TW541590B - Electron beam exposure apparatus and exposure method - Google Patents

Electron beam exposure apparatus and exposure method Download PDF

Info

Publication number
TW541590B
TW541590B TW91105272A TW91105272A TW541590B TW 541590 B TW541590 B TW 541590B TW 91105272 A TW91105272 A TW 91105272A TW 91105272 A TW91105272 A TW 91105272A TW 541590 B TW541590 B TW 541590B
Authority
TW
Taiwan
Prior art keywords
exposure
data
electron beam
individual
areas
Prior art date
Application number
TW91105272A
Other languages
Chinese (zh)
Inventor
Tomohiro Sakazaki
Shinichi Hamaguchi
Hiroshi Yasuda
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Application granted granted Critical
Publication of TW541590B publication Critical patent/TW541590B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An electron beam exposure apparatus, in partial exposure area where divided into area smaller than deflection width which electron beams deflectable at deflection part comprising: plurality individual exposure data storage part, used to storage shot position data which indicate electron beam exposure shot pattern position as shot position, shot position calculate part, use to reading the shot position data included in electron beam exposure partial exposure area from exposure data storage part, according the relative position of the wafer stage position as wafer stage and the position of the partial exposure area, and the relative position of the position of the partial exposure area and shot position, calculate shot position data which indicate electron beam exposure position, deflection control part, used to control deflection part.

