552754 五、發明說明(1) 具有垂直豎立共振器之表面發射式雷射(VCSEL:垂直 腔表面發射式雷射:vertical cavity surface emitting laser)例如是由1 997年5月出版之IEEE通信雜誌之第 i 64〜170頁而爲熟知,此雷射包括半導體主體其具有產 生光線之主動層,並且具有共同之結構特徵,其共振器 軸並且由此所發射之光線垂直於半導體主體之主要表面 而實施。 此泵電流通常經由接觸表面而導入於半導體主體中。 因此其可能性爲所熟知,在此半導體主體之耦合而出側 之主要表面上,此接觸表面配置成環接觸之形狀,其中 此雷射射線穿過環形洞孔而由半導體主體耦合而出。 由此環接觸而出此泵(pump)電流被導至主動層。爲了 達成高的泵電流密度或將臨界(threshold)電流保持得小 ,將此泵電流借助於一種電流集束層而集中於主動層之 小的容積中,其在以下稱爲”主動容積”。在此主動容積 中雷射射線產生並增強。 爲了有效率地將泵電流導入於主動容積中,須選擇用 於接觸環內直徑之大小,其相對應於電流集束層或主動 容積之直徑。因爲此主動容積之大小還有所產生之雷射 射線場之範圍確定,此射線場與環接觸洞具有大約相同 的直徑。此導致此所產生射線場之外部區域之環接觸之 某部份被遮蔽,並且因此射線之產量減少。 此外,由US 5,068,868而爲熟知,此VCSEL之耦合而 出側之接觸表面形成爲半透明之金屬層,其同時作爲耦 552754 五、發明說明(2) 合而出鏡子。 在此所描述的是例如具有35奈米(nm)厚度之銀接觸 ,其一方面具有足夠高的反射率作爲共振器鏡,並且另 一方面具有足夠高之耦合而出強度或透射係數。因爲金 屬鏡吸收一部份光線,因此在部份透光之金屬鏡面上產 生明顯之透射損失。其中在US 5,06 8,868中所顯示的例 子中之透射與吸收大約是相同的數量。 本發明的目的是設立一種VCSEL其具有提高的射線 產量。此目的是藉由根據申請專利範圍第1項之VCSEL 而達成。本發明其他有利的發展是申請專利範圍附屬項 2至1 2項之標的。 根據本發明而設有半導體主體,其具有所形成之第一 與第二主要表面,其中此第一主要表面設有第一接觸表 面,並且第二主要表面設有第二接觸表面,並且此在操 作中所產生之射線至少部份經由第二主要表面耦合而出。 此外,在半導體主體中形成主動層,並且配置介於第 一與第二鏡之間。此兩個鏡子限制雷射共振器,其中在 操作中藉由所激發(stimulated)之放射在主動層中產生或 放大射線場。此射線場的一部份經由此第二鏡(其配置於 主動層之面向第二主要表面之面上),而由雷射共振器 (resonator)耦合而出。 此配置於第二主要表面上之第二接觸表面是在發射方 向中配置於第二鏡之後,並且對於所產生的射線形成透 明或半透明。在半透明之接觸表面下因此理解爲一種接 552754 五、發明說明(3) 觸表面,其至少將所擊中光線之一部份透射。 此所產生之光線可以具有優點,其可經由第二接觸表 面穿過耦合而出。同時其中如此形成之VCSEL確保將 泵電流有效率地輸送入主動容積中。 本發明另外的優點在於,此雷射共振器之特徵儘量地 與透明接觸表面之特性無關,因爲此第二接觸表面配置 於第二鏡之後,並且因此關於其透明度與電流輸送可以 以最適的方式實施。 此第二接觸表面較佳形成作爲薄的金屬層。此層的厚 度因此須選擇得小,使得接觸表面對於所產生的光線爲 半透明。關於此透明度而言,是儘可能小的層厚度爲有 利。此由此產之最適之層厚度具有另外的權威,其確保 足夠的電流輸送,因此,此由接觸表面所形成之電阻(串 聯電阻)足夠的小。此外,須選擇接觸表面厚度,使得此 接觸表面具有合理的技術花費並且可以再·生地構成。在 區域中典型之層厚度是介於2奈米(nm)至30奈米之間 〇 在本發明較佳之另外發展中形成第二半透明之環形接 觸表面,因此,此VCSEL之光線產量進一步的提高, 因此VCSEL在環形洞孔之內部區域中具有高的射線產 量,如同根據習知具有環接觸的VCSEL —般。此外, 還有在接觸環之內部邊緣上此射線場之遮蔽有利地降低 ,因爲此環接觸被製成透明或半透明。 此耦合而出側之第二接觸表面較佳形成金屬表面,其 552754 五、發明說明(4) 包括金-鋅合金(AuZn)、或金-鈹合金(AuBe)。此金屬化 合物確保以優點同時在接觸表面之小的串聯電阻中良好 地導入電流以及足夠高的透明度。尤其較佳的是在此旁 邊之第二接觸表面,其在基本上由金-鋅合金構成,並且 具有6奈米(nm)之厚度。 以另一種方式,此耦合而出側之第二接觸表面可以形 成作爲所謂的導電玻璃層,其尤其包含銦氧化物、錫氧 化物或銦錫氧化物(ITO)。上述之化合物經常使用半導體 工業中作爲接觸材料,並且因此在本發明之製造中可以 沒有特別的花費而被加工處理。 本發明有利的配置在於,此第二接觸表面形成環形/ 其中在軸之投影中,此第二接觸表面之內部邊緣區域與 主動容積重疊。因.此此泵電流儘可能地平行於共振器軸 以直接的方式供應主動容積。此確保具有優點特別有效 率地將電流直接輸送至主動容積中,並且同時確保高的 射線產量,因爲此第二接觸表面,並且因此還有此第二 接觸表面之與主動容積重疊之區域被製成透明或半透明。 在本發明之較佳之其他發展中在介於第二主要表面與 主動層之間配置環形之電流集束層。具有優點的是因此 ,此泵電流集中於主動層之中央之中,並且因此達成 VCSEL之高的泵電流密度或是低的泵電流臨界 (threshold) 〇 此電流集束層較佳是毗鄰半導體主體之第二主要表面 。這允許電流集束層容易(例如藉由離子植入)製造,以 552754 五、發明說明(5) 及允許VCSEL之緊密結構。具有特別優點的是在本發 明中此配置於第二主要表面上之第二接觸表面至少部份 地配置於電流集束層孔徑之內,因爲此第二接觸表面對 於所產生的光線是透明或半透明,並且因此光線可以經 由第二接觸表面耦合而出。 第二接觸表面之此種配置確保將泵電流簡單且有效率 地輸送於主動容積中,因此,此接觸表面較佳同樣地形 成環形,其中此接觸表面之孔徑小於電流集束層之孔徑。 本發明其他之特徵,優點與適用性,由以下實施例之 說明參考第1至4圖而得知。 圖式之簡單說明 ' 第1圖是根據本發明之VCSEL之實施例之截面說明 〇 第2圖爲第二接觸表面之透射係數與串聯電阻之取決 於接觸表面厚度之依賴度。 第3圖爲在操作期間取決於泵電流之實施例之光學輸 出功率,與根據習知技術之VCSEL之比較。 第4圖在脈衝操作中取決於泵電流之實施例之光學輸 出功率,與根據習知技術之VCSEL之比較。 此在第1圖中所說明之實施例具有一半導體主體1, 其有第1與第2主要表面,其中此第一主要表面設有第 接觸表面2以及第二主要表面設有第二接觸表面3。此 外在半導體主體1中形成主動層4,其配置介於第一鏡 5與第二鏡6之間。此鏡包括根據Bragg特性之多個具 552754 五、 發明說明 ( 6: 有 交替 式 高 與 低折 射率之層。 此等 鏡 子 5 與 6 形成VCSEL之共振器,其中鏡6是 在 第二 主 要 表 面 或 第二接觸表 面3之面上製成共振器之 耦 合而 出 鏡 〇 介於 耦I 合 而 出 側 之接觸表面 3與主動層4之間,配置 環 形電 流 集 束 層 7 ,其具有導‘ 電之中央與不導電環形之 外部區 域 〇 此 電 流 集束層7在 操作中將泵電流集中於主 動 層4 之 中 央 之 中 ,其中因此 形成主動容積8。藉由此 電 流集 中 而 達 成 在 主動層4中 商之栗電流ΐή'度,或是 VCSEL 之 相 對 應 低 的臨界(threshold)電流。 