TW554161B - Heater control system with combination modular and daisy chained connectivity and optimum allocation of functions between base unit and local controller modules - Google Patents

Heater control system with combination modular and daisy chained connectivity and optimum allocation of functions between base unit and local controller modules Download PDF

Info

Publication number
TW554161B
TW554161B TW91114606A TW91114606A TW554161B TW 554161 B TW554161 B TW 554161B TW 91114606 A TW91114606 A TW 91114606A TW 91114606 A TW91114606 A TW 91114606A TW 554161 B TW554161 B TW 554161B
Authority
TW
Taiwan
Prior art keywords
heater
temperature
controller
power
control system
Prior art date
Application number
TW91114606A
Other languages
Chinese (zh)
Inventor
Dana S Hauschulz
Original Assignee
Mks Instr Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/907,494 external-priority patent/US6894254B2/en
Application filed by Mks Instr Inc filed Critical Mks Instr Inc
Application granted granted Critical
Publication of TW554161B publication Critical patent/TW554161B/en

Links

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

A heater control system that utilizes electronic temperature control at each of a number of interconnected heaters is provided for monitoring and operating heaters within a narrow temperature range. In one embodiment, a heater control system is provided that is adapted for controlling a number of heaters positioned on pipe and components of a piping system from a remote location. The heater control system includes satellite controllers mounted on each heater connected daisy chain fashion and includes a monitoring station with a user interface for allowing a user to monitor and to remotely control the operating status or temperature of each heater in the heater control system. To satisfy the user's space requirements, the size of each controller is maintained at a small form factor and a single cord is used to provide power and communications lines to and between the controllers. Each controller integrates power supply and control with electronic temperature control to minimize the use of mechanical switching and to increase the accuracy of temperature control. The temperature set point is adjustable at each controller and, in one embodiment, the temperature set point is remotely adjustable from a remote monitoring station. The operating status of each controller is displayed on the exterior of the controller's housing and in one embodiment, the operating status, such as temperature, is displayed at a base station for each line of controllers and heaters and on a user interface monitor at a monitoring station.