Description

541590 玖、發明說明 (發明說明應敘明··發明所屬之技術領域、先前技術、內容、實 施方式及圖式簡單說明) 一 發明所屬的技術領域 本發明係有關於一種電子束曝光裝置及曝光方法。而且,本 發明係與下述之日本專利相關。在參照文獻時請依據指定國家進 行參照,且在參照下述發明中所記載之內容之後,即納入本發明 中,爲本發明之記載的一部份。 特願2001-109838 申請日平成13年4月9日 習知的技術 電子束曝光裝置係使用複數的電子束對晶圓進行圖案的曝 光。在使用複數電子束對晶圓曝光處理的習知電子束曝光裝置 中,各電子束對晶圓的曝光必須區域相異,亦即是,使用複數電 子束的習知電子束曝光裝置,於曝光處理中控制各電子束的控制 系統,對照各電子束對晶圓曝光必須區域的曝光圖案,每一個別 電子束個別形成曝光資料,並儲存每一個別電子束生成的曝光資 料。亦即是,習知的電子曝光裝置,於每一個別的電子束具有曝 光資料儲存部,且於曝光資料儲存部中儲存用以控制各電子束的 曝光資料,更對各電子束個別讀出相異的曝光資料。 近年來伴隨著半導體元件的細微化,一個半導體元件所擁有 的元件數目增加爲相當大,用以曝光1個半導體元件的曝光資 料,亦隨著元件數的增加而變大。例如1次曝光照射(Shot)相當 於具有6位元的資料量,對1個半導體元件曝光需要40億曝光 照射之曝光照射數的場合,對1個半導體元件曝光所需要的曝光‘ 9047pifl.doc/015(有劃底線) 6 541590 資料的資料量則爲240億位兀(Gigabyte,GB)。 · 如上所述,習知的電子束曝光裝置必須對各電子束形成相異 的曝光資料,並將個別曝光資料個別的儲存。特別是半導體元件 的尺寸與電子束的間隔不一致的場合,於晶圓上的複數電子束經 過曝光必須的複數區域’爲了設置一^個半導體元件,每一個別電 子束必須持有全部的相異曝光資料。特別是,伴隨著半導體元件 的其他品種化,以電子束曝光裝置曝光的半導體元件尺寸係多種 類多樣化。 而且’形成半導體元件的晶圓朝向大尺寸化,隨之必要電子® 束的條數亦增加。例如上述的場合使用150條的電子束曝光晶圓 的場合,必須要3400 GB的曝光資料量。依此電子束曝光裝置所 處理的資料量龐大,曝光資料的高速處理困難,半導體元件量產 上所必須的產率(Throughput)極難再向上提昇。 再者’期望能夠利用於電子束曝光裝置之半導體元件的量 產,以及提供市場價廉的電子束曝光裝置。然而,由於習知的電 子束曝光裝置需要龐大量的硬碟或是半導體記憶體等記憶元 件,對朝向電子束曝光裝置之量產元件的實用化產生了更大的障鲁 礙。 而且’由於各電子通過通路的圓柱係經由精密加工以形成, 亦有包括加工誤差的場合。因此,使用多數電子束的場合各圓柱 間的間隔並非必定爲等間隔。於此種場合對各電子束生成曝光資 料變得更形困難。 此處本發明的目的在提出一種電子束曝光裝置以及曝光方 法’能夠解決上述的課題。此目的係由申請專利範圍的獨立項所 9〇47pifl .doc/015(有劃底線) 7 541590 記載的特徵組合所達成。而且附屬項規定了本發明更有利的具體 例。 發明的揭示 爲了達成本發明的目的,依本發明的第一實施例,以複數電 子束對晶圓上圖案曝光的電子束曝光裝置中,其具備有:電子束 發生部、偏向部、晶圓載物臺、複數的個別資料儲存部、個別配 置資料儲存部、照射位置計算部與偏向控制部。其中電子束發生 部係用以產生複數電子束。偏向部係用以將複數的電子束個別獨 立偏向。晶圓載置台係用以載置晶圓。個別曝光資料儲存部係用 以儲存曝光照射位置資料,其中此曝光照射位置資料係在個別曝 光區域所包含的部分曝光區域中表示曝光照射位置’尙且個別曝 光區域係爲於晶圓曝光必須區域中,個別電子束曝光必須區域, 部分曝光區域係爲較以偏向部電子束可偏向的偏向幅寬小之區 域,曝光照射位置係爲電子束曝光必須曝光照射圖案的位置。個 別配置資料儲存部係用以儲存部分區域資料與部分區域位置資 料,其中部分區域資料係表示個別的個別曝光區域的部分曝光區 域,部分區域位置資料係表示部分區域位置,且部分區域位置係 爲部分曝光區域的預定位置。照射位置計算部係基於部分區域資 料,將電子束曝光必須部分曝光區域所包含的曝光照射位置資 料,由個別曝光資料儲存部讀出,並基於作爲載物台位置的晶圓 載物台位置與部分區域位置的相對位置’以及部分區域位置與曝 光照射位置的相對位置,計算出表示電子束照射必須位置的照射 位置資料。偏向控制部係基於照射位置資料控制偏向部。 8 9 047pifl.doc/015(有劃底線) 541590 而且,較佳爲個別曝光區域具有複數的條帶曝光區域,且個 · 別條帶曝光區域中包含複數的部分曝光區域,個別配置資料儲存 部更具備有表示個別曝光區域所包含條帶曝光區域的條帶區域 資料,表示作爲條帶位置的條帶曝光區域之特定位置的條帶位置 資料,照射位置計算部更基於條帶區域資料,由個別曝光資料儲 存部讀出曝光照射位置資料,更基於載物台位置與條帶位置的相 對位置,以及條帶位置與部分區域位置的相對位置,計算出照射 位置資料 而且,個別曝光資料儲存部更儲存表示曝光照射圖案形狀的 ® 曝光照射形狀資料,並且,較佳爲更具備有電子束成形裝置,此 電子束成形裝置由個別曝光資料儲存部讀出曝光照射形狀資 料,基於此曝光照射形狀資料,將複數電子束的個別剖面形狀獨 立成形,再者,電子束成形裝置較佳爲具有第1成形構件、第2 成形構件、成形偏向部與成形偏向控制部。其中第1成形構件具 有複數的第1成形開口部,用以形成複數電子束的剖面形狀。第 2成形構件具有複數的第2成形開口部,用以形成於第1成形構 件中形成的複數電子束。成形偏向部係用以將通過第1開口部的 _ 複數電子束個別獨立的偏向。成形偏向控制部係基於曝光照射形 狀資料,控制成形偏向部。 而且,第2成形構件較佳爲更具有作爲複數的區塊(Block) 成形開口部的相異形狀開口部。再者,個別曝光儲存部更儲存有 表示於晶圓上曝光曝光照射圖案時間的曝光時間資料’而且較佳 爲更具備照射切換裝置與曝光時間控制部,其中照射切換裝置用 以獨立切換個別的電子束是否照射於晶圓上,曝光時間控制部基 9 047pifl.doc/015(有劃底線) 9 541590 於曝光照射時間資料所對應的時間控制照射切換裝置。 而且’亦可以於個別資料配置儲存部更儲存有部分區域資料 以及部分區域數資料,其中部分區域資料係表示條帶曝光區域的 預定曝光區域,部分區域數資料係表示由預定曝光區域連續配置 的電子束曝光必須部分曝光區域的數目。且照射位置計算部基於 此部分區域資料以及此部分區域數資料,讀出部分曝光區域內包 含的曝光照射位置資料,並計算出照射位置資料。 而且,預定部分曝光區域可以設置於包含此預定部分曝光區 域的條帶曝光區域的最外周。 而且,亦可以於個別配置資料儲存部更儲存有位址資料,其 中此位址資料係用以表示儲存有表示預定部分曝光區域之部分 區域資料的個別曝光資料儲存部的位址。且照射位置計算部基於 位址資料以及部分區域數資料,由個別曝光資料儲存部讀出部分 區域資料。 而且,亦可以更具備曝光資料儲存部,用以儲存個別曝光區 域的個別曝光區域所包含的曝光照射位置資料以及部分區域資 料,個別曝光資料儲存部由曝光資料儲存部讀出、個別曝光區域 所包含的曝光照射位置資料以及部分區域資料,而且於此場合亦 可以更具備一個以上的曝光資料儲存部。 而且,在複數的電子束可曝光預定部分曝光區域的場合,於 複數的電子束中,能夠對預定部分曝光區域曝光之面積最大的電 子束所對應的個別配置資料儲存部’亦可以儲存表示預定曝光部 分的部分區域資料以及部分區域位置。而且’部分曝光區域,亦 可以條帶曝光區域之短方向的長度與偏向部以電子束可偏向的 10 9 047pifl.doc/015(有劃底線) 541590 偏向距離略相等,而且,部分曝光區域的一邊,以偏向距離的略 · 整數分之一形成。 而且,晶圓載物台沿著條帶曝光區域的長方向連續移動部分 曝光區域曝光必須的晶圓,於晶圓載物台連續移動的場合中,預 定的電子束亦可以對與此預定電子束於長方向鄰接的其他電子 束所曝光之曝光條帶曝光區域未同一直線的條帶曝光區域進行 曝光。 而且,個別的個別配置資料儲存部,亦可以對略垂直條帶曝 光區域之長方向的方向中,基於電子束照射必須的理想照射位置 * 與實際上電子束照射的實際照射位置的距離,儲存包含預定的電 子束以及其他的電子束曝光必須條帶曝光區域的部分區域資料。 對連續移動方向略垂直的預定方向的理想照射位置與照射 位置距離最大的電子束,亦可以在設置於與此電子束曝光必須個 別曝光區域的預定方向之相反方向端部的條帶曝光區域,進行最 初的照射。而且,亦可以於複數的個別配置資料儲存部中,至少 一個的個別配置資料儲存部儲存至少一個的條帶曝光區域所包 含的複數部分區域資料之中一部份的部分區域資料。 籲 依本發明的第二實施例,本發明係提供一種曝光方法,在使 用複數電子束於晶圓上曝光圖案的曝光方法中,其特徵爲具備下 列步驟:形成複數電子束,將晶圓載置於晶圓載物台,於晶圓曝 光必須曝光區域中作爲個別曝光區域的個別電子束曝光必須區 域所包含,分解爲較作爲部分曝光區域的偏向部以電子束可偏向 之偏向幅寬小的區域,於每一部分曝光區域儲存表示部分曝光區 域的電子束曝光必須曝光照射圖案之位置的曝光照射位置資 9047pifl.d〇C/〇15(有劃底線) 11 541590 料,儲存表示個別的個別曝光區域之部分曝光區域的部分區域資· 料,以及表示部分曝光區域之作爲部分區域位置的預定位置之部 分區域位置資料,基於部分區域資料,由個別曝光資料儲存部讀 出電子束曝光必須部分曝光區域所包含的曝光照射位置資料,並 基於作爲載物台位置的晶圓載物台位置與部分區域位置的相對 位置,以及部分區域位置與曝光照射位置的相對位置,計算出表 示電子束照射必須位置的照射位置資料,基於照射位置資料,個 別獨立偏向複數電子束。 尙且,上述的發明槪述,並非全部列舉本發明的必要特徵,_ 此些之特徵群的組合亦能夠構成本發明。 圖式之簡單說明 第1圖所繪示爲本發明的一實施例的電子束曝光裝置1〇〇的 構成示意圖; 第2圖所繪示爲照射晶圓44之複數電子束的照射位置,以 及個別電子束照射必須之個別曝光區域的一實施例示意圖; 第3圖所繪示爲個別曝光區域200的示意圖; · 第4圖所繪示爲條帶曝光區域204的示意圖; 第5圖所繪示爲部分曝光區域206的示意圖; 第6圖所繪示爲控制系統140的構成之一實施例的示意圖; 第7A圖所繪示爲儲存於曝光資料儲存部172之資料的示意 圖; 第7B圖所繪示爲儲存於配置資料儲存部174之資料的示意 圖; 12 9 047pifl.doc/015(有劃底線) 541590 第8圖所繪示爲計算出電子束照射位置之方法的槪略示意 圖; 第9圖所繪示爲部分曝光區域206的部分區域位置214以及 曝光照射圖案208的示意圖; 第10A圖所繪示爲電子束通過通路上的圓柱(cohimri)位置的 示意圖;以及 第10B圖所繪示爲通過各圓柱的電子束曝光之個別曝光區域 200的示意圖。 圖式之標記說明 8 :外罩 10 :電子槍 14 :第1成形構件 16 :第1多軸電子透鏡 18 :第1成形偏向部 20 :第2成形偏向部 22 :第2成形構件 24 :第2多軸電子透鏡 26 :匿影電極陣列 28 :電子束遮蔽構件 34 :第3多軸電子透鏡 36 :第4多軸電子透鏡 38 :偏向部 44 ··晶圓 9 047pifl.doc/015(有劃底線) 13 541590 46 :晶圓載物台 ^ 48 :晶圓載物台驅動部 52 :第5多軸電子透鏡 80 :電子束控制部 82 :多軸電子透鏡控制部 84 :成形偏向控制部 86 :匿影電極陣列控制部 92 :偏向控制部 96 :晶圓讎肖控獅 * 100 :電子束曝光裝置 110 :電子束成形裝置 112 :照射切換裝置 114 :晶圓用投影系統 120 :各別控制部 130 :總括控制部 140 :控制系統 150:曝光部 鲁 170 :中央處理部 172 :曝光資料儲存部 174 :配置資料儲存部 200、200a、200b、200c :個別曝光區域 202、202a、202b、202c :實際圓柱位置 202a’、202b’、202c’ :理想圓柱位置 204、204a-l 〜204a-278、204b-l 〜204b-278、204c-l 〜 9 047pifl.doc/015(有劃底線) 14 541590 204c-278 :條帶曝光區域 206 :部分曝光區域 208、208-1〜208-8 :曝光照射圖案 210 :載物台位置 212 :條帶位置 214 :部分區域位置 216 :曝光照射向量 256 :個別偏向控制部 258 :個別曝光資料儲存部 260 :個別配置資料儲存部 262 :照射位置計算部 264 :數位/類比變換部 A ·線 較佳實施例 以下參照圖式對本發明的一實施例加以說明。 第1圖所繪示爲本發明的一實施例之電子束曝光裝置100的 構成示意圖。電子曝光裝置i〇0具備有:以電子束對晶圓進行預 定曝光處理的曝光部150,與控制包含曝光部150各構成之動作 的控制系統140。 曝光部150具備有電子光學系統’電子光學系統包含·於夕t 罩8的內部形成複數電子束,將電子束的剖面形狀依所期望形狀 形成的電子束成形裝置110、對個別的電子束獨立的切換複數電 子束是否照射於晶圓44的照射切換裝置112、調整轉移於晶圓 9 047pif 1 .doc/0 1 5(有劃底線) 15 541590 44的圖案之影像方向與尺寸的晶圓用投影系統114。尙且’曝光 部15 0具備有載物台系統’載物台系統包括:載置曝光必須圖案 晶圓44的晶圓載物台46、驅動晶圓載物台46的晶圓載物台驅動 部48 〇再者一具播有—曰暑休或昼 台—4ό的標記部糾~~的每子束,檢播沿~由暑語部"族射~ 的-2-次罨子或反好電子的電子—險測裝置3n電子-檢播裝藝^⑽ 檢_測出由層記都一族射的屬子,並將檢測出的罨子畺得斟懲將 電子束成形裝置110具備有··形成複數電子束的電子槍10、 具有使電子束通過的複數開口部’以使照射之電子束的剖面形狀 成形的第1成形構件14與第2成形構件22、將複數電子束個別 獨立的聚焦,以調整複數電子束焦點的第1多軸電子透鏡16 ’使 通過第1成形構件14的複數電子束獨立偏向的第1成形偏向部 18與第2成形偏向部20。第1成形偏向部18與第2成形偏向部 20,於各電子束通過通路(以下稱之爲圓柱)的周圍設置有複數的 偏向器。 照射切換裝置112具備有:將複數電子束個別獨立的聚焦’ 且調整複數電子束焦點的第2多軸電子透鏡24、藉由複數電子束 的個別獨立與偏向,以對個別的電子束獨立切換個別的電子束是 否對晶圓44照射的匿影電極陣列26、包含使電子束通過的複數 開口部,並遮蔽以匿影電極陣列26偏向的電子束的電子束遮蔽 構件28。在其他範例中,匿影電極陣列26亦可以爲匿影隙縫陣 列兀件(blanket aperture array device)。 晶圓用投影系統114具備有:將複數電子束個別獨立的聚 9047pifl.doc/015(有劃底線) 541590 焦,且縮小電子束的照射徑的第3多軸電子透鏡34、將複數電子 束個別獨立的聚焦’且調整複數電子束的焦點的第4多軸電子透 鏡36、使複數電子束個別偏向至晶圓44之所希望位置的偏向部 38、對晶圓44作爲對物透鏡,將複數電子束個別獨立聚焦的第5 多軸電子透鏡52。 控制系統140具備有個別控制部120與總括控制部130。個 別控制部120具有電子束控制部80、多軸電子透鏡控制部82、 成形偏向控制部84、匿影電極陣列控制部86、偏向控制部92、 反射電子處理部94與晶圓載物台控制部96。總括控制部130例 如是工作站,總括控制包含個別控制部120的各控制部。電子束 控制部80,控制電子束發生部10。多軸電子透鏡控制部82供給 第1多軸電子透鏡16、第2多軸電子透鏡24、第3多軸電子透 鏡34、第4多軸電子透鏡36、第5多軸電子透鏡52電流並加以 控制。 成形偏向控制器84控制第1成形偏向部18與第2成形偏向 部20。匿影電極陣列控制部86對包含於匿影電極26內的偏向電 極外加電壓並控制。偏向控制部92對包含於偏向部38內的複數 偏向器具有的偏向電極外加電壓並控制。晶圓載物台96以晶圓 載物台驅動部48驅動,使晶圓載物台46移動至預定的位置。 本實施例的電子束控制部80、成形偏向控制部84、匿影陣 列電極控制部86以及偏向控制部92,構成獨立控制通過各_柱 之電子束的圓柱控制系統。包含於圓柱控制系統的各控制部,亦 可以針對各圓柱獨立設置。 第2圖所繪示爲照射晶圓44之複數電子束的照射位置,以 9047pifl.d〇C/015(有劃底線) 541590 及個別電子束照射必須之個別曝光區域的一實施例示意圖。本實 施例的晶圓載物台46、晶圓44向預定的方向連續移動,且向與 預定方向略垂直的方向階段式的移動。於第2圖中,晶圓載物台 46連續移動的方向爲y軸方向,階段式移動的方向爲X軸方向。 圓柱位置202係表示各圓柱管(Column cell)的配置位置。而且, 個別曝光區域200係表示個別電子束曝光必須區域。各圓柱管的 設置較佳爲使複數電子束對晶圓44格子狀照射。且更佳爲使複 數的電子束間隔晶圓中一個晶片所形成區域之一邊長度的略整 數倍或整數分之1的間隔進行照射。 第3圖所繪示爲個別曝光區域200。個別的個別曝光區域200 具有複數的條帶曝光區域204。條帶曝光區域204較佳爲矩形。 而且條帶曝光區域204較佳爲於X軸方向具有預定的長度,y軸 方向係由個別曝光區域200的一端至另一端所設置的區域。此預 定長度,較佳爲晶圓載物台46於y軸方向連續移動期間電子束 能夠曝光的長度。於本實施例的條帶曝光區域204,能夠以偏向 部38將個別電子束偏向\軸方向的長度。 然後,藉由使晶圓載物台46沿著y軸預定方向連續移動以 f吏晶圓44連續移動,曝光預定的條帶曝光區域204。此預定的條 帶曝光區域2〇4曝光結束後,以晶圓載物台46使晶圓44向X方 向移動預定的距離。此預定距離較佳爲與條帶曝光區域204的X %方向長度略等距離。然後,藉由使晶圓載物台46使晶圓載物 & 46向y軸預定方向之相反方向連續移動以使晶圓44連續移 動’曝光此預定的條帶曝光區域204鄰接的個別曝光區域204。 藉由反覆操作上述以晶圓載物台46使晶圓44向y軸方向連續移 9〇47Pifl.doc/015(有劃底線) 18 541590 動的動作,以及以晶圓載物台46使晶圓44向χ軸方向階段式移 · 動的動作,以曝光個別曝光區域200。於其他範例中,亦可以藉 由晶圓台46使晶圓44朝一定方向移動,對複數的曝光區域進行 曝光。第4圖所繪示爲條帶曝光區域204。個別的條帶曝光區域 204具有複數的部分曝光區域206,此部分曝光區域206係將晶 圓44曝光必須區域的曝光區域,分解爲較以偏向部38電子束可 偏向之偏向距離小的區域。部分曝光區域206較佳爲矩形,而且 一邊長度較佳爲此偏向距離的略整數分之一。本實施例的個別曝 光區域200爲正方形,部分曝光區域與個別曝光區域具有相似形 ® 狀。 第5圖所繪示爲部分曝光區域206。個別的部分曝光區域 206,藉由切換電子束是否照射晶圓44的照射切換手段,此電子 束每次照射於晶圓44時,具有作爲晶圓44曝光圖案的曝光照射 圖案208。曝光照射圖案208的決定,係藉由將晶圓曝光必須圖 案,基於電子束成形手段可形成的電子束剖面形狀加以分解以決 定。電子束較佳爲對預定的部分曝光區域206以曝光必須的曝光 照射圖案曝光後,對其他的部分曝光區域206以曝光必須的曝光鲁 照射圖案曝光。而且,於條帶曝光區域204亦可以具有不具備曝 光照射圖案208的部分曝光區域206。 第6圖所繪示爲控制系統140之構成的一實施例,總括控制 部130具備有:對控制系統14〇進行全部控制的中央處理部170、 儲存曝光資料的曝光資料儲存部172、儲存個別配置資料的配置 資料儲存部174。偏向控制部92具有複數的個別偏向控制部 256,以控制使個別電子束偏向的偏向器。而且,個別偏向控制 9〇47pifl.doc/015(有劃底線) 19 541590 部具有:個別曝光資料儲存部258,用以儲存曝光資料儲存部172 所儲存資料的至少一部份。個別配置資料儲存部260,用以儲存 必須控制電子束對應曝光晶圓44之個別曝光區域200的個別配 置資料。照射位置計算部262,用以計算出個別曝光資料儲存部 258所儲存的曝光資料、個別配置資料儲存部260所儲存的個別 配置資料、基於晶圓載物台46的載物台位置之電子束照射位置、 以及基於此照射位置控制偏向部38的控制資料。數位/類比變換 部264,用以將此控制資料變換爲外加於包含於偏向部38之偏向 電極的電壓所對應的類比電壓資料。 個別的個別偏向控制部256,較佳爲共用曝光資料儲存部172 所儲存的相同曝光資料。而且,個別偏向控制部256較佳爲由配 置資料儲存部174讀出控制各個別偏向控制部256必須之圓柱的 資料,並儲存於個別配置資料儲存部260。於其他範例中,控制 系統140亦可以具有複數的曝光資料儲存部172。此時各曝光資 料儲存部172較佳爲儲存相同的曝光資料,而且,複數的各個別 偏向控制部256較佳爲由1個曝光資料儲存部172讀出曝光資 料。例如是對1個曝光資料儲存部172,以4個各個別偏向控制 部256讀出資料。 其次,說明對曝光資料儲存部172以及配置資料儲存部174 所儲存資料的一實施例。 於第7A圖與第7B圖所所繪示爲於曝光資料儲存部172以及 配置資料儲存部174所儲存的資料。第7A圖所繪示爲儲存於曝 光資料儲存部172的曝光資料的一實施例。曝光資料儲存部Π2 於對晶圓44曝光重複圖案的場合,較佳爲儲存包含以重複圖案 20 9047pifl.d〇c/015(有劃底線) 爲單位圖案的曝光資料。於本實施例的曝光資料,係爲形成晶圓 44的一個電子元件之曝光區域必要的曝光資料。曝光資料包含複 數的部分曝光資料,其中此些複數的部分曝光資料係用以曝光包 含於此曝光區域之複數的部分曝光區域206。而且,部分曝光資 料包含部分區域編號與曝光照射資料。其中部分區域編號係爲用 以識別部分曝光區域206的資料,曝光照射資料係爲用以曝光包 含於部分曝光區域206內之曝光照射圖案208的資料。而且,全 部的曝光照射圖案208亦可包含於任意的部分曝光區域206內以 構成部分曝光區域206。 曝光照射資料包含曝光照射位置資料、曝光照射形狀資料、 曝光照射時間資料。而且,於曝光照射資料內,較佳爲更包含用 以識別個別曝光照射資料的曝光照射識別資料。 曝光照射位置資料表示曝光照射圖案208於晶圓44的曝光 位置。而且,曝光照射位置資料較佳爲能夠表示包含曝光照射圖 案208之部分曝光區域206對曝光照射圖案208的相對位置。於 本實施例曝光照射位置資料係表示從部分曝光區域206中心位置 的相對位置。 曝光照射形狀資料係表示曝光於44上之曝光照射圖案208 的形狀。曝光照射圖案208較佳爲具有與X軸方向略平行的一邊 以及與y軸方向略平行的一邊所構成的矩形。本實施例的曝光照 射形狀資料,其略平行X軸方向的一邊長度以及略平行y軸方向 的一邊長度爲定値資料。曝光照射時間資料係表示電子束對曝光 曝光照射圖案208需於曝光必須晶圓44進行照射的照射時間。 曝光資料儲存部172藉由以較偏向部38電子束可偏向之偏 9047pifl.doc/015(有劃底線) 541590 向幅寬小的部分曝光區域分割、儲存曝光資料,控制各圓柱的個 別控制系統,能夠共用儲存於曝光資料儲存部172的曝光資料。 亦即是,由於各圓柱控制系統不需對個別電子束持有曝光資料, 電子束曝光裝置所需要的記憶體等記憶裝置能夠大幅的減少。進 而能夠大幅降低電子束曝光裝置的成本。再者,由於曝光資料儲 存部172以部分曝光區域爲單位儲存曝光照射資料,能夠大幅降 低曝光資料於曝光照射資料的展開次數以及曝光資料的傳送次 數。亦即是,由於曝光資料能夠極有效率的進行處理,曝光處理 速度能夠大幅的提昇。 ® 第7B圖所繪示爲儲存於配置資料儲存部174之複數的個別 配置資料的一實施例。配置資料儲存部174係儲存對應個別電子 束的個別配置資料。亦即是,個別配置資料包含用以使個別電子 束對作爲曝光區域的個別曝光區域200進行曝光的資料。 個別配置資料包含條帶曝光資料,其中條帶曝光資料係用以 曝光個別曝光區域200所包含的條帶曝光區域204。個別的條帶 曝光資料中包含條帶區域編號、條帶位置資料與部分區域資料。 其中條帶區域編號係用以識別個別的條帶曝光區域204,條帶位鲁 置資料係用以表示預定位置之條帶曝光區域204的條帶位置,部 份區域資料係表示包含於條帶曝光區域204內的部分曝光區域 206。此預定位置,較佳爲能表示個別曝光區域200的此條帶曝 光區域204的位置。於本實施例此預定位置爲條帶曝光區域204 的中心位置,並表示個別曝光區域2〇〇對此中心位置相對的位置。 部分區域資料係在形成於晶圓44上的複數晶片中包含晶片 編號、部分區域編號與部分區域位置資料。其中晶片編號係用以 22 9 047pifl.doc/015(有劃底線) 541590 識別此部分曝光區域所包含的晶片,部分區域編號係用以識別此 部分曝光區域206,部分區域位置資料係用以表示預定位置之此 部分曝光區域206的部分區域位置。此預定位置較佳爲能表示條 帶曝光區域204的此個別曝光區域206的位置。於本實施例此預 定位置爲部分曝光區域206的中心位置,並表示條帶曝光區域204 對此中心位置相對的位置。 而且,個別配置資料較佳爲更包含部分區域指示資料以及部 分區域數資料。其中部分區域指示資料係用以指示個別的條帶曝 光區域204所包含的預定個別曝光區域206,部分區域數資料係 用以指示由此部分曝光區域指示資料連續配置、電子束曝光必須 的部分曝光區域206的數目。此時,此預定的部分曝光區域206, 較佳爲配置於條帶曝光區域204最外周的部分曝光區域。 個別配置資料藉由包含部分區域數資料,在個別區域資料儲 存部206不需儲存電子束曝光必須的全部之曝光區域的部分區域 編號。因此,個別區域資料儲存部206所除純的資料量得以大幅 減少。因此,照射位置計算部262計算出電子束照射位置的時間 得以縮短,進而能夠提昇電子束曝光裝置的產率。 請參照第1圖並對進行曝光處理的電子束曝光裝置100的動 作做說明。首先,複數的電子槍1〇形成複數電子束。第1成形 構件14係使電子束發生部10所產生並照射至第1成形構件14 的複數電子束,以通過設置於第1成形構件14的複數開口部而 形成矩形的電子束。於其他範例中,亦可以更具有分割電子槍10 所形成之複數電子束的裝置,以產生複數電子束。 第1多軸電子透鏡16,將形成矩形的電子束獨立的聚焦,並 9047pifl.d〇c/015(有劃底線) 23 以每一電子束獨立調整對第2成形構件22之電子束的焦點。成 形偏向控制部84係基於在第2成形構件以電子束曝光照射形狀 資料,控制形成矩形必須的第1成形偏向部18以及第2成形偏 向部。成形偏向控制部84亦可以對應圓柱控制系動作用的基準 時脈進行動作。 第1成形偏向18,基於成形偏向控制部84的指示’將於第 1成形構件14形成矩形的電子束,照射於第2成形構件22期望 位置的個別獨立偏向。而且,第2成形偏向部20,基於成形偏向 控制部84的指示,將第1成形偏向部18所偏向的複數電子束, 個別偏向至對第2成形構件22略垂直的方向並照射至第2成形 構件22。然後,包含具矩形形狀之複數開口部的第2成形構件 22,照射於第2成形構件22且具有矩形剖面形狀的複數電子束’ 更形成具有對晶圓44照射所期望剖面形狀的電子束。 第2多軸電子透鏡24,將複數電子束獨立的聚焦,並個別獨 立調整對匿影電極陣列26的電子束的焦點。然後,以第2多軸 電子透鏡24個別調整焦點的複數電子束,通過包含於匿影電極 陣列26內的複數隙縫(aperture)。 匿影電極陣列控制部86,控制是否外加電壓至設置於匿影電 極陣列26的各隙縫附近的匿影電極。而且,匿影電極陣列控制 部86形成圓柱控制系統用的基準時脈。然後,匿影電極陣列控 制部86基於曝光照射時間資料,藉由對各匿影電極延遲基準時 脈,於各匿影電極控制做成電壓的時間。然後,匿影電極陣列26 基於匿影電極陣列控制部86的指示,切換電子束是否對晶圓44 照射。 24 9047pifl.doc/015(有劃底線) 不藉由匿影電極陣列26偏向的電子束,通過第3多軸電子 透鏡34。然後以第3多軸電子透鏡34將通過第3多軸電子透鏡 34之電子束的電子束直徑縮小。縮小的電子束通過包含於電子束 遞蔽構件28內的開口部。而且’電子束遮蔽構件28遮蔽藉由匿 影電極陣列26偏向的電子束。通過電子束遮蔽構件28的電子 束,入射至第4多軸電子透鏡36。然後第4多軸電子透鏡36將 入射的電子束個別獨立的聚焦’個別調整對偏向部38的電子束 的焦點。以第4多軸透鏡36調整焦點的電子束,入射至偏向部 38 ° 接著,說明關於對入射至偏向部38的電子束照射至晶圓44 上所希望的位置,以偏向部38偏向電子束的動作。 第8圖所繪示爲計算出電子束照射位置之方法的槪略示意 圖。以下使用第6圖至第8圖’說明晶圓載物台46位於預定載 物台位置210的場合,藉由計算出曝光必須曝光照射圖案208的 照射位置,以偏向部38將電子束偏向此照射位置的動作。 首先晶圓載物台控制部96通知照射位置計算部262晶圓載 物台46的載物台位置210。載物台位置210較佳爲對各圓柱以及 各電子束的晶圓具有相對的位置。而且,照射位置計算部262基 於個別配置資料儲存部260所儲存的個別配置資料,計算出載物 台位置210與包含電子束曝光必須曝光照射圖案208之條帶曝光 區域204的條帶位置212的相對位置。再者,照射位置計算部262 基於個別配置資料,計算出條帶位置212與包含曝光必須曝光照 射圖案208之部分曝光區域206的部分區域位置214的相對位 置。然後,照射位置計算部262基於由個別曝光資料儲存部258 9047pifl.doc/015(有劃底線) 25 541590 讀出,包含曝光照射圖案208之部分曝光區域206的曝光照射資 料,計算出部分區域位置214與曝光照射圖案208的相對位置。 照射位置計算部262基於載物台位置210與條帶位置212的 相對位置,條帶位置212與部分區域位置214的相對位置以及部 分區域位置214與曝光照射圖案208的相對位置,計算出表示曝 光曝光照射圖案208用的電子束其偏向必須方向以及偏向必須距 離的曝光照射向量(Shot Vect〇r)216。然後,照射位置計算部262 基於曝光照射向量216計算出偏向資料,其中此偏向資料係用以 指示偏向部38偏向曝光曝光照射圖案208必須之電子束的偏向 量。此偏向資料較佳爲對偏向部38中此電子束通過之圓柱周圍 設置的偏向電極外加電壓所表示的資料。數位/類比變換部264 將所接收的偏相資料,變換爲外加至偏向電極的類比電壓供給偏 向部38。 偏向部38所包含的複數偏向器基於偏向控制部92的指示, 對晶圓預定的位置曝光曝光照射圖案208,並基於曝光照射形狀 資料使成形的電子束偏向。第5多軸電子透鏡,係對通過第5電 子透鏡的個別電子束對晶圓的焦點進行調整。然後電子束,對晶 圓照射必須的期望位置進行照射。 第9圖所繪示爲部分曝光區域206的部分區域位置214以及 曝光照射圖案208的一實施例。照射位置計算部262基於個別配 置資料決定電子束照射必須之部分曝光區域後,基於曝光資料儲 存部258所儲存的曝光照射資料,將包含於部分曝光區域206的 曝光照射圖案(208-1〜208-8)曝光,藉由依序決定電子束的照射 位置,將預定的部分曝光區域206所包含的曝光照射圖案208曝 9047pifl.doc/015(有劃底線) 26 541590 光°其後照射位置計算部262基於個別配置資料,將所指示其他 的部分曝光區域對應的曝光照射資料,由個別曝光資料儲存部 258讀出。然後同樣的,此其他的部分曝光區域所包含的曝光照 射圖案進行曝光。 在曝光處理中,較佳爲晶圓載物台驅動部48基於晶圓載物 台96的指示,以一定方向連續移動晶圓載物台46。然後,與晶 W 44的移動一致,各電子束以上述的動作對包含於條帶曝光區 ί或204的曝光必須的部分曝光區域進行曝光。然後晶圓載物台46 於X軸方向移動與條帶曝光區域204的X軸方向幅寬略相同的幅 寬後’藉由使晶圓44與此一定方向相反方向的連續移動,對其 他的條帶曝光區域進行曝光。重複上述的動作,藉由各電子束對 所對應的個別曝光區域進行曝光,能夠在晶圓44的預定區域上 曝光所希望的圖案。 依本發明的電子束曝光裝置100,由於係以部分曝光區域爲 單位儲存曝光資料,即使在晶圓上所設置的電子元件尺寸與各電 子束間隔不一致的場合,或是設置於晶圓的電子元件其配置的間 隔與各電子束間隔不一致的場合,於晶圓各電子束曝光必須的對 應全部區域的曝光資料,係由每一個別電子束形成而不需要儲 存。因此,各電子束曝光晶圓的的必要資料能夠相當容易形成。 再者,由於能夠大幅縮減儲存曝光資料的儲存部的容量,電子束 曝光裝置的製造成本能夠降低,進而降低電子元件的製造成本。 第10圖所繪示爲電子束通過通路的圓柱位置,以及通過各 圓柱的電子束進行曝光的個別曝光區域。第1〇Α圖所繪示係爲於 第2圖之線Α所示的直線上,圓柱爲理想設置場合的理想圓柱位 9047pifl.doc/015(有劃底線) 27 541590 置(202a’、202b’、202c’),以及實際各圓柱設置位置的實際圓柱 位置 202(202a、202b、202c)。 第10B圖所繪示爲各電子束曝光必須個別曝光區域200以及 包含於個別曝光區域200的條帶曝光區域204。通過各實際圓柱 位置(202a ' 202b、202c)的電子束,對應個別曝光區域(200a、 200b、200c)進行曝光。 各圓柱較佳爲對晶圓44設置爲格子狀(請參照第2圖),此場 合各列形成的複數圓柱較佳爲設置於同一直線上。而且,於各圓 柱設置於理想圓柱位置(202a’、202b’、202c’)的場合,作爲理想 照射位置之通過此圓柱之電子束對晶圓照射位置,與理想圓柱位 置(202a’、202b’、202c’)略相等。 但是,構成各圓柱,且設置於多軸電子透鏡等使電子束通過 的開口部,係藉由精密機械加工或是半導體製程等所形成,此開 口的位置有可能會產生偏移。在構成各圓柱的開口部發生等發生 偏移的場合,各圓柱的實際設置位置與理想圓柱位置(2〇2a’、 202b’、202c’)產生偏移。亦即是,通過各圓柱之電子束對晶圓照 射位置,由於與實際圓柱位置(2〇2a、202b、202c)略相等,與理 想照射位置產生偏移。 以下對上述場合中,通過設置於線A上圓柱的3條電子束, 對各電子束所對應的個別曝光區域200進行曝光動作之一實施例 的具體說明。於第10A圖中,實際圓柱位置2〇2a由理想圓柱位 置202a,於X軸方向增加60微米Um),實際圓柱位置202b由理 想圓柱位置202b,於X軸方向減少120微米(// m),實際圓柱位置 202c與理想圓柱位置202c的設置位置相同。實際圓柱位置 9 047pifl.doc/015(有劃底線) 28 541590 (202a、202b、202c),可以預先於晶圓曝光預定的圖案,基於在 晶圓曝光的圖案計算出,並預先加以儲存。 而且,偏向部38的電子束可偏向距離爲80毫米,各個別曝 光區域200,係爲1邊爲22毫米(mm),各條帶曝光區域204的 幅寬爲80微米。亦即是,各個別曝光區域200具有等面積的275 條條帶曝光區域204。再者,各條帶曝光區域2〇4具有1邊爲1〇 微米的複數部分曝光區域。亦即是,條帶曝光區域2〇4具有X軸 方向8個、y軸方向2200個的部分曝光區域206。 而且,於本實施例中,各個別曝光區域200爲形成1個晶片 的區域,部分曝光區域206爲此一晶片分割的區域。然後,曝光 資料儲存部172所儲存的曝光資料,係爲以各個別曝光區域200 惟單位的曝光資料,亦即是,於晶圓44上形成1個晶片進行曝 光用的資料。 首先,以中央處理部170將1個晶片份量的個別曝光區域200 分解爲部分曝光區域,此場合個別曝光區域200較佳爲分解成同 尺寸的部分曝光區域206。於其他範例中,個別曝光區域200亦 可以分解爲包含不同尺寸的部分曝光區域206。而且,個別曝光 區域200亦可以分解成僅在一部份的部分曝光區域206中包含部 分曝光資料。 其次中央處理部170基於預先給予的實際圓柱位置(202a、 202b、202c),藉由於各條帶曝光區域204分配部分曝光區域206, 以形成個別配置資料,並儲存於配置資料儲存部174。此場合中 央處理部170,首先基於實際圓柱位置(202a、202b、202c),基於 由理想圓柱位置(202a’、202b’、202c’)至實際圓柱位置(202a、 9047pifl.doc/015(有劃底線) 29 541590 202b、202c)的偏移,計算出全部電子束對個別曝光區域200曝光 所必要的條帶曝光區域,亦即是,計算出以晶圓載物台46使晶 圓44於X方向階段式移動的移動次數。 具體而言,以晶圓載物台46使晶圓44於X方向階段式移動 方向與相反方向,亦即是,X軸正方向的實際圓柱位置(202a、 202b、202c)與理想圓柱位置(202a,、202b,、202c’)的差(Offset) 爲最大値,則此差値爲圓柱偏移最大値Oxmax,x軸負方向的實 際圓柱位置(202a、202b、202c)與理想圓柱位置(202a’、202b’、 202〇的差(Offset)爲最大値,則此差値爲圓柱偏移最小値* Oxmin,鄰接理想圓柱位置的間隔爲L,條帶曝光區域204的X 軸方向幅寬爲P,則移動次數以下式決定。541590 发明 Description of the invention (The description of the invention should be stated ... The technical field to which the invention belongs, the prior art, the content, the embodiments and the drawings are briefly explained.) The technical field to which the invention belongs The present invention relates to an electron beam exposure device and exposure method. The present invention relates to the following Japanese patents. When referring to the literature, please refer to the designated country, and after referring to the content described in the following invention, it is incorporated into the present invention and is a part of the description of the present invention. Japanese Patent Application No. 2001-109838 Application date: April 9, 2011 Known technology The electron beam exposure device uses a plurality of electron beams to pattern-expose a wafer. In a conventional electron beam exposure apparatus that uses a plurality of electron beams to expose a wafer, each electron beam must expose regions to a wafer differently, that is, a conventional electron beam exposure apparatus that uses a plurality of electron beams is used for exposure. The control system that controls each electron beam during processing compares the exposure pattern of each electron beam to the necessary area for wafer exposure. Each individual electron beam forms exposure data individually, and stores the exposure data generated by each individual electron beam. That is, the conventional electronic exposure device has an exposure data storage section for each individual electron beam, and stores exposure data for controlling each electron beam in the exposure data storage section, and reads each electron beam individually. Different exposure data. In recent years, with the miniaturization of semiconductor elements, the number of elements possessed by a semiconductor element has increased considerably. The exposure information used to expose one semiconductor element has also increased with the increase in the number of elements. For example, when one shot is equivalent to 6 bits of data, and 4 billion exposures are required to expose one semiconductor element, the number of exposures required to expose one semiconductor element is ‘9047pifl. doc / 015 (underlined) 6 541590 The data volume is 24 billion Gigabytes (GB). · As described above, the conventional electron beam exposure device must form different exposure data for each electron beam, and store individual exposure data individually. In particular, when the size of the semiconductor element is not consistent with the interval of the electron beams, a plurality of electron beams on the wafer must pass through a plurality of areas necessary for exposure. 'In order to set up one semiconductor element, each individual electron beam must hold all the differences. Exposure data. In particular, along with other varieties of semiconductor devices, the size of semiconductor devices exposed by an electron beam exposure apparatus has been diversified. In addition, the size of wafers forming semiconductor devices is increasing, and the number of necessary electron beams is increasing. For example, when 150 electron beams are used to expose the wafer in the above case, an exposure data volume of 3400 GB is required. According to this, the amount of data processed by the electron beam exposure device is huge, the high-speed processing of the exposure data is difficult, and the throughput required for mass production of semiconductor devices is extremely difficult to increase. Furthermore, it is expected that mass production of semiconductor elements which can be used in an electron beam exposure apparatus, and the provision of an inexpensive electron beam exposure apparatus on the market are expected. However, since the conventional electron beam exposure apparatus requires a large amount of memory elements such as a hard disk or a semiconductor memory, it poses a greater obstacle to the practical application of mass production elements toward the electron beam exposure apparatus. Furthermore, since the cylindrical system of each electron passing path is formed by precision machining, there are cases where machining errors are included. Therefore, when many electron beams are used, the interval between the cylinders is not necessarily equal. In this case, it becomes more difficult to generate exposure data for each electron beam. The object of the present invention is to propose an electron beam exposure apparatus and an exposure method 'which can solve the above-mentioned problems. This purpose is a separate project within the scope of the patent application. doc / 015 (underlined) 7 541590. Furthermore, the appended clauses specify more advantageous specific examples of the present invention. Disclosure of the Invention In order to achieve the purpose of the present invention, according to a first embodiment of the present invention, an electron beam exposure apparatus for exposing a pattern on a wafer with a plurality of electron beams includes an electron beam generating section, a deflection section, and a wafer carrier. Stage, plural individual data storage sections, individual arrangement data storage sections, irradiation position calculation sections, and deviation control sections. The electron beam generating unit is used to generate a plurality of electron beams. The deflection unit is used to individually deviate a plurality of electron beams. The wafer mounting table is used to mount a wafer. The individual exposure data storage section is used to store exposure exposure position data, where the exposure exposure position data represents the exposure exposure position in a partial exposure area included in the individual exposure area, and the individual exposure area is a necessary area for wafer exposure In the individual electron beam exposure area, part of the exposure area is an area with a smaller deflection width than the deflection portion of the electron beam. The exposure irradiation position is the position where the electron beam exposure must expose the irradiation pattern. The individual configuration data storage section is used to store partial area data and partial area position data, where the partial area data represents a partial exposure area of an individual individual exposure area, the partial area position data represents a partial area position, and the partial area position is The predetermined position of the partially exposed area. The irradiation position calculation unit is based on the partial area data. The exposure irradiation position data included in the partial exposure area required for the electron beam exposure is read out by the individual exposure data storage unit, and based on the wafer stage position and part as the stage position. The relative position of the area position 'and the relative position of the partial area position and the exposure irradiation position are calculated from the irradiation position data indicating the necessary position for the electron beam irradiation. The deflection control unit controls the deflection unit based on the irradiation position data. 8 9 047pifl. doc / 015 (underlined) 541590 Furthermore, it is preferable that the individual exposure areas have a plurality of stripe exposure areas, and that the individual stripe exposure areas include a plurality of partial exposure areas, and the individual configuration data storage section is further provided with a display The stripe area data of the stripe exposure area included in the individual exposure area indicates the stripe position data of the specific position of the stripe exposure area as the stripe position. The irradiation position calculation section is based on the stripe area data and is stored by the individual exposure data. The readout exposure position data is calculated based on the relative position of the stage position and the strip position, and the relative position of the strip position and the partial area position. The exposure position data is calculated. Moreover, the individual exposure data storage section further stores and indicates the exposure. Emission pattern shape of the exposure pattern shape, and it is more preferable to have an electron beam forming device. This electron beam forming device reads out the exposure irradiation shape data from the individual exposure data storage section, and based on the exposure irradiation shape data, plural Individual cross-sectional shapes of the electron beam are independently formed, and further, electron beam forming The device preferably includes a first forming member, a second forming member, a forming deflection section, and a forming deflection control section. The first forming member has a plurality of first forming openings for forming a cross-sectional shape of a plurality of electron beams. The second forming member has a plurality of second forming openings for forming a plurality of electron beams formed in the first forming member. The forming deflection unit is used to individually deviate the plurality of electron beams passing through the first opening. The forming deflection control section controls the forming deflection section based on the shape data of exposure irradiation. Furthermore, it is preferable that the 2nd shaping | molding member has a different shape opening part as a plurality of block shaping | molding opening part. In addition, the individual exposure storage unit further stores exposure time data indicating the exposure exposure pattern time on the wafer, and it is more preferable to further include an exposure switching device and an exposure time control unit, wherein the exposure switching device is used to independently switch the individual Whether the electron beam is irradiated on the wafer, the exposure time control unit is based on 9 047pifl. doc / 015 (underlined) 9 541590 Controls the irradiation switching device at the time corresponding to the exposure irradiation time data. Moreover, 'partial area data and partial area number data may also be stored in the individual data configuration storage section, where the partial area data indicates a predetermined exposure area of the strip exposure area, and the partial area number data indicates that the predetermined exposure area is continuously arranged. E-beam exposure must be the number of partially exposed areas. And the irradiation position calculation section reads out the exposure irradiation position data contained in the partial exposure area based on the partial area data and the partial area number data, and calculates the irradiation position data. Further, the predetermined partial exposure area may be set on the outermost periphery of the strip exposure area including the predetermined partial exposure area. In addition, address data may also be stored in the individual configuration data storage section, where the address data is used to indicate the address of the individual exposure data storage section storing partial area data representing a predetermined partial exposure area. And the irradiation position calculation section reads out the partial area data from the individual exposure data storage section based on the address data and the partial area number data. In addition, an exposure data storage unit may be further provided to store the exposure irradiation position data and partial area data contained in the individual exposure areas of the individual exposure areas. The individual exposure data storage unit is read out by the exposure data storage unit and stored in the individual exposure areas. Contains exposure and exposure position data and partial area data, and in this case, it can also have more than one exposure data storage section. In addition, in the case where a plurality of electron beams can expose a predetermined partial exposure area, among the plurality of electron beams, the individual arrangement data storage section corresponding to the electron beam having the largest area that can be exposed to the predetermined partial exposure area can also store and display a predetermined Partial area data of the exposed part and the position of the partial area. Moreover, the short-length length of the exposed area and the deflection portion can be deflected by the electron beam 10 9 047pifl. doc / 015 (underlined) 541590 The deflection distance is slightly equal, and one side of the partially exposed area is formed as a slight integer of the deflection distance. In addition, the wafer stage is continuously moved along the long direction of the strip exposure area, and the wafers necessary for exposure in the partial exposure area are continuously moved. When the wafer stage is continuously moved, a predetermined electron beam may be aligned with the predetermined electron beam. The exposure areas of the exposure stripes exposed by other electron beams adjacent to each other in the longitudinal direction are not exposed in the strip exposure areas of the same straight line. In addition, the data storage unit that is individually arranged can also store the distance from the ideal irradiation position * necessary for the electron beam irradiation to the direction of the longitudinal direction of the slightly vertical stripe exposure area to store the actual irradiation position for the actual electron beam irradiation. Contains part of the area data of the predetermined electron beam and other electron beam exposures that must be stripped. The electron beam with the largest distance between the ideal irradiation position and the irradiation position in the predetermined direction, which is slightly perpendicular to the continuous movement direction, can also be provided in the strip exposure area at the end of the direction opposite to the predetermined direction where the electron beam exposure must be individually exposed. Perform the initial irradiation. Moreover, in the plurality of individual arrangement data storage sections, at least one individual arrangement data storage section may store part of the area data among the plurality of partial area data included in the at least one stripe exposure area. According to a second embodiment of the present invention, the present invention provides an exposure method. In the exposure method using a plurality of electron beams to expose a pattern on a wafer, it is characterized by having the following steps: forming a plurality of electron beams, and placing the wafer on the wafer. In the wafer stage, the individual electron beam exposure required areas that are individual exposure areas in the wafer exposure necessary exposure areas are included and decomposed into areas with a smaller width than the deflection portion that is the partial exposure area by which the electron beam can be deflected. In each partial exposure area, an exposure irradiation position indicating a position where the electron beam exposure of the partial exposure area must be exposed to the irradiation pattern is stored at 9047pifl. d〇C / 〇15 (underlined) 11 541590 data, storing partial area information and data indicating the partial exposure area of the individual individual exposure area, and the partial area position indicating the predetermined position of the partial exposure area as the position of the partial area Data, based on partial area data, the individual exposure data storage unit reads out the exposure irradiation position data included in the partial exposure area required for electron beam exposure, and based on the relative position of the wafer stage position and the partial area position as the stage position , And the relative position between the position of the partial area and the exposure irradiation position, the irradiation position data indicating the necessary position for the electron beam irradiation is calculated, and based on the irradiation position data, the individual electron beams are biased independently. In addition, the above description of the invention does not list all necessary features of the present invention, and combinations of these feature groups can also constitute the present invention. Brief Description of the Drawings FIG. 1 is a schematic diagram showing the configuration of an electron beam exposure apparatus 100 according to an embodiment of the present invention; FIG. 2 is a diagram showing the irradiation positions of a plurality of electron beams irradiating the wafer 44, and A schematic diagram of an embodiment of the individual exposure area necessary for individual electron beam irradiation; FIG. 3 shows a schematic diagram of the individual exposure area 200; • FIG. 4 shows a schematic diagram of the strip exposure area 204; FIG. 5 shows FIG. 6 is a schematic diagram of a partially exposed area 206. FIG. 6 is a schematic diagram of an embodiment of the configuration of the control system 140. FIG. 7A is a schematic diagram of data stored in the exposure data storage unit 172. FIG. 7B The drawing is a schematic diagram of the data stored in the configuration data storage section 174; 12 9 047pifl. doc / 015 (underlined) 541590 Figure 8 shows a schematic diagram of the method for calculating the irradiation position of the electron beam; Figure 9 shows the partial area position 214 and the exposure irradiation pattern 208 of the partially exposed area 206 FIG. 10A is a schematic diagram showing the position of a cylinder (cohimri) on an electron beam passing path; and FIG. 10B is a schematic diagram showing an individual exposure area 200 exposed by the electron beam of each cylinder. Description of Drawings 8: Outer cover 10: Electron gun 14: First molding member 16: First multi-axis electronic lens 18: First molding deflection portion 20: Second molding deflection portion 22: Second molding member 24: Second plurality Axis electron lens 26: Shadow electrode array 28: Electron beam shielding member 34: Third multi-axis electron lens 36: Fourth multi-axis electron lens 38: Deflection section 44. Wafer 9 047pifl. doc / 015 (underlined) 13 541590 46: Wafer stage ^ 48: Wafer stage drive unit 52: Fifth multi-axis electron lens 80: Electron beam control unit 82: Multi-axis electronic lens control unit 84: Molding Deflection control unit 86: Shadow electrode array control unit 92: Deflection control unit 96: Wafer control lion * 100: Electron beam exposure device 110: Electron beam forming device 112: Irradiation switching device 114: Wafer projection system 120 : Individual control unit 130: Overall control unit 140: Control system 150: Exposure unit Lu 170: Central processing unit 172: Exposure data storage unit 174: Configuration data storage unit 200, 200a, 200b, 200c: Individual exposure areas 202, 202a , 202b, 202c: Actual cylindrical positions 202a ', 202b', 202c ': Ideal cylindrical positions 204, 204a-l to 204a-278, 204b-l to 204b-278, 204c-l to 9 047pifl. doc / 015 (underlined) 14 541590 204c-278: Strip exposure area 206: Partial exposure area 208, 208-1 to 208-8: Exposure irradiation pattern 210: Stage position 212: Strip position 214: Part Area position 216: Exposure exposure vector 256: Individual deviation control section 258: Individual exposure data storage section 260: Individual configuration data storage section 262: Irradiation position calculation section 264: Digital / analog conversion section A The formula describes an embodiment of the present invention. FIG. 1 is a schematic diagram showing the configuration of an electron beam exposure apparatus 100 according to an embodiment of the present invention. The electronic exposure device 100 includes an exposure unit 150 that performs a predetermined exposure process on a wafer with an electron beam, and a control system 140 that controls operations including each configuration of the exposure unit 150. The exposure section 150 is provided with an electron optical system. The electron optical system includes a Yu electron t. The inside of the cover 8 forms a plurality of electron beams. The electron beam forming apparatus 110 forms the cross-sectional shape of the electron beams into a desired shape, and is independent of individual electron beams. The irradiation switching device 112 is used to switch whether or not the plurality of electron beams are irradiated to the wafer 44 and the adjustment is transferred to the wafer 9 047 pif 1. doc / 0 1 5 (underlined) 15 541590 44 The image direction and size of the pattern 114 is a wafer projection system 114. In addition, the 'exposure unit 150 is provided with a stage system'. The stage system includes a wafer stage 46 on which wafers 44 that are required to be exposed are placed, and a wafer stage driving unit 48 that drives the wafer stage 46. Furthermore, a sub-beam broadcasted with the tag section of the 4th mark-said summer vacation or daytime, is broadcast along the -2- times of the 语 子 or anti-good electron along the line from the summer language department " Electronic-danger detection device 3n electronic-inspection equipment ^ ⑽ Detection_Detection of the genus shot by the stratum dudu family, and the detection of the tadpoles is necessary to equip the electron beam forming device 110 with ... An electron gun 10 forming a plurality of electron beams, a first forming member 14 and a second forming member 22 having a plurality of openings through which the electron beams pass so as to shape the cross-sectional shape of the irradiated electron beam, and focusing the plurality of electron beams individually, The first multi-axis electron lens 16 ′ that adjusts the focus of the plurality of electron beams independently deflects the plurality of electron beams passing through the first forming member 14 into a first forming deflection portion 18 and a second forming deflection portion 20. The first forming deflection portion 18 and the second forming deflection portion 20 are provided with a plurality of deflectors around each electron beam passage (hereinafter referred to as a cylinder). The irradiation switching device 112 is provided with a second multi-axis electron lens 24 that focuses the plural electron beams individually and adjusts the focal point of the plural electron beams, and independently switches and separates the individual electron beams by the individual independence and deflection of the plural electron beams. An electron beam shielding member 28 that includes a plurality of openings through which electron beams pass and which shields the electron beams deflected by the shadow electrode array 26 as to whether the individual electron beams irradiate the wafer 44 or not. In other examples, the shadow electrode array 26 may also be a blank aperture array device. The wafer projection system 114 is provided with: a plurality of electron beams each independently collecting 9047pifl. doc / 015 (underlined) 541590 focal length, a third multi-axis electron lens 34 that reduces the irradiation diameter of the electron beam, focusing the complex electron beams individually, and a fourth multi-axis electron lens that adjusts the focus of the complex electron beams 36. A deflection portion 38 that individually deflects the plurality of electron beams to a desired position on the wafer 44; a fifth multi-axis electron lens 52 that individually focuses the plurality of electron beams on the wafer 44 as an objective lens. The control system 140 includes an individual control unit 120 and an overall control unit 130. The individual control section 120 includes an electron beam control section 80, a multi-axis electronic lens control section 82, a forming deflection control section 84, a shadow electrode array control section 86, a deflection control section 92, a reflection electron processing section 94, and a wafer stage control section. 96. The collective control unit 130 is, for example, a workstation, and collectively controls each control unit including the individual control unit 120. The electron beam control unit 80 controls the electron beam generation unit 10. The multi-axis electronic lens control unit 82 supplies current to the first multi-axis electronic lens 16, the second multi-axis electronic lens 24, the third multi-axis electronic lens 34, the fourth multi-axis electronic lens 36, and the fifth multi-axis electronic lens 52, and applies current thereto. control. The forming deflection controller 84 controls the first forming deflection portion 18 and the second forming deflection portion 20. The shadow electrode array control unit 86 applies a voltage to the bias electrode included in the shadow electrode 26 and controls it. The deflection control unit 92 applies a voltage to the deflection electrode included in the deflection unit 38 and controls the voltage. The wafer stage 96 is driven by a wafer stage driving unit 48 to move the wafer stage 46 to a predetermined position. The electron beam control section 80, the forming deflection control section 84, the shadow array electrode control section 86, and the deflection control section 92 of this embodiment constitute a cylindrical control system that independently controls the electron beam passing through each column. Each control part included in the cylinder control system can also be set independently for each cylinder. Figure 2 shows the irradiation positions of the plurality of electron beams irradiating the wafer 44 at 9047pifl. DoC / 015 (underlined) 541590 and an example of an individual exposure area necessary for individual electron beam irradiation. The wafer stage 46 and the wafer 44 of this embodiment continuously move in a predetermined direction, and move stepwise in a direction slightly perpendicular to the predetermined direction. In FIG. 2, the continuous movement direction of the wafer stage 46 is the y-axis direction, and the stepwise movement direction is the X-axis direction. The column position 202 indicates the arrangement position of each column tube (Column cell). The individual exposure area 200 indicates an area necessary for individual electron beam exposure. The cylindrical tubes are preferably arranged such that a plurality of electron beams irradiate the wafer 44 in a grid pattern. Furthermore, it is more preferable that the plurality of electron beams are irradiated at intervals of a few times or one whole number of one side of an area formed by one wafer in the wafer. FIG. 3 illustrates the individual exposure areas 200. The individual individual exposure areas 200 have a plurality of stripe exposure areas 204. The strip exposure area 204 is preferably rectangular. The stripe exposure area 204 preferably has a predetermined length in the X-axis direction, and the y-axis direction is an area provided from one end to the other end of the individual exposure area 200. This predetermined length is preferably a length at which the electron beam can be exposed during the continuous movement of the wafer stage 46 in the y-axis direction. In the strip exposure area 204 of this embodiment, the individual electron beams can be deflected by the deflection portion 38 toward the length in the \ axis direction. Then, the wafer stage 46 is continuously moved in a predetermined direction on the y-axis to continuously move the wafer 44 to expose a predetermined strip exposure area 204. After the exposure of the predetermined strip exposure area 204 is completed, the wafer 44 is moved by the wafer stage 46 by a predetermined distance in the X direction. This predetermined distance is preferably slightly equal to the length in the X% direction of the strip exposure area 204. Then, the wafer stage 46 is continuously moved by the wafer stage 46 in a direction opposite to the predetermined direction of the y-axis so that the wafer 44 is continuously moved. . By repeatedly operating the wafer stage 46 described above, the wafer 44 is continuously moved in the y-axis direction by 907Pifl. doc / 015 (underlined) 18 541590 and stepwise movement of the wafer 44 in the x-axis direction by the wafer stage 46 to expose the individual exposure area 200. In other examples, the wafer stage 46 can be used to move the wafer 44 in a certain direction to expose a plurality of exposure areas. FIG. 4 illustrates the strip exposure area 204. The individual strip exposure area 204 has a plurality of partial exposure areas 206. This partial exposure area 206 is an exposure area that exposes the necessary area for the wafer 44 to be decomposed into an area that is smaller than the deflection distance by which the electron beam of the deflection portion 38 can be deflected. The partially exposed area 206 is preferably rectangular, and the length of one side is preferably a slightly integer of the bias distance. The individually-exposed area 200 in this embodiment is a square, and the partially-exposed area and the individually-exposed area have a similar shape ®. FIG. 5 illustrates a partially exposed area 206. The individual partial exposure area 206 has an exposure switching pattern 208 as an exposure pattern of the wafer 44 each time the electron beam is irradiated on the wafer 44 by an irradiation switching means for switching whether or not the electron beam is irradiated on the wafer 44. The determination of the exposure irradiation pattern 208 is made by decomposing and decomposing the necessary pattern of the wafer based on the cross-sectional shape of the electron beam that can be formed by the electron beam forming method. The electron beam is preferably exposed to a predetermined partial exposure region 206 with an exposure pattern necessary for exposure, and then the other partial exposure region 206 is exposed with an exposure pattern necessary for exposure. Further, the stripe-exposed area 204 may have a partially-exposed area 206 that does not include the exposure irradiation pattern 208. An embodiment of the configuration of the control system 140 is shown in FIG. 6. The overall control unit 130 includes a central processing unit 170 that controls the entire control system 140, an exposure data storage unit 172 that stores exposure data, and an individual storage unit. Configuration data storage section 174. The deflection control section 92 includes a plurality of individual deflection control sections 256 to control a deflector that deflects individual electron beams. Moreover, individual bias control 9〇4pifl. doc / 015 (underlined) 19 541590 units have: individual exposure data storage unit 258, which is used to store at least a part of the data stored in the exposure data storage unit 172. The individual configuration data storage unit 260 is used to store individual configuration data of the individual exposure areas 200 of the exposure wafer 44 which must be controlled by the electron beams. The irradiation position calculation unit 262 calculates the exposure data stored in the individual exposure data storage unit 258, the individual placement data stored in the individual placement data storage unit 260, and the electron beam irradiation based on the stage position of the wafer stage 46 Position, and control data for controlling the deflection unit 38 based on this irradiation position. A digital / analog conversion unit 264 is used to convert this control data into analog voltage data corresponding to the voltage applied to the bias electrode included in the bias unit 38. The individual individual bias control section 256 is preferably the same exposure data stored in the shared exposure data storage section 172. Further, it is preferable that the individual orientation control unit 256 reads out the cylinder data necessary for controlling each individual orientation control unit 256 from the configuration data storage unit 174 and stores it in the individual configuration data storage unit 260. In other examples, the control system 140 may have a plurality of exposure data storage units 172. At this time, each exposure data storage unit 172 preferably stores the same exposure data, and the plurality of individual deviation control units 256 preferably read the exposure data from one exposure data storage unit 172. For example, for one exposure data storage unit 172, data is read out by four individual deviation control units 256. Next, an example of data stored in the exposure data storage unit 172 and the layout data storage unit 174 will be described. 7A and 7B show data stored in the exposure data storage unit 172 and the configuration data storage unit 174. FIG. 7A illustrates an embodiment of the exposure data stored in the exposure data storage unit 172. The exposure data storage section Π2 preferably stores a repeating pattern 20 9047pifl when the repeating pattern is exposed on the wafer 44. Doc / 015 (underlined) is the exposure data for the unit pattern. The exposure data in this embodiment are necessary exposure data for an exposure area of an electronic component forming the wafer 44. The exposure data includes a plurality of partial exposure data, wherein the plurality of partial exposure data are used to expose a plurality of partial exposure areas 206 included in the exposure area. In addition, the partial exposure data includes part area numbers and exposure exposure data. The partial area number is data for identifying the partially exposed area 206, and the exposure irradiation data is data for exposing the exposure irradiation pattern 208 contained in the partially exposed area 206. Furthermore, the entire exposure irradiation pattern 208 may be included in an arbitrary partial exposure region 206 to constitute the partial exposure region 206. The exposure exposure data includes exposure exposure position data, exposure exposure shape data, and exposure exposure time data. Furthermore, the exposure exposure data preferably further includes exposure exposure identification data for identifying individual exposure exposure data. The exposure irradiation position data indicates the exposure position of the exposure irradiation pattern 208 on the wafer 44. Further, the exposure irradiation position data is preferably capable of indicating the relative position of the partially-exposed area 206 including the exposure irradiation pattern 208 to the exposure irradiation pattern 208. In this embodiment, the exposure irradiation position data represents the relative position from the center position of the partially exposed area 206. The exposure irradiation shape data indicates the shape of the exposure irradiation pattern 208 exposed on 44. The exposure irradiation pattern 208 is preferably a rectangle having a side slightly parallel to the X-axis direction and a side slightly parallel to the y-axis direction. For the exposure radiation shape data of this embodiment, the length of one side slightly parallel to the X-axis direction and the length of one side slightly parallel to the y-axis direction are fixed data. The exposure time data indicates the exposure time of the electron beam to the exposure exposure pattern 208 at which the wafer 44 must be exposed for exposure. The exposure data storage section 172 can be deflected by 9047pifl by the deflection section 38 electron beam can be deflected. doc / 015 (underlined) 541590 Divides and stores exposure data to a small exposure area, controls individual cylinder control systems, and can share exposure data stored in the exposure data storage unit 172. That is, since each cylindrical control system does not need to hold exposure data for individual electron beams, memory devices such as a memory required for the electron beam exposure device can be greatly reduced. This can significantly reduce the cost of the electron beam exposure apparatus. Furthermore, since the exposure data storage unit 172 stores the exposure exposure data in units of partial exposure areas, it is possible to significantly reduce the number of times the exposure data is expanded on the exposure exposure data and the number of times the exposure data is transmitted. That is, because the exposure data can be processed very efficiently, the exposure processing speed can be greatly improved. ® FIG. 7B illustrates an example of a plurality of individual configuration data stored in the configuration data storage unit 174. The layout data storage unit 174 stores individual layout data corresponding to individual beams. That is, the individual arrangement data includes data for causing an individual electron beam to expose the individual exposure area 200 as the exposure area. The individual configuration data includes stripe exposure data. The stripe exposure data is used to expose the stripe exposure area 204 included in the individual exposure area 200. Individual strips The exposure data contains the strip area number, strip position data, and some area data. The strip area number is used to identify the individual strip exposure area 204, the strip position data is used to indicate the strip position of the strip exposure area 204 at a predetermined position, and some area data is included in the strip. A partially exposed area 206 within the exposed area 204. The predetermined position is preferably a position that can indicate the stripe exposure area 204 of the individual exposure area 200. In this embodiment, the predetermined position is the center position of the strip exposure area 204, and represents the position where the individual exposure area 200 is opposite to this center position. The partial area data includes wafer number, partial area number, and partial area position data in a plurality of wafers formed on the wafer 44. The wafer number is 22 9 047pifl. doc / 015 (underlined) 541590 Identifies the wafer contained in this partially exposed area. Partial area number is used to identify this partially exposed area 206. Partial area location data is used to indicate the predetermined position of this partially exposed area 206. Regional location. The predetermined position is preferably a position that can represent the individual exposure area 206 of the strip exposure area 204. In this embodiment, the predetermined position is the center position of the partial exposure area 206, and indicates the position where the strip exposure area 204 is opposed to this center position. Moreover, it is preferable that the individual arrangement data further include partial area instruction data and partial area number data. The partial area indication data is used to indicate the predetermined individual exposure area 206 included in the individual strip exposure area 204, and the partial area number data is used to indicate that the partial exposure area instruction data is continuously arranged and the partial exposure necessary for the electron beam exposure The number of regions 206. At this time, the predetermined partial exposure area 206 is preferably a partial exposure area arranged on the outermost periphery of the strip exposure area 204. The individual arrangement data does not need to store the partial area numbers of all the exposure areas necessary for the electron beam exposure in the individual area data storage section 206 by including the data of the number of partial areas. Therefore, the amount of pure data removed by the individual area data storage section 206 can be greatly reduced. Therefore, the time for the irradiation position calculation unit 262 to calculate the irradiation position of the electron beam can be shortened, and the yield of the electron beam exposure apparatus can be improved. Referring to Fig. 1, the operation of the electron beam exposure apparatus 100 that performs exposure processing will be described. First, a plurality of electron guns 10 form a plurality of electron beams. The first forming member 14 is a plurality of electron beams generated by the electron beam generating section 10 and irradiating the first forming member 14 to form a rectangular electron beam through the plurality of openings provided in the first forming member 14. In other examples, a device for dividing a plurality of electron beams formed by the electron gun 10 may be further provided to generate a plurality of electron beams. The first multi-axis electron lens 16 will focus the electron beam forming a rectangle independently, and 9047pifl. doc / 015 (underlined) 23 The focus of the electron beam on the second forming member 22 is adjusted independently for each electron beam. The forming deflection control section 84 controls the first forming deflection section 18 and the second forming deflection section, which are necessary for forming a rectangle, based on the shape data of the second forming member exposed by electron beam exposure. The forming deflection control unit 84 may operate in accordance with a reference clock for operating the cylindrical control system. The first forming deflection 18 is based on an instruction from the forming deflection control unit 84 to form a rectangular electron beam on the first forming member 14 and irradiates the individual independent deflection of the second forming member 22 at a desired position. In addition, the second forming deflection unit 20 individually deflects the plurality of electron beams deflected by the first forming deflection unit 18 to a direction slightly perpendicular to the second forming member 22 based on an instruction from the forming deflection control unit 84 and irradiates the second forming member 22 to the second forming member 22. Shaped member 22. Then, the second forming member 22 including a plurality of rectangular openings is irradiated to the second forming member 22 and has a plurality of electron beams having a rectangular cross-sectional shape. Further, an electron beam having a desired cross-sectional shape is irradiated to the wafer 44. The second multi-axis electron lens 24 focuses the plurality of electron beams independently, and individually adjusts the focus of the electron beams on the shadow electrode array 26 individually. Then, the plurality of electron beams whose focal points are individually adjusted by the second multi-axis electron lens 24 pass through a plurality of apertures included in the shadow electrode array 26. The shadow electrode array control unit 86 controls whether or not a voltage is applied to the shadow electrodes provided near the slits of the shadow electrode array 26. The hidden electrode array control unit 86 forms a reference clock for a cylindrical control system. Then, based on the exposure time data, the shadow electrode array control unit 86 controls the time of the voltage to be generated at each shadow electrode by delaying the reference clock to each shadow electrode. The shadow electrode array 26 then switches whether or not the electron beam is irradiated to the wafer 44 based on an instruction from the shadow electrode array control unit 86. 24 9047pifl. doc / 015 (underlined) passes through the third multi-axis electron lens 34 without the electron beam deflected by the shadow electrode array 26. Then, the third multi-axis electron lens 34 reduces the electron beam diameter of the electron beam passing through the third multi-axis electron lens 34. The reduced electron beam passes through an opening portion contained in the electron beam shielding member 28. Further, the 'electron beam shielding member 28 shields the electron beam deflected by the shadow electrode array 26. The electron beam passing through the electron beam shielding member 28 enters the fourth multi-axis electron lens 36. Then, the fourth multi-axis electron lens 36 focuses the incident electron beams individually and individually adjusts the focus of the electron beams to the deflection portion 38. The electron beam whose focus is adjusted by the fourth multi-axis lens 36 is incident on the deflection portion 38 °. Next, the electron beam incident on the deflection portion 38 is irradiated to a desired position on the wafer 44 and the electron beam is deflected by the deflection portion 38. Actions. Fig. 8 is a schematic diagram showing a method for calculating the irradiation position of the electron beam. The following describes the case where the wafer stage 46 is located at the predetermined stage position 210 using FIGS. 6 to 8. By calculating the irradiation position where the exposure pattern 208 must be exposed, the deflection unit 38 deflects the electron beam toward the irradiation. Position of action. First, the wafer stage control unit 96 notifies the irradiation position calculation unit 262 of the stage position 210 of the wafer stage 46. The stage position 210 preferably has a relative position with respect to each of the cylinders and the wafers of the electron beams. In addition, the irradiation position calculation unit 262 calculates the position of the stage position 210 and the strip position 212 of the strip exposure region 204 including the exposure pattern 208 that must be exposed by the electron beam exposure based on the individual arrangement data stored in the individual arrangement data storage unit 260. relative position. Furthermore, the irradiation position calculation unit 262 calculates a relative position of the stripe position 212 and the partial area position 214 of the partial exposure area 206 including the exposure pattern 208 that must be exposed based on the individual arrangement data. Then, the irradiation position calculation section 262 is based on the individual exposure data storage section 258 9047pifl. doc / 015 (underlined) 25 541590 Read out, including exposure exposure data for the partially exposed area 206 of the exposure exposure pattern 208, and calculate the relative position of the partial area position 214 and the exposure exposure pattern 208. The irradiation position calculation unit 262 calculates the exposure based on the relative position of the stage position 210 and the strip position 212, the relative position of the strip position 212 and the partial area position 214, and the relative position of the partial area position 214 and the exposure irradiation pattern 208. The electron beams used for the exposure irradiation pattern 208 are deflected toward the required direction and the exposure irradiation vector (Shot Vector) 216 toward the required distance. Then, the irradiation position calculation section 262 calculates the bias data based on the exposure irradiation vector 216, where the bias data is used to indicate the bias amount of the electron beam necessary for the bias section 38 to bias the exposure exposure irradiation pattern 208. The biasing data is preferably data represented by applying a voltage to a biasing electrode provided around a cylinder through which the electron beam passes in the biasing portion 38. The digital / analog conversion unit 264 converts the received phase data into an analog voltage supply deflection unit 38 applied to the deflection electrode. The complex deflector included in the deflection unit 38 exposes the exposure irradiation pattern 208 to a predetermined position of the wafer based on an instruction from the deflection control unit 92, and deflects the formed electron beam based on the exposure irradiation shape data. The fifth multi-axis electron lens adjusts the focus of the wafer by the individual electron beams passing through the fifth electron lens. Then, an electron beam is irradiated to a desired position necessary for irradiating the wafer. FIG. 9 illustrates an embodiment of the partial region position 214 of the partially exposed region 206 and the exposure irradiation pattern 208. The irradiation position calculation unit 262 determines the partial exposure area necessary for electron beam irradiation based on the individual arrangement data, and then, based on the exposure irradiation data stored in the exposure data storage unit 258, the exposure irradiation pattern (208-1 to 208) included in the partial exposure area 206 -8) exposure, by sequentially determining the irradiation position of the electron beam, exposing the exposure irradiation pattern 208 included in the predetermined partial exposure area 206 to 9047pifl. doc / 015 (underlined) 26 541590 light ° The subsequent irradiation position calculation unit 262 reads the exposure exposure data corresponding to the other partial exposure areas indicated by the individual exposure data storage unit 258 based on the individual configuration data. Then, similarly, the exposure patterns included in the other partially-exposed areas are exposed. In the exposure processing, it is preferable that the wafer stage driving unit 48 continuously moves the wafer stage 46 in a certain direction based on an instruction from the wafer stage 96. Then, in accordance with the movement of the crystal W44, each of the electron beams exposes the partial exposure area necessary for the exposure contained in the strip exposure area 或 or 204 in the above-described operation. Then, the wafer stage 46 moves in the X-axis direction with a width that is slightly the same as the width in the X-axis direction of the strip exposure area 204. By continuously moving the wafer 44 in the opposite direction to this certain direction, the other strips Exposure with exposure area. By repeating the above-mentioned operation, the corresponding individual exposure areas are exposed by each electron beam, and a desired pattern can be exposed on a predetermined area of the wafer 44. According to the electron beam exposure apparatus 100 of the present invention, since exposure data is stored in units of partial exposure areas, even in the case where the size of the electronic components provided on the wafer is not consistent with the interval of each electron beam, or the electrons provided on the wafer When the arrangement interval of the components is not consistent with the interval of each electron beam, the exposure data corresponding to the entire area necessary for each electron beam exposure of the wafer is formed by each individual electron beam without storage. Therefore, necessary data for each electron beam exposure wafer can be formed relatively easily. Furthermore, since the capacity of the storage section that stores the exposure data can be greatly reduced, the manufacturing cost of the electron beam exposure apparatus can be reduced, thereby further reducing the manufacturing cost of the electronic components. Figure 10 shows the positions of the cylinders through which the electron beam passes, and the individual exposure areas exposed by the electron beams of each cylinder. Figure 10A is shown on the line A in Figure 2 with the cylinder as the ideal cylindrical position for ideal settings 9047pifl. doc / 015 (underlined) 27 541590 (202a ', 202b', 202c '), and the actual cylinder position 202 (202a, 202b, 202c) of the actual cylinder setting position. FIG. 10B illustrates that each electron beam exposure must individually expose the area 200 and the strip exposure area 204 included in the individual exposure area 200. The electron beams at the respective actual cylindrical positions (202a '202b, 202c) are exposed to the individual exposure areas (200a, 200b, 200c). The columns are preferably arranged in a grid pattern on the wafer 44 (see FIG. 2), and the plurality of columns formed in each column in this field are preferably arranged on the same straight line. Moreover, when each cylinder is set at an ideal cylinder position (202a ', 202b', 202c '), the wafer irradiation position of the electron beam passing through the cylinder as the ideal irradiation position is different from the ideal cylinder position (202a', 202b '). , 202c ') are slightly equal. However, the openings that constitute each cylinder and are provided in a multi-axis electron lens or the like through which an electron beam passes are formed by precision machining or semiconductor manufacturing, etc., and the position of this opening may be shifted. When the openings constituting the cylinders are shifted, the actual installation position of each cylinder and the ideal cylinder position (202a ', 202b', 202c ') are shifted. That is, the irradiation position of the wafer by the electron beam of each cylinder is slightly equal to the actual cylinder position (202a, 202b, 202c), and is offset from the ideal irradiation position. In the above-mentioned case, an embodiment of performing an exposure operation on the individual exposure area 200 corresponding to each electron beam through three electron beams arranged in a cylinder on the line A will be described in detail. In Figure 10A, the actual cylindrical position 202a is from the ideal cylindrical position 202a, which is increased by 60 microns Um in the X-axis direction), and the actual cylindrical position 202b is from the ideal cylindrical position 202b, which is reduced by 120 microns in the X-axis direction (// m) The actual cylindrical position 202c is the same as the ideal cylindrical position 202c. Actual cylinder position 9 047pifl. doc / 015 (underlined) 28 541590 (202a, 202b, 202c), a predetermined pattern can be exposed on the wafer in advance, calculated based on the pattern exposed on the wafer, and stored in advance. Further, the electron beam of the deflection portion 38 can be deflected by a distance of 80 mm, each of the individual exposure areas 200 is 22 mm (mm) on one side, and the width of each strip exposure area 204 is 80 m. That is, each of the individual exposure areas 200 has 275 stripe exposure areas 204 of equal area. In addition, each of the strip exposure areas 204 has a plurality of partially-exposed areas with one side being 10 μm. That is, the strip exposure area 204 has eight partial exposure areas 206 in the X-axis direction and 2200 in the y-axis direction. Moreover, in this embodiment, each of the individual exposure areas 200 is an area where one wafer is formed, and the partial exposure area 206 is an area where one wafer is divided. Then, the exposure data stored in the exposure data storage unit 172 is exposure data in units of 200 exposure units, that is, data for forming a wafer on the wafer 44 for exposure. First, the central exposure unit 170 decomposes the individual exposure areas 200 of one wafer into partial exposure areas. In this case, the individual exposure areas 200 are preferably decomposed into partial exposure areas 206 of the same size. In other examples, the individual exposure area 200 can also be decomposed into partial exposure areas 206 including different sizes. In addition, the individual exposure area 200 may be decomposed into only a part of the partially exposed area 206 including partial exposure data. Secondly, the central processing unit 170 allocates partial exposure areas 206 based on the actual cylindrical positions (202a, 202b, 202c) given in advance, to form individual layout data, and stores them in the layout data storage unit 174. In this case, the central processing unit 170 is based on the actual cylindrical position (202a, 202b, 202c), and from the ideal cylindrical position (202a ', 202b', 202c ') to the actual cylindrical position (202a, 9047pifl. doc / 015 (underlined) 29 541590 202b, 202c), calculate the stripe exposure area necessary for all electron beams to expose the individual exposure area 200, that is, calculate the wafer stage 46 using Number of movements of the wafer 44 in the X-direction stepwise movement. Specifically, the wafer stage 46 is used to make the wafer 44 move stepwise in the X direction and the opposite direction, that is, the actual cylindrical position (202a, 202b, 202c) and the ideal cylindrical position (202a) in the positive direction of the X axis. (,, 202b, 202c ') is the largest Off, then this difference is the maximum cylindrical offset 値 Oxmax, the actual cylindrical position (202a, 202b, 202c) in the negative direction of the x-axis and the ideal cylindrical position (202a The difference (Offset) of ', 202b', and 202 ° is the largest value, then this difference is the minimum cylinder offset * Oxmin, the interval adjacent to the ideal cylinder position is L, and the width of the X-axis direction of the strip exposure area 204 is P, the number of movements is determined by the following formula.

N = (L + Oxmax - Oxmin) / P 各電子束於其他的電子束照射條帶曝光區域204的場合,個別曝 光區域200的X軸方向的個別曝光區域的外部的一邊或是兩邊’ 可以有未照射晶圓的場合。也就是,N回晶圓載物台於y方向連 續移動的期間,可曝光條帶曝光區域爲N條帶。此條帶曝光區域 數可以包含各個別曝光區域2⑽所未包含的條帶曝光區域204 ° _ 各個別曝光區域200所未包含的條帶曝光區域204的總面積,其 所對應的條帶曝光區域204的數目的擬真條帶區域數可由下式決 定。N = (L + Oxmax-Oxmin) / P When each electron beam irradiates the strip exposure region 204 with other electron beams, one or both sides of the outside of the individual exposure region in the X-axis direction of the individual exposure region 200 may have When the wafer is not irradiated. That is, during the N-time wafer stage continuously moving in the y direction, the exposure zone is the N-band. The number of stripe exposure areas can include the stripe exposure area 204 not included in each individual exposure area 2 ° _ The total area of the stripe exposure area 204 not included in each individual exposure area 200, and the corresponding stripe exposure area The number of imaginary stripe regions of 204 can be determined by the following formula.

M = (Oxmax - Oxmin) / P 本實施例的移動次數N= 278次,N回晶圓載物台於y方向連續 移動的期間,可曝光條帶曝光區域數爲278條帶,其中擬真條帶 區域數Μ爲3條帶。 9047pifl .(100/015(有劃底線) 30 541590 繼續以中央處理部170,由全部各個別曝光區域200內包含 的條帶曝光區域204中,決定電子束照射必須的條帶曝光區域 204。具體而言,將通過具有最大偏移的電子束,所對應的個別 曝光區域中X軸負方向的端部設置的條帶曝光區域204最初進行 照射,使個別曝光區域與N個的條帶曝光區域204相對應較佳。 於本實施例中,由於實際圓柱位置202a具有最大的偏移, 中央處理器170,通過此圓柱的電子束,以條帶曝光區域(204-1) 爲最初進行曝光,使個別曝光區域與N個的條帶曝光區域204相 對應。(請參照第10B圖) ® 具體而言,中央處理部170使條帶曝光區域(204a-l)的端部 與個別曝光區域200a的X軸負方向的端部一致,使個別曝光區 域200a與條帶曝光區域(204a-l〜204a-278)相對應。亦即是,個 別曝光區域200a包含將全部的部分曝光區域曝光的條帶曝光區 域(204a-l〜204a-275),而且,於個別曝光區域200a的外部,存 在有通過此圓柱的電子束未曝光的條帶曝光區域(204a-276〜 204a-278)。 通過實際圓柱位置202b所設置圓柱的電子束進行曝光的個鲁 別曝光區域200b與條帶曝光區域(204b-l〜204b-278),係基於個 別曝光區域200a與實際圓柱位置202a的對應關係相對應。具體 而言,第η個(η爲整數)的條帶曝光區域(204b-n)係設置於對條帶 曝光區域(204a-n)偏移實際圓柱位置202a與實際圓柱位置202b 間距離(Oxmax - Oxmin)的位置。於本實施例中Oxmax - Oxmin 爲180微米,條帶曝光區域(204b-n)係設置於對條帶曝光區域 (204a-n)於X軸的負方向偏移108微米的位置。亦即是,個別曝 9047pifl.doc/015(有劃底線) 31 541590 光區域200b包含:將全部的部分曝光區域曝光的條帶曝光區域 (2〇4b-4〜204b-277),位於個別曝光區域200b兩端的一部份條帶 曝光區域(204b-3、204b-278)。而且,於個別曝光區域200a的外 部,存在有通過此圓柱的電子束未曝光的條帶曝光區域(204^1、 204b-2)以及其他部分的條帶曝光區域(204b-3、204b-278)。 同樣的,通過實際圓柱位置202c所設置圓柱的電子束進行 曝光的個別曝光區域200c,包含:將全部的部分曝光區域曝光的 條帶曝光區域(204C-2〜204C-275),位於個別曝光區域200c兩端 · 的一部份條帶曝光區域(2〇4c-l、204C-276)。而且,於個別曝光區 域200a的外部,存在有通過此圓柱的電子束未曝光的條帶曝光 區域(204c-277、204C-278)以及其他部分的條帶曝光區域 (204c-l 、 204C-276) 〇 中央處理部Π0於條帶曝光區204決定後,將各條帶曝光區 204分割爲部分曝光區域206。此時預定的部分曝光區域206,係 設置於一個別曝光區域與其他個別曝光區域的邊界的場合,較佳 爲對其中任一方的個別曝光區域以電子束曝光,於條帶曝光區 204分割部分曝光區域206。中央處理部170於此場合,較佳爲籲 分割個別曝光區域中包含較大面積之預定的部分曝光區域者。 中央處理部170將各條帶曝光區域204分割爲部分曝光區域 206後,基於此條帶曝光區域與部分曝光區域,各電子束依照個 別曝光區域200曝光順序以形成個別配置資料。個別配置資料包 含:藉由上述個別曝光區域200與條帶曝光區域204的對應,指 示電子束曝光必須條帶曝光區域204以及此條帶曝光區域204的 電子束曝光必須部分曝光區域206的資料。接著各電子束基於個 9047pifl.doc/015(有劃底線) 32 541590 別配置資料對於對應的個別曝光區域200開始曝光。 首先’曝光個別曝光區域200a必須的電子束,藉由移動晶 圓載物台46以移動晶圓44,以使條帶曝光區域(204a-l)爲曝光位 置。此時,曝光個別曝光區域200a以及曝光個別曝光區域200a 必須的電子束,個別位置於條帶曝光區域(204b-l)以及條帶曝光 區域(204c-1),然後晶圓載物台46於y軸正方向移動晶圓44。晶 圓載物台46 —邊於y軸方向連續移動晶圓44,如同前述的動作, 曝光個別曝光區域200a必須的電子束,將條帶曝光區域(204a-l) 全部曝光,曝光個別曝光區域200b必須的電子束,對條帶曝光 區域(204b-l)未曝光,而且,曝光個別曝光區域200c必須的電子 束’對條帶曝光區域(204C-1)中包含於個別曝光區域200c的部分 曝光區域206,亦即是對由鄰接條帶曝光區域(2〇4c-2)邊界起算 20微米範圍的部分曝光區域206進行曝光。 各電子束對條帶曝光區域(204a-l、204b-l、204C-1)曝光後, 晶圓載物台46於X軸方向移動與條帶曝光區域204之X軸方向 幅寬略相等的距離,以移動晶圓44。然後各電子束移動至可對條 帶曝光區域(204a-2、204b-2、204c-2)進行曝光的位置。然後晶圓 載物台46 —邊於y軸負方向移動晶圓44,藉由進行與前述相同 的動作,基於個別配置資料依序對條帶曝光區域2〇4進行曝光。 於此場合,複數電子束亦可以對個別於X軸方向具有偏移位置的 條帶曝光區域204,亦即是未在同一軸上的條帶曝光區域進行曝 光。 電子束曝光裝置100即使在各圓柱由理想位置偏移的場合, 基於各圓柱的位置,由於電子束能夠對條帶曝光區域以及部分曝 9 047pifl .doc/015(有劃底線) 33 541590 光區域進行分割,因此能夠以極少的資料處理次數,極有效率的 對晶圓進行圖案的曝光。 雖然本發明已以一較佳實施例揭露如上,然其本發明的技術 範圍並不限定於上述實施例。而能夠在上述實施做種種的變更, 實施申請專利範圍所記載的發明。此種經由種種變更的發明,亦 屬本發明所相關發明技術範圍,並由申請專利範圍的記載而明確 的瞭解與界定。 產業上利用性 由上述的說明,依本發明的話,電子束曝光裝置能夠於曝光 時處理極少的必要曝光資料。而且,儲存曝光資料的儲存部容量 得以大幅的減少。M = (Oxmax-Oxmin) / P The number of movements in this embodiment is N = 278 times. During the N-time continuous movement of the wafer stage in the y direction, the number of exposed areas can be 278 stripes. The number of band regions M is 3 bands. 9047pifl. (100/015 (underlined) 30 541590 Continue to use the central processing unit 170 to determine the strip exposure area 204 necessary for electron beam irradiation from the strip exposure areas 204 included in all the individual exposure areas 200. Specifically, In other words, the strip exposure area 204 provided at the end in the negative direction of the X-axis in the corresponding individual exposure area is initially irradiated by the electron beam having the maximum offset, so that the individual exposure areas and the N strip exposure areas are irradiated. Corresponding to 204 is preferred. In this embodiment, since the actual cylinder position 202a has the largest deviation, the central processing unit 170, through the electron beam of this cylinder, initially exposes the strip exposure area (204-1), Correspond to the individual exposure areas with N strip exposure areas 204. (See FIG. 10B) ® Specifically, the central processing unit 170 matches the ends of the strip exposure areas (204a-1) with the individual exposure areas 200a. The X-axis negative direction ends are consistent, so that the individual exposure area 200a corresponds to the stripe exposure area (204a-1 to 204a-278). That is, the individual exposure area 200a includes There are zone exposure areas (204a-l ~ 204a-275), and outside of the individual exposure areas 200a, there are strip exposure areas (204a-276 ~ 204a-278) which are not exposed by the electron beam passing through this cylinder. The individual exposure areas 200b and the strip exposure areas (204b-1 to 204b-278) exposed by the cylindrical electron beam set at the cylindrical position 202b correspond to the corresponding relationship between the individual exposure areas 200a and the actual cylindrical position 202a. Specifically, the nth (η is an integer) strip exposure area (204b-n) is set to offset the strip exposure area (204a-n) from the actual cylindrical position 202a and the actual cylindrical position 202b (Oxmax -Oxmin) position. In this embodiment, Oxmax-Oxmin is 180 microns, and the strip exposure area (204b-n) is set to offset the strip exposure area (204a-n) by 108 microns in the negative direction of the X axis. That is, individual exposure 9047pifl.doc / 015 (underlined) 31 541590 light area 200b includes: strip exposure area (204-4-4 ~ 204b-277) that exposes all partially exposed areas, Part of the stripe exposed at the ends of the individual exposure areas 200b Light areas (204b-3, 204b-278). Outside of the individual exposure area 200a, there are strip-exposed areas (204 ^ 1, 204b-2) and other parts of the band that are not exposed by the electron beam passing through the cylinder. Strip exposure area (204b-3, 204b-278). Similarly, the individual exposure area 200c that is exposed by the cylindrical electron beam set at the actual cylindrical position 202c includes the strip exposure area that exposes all of the partially exposed areas. (204C-2 ~ 204C-275), part of the stripe exposure area (204c-1, 204C-276) located at both ends of the individual exposure area 200c. Furthermore, outside of the individual exposure area 200a, there are strip exposure areas (204c-277, 204C-278) which are not exposed by the electron beam passing through the cylinder, and strip exposure areas (204c-l, 204C-276) of other parts. ) After the central processing unit Π0 determines the strip exposure area 204, each strip exposure area 204 is divided into partial exposure areas 206. At this time, the predetermined partial exposure area 206 is set at the boundary between a different exposure area and other individual exposure areas. It is preferable that the individual exposure area of any one of them is exposed by an electron beam, and the portion is divided in the strip exposure area 204. Exposure area 206. In this case, the central processing unit 170 preferably calls for division of a predetermined partial exposure area including a larger area among the individual exposure areas. After the central processing unit 170 divides each strip exposure area 204 into partial exposure areas 206, based on the strip exposure area and the partial exposure area, each electron beam forms an individual configuration data according to the exposure sequence of the individual exposure areas 200. The individual configuration data includes the data indicating that the above-mentioned correspondence between the individual exposure area 200 and the strip exposure area 204 indicates that the electron beam exposure must be the strip exposure area 204 and the electron beam exposure of the strip exposure area 204 must be the partial exposure area 206. Then each electron beam starts exposure based on 9047pifl.doc / 015 (underlined) 32 541590 with different configuration data for the corresponding individual exposure area 200. First, the electron beams necessary for the individual exposure areas 200a are exposed, and the wafer 44 is moved by moving the wafer stage 46 so that the strip exposure area (204a-1) is the exposure position. At this time, the individual exposure areas 200a and the electron beams necessary for exposing the individual exposure areas 200a are individually positioned in the strip exposure area (204b-1) and the strip exposure area (204c-1), and then the wafer stage 46 is at y. The wafer 44 is moved in the positive axis direction. Wafer stage 46 —The wafer 44 is continuously moved in the y-axis direction. As described above, the electron beams necessary for the individual exposure area 200a are exposed, the strip exposure area (204a-1) is fully exposed, and the individual exposure area 200b is exposed. The necessary electron beam is not exposed to the strip exposure area (204b-1), and the necessary electron beam for exposing the individual exposure area 200c is a partial exposure of the strip exposure area (204C-1) included in the individual exposure area 200c. The area 206 is to expose the partially exposed area 206 in a range of 20 micrometers from the border of the adjacent strip exposure area (204c-2). After each electron beam exposes the strip exposure areas (204a-l, 204b-1, 204C-1), the wafer stage 46 moves in the X-axis direction with a distance approximately equal to the width of the strip exposure area 204 in the X-axis direction. To move the wafer 44. Each electron beam is then moved to a position where the strip exposure areas (204a-2, 204b-2, 204c-2) can be exposed. Then, the wafer stage 46-while moving the wafer 44 in the negative direction of the y-axis, performs the same operation as described above, and sequentially exposes the strip exposure area 204 based on the individual arrangement data. In this case, the plurality of electron beams can also expose the individual strip exposure areas 204 having offset positions in the X-axis direction, that is, the strip exposure areas that are not on the same axis. The electron beam exposure device 100 can also expose the strip exposure area and part of the strip based on the position of each cylinder, even if each cylinder is shifted from an ideal position. 9 047pifl .doc / 015 (underlined) 33 541590 light area Dividing, so that the pattern can be exposed to the wafer with a very small number of data processing times. Although the present invention has been disclosed as above with a preferred embodiment, the technical scope of the present invention is not limited to the above embodiment. However, various changes can be made in the above-mentioned implementation to implement the invention described in the scope of patent application. This kind of invention, which has undergone various changes, also belongs to the technical scope of the invention related to the invention, and is clearly understood and defined by the record of the scope of patent application. Industrial Applicability From the foregoing description, according to the present invention, the electron beam exposure apparatus can process very few necessary exposure data during exposure. In addition, the capacity of the storage section for storing the exposure data is greatly reduced.

9 0 47pifl.doc/015(有劃底線) 349 0 47pifl.doc / 015 (underlined) 34

Claims (1)

541590 六、申請專利範圍 1·一種電子束曝光裝置,係以複數電子束對晶圓上圖案曝 光,該電子束曝光裝置中其具備有: 複數電子束發生部,用以產生複數電子束; 複數偏向部,用以將該些電子束個別獨立偏向; 一晶圓載置台,用以載置一晶圓; 一個別曝光資料儲存部,用以儲存複數曝光照射位置資料, 其中該些曝光照射位置資料係在每一複數個別曝光區域所包含 的複數部分曝光區域中表示複數曝光照射位置,尙且每一該些個 別曝光區域係爲於該晶圓曝光必須區域中之個別該些電子束必 須曝光區域,該些部分曝光區域係爲較以該些偏向部電子束可偏 向之偏向幅寬小的區域,該些曝光照射位置係爲該些電子束曝光 必須曝光照射圖案的位置; 一個別配置資料儲存部,用以儲存複數部分區域資料與複數 部分區域位置資料,其中該些部分區域資料係表示個別的該些個 別曝光區域的該些部分曝光區域,該些部分區域位置資料係表示 複數部分區域位置,且該些部分區域位置係爲該些部分曝光區域 的預定位置; 一照射位置計算部,基於該些部分區域資料,將該些電子束 曝光必須之該些部分曝光區域所包含的該些曝光照射位置資 料,由該個別曝光資料儲存部讀出,並基於作爲一載物台位置的 該晶圓載物台位置與該些部分區域位置的相對位置,以及該些部 分區域位置與該些曝光照射位置的相對位置,計算出表示該些電 子束曝光照射必須位置的複數照射位置資料;以及 9047pifl.doc/015(有劃底線) 35 541590 複數偏向控制部,基於該些照射位置資料個別控制該些偏向 部。 2·如申請專利範圍第1項所述之電子束曝光裝置,其中: 該些個別曝光區域具有複數的條帶曝光區域,且個別該些條 帶曝光區域中包含複數的該些部分曝光區域; 該個別配置資料儲存部儲存表示該些個別曝光區域所包含 該些條帶曝光區域的複數條帶區域資料,以及表示作爲複數條帶 位置的該些條帶曝光區域之特定位置的複數條帶位置資料;以及 該照射位置計算部更基於該些條帶區域資料,由該個別曝光 資料儲存部讀出該些曝光照射位置資料,更基於該載物台位置與 該些條帶位置的相對位置,以及該些條帶位置與該些部分區域位 置的相對位置,計算出該些照射位置資料。 3.如申請專利範圍第1項所述之電子束曝光裝置,其中該個 別曝光資料儲存部更儲存表示曝光照射圖案形狀的複數曝光照 射形狀資料,而且更具備有複數電子束成形裝置,該些電子束成 形裝置由該個別曝光資料儲存部讀出該些曝光照射形狀資料,基 於該些曝光照射形狀資料,將複數電子束的個別剖面形狀獨立成 形。 4·如申請專利範圍第3項所述之電子束曝光裝置,其中每一 該些電子束成形裝置具有: 一第1成形構件,具有複數的第1成形開口部,用以形成該 些電子束的剖面形狀; 一第2成形構件,具有複數的第2成形開口部,用以形成於 該第1成形構件中形成的複數電子束; 9〇47pifi.d〇c/〇15(有劃底線) 36 541590 複數成形偏向部,用以將通過該些第1開口部的複數電子束 個別獨立的偏向;以及 複數成形偏向控制部,基於曝光照射形狀資料,個別控制該 成形偏向部。 5·如申請專利範圍第4項所述之電子束曝光裝置,茸中該第 2成形構件更具有作爲區塊(Block)成形開口部的複數相_形狀開 口部。 6. 如申請專利範圍第1項所述之電子束曝光裝置,其中該個 別曝光儲存部更儲存有表示於該晶圓上曝光曝光照射_案時間 的複數曝光照射時間資料,且更具備有: 一照射切換裝置,用以獨立切換個別該些電子束是否照射於 該晶圓上;以及 一曝光時間控制部,基於該些曝光照射時間資料所對應的時 間控制該照射切換裝置。 7. 如申請專利範圍第2項所述之電子束曝光裝置,其中該個 別資料配置儲存部更儲存有複數部分區域資料以及複數部分區 域數資料,其中該些部分區域資料係表示該些條帶曝光區域的複 數預定曝光區域,該些部分區域數資料係表示由該些預定曝光區 域連續配置的該些電子束曝光必須之該些部分曝光區域的數 目。且該照射位置計算部基於該些部分區域資料以及該些部分區 域數資料,讀出該些部分曝光區域內包含的該些曝光照射位置資 料,並計算出該些照射位置資料。 8. 如申請專利範圍第7項所述之電子束曝光裝置,其中預定 的該些部分曝光區域設置於包含該些預定部分曝光區域的該些 9047pifl.d〇C/015(有劃底線) 37 541590 條帶曝光區域之最外周。 9. 如申請專利範圍第7項所述之電子束曝光裝置,其中該個 別配置資料儲存部更儲存有複數位址資料,其中該些位址資料係 用以表示儲存有表示預定的該些部分曝光區域之該些部分區域 資料的個別該些曝光資料儲存部的位址,且g亥照射位置g十算部基 於該些位址資料以及該些部分區域數資料,由該個別曝光資料儲 存部讀出該些部分區域資料。 10. 如申請專利範圍第1項所述之電子束曝光裝置,其中更具 備一曝光資料儲存部,用以儲存該些個別曝光區域之該些個別曝 光區域所包含的該些曝光照射位置資料以及該些部分區域資 料,該個別曝光資料儲存部由該曝光資料儲存部讀出、儲存該些 個別曝光區域所包含的該些曝光照射位置資料以及該些部分區 域資料。 11. 如申請專利範圍第10項所述之電子束曝光裝置,其中具 備一個以上的該曝光資料儲存部。 12. 如申請專利範圍第1項所述之電子束曝光裝置,其中在該 些電子束可曝光預定之該些部分曝光區域的場合,於該些電子束 中,能夠對預定之該些部分曝光區域曝光之面積最大的該電子束 所對應的該個別配置資料儲存部,儲存表示預定曝光部分的胃亥g 部分區域資料以及該些部分區域位置。 13·如申請專利範圍第2項所述之電子束曝光裝置,其中該些 部分曝光區域,於該些條帶曝光區域之短方向的長度與該些丨扁_ 部以該些電子束可偏向的偏向距離略相等,而且該些部 域的一邊,以偏向距離的略整數分之一形成。 9047pifl.doc/015(有劃底線) 38 14·如申請專利範圍第2項所述之電子束曝光裝置,其中該晶 圓載物台沿著該些條帶曝光區域的長方向連續移動該些部分曝 光區域曝光必須的該晶圓,於該晶圓載物台連續移動的場合中, 預定的該些電子束對與預定的該電子束於長方向鄰接的其他該 些電子束所曝光之該些條帶曝光區域未同一直線的該些條帶曝 光區域進行曝光。 15·如申請專利範圍第14項所述之電子束曝光裝置,其中個 別該些個別配置資料儲存部,對略垂直該些條帶曝光區域之長方 向的方向中,基於該些電子束照射必須的複數理想照射位置與實 際上該些電子束照射的複數實際照射位置的距離,儲存包含預定 的該些電子束以及其他的該些電子束曝光必須之該些條帶曝光 區域的該些部分區域資料。 16.如申請專利範圍第14項所述之電子束曝光裝置,其中對 連續移動方向略垂直的預定方向的該些理想照射位置與該些照 射位置距離最大的該電子束,在設置於與該些電子束曝光必須之 該些個別曝光區域的預定方向之相反方向端部的該些條帶曝光 區域,進行最初的照射。 17·如申請專利範圍第16項所述之電子束曝光裝置,其中於 複數的該些個別配置資料儲存部中,至少一個的該個別配置資料 儲存部儲存至少一個的該些條帶曝光區域所包含的複數該些部 分區域資料之中一部份的該些部分區域資料。 18.—種曝光方法,在使用複數電子束於一晶圓上曝光圖案的 該曝光方法中,其特徵爲具備下列步驟: 形成複數電子束; 9047pifl.doc/015(有劃底線) 39 將該晶圓載置於一晶圓載物台; 於該晶圓曝光必須曝光區域中,將作爲複數個別曝光區域的 複數個別電子束曝光必須區域所包含區域,分解爲較作爲複數部 分曝光區域的複數偏向部以複數電子束可偏向之偏向幅寬小的 區域; 於每一該些部分曝光區域,儲存表示該些部分曝光區域的電 子束曝光必須曝光照射圖案之位置的複數曝光照射位置資料; 儲存表示個別的該些個別曝光區域的該些部分曝光區域的 複數部分區域資料,以及儲存表示該些部分曝光區域之作爲部分 區域位置的預定位置的複數部分區域位置資料; 基於該些部分區域資料,由一個別曝光資料儲存部讀出電子 束曝光必須之該些部分曝光區域所包含的該些曝光照射位置資 料,並基於作爲一載物台位置的該晶圓載物台位置與該些部分區 域位置的相對位置,以及該些部分區域位置與該些曝光照射位置 的相對位置,計算出表示該些電子束照射必須位置的複數照射位 置資料;以及 基於該些照射位置資料,個別獨立偏向複數電子束。 9047pifl.doc/015(有劃底線) 40541590 6. Application scope 1. An electron beam exposure device for exposing a pattern on a wafer with a plurality of electron beams. The electron beam exposure device includes: a plurality of electron beam generating sections for generating a plurality of electron beams; A deflection unit is used to individually deviate the electron beams individually; a wafer mounting table is used to place a wafer; a unique exposure data storage unit is used to store multiple exposure irradiation position data, wherein the exposure irradiation position data The plurality of partial exposure areas included in each of the plurality of individual exposure areas indicate the plural exposure irradiation positions, and each of the individual exposure areas is an individual necessary exposure area of the electron beams in the necessary exposure area of the wafer. The partial exposure areas are areas with a smaller deflection width than those that can be deflected by the electron beams of the deflection portions, and the exposure irradiation positions are locations where the electron beam exposure must expose the exposure pattern; a separate configuration data store Department for storing plural partial area data and plural partial area position data, wherein the partial area information The material represents the individual partially exposed areas, the partially exposed areas, and the position information of the partial areas represents a plurality of partial area positions, and the positions of the partial areas are predetermined positions of the partially exposed areas; an irradiation position Based on the partial area data, the calculation unit reads out the exposure irradiation position data included in the partial exposure areas necessary for the electron beam exposure, and reads out the individual exposure data storage unit, and based on the data as a stage. The relative positions of the wafer stage position and the partial area positions, and the relative positions of the partial area positions and the exposure irradiation positions, and a plurality of irradiation position data indicating the necessary positions of the electron beam exposure irradiation are calculated. And 9047pifl.doc / 015 (underlined) 35 541590 A plurality of deflection control units, which individually control the deflection units based on the irradiation position data. 2. The electron beam exposure device according to item 1 of the scope of the patent application, wherein: the individual exposure areas have a plurality of strip exposure areas, and each of the strip exposure areas includes a plurality of partial exposure areas; The individual configuration data storage unit stores a plurality of stripe area data indicating the stripe exposure areas included in the individual exposure areas, and a plurality of stripe positions indicating a specific position of the stripe exposure areas as the plurality of stripe positions. Data; and the irradiation position calculation section is further based on the strip area data, the individual exposure data storage section reads out the exposure irradiation position data, and is further based on the relative positions of the stage position and the strip positions, And the relative positions of the strip positions and the positions of the partial regions to calculate the irradiation position data. 3. The electron beam exposure device according to item 1 of the scope of the patent application, wherein the individual exposure data storage section further stores plural exposure irradiation shape data indicating the shape of the exposure irradiation pattern, and further includes a plurality of electron beam forming devices. The electron beam forming device reads the exposure irradiation shape data from the individual exposure data storage unit, and independently shapes the individual cross-sectional shapes of the plurality of electron beams based on the exposure irradiation shape data. 4. The electron beam exposure device according to item 3 of the scope of the patent application, wherein each of the electron beam forming devices has: a first forming member having a plurality of first forming openings for forming the electron beams Cross-sectional shape; a second forming member having a plurality of second forming openings for forming a plurality of electron beams formed in the first forming member; 9〇47pifi.d〇c / 〇15 (underlined) 36 541590 A plurality of forming deflection sections are used to individually deviate the plurality of electron beams passing through the first openings; and the plurality of forming deflection control sections individually control the forming deflection sections based on the exposure irradiation shape data. 5. The electron beam exposure device described in item 4 of the scope of patent application, wherein the second forming member has a plurality of phase-shape openings as block forming openings. 6. The electron beam exposure device described in item 1 of the scope of the patent application, wherein the individual exposure storage section further stores a plurality of exposure exposure time data indicating the exposure exposure exposure time on the wafer, and further includes: An irradiation switching device is used to independently switch whether the individual electron beams are irradiated on the wafer; and an exposure time control unit controls the irradiation switching device based on the time corresponding to the exposure irradiation time data. 7. The electron beam exposure device as described in item 2 of the scope of patent application, wherein the individual data configuration storage section further stores a plurality of partial area data and a plurality of partial area data, wherein the partial area data indicates the bands The plurality of exposure areas are predetermined exposure areas. The partial area number data indicates the number of the partial exposure areas necessary for the electron beam exposures that are continuously arranged by the predetermined exposure areas. And the irradiation position calculation unit reads out the exposure irradiation position data contained in the partial exposure areas based on the partial area data and the number of partial area data, and calculates the exposure position data. 8. The electron beam exposure device according to item 7 of the scope of patent application, wherein the predetermined partial exposure areas are set on the 9047pifl.d0C / 015 (underlined) including the predetermined partial exposure areas 37 541590 The outermost periphery of the strip exposure area. 9. The electron beam exposure device as described in item 7 of the scope of the patent application, wherein the individual configuration data storage section further stores a plurality of address data, wherein the address data is used to indicate that the parts indicating the reservation are stored The addresses of the partial exposure data storage sections of the partial exposure data of the exposure area, and the g irradiation unit g based on the address data and the partial area number data are used by the individual exposure data storage section. Read out some of the regional data. 10. The electron beam exposure device according to item 1 of the scope of patent application, further comprising an exposure data storage section for storing the exposure irradiation position data contained in the individual exposure areas and the individual exposure areas, and The partial area data, the individual exposure data storage unit is read out by the exposure data storage unit, and stores the exposure irradiation position data and the partial area data included in the individual exposure areas. 11. The electron beam exposure device according to item 10 of the scope of patent application, which includes more than one exposure data storage section. 12. The electron beam exposure device according to item 1 of the scope of patent application, wherein, in the case where the electron beams can expose the predetermined partial exposure areas, among the electron beams, the predetermined portions can be exposed. The individual configuration data storage section corresponding to the electron beam having the largest area exposure area stores the stomach area information representing the predetermined exposure portion and the positions of the partial areas. 13. The electron beam exposure device according to item 2 of the scope of the patent application, wherein the lengths of the partial exposure areas in the short direction of the strip exposure areas and the flat portions can be deflected by the electron beams. The deflection distances of are slightly equal, and one side of these regions is formed by a slightly whole number of deflection distances. 9047pifl.doc / 015 (underlined) 38 14. The electron beam exposure device according to item 2 of the scope of patent application, wherein the wafer stage continuously moves the sections along the long direction of the strip exposure areas The wafer necessary for exposure in the exposure area, and when the wafer stage is continuously moved, the predetermined electron beam pairs and the predetermined other electron beams in the longitudinal direction are exposed by the other electron beams. The strip exposure areas with the exposure areas not aligned with one another are exposed. 15. The electron beam exposure device according to item 14 of the scope of the patent application, wherein each of the individually configured data storage sections must be based on the irradiation of the electron beams in a direction slightly perpendicular to the longitudinal direction of the strip exposure areas. The distance between the plurality of ideal irradiation positions and the plurality of actual irradiation positions actually irradiated by the electron beams stores the partial areas including the stripe exposure areas that are predetermined for the electron beams and other electron beams for exposure data. 16. The electron beam exposure device according to item 14 of the scope of the patent application, wherein the electron beams having the largest distance between the ideal irradiation positions and the irradiation positions in a predetermined direction that is slightly perpendicular to the continuous moving direction are disposed between the For these electron beam exposures, the strip exposure areas at the ends opposite to the predetermined direction of the individual exposure areas must be initially irradiated. 17. The electron beam exposure device according to item 16 of the scope of patent application, wherein in the plurality of individual configuration data storage sections, at least one of the individual configuration data storage sections stores at least one of the strip exposure areas. Contains a plurality of the partial area data among a plurality of the partial area data. 18. An exposure method in which an exposure pattern using a plurality of electron beams on a wafer is characterized by having the following steps: forming a plurality of electron beams; 9047pifl.doc / 015 (underlined) 39 The wafer is placed on a wafer stage; in the wafer exposure required exposure area, the area included in the plurality of individual electron beam exposure required areas as a plurality of individual exposure areas is decomposed into a plurality of biased portions that are more than a plurality of partial exposure areas A plurality of electron beams can be deflected to a small width area. For each of the partial exposure areas, multiple exposure exposure position data indicating a position where the electron beam exposure of the partial exposure areas must be exposed to an irradiation pattern is stored. The plurality of partial area data of the partially exposed areas of the individual exposed areas, and storing a plurality of partial area location data indicating a predetermined position of the partial exposure area as a position of the partial area; based on the partial area data, a The individual exposure data storage section reads out the partial exposures necessary for the electron beam exposure The exposure irradiation position data included in the area is based on the relative positions of the wafer stage position and the partial area positions as a stage position, and the relative positions of the partial area positions and the exposure irradiation positions. Position, calculating a plurality of irradiation position data indicating the necessary positions of the electron beam irradiation; and based on the irradiation position data, individually biasing the plurality of electron beams independently. 9047pifl.doc / 015 (underlined) 40
TW91105272A 2001-04-09 2002-03-20 Electron beam exposure apparatus and exposure method TW541590B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001109838A JP4251784B2 (en) 2001-04-09 2001-04-09 Electron beam exposure apparatus and irradiation position calculation method

Publications (1)

Publication Number Publication Date
TW541590B true TW541590B (en) 2003-07-11

Family

ID=18961723

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91105272A TW541590B (en) 2001-04-09 2002-03-20 Electron beam exposure apparatus and exposure method

Country Status (3)

Country Link
JP (1) JP4251784B2 (en)
TW (1) TW541590B (en)
WO (1) WO2002084719A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4434573B2 (en) 2002-11-29 2010-03-17 株式会社東芝 License transfer device and program
JP6147528B2 (en) * 2012-06-01 2017-06-14 株式会社ニューフレアテクノロジー Multi-charged particle beam writing method and multi-charged particle beam writing apparatus
JP6215061B2 (en) * 2014-01-14 2017-10-18 株式会社アドバンテスト Electron beam exposure system
JP2017063101A (en) * 2015-09-24 2017-03-30 株式会社アドバンテスト Exposure apparatus and exposure method
US10522472B2 (en) 2016-09-08 2019-12-31 Asml Netherlands B.V. Secure chips with serial numbers
US10418324B2 (en) 2016-10-27 2019-09-17 Asml Netherlands B.V. Fabricating unique chips using a charged particle multi-beamlet lithography system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821422B2 (en) * 1980-12-26 1983-04-30 株式会社東芝 Charged beam exposure equipment
JPS6298724A (en) * 1985-10-25 1987-05-08 Hitachi Ltd Electron beam patterning device
JPS6420619A (en) * 1987-07-15 1989-01-24 Toshiba Corp Electron beam aligner
JPH0529202A (en) * 1991-07-23 1993-02-05 Hitachi Ltd Electron beam patterning data forming device and electron beam patterning system
JP3544759B2 (en) * 1995-09-07 2004-07-21 富士通株式会社 Multi-charged particle beam exposure method
JP3612166B2 (en) * 1997-03-18 2005-01-19 株式会社東芝 Charged beam drawing data creation method and apparatus

Also Published As

Publication number Publication date
JP4251784B2 (en) 2009-04-08
WO2002084719A1 (en) 2002-10-24
JP2002305141A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
US10896801B2 (en) Multiple electron beam image acquisition apparatus, and alignment method of multiple electron beam optical system
JP3728015B2 (en) Electron beam exposure system and device manufacturing method using the same
JP6684179B2 (en) Charged particle beam inspection apparatus and charged particle beam inspection method
US7425703B2 (en) Electron beam apparatus, a device manufacturing method using the same apparatus, a pattern evaluation method, a device manufacturing method using the same method, and a resist pattern or processed wafer evaluation method
TW559883B (en) Charged particle beam exposure apparatus, device manufacturing method, and charged particle beam applied apparatus
TW202004815A (en) Multiple electron beam irradiation apparatus, multiple electron beam inspection apparatus and multiple electron beam irradiation method
KR20130036726A (en) Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
TW200908089A (en) Writing method and charged particle beam writing apparatus
US10685809B2 (en) Charged particle beam lithography apparatus and charged particle beam pattern writing method
TWI786705B (en) Multiple electron beams irradiation apparatus
JP7106353B2 (en) Multi-charged particle beam inspection device and multi-charged particle beam inspection method
TW201940872A (en) Charged particle beam inspection method
TW541590B (en) Electron beam exposure apparatus and exposure method
JPH09288991A (en) Electron beam exposing device
JP7194572B2 (en) Multi electron beam inspection system
JP3568553B2 (en) Charged particle beam exposure apparatus and cleaning method thereof
CN104134605B (en) Drawing apparatus, and method of manufacturing semiconductor device
US20130344443A1 (en) Lithography apparatus, and method of manufacture of product
KR100379290B1 (en) Mask for electron beam exposure and method of manufacturing semiconductor device using the same
TWI782516B (en) Multi-electron beam image acquisition device and multi-electron beam image acquisition method
US9040942B1 (en) Electron beam lithography with linear column array and rotary stage
JP2021077492A (en) Electron beam inspection device and electron beam inspection method
JP2021009780A (en) Multi-electron beam image acquisition device and multi-electron beam image acquisition method
JP2020035871A (en) Multi-beam aperture set, and apparatus and method for multi-charged particle beam drawing
US20020036272A1 (en) Charged-particle-beam microlithography methods and apparatus providing reduced reticle heating