此光 線 奉禹 合 而 出 側之第二接 觸表面3是形成作爲由金 鋅 (AuZn)合 金 構 成 具有6奈米 (nm)厚度之薄的環形金屬 層 ,並 且 在 900 奈 米範圍之雷 射發射波長中具有大約 50%之透射 。此環形洞孔具有 15微米(μηι)之直徑,其電 流 集束 層 具 有 內 直 徑1 9微米, >因此接觸表面3與電流 集 束層 7 之 孔 徑 在 2微米寬的 環形表面上重疊(在第1圖 中 未按 正 確 比 例 製 成)。 此重 疊 確 保在 所 顯示之實施 例中有效率地將泵電流由 接 觸表 面 3 經 由 電 流集束層7 之內部區域而導入於主動 容 積8 中 〇 因 爲 此 接觸表面3 形成半透明,還有此在主 動 容積 8 之 邊 緣 區 域中所產生 之雷射射線部份地耦合而 出 ,並 且 因 此 VCSEL之光線產量增力口。 在第 2 圖 中 說 明 第二接觸表 面3之透射9與其串聯電 阻 1 0是取決於接觸表面之厚度。其所劃的是用於接觸 -8- 552754 五、 發明說明 ( 7〕 厚 度 爲 3 奈 米 、 6奈米 與1 2奈米之各三個測量點。此在 測 量 點 之 間 所 劃 的線條 僅僅作爲說明 〇 此 透 射 係 數 9 隨著增 加的厚度之下 降在基本上是線性 的 因 此 以 儘 可 能小的 層厚度用於提 高光線之產量是有 利 的 Ο 與 此 相 反 ,電阻 1 0對於在1 2 奈米(mm)與6奈米 之 間 的 層 厚 度 幾 乎沒有 變化,然而在 較小的厚度中增加 〇 相 對 應 的 其 電 性功率 損耗亦增加。 由此兩個關係在用 於金 鋅 接 觸 6 奈 米的區 域中產生最適 的層厚度。對於其 他 的 材料 可 以 類 似的方 式輕易的算出 最適之層厚度。 以 另 外 的 方 式 ,不用 薄的金屬層作 爲半透明之接觸表 面 3 還 可 以 形 成 導電層 ,它由於其組 成成份以及由此所 造 成 的 光 譜 特 性 對於所 產生的光線可 透過。對此適合的 包括 例 如 導 電 玻 璃、錫 氧化物、銦氧 化物或銦錫氧化物 (ITO)。 此等材料在可見的以及接近紅外線的光譜範圍中 非 常 透 明 , 並 且 以其良 好的導電性而 突出其特色。 在 第 3 圖 中 說 明此實 施例在操作期 間對於泵電流之光 學 輸 出 功 率 1 : 1, 與根據 :習知技術具有 可比較結構之 VCSEL 之 輸 出 功 率12之比較。此兩個VCSEL具有環形 之 電 流 集 束 層 7 ,其設= 有內部半徑1 5 微米(μηι)以及環形 接 觸 表 面 其 如 以上所 發明,在2微 米寬的環形區域上 與 電 流 集 束 層 7 之孔徑 重疊。在根據 習知技術的VCSEL 中 5 此 對 應 於 第 二接觸 表面之接觸表 面是製造成爲光線 吸 收 或 光 線 反 射 之接觸 表面,其在基 本上是由鉻-銷-金 之 合 金 所 構 成 〇 / -9- 552754 五、發明說明(8) 在此兩個VCSEL中臨界電流大約是3.5毫安(mA)。 一直至6毫安之泵電流爲止,此兩個VCSEL具有大約 相同之期間輸出功率。在本發明中對於較大之電流之光 學輸出功率1 1明顯地大於根據習知技術之在V C S E L中 之輸出功率,並且前者超過後者大約大於40%。 此VCSEL的行爲是歸因於,在雷射臨界的範圍中一 直至大於6毫安之泵電流在雷射共振器中只傳播基本模 式。此接近高斯形狀(γ)模式之電磁場主要是集中在共振 器之中央,因此共振器之邊緣區域中之遮蔽或輸出功率 之減少,只有微不足道之變化。 在較大的泵電流中傳播較高的模式,其場之分佈在主 動容積之邊緣區域中繼續延伸。在此多模式的操作中造 成本發明之明顯提高之光線產量,因爲藉由形成半透明 之耦合而出之接觸表面3,此遮蔽在較高模式之最大場 區域中尤其減少。 在第4圖中說明在脈衝作業中本發明實施例之VCSEL 之輸出功率13,與根據習知技術之VCSEL輸出功率14 之比較。如同在第3圖中,此兩個VCSEL具有大約相 同之界限電流,其在脈衝作業中是6毫安。 一直至10毫安(mA)之泵電流爲止,此兩個VCSEL顯 示其輸出功率對於泵電流相似之依賴度。在較大的泵電 流中,此根據本發明實施例之輸出功率1 3,在基本上大 於根據習知技術之VCSEL之輸出功率14,並且前者超 過後者最大是大約2.8倍。 -10- 552754 五、發明說明(9 ) 本發明以上之根據實施例之說明是被理解爲當然不能 作爲本發明之限制。 尤其是關於所使用之材料與其他之結構,本發明沒有 受到原則上的限制。 作爲半導體材料可以例效使用以GaAs或InP爲主的 系統,尤其是 InGaAlAs、InGaN、InGaAsP 或 InGaAlP。 符號之說明 1 半導體主體 2 .第一接觸表面 3 第二接觸表面 4 主動層 5 終端鏡 6 耦合面出鏡 7 電流集束層 8 主動容積 9 第二接觸表面(3)之透射係數 10 第二接觸表面(3)之串聯電阻 11 CW-輸出功率 12 根據習知技術之CW-輸出功率 13 脈衝輸出功率 14 根據習知技術之脈衝輸出功率 -11-552754 V. Description of the invention (1) Surface-emitting laser (VCSEL: vertical cavity surface emitting laser) with a vertical vertical resonator is, for example, published by IEEE Communications Magazine in May 1997 It is well known on pages 64 to 170. This laser includes a semiconductor body that has an active layer that generates light and has common structural features. Its resonator axis and the light emitted thereby are perpendicular to the main surface of the semiconductor body. Implementation. This pump current is usually introduced into the semiconductor body via the contact surface. Therefore, the possibility is well known. On the main surface of the coupling-out side of the semiconductor body, the contact surface is configured in the shape of a ring contact, wherein the laser ray passes through the annular hole and is coupled out by the semiconductor body. As a result of this ring contact, the pump current is directed to the active layer. In order to achieve a high pump current density or to keep the threshold current small, this pump current is concentrated in a small volume of the active layer by means of a current bundling layer, which is hereinafter referred to as "active volume". Laser rays are generated and enhanced in this active volume. In order to efficiently introduce the pump current into the active volume, the size of the inner diameter of the contact ring must be selected, which corresponds to the diameter of the current concentrating layer or the active volume. Because the size of this active volume is also determined by the range of the laser field generated, this field has approximately the same diameter as the ring contact hole. This results in that a portion of the ring contacting the outer area of the generated ray field is masked, and therefore the yield of the ray is reduced. In addition, as is well known from US 5,068,868, the contact surface of the coupling side of this VCSEL is formed as a translucent metal layer, which also serves as a coupling 552754. 5. Description of the invention (2) Combined to form a mirror. Described here is, for example, a silver contact having a thickness of 35 nanometers (nm), which on the one hand has a sufficiently high reflectance as a resonator mirror, and on the other hand has a sufficiently high coupling to produce an intensity or transmission coefficient. Because the metal mirror absorbs a part of the light, a significant transmission loss occurs on the partially transparent metal mirror surface. The transmission and absorption in the example shown in US 5,06 8,868 are about the same amount. The object of the present invention is to establish a VCSEL which has improved radiation yield. This objective is achieved by a VCSEL according to item 1 of the scope of patent application. Other advantageous developments of the present invention are the subject matter of the appended items 2 to 12 of the scope of patent application. According to the present invention, there is provided a semiconductor body having first and second main surfaces formed therein, wherein the first main surface is provided with a first contact surface, and the second main surface is provided with a second contact surface, and The rays generated during operation are at least partially coupled out through the second major surface. In addition, an active layer is formed in the semiconductor body and is disposed between the first and second mirrors. These two mirrors confine the laser resonator, in which a field of rays is generated or amplified in the active layer by stimulated radiation during operation. A part of the ray field passes through the second mirror (which is disposed on the surface of the active layer facing the second major surface) and is coupled out by a laser resonator (resonator). The second contact surface disposed on the second main surface is disposed behind the second mirror in the emission direction and is transparent or translucent to the generated rays. Under the translucent contact surface is therefore understood as a kind of contact 552754 V. Description of the invention (3) The contact surface transmits at least a part of the light hit. This generated light can have the advantage that it can pass through the coupling via the second contact surface. At the same time, the VCSEL thus formed ensures that the pump current is efficiently transferred into the active volume. Another advantage of the present invention is that the characteristics of the laser resonator are as independent as possible from the characteristics of the transparent contact surface, because the second contact surface is arranged behind the second mirror, and therefore, its transparency and current transmission can be optimized in a suitable manner. Implementation. This second contact surface is preferably formed as a thin metal layer. The thickness of this layer must therefore be chosen so that the contact surface is translucent to the light produced. For this transparency, it is advantageous to have the smallest possible layer thickness. The optimum layer thickness resulting therefrom has another authority, which ensures sufficient current delivery, and therefore, the resistance (series resistance) formed by the contact surface is sufficiently small. In addition, the thickness of the contact surface must be selected so that the contact surface has a reasonable technical cost and can be reconstituted. The typical layer thickness in the region is between 2 nanometers (nm) and 30 nanometers. A second translucent annular contact surface is formed in a preferred further development of the present invention. Therefore, the light output of this VCSEL is further improved. The VCSEL therefore has a high radiation yield in the inner area of the annular hole, as is the case with VCSELs with ring contact according to the prior art. In addition, the shielding of this ray field on the inner edge of the contact ring is advantageously reduced because the ring contact is made transparent or translucent. The second contact surface on the coupling side preferably forms a metal surface, which is 552754. 5. Description of the invention (4) includes gold-zinc alloy (AuZn) or gold-beryllium alloy (AuBe). This metal compound ensures the good introduction of a current in a small series resistance of the contact surface and a sufficiently high transparency at the same time. Especially preferred is a second contact surface next to this, which is substantially composed of a gold-zinc alloy and has a thickness of 6 nanometers (nm). In another way, the second contact surface on the out side of this coupling can be formed as a so-called conductive glass layer, which in particular contains indium oxide, tin oxide or indium tin oxide (ITO). The above compounds are often used as contact materials in the semiconductor industry, and therefore can be processed without special expenditure in the manufacture of the present invention. An advantageous configuration of the invention is that the second contact surface forms a ring shape / wherein in the projection of the axis, the inner edge area of the second contact surface overlaps the active volume. Therefore, the pump current supplies the active volume in a direct manner as parallel to the resonator axis as possible. This guarantee has the advantage that the current is delivered directly into the active volume particularly efficiently, and at the same time a high ray yield is ensured, since this second contact surface and therefore also the area of the second contact surface which overlaps the active volume are produced Be transparent or translucent. In a preferred further development of the invention, an annular current concentrating layer is arranged between the second major surface and the active layer. It is advantageous that this pump current is concentrated in the center of the active layer, and therefore achieves a high pump current density or a low pump current threshold of the VCSEL. This current concentrating layer is preferably adjacent to the semiconductor body. Second major surface. This allows the current concentrating layer to be easily manufactured (for example, by ion implantation) with 552754 V. Invention Description (5) and allows the compact structure of VCSEL. It is particularly advantageous in the present invention that the second contact surface disposed on the second main surface is at least partially disposed within the aperture of the current concentrating layer, because the second contact surface is transparent or semi-transparent to the generated light It is transparent and therefore light can be coupled out via the second contact surface. This configuration of the second contact surface ensures that the pump current is simply and efficiently transferred into the active volume. Therefore, this contact surface is preferably also formed in a ring shape, wherein the pore diameter of this contact surface is smaller than that of the current concentrating layer. Other features, advantages and applicability of the present invention will be apparent from the description of the following embodiments with reference to Figs. Brief description of the drawings '' The first diagram is a cross-sectional description of an embodiment of the VCSEL according to the present invention. The second diagram is the dependence of the transmission coefficient and series resistance of the second contact surface on the thickness of the contact surface. Figure 3 is a comparison of the optical output power of an embodiment that depends on the pump current during operation, compared to a VCSEL according to conventional techniques. Figure 4 compares the optical output power of an embodiment that depends on the pump current in pulsed operation, compared to a VCSEL according to conventional techniques. The embodiment illustrated in FIG. 1 has a semiconductor body 1 having first and second main surfaces, wherein the first main surface is provided with a second contact surface 2 and the second main surface is provided with a second contact surface. 3. In addition, an active layer 4 is formed in the semiconductor body 1, and its configuration is interposed between the first mirror 5 and the second mirror 6. This mirror includes a number of 552754 based on Bragg characteristics. 5. Description of the invention (6: There are alternating layers of high and low refractive index. These mirrors 5 and 6 form a VCSEL resonator, where mirror 6 is on the second major surface Or, the second contact surface 3 is made with a resonator coupling and exits the mirror. Between the contact surface 3 and the active layer 4 on the coupling side, a ring-shaped current concentrating layer 7 is provided, which has a conductive Central and non-conducting annular outer area. This current collecting layer 7 concentrates the pump current in the center of the active layer 4 during operation, and thus forms the active volume 8. By this current concentration, the quotient in the active layer 4 is achieved The level of chestnut current is relatively low, or the correspondingly low threshold current of the VCSEL. The second contact surface 3 of the light side is formed as a gold zinc alloy (AuZn) alloy with 6 nm (nm) a thin ring-shaped metal layer with a transmission of about 50% at a laser emission wavelength in the 900 nanometer range. The annular hole has a diameter of 15 micrometers (μηι), and its current collecting layer has an inner diameter of 19 microns. ≫ Therefore, the pore diameter of the contact surface 3 and the current collecting layer 7 overlaps on a 2 micron wide annular surface (in FIG. Is not made to the correct ratio). This overlap ensures that the pump current is efficiently introduced into the active volume 8 from the contact surface 3 through the inner area of the current concentrating layer 7 in the embodiment shown. Because this contact surface 3 It is semi-transparent, and the laser rays generated in the edge area of the active volume 8 are partially coupled out, and thus the light output of the VCSEL is increased. The second contact surface 3 is illustrated in FIG. 2 Transmission 9 and its series resistance 10 are dependent on the thickness of the contact surface. It is drawn for contacting -8552552. V. Description of the invention (7) The thickness is 3 nm, 6 nm and 12 nm. Three measurement points. The line drawn between the measurement points is for illustration only. This transmission coefficient 9 increases with The degree of decrease is essentially linear, so it is advantageous to use as small a layer thickness as possible to increase the yield of light. On the contrary, a resistance of 10 for a value between 1 2 nm (mm) and 6 nm There is almost no change in the layer thickness, but its electrical power loss corresponding to an increase in the smaller thickness also increases. These two relationships result in an optimal layer thickness in the area used for gold-zinc contact at 6 nm. For other materials, the optimum layer thickness can be easily calculated in a similar way. In another way, it is not necessary to use a thin metal layer as the translucent contact surface 3 to form a conductive layer. Because of its composition and the resulting spectral characteristics, it is transparent to the light generated. Suitable for this include, for example, conductive glass, tin oxide, indium oxide or indium tin oxide (ITO). These materials are very transparent in the visible and near-infrared spectral range, and they are distinguished by their good electrical conductivity. Fig. 3 illustrates the optical output power of this embodiment for the pump current during operation 1: 1, compared with the output power 12 of the VCSEL with a comparable structure according to the conventional technology. The two VCSELs have a ring-shaped current collecting layer 7, which is set to have an internal radius of 15 μm and a ring-shaped contact surface, which, as invented above, overlaps the aperture of the current collecting layer 7 in a 2 μm wide ring region . In the VCSEL according to the conventional technology, the contact surface corresponding to the second contact surface is a contact surface manufactured to absorb or reflect light, and is basically composed of a chromium-pin-gold alloy. 0 / -9 -552754 V. Description of the invention (8) The critical current in these two VCSELs is about 3.5 milliamperes (mA). Up to a pump current of 6 mA, the two VCSELs have approximately the same period output power. In the present invention, the optical output power 11 for a larger current is significantly larger than the output power in V C S EL according to the conventional technology, and the former exceeds the latter by about 40%. The behavior of this VCSEL is due to the fact that in the laser critical range, a pump current of up to more than 6 mA propagates in the laser resonator only in the basic mode. This electromagnetic field close to the Gaussian shape (γ) mode is mainly concentrated in the center of the resonator, so the shading or output power reduction in the fringe area of the resonator is only insignificant. Higher modes propagate in larger pump currents, and their field distribution continues to extend in the edge region of the active volume. In this multi-mode operation, the significantly increased light yield of the invention is created, because by forming the contact surface 3 by forming a translucent coupling, this shading is particularly reduced in the maximum field area of the higher modes. The comparison of the output power 13 of the VCSEL according to the embodiment of the present invention in pulse operation with the output power 14 of the VCSEL according to the conventional technology is illustrated in FIG. 4. As in Figure 3, these two VCSELs have approximately the same limit current, which is 6 mA in pulse operation. Up to a pump current of 10 milliamps (mA), these two VCSELs show similar output power dependence on pump current. In larger pump currents, the output power 13 according to the embodiment of the present invention is substantially larger than the output power 14 of the VCSEL according to the conventional technology, and the former exceeds the latter by about 2.8 times at the maximum. -10- 552754 V. Description of the invention (9) The above description of the present invention according to the embodiments is understood as of course not to be a limitation of the present invention. In particular, regarding the materials used and other structures, the present invention is not limited in principle. As a semiconductor material, GaAs or InP-based systems can be used as examples, especially InGaAlAs, InGaN, InGaAsP, or InGaAlP. Explanation of symbols 1 Semiconductor body 2. First contact surface 3 Second contact surface 4 Active layer 5 Terminal mirror 6 Coupling surface out of mirror 7 Current collecting layer 8 Active volume 9 Transmission coefficient of second contact surface (3) 10 Second contact surface (3) Series resistance 11 CW-output power 12 CW- output power according to the conventional technology 13 Pulse output power 14 Pulse output power according to the conventional technology -11-