Description

554161 玖、發明說明 【發明所屬之技術領域】 本發明大致關於一種用於控制與監測該加熱器溫度之 系統,並且更特別的是,有關於一種用於數個在具有相同 數目控制器模組之管道上互相鄰接之個別的管道加熱器, 其爲了彼此雛菊鏈連接以及爲了個別的連接以架構到個別 的底座上,以及關於一種管道加熱器,提供在每一管道加 熱器上之個別的電子溫度與電力控制。 相關申請案交互參照 該專利申請案係爲於西元2000年四月20日申請之美 國專利申請案之部分延續,其序號爲第09/533,416號。 【先前技術】 該管道加熱器之使用被廣泛應用在半導體製造、化學 、製藥加工、塑膠製造、食品加工,及其它工業中去加熱 管道系統以致控制各種的生產及消耗程序。一般而言,該 管道系統之溫度必須維持在某些溫度範圍內,以維持氣體 或液體在流動狀態下從一個位置被運送到另一位置。例如 ,使用在該半導體製造工業中具彈性之絕緣加熱器,例如 揭示於Hauschulz等人之美國專利第5,714,738號,係沿著 從一反應或沉澱室之該管道與管道部件之長度而安裝去維 持運送的流出氣體以及蒸氣在特定的溫度範圍之內,其在 以昂貴有效的方法抑制及去掉之前預防該流出氣體與液體 起化學反應、凝結,或沉澱以及在管道內壁上、在機閥中 554161 ,及在其它管道部件中固態物膨脹。 在許多工業上的應用中,該用於該管道之可接受的溫 度範圍是固定或該範圍是狹小的,換言之,在設定點之少 數度數之內,且有時該設定點溫度相當的高,例如,高於 攝氏180度。再者,某些管道相當地長並且熱傳送率在不 同的位置中可能改變,所以延著管道之長度安置之許多個 別管道加熱器之個別控制需要預防局部的過熱點或過冷點 的發生。因此,需要準確與可回應的加熱器控制系統,其 容許該使用者得到且維持管道部件之溫度在使用者選擇的 範圍之內,包括當需要去維持欲求的溫度特性時控制個別 的管道加熱器去傳送不同的加熱電力到不同的管道位置之 能力。再者,因爲個別的加熱器故障,可能由於該製造業 停工去處理拆卸及淸理或替換堵塞或毀壞的管道、機閥, 及其它部件以致造成相當昂貴的花費,加熱器控制系統應 該能夠在使用期間提供該使用者操作資訊,例如是否該加 熱器爲“開啓”或“關閉”以及是否該加熱器爲在一指定 的溫度範圍內。管道加熱器常常必須被安裝在管道部件上 ,其尺寸爲小型,例如2-英吋或較小直徑的管道,且在管 道部件與鄰接的構造體之間有小的空隙或沒有空隙。因此 ,該加熱器之使用者常常需要加熱器與相關的控制設備, 其不爲龐大或是安裝困難,其對於工業上的使用必須耐久 ’且其容易去維修及/或替換。當然,該加熱器與加熱器控 制系統必須被架構成符合任何及所有安全標準(例如,電氣 及防火安全標準),其可以應用到該特定的工業。 554161 現在使用提供管道加熱器控制之一種方法爲去使用安 裝在每個加熱器上之個別的、完備的、電子機械式之溫度 控制器。有關管道加熱器,這些電子機械式溫度控制器典 型上不是雙金屬片扣拉就是潛移自動調溫器,其一般在體 積上相當小型且相當昂貴。不幸地,此類使用雙金屬片或 其它扣拉或潛移型式自動調溫器之溫度控制一般具有單一 、固定的溫度設定點並且只提供有限的溫度控制。 就這一點而言,大部份的扣拉電子機械式溫度控制器 在一設定點溫度附近具有攝氏15度或較大的磁滯現象或死 帶,其在設定點之少數度數範圍內,需要嚴格的管道溫度 控制的應用中是不被接受的。潛移自動調溫器提供較嚴格 的初始溫度控制,可是當其漂流超過時間時變成不準確。 由於在其開關接觸點之間發生高程度的電弧光,故其服務 壽命爲短。這兩種型式的電子機械式溫度控制器也必須被 架構以及安裝,以使與該管道加熱器之主動加熱器表面有 輕微的熱碰觸以致正確地運作。因此,一般的實行爲永久 地將該電子機械式溫度控制器嵌進該管道加熱器裡,並且 當該自動調溫器故障或需要維修時,該整個具有控制器之 加熱器必須被替換以及被拆毀。另一隨著大部份電子機械 式溫度控制器的問題爲其在使用期間提供不多或沒有提供 操作資訊,而且爲了找到沒有運行的加熱器,操作或維修 人員必須用他們的手碰觸每一加熱器去確定是否其爲暖和 的,而去推測可能正在運作。再者,該加熱器之使用者常 常沒有在該加熱器之實際運作溫度上留下任何準確的資訊。 554161 關於用於管道之加熱器控制之另一方法爲該電子溫度 控制器之使用,其被安置遠離於該加熱器且經由許多個別 的資料與電力線從該遠端的控制器到每一加熱器與延伸部 通訊。然而當此類的電子溫度控制器與熱電偶結合時,提 供改進過的每一加熱器之控制與較小的溫度範圍,其成本 相對地昂貴,且尤其在狹小的空間中較難去安置該大束的 電線。每一控制器的高費用以及糾結的電線已致使許多的 使用者去將數個加熱器一起捆在一區域內或管道部份,並 且將整個區域歸入一單一控制器之控制內。而那個解決辦 法降低了電線的複雜性及糾結,其也導致在一區域內的所 有管道加熱器被設定到單一的溫度,並且必然地該控制的 正確性將隨著該全部區域的大小而降低。例如,此類的區 域通常包括一個主加熱器與一個或多個副加熱器。由該單 一的電子控制器使用之溫度感應器被設置在靠近於或連結 到該主要的加熱器,且在該管道系統中之該單一點檢測之 溫度驅動在該區域內所有加熱器之加熱器控制。然而,該 熱負載,亦即加熱電力需要,在每一個別的副加熱器位置 上之溫度曲線可能且常常是不相同的。並且,沒有方法去 保證在一區域中之個別的副加熱器不會任意地比該主要的 加熱器運轉較冷或較熱,其導致減少在控制該遍佈於該管 道系統或區域之溫度之正確性或緊密性。 使用單個控制器去操作一整個的區域可能也引起安全 問題。例如,如果該主要加熱器失靈而變冷或溫度變低, 該控制器一般運作或控制在該區域之其它正確運作的加熱 554161 器去更熱地運轉並且使其餘的管道系統過熱。換言之,該 副加熱器不適合在該區域內控制,且上升暖氣流“消散〃 導致燒斷保險絲及/或火災,其引起安全危害以及在該工業 場所內重大的停工。 再者,用於系統之中央控制器,其中一中央控制器被 聯結去控制許多個別的加熱器是相當龐大的,例如48毫米 乘96毫米乘100毫米,而且由於空間與在該典型的工業安 裝環境內之架設限制必須設置遠於該加熱器。因爲一保護 外罩常常被安置在該控制器周圍去保護敏感的電子部件免 於高溫源與物體接觸沒注意到的危害,所以實際上每一中 央控制器的大小變得更多問題。再者,因爲電線的數量, 必須運行在該中央控制器與每一加熱器之間,所以用於一 大數目的個別加熱器之該遠端設置的中央控制器之設置與 維修是困難的。這些電線通常包括用於從該控制器提供交 流電力到每一加熱器之電源供應器電線以及爲了連接該控 制器到該熱電偶或其它溫度檢測裝置之溫度感應器電線。 爲了安全與便利,這些電線常常被捆綁或捲在一起,其使 得人員在單個的加熱器上工作維修更難,然而不繞捲將處 於更令人討厭的電線糾結情況。此類架線在該管道系統中 之a老鼠巢〃,其讓這些加熱器控制系統之維修、升級, 及除錯消耗時間且人員操作與維修變得困難。 必然地,在管道加熱系統中仍有用於提供增進控制與個 別的加熱器之監測的改良加熱器控制系統之需要,但沒有伴 隨佈線與複雜的控制器,以及與此類系統有關之物體大小。 554161 【發明內容】 本發明之一普遍目的爲改進用於由數個管道加熱器所 組成之管道加熱系統之個別的加熱器溫度控制設備,只要 減少物體大小、佈線複雜性,以及安置、維修,以及移動 無效率性。 本發明之另一目的爲去提供一管道加熱器控制系統, 其結合個別的溫度設定點調節之優點與溫度控制在一模組 中,在每一具有中央電力之加熱器上可容易地安裝的與移 動的結構,監測,以及控制功能。 本發明另一相關目的爲去提供一提供一使用者改進過 的加熱器監測與除錯能力之加熱器控制系統。 本發明另外的目的爲去提供一加熱器控制系統,其在 一般在額外裝置的安裝上加注顯著的空間限制之典型的工 業環境中是簡單的、有成本效益的,且安裝與維修安全。 本發明額外的目的、優點,及新特點將在接下來的說 明部份地提出,且部份將在接下來的察看之後熟練該技術 而變得明顯的或可以藉由本發明之實作而學習到。該目的 與優點可以用工具與在該附加的專利範圍所具體指出之組 合來被了解與獲得。 爲了達到上述與其它目的以及依照本發明之意圖,如 具體化與槪括地描述其中,一管道加熱器控制系統被提供 其與在每一管道加熱器上之個別的衛星加熱器控制器和一 爲了減少個別的衛星加熱器控制器大小與佈線複雜性之遠 於該個別的加熱器之基本控制器之間之電源供給與分佈在 554161 一起之一般最佳地溫度設定、控制,以及監測功能。個別 的溫度設定點與溫度控制器功能被分配到固定在個別的管 道加熱器上之個別的局部控制器模組,在那裡其是最實際 的、便利的,以及有效率的,當電源供給與個別的加熱器 溫度監測功能被分配到一放置在某個遠於該管道加熱器的 地方之遠端基本單元,在那裡藉由電源電路產生的熱可以 更容易地被消散且在那裡龐大的溫度監測電路與硬體可以 更容易地被提供。再者,該個別的局部控制器模組被架構 來用於在該個別的管道加熱器上以一方法簡易地“插上> 安裝以及“拔出 >移動,其特別地便利,當提供數個加熱 器之雛菊鏈連接以及衛星控制器模組到該遠端基本單元時 仍維持溫度檢測正確性。每一加熱器具有一藉由一熱隔離 外層嵌入到鄰近於該管道加熱器之熱產生部件之溫度感應 器以及一在該包括一具有兩個用於電力與資料絕緣電線之 雛菊鏈連接之插頭式電子連接插頭之電路板之管道加熱器 之外部表面上之出口接頭、用於連接一局部控制器模組到 該加熱器之插頭式電子連接插頭,以及接點與嵌入痕跡用 於:(i)安排從一個雛菊鏈連接插頭到其它的連接插頭,到該 局部控制器模組,以及到該熱產生部件之交流高壓電力路 線;(ii)安排從一個雛菊鏈連接插頭到其它的連接插頭以及到 該局部控制器模組之直流低壓電力路線;(iii)安排從該溫度 感應器到該局部控制器模組之溫度檢測訊號路線;及(iv)安 排從一個雛菊鏈連接插頭到其它的以及到該局部控制器模 組之資料通訊線路線。一個別的管道加熱器可以藉由簡易 12 554161 地將一雛菊鏈連線從另一管道加熱器插進到該插座而連接 到該基本單元,且一局部控制器模組可以藉由簡易地將該 局部控制器模組插進到該出口接頭而連接到該管道加熱器 以及到該基本單元。如果一特定的管道加熱器爲第一個在 管道加熱器之一雛菊鏈列中,其與其局部控制器模組可以 藉由簡易地將一延伸絕緣電線從該基本單元插進到該出口 接頭而連接到該基本單元。每一雛菊鏈絕緣電線與該延伸 絕緣電線具有電線導體用於:(i)交流高壓電力;(ii)直流低壓 電力;及(iii)資料通訊線。 鲁 當有一選擇時,每一局部控制器模組可以配備藉由該 高壓交流電力供給電力之其自己個別的直流低壓電源供應 器,其能夠排除在該雛菊鏈絕緣電線與在該延伸絕緣電線 中電線導體的需要。然而,一般可用的電路,其將高壓交 流轉換到使用在電子電路之低壓直流電力,產生顯著數量 的熱,其必須被消散以防止對於電子電路部件損害。緊鄰 於一管道加熱器之此類的熱消散,其也產生大量的熱,是 沒有效率的並且需要具有鰭板或一些其它的熱消散裝置之 · 龐大的散熱器工具。因此,當要求提供一直流低壓電源供 應器當成每一局部控制器模組之一部件時,還必須增加熱 消散設備將使得該局部控制器模組更大、更重,且使用更 不便。總的來說,具有電流直流電源供應器電路,去增加 該低壓直流電力導體到該雛菊鏈絕緣電線與延伸絕緣電線 並且將該直流電源供應器安置在該基本單元是被認爲更好 的0 13 554161 當有另一選擇時,一中央處理站可以連接到一個或多 個基本單元去監測該位於一管理核心位置上在一個或多個 雛菊鏈中之管道加熱器並且透過該基本單元去傳送控制訊 號到個別的局部控制模組。 根據本局部發明之一個觀點,該控制器模組被設計去 整合準確的電子溫度檢測與電力傳送控制。就這一點而言 ,本發明之一較佳實施例包括電子部件與去提供不是開啓/ 關閉控制就是藉由電子切換一熱產生構件或該管道加熱器 之部件之操作去有效地控制之比例-積分-微分(PID)溫度控 制之電路系統。該部件一般包括一溫度感應器,例如一電 熱調節器,安置鄰近於該用於檢測溫度之熱產生構件或部 件以及一具有一用於以該檢測的溫度爲基礎快速地控制加 熱器操作而不會產生電弧之交流矽控管之零電壓開關。該 電子溫度檢測與控制容許該溫度維持在一溫度設定點週圍 攝氏4到5度或甚至更繃緊之內。 根據本發明之另一個觀點,該局部控制器模組適合用 於不是手動地在每一局部制器模組上就是遠端地經由從一 經由該基本單元與資料通訊線之管理核心監控器之資料連 接之個別的設定點溫度調節。本特點容許使用者-可選擇, 且,如果要求,沿者一管道系統的長度分開不同溫度設定 ,其可能對於數個的處理應用是有用的並且克服使用一用 於數個一起連接在一區域之加熱器之單個、遠端地設置控 制器之先前技術裝置問題(換言之,其提供用於所有連接到 該遠端設置控制器之加熱器之相同的溫度設定點)。 554161 較佳地是,每一局部控制器模組包括光學顯示裝置, 例如彩色發光二極體,用於表明該管道加熱器上之操作狀 況,其被固定在該管道加熱器上。在一個實施例中,三個 發光二極體被使用去顯示一“在溫度範圍中''狀態、一“ 在溫度範圍下 ''狀態,以及一“在溫度範圍上''狀態。二 者擇一地,或者另外,該局部控制模組與管道加熱器之監 測可以藉由在該基本單元上包括一發光二極體或其它顯示 裝置去指示而遠端地實現,例如,當一雛菊鏈列具有一在 溫度範圍下之管道加熱器時,當在一雛菊鏈列中之所有管 籲 道加熱器在設定溫度範圍內時,且當一雛菊列具有一在溫 度範圍上之管道加熱器時。更精密的遠端監控可以被提供 在另一個包括一管理核心監控站之實施例中,其具有一使 用者介面與一可以被使用去顯示藉由該加熱器控制系統控 制之所有管道加熱器之操作資料之監視器。除了狀態指示 - 器之光學顯示外,聲音警報告器也被包括在一些系統中以 致快速地提醒操作人員“超過溫度範圍a發生。 本發明之其它特點與優點將從接下來詳細的說明以及 * 該加熱器控制系統與相關的組合和本發明之操作該加熱器 控制系統步驟之方法之特定實施例之圖式變得淸楚。 【實施方式】 根據本發明之一管道加熱器控制系統10係顯示於圖1 及圖2,其具有一以雛菊鍵連接至一基本單元92固定在三 個管道加熱器97上之本發明之局部控制器模組100之樣本 15 554161 。該三個管道加熱器97被固定在一管道P上以一典型方法 被加熱,例如,如敘述於發給H.Hauschulz等人之美國專利 第5714738號,其敘述該構造、材料,以及上述之管道加 熱器97之用法並且在此藉由其所有公開的參考文獻具體化 。儘管一些管道加熱器97構造上的細節將於下面敘述,只‘ 要說這個要點就夠了,其爲每一管道加熱器97可以藉由一 或多個帶子21被固定於該管道P上。該管道加熱器97與 局部控制器模組100藉著雛菊鏈絕緣電線98以雛菊鏈方式 相互連接,其將於下面更詳細地敘述。在雛菊鏈裡之第一 # 管道加熱器19與局部控制器模組100藉由一延伸部絕緣電 線94連接至該基本單元92。 實質上,如顯示於圖3中,在典型的管道加熱器97中 包括一改造成與該管道P接合之具有一內側表面23之加熱 墊或核心部件22,一黏合到該核心部件22之外部表面24 之熱絕緣層25,從該帶子21延伸之一外罩或局部外罩26 。在顯於於圖1-3之管道加熱器97中,又其最好於圖3察 看,一組電阻性加熱器電線或加熱器構件126被嵌進在該 * 加熱墊或核心部件22並且藉由高電壓交流(AC)電力提供 電力,典型爲120伏特或240伏特,50或60赫茲,去產生 熱,然而其它電壓與/或赫茲電力以及其它種類的熱產生部 件可以使用。 在本發明中,在每一管道加熱器97上之局部控制器模 組100把控制該高電壓交流(AC)電力到該電阻性的加熱 器電線27建立在一指定點溫度基礎上,其將於下面更詳細 16 554161 地解釋。只要說這個要點就夠了,其爲該高電壓交流(AC )電力藉由來自於該基本單元92之延伸部絕緣電線94以 及藉著該雛菊鏈絕緣電線98傳送到該管道加熱器97。一溫 度感應器142,其最好於圖7察看,被嵌進在該熱絕緣層 25,較佳地爲嵌進在該加熱部件22之外部表面24上,以 致於該加熱部件22之熱度及溫度不會被在其與該加熱部件 22之間之任何熱絕緣層25緩衝。在該局部控制器模組100 中之一電路101將一來自該溫度感應器142之訊號與一指 定點溫度相比並且,如果來自該溫度感應器142之訊號顯 · 示該加熱部件22之溫度較小於該指定點溫度或較小於該指 定點溫度之某一範圍,那麼該電路101將“開啓v到該加 熱器構件126之高壓交流電力去產生更多的熱。另一方面 ,如果來自該溫度感應器142之訊號顯示該加熱部件22之 溫度較大於該指定點溫度或較大於該指定點溫度之某一範 圍,那麼該電路101將“關閉''到該加熱器構件126之高 壓交流電力。 在該較佳實施例中,在該局部控制器模組100中之電 * 路101係藉由低壓直流電流提供電力,例如,9伏特,其係 藉由在該基本單元92 (圖1及圖2)中之直流電源供應器 產生並且藉由該延伸部絕緣電線94與該雛菊鏈絕緣電線98 傳送到該局部控制器模組100。該直流電源供應器從藉由該 基本單元92從公共電力公司或適用於附近地區之其它交流 電源所得到之高壓交流電力產生該低壓直流電力並且藉由 一常見的電力絕緣電線91傳送至該基本單元92。較佳地爲 17 554161 將該直流電源供應器安置在該基本單元92中而不是安置在 個別的局部控制器模組100中,雖然該安排需要更多延伸 部絕緣電線94與雛菊鏈絕緣電線98,爲了一些理由。第一 ,直流電源供應器其從高壓交流電流產生低壓直流電流消 耗實質數量的電力,其以實質數量的熱產物出現,其必須 被消散以避免可能損壞電子電路部件之高溫。相當的熱可 以在週遭大氣或室溫環境中自然地消散,該基本單元92通 常處在那種環境,去避免電路部件遭遇此類的損壞。因此 ,在該基本單元92中不需要龐大的熱消散裝置用於此類的 @ 直流電力供應器。另一方面,該局部控制器模組100被安 置在管道加熱器97上,其本身是熱的。因此,消散來自位 在該局部控制器模組100中之一直流電源供應器之熱將更 加的困難並且將至少需要具有鰭板之龐大的熱沉工具或其 它裝置去消散由直流電源供應器產生之熱。第二,在每一 局部控制器模組100中提供一直流電源供應器,代替只有 在該基本單元92中,將增加由該加熱器控制系統10消耗 之電力,因此,在關注於最佳的大小,電力消耗,以及其 * 它考慮下,最佳爲分配用於該局部控制器模組100之直流 電力產生功能給該基本單元92。 另一方面,把溫度感應器142訊號與指定點溫度作比 較以及“開啓a和“關閉 ''該高壓交流電之加熱器控制功 能設置在該局部控制器模組100中是較佳於提供那些功能 在該基本單元92或其它地方。例如,該功能之分配容許每 一管道加熱器97之單獨的溫度控制具有最小的電路101而 18 554161 不需專用的來自該基本單元92到每一個別的管道加熱器97 之交流電力與資料傳輸線’其將抑制連接到該基本單兀92 之根據本發明之該局部控制器模組100之簡易的雛菊鏈連 接性。 以該結構是可行的,雖然,包括數條’最佳爲兩條, 用於一些可以在該局部控制器模組100與該基本單元92之 間被傳送之有用的資料之在該延伸部絕緣電線94中之資料 通訊線與雛菊鏈絕緣電線98,此類的資料將指出不管是所 有的雛菊鏈加熱器97正工作在它們各自的指定點溫度範圍 馨 內或是至少它們其中一個在其指定點溫度範圍外(超過或 低於)以致於此類的資訊可以被顯示於該基本單元92。經 由在該延伸部絕緣電線94及雛菊鏈絕緣電線98間中之二 通訊聯繫去傳送個別的指定點溫度指令到在雛菊鏈中之各 自的局部控制器模組100是也可行的,其將在下面更詳細 地解釋。用於一特定的局部控制器模組100之特定的資料 可以用一只被特定的局部控制器模組100接受之一識別來 編碼。此類滿足電子裝置之編碼可由人們熟練本技術來了 * 解及熟悉。 本發明之一顯著的特色爲該管道加熱器97之組合模組 化與雛菊鏈連接以及經由在該管道加熱器97中之出口接頭 200到該基本單元92之局部控制器模組100,其最好在圖 1-7察看。第一首先參考圖3,該出口接頭200具有一出口 接頭架202,其不是鑄造成外罩26之一整體部件就是黏合 到該外罩26以及一固定在該出口接頭架202中之出口接頭 19 554161 電路板204。該出口接頭電路板204藉由提供一些功能使得 本發明之組合模組化與雛菊鏈連接成爲可能,包括:⑴安 排從一個雛菊鏈連接插頭206到其它的雛菊鏈連接插頭208 之該高壓交流電力路線,其兩者皆是該出口接頭電路板204 之整體部件:(ii)安排到該局部控制器模組100之用於“開 啓 > 和“關閉〜之高壓交流電力路線;(iii)安排“開啓 ''從 該局部控制器模組100到該加熱器構件126之高壓交流電 力路線;(iv)安排從一個雛菊鏈連接插頭206到其它的雛菊 鏈連接插頭208之低壓直流電力路線;(v)安排從該電路 _ 1〇1(圖7)到該局部控制器模組100之低壓直流電力路線; (vi)安排從該溫度感應器142(圖7)到該局部控制器模組100 之溫度感應器訊號路線;(vii)安排從一個雛菊鏈連接插頭 206到其它的雛菊鏈連接插頭208之資料通訊聯繫路線; (viii)安排資料通訊線到該局部控制器模組100; (ix)提供用 於該局部控制器模組100之“可用出口接頭接電的地方> 形式底座之高壓交流連接插頭210及低壓直流連接插頭212 給該管道加熱器97 ;以及U)提供用於該雛菊鏈絕緣電線98 * 或該延伸部絕緣電線94之“可用出口接頭接電的地方〜連 接之雛菊鏈連接插頭206、208給該管道加熱器97。 該局部控制器模組100之底部顯示於圖4,當察看其與 該出口接頭電路板204之頂部之組合時,說明連接插頭210 、212之凸形部件210’、212’,分別地,其插進那些連接插 頭210、212之相對的凹形部件去幫助在該管道加熱器97之 出口接頭200上之局部控制器模組100之“可用出口接頭 20 554161 接電的地方''架置或對接。所有往返於該局部控制器模組 100之高壓交流、低壓直流、溫度感應器訊號與資料線不過 是藉由將該局部控制器模組100架置或連接入該出口接頭 200而被建立。接著,當雛菊鏈絕緣電線98穿過在該局部 控制器模組100之外蓋214中之孔297、209而被插入該連 接插頭206、208時,該定位閂216、218與雛菊鏈絕緣電線 98之該插頭末端99互相發生作用去幫忙將該局部控制器模 組100固定在該出口接頭200上。該局部控制器模組100可 以藉由從連接插頭206、208拔掉雛菊鏈絕緣電線98並且藉 由很容易的從該出口接頭200拉掉該局部控制器模組1〇〇 而從出口接頭210、212拔掉該局部控制器模組100而從該 管道加熱器97被移除掉。 在該出口接頭架202中之出口接頭電路板204底座係 描繪於圖6,其中該出口接頭電路板204爲插入該出口接頭 架202底部作好準備。在該出口接頭架202頂部中之洞孔 222、224、226提供連接插頭206、208、210、212穿過該出 口接頭架202之嵌入。該出口接頭架202最好是可稍微有 彈性的,所以其可以相當地變形以致將該出口接頭電路板 204之邊緣嵌入到該突出物232、234以致固定該出口接頭 電路板204在該出口接頭架202中。不是在此類的嵌入之 前就是在其之後,到該加熱器構件126之高壓交流端子236 、238及來自該溫度感應器142之端子242、244被焊接到 適當的樁246、248及252、254,其最好在圖7察看。槪略 描繪在圖6中之其它數個樁240及線路軌跡250提供該出 21 554161 口接頭電路板204之安排路線功能,如上面所解釋。當該 外罩26及出口接頭200被放下且結合到該管道加熱器97 之熱絕緣層25之外部表面24之上時該端子236、238、242 、244可以被籠罩在有足夠空間之凹處230以致把該出口接 頭200放置在該凹處230上方之適當位置。 在S亥局部控制益模組10 0中,該控制電路101 ’其將於 下面更詳細的提供,主要被放置在一控制器電路板256上 。該控制器電路板256被固定在該外蓋214中,且該外蓋 214之頂部與底部部件和該電路板256係藉由一對螺絲釘 _ 258、259支承在一起。 如槪要描繪於圖8中,本發明之較佳實施例加熱器控 制系統10在該延伸部絕緣電線94中以及在每一雛菊鏈絕 緣電線98中具有六條電線,且所有六條電線從連接插頭 206到連接插頭208穿過該出口接頭電路板204直直地描繪 線路軌跡以致提供一組管道加熱器97與局部控制器模組 100之雛菊鏈連接。兩條電線124,L1與L2,傳送該高壓 交流電流來提供該加熱器構件126電力。該線路軌跡LI、 ® L2之一經由連接插頭212接通該加熱器構件126及其它的 通路到在該局部控制器模組100中之某些類型的電力開關 130,其將於下面更詳細的敘述,在經由連接插頭212及該 出口接頭電路板204送回到該加熱器構件126之前。該低 壓(例如,+9伏特)直流電力係在兩條電線120(+9伏特及共 用電線)上傳送,其兩者也從連接插頭206到連接插頭208 穿過該出口接頭電路板204直直地描繪線路軌跡。該+9伏 22 554161 特與共用電線(COM)線路軌跡兩者都被選定到該局部控制器 模組100裡經由連接插頭210去提供該局部控制器處理電 路101電力。最後,兩條資料電線122,A及B,也從連接 插頭206到連接插頭208穿過該出口接頭電路板204直直地 描繪線路軌跡,且其兩者都穿過連接插頭210被選定來傳 送資料進入及出去該局部控制器處理電路101,其將於下面 更詳細的敘述。因此,從圖8可以清楚地看到,每一管道 加熱器97與局部控制器模組100運作切斷所有以電氣並聯 連接到根據本發明之在一雛菊鏈連接中之其它的管道加熱 · 器97與局部控制器模組100之電線124、120、122 ( L1、 L2、+9伏特、COM、A和B)。該二條電線143純粹是局 部的而且不被包括在該延伸部絕緣電線94或雛菊鏈絕緣電 線98中,但它們爲了上面所敘述的目的經由該連接插頭 210從該溫度感應器142到該局部控制器處理電路101穿過 該出口接頭電路板204直直地描繪線路軌跡。 該較佳的加熱器控制系統10槪要描繪於圖8中而且一 般包括一具有一使用者界面74 (即,一監視器,具有或不 * 具有一螢幕觸控功能,一鍵盤,一滑鼠,及其它周圍的電 腦界面設備)之非必要的中央監控站72,一從事於與該使 用者界面74及記憶體78通訊之可以包含使用在監測以及 控制加熱器與加熱器控制器之軟體之中央處理單元(CPU)76 ,具有用於各種處理與其它溫度之溫度“方法”以及維修 資訊之資料庫,以及一用於接收與傳送數位資料之通訊通 道80。該中央監控站72與通訊線81、82、83連接到,例 23 554161 如,三個管道加熱器控制系統84、86與88,各自地連接在 管道85、87與89上。在動作期間中,該中央監控站72容 許一使用者在一遠端位置去快速地監測在該管道加熱器控 制系統84、86與88中與在某些實施例中之每一加熱器溫 度,去經由該通訊線81、82與83傳送指令以致改變該各 別的加熱器之溫度設定或其它方面的控制操作(例如,將 該加熱器開啓與關閉)。在本方式中,一唯一的中央監控 站72可以被使用來控制及監測一非常大數目的加熱器與加 熱器系統(爲了容易說明僅僅只有三個被顯示)。爲了更 徹底地了解該中央監控站72之操作與使用,其與一單個管 道加熱器控制系統86之整合將與該控制系統86之部件描 繪有關而被詳細的討論。當然,該控制系統86可以從該加 熱器控制系統10中被分開來使用,其將從接下來的討論來 了解。 較佳的爲該管道加熱器控制系統86使用最少的電線、 電線與/或線提供控制以及供應電力到一些控制器與加熱器 去避免該普遍在先前的控制系統技術中老鼠巢問題。就這 一點而言參考圖9與圖10,該管道加熱器控制系統86包括 該經由通線訊82與該中央監控站72通訊以及通過電線91 的媒介從一唯一的交流電源供應器90接收交流電力之基本 單元92。該基本單元92包括一用於與該中央監控站72通 訊之數位輸入與輸出裝置116以及一用於從該中央監控站 72與該基本單元92傳送指令與資訊請求到衛星控制器96 、100、104並且用於從該相同的控制器96、100、104接收 554161 數位訊號之數位輸入/輸出112。在一較佳實施例中,這些 通訊界面都架構成使用在一 9600鮑之固定鮑率之該EIA RS-232與RS-485兩者標準。該基本單元92包括一用於增 加該控制系統86之運作安全性以及用於如果一短路或地面 故障情況發生則把該局部控制器模組100與該交流電源供 應器阻隔之非必要的地面故障中斷器106與一 12-安培電路 斷路器108。此外,該基本單元92包括一用於供給直流電 力給每一局部控制器模組100之電子溫度控制部件之直流 電源供應器11〇(例如,一 9-伏特直流電源供應器)。 槪要地描繪於圖10中之該較佳實施例基本單元92中 ,該交流電力輸出,直流電力輸出,及數位輸入/輸出線被 整合及/或包含在一延伸至該第一局部控制器模組100之唯 一的通訊/電力延伸部絕緣電線94內。另外,該通訊/電力 延伸部絕緣電線94以盤繞的描繪在圖9中,因爲其依照每 一局部控制器模組100之特定位置以及在相同的兩者之間 距離可以隨著每一應用變化而進一步增加設置與維修的容 易。將一盤繞的絕緣電線94(和雛菊鏈絕緣電線98 —樣)與 電力與通訊線之整合結合成爲一唯一的絕緣電線94(和雛菊 鏈絕緣電線98),該控制系統86能夠簡易地達到減低該系 統複雜性,減少空間需求,及增加該設置與更換的容易性 之目的(即,每一條電線94、98與局部控制器模組100可以 各別地插入該系統86)。 爲了容許從該基本單元92提供一唯一的電線,電力與 通訊線通過每一局部控制模組100以致容許該局部控制模 25 554161 組100爲相互雛菊鏈連接是重要的。在每一局部控制器模 組100電力與溫度檢測及控制之整合係被實現如描繪在圖 10之功能方塊圖中。 値得注意的是,·該控制功能之整合容許每一局部控制 模組100被覆蓋在一如描繪於圖1-7中之唯一的外罩148中 。再者,該外罩148之大小保持相當地小(即,一較小於 64mm的寬,W,一較小於32mm的高,Η,及一較小於 70mm的長,L)。該局部控制模組100與外罩148被架構 ,在該示範實施例中,來與一屬於如上面所敘述之一纏繞 在有彈性的管道加熱器97之外部接口或出口接頭200纏結 〇 再一次參考圖10,該局部控制模組100被架構去經由 在直接進入該加熱器97之電線124上之絕緣電線94接收 來自該基本單元92之交流電力。必須注意到圖10是槪要 的,所以電線例如,電線120、122、124之確切位置等等沒 有顯示在圖10中。察看圖8與在該出口接頭電路板204中 那些線或電線120、122、124之較佳位置之相關描繪,如上 面所說明的。該加熱器97包括在電線124上之交流電力上 運作並且藉由光耦合零電壓電力開關130(雖然其它的電子 開關裝置可以很容易的使用)經由電線128和131電子式地 控制之加熱器構件126(即,開啓及關閉)。該局部控制模組 100利用電線120帶進經由電線132提供該微處理器134與 其它的電子部件電力之直流電力。該微處理器134被包括 在該局部控制器模組100中去提供關於該加熱器97之溫度 26 554161 設定方面更好的控制,去操作在該控制器100中之運作上 的顯示器146 ’去操作該電力開關130維持溫度在一所要求 與使用者可調整範圍之內’及去提供數位通訊能力給該基 本單元92與在某些事例裡,該監控站72。 在動作期間,被放置鄰近於該加熱器表面127之溫度 感應器142(例如,一電熱調節器、溫差電偶,或相同性質 者)對在該加熱器表面127中之溫度變化作出反應而在電線 143上輸出一典型訊號(例如一電壓訊號)。檢測放大器144 放大該訊號並且輸送一類比訊號到該包括一類比對數位轉 換器136之微處理器134。該微處理器134被架構去處理來 自檢測放大器144之數位訊號去決定該加熱器表面24之溫 度。該微處理器134接著決定是否該加熱器表面24溫度在 一可接受的溫度設定點範圍之內。 根據本發明,該控制器100最好適合容許一使用者去 控制(即,設定和後期調整)該加熱器97運作中的溫度。典 型地,其藉由設定一溫度設定點與,在某些實施例中,一 在該設定點附近之變動範圍(或者在該溫度設定點附近之溫 度邊界可以藉由利用電子溫度控制技術而固定,例如,假 如導通_截止控制被使用在一低溫度設定時開啓一加熱器以 及在一高溫度設定時關閉一加熱器)達到。如描繪在圖4中 ,該控制器1 〇〇包括一容許該使用者不是手動地設定該溫 度設定點(例如,在該8-位次程式開關140上設定一所需溫 度之二進位數)就是經由設定該程式開關140之所有開關鍵 爲零或其它指定的遠端模式設定然後經由數位通訊電線122 27 554161 從該中央監控站72遠端地傳送一溫度設定點到該微處理器 134(其被儲存於該微處理器134之記憶體中)之8-位次程式 開關140。如描繪的,該程式開關140係藉由從該加熱器97 之外部接口或出口接頭200拔除該局部控制模組100而取 出。 在動作期間,該微處理器134比較由溫度感應器142 訊號所決定之溫度與經由電線141之該8-位次程式開關140 之溫度設定或該接收來自該中央監控站72之溫度去核對是 否該加熱器表面127在一可接受的溫度範圍之內(如此,例 如,在攝氏5度之內及更佳地爲大槪在該溫度設定點附近 攝氏2度之內)。如果該加熱器表面127溫度在該可接受的 溫度範圍之下,該微處理器134起作用去操作該開關130 以致操作該加熱器97並且通過電線138與122的媒介傳送 該低溫度到該基本單元92。 參考圖10,該基本單元92可以具有它自已的操作狀況 顯示器114與/或一用於不是在該基本單元92就是在一遠端 位置中產生聽覺的與視覺的警報之警報狀況繼電器118(例 如,一可以從一遠處輕易地看見之閃爍的光)。在一較佳實 施例中,當至少一個管道加熱器97在其設定溫度範圍下時 該操作狀況顯示器114 “點亮 ''一藍色發光二極體,當所以 的管道加熱器97在其設定溫度範圍內時點亮一綠色發光二 極體,及當一個管道加熱器97在其設定溫度範圍上時點亮 一紅色發光二極體。該基本單元92同時傳送該用於每一管 道加熱器97之溫度與操作資訊到該中央監控站72,在那裡 28 554161 其可以被顯示在該使用者介面74上及/或儲存在記憶體78 中。 再一次參考圖10,該微處理器134也起作用去操作一 類似於其被討論用於該基本單元92之具有三種顏色的發光 二極體之局部顯示器146,其能夠使得一使用者快速地、直 觀地監測在一管道線路中每一管道加熱器97。該發光二極 體顯示器146可以在上面容易地看見,該控制器外罩148 之外部部份(看圖3)。該微處理器134持續監測以及比較該 加熱器表面127溫度,而且,一但該溫度達到一在該溫度 _ 範圍內之預先設定點時,該微處理器134起作用去操作該 開關130以致關閉該加熱器97,傳送“在範圍之內^資訊 到該基本單元92(及因而,該監控站72),及操作該局部控 制器模組100之顯示器146。該微處理器134接著持續監測 該加熱器表面24溫度去傳達是否該溫度超過或大於一可接 受的範圍以及當該溫度下降到預先設定的溫度範圍下時重 覆上面的操作。由該微處理器134所運用之控制邏輯可以 是一簡單的導通/截止控制、一 PID控制描述,及其它控制 * 功能。 在以上的方法中,每一管道加熱器97之溫度可以被設 定與保持在一相當緊貼的溫度範圍之內(例如一攝氏1到2 度的範圍)。値得注意的是,一監控站72與遠端可程式化 局部控制器模組100之使用容許一使用者去設立及迅速地 改變每一管道加熱器97之溫度以致設立用於改變步驟之相 當複雜的方法。另外,該加熱器控制系統10之架構容許一 29 554161 使用者遠端地與本地地監測每一局部控制器模組100與管 道加熱器97之運作以致增進處理監測以及減少花在解決問 題的時間。關於另外的主張,每一局部控制器模組100被 設計成容許一使用者拔掉一唯一的控制器100與/或其聯結 的電力/傳送絕緣電線94、98以及插入更換。 在動作期間中,該基本單元92至少周期性地運作,例 如每2秒鐘一次或一些其它的固定期間,獲得該連結的局 部控制器模組1⑻狀態(例如,溫度)與診斷資訊。爲了監測 該局部控制器模組100之某些部件之壽命,一計數機件或 · 例行程序可以被包括在微處理器134內以致追蹤它們運作 次數。例如,電子-機械繼電器典型具有一固定的運作壽命 所以包括一用於每一有包括電子-機械繼電器之計數器去計 數它們爲活性化的次數是有幫助的。一但該預先設定的數 量達到時,該微處理器134發送該資訊到該基本單元92去 ,設立一用於該局部控制器模組100之維修@)。 因爲許多的修改以及上面的方法與實施例之整合將很 快地出現到那些熟練在本技術中,所以不希望去限制本發 * 明爲上面所顯示與敘述之確切的結構與程序。例如,在圖9 中,一獨立的交流電源供應器90與基本單元92係顯示用 於每一管道線路並且該架構被選擇爲確實遵守某些電的安 全標準。當然,該描繪的加熱器控制系統10可以修改成包 括一起提供交流電力到多路的控制系統84、86,及88之一 唯一的交流電源與一唯一的基本單元92。並且,在個別的 資料傳送線或電線122之場所中,資料可以以人們熟知在 30 554161 模組之管道加熱器表面上之本發明之出口接頭之立體槪觀; 圖4爲一該局部控制器模組之底部立體槪觀; 圖5爲一該出口接頭電路板與具有平穩安置在適當位 置上以致被裝進該出口接頭外蓋內之該出口接頭電路板之 出口接頭外蓋之頂部立體槪觀; 圖6爲一該平穩安置在適當位置以致被裝在一起之出 口接頭外蓋與出口接頭電路板之底部立體槪觀; 圖7爲一順著圖2之片段線7-7實際取得之本發明之一 局部控制器模組之放大橫截面圖槪觀; ® 圖8爲一在雛菊鏈輸入和輸出與來回於其它管道加熱 器和局部控制器模組部件之間之電力與訊號之該出口接頭 電路板路線之槪要圖; 圖9爲一包括一與三個具有基本單元與局部加熱器控 制器模組之管道加熱器系統通訊之監測站之本發明之該管 道加熱器控制系統之功能方塊圖;以及 圖10爲一一個基本單元和一個局部控制器模組與圖9 之互相連接的管道加熱器之功能電路方塊圖。 * (二)元件代表符號 10、84、86、88管道加熱器控制系統 19第一管道加熱器 21帶子 22核心部件 23內側表面 24外部表面 32 554161 25熱絕緣層 26、148外罩 27加熱器電線 72中央監控站 74使用者界面 76中央處理單元 78記憶體 80通訊通道 8卜82、83通訊線 豢 85、87、89 管道 84、86、88控制系統 90交流電源供應器 91電力絕緣電線 92基本單元 94延伸部絕緣電線 96衛星控制器 97管道加涯 * 98雛菊鏈絕緣電線 99插頭末端 100局部控制器模組 101電路 104衛星控制器 106地面故障中斷器 108電路斷路器 33 554161 110直流電源供應器 112數位輸入/輸出 116數位輸入與輸出裝置 118警報狀況繼電器 120、122、124、128、13卜 132、138、141、143 電線 126加熱器構件 127加熱器表面 130電力開關 134微處理器 _ 136類比對數位轉換器 140程式開關 142溫度感應器 144檢測放大器 114、146顯示器 200出口接頭 202出口接頭架 204出□接頭電路板 * 206、208、210、212 連接插頭 209 、 297 孔 210’、212’凸形部件 214外蓋 216、218定位閂 222、224、226 洞孔 230凹處 34 554161 232、234突出物 236、238、242、244 端子 240 、 246 、 248 、 252 、 254 樁 250線路軌跡 256控制器電路板 258、259螺絲釘554161 发明 Description of the invention [Technical field to which the invention belongs] The present invention relates generally to a system for controlling and monitoring the temperature of the heater, and more particularly, it relates to a method for several Individual pipe heaters adjacent to each other on the pipes, which are daisy-chained to each other and structured to individual bases for individual connections, and with respect to a pipe heater, individual electronics provided on each pipe heater Temperature and power control. Cross Reference to Related Applications This patent application is a partial continuation of the US patent application filed on April 20, 2000, and its serial number is 09 / 533,416. [Previous technology] The use of the pipeline heater is widely used in semiconductor manufacturing, chemical, pharmaceutical processing, plastic manufacturing, food processing, and other industries to heat the pipeline system to control various production and consumption procedures. Generally speaking, the temperature of the piping system must be maintained within a certain temperature range to maintain the gas or liquid being transported from one location to another while flowing. For example, the use of an insulated heater that is flexible in the semiconductor manufacturing industry, such as U.S. Patent No. 5,714,738, disclosed in Hauschulz et al., Is installed and maintained along the length of the pipe and pipe components from a reaction or precipitation chamber The effluent gas and vapour are transported within a specific temperature range, which prevents the effluent gas from chemically reacting with the liquid, condensing, or depositing, and on the inner wall of the pipeline, in the valve, before it is suppressed and removed in an expensive and effective manner. 554161, and solids swell in other pipe parts. In many industrial applications, the acceptable temperature range for the pipeline is fixed or the range is narrow, in other words, within a few degrees of the set point, and sometimes the set point temperature is quite high, For example, above 180 degrees Celsius. Furthermore, some pipes are quite long and the heat transfer rate may change in different locations, so the individual control of many individual pipe heaters placed along the length of the pipe needs to prevent the occurrence of local hot or cold spots. Therefore, there is a need for an accurate and responsive heater control system that allows the user to obtain and maintain the temperature of the pipe parts within a user-selected range, including controlling individual pipe heaters when needed to maintain desired temperature characteristics The ability to transfer different heating power to different pipe locations. Furthermore, because of the failure of individual heaters, the manufacturing industry may stop working to dismantle and manage or replace blocked or damaged pipes, valves, and other components, resulting in considerable cost. The heater control system should be able to Provide user operation information during use, such as whether the heater is "on" or "off" and whether the heater is within a specified temperature range. Pipe heaters must often be installed on pipe parts. They are small in size, such as 2-inch or smaller diameter pipes, and have small or no gaps between the pipe parts and adjacent structures. Therefore, users of the heater often need heaters and related control equipment, which are not bulky or difficult to install, they must be durable for industrial use, and they are easy to repair and / or replace. Of course, the heater and heater control system must be constructed to meet any and all safety standards (for example, electrical and fire safety standards) that can be applied to that particular industry. 554161 One method currently in use to provide pipe heater control is to use individual, complete, electromechanical temperature controllers mounted on each heater. Regarding pipeline heaters, these electromechanical temperature controllers are typically either bimetallic buckle or submersible thermostats, which are generally relatively small and expensive in size. Unfortunately, such temperature control using bimetal or other buckle or submerged thermostats generally has a single, fixed temperature set point and provides only limited temperature control. In this regard, most of the buckle electromechanical temperature controllers have a hysteresis or dead band of 15 degrees Celsius or greater near a set point temperature, which is within a few degrees of the set point. Applications with strict pipe temperature control are not acceptable. The submersible thermostat provides stricter initial temperature control, but becomes inaccurate when it drifts over time. Due to the high degree of arcing that occurs between its switch contacts, its service life is short. These two types of electromechanical temperature controllers must also be structured and installed so that there is a slight thermal contact with the surface of the active heater of the pipe heater to operate correctly. Therefore, the general practice is to permanently embed the electromechanical temperature controller into the pipeline heater, and when the thermostat fails or needs maintenance, the entire heater with the controller must be replaced and replaced by demolition. Another problem with most electromechanical temperature controllers is that they provide little or no operational information during use, and in order to find heaters that are not running, operators or maintenance personnel must touch each A heater determines if it is warm and speculates that it may be working. Furthermore, the user of the heater often does not leave any accurate information on the actual operating temperature of the heater. 554161 Another method for controlling heaters in pipes is the use of the electronic temperature controller, which is placed away from the heater and from many remote sources and power lines from the remote controller to each heater Communicate with the extension. However, when this type of electronic temperature controller is combined with a thermocouple, it provides improved control of each heater and a smaller temperature range, which is relatively expensive, and it is more difficult to place the heater in a small space. Big bunch of wires. The high cost of each controller and the tangled wires have led many users to bundle several heaters together in an area or pipe section, and put the entire area under the control of a single controller. And that solution reduces the complexity and tangles of the wires, which also causes all the pipe heaters in a region to be set to a single temperature, and the correctness of the control will inevitably decrease with the size of the entire region . For example, this type of area usually includes a main heater and one or more sub-heaters. The temperature sensor used by the single electronic controller is located close to or connected to the main heater, and the temperature detected at the single point in the piping system drives the heaters of all heaters in the area control. However, the thermal load, i.e. the heating power requirement, may and often is not the same at each individual sub-heater location. Also, there is no way to ensure that individual sub-heaters in an area will not arbitrarily run cooler or hotter than the main heater, which results in reducing the correctness of controlling the temperature throughout the piping system or area Sexuality or compactness. Using a single controller to operate an entire area may also cause safety issues. For example, if the main heater fails and becomes cold or cold, the controller generally operates or controls other properly functioning heaters 554161 in the area to run hotter and overheat the rest of the plumbing system. In other words, the sub-heater is not suitable for control in this area, and the rising heating current "dissipates" causing blown fuses and / or fires, which poses safety hazards and significant downtime in the industrial site. Furthermore, it is used in systems Central controller, one of which is connected to control many individual heaters is quite large, such as 48 mm by 96 mm by 100 mm, and must be set due to space and installation restrictions in this typical industrial installation environment Farther than the heater. Because a protective cover is often placed around the controller to protect sensitive electronic components from unintended hazards caused by contact between high temperature sources and objects, in fact the size of each central controller becomes even larger. Moreover, because the number of wires must be run between the central controller and each heater, the setting and maintenance of the central controller for the remote setting of a large number of individual heaters is Difficult. These wires usually include power supply wires for supplying AC power from the controller to each heater to And to connect the controller to the temperature sensor wires of the thermocouple or other temperature detection devices. For safety and convenience, these wires are often bundled or rolled together, which makes it more difficult for personnel to work and repair on a single heater, However, unwinding will be in a more nasty wire tangled situation. This type of wiring is a rat nest in the pipeline system, which allows the maintenance, upgrade, and debugging of these heater control systems to consume time and personnel to operate and Maintenance becomes difficult. Inevitably, there is still a need for improved heater control systems in pipeline heating systems to provide enhanced control and monitoring of individual heaters, but without accompanying wiring and complex controllers, and with such systems Related object size. 554161 [Summary of the invention] A general purpose of the present invention is to improve individual heater temperature control equipment for a pipe heating system composed of several pipe heaters, as long as the size of the object and the complexity of wiring are reduced, And inefficiency in placement, maintenance, and movement. Another object of the present invention is to provide a tube Heater control system, which combines the advantages of individual temperature setpoint adjustment and temperature control in a module, which can be easily installed and moved on each heater with central power, structure, monitoring, and control functions. Another related object of the present invention is to provide a heater control system that provides a user with improved heater monitoring and debugging capabilities. Another object of the present invention is to provide a heater control system, which is generally provided in additional devices. Installation in a typical industrial environment with significant space constraints is simple, cost-effective, and safe to install and maintain. Additional objects, advantages, and new features of the present invention will be partially explained in the following description. It is proposed, and part of it will become obvious after becoming familiar with the technology after the inspection or can be learned through the implementation of the present invention. The purpose and advantages can be pointed out with tools and specifically in the scope of the additional patent Coming to be understood and obtained. In order to achieve the above and other objectives and in accordance with the intention of the present invention, as embodied and described in detail, a duct heater control system is provided with an individual satellite heater controller and a In order to reduce the size and wiring complexity of individual satellite heater controllers, the power supply between the basic controllers of the individual heaters and the general best temperature setting, control, and monitoring functions distributed together in 554161 are generally optimized. Individual temperature setpoints and temperature controller functions are assigned to individual local controller modules fixed to individual pipe heaters, where they are the most practical, convenient, and efficient when the power supply and Individual heater temperature monitoring functions are assigned to a remote base unit located somewhere farther away from the pipe heater, where heat generated by the power circuit can be more easily dissipated and there are large temperatures Monitoring circuits and hardware can be provided more easily. Furthermore, the individual local controller module is structured to be easily "plugged in> installed and" unplugged "and moved in a way on the individual pipe heater, which is particularly convenient when provided The daisy chain connection of several heaters and the satellite controller module to the remote base unit still maintain the correct temperature detection. Each heater has a temperature sensor embedded in a heat-generating component adjacent to the pipe heater by a thermally isolated outer layer and a plug-in type including a daisy chain connection having two insulated wires for power and data The outlet connector on the external surface of the pipe heater of the circuit board of the electronic connection plug, the plug-type electronic connection plug for connecting a local controller module to the heater, and the contacts and embedded traces are used for: (i) Arrange AC high voltage power lines from one daisy chain connection plug to other connection plugs, to the local controller module, and to the heat generating component; (ii) Arrange from one daisy chain connection plug to other connection plugs and to The DC low voltage power route of the local controller module; (iii) arrange the temperature detection signal route from the temperature sensor to the local controller module; and (iv) arrange from a daisy chain connection plug to the other and to The data communication line of the local controller module. An additional pipe heater can be connected to the basic unit by simply plugging a daisy chain cable from another pipe heater into the socket at 12 554161, and a local controller module can be easily connected by The local controller module is plugged into the outlet connector to connect to the pipe heater and to the base unit. If a particular pipe heater is the first one in a daisy chain of pipe heaters, its local controller module can be easily plugged in an extended insulated wire from the basic unit into the outlet connector. Connected to this base unit. Each daisy-chain insulated wire and the extended insulated wire have a wire conductor for: (i) AC high voltage power; (ii) DC low voltage power; and (iii) data communication lines. When there is a choice, each local controller module can be equipped with its own individual DC low voltage power supply that supplies power by the high voltage AC power, which can be excluded from the daisy chain insulated wires and from the extended insulated wires Need for wire conductors. However, generally available circuits that convert high voltage AC to low voltage DC power used in electronic circuits generate a significant amount of heat that must be dissipated to prevent damage to electronic circuit components. Heat dissipation such as this next to a pipe heater, which also generates a large amount of heat, is inefficient and requires a bulky heat sink tool with fins or some other heat dissipation device. Therefore, when it is required to provide a DC low-voltage power supply as a component of each local controller module, it is necessary to add heat dissipation equipment to make the local controller module larger, heavier, and more inconvenient to use. In general, it is considered better to have a current DC power supply circuit to add the low-voltage DC power conductor to the daisy-chain insulated wires and extended insulated wires and to place the DC power supply in the base unit. 13 554161 When there is another option, a central processing station can be connected to one or more base units to monitor the pipe heaters in one or more daisy chains at a management core location and transmit through the base unit Control signals to individual local control modules. According to an aspect of the present invention, the controller module is designed to integrate accurate electronic temperature detection and power transmission control. In this regard, a preferred embodiment of the present invention includes the ratio of electronic components to providing either on / off control or electronically switching operation of a heat generating component or a component of the pipe heater to effectively control- Integral-derivative (PID) temperature control circuit system. The component generally includes a temperature sensor, such as a thermistor, disposed adjacent to the heat-generating member or component for detecting the temperature and having a device for quickly controlling the operation of the heater based on the detected temperature without Zero voltage switch of AC thyristor that will generate arc. The electronic temperature detection and control allows the temperature to be maintained around a temperature set point of 4 to 5 degrees Celsius or even tighter. According to another aspect of the present invention, the local controller module is adapted to be used either on each local controller module or remotely via a management core monitor from a base unit and a data communication line. Individual set-point temperature adjustment for data connection. This feature allows the user to-select, and, if required, separate different temperature settings along the length of a pipe system, which may be useful for several processing applications and to overcome the use of one for several connected together in one area. Problems with prior art installations of a single, remotely located controller of a heater (in other words, it provides the same temperature set point for all heaters connected to the remotely located controller). 554161 Preferably, each local controller module includes an optical display device, such as a color light emitting diode, for indicating the operating condition on the pipe heater, and it is fixed on the pipe heater. In one embodiment, three light emitting diodes are used to display an "in temperature range" state, a "in temperature range" state, and an "over temperature range" state. Locally, or in addition, the monitoring of the local control module and the pipeline heater can be implemented remotely by including a light emitting diode or other display device on the basic unit to indicate, for example, when a daisy chain When having a pipe heater in the temperature range, when all the pipes in a daisy chain are within the set temperature range, and when a daisy row has a pipe heater in the temperature range. More sophisticated remote monitoring can be provided in another embodiment including a management core monitoring station, which has a user interface and can be used to display all pipe heaters controlled by the heater control system. Monitor for operating information. In addition to the optical display of the status indicator, an audible alarm reporter is also included in some systems so that the operator is quickly reminded "over temperature range a" Students. Other features and advantages of the present invention will become apparent from the detailed description that follows and the specific embodiment of the heater control system and related combinations and methods of operating the heater control system steps of the present invention. [Embodiment] A pipeline heater control system 10 according to the present invention is shown in FIG. 1 and FIG. 2 and has a part of the present invention connected to a basic unit 92 daisy-keyed and fixed to three pipeline heaters 97. Sample 15 of the controller module 100 554161. The three pipe heaters 97 are fixed on a pipe P and heated in a typical manner, for example, as described in H. U.S. Patent No. 5,714,738 to Hauschulz et al. Describes the construction, materials, and use of the above-mentioned pipe heater 97 and is hereby embodied by all of its published references. Although some structural details of the pipe heater 97 will be described below, it is sufficient to say only this point, that is, each pipe heater 97 can be fixed to the pipe P by one or more straps 21. The pipe heater 97 and the local controller module 100 are connected to each other in a daisy-chain manner through a daisy-chain insulated wire 98, which will be described in more detail below. The first # pipe heater 19 in the daisy chain and the local controller module 100 are connected to the basic unit 92 through an extension insulated wire 94. In essence, as shown in FIG. 3, a typical pipe heater 97 includes a heating pad or core member 22 having an inside surface 23 adapted to be engaged with the pipe P, and is bonded to the outside of the core member 22 The thermal insulation layer 25 on the surface 24 extends from the tape 21 to a cover or partial cover 26. In the duct heater 97 shown in FIGS. 1-3, which is best viewed in FIG. 3, a set of resistive heater wires or heater members 126 are embedded in the * heating pad or core component 22 and borrowed Power is provided by high voltage alternating current (AC) power, typically 120 volts or 240 volts, 50 or 60 hertz, to generate heat, however other voltages and / or hertz power and other types of heat generating components can be used. In the present invention, the local controller module 100 on each of the pipe heaters 97 establishes a high-temperature alternating current (AC) power to the resistive heater wire 27 based on a specified point temperature. It is explained in more detail below 16 554161. It is enough to say this point, which is that the high voltage alternating current (AC) power is transmitted to the pipe heater 97 through the extension insulated wire 94 from the base unit 92 and the daisy chain insulated wire 98. A temperature sensor 142, which is best seen in FIG. 7, is embedded in the thermal insulation layer 25, preferably on the outer surface 24 of the heating member 22, so that the heat and The temperature is not buffered by any thermal insulation layer 25 between it and the heating element 22. A circuit 101 in the local controller module 100 compares a signal from the temperature sensor 142 with a specified point temperature, and if the signal from the temperature sensor 142 displays the temperature of the heating element 22 Less than the specified point temperature or a range less than the specified point temperature, the circuit 101 will "turn on the high voltage AC power to the heater member 126 to generate more heat. On the other hand, if The signal from the temperature sensor 142 shows that the temperature of the heating element 22 is greater than the specified point temperature or a certain range of the specified point temperature, then the circuit 101 will be "closed" to the high voltage of the heater member 126 AC power. In the preferred embodiment, the electric circuit 101 in the local controller module 100 is provided with power by a low-voltage DC current, for example, 9 volts, which is provided by the base unit 92 (FIG. 1 and FIG. The DC power supply in 2) is generated and transmitted to the local controller module 100 through the extended insulated wire 94 and the daisy chain insulated wire 98. The DC power supply generates the low-voltage DC power from the high-voltage AC power obtained from the public power company or other AC power sources suitable for the nearby area through the basic unit 92 and transmits the low-voltage DC power to the basic through a common electrical insulated wire 91. Unit 92. It is preferably 17 554161 to place the DC power supply in the base unit 92 rather than the individual local controller module 100, although the arrangement requires more extension insulated wires 94 and daisy chain insulated wires 98 For some reason. First, a DC power supply that generates low-voltage DC current from high-voltage AC current consumes a substantial amount of power, it appears as a substantial amount of thermal products, and it must be dissipated to avoid high temperatures that may damage electronic circuit components. Considerable heat can be dissipated naturally in the surrounding atmosphere or room temperature. The basic unit 92 is usually in that environment to avoid such damage to the circuit components. Therefore, a bulky heat dissipating device is not needed in this basic unit 92 for such a @DC power supply. On the other hand, the local controller module 100 is mounted on the duct heater 97, which is itself hot. Therefore, it will be more difficult to dissipate the heat from a DC power supply located in the local controller module 100 and at least a large heat sink tool or other device with fins is needed to dissipate the heat generated by the DC power supply. The heat. Second, a DC power supply is provided in each local controller module 100, instead of only in the basic unit 92, the power consumed by the heater control system 10 will be increased. Therefore, attention is focused on the best Size, power consumption, and other considerations, it is best to allocate the DC power generation function for the local controller module 100 to the base unit 92. On the other hand, it is better to compare the signal of the temperature sensor 142 with the temperature of the designated point and to turn on and off the heater control function of the high-voltage AC power in the local controller module 100. At the base unit 92 or elsewhere. For example, the distribution of this function allows the individual temperature control of each duct heater 97 with the smallest circuit 101 and 18 554161 without the need for a dedicated AC power and data transmission line from the basic unit 92 to each individual duct heater 97 'It will inhibit the simple daisy chain connectivity of the local controller module 100 according to the present invention connected to the basic unit 92. It is feasible with this structure, although it includes several pieces, preferably two, for insulating some useful information that can be transmitted between the local controller module 100 and the basic unit 92 at the extension. Data communication wires in wire 94 and daisy-chain insulated wires 98. Such information will indicate whether all daisy-chain heaters 97 are operating within their respective designated point temperature ranges or at least one of them is within its designated Point temperature range (over or under) so that such information can be displayed on the base unit 92. It is also possible to transmit individual designated point temperature commands to the respective local controller modules 100 in the daisy chain via a communication link between the extended insulated wire 94 and the daisy chain insulated wire 98. This is explained in more detail below. Specific data for a specific local controller module 100 can be encoded with an identification that is accepted by the specific local controller module 100. Such coding for electronic devices can be understood and familiarized with by people skilled in the art. A significant feature of the present invention is that the modularization of the pipeline heater 97 is connected to a daisy chain, and the outlet controller 200 in the pipeline heater 97 is connected to the local controller module 100 of the basic unit 92. Fortunately, look at Figure 1-7. First, referring first to FIG. 3, the outlet joint 200 has an outlet joint holder 202, which is either cast as an integral part of the outer cover 26 or bonded to the outer cover 26 and an outlet connector 19 fixed in the outlet joint holder 202. 554161 circuit Board 204. The outlet connector circuit board 204 makes it possible to combine the modularization of the present invention with a daisy chain connection by providing some functions, including: arranging the high voltage AC power from one daisy chain connection plug 206 to the other daisy chain connection plug 208 Routes, both of which are integral parts of the exit connector circuit board 204: (ii) the high-voltage AC power routes arranged to the local controller module 100 for "on > and" off ~; (iii) arrangements "Open" the high voltage AC power route from the local controller module 100 to the heater member 126; (iv) arrange the low voltage DC power route from one daisy chain connection plug 206 to the other daisy chain connection plug 208; ( v) Arrange a low-voltage DC power route from the circuit_101 (Fig. 7) to the local controller module 100; (vi) Arrange from the temperature sensor 142 (Fig. 7) to the local controller module 100 The temperature sensor signal route; (vii) arrange the data communication contact route from one daisy chain connection plug 206 to the other daisy chain connection plug 208; (viii) arrange the data communication line to the local controller Module 100; (ix) Provide a "high-voltage AC connection plug 210 and a low-voltage DC connection plug 212 for the form base" of the local controller module 100, "where the outlet connector can be used to connect electricity to" the base heater module 97; and U) Provide the place where the daisy chain insulated wire 98 * or the extension insulated wire 94 can be connected to the outlet connector ~ the connected daisy chain connection plugs 206, 208 to the pipe heater 97. The local controller module The bottom of the group 100 is shown in FIG. 4. When viewed in combination with the top of the outlet connector circuit board 204, the convex parts 210 ′, 212 ′ of the connection plugs 210, 212 are illustrated, and they are inserted into those connection plugs, respectively. The opposite concave parts of 210 and 212 help to set up or dock the "where the available outlet connector 20 554161 is connected to" the local controller module 100 on the outlet connector 200 of the pipe heater 97. All high-voltage AC, low-voltage DC, temperature sensor signals and data lines to and from the local controller module 100 are only established by mounting or connecting the local controller module 100 into the outlet connector 200. Next, when the daisy-chain insulated wires 98 are inserted into the connection plugs 206 and 208 through the holes 297 and 209 in the outer cover 214 of the local controller module 100, the positioning latches 216 and 218 and the daisy-chain insulated wires The plug ends 99 of 98 interact with each other to help fix the local controller module 100 on the outlet connector 200. The local controller module 100 can be removed from the outlet connector 210 by unplugging the daisy chain insulated wires 98 from the connection plugs 206, 208 and by easily pulling the local controller module 100 from the outlet connector 200. 212, the local controller module 100 is unplugged and removed from the duct heater 97. The base of the outlet connector circuit board 204 in the outlet connector frame 202 is depicted in FIG. 6, where the outlet connector circuit board 204 is ready for insertion into the bottom of the outlet connector frame 202. Holes 222, 224, 226 in the top of the outlet adapter frame 202 provide the insertion of connection plugs 206, 208, 210, 212 through the outlet adapter frame 202. The outlet connector holder 202 is preferably slightly elastic, so it can be deformed so that the edge of the outlet connector circuit board 204 is embedded in the protrusions 232, 234 to fix the outlet connector circuit board 204 at the outlet connector. Shelf 202. Either before or after such embedding, the high voltage AC terminals 236, 238 to the heater member 126 and the terminals 242, 244 from the temperature sensor 142 are welded to the appropriate posts 246, 248 and 252, 254 It is best viewed in Figure 7. The other several stubs 240 and line traces 250 depicted in FIG. 6 provide the routing function of the 21 554 161 connector circuit board 204, as explained above. The terminals 236, 238, 242, 244 can be shrouded in a recess 230 with sufficient space when the housing 26 and the outlet joint 200 are lowered and bonded to the outer surface 24 of the thermal insulation layer 25 of the pipe heater 97 So that the outlet joint 200 is placed in a proper position above the recess 230. In the Hai local control module 100, the control circuit 101 'will be provided in more detail below, and is mainly placed on a controller circuit board 256. The controller circuit board 256 is fixed in the outer cover 214, and the top and bottom parts of the outer cover 214 and the circuit board 256 are supported together by a pair of screws 258, 259. As shown in FIG. 8, a preferred embodiment of the heater control system 10 of the present invention has six wires in the extended insulated wire 94 and in each daisy-chain insulated wire 98, and all six wires from The connection plug 206 to the connection plug 208 pass through the outlet connector circuit board 204 and directly trace the circuit track so that a set of pipe heaters 97 is provided to be connected to the daisy chain of the local controller module 100. The two electric wires 124, L1 and L2, transmit the high-voltage AC current to provide power to the heater member 126. One of the line trajectories L1, L2 connects the heater member 126 and other paths through the connection plug 212 to some type of power switch 130 in the local controller module 100, which will be described in more detail below It is described before returning to the heater member 126 via the connection plug 212 and the outlet connector circuit board 204. The low voltage (eg, +9 volts) DC power is transmitted on two wires 120 (+9 volts and a common wire), both of which are also connected from the connection plug 206 to the connection plug 208 through the outlet joint circuit board 204 straight Ground traces. Both the +9 volt 22 554161 and the common line (COM) line track are selected into the local controller module 100 via the connection plug 210 to provide the local controller processing circuit 101 power. Finally, the two data wires 122, A, and B are also drawn straight from the connection plug 206 to the connection plug 208 through the outlet connector circuit board 204, and both of them are selected to be transmitted through the connection plug 210. Data enters and exits the local controller processing circuit 101, which will be described in more detail below. Therefore, it can be clearly seen from FIG. 8 that each of the pipe heaters 97 and the local controller module 100 operate to cut off all other pipe heaters that are electrically connected in parallel to a daisy chain connection according to the present invention. The wires 124, 120, and 122 (L1, L2, +9 Volts, COM, A, and B) of 97 and the local controller module 100. The two wires 143 are purely local and are not included in the extension insulated wire 94 or daisy chain insulated wire 98, but they are controlled from the temperature sensor 142 to the local control via the connection plug 210 for the purposes described above The processor processing circuit 101 passes through the outlet connector circuit board 204 and directly draws a line trace. The preferred heater control system 10 is to be depicted in FIG. 8 and generally includes a user interface 74 (ie, a monitor with or without * a screen touch function, a keyboard, a mouse , And other surrounding computer interface equipment), an unnecessary central monitoring station 72, one engaged in communication with the user interface 74 and the memory 78 may include software used to monitor and control the heater and heater controller The central processing unit (CPU) 76 has a database of temperature "methods" and maintenance information for various processing and other temperatures, and a communication channel 80 for receiving and transmitting digital data. The central monitoring station 72 is connected to communication lines 81, 82, 83, for example 23 554161. For example, three pipe heater control systems 84, 86, and 88 are connected to pipes 85, 87, and 89, respectively. During operation, the central monitoring station 72 allows a user to quickly monitor each heater temperature in the duct heater control systems 84, 86, and 88 and in some embodiments, at a remote location, Instructions are transmitted via the communication lines 81, 82, and 83 to change the temperature setting of the respective heaters or other control operations (for example, turning the heaters on and off). In this mode, a single central monitoring station 72 can be used to control and monitor a very large number of heaters and heater systems (only three are shown for ease of illustration). For a more thorough understanding of the operation and use of the central monitoring station 72, its integration with a single pipe heater control system 86 will be discussed in detail in relation to the component drawing of the control system 86. Of course, the control system 86 can be used separately from the heater control system 10, which will be understood from the following discussion. It is preferred that the pipe heater control system 86 use a minimum of wires, wires and / or wires to provide control and supply power to some controllers and heaters to avoid the rat nest problem that is commonly found in previous control system technologies. In this regard, referring to FIGS. 9 and 10, the duct heater control system 86 includes the communication with the central monitoring station 72 via the communication line 82 and the reception of AC from a single AC power supply 90 through the medium of the wire 91. Basic unit of electricity 92. The basic unit 92 includes a digital input and output device 116 for communicating with the central monitoring station 72 and a command and information request from the central monitoring station 72 and the basic unit 92 to the satellite controller 96, 100, 104 and digital input / output 112 for receiving 554161 digital signals from the same controllers 96, 100, 104. In a preferred embodiment, these communication interfaces are constructed using both the EIA RS-232 and RS-485 standards at a fixed baud rate of 9600 baud. The basic unit 92 includes an unnecessary ground fault for increasing the operational safety of the control system 86 and for blocking the local controller module 100 from the AC power supply if a short circuit or a ground fault condition occurs. Interrupter 106 and a 12-Amp circuit breaker 108. In addition, the basic unit 92 includes a DC power supply 110 (e.g., a 9-volt DC power supply) for supplying DC power to the electronic temperature control components of each local controller module 100. Essentially depicted in the basic unit 92 of the preferred embodiment in FIG. 10, the AC power output, DC power output, and digital input / output lines are integrated and / or included in an extension to the first local controller The only communication / power extension of the module 100 is inside the insulated wire 94. In addition, the communication / power extension insulated wire 94 is depicted in a coil in FIG. 9 because it can be changed with each application according to the specific position of each local controller module 100 and the distance between the two. And further increase the ease of installation and maintenance. By combining a coiled insulated wire 94 (like the daisy chain insulated wire 98) with the integration of power and communication lines into a single insulated wire 94 (and the daisy chain insulated wire 98), the control system 86 can easily achieve reduction The purpose of the system is to reduce space requirements and increase the ease of setup and replacement (ie, each wire 94, 98 and local controller module 100 can be plugged into the system 86 individually). In order to allow a unique electric wire to be provided from the base unit 92, it is important that power and communication lines pass through each local control module 100 so that the local control modules 25 554161 group 100 is connected to each other in a daisy chain. The integration of power and temperature detection and control in each local controller module 100 is implemented as depicted in the functional block diagram of FIG. It should be noted that the integration of this control function allows each local control module 100 to be covered in a unique housing 148 as depicted in Figs. 1-7. Furthermore, the size of the outer cover 148 remains relatively small (i.e., a width less than 64 mm, W, a height less than 32 mm, Η, and a length less than 70 mm, L). The local control module 100 and the outer cover 148 are structured. In this exemplary embodiment, it is tangled with an external interface or outlet joint 200 belonging to one of the flexible duct heaters 97 wound as described above. Once again Referring to FIG. 10, the local control module 100 is configured to receive AC power from the base unit 92 via an insulated wire 94 on a wire 124 directly entering the heater 97. It must be noted that Fig. 10 is essential, so the exact positions of electric wires such as electric wires 120, 122, 124, etc. are not shown in Fig. 10. Look at FIG. 8 in relation to the preferred locations of those wires or wires 120, 122, 124 in the outlet connector circuit board 204, as explained above. The heater 97 includes heater elements that operate on AC power on the wire 124 and are electronically controlled via the wires 128 and 131 by optically coupling a zero-voltage power switch 130 (although other electronic switching devices can be easily used). 126 (ie, on and off). The local control module 100 uses the electric wire 120 to bring in direct current power that provides the microprocessor 134 and other electronic component electric power through the electric wire 132. The microprocessor 134 is included in the local controller module 100 to provide better control over the setting of the temperature 26 554161 of the heater 97, to operate a display 146 'on the operation of the controller 100. Operate the power switch 130 to maintain the temperature within an adjustable range required by the user 'and to provide digital communication capabilities to the base unit 92 and, in some cases, the monitoring station 72. During the operation, a temperature sensor 142 (for example, a thermistor, a thermocouple, or the like) placed adjacent to the heater surface 127 reacts to a change in temperature in the heater surface 127. A typical signal (eg, a voltage signal) is output on the wire 143. The detection amplifier 144 amplifies the signal and sends an analog signal to the microprocessor 134 including an analog digital converter 136. The microprocessor 134 is structured to process digital signals from the sense amplifier 144 to determine the temperature of the heater surface 24. The microprocessor 134 then decides whether the heater surface 24 temperature is within an acceptable temperature setpoint. According to the present invention, the controller 100 is preferably adapted to allow a user to control (i.e., set and post-adjust) the temperature of the heater 97 during operation. Typically, it is achieved by setting a temperature set point and, in some embodiments, a range of variation near the set point (or a temperature boundary near the temperature set point can be fixed by using electronic temperature control technology) For example, if ON_OFF control is used to turn on a heater at a low temperature setting and turn off a heater at a high temperature setting). As depicted in FIG. 4, the controller 100 includes a setting that allows the user to manually set the temperature set point (e.g., setting a binary number of the required temperature on the 8-position program switch 140) That is, by setting all the switches of the program switch 140 to zero or other specified remote mode settings and then remotely transmitting a temperature set point from the central monitoring station 72 to the microprocessor 134 via the digital communication wire 122 27 554161 It is stored in the memory of the microprocessor 134) of the 8-position program switch 140. As depicted, the program switch 140 is removed by removing the local control module 100 from the external interface or outlet connector 200 of the heater 97. During the operation, the microprocessor 134 compares the temperature determined by the signal of the temperature sensor 142 with the temperature setting of the 8-position program switch 140 via the wire 141 or the temperature received from the central monitoring station 72 to check whether The heater surface 127 is within an acceptable temperature range (such as, for example, within 5 degrees Celsius and more preferably within 2 degrees Celsius near the temperature set point). If the temperature of the heater surface 127 is below the acceptable temperature range, the microprocessor 134 functions to operate the switch 130 so as to operate the heater 97 and transmit the low temperature to the basic through the medium of the wires 138 and 122. Unit 92. Referring to FIG. 10, the base unit 92 may have its own operating condition display 114 and / or an alarm condition relay 118 (e.g., for generating an audible and visual alarm either in the base unit 92 or in a remote location) (e.g., , A flickering light that can be easily seen from a distance). In a preferred embodiment, the operating status display 114 "lights" a blue light emitting diode when at least one of the tube heaters 97 is within its set temperature range, and when all of the tube heaters 97 are at their settings Lights up a green light-emitting diode when it is within the temperature range, and lights up a red light-emitting diode when a pipe heater 97 is within its set temperature range. The basic unit 92 simultaneously transmits this for each pipe heater 97 temperature and operating information to the central monitoring station 72, where 28 554161 can be displayed on the user interface 74 and / or stored in the memory 78. Referring again to FIG. 10, the microprocessor 134 also Function to operate a local display 146 similar to the three color light emitting diodes discussed for the base unit 92, which enables a user to quickly and intuitively monitor each pipe in a pipe line Heater 97. The light-emitting diode display 146 can be easily seen on the outside of the controller housing 148 (see Figure 3). The microprocessor 134 continuously monitors and compares the heater The temperature of the surface 127, and once the temperature reaches a predetermined set point within the temperature range, the microprocessor 134 functions to operate the switch 130 to turn off the heater 97, transmitting "within the range ^ Information is sent to the basic unit 92 (and thus the monitoring station 72), and the display 146 of the local controller module 100 is operated. The microprocessor 134 then continuously monitors the temperature of the heater surface 24 to communicate whether the temperature exceeds or exceeds an acceptable range and repeats the above operation when the temperature falls below a predetermined temperature range. The control logic used by the microprocessor 134 may be a simple on / off control, a PID control description, and other control * functions. In the above method, the temperature of each tube heater 97 can be set and maintained within a fairly close temperature range (for example, a range of 1 to 2 degrees Celsius). It should be noted that the use of a monitoring station 72 and a remote programmable local controller module 100 allows a user to set up and quickly change the temperature of each of the pipe heaters 97 so as to set up the equivalent for changing steps Complex method. In addition, the structure of the heater control system 10 allows a 29 554161 user to remotely and locally monitor the operation of each local controller module 100 and the pipeline heater 97 so as to improve process monitoring and reduce time spent on problem solving. . With regard to additional claims, each local controller module 100 is designed to allow a user to unplug a unique controller 100 and / or its connected power / transmit insulated wires 94, 98 and plug in and replace. During the operation period, the basic unit 92 operates at least periodically, for example, once every 2 seconds or some other fixed period, to obtain the status (e.g., temperature) and diagnostic information of the connected local controller module 1⑻. To monitor the life of certain components of the local controller module 100, a counting mechanism or routine may be included in the microprocessor 134 to track their number of operations. For example, electro-mechanical relays typically have a fixed operating life so it is helpful to include a counter for each counter that includes an electro-mechanical relay to count the number of times they have been activated. Once the preset amount is reached, the microprocessor 134 sends the information to the basic unit 92 to set up a maintenance for the local controller module 100 @). Since many modifications and the integration of the above methods and embodiments will quickly appear to those skilled in the art, it is not intended to limit the present invention. * The precise structure and procedures shown and described above. For example, in Fig. 9, an independent AC power supply 90 and base unit 92 are shown for each pipe line and the architecture is selected to indeed comply with certain electrical safety standards. Of course, the depicted heater control system 10 can be modified to include one single AC power source and one single base unit 92 that provide AC power to multiple control systems 84, 86, and 88 together. And, in the place of individual data transmission line or electric wire 122, the data can be a three-dimensional view of the outlet connector of the present invention which is well known on the surface of the pipe heater of the 30 554161 module; FIG. 4 is a local controller A bottom perspective view of the bottom of the module; FIG. 5 is a top perspective view of the outlet connector circuit board and the outlet connector cover with the outlet connector circuit board that is smoothly positioned in place so as to be installed in the outlet connector cover. Figure 6 is a three-dimensional perspective view of the bottom of the outlet connector cover and the outlet connector circuit board that are smoothly placed in place so that they are put together; Figure 7 is an actual obtained along the segment line 7-7 of Figure 2 A magnified cross-sectional view of a local controller module of the present invention; Figure 8 is a diagram of the power and signal between the input and output of a daisy chain and other pipeline heaters and local controller module components. Essential diagram of the circuit of the outlet joint circuit board; FIG. 9 is a monitoring station of the present invention including a monitoring station in communication with three pipe heater systems having a basic unit and a local heater controller module Track function block diagram of the heater control system; and a functional circuit block diagram of a heater duct 10 is a base unit and a local controller module and a of FIG. 9 interconnected. * (II) Symbols for components 10, 84, 86, 88 Pipe heater control system 19 First pipe heater 21 Tape 22 Core part 23 Inside surface 24 Outside surface 32 554161 25 Thermal insulation layer 26, 148 Cover 27 Heater wire 72 Central Monitoring Station 74 User Interface 76 Central Processing Unit 78 Memory 80 Communication Channel 8 82, 83 Communication Lines 85, 87, 89 Pipes 84, 86, 88 Control System 90 AC Power Supply 91 Power Insulated Wire 92 Basic Unit 94 Extension Insulated Wire 96 Satellite Controller 97 Pipeline Plus * 98 Daisy Chain Insulated Wire 99 Plug End 100 Local Controller Module 101 Circuit 104 Satellite Controller 106 Ground Fault Interrupter 108 Circuit Breaker 33 554161 110 DC Power Supply 112 digital input / output 116 digital input and output device 118 alarm status relay 120, 122, 124, 128, 13b 132, 138, 141, 143 electric wire 126 heater member 127 heater surface 130 power switch 134 microprocessor_ 136 analog to digital converter 140 program switch 142 temperature sensor 144 detection amplifier 114, 146 display 200 outlet connector 202 outlet connector holder 204-out connector circuit board * 206, 208, 210, 212 connection plug 209, 297 holes 210 ', 212' convex parts 214 cover 216, 218 positioning latches 222, 224, 226 holes 230 recesses 34 554161 232, 234 protrusion 236, 238, 242, 244 terminal 240, 246, 248, 252, 254 pile 250 line track 256 controller circuit board 258, 259 screw

3535

Claims (1)

554161 開關包括用於設定該溫度設定點之溫度輸入。 5. 如申請專利範圍第4項之加熱器控制器,其中該溫度 輸入爲一 8-位次程式開關。 6. 如申請專利範圍第1項之加熱器控制器,其中該溫度 設定點之每一邊溫度範圍大約小於攝氏5度。 7. 如申請專利範圍第1項之加熱器控制器,另外包括一 外蓋,其架構成容納該交流電力入口接點、該電源供應器 ,以及該電力溫度控制器,並且另外包括連接到溫度感測 器之操作狀況顯示器,該溫度感測器適用於提供表面溫度 鲁 指示,其以來自在外蓋之外部表面上之該溫度感應器之訊 號爲基礎。 8. 如申請專利範圍第7項之加熱器控制器,其中該操作 狀況顯示器包括在該溫度範圍下對應於加熱器表面溫度之 第一發光二極體、在該溫度範圍內對應於加熱器表面溫度 之第二發光二極體,以及超過該溫度範圍下對應於加熱器 表面溫度之第三發光二極體。 9. 如申請專利範圍第7項之加熱器控制器,其進一步包 * 括其中具有小於約64毫米的寬度、小於約32毫米的高度 ,以及小於約70毫米長度之外蓋。 10. 如申請專利範圍第i項之加熱器控制器,進一步包 括連接至溫度感測器之傳輸器,其用於以該訊號爲基礎之 溫度資訊傳輸到遠端監測位置。 11. 如申請專利範圍第1項之加熱器控制器,其中該開 關包括一零電壓開關。 37 554161 12. —種用於監測以及控制數個加熱器操作之加熱器控 制系統,包括: 附於每一加熱器之加熱器控制器,其中每一加熱器控 制器包括電子溫度感測與控制系統,其用於感測一附屬加 熱器之加熱器表面溫度以及用於以該感測的溫度爲基礎控 制該加熱器之操作,並且進一步包括一直流電源入口接頭 與出口接頭、一通訊入口接頭與出口接頭,及一交流電源 入口接頭與出口接頭;以及 連接到第一加熱器控制器之基地站,該基本單元被架 · 構來用於與每一加熱器控制器通訊以及經由該第一加熱器 控制器提供交流與直流電源到每一加熱器控制器。 13. 如申請專利範圍第12項之加熱器控制系統,其中該 加熱器控制器經由該加熱器控制器之直流電源入口接頭與 出口接頭、通訊入口接頭與出口接頭,及交流電源入口接 頭與出口接頭通訊地且電氣地連接到鄰近的加熱器控制器 〇 14. 如申請專利範圍第13項之加熱器控制系統,其中該 * 電子溫度感測及控制系統連接至該直流電源入口接頭與該 通訊入口接頭,並且該加熱器係連接到該交流電源入口接 頭。 15. 如申請專利範圍第13項之加熱器控制系統,其中介 於鄰接的加熱器控制器之間的通訊連接與電氣連接,包含 具有纏繞架構之單一電纜,藉此介於該鄰接的加熱器控制 器之間所測量的距離可以在一預先決定的範圍內改變。 38 554161 16.如申請專利範圍第12項之加熱器控制系統,其中該 電子溫度感測與控制系統包括用於感測該加熱器表面溫度 並且回應傳送一訊號之溫度感應器、與加熱器之加熱器構 件及該交流電源出口接頭有接觸之電子開關,以及用於處 理該訊號並且以該處理訊號爲基礎操作該電子開關之處理 器,以操作該加熱器構件。 17·如申請專利範圍第16項之加熱器控制系統,其中該 電子溫度感測與控制系統進一步包括通訊地連接到該處理 器’用以設定溫度設定點,該處理器用於將該處理訊號與 籲 該溫度設定點比較,以操作該電子開關,保持該加熱器表 面在該溫度設定點附近之一溫度範圍中。 18.如申請專利範圍第Π項之加熱器控制系統,其中該 溫度輸入爲8-位次開關。 19·如申請專利範圍第17項之加熱器控制系統,其中該 溫度範圍大約小於攝氏5度。 20. 如申請專利範圍第17項之加熱器控制系統,其中該 電子溫度感測與控制系統包括一操作狀況顯示器,其連接 ® 到該處理器,用於在該加熱器控制器視覺地顯示對應於在 該溫度範圍下之第一狀態、對應於在該溫度範圍內之感測 溫度的第二狀態,及對應於在該溫度範圍上之感測溫度之 第三狀態。 21. 如申請專利範圍第17項之加熱器控制系統,其中該 基地站包括用於於該加熱器控制器之輸入與輸出裝置之間 來回傳訊操作資訊,該操作資訊包括感測溫度與溫度設定 39 554161 點指令,藉此該基地站可以實行遠端地設定該每一加熱器 之溫度設定點。 22·如申請專利範圍第21項之加熱器控制系統,進一步 包括一第二基本單元,其連接到一加熱器控制器,而不連 接到該第一加熱器控制器,及一監測站,其通訊地連接到 該基本單元,該監測站被架構用於在每一基本單元來回接 收及傳送該操作資訊。 23. 如申請專利範圍第12項之加熱器控制系統,其中該 基地站包括一交流電力入口接頭,用於接收來自交流電源 之交流電源,以及包括一直流電源供應器,其用於將接收 之交流電源轉換成爲直流電源並且用於傳送該直流電力到 該加熱器控制器。 24. —種控制操作串聯加熱器之方法,包括: 連接加熱器控制器到每一加熱器,每一加熱器控制器 與該加熱器控制器之溫度感應器放置鄰接於連接的加熱器 之加熱器表面,並且包括一交流電源入口接頭與出口接頭 以及一電子開關,其在該連接期間電氣地連接到該溫度感 應器及電氣地接觸該加熱器表面; 連接交流電源到第一加熱器控制器之交流電源入口接 頭; 藉著電氣地與加熱器控制器之分別的交流電源入口接 頭與出口接頭位置鄰接的加熱器控制器連接,經由第一加 熱器控制器之交流電源出口接頭提供交流電源到每一其它 的加熱器控制器; 554161 設定用於每一加熱器控制器之溫度設定點; 利用該溫度感測器感測每一加熱器之加熱器表面之溫 度;以及 回應該感測的加熱器表面溫度而操作每一加熱器控制 器之電子開關,以保持每一感測的加熱器表面溫度在該對 應的加熱器控制器之溫度設定點附近之一溫度範圍內。 25. 如申請專利範圍第24項之方法,其中該溫度設定係 在每一加熱器控制器藉由操作一溫度輸入手動地完成。 26. 如申請專利範圍第24項之方法,其中該溫度設定係 藉由傳送從一基本單元到每一加熱器控制器之操作資訊而 遠端地完成,該加熱器控制器與該基地站通訊地連接。 27. 如申請專利範圍第24項之方法,其進一步包括在每 一加熱器控制器內部轉換該接收的交流電源爲直流電源, 並且供應該直流電源到該溫度感應器與該電子開關。 28. 如申請專利範圍第24項之方法,其進一步包括在每 一加熱器控制器上顯示連接到該加熱器控制器之加熱器的 操作狀況。 29. 如申請專利範圍第28項之方法,其中該操作狀況係 由在該溫度範圍下、在該溫度範圍內,及在該溫度範圍上 其中之一選擇。 30. 如申請專利範圍第29項之方法,其中該溫度範圍爲 小於約攝氏5度。The 554161 switch includes a temperature input for setting the temperature setpoint. 5. The heater controller of item 4 of the patent application, wherein the temperature input is an 8-position program switch. 6. The heater controller of item 1 of the patent application range, wherein the temperature range on each side of the temperature set point is less than about 5 degrees Celsius. 7. The heater controller as described in the first patent application scope, further includes an outer cover which is configured to accommodate the AC power inlet contact, the power supply, and the electric temperature controller, and additionally includes a connection to the temperature. Operating status display of the sensor, the temperature sensor is adapted to provide a surface temperature indication, which is based on a signal from the temperature sensor on the outer surface of the cover. 8. The heater controller according to item 7 of the patent application range, wherein the operating condition display includes a first light emitting diode corresponding to the surface temperature of the heater under the temperature range, and corresponding to the surface of the heater within the temperature range. A second light-emitting diode having a temperature, and a third light-emitting diode corresponding to the surface temperature of the heater at a temperature exceeding the temperature range. 9. The heater controller according to item 7 of the patent application, which further includes a cover having a width of less than about 64 mm, a height of less than about 32 mm, and a length of less than about 70 mm. 10. The heater controller of item i of the patent application scope further includes a transmitter connected to the temperature sensor for transmitting temperature information based on the signal to a remote monitoring location. 11. The heater controller according to item 1 of the patent application, wherein the switch includes a zero voltage switch. 37 554161 12. A heater control system for monitoring and controlling the operation of several heaters, including: a heater controller attached to each heater, wherein each heater controller includes electronic temperature sensing and control A system for sensing the surface temperature of a heater of an auxiliary heater and controlling the operation of the heater based on the sensed temperature, and further comprising a DC power inlet and outlet connector, and a communication inlet connector And an outlet connector, and an AC power inlet and outlet connector; and a base station connected to the first heater controller, the basic unit is structured to communicate with each heater controller and via the first The heater controller provides AC and DC power to each heater controller. 13. The heater control system according to item 12 of the application, wherein the heater controller passes the DC power inlet connector and outlet connector, the communication inlet connector and outlet connector, and the AC power inlet connector and outlet of the heater controller. The connector is connected to the adjacent heater controller electrically and electrically. 14. For example, the heater control system of item 13 of the patent application scope, wherein the * electronic temperature sensing and control system is connected to the DC power inlet connector to communicate with the An inlet connector, and the heater is connected to the AC power inlet connector. 15. The heater control system according to item 13 of the patent application, wherein the communication connection and electrical connection between adjacent heater controllers include a single cable with a winding structure, thereby interposing the adjacent heater The distance measured between the controllers can be changed within a predetermined range. 38 554161 16. The heater control system according to item 12 of the patent application scope, wherein the electronic temperature sensing and control system includes a temperature sensor for sensing a surface temperature of the heater and responding to a signal, and a heater The heater member and the AC power outlet connector have an electronic switch in contact, and a processor for processing the signal and operating the electronic switch based on the processing signal to operate the heater member. 17. The heater control system according to item 16 of the patent application scope, wherein the electronic temperature sensing and control system further includes a processor connected to the processor to set a temperature set point, and the processor is used to connect the processing signal with The temperature set point is compared to operate the electronic switch to keep the surface of the heater in a temperature range near the temperature set point. 18. The heater control system as claimed in claim No. Π, wherein the temperature input is an 8-position switch. 19. The heater control system according to item 17 of the patent application range, wherein the temperature range is less than about 5 degrees Celsius. 20. The heater control system according to item 17 of the patent application, wherein the electronic temperature sensing and control system includes an operating condition display connected to the processor for visually displaying a response at the heater controller A first state in the temperature range, a second state corresponding to the sensed temperature in the temperature range, and a third state corresponding to the sensed temperature in the temperature range. 21. If the heater control system for item 17 of the patent application scope, wherein the base station includes operation information for back and forth communication between the input and output devices of the heater controller, the operation information includes sensing temperature and temperature setting 39 554161 point instruction, whereby the base station can remotely set the temperature set point of each heater. 22. The heater control system as claimed in claim 21, further comprising a second basic unit connected to a heater controller without being connected to the first heater controller, and a monitoring station, which Communicationly connected to the basic unit, the monitoring station is configured to receive and transmit the operation information back and forth in each basic unit. 23. The heater control system as claimed in claim 12, wherein the base station includes an AC power inlet connector for receiving AC power from an AC power source, and includes a DC power supply unit for receiving the The AC power is converted into a DC power and is used to transmit the DC power to the heater controller. 24. A method for controlling and operating a tandem heater, including: connecting a heater controller to each heater, and placing each heater controller and a temperature sensor of the heater controller adjacent to a heater connected to the heater Surface of the heater, and includes an AC power inlet and outlet connector and an electronic switch, which are electrically connected to the temperature sensor and electrically contact the heater surface during the connection; connect AC power to the first heater controller The AC power inlet connector of the heater controller is electrically connected to the heater controller adjacent to the separate AC power inlet connector and the outlet connector of the heater controller, and provides AC power to the AC power outlet connector of the first heater controller. Each other heater controller; 554161 sets a temperature set point for each heater controller; uses the temperature sensor to sense the temperature of the heater surface of each heater; and responds to the sensed heating Control the electronic switch of each heater controller to maintain the Surface temperature corresponding to the temperature of the heater is set within the vicinity of the controller, one temperature range. 25. The method of claim 24, wherein the temperature setting is performed manually at each heater controller by operating a temperature input. 26. The method of claim 24, wherein the temperature setting is done remotely by transmitting operation information from a basic unit to each heater controller, and the heater controller communicates with the base station.地 连接。 Ground connection. 27. The method of claim 24, further comprising converting the received AC power source into a DC power source within each heater controller, and supplying the DC power source to the temperature sensor and the electronic switch. 28. The method of claim 24, further comprising displaying, on each heater controller, an operating condition of a heater connected to the heater controller. 29. The method of claim 28, wherein the operating condition is selected from one of the temperature range, the temperature range, and the temperature range. 30. The method of claim 29, wherein the temperature range is less than about 5 degrees Celsius. 如次頁。Like the next page.
TW91114606A 2001-07-16 2002-07-02 Heater control system with combination modular and daisy chained connectivity and optimum allocation of functions between base unit and local controller modules TW554161B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/907,494 US6894254B2 (en) 2000-04-20 2001-07-16 Heater control system with combination modular and daisy chained connectivity and optimum allocation of functions between base unit and local controller modules

Publications (1)

Publication Number Publication Date
TW554161B true TW554161B (en) 2003-09-21

Family

ID=31979044

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91114606A TW554161B (en) 2001-07-16 2002-07-02 Heater control system with combination modular and daisy chained connectivity and optimum allocation of functions between base unit and local controller modules

Country Status (1)

Country Link
TW (1) TW554161B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253072B2 (en) 2008-08-08 2012-08-28 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Data input device
TWI424650B (en) * 2010-08-27 2014-01-21
TWI473756B (en) * 2007-04-16 2015-02-21 Itt Mfg Enterprises Inc Appliance controller system featuring automatic beverage dispenser shutoff system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI473756B (en) * 2007-04-16 2015-02-21 Itt Mfg Enterprises Inc Appliance controller system featuring automatic beverage dispenser shutoff system
US8253072B2 (en) 2008-08-08 2012-08-28 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Data input device
TWI424650B (en) * 2010-08-27 2014-01-21

Similar Documents

Publication Publication Date Title
US6894254B2 (en) Heater control system with combination modular and daisy chained connectivity and optimum allocation of functions between base unit and local controller modules
JP5601596B2 (en) Heater control method and upper limit temperature safety stop device
US5995350A (en) Temperature controlled circuit interrupter
KR100921673B1 (en) Temperature detection device of bus duct system
CN104564764B (en) Server system
TW486734B (en) Heater control system including satellite control units with integrated power supply and electronic temperature control
US11101633B2 (en) Circuit protection system and method
TW554161B (en) Heater control system with combination modular and daisy chained connectivity and optimum allocation of functions between base unit and local controller modules
TW201206007A (en) Smart controllable power cord
KR100921965B1 (en) Bus bar with function of preventing overheat and remote-monitoring in distributing board
TW202107026A (en) Heater control unit
CN116880617A (en) High-temperature electric tracing temperature control system and method
KR20080112781A (en) Time set up possible green receptacle
GB2479088A (en) Heater controller
CN208283818U (en) Electronic temperature controller
KR101679848B1 (en) Power monitoring device and power management system
JP4519507B2 (en) Private power generator
US20230332956A1 (en) Disaster prevention and warning system
CN220732355U (en) Distribution box for internet data center machine room
KR20230151315A (en) Disaster prevention and warning system
KR20100013025A (en) Intelligent geothermal system control panel with integrated digital controller and motor control panel using Ethernet, RS-485 communication and BACnet protocol.
TW202125913A (en) Power strip module
KR20040083126A (en) Device sensing variation temperature of electric cord
JP2005299601A (en) Non-utility generation device
KR20210053044A (en) Safety outlet with UPS function and mobile control and safety management system using it

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent