幕的一個不 同部分,但是仍然無梯形失真。 因此,本節描述得到一個顯示圖像以便滿足特定尺 寸或位置要求的一種方法。描述的方法可以由已經存在一 個或多個裝置使用。舉例說明,包括在前面部分中的描述 的一個或多個參數可被修正,以便適當應所期望的該顯示 圖像的重新定位或重新尺寸調整。 第16A圖描述一個具有由虛線界定的一個有效(即可 用)區域的顯不裝置1602。如果不做防止梯形失真,或仰 角0和掃視角α都具有零値,則該顯示圖像將適配該顯示 裝置的輪廓。前面部分中描述的防止梯形失真的一個或多 個方法被嘗試來在該顯示裝置的可用區域中盡可能大地保 持一個圖像的顯示(例如Image-2)。然而在本節中,顯示圖 像被有意地尺寸縮減和/或偏離顯示裝置的中心定位。 在第16A圖中描述的本發明的實施例中,具有(W,+W”) 寬x(H+H”)高的尺度的顯示裝置的限定部分定義了該顯示 裝置的呈現一個顯示圖像的區域。此部分由單元1604表 示。與上述使用盡可能多的顯示裝置的區域而得到一個顯 示圖像的方法類似,可以得到一個適配該顯示裝置的標記 部分的一個顯示圖像,提供並且投影而沒有顯著的梯形失 真。在該顯示裝置的呈現該顯示圖像的輪廓之外的部分可 以塡充一個背景色或可被忽視。 爲了得到被製作成適合該縮減區域的一個顯示圖 08168twf1. doc/006 修正日期92.6.30 像,定義並且計算一組適當的參數。在第16A圖中,依據 Image-Ι座標系的該縮減的顯示圖像的起點或位置可以表 示爲(-W”,H’),其中Z値是0。因此,在示出的防止梯形失 真的方法中,從一個縮減區域投影的一個顯示圖像具有的 尺度爲(W,+W”)X (H,+H,,),SPY =H,,EPY=-H”,SPX二-W”和EPX=W’。如本發明的用於”全尺寸”顯示圖像的 方法中所描述,參數SPy、EPy、SPx(y)和EPx(y)可以從 Image-1參數獲得。 因此,除了該參數組被定制到提供縮減顯示圖像的 子區域的尺度之外,本方法類似於上述的用於〃規則〃 尺寸的顯示圖像的方法。 第16B圖示出對一個原始圖像進行變形的結果(例如 在一個數字化裝置模塊中),以便適合在可出現全尺寸顯 示圖像的區域的一個子部分之內。單元1610標示該全尺寸 變形圖像的輪廓而用於比較的目的,單元1612可以理解爲 被提供子縮減顯示圖像的顯示板的邊界,或理解爲儲存該 縮小圖像的該儲存區域的邊界。 第16B圖中的顯示裝置的該部分或該圖像被壓縮在其 中的全尺寸顯示圖像對應於第16A圖中界定爲1604的區 域。第16B圖示出從可能不同於該總體變形圖像的圖像獲 得一個較小的顯示圖像尺度的方式。因此,四個點 (SPx(SPy),SPY)、(EPx(SPy),SPy)、(SPx(EPy),EPy)和 (EPx(EPy),EPy)定義了該梯形區域,其中將壓縮整個矩形 原始圖像,形成一個較小、補償顯示和投影的圖像。 08168twfl.doc/006 修正曰期92·6·3〇 與本發明先前描述的方法類似,對於一個將要被_ 示和投影在一個較小和/或偏離中心區域中的圖像進行形 變可以在一個發生模塊而不是在一個數字化裝置中執行。 而且,在仰角0和掃視角α都具有不爲零値的情況下,形 變和/或尺寸調整可以在二者中執行。 舉例說明,如果在數字化裝置模塊中執行形變,如 第16Α-16Β圖中描述,該原始圖像和相關參數可以根據其 中該圖像將被儲存的儲存區域或從其中檢索圖像的儲存區 域的尺度而修改或重新定標。隨後根據其中將呈現該縮減 顯示圖像的該顯示裝置的所期望區域而縮減及變形該圖 像。該變形圖像可隨後儲存在由比如SPy、Dy、SPx(y)和Dx(y) 參數標示的一個儲存區域中。如上述,從其中隨後讀出該 變形的儲存區域(例如由一個發生器模塊)可以由參數31&1^ Read-X、Start-Read-Y、Read· X和Read_Y標示。舉例說明, 此儲存區域可以對應於一個全尺寸顯示圖像的有效面積。 如果形變是在一個發生器模塊中執行,則從儲存器 檢索的圖像首先被按需要內插(例如擴大),然後被變形以 便適合顯示裝置的指定部分。 在一個防止較小和/或偏離中心圖像的梯形失真的具 體可選方法中,在一個發生器模塊中執行針對一個具體區 域的該圖像的形變。本方法在第17A-17B圖中描述並且很 適合於其中將被提供顯示圖像的該顯示裝置的子區域變化 (例如針對一個圖像或從一個圖像到另一圖像)尺寸或位置 的情形。在此可選方法中,用於由該發生器檢索的圖像數 〇8168twfl.doc/006 修正日期92.6.30 據被儲存在一個小於由該發生器檢索的儲存區域的區域 中,但是該區域正比於顯示裝置的顯不區。 具體地說,在圖像被數字化裝置縮小(必要時)之後’ 其被儲存在以位置(Start-Wdte_X,Start-Wiite-Y)開始的儲 存器中,如上結合本發明另一實施例所述。儲存此縮小圖 像數據的儲存器部分具有尺度Write-X X Write-Y。由發生 器模塊逐出或檢索出該圖像數據的儲存區域具有Read-X x Read-Y的尺度,和起始於位置(Start-Write-X,Start-Write- Y)在本方法中,由發生器讀出的儲存區域的尺度大於儲存 該縮小圖像的儲存區域尺度。 並且舉例說明該比例(2*W) : Read-X等於比例(W’ +W”): Wdte-X。此公比可以作爲水平發生器重新定標比 例(即Enlarge_X)實施。相似地,該比例(2*H) : Read—Y則 等於比例(H’+H’’): Wdte_Y,此公比可以作爲垂直發生器 重新定標比例(即Enlar*ge__Y)實施。 在發生器重新定標操作之後,可以變形圖像以便補 償梯形失真並且適合該顯示裝置的指定部分。具體地說, 座標(Start_Write_X,Start—Write—Y)被映射到該顯示裝置 中的顯示部分(-W’’,H’)的起始位置。因此,一個固定的 參數組可被用於變形由該發生器接收的圖像數據。 產生的投影圖像在第ΠΒ圖如單元Π12所示。視屏的 輪廓被表示爲1710。 均衡圖像亮度 556440 修正日期92.6.30 08168twfl.doc/006 在本發明的一個實施例中,原始圖像的光強被調整 以便控制投影在一個視屏上的圖像的狀態。例如,可能希 望保證在跨越該投影圖像上的一個均勻亮度。即使沒有某 些用於控制或均衡亮度的機構,在顯示和投影之前的原始 圖像的尺寸調整和變形之後也可能從行到行變化亮度。 第18A-18C圖描述了如果不校正則可能出現的一個投 影圖像的不均的光照,以及有關均衡其亮度的該投影圖像 的效果。在第18A圖中,來自該原始圖像的顯示圖像18〇2 受梯形失真干擾並且光強不改。因此該產生的投影B[像 1804受梯形失真干擾並且光強不均。具體地說,圖像頂部 比底部暗,可能是由於該顯示裝置(例如LCD板)針對—個j 提供的圖像的低部所接收或擁有的光強大於針對該圖丨象1 部所接收或擁有的光強。 舉例說明,或是一個顯示圖像的低部可以被變日音$ 上部可以被變亮,以便均衡該投影圖像的亮度。然而在本 發明的一個實施例中的任何一個解決方案的選擇都是逐行 爲基礎執行,以便最有效地抵消光照的不均勻。具體地說, 顯示裝置的行越低,該光強應該被降低越多,而越高的行 該光強應該增加越多。 在本發明的一個實施例中,通過逐行調整該原始圖 像而校正亮度不均,正比於其最初光強和/或在該顯示裝 置上的最終位置。因此自上而下遞減小或衰減每一行的光 強,該原始圖像的低行的衰減大於較高行的衰減。 具體地說,方程式(21)和(22)示出如何根據d、Η和仰 80 08168twf1. doc/006 修正日期92.6.30 角0計算出用於一個原始圖像的SPy和EPY。用於每一行 的衰減係數或比例,從SPy到Epy(例如從圖像上部到底部) 可以被表示成: A(y)=Dx(SPy)/Dx(y) (41) 可以看出,用於頂行(即SPy)的A(y)等於1,表明最小 的衰減量,同時A(EPy)將產生該最大衰減量。 該方程式是依據y規定的,因爲y被定制來在僅存在 仰角Θ的一個圖像中均衡亮度。本專業技術人員將容易地 理解此衰減因數可以針對其中僅存在俯視角α的一個圖像 確定。如果方程式(41)引起一圖像的亮度減小太多(例如, 對於投影圖像太暗的場合),該原始圖像的亮度可以被總 體增加,或由該投影裝置的光源產生的光強可被增加。 對於其中仰角Θ和俯視角α都存在的一個原始圖 像,該圖像光強的衰減可以分兩階段執行。方程式(41)可 應用來衰減針對仰角6»的圖像,而俯視角可通過應用X的 値從SPx到Ερχ地得到: A(x)-Dy(SPx)/Dy(x) (42) 在應用方程式(42)之前該圖像可以旋轉90度。然後’ 該圖像則轉回到其原始方向,用於顯示。舉例說明,投影 裝置的亮度控制可被調節以便在圖像中的亮度已經均衡β 556440 08168twf1. doc/006 修正日期92.6.30 後來影響該投影圖像的總體光強。 第24圖被根據本發明實施例的一個流程圖,演示通 過衰減其光強而均衡一圖像的亮度的方法。本方法適合於 其中仰角0和俯視角α都存在的情形。這種示出的方法可 被容易地修改,如本專業技術人員顯見的那樣,以便適合 其中僅一個角度具有不爲零値的投射系統。 在狀態2400中,計算一個圖像的每一行y(即Dx(y))中 的像素的數目。此參數可被隨著上面標示的另一參數一起 計算,比如在針對一個Image-2的有效面積的計算過程中 計算。 在狀態2402中,針對每一行y計算指定的,以便 表示其對於縱向角0的相互關係。具體地說,A(y) = (SPy) / Dx(y) 〇 隨後在狀態24〇4中’在圖像的每一行中應用該垂直 哀減因數。具體地說’在每一中,從SPy到EPy,對於 x=SPx(y)到x=EPx(y),調節具有座標(x,y)的每一像素p的 亮度。具體地說,P’(x,y) = P (X,y) *A(y)。 在狀態2406中,圖像轉動9〇度以便準備衰減的第二 階段以便針對水平角α。舉例說明,圖像可被旋轉,把每 一行編解爲一個列。其中該圖像的旋轉方向可以根據角α 的符號而定。爲了反映該圖像的旋轉,每一像素p,(x,y)可 以被表示爲P’(y,X)以便用於下列計算,直到該圖像被旋轉 回到其原始方向爲止。類似地,比如Dy(x)參數應該根據 圖像的旋轉解釋。 556440 08168twfl.doc/006 修正日期 92.6.30 在狀態24〇8中,計算轉動圖像中的每一行x(即Dy(x)) 的尺度。隨著在狀態2402中的計算,可以連續地執行或與 另一圖像操作(例如根據角度α調整圖像的尺寸或形變)組 合地執行狀態2408。 在狀態2410中,針對每一行\計算與掃視角相關的衰 減因數Α(χ)。具體地說,A(x)= Dy(SPx) / Dy (X)。 在狀態2412中,在該圖像的對應行中應用每一相應 的衰減因數A(x)。具體地說,在每一行X中,從spx到Ερχ, 對於y= SPy(x)到y= EPy(x),調節具有座標(y,χ)的每一像 素Ρ的亮度。具體地說,P,,(y, X) = P,(y,X) * Α〇〇。 在狀態2414中,圖像被隨後旋轉90度,與先前旋轉 的方向相反。因此,從狀態2412產生的每一像素P〃(y,X) 可以表不爲像素P〃(x,y),因爲該圖像再次處在原始方向 中。 在狀態2416中,比如當該圖像被投影時,可執行亮 度控制或調整亮度。例如,雖然實質上亮度是均衡的,但 如果該圖像的亮度爲了審美的原因而被斷定太低或太高, 則需要适種売度的控制和調整。 在前述的描述中,用於每一行y,或在旋轉之後用於 每一行X的Dx(y)、A(y)的値被一起計算。在一個可選方法 中’每次可以針對一行。換言之,第24圖的一個或多個狀 態可被每次只針對一行執行。例如,以SPy、Dx(SPy)開始 可被計算(狀態2400),隨後是A(SPy)(狀態2402),隨後可 以把A(SPy)應用到在僅一行SPy中的每一像素(狀態 556440 修正日期92.6.30 08168twfl.doc/006 2404),隨後行SPy可被旋轉(狀態2404)等。 上文描述的本發明的實施例僅僅是爲了說明和描述 的目的作了介紹。這些實施例不想詳盡本發明或要把本發 明限制到公開的形式。對於本專業技術人員來說許多修改 和變更將是顯見的。因此,上述公開不是打算限制本發明: 本發明的範圍由所附的權利要求書所限定。It is interpolated or enlarged to form an enlarged image 1102. For example, the scale of the enlarged image 1102 may depend on the display device (such as an LCD panel). In the second operation, the enlarged image 1102 is deformed or distorted to form a display image 1104. Since the deformation of the image is performed last in this embodiment of the present invention, the quality of a projected image that can be generated by this embodiment is higher than the image that is executed before the image is interpolated (eg, resized) The quality of the projected images produced by those embodiments of deformation. Specifically, when image distortion is performed before resizing, the resizing operation can magnify any loss of sharpness or the diagonal to zigzag caused by the deformation of the image. For example, when the original image is rectangular, the distorted pattern of the image will usually be a symmetrical trapezoidal shape with diagonally opposite edges. When the diagonally opposite edge is subsequently resized for display, the larger the image is enlarged, the more uneven or tortuous the edge becomes. In another alternative method and device, the sizing and deformation functions of the generator module are combined. Because the generator module in this embodiment is not configured to reduce or reduce an image, the product of Enlarge-) ^ aAX (y) and the product of Enlarge-Y and ΔΥ (γ) should not be less than 1. Since all the figures 08168twf1.doc / 006 date of revision 92.6.3 are completed in the digital device module, the digital device module in this embodiment may be required to further reduce the original image than in other cases. image. The method is depicted in Figure 11B. The reduced image 1120 that has been created and stored in memory by the digitizer module is enlarged and distorted to produce a display image 1104 in a combined operation. Those skilled in the art will understand that although the entire image is not immediately enlarged and / or distorted in FIGS. 11A-11B, the image can actually modify one part (eg, row) in turn. The dotted lines in Figs. 10 and 11B can indicate the outline of the displayable portion of the display device, and thus show the manner in which the image is displayed when the image is provided on the device. The ineffective area of the display device (for example, within the dotted area without the display image portion) can be filled with color signal data similar to the video screen, other environmental areas, or a predetermined color, such as gray or black. Those skilled in the art will understand that if the trapezoidal distortion prevention function of the present invention is stopped, the function of each digitizer module and the function of each generator module in this embodiment described above may be equivalent. That is, in each embodiment, the digitizing device module adjusts the size (eg, reduction) of an original image to be stored in a prescribed storage area, and the generator module can adjust the size of a stored image for a display device. Size (e.g. enlarged). For example, the scaling ratio applied by the digitizer module is not greater than 1, and the scaling ratio applied by the generator module is not less than 1. The foregoing embodiments of the present invention also show that the ability to perform deformation or distortion of an image (ie, to prevent keystone distortion) in one of the digitizer or generator modules is performed sequentially or with each module The revision date is 92.6.30 08168twf1. Doc / 006 The resize function is executed together. Keystone distortion for an elevation and top angle i Figure 1C depicts a projection system in which the projector is tilted about the X axis (for example, upward projection) and moved left and right about the Y axis (for example, from the perspective of the projector) Right projection). Therefore, both the elevation angle 0 and the overhead angle α exist (that is, not zero). In one embodiment of the present invention, when both angles are present, keystone distortion is prevented by first obtaining an intermediate image that compensates for keystone distortion from one angle (e.g., elevation angle 0). Therefore, the intermediate image is then redirected by rotating the intermediate image by 90 degrees, and an appropriate display image can be obtained from another angle (e.g., elevation angle) that compensates for trapezoidal distortion. In this embodiment, the intermediate image is oriented within the original image (ie, 2 W width x 2Η height), and the display image fits the size of 2Η width and 2W height because the image rotation is inserted. Fig. 23 shows a method for preventing or compensating keystone distortion when the elevation angle and the top angle are not zero according to the present embodiment of the present invention. In state 2300, an original image with a non-zero elevation angle and a bird's-eye angle is received from an image source. In state 2302, it is determined whether the effective area of the image is already known. This may include the calculation, retrieval and / or storage of the several parameters mentioned above, which can be used for the following deformation processing. In state 2304, if necessary, the original image is resized (eg, reduced) for the specified storage area. This resizing operation can be considered as applying a 90 degree rotation to the image before it is stored. In state 2306, the image is distorted so as to compensate for keystone distortion that would otherwise result from a first angle of 556440, such as 92 · 6 · 30 08168twfl.doc / 006, such as the elevation angle (9). As described above, the Deformation may include mapping the characteristics of the original image to corresponding portions of the displayed image within a defined effective area. In one embodiment of the present invention, the resizing and deformation operations of states 2304 and 2306 may be reversed or combined A. One way to combine these operations was described above, where the resize and deformation factor or ratio are combined. In state 2308, the image is then rotated 90 degrees. This rotation can be performed just before storage, or Images are stored in a memory and executed at the same time. For example, the storage interface unit can receive reduced and distorted image data from the digitizer module in a row. The memory interface thus ends providing each line to the generator module Delivered as a column. In state 2310, the generator module then deforms the rotated image in order to compensate for other angles ( For example, the trapezoidal distortion caused by the viewing angle α). In the state 2312, the generator module can adjust the size of the image according to the needs of the display device. In one embodiment of the present invention, the adjustment of the size and deformation of the states 2310 and 2312 can Turned upside down or combined. One method of combining these operations was described above, in which the deformation and factor or scaling adjustments are combined. If the display device provides images in a line-based image format, state 2314 Before the image is displayed, it can be rotated 90 degrees in the opposite direction to the front rotation. In an alternative embodiment, the display device itself is rotated 90 degrees to avoid the final rotation of the image by the generator module This alternative embodiment eliminates any additional cache or storage resources that may require image rotation in the generator. 08 of 08168twf1.doc / 006 Date of revision 92 · 6 · 30 In state 23 16 the resulting graph The image is projected. Figure 12 is a block diagram of a device 1200 to prevent keystone distortion when both elevation and top angles are present. Digitizer 1201 and Each of the generators 1250 is used to compensate for trapezoidal distortion that may be caused by one of these two angles. For example, the original image received by the image receiver 1202 on the digitizer 1201 is resized (eg, reduced) by a reducer. So as to fit a specified storage area. The adjuster 1206 then deforms the image according to parameters or proportions calculated or retrieved by the keystone distortion module 1208 to compensate for distortions that may be caused by the elevation angle Θ. The adjuster 1206 applies One line (for example, a straight line) of the reduced and deformed image data is sent to a storage interface unit 1220, which rotates the image 90 degrees by storing the data in a column order. The controller 1210 of the digital converter 1201 controls the digital conversion And the data flows into the storage interface unit 1220. The stored image is received by the generator 1250 in the image receiver 1232. The size of the image is then adjusted by the interpolator 1234, and the image is deformed by the adjuster 1206 in order to compensate or prevent keystone distortion that may be caused by the top angle α. The regulator 1206 deforms the image data based on the input from the keystone module 1238, which can use parameters retrieved from a memory or calculated as needed. The controller 1240 controls the flow of image data from the storage interface unit and through the generator 1250. In the device 1200, after the generator module resizes and deforms the image so as to compensate for the overhead angle α, the image can be rotated 90 degrees in the opposite direction of the front rotation direction, or the display device itself can be taken or positioned at One direction of rotation. 556440 〇8168twf1. Doc / 006 Revised date 92 · 6 · 3〇 Figure imD shows the misalignment of a surface through a device according to the embodiment of the present invention, _ work, _____ _ from the top, the shape is caused by the shape Lose A. In the 13th, the original __ size (such as reduction) and deformation to compensate the elevation angle 0. The 36th figure shows the # ring of the deformed image · 9 埃 旋 __1_ 雑 bird's eye view ^. The direction of rotation (such as clockwise or counterclockwise) can be changed according to the sign of α5. Figure UC further describes the deformation of the image in order to complement the top view angle and adjust the size (eg, enlargement) of the image for the selected display device. The table 13D does not show the opposite rotation of the image rotation in preparation for being provided on a display device. In an alternative embodiment of the invention designed to compensate for keystone distortion, when both elevation and top angles are present, all resizing of the image is performed before it is deformed. It is therefore possible to improve the image quality in this embodiment. A method for obtaining a display image according to this embodiment is shown in FIGS. 14A to 14F. In Fig. 14A, the original image 1400 is reduced in a digitizing device module, and in Fig. 14B, the original image 1400 is enlarged in a digitizing device module. Figure 14C illustrates subsequent deformation of the image to compensate for the longitudinal angle (e.g., elevation angle Θ). This deformation can of course be combined with the enlargement of the image. In Fig. 14D, the deformed image is rotated by 90 degrees to prepare for further deformation. This rotation may be performed by converting row-type data into a column format. The second stage of deformation that compensates for horizontal angles (e.g., scan angle α) is shown in Figure 14E. Figure 14F shows the rotation of the image back to its original direction, or by rearranging the image data from a row format into columns 556440 〇8168twf1.doc / 006 correction date 92.6.30 style, or by putting the image It is faithfully provided on a display device that has been rotated 90 degrees. Another alternative embodiment of the invention is particularly suitable for compensating the elevation angle and the scanning angle when the display device cannot be rotated 90 degrees. In this embodiment shown in Figs. 15A-15E, the image is rotated twice in the memory. First, in the digitizer module shown in Fig. 15A, the 'original image 1500 is reduced (e.g., Reduce-X and Reduce-Y scaling down). Subsequently, the reduced image is rotated 90 degrees (for example, according to the sign of the scan angle α) and scaled up (for example, according to the Enlarge-X and Enlarge_Y ratios), as shown in Fig. 15B. This rotation may be performed by reading out image data of a reduced image created by the digitizer module in a row format and supplying its image data in a column format to a generator module (for scaling up). The image is then deformed according to a horizontal angle (such as the scan angle α) as shown in FIG. 15C. The rescaling and deformation shown in Figures 15B to 15C can be combined. The distorted image is then rotated 90 degrees to its original orientation as shown in Figure 15D. As described in Figure 15E, the image can now be deformed to compensate for longitudinal angles (e.g., elevation angle 0). The resulting display image can then be provided on a display device in a conventional line manner. Preventing the trapezoidal misalignment in ih or thunder target images In one embodiment of the invention, the image may be required to fit a particular size of the display device or a portion of the display device. In other words, instead of deforming an image and keeping it as large as possible (such as a full-sized display image), you deform the image and reduce its size to match the display 08168twf1. Doc / 006 Correction Date 92 · 6 · A display image of a specified part or full size of the display device. The resulting projected image is smaller in size and / or positioned on a different part of the screen, but still free of keystone distortion. Therefore, this section describes a method for obtaining a display image to meet specific size or location requirements. The method described can be used by one or more devices that already exist. By way of example, one or more of the parameters included in the description in the previous section may be modified to appropriately respond to the desired repositioning or resizing of the display image. Figure 16A depicts a display device 1602 with an active (ready-to-use) area bounded by a dashed line. If no keystone prevention is done, or if the elevation angle 0 and the scanning angle α have zero angles, the display image will fit the contour of the display device. One or more methods of preventing keystone distortion described in the previous section were attempted to maintain the display of an image as large as possible in the usable area of the display device (e.g. Image-2). In this section, however, the display image is intentionally reduced in size and / or positioned off-center from the display device. In the embodiment of the present invention described in FIG. 16A, a limited portion of a display device having a scale of (W, + W ") width x (H + H") height defines the display device to present a display image Area. This section is represented by unit 1604. Similar to the method described above for obtaining a display image using as many areas of the display device as possible, a display image adapted to the marked portion of the display device can be obtained, provided and projected without significant trapezoidal distortion. The portion of the display device outside the outline where the display image is presented may be filled with a background color or may be ignored. In order to obtain a display image that fits the reduced area 08168twf1.doc / 006 Modification date 92.6.30 image, define and calculate an appropriate set of parameters. In FIG. 16A, the starting point or position of the reduced display image according to the Image-1 coordinate system can be expressed as (-W ", H '), where Z 値 is 0. Therefore, the illustrated keystone prevention is shown in FIG. In the method, a display image projected from a reduced area has a scale of (W, + W ") X (H, + H ,,), SPY = H, EPY = -H", SPX 2 -W "And EPX = W '. As described in the method for "full-size" display image of the present invention, the parameters SPy, EPy, SPx (y), and EPx (y) can be obtained from the Image-1 parameter. Therefore, this method is similar to the above-mentioned method for displaying images of 〃regular〃 size, except that the parameter set is customized to provide a scale of a sub-region of the reduced display image. Figure 16B shows the result of deforming an original image (for example, in a digitizing device module) to fit within a sub-portion of the area where the full-size display image can appear. Unit 1610 indicates the outline of the full-size deformed image for comparison purposes. Unit 1612 can be understood as the border of the display panel provided with the reduced display image, or as the border of the storage area where the reduced image is stored. . The portion of the display device in FIG. 16B or the full-size display image in which the image is compressed corresponds to the area defined as 1604 in FIG. 16A. Fig. 16B illustrates a way to obtain a smaller display image scale from an image that may be different from the overall deformed image. Therefore, four points (SPx (SPy), SPY), (EPx (SPy), SPy), (SPx (EPy), EPy), and (EPx (EPy), EPy) define the trapezoidal region, where the entire The rectangular original image forms a smaller, compensated display and projected image. 08168twfl.doc / 006 Modified date 92.6.30 Similar to the method previously described in the present invention, the deformation of an image to be displayed and projected in a smaller and / or off-center area can be performed in a The generating module is not executed in a digital device. Moreover, in the case where both the elevation angle 0 and the scanning angle α have non-zero angles, deformation and / or size adjustment may be performed in both. For example, if the deformation is performed in a digitizing device module, as described in Figs. 16A-16B, the original image and related parameters can be based on the storage area where the image is to be stored or the storage area from which the image is retrieved. Scale or modify or recalibrate. The image is then reduced and deformed according to a desired area of the display device in which the reduced display image will be presented. The distorted image can then be stored in a storage area designated by parameters such as SPy, Dy, SPx (y), and Dx (y). As described above, the storage area from which the deformation is subsequently read out (for example by a generator module) can be identified by parameters 31 & 1 ^ Read-X, Start-Read-Y, Read · X, and Read_Y. For example, this storage area may correspond to the effective area of a full-size display image. If the deformation is performed in a generator module, the image retrieved from the memory is first interpolated (eg, enlarged) as needed, and then deformed to fit a specified portion of the display device. In a specific alternative method of preventing keystone distortion of smaller and / or off-center images, deformation of the image for a specific area is performed in a generator module. The method is described in Figures 17A-17B and is well-suited for changing the size or position of a sub-region of the display device in which a display image will be provided (for example, for one image or from one image to another). situation. In this optional method, the number of images used for retrieval by the generator is 0168168twfl.doc / 006, date of revision 92.6.30 is stored in an area smaller than the storage area retrieved by the generator, but the area It is proportional to the display area of the display device. Specifically, after the image is reduced by the digitizing device (if necessary), it is stored in a memory starting from a position (Start-Wdte_X, Start-Wiite-Y), as described above in connection with another embodiment of the present invention. . The memory part storing this reduced image data has a scale of Write-X X Write-Y. The storage area of the image data evicted or retrieved by the generator module has a scale of Read-X x Read-Y, and a start-position (Start-Write-X, Start-Write-Y). In this method, The size of the storage area read by the generator is larger than the size of the storage area storing the reduced image. And illustrate the ratio (2 * W): Read-X is equal to the ratio (W '+ W ”): Wdte-X. This common ratio can be implemented as a horizontal generator recalibration ratio (ie, Enlarge_X). Similarly, this Scale (2 * H): Read—Y is equal to scale (H '+ H' '): Wdte_Y, this common ratio can be implemented as a vertical generator rescaling scale (ie Enlar * ge__Y). Rescaling at the generator After the operation, the image can be deformed in order to compensate for keystone distortion and fit the designated part of the display device. Specifically, the coordinates (Start_Write_X, Start_Write_Y) are mapped to the display part (-W '' in the display device, H ') starting position. Therefore, a fixed parameter set can be used to deform the image data received by the generator. The generated projection image is shown in Figure ΠB as shown in Unit Π12. The outline of the video screen is Expressed as 1710. Equalized image brightness 556440 Corrected date 92.6.30 08168twfl.doc / 006 In one embodiment of the present invention, the light intensity of the original image is adjusted to control the state of the image projected on a video screen. For example, you might want to guarantee A uniform brightness across the projected image. Even without some mechanism for controlling or equalizing the brightness, the brightness may be changed from line to line after the original image is resized and deformed before being displayed and projected. Figures 18A-18C describe the uneven illumination of a projected image that may occur if not corrected, and the effect of the projected image on equalizing its brightness. In Figure 18A, a display image from the original image Image 1802 is affected by keystone distortion and the light intensity does not change. Therefore, the resulting projection B [Image 1804 is affected by keystone distortion and the light intensity is uneven. Specifically, the top of the image is darker than the bottom, probably due to the display device (Eg LCD panel) The light received or possessed by the lower part of the image provided by j is stronger than the light intensity received or possessed by the image 1. For example, or a low level of a displayed image The part can be changed to the day tone. The upper part can be brightened to equalize the brightness of the projected image. However, the selection of any solution in one embodiment of the present invention is performed on a line-by-line basis. In order to most effectively offset the unevenness of illumination. Specifically, the lower the row of the display device, the more the light intensity should be reduced, and the higher the row, the more the light intensity should be increased. In one embodiment of the present invention In order to correct the uneven brightness by adjusting the original image line by line, it is proportional to its initial light intensity and / or final position on the display device. Therefore, the light intensity of each line is reduced or attenuated from top to bottom. The attenuation of the lower line of the original image is greater than the attenuation of the higher line. Specifically, equations (21) and (22) show how to calculate based on d, Η and Yang 80 08168twf1. Doc / 006 correction date 92.6.30 angle 0 Out SPy and EPY for one original image. The attenuation coefficient or ratio used for each line, from SPy to Epy (for example, from the top to the bottom of the image) can be expressed as: A (y) = Dx (SPy) / Dx (y) (41) It can be seen that A (y) in the top row (that is, SPy) is equal to 1, indicating the smallest amount of attenuation, and A (EPy) will produce the largest amount of attenuation. This equation is specified in terms of y because y is customized to equalize the brightness in an image where only the elevation angle Θ exists. Those skilled in the art will readily understand that this attenuation factor can be determined for an image in which only the top angle α exists. If equation (41) causes the brightness of an image to decrease too much (for example, in the case where the projected image is too dark), the brightness of the original image can be increased overall, or the light intensity generated by the light source of the projection device Can be added. For an original image in which both the elevation angle Θ and the top angle α exist, the attenuation of the image light intensity can be performed in two stages. Equation (41) can be applied to attenuate the image for elevation angle 6 », and the top angle can be obtained from SPx to Ερχ by applying X 値: A (x) -Dy (SPx) / Dy (x) (42) at The image can be rotated 90 degrees before applying equation (42). Then the image is turned back to its original orientation for display. For example, the brightness control of the projection device can be adjusted so that the brightness in the image has been balanced β 556440 08168twf1. Doc / 006 Corrected date 92.6.30 Later it affects the overall light intensity of the projected image. Fig. 24 is a flowchart illustrating an example of a method of equalizing the brightness of an image by attenuating its light intensity according to an embodiment of the present invention. This method is suitable for the case where both the elevation angle 0 and the overhead angle α exist. This illustrated method can be easily modified, as will be apparent to those skilled in the art, to fit a projection system where only one angle has a non-zero angle. In state 2400, the number of pixels in each line y (i.e., Dx (y)) of an image is calculated. This parameter can be calculated with another parameter marked above, such as during the calculation of the effective area of an Image-2. In state 2402, the designation is calculated for each row y to indicate its correlation with the longitudinal angle 0. Specifically, A (y) = (SPy) / Dx (y) 〇 Then in state 2404, the vertical subtraction factor is applied in each line of the image. Specifically, in each, from SPy to EPy, for x = SPx (y) to x = EPx (y), the brightness of each pixel p having coordinates (x, y) is adjusted. Specifically, P '(x, y) = P (X, y) * A (y). In state 2406, the image is rotated by 90 degrees in order to prepare for the second phase of attenuation to target the horizontal angle α. For example, the image can be rotated to compile each row into a column. The rotation direction of the image can be determined according to the sign of the angle α. To reflect the rotation of the image, each pixel p, (x, y) can be represented as P '(y, X) for the following calculations until the image is rotated back to its original orientation. Similarly, for example, the Dy (x) parameter should be interpreted based on the rotation of the image. 556440 08168twfl.doc / 006 Revision date 92.6.30 In state 2408, calculate the scale of each line x (ie Dy (x)) in the rotated image. With the calculation in state 2402, state 2408 may be performed continuously or in combination with another image operation (such as adjusting the size or deformation of the image according to the angle α). In state 2410, the attenuation factor A (χ) associated with the scan angle is calculated for each row \. Specifically, A (x) = Dy (SPx) / Dy (X). In state 2412, each corresponding attenuation factor A (x) is applied in a corresponding row of the image. Specifically, in each line X, from spx to Eρχ, for y = SPy (x) to y = EPy (x), the brightness of each pixel P having coordinates (y, χ) is adjusted. Specifically, P ,, (y, X) = P, (y, X) * Α〇〇. In state 2414, the image is then rotated 90 degrees, in the opposite direction to the previous rotation. Therefore, each pixel P〃 (y, X) generated from state 2412 can be represented as a pixel P〃 (x, y) because the image is in the original direction again. In state 2416, such as when the image is projected, brightness control or brightness adjustment may be performed. For example, although the brightness is substantially balanced, if the brightness of the image is judged to be too low or too high for aesthetic reasons, it is necessary to control and adjust the appropriate brightness. In the foregoing description, 値 for Dx (y), A (y) for each line y, or for each line X after rotation is calculated together. In an alternative method, ‘can target one line at a time. In other words, one or more states of Figure 24 can be executed for only one row at a time. For example, starting with SPy, Dx (SPy) can be calculated (state 2400), followed by A (SPy) (state 2402), and then A (SPy) can be applied to each pixel in only one row of SPy (state 556440). The correction date is 92.6.30 08168twfl.doc / 006 2404), and then the row SPy can be rotated (state 2404) and so on. The embodiments of the present invention described above have been introduced for the purpose of illustration and description. These examples are not intended to be exhaustive or to limit the invention to the form disclosed. Many modifications and changes will be apparent to those skilled in the art. Therefore, the above disclosure is not intended to limit the invention: The scope of the invention is defined by the appended claims.

Claims (1)

556440 修正日期92.6.30 08168twf1. doc/006 拾、申請專利範圍: 1. 一種防止在投影圖像中的梯形失真的方法,用以 從一投影系統把一圖像無顯著梯形失真地投影在一視屏 上,包括下列步驟: 在該投影系統接收該圖像; 根據一第一定標比例減小該圖像; 根據一第二定標比例放大該圖像; 根據定義在該投影系統和該視屏之間的第一角度變 形該圖像,以便產生一顯示圖像; 把該顯示圖像提供在一顯示裝置上;以及 把該顯示圖像的一部分無顯著梯形失真地投影在該 視屏上。 2. 如申請專利範圍第1項所述之防止在投影圖像中的 梯形失真的方法,進一步包括下列步驟,在所說的減小之 後和在所說的擴大之前儲存該圖像。 3. 如申請專利範圍第1項所述之防止在投影圖像中的 梯形失真的方法,其中所說的變形與所說的減小結合執 行。 4. 如申請專利範圍第1項所述之防止在投影圖像中的 梯形失真的方法,其中所說的變形與所說的放大結合執 行。 5. 如申請專利範圍第1項所述之防止在投影圖像中的 梯形失真的方法,進一步包括旋轉該圖像的步驟。 6. 如申請專利範圍第1項所述之防止在投影圖像中的 % 08168twfl.doc/006 修正日期92.6.30 梯形失真的方法,其中該第一定標比例不大於1。 7. 如申請專利範圍第1項所述之防止在投影圖像中的 梯形失真的方法,其中該第二定標比例不小於1。 8. 如申請專利範圍第1項所述之防止在投影圖像中的 梯形失真的方法,其中所說的變形包括: 標示在其中將提出該圖像的該顯示裝置之一可用區 域;以及 計算該圖像的第一部份,以便被表示在該可用區域 的一個第一部分中。 9. 如申請專利範圍第8項所述之防止在投影圖像中的 梯形失真的方法,其中所說的標示包括應用在該顯示裝置 和處在平行於顯示屏的一平面中的該圖像的顯示之間的幾 何關係。 10. 如申請專利範圍第1項所述之防止在投影圖像中 的梯形失真的方法,進一步在所說的變形之前補償該圖像 的步驟。 11. 如申請專利範圍第1項所述之防止在投影圖像中 的梯形失真的方法,進一步包括下列步驟; 根據定義在該投影系統和該屏面之間的第二角度變 形該圖像。 12. —種防止在投影圖像中的梯形失真的方法,用以 產生一用於從一投影系統無顯著梯形失真地投影的一圖 像,其中該投影系統的投影軸以一非垂直於視屏的角度校 準,該方法包括下列步驟: 修正日期92.6· 30 〇8l68twf1. doc/006 接收具有一*組尺度的一原始圖像; 保持涉及在S亥投影系統的一顯示裝置和平行於該視 屏的一平面之間的幾何關係的一組參數; 定義在其中可以提供該原始圖像的一個顯示的該顯 示裝置的一可用區域; 針對該可用區域的一個或多個部分,標示該原始圖 像的一個對應部分;以及 提供該原始圖像的對應部分的特徵,以便產生用於 由該投影系統投影在該視屏上的一顯示圖像; 其中該顯示圖像可被無顯著梯形失真地投影。 13·如申請專利範圍第12項所述之防止在投影圖像中 的梯形失真的方法,進一步包括步驟,應用一定標因數以 便在所說的提供步驟之前修改該原始圖像的尺度。 H.如申請專利範圍第12項所述之防止在投影圖像中 的梯形失真的方法,進一步包括步驟,在所說的標示步驟 之前補償該原始圖像。 15.如申請專利範圍第12項所述之防止在投影圖像中 的梯形失真的方法,其中所說的限定步驟包括下列步驟: 標示該顯示圖像的第一行; 標不該顯不圖像的最後行; 針對該顯示圖像的每一行標示一第一位置,以該第 一位置提供所說的矩形圖像的相應部分的一個顯示;以及 針對該顯示圖像的每一行標示一最後位置,以該最 後位置提供所說的矩形圖像的相應部分的一個顯示。 556440 修正日期92.6.30 08168twfl.doc/006 16. 如申請專利範圍第15項所述之防止在投影圖像中 的梯形失真的方法,進一步包括確定該顯示圖像的行數的 步驟。 17. 如申請專利範圍第15項所述之防止在投影圖像中 的梯形失真的方法,進一步包括確定在該顯示圖像的一個 或多個行中的位置數目的步驟。 18. 如申請專利範圍第12項所述之防止在投影圖像中 的梯形失真的方法,其中所說的標示用於該可用區域的一 個或多個部分該原始圖像的對應部分的步驟包括下列步 驟: 確定在該可用區域中的一個位置的座標;以及 計算在對應於該可用區域中的所說的位置的原始圖 像中的一個或多個位置。 19. 如申請專利範圍第18項所述之防止在投影圖像中 的梯形失真的方法,其中所說的計算一個或多個位置的座 標的步驟包括:計算一個水平和縱向定標因數之一或兩 者,以便被用於在該可用區域中的一個位置的所說座標。 20. 如申請專利範圍第18項所述之防止在投影圖像中 的梯形失真的方法,進一步包括儲存一組參數的步驟,以 便促進在該原始圖像中的一個或多個位置的所說座標的計 算。 21. 如申請專利範圍第12項所述之防止在投影圖像中 的梯形失真的方法,其中所說的標示用於該可用區域的一 個或多個部分該原始圖像的對應部分的步驟包括下列步 8g 〇8168twf1. doc/006 修正日期92.6.30 標示在該原始圖像的第一行中的第一位置; 通過累加水平增量因數而標示在所說的第一行中的下 一個位置;以及 由累加一個垂直增量因數而標示在該原始圖像中的下 一個行中的一個位置。 22.如申請專利範圍第21項所述之防止在投影圖像中 的梯形失真的方法,其中一個或多個所說的水平增量因數 和所說的垂直增量因數包含爲了修改該原始圖像尺度的~ 個定標因數。 23· —種防止在投影圖像中的梯形失真的方法,用以^ 對一輸入圖像進行變換,以便形成從一投影系統投影在~ 屏幕上的一輸出圖像,其中該輸入圖像被變形,以便補償 梯形失真,該方法包括下列步驟: 確定在該投影系統和該屏幕法線之間的一縱向角 度; 確定在該投影系統和該屏幕法線之間的一水平角 度; 接收該輸入圖像; 如果該縱向角度大於或小於零,則變換該輸入圖像, 以便校正可能由該縱向角度引起的梯形失真;以及 如果該水平角度大於或小於零,則變換該輸入圖像, 以便校正可能由該水平角度引起的梯形失真。 24·如申請專利範圍第23項所述之防止在投影圖像中 556440 修正日期92.6.30 08168twf1. doc/006 的梯形失真的方法,進一步包括調整該輸入圖像的尺寸的 步驟。 25. —種防止在投影圖像中的梯形失真的裝置,用以 以最小的梯形失真把一圖像投影在一屏面上,包括: 一第一儲存器,用於儲存從像源接收之完整的一原 始圖像; 一變形模塊,用於根據在一投影軸和垂直於該屏面 的直線之間形成的角度而變形該原始圖像,以便形成一顯 示圖像; 一第二儲存器,用於儲存促進該原始圖像的變形的 一組參數; 一顯示裝置,用於顯示該顯示圖像;以及 一光源,用於把該顯示圖像沿著該投影軸投影在該 屏面上。 26. 如申請專利範圍第25項所述之防止在投影圖像中 的梯形失真的裝置,還包括多個重新定標模塊,用於修改 該原始圖像的尺寸。 27. 如申請專利範圍第26項所述之防止在投影圖像中 的梯形失真的裝置,其中該變形模塊包括一個第一重新定 標模塊。 28. 如申請專利範圍第25項所述之防止在投影圖像中 的梯形失真的裝置,其中所說的參數組包含一個或多個描 述其中顯示該顯示圖像的該顯示裝置的一個區域的參數。 29. 如申請專利範圍第25項所述之防止在投影圖像中 9〇 08168twf1. doc/006 修正日期92.6.30 的梯形失真的裝置,其中所說的參數組包含一個或多個參 數,用於促進對於將被顯示在該顯示裝置的一部分之內的 該原始圖像的一部分的標示。 30. —種防止在投影圖像中的梯形失真的投影系統, 用於以最小的梯形失真把一圖像投影在一屏面上,包括: 一數字轉換器,從一個像源接收該圖像,其中被接 收的該圖像具有一個尺寸; 多個尺寸調整模塊,用於修改該圖像的尺寸; 一梯形失真模塊,用於變形該圖像的一部分,以便 通過補償可能出自投影該圖像的梯形失真來產生一顯示圖 像; 一顯示裝置,用於顯示該顯示圖像; 一發生器,用於把該顯示圖像向前送到該顯示裝置; 一儲存器,用於儲存一組參數,該組參數促進該圖 像的所說部分的一個或多個變形,以及該圖像的尺寸調 整;以及 一光源,用於把來自該顯示裝置的該顯示圖像投影 在該屏面上。 31. 如申請專利範圍第30項所述之防止在投影圖像中 的梯形失真的投影系統,其中該梯形失真模塊根據形成在 該光源的投影軸和垂直於該屏面的一直線之間的角度來變 形該圖像。 32. 如申請專利範圍第30項所述之防止在投影圖像中 的梯形失真的投影系統,其中該數字轉換器包括該梯形失 08168twf1. doc/006 修正日期92.6.30 真模塊。 33. 如申請專利範圍第30項所述之防止在投影圖像中 的梯形失真的投影系統,其中該發生器包括該梯形失真模 塊。 34. 如申請專利範圍第30項所述之防止在投影圖像中 的梯形失真的投影系統,還包括一第二梯形失真模塊。 35. 如申請專利範圍第30項所述之防止在投影圖像中 的梯形失真的投影系統,還包括一衰減器,用於衰減該圖 像的一部分的亮度光強。 36. —種防止在投影圖像中的梯形失真的裝置,用以 變形一輸入圖像以便補償梯形失真,包括; 一投影儀,用於把一顯示圖像投射在一屏幕上,以 便形成一投影圖像,該顯示圖像包括多個行; 一角度採集模塊,用於確定在該投影儀和該屏幕的 法線之間的一角度;以及 一圖像處理模塊,用於把該輸入圖像變換成該顯示 圖像,包括: 一角度校正模塊,根據該角度變形該輸入圖像; 一重新定標模塊,用於調整該輸入圖像的尺寸;以 及 一亮度衰減器,從第一行開始,通過施加用於每一 行的調節亮度衰減因子的增量,來調節該顯示圖像的亮 度。 37. 如申請專利範圍第36項所述之防止在投影圖像中 08168twf1. doc/006 修正日期92.6.30 的梯形失真的裝置,其中該圖像處理模塊進一步包括一旋 轉模塊,用於將一個圖像旋轉九十度。 38. —種儲存指令的計算機可讀儲存介質,當由計算 機執行時,使得計算機執行一個從投射系統中產生一個用 於無顯著梯形失真地投影的一個圖像的方法,其中該投影 系統的投影軸以一個非垂直的角度與視屏對準,該方法包 括步驟; 接收具有一組尺度的一個原始圖像; 保持涉及在該投影系統的一個顯示裝置和平行於該 視屏的一個平面之間的幾何關係的一組參數; 限定在其中可以提供所說的原始圖像的一個顯示的 該顯示裝置的一個可用區域; 針對所說的可用區域的一個或多個部分,標示所說 的原始圖像的一個對應部分;以及 提供所說原始圖像的對應部分的特徵,以便產生用 於由該投影系統投影在該視屏上的一個顯示圖像; 其中所說的顯示圖像可被無顯著梯形失真地投影。556440 Revised date 92.6.30 08168twf1.doc / 006 Patent application scope: 1. A method for preventing keystone distortion in a projected image, for projecting an image from a projection system without significant keystone distortion on a The video screen includes the following steps: receiving the image at the projection system; reducing the image according to a first scaling ratio; enlarging the image according to a second scaling ratio; according to the definition, the projection system and the Deforming the image at a first angle between the screens to produce a display image; providing the display image on a display device; and projecting a portion of the display image on the screen without significant keystone distortion on. 2. The method for preventing keystone distortion in a projected image as described in claim 1 of the scope of patent application, further comprising the step of storing the image after said reduction and before said expansion. 3. The method for preventing keystone distortion in a projected image as described in item 1 of the scope of patent application, wherein said distortion is performed in combination with said reduction. 4. The method for preventing keystone distortion in a projected image as described in item 1 of the scope of patent application, wherein said distortion is performed in combination with said enlargement. 5. The method for preventing keystone distortion in a projected image as described in item 1 of the scope of patent application, further comprising the step of rotating the image. 6. The method for preventing% 08168twfl.doc / 006 in the projected image as described in item 1 of the scope of patent application for correction of keystone distortion of 92.6.30, wherein the first scaling ratio is not greater than 1. 7. The method for preventing keystone distortion in a projected image as described in item 1 of the scope of the patent application, wherein the second scaling ratio is not less than 1. 8. The method for preventing keystone distortion in a projected image as described in item 1 of the scope of patent application, wherein said distortion includes: marking an available area of the display device in which the image will be presented; and calculating The first part of the image is so represented in a first part of the available area. 9. The method for preventing keystone distortion in a projected image as described in item 8 of the scope of patent application, wherein said marking includes the image applied to the display device and the image in a plane parallel to the display screen Display of the geometric relationship. 10. The method of preventing keystone distortion in a projected image as described in item 1 of the scope of patent application, a step of further compensating the image before said distortion. 11. The method for preventing keystone distortion in a projected image as described in item 1 of the scope of patent application, further comprising the following steps: deforming the image according to a second angle defined between the projection system and the screen. 12. A method for preventing keystone distortion in a projected image for generating an image for projection from a projection system without significant keystone distortion, wherein a projection axis of the projection system is not perpendicular to the visual axis The angle of the screen is calibrated. The method includes the following steps: Correction date 92.6 · 30 〇8l68twf1. Doc / 006 Receives an original image with a set of scales; maintains a display device related to the projection system and parallel to the vision A set of parameters of the geometric relationship between a plane of the screen; defining an available area of the display device in which a display of the original image can be provided; marking the original image for one or more parts of the available area A corresponding portion of the image; and providing features of the corresponding portion of the original image to produce a display image for projection on the video screen by the projection system; wherein the display image can be without significant trapezoidal distortion projection. 13. The method for preventing keystone distortion in a projected image as described in claim 12 of the scope of patent application, further comprising the step of applying a scale factor to modify the scale of the original image before said providing step. H. The method for preventing keystone distortion in a projected image as described in claim 12 of the scope of patent application, further comprising the step of compensating the original image before said labeling step. 15. The method for preventing keystone distortion in a projected image according to item 12 of the scope of patent application, wherein said limiting step includes the following steps: marking the first line of the display image; marking the display image The last line of the image; a first position is marked for each line of the display image, and a display of a corresponding portion of the rectangular image is provided at the first position; and a last is marked for each line of the display image Position, with this last position providing a display of the corresponding part of said rectangular image. 556440 Revision date 92.6.30 08168twfl.doc / 006 16. The method for preventing keystone distortion in a projected image as described in item 15 of the scope of patent application, further comprising the step of determining the number of lines of the displayed image. 17. The method for preventing keystone distortion in a projected image as described in claim 15 of the scope of patent application, further comprising the step of determining the number of positions in one or more lines of the display image. 18. The method for preventing keystone distortion in a projected image as described in item 12 of the scope of patent application, wherein said step of marking a corresponding portion of the original image for one or more portions of the available area includes The following steps: determine the coordinates of a position in the available area; and calculate one or more positions in the original image corresponding to said position in the available area. 19. The method for preventing keystone distortion in a projected image as described in claim 18, wherein the step of calculating the coordinates of one or more positions includes: calculating one of a horizontal and vertical scaling factor Or both so as to be used for said coordinates at a location in the available area. 20. The method for preventing keystone distortion in a projected image as described in item 18 of the scope of the patent application, further comprising the step of storing a set of parameters in order to promote the said one or more positions in the original image Calculation of coordinates. 21. The method for preventing keystone distortion in a projected image as described in item 12 of the scope of patent application, wherein said step of marking a corresponding portion of the original image for one or more portions of the available area includes The following steps 8g 〇8168twf1.doc / 006 Revised date 92.6.30 Mark the first position in the first line of the original image; mark the next position in the first line by accumulating the horizontal increment factor ; And a position in the next line in the original image by accumulating a vertical increment factor. 22. The method for preventing keystone distortion in a projected image as described in item 21 of the scope of the patent application, wherein one or more of said horizontal increment factor and said vertical increment factor are included to modify the original image ~ Scaling factors for scale. 23 · —A method for preventing keystone distortion in a projected image, for transforming an input image to form an output image projected from a projection system on a screen, where the input image is Deform to compensate for keystone distortion, the method includes the following steps: determining a longitudinal angle between the projection system and the screen normal; determining a horizontal angle between the projection system and the screen normal; receiving the input Image; if the longitudinal angle is greater than or less than zero, transform the input image to correct keystone distortion that may be caused by the longitudinal angle; and if the horizontal angle is greater than or less than zero, transform the input image for correction Keystone distortion that may be caused by this horizontal angle. 24. The method for preventing keystone distortion in a projected image as described in item 23 of the scope of patent application, 556440 correction date 92.6.30 08168twf1.doc / 006, further comprising the step of adjusting the size of the input image. 25. A device for preventing keystone distortion in a projected image, for projecting an image on a screen surface with minimal keystone distortion, including: a first storage for storing data received from an image source A complete original image; a deformation module for deforming the original image according to an angle formed between a projection axis and a straight line perpendicular to the screen to form a display image; a second storage For storing a set of parameters that promote deformation of the original image; a display device for displaying the display image; and a light source for projecting the display image on the screen along the projection axis . 26. The device for preventing keystone distortion in a projected image as described in item 25 of the scope of the patent application, further comprising a plurality of rescaling modules for modifying the size of the original image. 27. The device for preventing keystone distortion in a projected image as described in claim 26, wherein the deformation module includes a first rescaling module. 28. The device for preventing keystone distortion in a projected image as described in item 25 of the scope of patent application, wherein said parameter group contains one or more parameters describing a region of the display device in which the display image is displayed parameter. 29. A device for preventing keystone distortion in a projected image as described in item 25 of the scope of the patent application, which is a 00908168twf1.doc / 006 correction date 92.6.30, wherein the parameter group contains one or more parameters, and For facilitating the marking of a portion of the original image to be displayed within a portion of the display device. 30. A projection system for preventing keystone distortion in a projected image, for projecting an image on a screen with minimal keystone distortion, including: a digitizer to receive the image from an image source The received image has a size; multiple resizing modules are used to modify the size of the image; a trapezoidal distortion module is used to deform a part of the image so that the compensation may come from projecting the image Keystone distortion to generate a display image; a display device to display the display image; a generator to forward the display image to the display device; a storage device to store a group Parameters, the set of parameters promoting one or more deformations of said portion of the image, and resizing of the image; and a light source for projecting the display image from the display device on the screen . 31. The projection system for preventing keystone distortion in a projected image as described in item 30 of the scope of patent application, wherein the keystone module is based on an angle formed between a projection axis of the light source and a line perpendicular to the screen To distort the image. 32. The projection system for preventing keystone distortion in a projected image as described in item 30 of the scope of patent application, wherein the digitizer includes the keystone 08168twf1.doc / 006 correction date 92.6.30 true module. 33. The projection system for preventing keystone distortion in a projected image as described in claim 30, wherein the generator includes the keystone distortion module. 34. The projection system for preventing keystone distortion in a projected image as described in item 30 of the scope of patent application, further comprising a second keystone distortion module. 35. The projection system for preventing keystone distortion in a projected image as described in item 30 of the scope of patent application, further comprising an attenuator for attenuating a portion of the brightness of the image. 36. A device for preventing keystone distortion in a projected image for deforming an input image to compensate for keystone distortion, including: a projector for projecting a display image on a screen to form a A projection image, the display image including a plurality of lines; an angle acquisition module for determining an angle between the projector and a normal line of the screen; and an image processing module for converting the input image Transforming the image into the display image includes: an angle correction module that deforms the input image according to the angle; a rescaling module for adjusting the size of the input image; and a brightness attenuator from the first line Initially, the brightness of the display image is adjusted by applying an increment of the brightness attenuation factor for each line. 37. The device for preventing keystone distortion in a projected image as described in item 36 of the scope of patent application, 08168twf1.doc / 006, with a correction date of 92.6.30, wherein the image processing module further includes a rotation module for The image is rotated ninety degrees. 38. A computer-readable storage medium storing instructions that, when executed by a computer, cause the computer to execute a method for generating an image from a projection system for projection without significant keystone distortion, wherein the projection of the projection system The axis is aligned with the video screen at a non-perpendicular angle, the method comprising the steps of: receiving an original image having a set of dimensions; maintaining a reference between a display device of the projection system and a plane parallel to the video screen A set of parameters of the geometric relationship; defining an available area of the display device in which a display of the original image can be provided; marking the original image for one or more parts of the available area A corresponding portion of the image; and providing features of the corresponding portion of the original image to produce a display image for projection on the video screen by the projection system; wherein the display image may be inconspicuous Projection is trapezoidal.
TW90128894A 2001-11-22 2001-11-22 Method and device for preventing trapezoidal distortion in projected image TW556440B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90128894A TW556440B (en) 2001-11-22 2001-11-22 Method and device for preventing trapezoidal distortion in projected image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90128894A TW556440B (en) 2001-11-22 2001-11-22 Method and device for preventing trapezoidal distortion in projected image

Publications (1)

Publication Number Publication Date
TW556440B true TW556440B (en) 2003-10-01

Family

ID=32228058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90128894A TW556440B (en) 2001-11-22 2001-11-22 Method and device for preventing trapezoidal distortion in projected image

Country Status (1)

Country Link
TW (1) TW556440B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8272747B2 (en) 2004-06-24 2012-09-25 Hamamatsu Photonics K.K. Distortion detection system and distortion detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8272747B2 (en) 2004-06-24 2012-09-25 Hamamatsu Photonics K.K. Distortion detection system and distortion detection method

Similar Documents

Publication Publication Date Title
US6367933B1 (en) Method and apparatus for preventing keystone distortion
US7475356B2 (en) System utilizing mixed resolution displays
US7629945B2 (en) Mixed resolution displays
US7546540B2 (en) Methods of using mixed resolution displays
US6222593B1 (en) Image projecting system
USRE44348E1 (en) Detail-in-context terrain displacement algorithm with optimizations
US6246413B1 (en) Method and system for creating panoramas
US20130177258A1 (en) Image converter
US7333071B2 (en) Methods of using mixed resolution displays
US20070030452A1 (en) Image adaptation system and method
US7362385B2 (en) Image conversion device image conversion method and image projection device
US8885964B2 (en) Projector, projection transform processing device, and image processing method in projector
KR20040070565A (en) Image warping method and apparatus
JP2003522497A (en) Digital correction module for video projector
US8514234B2 (en) Method of displaying an operating system's graphical user interface on a large multi-projector display
US8396322B1 (en) Optical distortion correction in digital video processing applications
JP2019146155A (en) Image processing device, image processing method, and program
JP2004032484A (en) Projection type image display and method for converting image
TW556440B (en) Method and device for preventing trapezoidal distortion in projected image
EP1256873A2 (en) Mixed resolution displays
US20190370944A1 (en) Keystone correction method and device
JP2005012407A (en) Picture projection device and picture processing method
JP2004129212A (en) Image projection device and image transformation method
EP1811766A2 (en) Method and apparatus for preventing keystone distortion and equalizing luminance
JP2006005549A (en) Image projector, image processor and processing method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees