TW531674B - Method and apparatus for switching optical signals using rotatable optically transmissive microstructure - Google Patents

Method and apparatus for switching optical signals using rotatable optically transmissive microstructure Download PDF

Info

Publication number
TW531674B
TW531674B TW90123027A TW90123027A TW531674B TW 531674 B TW531674 B TW 531674B TW 90123027 A TW90123027 A TW 90123027A TW 90123027 A TW90123027 A TW 90123027A TW 531674 B TW531674 B TW 531674B
Authority
TW
Taiwan
Prior art keywords
optical
substrate
platform
patent application
waveguide
Prior art date
Application number
TW90123027A
Other languages
Chinese (zh)
Inventor
Ying Wen Hsu
Original Assignee
Newport Opticom Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Newport Opticom Inc filed Critical Newport Opticom Inc
Application granted granted Critical
Publication of TW531674B publication Critical patent/TW531674B/en

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

This improved method and apparatus for switching optical signals uses a rotatable optically transmissive microstructure to change the optical paths of optical signals. The rotatable optically transmissive microstructure includes structures such as waveguides and waveguide networks which transmit optical signals. MEMS and micromachining technology are used to build an optical switch with a microstructure that rotates from one position to another position (e.g., laterally, vertically, rotationally) such that incoming optical signals align over a small air gap with different waveguides, or with different inputs to the waveguides, depending on the position of the microstructure. As a result, the optical signals travel different optical paths (e.g., straight pass-through or cross over) depending on the position of the microstructure. The waveguides can be fabricated, for example, by laying a cladding material on a substrate, forming a waveguide on the cladding material, and finally by overlaying a second cladding layer on top.

Description

531674531674

相關應用春昭 本專利申請案係關於並主張於2000年9月19日申請標題為 “使用微結構切換光信號的方法(Meth〇d f〇r switching optical signals using microstructures)” 之許文赢(Ying WenRelated Applications Chunzhao This patent application is about and claims to apply for a method entitled "Meth〇df〇r switching optical signals using microstructures" on September 19, 2000 (Ying Wen

Hsu)之臨時性美國專利申請案序號第6〇/233,672號之優先權 以及於2000年1〇月20日申請標題為“使用微結構切換光信 號的方法”之許文瀛之臨時性美國專利申請案序號第 60/241,762號之優先權。 發明背景 發明領域 本發明領域一般關於切換光信號之一類元件並將一系列 這些元件整合成一系統。尤甚者,此等元件係以相容於普 偏之半導體製造慣例的製程和材料予以製成,因而能夠大 I生產產品並具有低成本。 背景 在電信工業裏,極度增加之更多利用性及更快速通訊系 統’即較大頻寬,的需求已造就了這些元件的重要性。正 推動此項需求之主要應用實施例為網際網路、隨選視訊/音 樂、以及共同資料儲存。廣泛發展於電話的現存電信基礎 建設現在無法符合新資料通訊應用的需求。 已發展許多替代方案來符合這項新的需求。這些替代方 案包含無線、光學、以及無障礙空間雷射通訊技術。迄今 ’最有希望符合未來計劃頻寬需求的技術為光學技術。 在一完全屬於光學的網路裏,或一光學及電氣網路之組 -4 - 本紙適财s g家料(CNS) A4_21Gx297公爱) 531674Hsu) 's provisional U.S. Patent Application Serial No. 60 / 233,672 priority and Xu Wenhuan's provisional U.S. patent application entitled "Method of Switching Optical Signals Using Microstructures" on October 20, 2000 The priority number is 60 / 241,762. BACKGROUND OF THE INVENTION Field of the Invention The field of the invention is generally related to switching a class of elements of an optical signal and integrating a series of these elements into a system. In particular, these components are manufactured using processes and materials that are compatible with common semiconductor manufacturing practices, thereby enabling large-scale production and low cost. Background In the telecommunications industry, the demand for extremely increased availability and faster communication systems, i.e., larger bandwidths, has made these components important. The main application examples that are driving this demand are the Internet, on-demand video / music, and common data storage. Existing telecommunications infrastructure, which has been widely developed in telephones, is now unable to meet the needs of new data communications applications. Many alternatives have been developed to meet this new need. These alternatives include wireless, optical, and accessible space laser communication technologies. The technology most promising to date to meet future planned bandwidth requirements is optical technology. In a network that is entirely optical, or a group of optical and electrical networks -4-This paper is suitable for household materials (CNS) A4_21Gx297 public love) 531674

合中’必要的元件包含一信號載體媒介(亦即光纖)、信號路 由系統、以及資料控制系統。這些信號路由系統具有用來 切換光纖之間光信號的元件β 在先前技藝的方式中,光信號旳切換可藉由兩種具主導 性的主要方式予以達成:電氣及光學。目前大部分的系統 係使用電氣切換。在這些系統中,於網路接點,首先必須 將此等光信號轉換成電氣信號。然後,藉由積體電路將已 轉換之電氣信號切換至該所指定之頻道。最後,必須在將 此等k號透過光纖傳至次一目的之前將此等信號轉換回光 信號。與其餘的傳輸設備相比較,此等光學轉換器較貴。 電氣切換技術可靠、不貴(除了光學轉換器之外)、且可再 凋整並監控信號。電氣切換系統的主要缺點在於長途網路 的接點數目多,且轉換器的總成本非常高。另外,通常到 達一接點的信號中有超過70%的信號僅需要簡單的直線通口 (pass-through),且全信號轉換(向下及向上轉換)使得硬體使 用缺乏效率。系統設計者亦預期到未來的系統最好利用透 明光學切換功能;亦即,切換系統能夠再導向光信號的路 徑而與位元速率、資料格式、或輸入及輸出埠之間光信號 的波長無關。大部分的電氣切換系統係設計用於特定速率 及格式,且不能用於多重和動態速率及格式。未來的系統 亦要求能夠處理具不同波長的光信號,這在電氣切換網路 裏對每一種波長皆需用到個別的通道。這些電氣切換系統 的限制提供新的機會以發展改良式光學切換系統。 直接影響光線路徑方向的切換器一般係視為光學交錯連 -5-The necessary components in the connection include a signal carrier medium (ie, optical fiber), a signal routing system, and a data control system. These signal routing systems have an element β for switching optical signals between optical fibers. In the prior art method, optical signal switching can be achieved by two main main methods: electrical and optical. Most systems currently use electrical switching. In these systems, at the network contacts, these optical signals must first be converted into electrical signals. Then, the converted electrical signal is switched to the designated channel by the integrated circuit. Finally, these k-numbers must be converted back to optical signals before being transmitted through the fiber to the next destination. These optical converters are more expensive than the rest of the transmission equipment. Electrical switching technology is reliable, inexpensive (except for optical converters), and can be reconditioned and monitored. The main disadvantages of the electrical switching system are the large number of contacts on the long-distance network and the very high total cost of the converter. In addition, more than 70% of the signals that reach a contact usually require a simple straight-through, and full signal conversion (down and up conversion) makes hardware use inefficient. System designers also anticipate that future systems will best utilize transparent optical switching; that is, the switching system can redirect the path of the optical signal regardless of the bit rate, data format, or wavelength of the optical signal between the input and output ports . Most electrical switching systems are designed for specific rates and formats and cannot be used for multiple and dynamic rates and formats. Future systems will also be required to be able to process optical signals with different wavelengths, which requires separate channels for each wavelength in the electrical switching network. The limitations of these electrical switching systems provide new opportunities to develop improved optical switching systems. Switchers that directly affect the direction of the light path are generally considered as optically interleaved -5-

531674 9ΐ ^ " .单·員日鉍正/暴正 五、發明説明(3~~) " ' 接器(OXC)。使用玻璃及其它光學基底的傳統光學製造技術 無法產生符合資料通訊應用效能及成本的產品β與基於成 熟之積體電路技術的電氣切換技術不同,光學切換(可達到 南埠數的切換技術)取決於較新的技術。微機械的使用是一 項新的方式。項目MEMS(微電子機械系統)係用於描述使用 晶圓製程以微機械方式(大部分在矽晶圓上)製成的元件。 MEMS的整批製程功能使得這些元件在製造上具有低成本及 高產量。 以MEMS為基礎的光學切換器主要可分成三種類別:丨)矽 鏡,2)流動式切換器,以及3)熱光式切換器。已展示流動式 及熱光式切換器,但這些技術缺乏放大通道數或埠數的能 力尚蟑數對於在接點處有效切換大量光纖是重要的。到 現在為止,在三維(3D)空間裏使用矽鏡是達到高埠數(例如 大於1000)的唯一方法。 使用三維矽鏡的光學交錯連接器面臨極大的挑戰。這些 系統需要非常嚴密的光束路徑角度控制及反射鏡之間的大 型無障礙空間距離以產生一具有高埠數的元件。若不使用 主動式光束路徑控制,一般無法達成所需的精密角度控制 。既然每一條路徑皆必須予以監控並操控…最終系統 會變得複雜且成本高。這些系統亦需要大量的軟體及電氣( 处理)源以監控並控制每一個鏡面的位置。既然鏡面可經由 無限數目之可能位置依兩方向移動(亦即類比式移動卜最終 的坦授取得及控制系、統會非常複特別是對具有大量璋 數的切換ϋ。例如’如最近之發展報告指出,朗訊科技 -6 - 531674 紅請A7531674 9ΐ ^ "Single member day bismuth positive / violent positive V. Description of the invention (3 ~~) " 'Connector (OXC). The traditional optical manufacturing technology using glass and other optical substrates cannot produce products that meet the performance and cost of data communication applications. Β is different from the electrical switching technology based on the mature integrated circuit technology. The optical switching (switching technology that can reach the number of Nanbu) depends on For newer technologies. The use of micromechanics is a new way. The project MEMS (Micro-Electro-Mechanical Systems) is used to describe components that are fabricated micro-mechanically (mostly on silicon wafers) using wafer processes. The MEMS batch process capabilities enable these components to be manufactured at low cost and high yield. MEMS-based optical switches can be divided into three categories: 丨) silicon mirrors, 2) mobile switches, and 3) thermo-optic switches. Mobile and thermo-optic switches have been shown, but these technologies lack the ability to amplify the number of channels or ports. The number of channels is important to effectively switch a large number of fibers at the junction. Until now, the use of silicon mirrors in three-dimensional (3D) space was the only way to achieve high port counts (for example, greater than 1000). Optical interleaving connectors using 3D silicon mirrors face great challenges. These systems require very tight beam path angle control and large unobstructed spatial distances between mirrors to produce a component with a high port count. Without active beam path control, the precise angle control required is generally not achieved. Now that every path has to be monitored and manipulated ... eventually the system becomes complex and costly. These systems also require extensive software and electrical (processing) sources to monitor and control the position of each mirror. Since the mirror can be moved in two directions through an infinite number of possible positions (ie, analog movements, the final candid acquisition and control system, the system will be very complex, especially for switching with a large number of numbers.) For example, 'such as recent developments The report states that Lucent Technologies-6-531674 Red Please A7

(Lucent Technology)之較小型三維鏡面切換原型附有支承設 備’支承δΧ備佔有二個具控制電子元件的全尺寸箱。 理論上’一光學切換器具有底下之主要特徵: 1) 可調整其大小以容納大量埠數(大於1000埠); 2) 具可靠度; 3) 可用低成本予以製造; 4) 具有低切換時間; 5) 具有低插入漏失/串音。 三維石夕鏡若符合可調整尺寸之需求,則無法達成其它目 的。因此,需要一種新的方法,其中可用引導式光學路徑 及數位式(兩種狀態)切換取代三維無障礙空間光學路徑之複 雜性質及類比控制。此種系統可大幅簡化切換操作,強化 可靠度及效能,而又大幅降低成本。本揭露於底下的章節 說明此種系統。 發明概沭 本發明關於一種使用在一基底上以微影製程所形成之可 旋轉式光傳輸微結構來切換光信號的方法及裝置。其中美 底係例如半導體、石英、矽土、或某些其它結構。本裝置 使用可紅轉式微結構以導向多重光學路徑。 第一,本發明之個別觀點係一種藉由選擇性旋轉一可移 動式光傳輸微結構來切換光信號的裝置,其中光信穿在微 結構未旋轉時採用一組路徑而在旋轉微結構時採用不同組 的路徑。 第二,本發明之個別觀點係一種藉由選擇性旋轉一可移 本紙張尺度適用中國國家標準(CNS) Α4規格(210Χ 297公釐) 531674 91· 7. 25 ^ --—年』~~___ _ 五、發明説明(5 ) ~—^〜 動式光傳輸微結構來切換光信號的裝置,其中光信號在微 結構未旋轉時採用一組路徑而在旋轉微結構時採用不同組 的路徑。 '' 第二’本發明之個別觀點係一種用來切換光信號的裝置 ,包含一固定式輸入波導、至少兩個鑲嵌於一可旋轉式微 結構的光傳輸波導、以及一固定式輸出波導。 第四,本發明之個別觀點係一種用來切換光信號的裝置 ,包含一具有一輸入和一輸出的可旋轉式光傳輸微結構, 其中該輸入係緊密鄰接(例如一小的空氣缺口)一内含入射光 信號之波導而放置且該輸出係緊密鄰接(例如一小的空氣缺 口)一載送一射出光信號之波導而置。 第五,本發明之個別觀點係一種用來切換光信號的裝置 ,包含一微結構,其鑲嵌係用於相對於矽晶片基底旋轉, 該微結構載有光學傳輸波導。 第八,本發明之個別觀點係一種用來切換光信號的裝置 ,包含一晶片之基底、一載有光學傳輸波導並可旋轉式地 鑲嵌於基底供相對於基底旋轉的微結構、以及一用於相對 於基底旋轉微結構之控制基底。 第七本發明之個別觀點係一種用來切換光信號的裝置 ,包含一晶片基底、一鑲嵌於該基底的支承結構、一載有 光傳輸波導並可旋轉式地鑲嵌於支承結構用於相對於基底 移動的微結構、以及一用於相對於基底旋轉微結構的控制 結構。 第八,本發明之個別觀點係一種用來切換光信號的裝置 -8 -The smaller three-dimensional mirror switching prototype of (Lucent Technology) is equipped with a supporting device 'supporting a δX device occupying two full-size boxes with control electronics. Theoretically, an optical switch has the following main features: 1) its size can be adjusted to accommodate a large number of ports (greater than 1000 ports); 2) has reliability; 3) can be manufactured at low cost; 4) has low switching time 5) Has low insertion loss / crosstalk. If the three-dimensional Shixi mirror meets the needs of adjustable size, it cannot achieve other goals. Therefore, a new method is needed, in which the complex nature and analog control of the optical path in a three-dimensional accessible space can be replaced by a guided optical path and digital (two states) switching. This system can greatly simplify switching operations, enhance reliability and performance, and significantly reduce costs. The following section of this disclosure describes such a system. Summary of the Invention The present invention relates to a method and device for switching optical signals using a rotatable optical transmission microstructure formed by a lithography process on a substrate. Among them are substrates such as semiconductors, quartz, silica, or some other structure. The device uses a red-turnable microstructure to guide multiple optical paths. First, an individual aspect of the present invention is a device for switching optical signals by selectively rotating a movable optical transmission microstructure, wherein the optical signal transmission uses a set of paths when the microstructure is not rotated and is used when the microstructure is rotated Different groups of paths. Second, the individual point of view of the present invention is a method of selectively rotating a removable paper scale to apply the Chinese National Standard (CNS) A4 specification (210 × 297 mm) 531674 91 · 7. 25 ^ --- year '~~ ___ _ V. Description of the invention (5) ~~ ^ ~ A device for switching optical signals by moving optical transmission microstructures, in which optical signals adopt a set of paths when the microstructure is not rotated and different sets of paths when the microstructure is rotated. . '' A second aspect of the present invention is a device for switching optical signals, comprising a fixed input waveguide, at least two optical transmission waveguides embedded in a rotatable microstructure, and a fixed output waveguide. Fourth, an individual aspect of the present invention is a device for switching optical signals, including a rotatable optical transmission microstructure having an input and an output, wherein the input is closely adjacent (such as a small air gap)- A waveguide containing an incident optical signal is placed and the output is closely adjacent (for example, a small air gap) a waveguide carrying a outgoing optical signal. Fifth, an individual aspect of the present invention is a device for switching optical signals, which includes a microstructure that is mounted for rotation relative to a silicon wafer substrate, the microstructure carrying an optical transmission waveguide. Eighth, an individual aspect of the present invention is a device for switching optical signals, comprising a substrate of a wafer, a microstructure carrying an optical transmission waveguide and rotatably embedded in the substrate for rotation relative to the substrate, and a device A control substrate that rotates the microstructure relative to the substrate. A seventh aspect of the present invention is a device for switching an optical signal, comprising a wafer substrate, a support structure embedded in the substrate, a light transmission waveguide and a rotation support embedded in the support structure for relative to A microstructure for substrate movement, and a control structure for rotating the microstructure relative to the substrate. Eighth, an individual aspect of the present invention is a device for switching optical signals. -8-

91。 ^1674 五、發明説明(6 日修正/楚7正/_補_充— 5八有於X-Y維度内切換光信號之可旋轉式光傳輸微 …構的光學切換器以及_具有於z維度内切換光信號之可旋 轉式光傳輸微結構的光學切換器,因而能夠在三維空間内 切換光信號。 第九本發明之個別觀點係一種用來切換光信號的裝置 包含一具有一可旋轉式光傳輸微結構的微切換元件,該 微切換元件能夠將光信號由兩輸入導向兩輸出中的任何L 個。 第十本發明之個別觀點係一種用來切換光信號的裝置 ^ 3可知:轉式光傳輸微結構,藉由使用置於介面之光 子π件之_維陣列自一光學輸出的二維陣列校正光學偏差 、第十,本發明之個別觀點係一種用來切換光信號的方 法,包含選擇性旋轉一可移_光傳輸微結構的步驟,其 中此等光信號於微結構未旋轉時採用一組路徑而於微結構 旋轉時採用另一組路徑。 、第十一,本發明之個別觀點係一種用來切換光信號的方 法,包含步驟為,經由一目定式輸幻皮導提供一人射光信 號,藉由選擇性地旋轉微結構選擇性地將光信號導入至少 兩,嵌於一可旋轉式微結構的波導中其中之一,並經由一 固定式輸出波導輸出光信號。 、第十一,本發明之個別觀點係一種用來切換光信號的方 法’包含步驟為,放置一具有一輸入和一輸出的可旋轉式 光傳輸微結構而使得輸人緊接(例如_小的空氣缺口卜内含 •9· 本纸張尺家標準(CNS) Α4規格(21()χ297公爱了 531674 91. 7· 25 at 年月日倐正^^4^ 五、發明説明( 一入射光信號的波導而置且輸出緊接一用於載送一射出光 信號的波導而置。 第十四,本發明之個別觀點係一種用來切換光信號的方 法’包含步驟為’镶喪一光傳輸微結構用於相對於石夕晶片 之基底旋轉,該微結構載有光傳輸波導。 第十五’本發明之個別觀點係一種用來切換光信號的 方法,包含步驟為,提供一晶片基底,可旋轉式地將一 載有光傳輸波導的微結構鑲嵌於基底用於相對於基底旋 轉’並選擇性地相對於基底旋轉微結構以切換此等光信 號。 第十六,本發明之個別觀點係一種用來切換光信號的方 法,包含步驟為,提供一鑲嵌於一晶片基底的支承結構, 可旋轉式地將一載有光傳輸波導的微結構鑲嵌於該支承結 構用於相對於基底旋轉,並選擇性地相對於基底旋轉微結 構以切換此等光信號。 、第十七,本發明之個別觀點係一種用來切換光信號的方 法’包含步驟為’提供一於χ_γ維度内切換光信號的光學切 換器並提供—於2維度内切換光信號的光學切換器,故能夠 在二維空間内切換光信號。 十 本發明之個別觀點係一種用來切換光信號的 方法’包含步驟為,提供_具有能將光信號自兩輸入導 向兩輸出中之任_輸出之可旋轉式光傳輸微結構的微切 換元件。 本發月之個別觀點係一種用來切換光信號的方 本纸張尺Ζ適用中國 -10 531674 9|· λ 25 年月日修正/繁正/爾充-五、發明説明(8 ) 法,包含步驟為,選擇性地旋轉一光傳輸微結構以切換光 信號並藉由使用一置於介面之光學元件之二維陣列自一、光 學輸出之二維陣列校正光學偏差。 第二十,本發明之個別觀點係一種使用—可旋轉式光傳 輸微結構製造可旋轉式及固定式波導的方法。 第二十一,本發明之個別觀點係一種使用—可旋轉式光 傳輸微結構製造可旋轉式及固定式波導的方法本方法 包含步驟為整合簡單的切換元件並形成能夠同時將高密 度光信號自一二維輸入陣列切換至—二維輸出陣列的结 構。 第二十二,本發明之個別觀點係一種使用—可旋轉式光 傳輸微結構製造-波導的方法,本方法包含步驟為以一塗 覆材料環繞蕊心,其中該塗覆材料的折射係數稍低於蕊心 的折射係數。 第二十三’本發明之個別觀點係任—上述個別觀點,此 等觀點係獨立的或呈某些組合。 本發明之其它個別觀點亦可獨立地或呈組合地於實踐任 一上述個別觀點的系統或方法中找到。 本行人士將查閱底下圖示及詳細說明顯知本發明之其它 系統、方法、特性和優點。希望所有此等其它的系統、方 法、特性及優點皆包含於本說明内,包含於本發明之範疇 内,並藉由附件之申請專利範圍予以保護。 圖示簡i成 圖示中的元件沒有必要縮放其尺寸,重點在於描述本發 -11 - 本紙張尺度適财g时標準(CNS「A4規格(21()><297公爱了 531674 _"V·2#日修正 "X、發明説明D~~) ' --- 明之原理。另外,圖示中相同的參考編號於所有不同的圖 示中代表對應的部件。 圖1描述一適用於處理1024個埠之光學切換系統範例性具 體實施例的方塊圖。 圖2描述圖1 一光學連接器和〇xc方塊之範例性具體實施 例的分解式概念圖。 圖3 A描述圖2 —單一切換層之範例性具體實施例的平面 圖。 圖3B描述圖2—單一切換層之範例性具體實施例的邊緣 圖。 圖4A至圖4F描述切換層上一波導之不同範例性具體實施 例。 圖4G描述切換層上一波導之不同範例性具體實施例,其 中一塗覆材料圍繞波導的蕊心。 圖5A描述一可切換8x8個埠之切換層之範例性具體實施例 之平面圖。 圖5B描述圖5A—切換層的邊緣圖。 圖6A描述-光學連接器之範例性具體實施例,該光學連 接器的光學基底係作成具有一凸形球面陣列。 圖6B描述圖6A之光學連接器如何校正一 圖7A描述-具有-可移動式光傳輸平台之切換元件之範 例性具體實施例。 圖7B描述圖7A中可移動式平台未移動時之切換元件。 圖70描述圖7A中可移動式平台移動時之切換元件。 -12- ^紙張尺度適用中國國家標準(CNS) A4规格(210X297公^----- ----^ W167491. ^ 1674 V. Description of the invention (6th correction / Chu 7zheng / _Supplement_charge — 58) There is a rotatable optical transmission micro-switching optical switch that switches optical signals in the XY dimension and _ has the z dimension An optical switch capable of switching a light-transmittable microstructure of an optical signal, so that the optical signal can be switched in a three-dimensional space. A ninth aspect of the present invention is a device for switching an optical signal including a device having a rotatable A micro-switching element that transmits a microstructure, the micro-switching element being capable of directing an optical signal from two inputs to any L of the two outputs. A tenth aspect of the present invention is a device for switching optical signals ^ 3 It can be seen that: rotary Optical transmission microstructure, correcting optical deviation by using a two-dimensional array of _dimensional array of photon π pieces placed on the interface from an optical output, tenth, an individual aspect of the present invention is a method for switching optical signals, including A step of selectively rotating a movable_light transmitting microstructure, wherein these optical signals adopt one set of paths when the microstructure is not rotated and another set of paths when the microstructure is rotated. An individual aspect of the invention is a method for switching optical signals, including the steps of providing a person with a light signal through a fixed-type magic leather guide, selectively introducing the light signals into at least two by selectively rotating the microstructure, and embedding them in One of a rotatable microstructured waveguide, and an optical signal is output through a fixed output waveguide. Eleventh, an individual aspect of the present invention is a method for switching an optical signal, including the step of placing a One input and one output of the rotatable light transmission microstructure makes the input close (for example, _ small air gap included in the 9 • this paper ruler home standard (CNS) A4 specification (21 () χ297 public love 531674 91. 7 · 25 at YYYY ^^ 4 ^ V. Description of the invention (a waveguide for an incident optical signal and an output next to a waveguide for carrying an outgoing optical signal. Tenth Fourth, an individual aspect of the present invention is a method for switching an optical signal including the step of 'setting a light transmission microstructure for rotation relative to the substrate of a Shi Xi wafer, the microstructure carrying an optical transmission waveguide. Fives An individual aspect of the present invention is a method for switching optical signals, comprising the steps of providing a wafer substrate and rotatably mounting a microstructure carrying an optical transmission waveguide on the substrate for rotation relative to the substrate 'and selecting The microstructure is rotated relative to the substrate to switch these optical signals. Sixteenth, an individual aspect of the present invention is a method for switching optical signals, including the steps of providing a support structure embedded in a wafer substrate, A microstructure carrying an optical transmission waveguide is rotatably embedded in the support structure for rotation relative to the substrate, and the microstructure is selectively rotated relative to the substrate to switch these optical signals. Seventeenth, the invention An individual point of view is a method for switching optical signals. The method includes the steps of providing an optical switcher that switches optical signals in the χ_γ dimension and providing an optical switcher that switches optical signals in the two dimensions, so it can be used in two dimensions. Switch the optical signal within. A tenth aspect of the present invention is a method for switching optical signals. The method includes the steps of providing a micro-switching element with a rotatable optical transmission microstructure capable of directing an optical signal from two inputs to either of two outputs. . The individual point of view of this month is a square paper ruler for switching optical signals. Applicable to China-10 531674 9 | · λ 25/25 / day correction / fanzheng / erchong-V. Description of the invention (8) method, including The steps are to selectively rotate an optical transmission microstructure to switch optical signals and correct optical deviations from a two-dimensional array of optical outputs by using a two-dimensional array of optical elements placed on the interface. Twentieth, an individual aspect of the present invention is a method for manufacturing a rotatable and fixed waveguide using a rotatable optical transmission microstructure. Twenty-first, an individual aspect of the present invention is a method for manufacturing rotatable and fixed waveguides using a rotatable optical transmission microstructure. The method includes the steps of integrating a simple switching element and forming a high-density optical signal at the same time. Switch from a two-dimensional input array to a two-dimensional output array. Twenty-second, an individual aspect of the present invention is a method of using a rotatable optical transmission microstructure to manufacture a waveguide. The method includes a step of surrounding the core with a coating material, wherein the refractive index of the coating material is slightly The refractive index is lower than the core. Twenty-three 'individual viewpoints of the present invention are the above-mentioned individual viewpoints, and these viewpoints are independent or in some combination. Other individual aspects of the invention can also be found independently or in combination in a system or method that practices any of the individual aspects described above. Those skilled in the bank will refer to the illustrations and detailed descriptions below to understand other systems, methods, features and advantages of the present invention. It is hoped that all these other systems, methods, features, and advantages are included in this description, are included in the scope of the present invention, and are protected by the scope of the attached patent application. The components in the illustration are not necessarily scaled. The focus is on the description of this paper-this paper is suitable for the standard (CNS "A4 specifications (21 () > < 297 public love 531674 _ &V; 2 # 日 改 " X, Invention Description D ~~) '--- The principle of the Ming. In addition, the same reference numbers in the drawings represent the corresponding parts in all the different drawings. Figure 1 describes one A block diagram of an exemplary embodiment of an optical switching system suitable for processing 1024 ports. Fig. 2 depicts an exploded conceptual diagram of an exemplary embodiment of an optical connector and 0xc block of Fig. 1. Fig. 3 A depicts Fig. 2 —Plane view of an exemplary embodiment of a single switching layer. FIG. 3B depicts FIG. 2 —Edge diagram of an exemplary embodiment of a single switching layer. FIGS. 4A to 4F depict different exemplary embodiments of a waveguide on a switching layer. Fig. 4G depicts different exemplary embodiments of a waveguide on a switching layer, in which a coating material surrounds the core of the waveguide. Fig. 5A depicts a plan view of an exemplary embodiment of a switching layer that can switch 8x8 ports. 5B describes Figure 5A-Switching Layer Figure 6A depicts-an exemplary embodiment of an optical connector, the optical base of the optical connector is formed with a convex spherical array. Figure 6B depicts how the optical connector of Fig. 6A is corrected-Fig. 7A depicts-has -An exemplary embodiment of the switching element of the movable optical transmission platform. Fig. 7B depicts the switching element when the movable platform in Fig. 7A is not moved. Fig. 70 illustrates the switching element when the movable platform in Fig. 7A is moved. -12- ^ Paper size applies to China National Standard (CNS) A4 specification (210X297 male ^ ----- ---- ^ W1674

圖7D描述-具有—可移動式光傳輸平台及—雙層波導之 切換元件之範例性具體實施例。 圖8A描述-具有可旋轉式光傳輸平台之切換元件之範例 性替代具體實施例,其中該可旋轉式光傳輸平台平行於基 底平面移動。 ® 8B描述H可旋轉式或樞軸式(pivoting)光傳輸平 台之切換元件之替代範例。 詳細發明說明 圖1描述一適用於處理1024埠乘1024埠之光學切換系統1〇 之範例性具體實施例的方塊圖。光學切換系統10包含一三 維波導。圖1所示的光學切換系統10使用了導波路徑(即波 導)、數位切換、且能夠處理1024個埠。光學切換系統10之 關鍵兀中的兩個為OXC方塊12、14。OXC方塊12、14亦視 為切換方塊,因為這兩個方塊分別包含垂直及水平光學切 換器。OXC方塊(Y) 12係用於切換垂直方向上的光束,且 OXC方塊(X) 14則用於切換水平方向上的光束。兩個〇狀方 塊(Y和X) 12、14係呈端對端連接而使得第一(Y) 〇xc方塊 12的所有輸出皆連接至第二(x) 〇xc方塊14的輸入。 由於每一個OXC方塊12、14皆為組裝單元,某些製造容 差是無法避免的。為了處理這些容差的累積,需用到一光 學連接器16以促進系統組裝。同樣地,可於第一 〇xc方塊 12的輸入及第二〇xc方塊14的輸出使用光學連接器16以容 許介面連接處的定位誤差。選擇性地,光學連接器16可為 一光學-至-電氣-至-光學連接器、許多無障礙空間中的鏡面 -13- 本紙張尺度適用中國國家標準(CNS) Α4規格(210X 297公釐) 531674Fig. 7D depicts an exemplary embodiment of a switching element having-a movable optical transmission platform and-a double-layer waveguide. Fig. 8A depicts an exemplary alternative embodiment of a switching element with a rotatable optical transmission platform, wherein the rotatable optical transmission platform moves parallel to the base plane. ® 8B describes alternative examples of switching elements for H rotatable or pivoting optical transmission platforms. Detailed Description of the Invention Fig. 1 depicts a block diagram of an exemplary embodiment of an optical switching system 10 suitable for processing 1024 ports by 1024 ports. The optical switching system 10 includes a three-dimensional waveguide. The optical switching system 10 shown in FIG. 1 uses a guided wave path (i.e., waveguide), digital switching, and is capable of processing 1024 ports. Two of the key elements of the optical switching system 10 are OXC blocks 12,14. OXC blocks 12, 14 are also considered switching blocks because these two blocks contain vertical and horizontal optical switches, respectively. The OXC box (Y) 12 is used to switch the beam in the vertical direction, and the OXC box (X) 14 is used to switch the beam in the horizontal direction. The two 0-shaped blocks (Y and X) 12, 14 are connected end-to-end such that all outputs of the first (Y) 0xc block 12 are connected to the inputs of the second (x) 0xc block 14. Since each OXC block 12, 14 is an assembly unit, some manufacturing tolerances are unavoidable. To handle the accumulation of these tolerances, an optical connector 16 is required to facilitate system assembly. Similarly, an optical connector 16 can be used at the input of the first 0xc block 12 and the output of the second 0xc block 14 to tolerate positioning errors at the interface connection. Alternatively, the optical connector 16 may be an optical-to-electrical-to-optical connector, a mirror surface in many barrier-free spaces. 13- This paper size applies to China National Standard (CNS) A4 specification (210X 297 mm) ) 531674

、一光纖管束、或任何種類的光學連接器。 光纖18係連接至輸入介面2〇。切換之光信號存在於輸出 介面22。例如,輸入介面2〇和輸出介面22可為對光纖的 機械性介面。用於控制個別切換元件的電氣信號係交互 連接(層與層之間)於每一個〇XC方塊12、14側面上的電氣 父連器24中。這些電線係繞至鄰接〇xc方塊丨2、14而置 的控制電子.電路30和介面。光學切換系統1〇係鑲嵌於一 板子32上。 圖2描述圖1之光學連接器16A至16C及〇xc方塊12、14之 範例性具體貫施例的分解概念圖。為了清楚,垂直切換器 方塊、OXC方塊12僅表示第一和最後之切換層4〇、42。例 如’每一個切換層40、42皆能夠在垂直方向上將32個輸入 切換至3 2個輸出。藉由將3 2個切換層放在一起,所有3 2個 通道可沿著垂直平面予以連接。為了完成切換32)<32個通道 的全部功能,需要一種在水平方向上進行切換的機制且這 項機制係藉由,例如,一第二OXC方塊14(水平切換方塊)予 以實現。圖2僅表示第二(X) 〇xc方塊14的第一和最後一個 切換層44、46。每一個切換層44、46,例如,能夠在水平 方向上將32個輸入切換至32個輸出中的任何一個。藉由將 32個切換層放在一起,可沿著水平平面連接所有32個通道 。結合至圖2所示的具體實施例内,垂直和水平切換層產生 一 32x32光學切換器。 底下的實施例描述一位於通道(1,1)(此等數目分別意指列 及行的號碼)的信號如何繞至通道(32,32)的輸出。光束5〇(以 -14- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 箭頭表示)進入(1,1)的位置,經由第一光學連接器16A,並 進入第一切換層40。第一切換層40中的切換器將光束由 (M)連接至(1,32)的輸出。光信號離開垂直切換層,並 妥適地經由第二光學連接器16B通過且重新對準至位於 (1,32)的水平(X)切換層。光束現在由位置(1,32)繞至位置 (32,32) ’接著經由第三光學連接器16C重新對準並離開。 光學切換系統1 〇可具有一光學路徑網路202。光學路徑網 路202包含至少一光學路徑,其中光信號5〇可沿著光學路徑 傳送。例如,光學路徑網路2〇2可包含一鏡面、波導、空氣 缺口、或其它提供一光學路徑的結構。在範例性具體實施 例中,光學路徑網路2〇2為一波導網路2〇2。包含於光學切 換系統10内的三維波導之一項優點在於,此方式有可能達 到大型埠數而不需精密且主動地控制光束路徑。由於光束 疋在每一個切換層上的波導或波導網路内部捕抓到的,僅 有末端連接是具關鍵性的。一波導網路可包含許多波導, 如圖8A所示的波導網路2〇2。事實上,若有必要,一波導網 路可僅包含一單一波導。這裡的具體實施例僅使用一個波 導網路,須瞭解,本具體實施例可用一個波導予以取代, 反之亦然。於對準具關鍵性處,如介面,一光學連接器16 考慮使用傳統且不貴的光纖校正光束偏差。最終三維波導 及保護環境(例如可密封每一個切換層)之簡化進一步加強系 統的可靠度及嚴謹度,提供不受溫度、濕度、退化及觸摸 影響的光束路徑。 圖3A及圖3B分別描述圖2一單一切換層,例如切換層44 U0X297公釐) -15- 531674 --_ 年月 日修正 五、發明説明(1~ ' --- ,之範例性具體實施例的平面圖和邊緣圖。此實施例表示 32個輸入如何經由一具有簡單切換元件6〇之陣列連接至u 個輸出。在32x32埠的實施例中,有go個切換元件6〇。交連 方法係熟悉信號路由設計的人士所熟知且可為任何一種方 法。貝爾實驗室所完成之路由理論中的首創工作已表示光 信號可依一特定方式藉由連接簡單的切換器(如2χ2元件)予 以有效路由。藉由底下之這些路由導引,表示每一個輸入 皆可連接至任何輸出而不需遮罩任何連接。 圖3A、3B所示的切換層44包含一載有波導64和切換元件 60的基底62。在此範例性具體實施例中,基底62可為任何 一種半導體材料,如矽。為了保護這些波導及切換元件微 結構,可使用另一(帽狀)晶圓63覆蓋並密封基底62。可藉由 使用已可得到的許多技術中的任何一種技術,包含陽極性 、熔化、和共熔連結,將一帽狀晶圓63連結至基底62來達 到有效密封以排除污染物及濕度。 光信號50於一邊緣進入切換層44。最好將邊緣磨平並旋 轉其角度以提供光束50之完整折射。取決於介面媒介(例如 空氣或另一光學元件)的光學係數(0ptical index),可設計邊 緣的角度以符合完全折射。一旦光束5〇進入波導64,光線 則因已知為完全内部反射的現象而無法離開波導64。這與 使一光纖長距離載送光線而不致嚴重漏失的現象一樣。 切換動作係藉由應用電壓予以控制。每一個切換元件6〇 皆需要’例如,三個電氣連接:一促動電極、一定位感測 電極、以及電氣接地。可將電氣接地連接結合在一起以使 -16- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 五、發明説明(14 ) 電氣行徑達到最小。每一個切換元件60因而最少具有兩個 電氣連接由帽形晶圓63的底下經過以介合外界。在圖3八中 ,表示電氣行徑66本質上呈垂直橫越光學路徑並於較低的 邊際終止於電氣連結腳墊68。當然,電氣行徑66、連結腳 墊6 8輸入埠及輸出蟑的真實佈局可修改得與本實施例不 同。 圖4 A至圖4 F描述一切換層上波導6 4之各種範例性具體實 施例。為了維持完全内部反射(TIR),圍繞波導64的環境必 須具有低於波導64折射係數的光學折射係數。例如,折射 係數為1·5的玻璃可被覆一具有較低折射係數的材料,或單 純地使用真空(折射係數為丨·〇)或空氣作為媒介。可使用廣 泛的氣體以確保與晶圓連結製程的相容性。在一第一具體 實施例中,圖4A描述一由玻璃製成之波導64的剖面圖,其 中圍繞波導64的媒介乃於真空或空氣中。載體7〇可由玻璃 或石夕所製成。在一第二具體實施例中,圖4B描述另一波導 64,其中波導64的上部及側面係與真空接觸而其底部表面 則與一折射係數低於波導折射係數的中間材料連結^載體 70可由玻璃或矽所製成。 在圖4A及圖4B的具體實施例中,較上方的基底應為一種 傳送光信號的材料,此等光信號的波長如〇·82、1.3、及 1.55微米。這些乃一般用於光纖傳輸的波長,且其中支承 設備(如傳輸器、載體及接收器係設計以作處理。在此二具 體實施例中,底部上的材料(載體基底7〇)主要係用來提供機 械性支承予結構。底下將解釋真實的切換機制需要某些波 -17- 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公嫠) 531674 V· ¥ 五、發明説明( A7 _ 日條正B7 15 ) 導以藉由應用一外力作垂直或橫向移動。載體基底7〇可由 玻璃、矽、或任何與微機械相容的材料所製成。 圖4C和圖4D描述它種未使用基底7〇之波導64的具體實施 例。將波導64橋接至鄰接材料的少量材料72將致使某些光 線漏失及設計需求以考量機械性強度及光學漏失之間的取 捨。圖4C及圖4D中具體實施例之一優點在於僅需要一單層 結構,因而不需要晶圓連結。使用這些它種具體實施例的 詳細設計應該包含達成容許製造成本與波導機械性和光學 整合之間的平衡。 雖然光學切換系統的較佳具體實施例使用一波導,使用 反射性表面或其它已知結構的光學引導亦可予以使用。圖4 Ε表示一藉由連結兩晶圓80、82所製成的導管78以產生一 封閉式光學導管78。為了強化表面的反射性,被覆如金或 錄(或任何其它與微機械製程相容的材料;)的金屬可在連結之 前予以沉積於内側表面上。 又一具體實施例係使用微結構的垂直表面。如同在傳統 光學系統一般,此一方式需要緊密之垂直侧壁角度控制以 精密地控制光束。圖4F表示一蝕刻於晶圓内部的溝渠,其 垂直側壁係具有一上部帽狀物80的反射性表面,該上部帽 狀物80形成一封閉式波導78。如前述,可塗敷金屬被覆物 以強化反射性。 圖4G描述又一位於切換層上之波導的具體實施例。一矽( 或玻璃基底62首先被覆一塗覆材料300。一第二沉積產生一 層所摻雜之折射係數稍大於塗覆材料300折射係數之蕊心材 -18- 本紙張尺度適用中國國家標準(CNS) Α4規格(21〇 χ 297公釐) 531674 91 厶 25 A7 年月曰修正/楚^ 五、發明説明(16 ) 料302。用於摻雜玻璃(二氧化矽)供波導製造之化合物的實 施例包含三氫化磷(PH3)、二硼烷(B2H6)、四氫化鍺(GeH4) 、四氟化矽(SiF4)、铒(Er)、以及镱(Yb)。接著製作蕊心層 3 02的圖樣並予以蝕刻以產生最終之波導302形狀。次一步 驟包括以另一塗覆材料304被覆蕊心302,因此以塗覆材料 300、304將蕊心302整個包圍。最後出來的產品即一具有完 全内部反射性質的波導3 02。對蕊心和塗覆幾何、表面拋光 (finish)、以及係數之精密控制需能夠促進單一模式光學傳 輸。波導之設計及處理係熟悉波導製造之人士所熟知。 圖5A及圖5B描述一執行8x8埠之非遮罩性切換層44之範 例性具體實施例的平面圖及邊緣圖。為了在此實施例中達 到完全切換功能,需要12個切換元件90。每一個切換元件 90皆能夠執行2x2切換。因為光信號50總是經由某些光學路 徑通至光學輸出側,故切換層44屬非遮罩性。 光學連接器16係用於使導因於光纖與切換元件9〇之間或 OXC方塊之間的插入漏失達到最小。在此二案例中,存在 一導因於不良組裝之幾何容差累積,這應該予以校正以使 光線漏失達到最小I最常見的偏差乃導因於線性或角度位 移之組合。 圖6 A描述一光學連接器16 ,其基底係製於兩側以具有一 凸狀球面100之陣列。球面陣列之一側係與一光纖管束連接 以接收入射光束50。反側凸面將光束聚焦於一小點而連接 至此等oxc方塊。例如,光學連接器16對光學切換系統之 每一埠皆可具有如球面1〇〇之球面(此處,例如32以2或1〇24 -19- 本紙張尺度適财@ g家料(CNS) Μ規格(21Q><297公爱), A fiber optic tube bundle, or any kind of optical connector. The optical fiber 18 is connected to the input interface 20. The switching light signal is present in the output interface 22. For example, the input interface 20 and the output interface 22 may be mechanical interfaces to an optical fiber. The electrical signals used to control the individual switching elements are interconnected (layer-to-layer) in electrical parent connectors 24 on the sides of each OXC block 12,14. These wires are routed to the control electronics 30 and the interface adjacent to the 0xc blocks 2 and 14. The optical switching system 10 is mounted on a board 32. FIG. 2 illustrates an exploded conceptual view of an exemplary embodiment of the optical connectors 16A to 16C and 0xc blocks 12, 14 of FIG. 1. FIG. For the sake of clarity, the vertical switch blocks and OXC blocks 12 represent only the first and last switching layers 40, 42. For example, 'Each switching layer 40, 42 can switch 32 inputs to 32 outputs in the vertical direction. By putting 32 switching layers together, all 32 channels can be connected along a vertical plane. In order to complete all the functions of switching 32) < 32 channels, a mechanism for switching in the horizontal direction is required and this mechanism is realized by, for example, a second OXC block 14 (horizontal switching block). Figure 2 shows only the first and last switching layers 44, 46 of the second (X) 0xc block 14. Each of the switching layers 44, 46 can switch, for example, 32 inputs to any of the 32 outputs in the horizontal direction. By placing the 32 switching layers together, all 32 channels can be connected along a horizontal plane. Combined into the specific embodiment shown in Figure 2, the vertical and horizontal switching layers produce a 32x32 optical switch. The following embodiment describes how a signal located on channel (1, 1) (these numbers refer to the number of columns and rows, respectively) is routed to the output of channel (32, 32). Beam 50 (indicated by -14- this paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) arrow)) enters the (1,1) position, passes the first optical connector 16A, and enters the一 开关 层 40。 A switching layer 40. The switcher in the first switching layer 40 connects the light beam from (M) to the output of (1, 32). The optical signal leaves the vertical switching layer, passes through the second optical connector 16B, and realigns to the horizontal (X) switching layer at (1, 32). The beam is now wound from position (1, 32) to position (32, 32) 'and then re-aligned and exited via the third optical connector 16C. The optical switching system 10 may have an optical path network 202. The optical path network 202 includes at least one optical path, and the optical signal 50 can be transmitted along the optical path. For example, the optical path network 202 may include a mirror, waveguide, air gap, or other structure that provides an optical path. In an exemplary embodiment, the optical path network 202 is a waveguide network 202. An advantage of the three-dimensional waveguide included in the optical switching system 10 is that this approach makes it possible to reach a large number of ports without requiring precise and active control of the beam path. Since the beam chirp is captured inside the waveguide or waveguide network on each switching layer, only the end connections are critical. A waveguide network may include many waveguides, such as the waveguide network 202 shown in FIG. 8A. In fact, a waveguide network can include only a single waveguide if necessary. The specific embodiment here uses only one waveguide network. It should be understood that this specific embodiment may be replaced by a waveguide, and vice versa. Where alignment is critical, such as the interface, an optical connector 16 considers using conventional and inexpensive optical fibers to correct beam deviations. The simplification of the final three-dimensional waveguide and protection of the environment (such as sealing each switching layer) further enhances the reliability and rigor of the system, providing a beam path that is not affected by temperature, humidity, degradation and touch. FIG. 3A and FIG. 3B respectively describe a single switching layer of FIG. 2, for example, the switching layer 44 U0X297 mm) -15- 531674 --_ year month day amendment V. description of the invention (1 ~ '---, an exemplary specific implementation Example of a plan view and edge diagram. This example shows how 32 inputs are connected to u outputs via an array with simple switching elements 60. In the 32x32 port embodiment, there are go switching elements 60. The method of cross-linking Anyone who is familiar with signal routing design can use any method. The pioneering work in the routing theory completed by Bell Labs has shown that optical signals can be effective in a specific way by connecting simple switches (such as 2x2 components) Routing. With these routing guides below, it means that each input can be connected to any output without masking any connection. The switching layer 44 shown in FIGS. 3A and 3B includes a waveguide 64 and a switching element 60. Substrate 62. In this exemplary embodiment, the substrate 62 may be any semiconductor material, such as silicon. In order to protect these waveguides and the microstructure of the switching element, another (cap-shaped) wafer 63 may be used. Covers and seals the substrate 62. A cap-shaped wafer 63 can be attached to the substrate 62 by using any of a number of available technologies, including anodizing, melting, and eutectic bonding, to achieve effective sealing to exclude Contaminants and humidity. The optical signal 50 enters the switching layer 44 at one edge. It is best to smooth the edge and rotate its angle to provide a complete refraction of the beam 50. Depending on the optical coefficient of the interface medium (such as air or another optical element) (0ptical index), the angle of the edge can be designed to meet the complete refraction. Once the light beam 50 enters the waveguide 64, the light cannot leave the waveguide 64 due to the phenomenon known as complete internal reflection. The phenomenon is not caused by serious leakage. The switching action is controlled by the applied voltage. Each switching element 60 requires' for example, three electrical connections: an actuation electrode, a positioning sensing electrode, and electrical ground. Combine the electrical ground connection together so that -16- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) V. Invention Ming (14) The electrical path has reached a minimum. Therefore, each switching element 60 has at least two electrical connections passing under the cap-shaped wafer 63 to intervene with the outside world. In FIG. 38, the electrical path 66 is shown to be vertical and horizontal in nature. The optical path ends at the lower margin and ends at the electrical connection foot pad 68. Of course, the actual layout of the electrical path 66, the connection foot pad 68, the input port, and the output cock can be modified from this embodiment. Figure 4 A to Figure 4 F describes various exemplary embodiments of the waveguide 64 on a switching layer. In order to maintain total internal reflection (TIR), the environment surrounding the waveguide 64 must have an optical refractive index lower than the refractive index of the waveguide 64. For example, the refractive index is The 1.5 glass can be coated with a material with a lower refractive index, or simply use a vacuum (refractive index is 丨 · 〇) or air as a medium. A wide range of gases can be used to ensure compatibility with wafer bonding processes. In a first specific embodiment, Fig. 4A depicts a cross-sectional view of a waveguide 64 made of glass in which the medium surrounding the waveguide 64 is in a vacuum or air. The carrier 70 can be made of glass or stone. In a second specific embodiment, FIG. 4B illustrates another waveguide 64, in which the upper and side surfaces of the waveguide 64 are in contact with a vacuum and the bottom surface thereof is connected to an intermediate material having a refractive index lower than that of the waveguide. The carrier 70 may be Made of glass or silicon. In the specific embodiment of FIGS. 4A and 4B, the upper substrate should be a material for transmitting optical signals, and the wavelengths of these optical signals are such as 0.82, 1.3, and 1.55 microns. These are the wavelengths generally used for optical fiber transmission, and the supporting equipment (such as the transmitter, carrier, and receiver are designed for processing. In these two specific embodiments, the material on the bottom (the carrier substrate 70) is mainly used To provide mechanical support to the structure. The actual switching mechanism will be explained below. Some waves are required. -17- This paper size applies Chinese National Standard (CNS) A4 specifications (210X297 cm) 531674 V · ¥ 5. Description of the invention (A7 _ Nippon Boshi 15) is guided to move vertically or laterally by applying an external force. The carrier substrate 70 can be made of glass, silicon, or any material compatible with micromechanics. Figure 4C and Figure 4D describe its kind A specific embodiment of a waveguide 64 using a substrate 70. Bridging the waveguide 64 to a small amount of material 72 adjacent to the material will cause some light leakage and design requirements to consider the trade-off between mechanical strength and optical leakage. Figure 4C and Figure 4D One of the advantages of the specific embodiments is that only a single-layer structure is required, and thus no wafer bonding is required. The detailed design using these other specific embodiments should include achieving the allowable manufacturing cost and waveguide The balance between mechanical and optical integration. Although the preferred embodiment of the optical switching system uses a waveguide, optical guidance using reflective surfaces or other known structures can also be used. Figure 4E shows a connection between two The ducts 78 made of wafers 80, 82 produce a closed optical duct 78. In order to enhance the reflectivity of the surface, a metal such as gold or metal (or any other material compatible with micromechanical processes;) may be used in It is deposited on the inner surface before joining. Another embodiment uses a microstructured vertical surface. As in traditional optical systems, this method requires tight vertical sidewall angle control to precisely control the beam. Figure 4F shows a The trench etched inside the wafer has a reflective surface with an upper cap 80 that forms a closed waveguide 78. As mentioned above, a metal coating can be applied to enhance reflectivity Figure 4G depicts another embodiment of a waveguide on a switching layer. A silicon (or glass substrate 62 is first covered with a coating material 300. A second deposition is produced The refractive index doped by the layer is slightly larger than the core material of the coating material 300 refractive index-18-This paper size applies the Chinese National Standard (CNS) A4 specification (21〇χ 297 mm) 531674 91 厶 25 A7 / Chu ^ 5. Description of the invention (16) material 302. Examples of compounds used for doping glass (silicon dioxide) for waveguide manufacture include phosphorus trihydrogen (PH3), diborane (B2H6), germanium tetrahydrogen ( GeH4), silicon tetrafluoride (SiF4), gadolinium (Er), and gadolinium (Yb). The core layer 302 is then patterned and etched to produce the final waveguide 302 shape. The next step includes applying another coating The core material 302 is covered with the covering material 304, so the core material 302 is completely surrounded by the coating materials 300, 304. The final product is a waveguide 302 with full internal reflection properties. Precise control of core and coating geometry, surface finish, and coefficients is required to facilitate single-mode optical transmission. The design and processing of waveguides are well known to those familiar with waveguide manufacturing. 5A and 5B illustrate a plan view and an edge view of an exemplary embodiment of a non-maskable switching layer 44 that performs an 8x8 port. In order to achieve the full switching function in this embodiment, 12 switching elements 90 are required. Each switching element 90 can perform 2x2 switching. Since the optical signal 50 always passes to the optical output side via certain optical paths, the switching layer 44 is non-maskable. The optical connector 16 is used to minimize the insertion loss caused by the optical fiber and the switching element 90 or the OXC block. In both cases, there is a geometric tolerance accumulation due to poor assembly, which should be corrected to minimize light leakage. The most common deviation is due to a combination of linear or angular displacement. FIG. 6A illustrates an optical connector 16 whose base is fabricated on both sides to have an array of convex spherical surfaces 100. One side of the spherical array is connected to a fiber optic tube bundle to receive the incident light beam 50. The reverse convex surface focuses the light beam to a small point and connects to these oxc blocks. For example, each port of the optical connector 16 to the optical switching system may have a spherical surface such as a spherical surface 100 (here, for example, 32 to 2 or 1024 -19-this paper size suitable financial @ g 家 料 (CNS ) Μ specifications (21Q > < 297 public love)

裝 訂Binding

線 531674 91. 7. 25Line 531674 91. 7. 25

個表面100)。 圖6B描述圖6A的光學連接器如何校正一偏差的光束。讓 我們假定一進入左方的光束5〇,其通常超出進入〇xc方塊 或其它光學通路的範圍。若未予以校正,光束5〇將不會恰 好進入OXC方塊的入口。然而,偏差之光束5〇在藉由光學 連接器16的球面予以校正之後將自聚焦於一影像點1〇2的光 學連接器16射出。藉由將〇xc方塊的入口鏡孔或光纖入口 置於影像點102或其附近,射出光束將大約集中並以一入射 角進入光學通路,如波導64,而由完全内部反射程序予以 捕捉。其它不同於球狀的表面亦可用於強化射出光束的品 質。例如,一具有曲狀透鏡的陣列亦可用於使光束平行以 移除角度誤差而不改變聚焦點。光學連接器16之光學設計 需要起因於製造瑕疲之誤差型式方面的知識以及在最終光 學切換系統中可接受之校正方法。光學表面之詳細設計及 光學材料的選擇可包含熟悉光學設計之人士所已知者。 使用凸狀球面100的光學連接器16可用一串球體並以精 密製洞(machined hole)將那些球體緊固於一平板而予以製 造。為了使此等球體固定,最簡單的方法乃在一冷盆(例 如液態氮)内縮小此等球體並將此等球體插入平板的洞孔 内。亦可在插入球體之前加熱平板以擴張洞孔。適當的 裝配方法將同時並精密地插入大量球體。或者,可將自 動對準洞孔刻製於平板以自動組裝式地捕捉球體。又一 方法為使用凸磨狀工具鑽以產生所需的陣列表面。可獲 知之可能製造技術是非常多的並包含那些熟悉光學製造 -20- 本纸張尺度βΓϊ®家標準(CNS) ▲格(摩297公爱)Surface 100). FIG. 6B illustrates how the optical connector of FIG. 6A corrects an offset beam. Let us assume that as soon as the light beam 50 enters the left, it usually exceeds the range of entering the 0xc block or other optical path. Without correction, the beam 50 will not enter the entrance of the OXC block exactly. However, the deflected light beam 50 is corrected by the spherical surface of the optical connector 16 and then is emitted from the optical connector 16 focused on an image point 102. By placing the entrance mirror hole or fiber entrance of the 0xc block at or near the image point 102, the outgoing beam will be approximately focused and enter an optical path, such as the waveguide 64, at an incident angle, and be captured by a fully internal reflection procedure. Other surfaces than spherical can also be used to enhance the quality of the outgoing beam. For example, an array with curved lenses can also be used to parallel beams to remove angular errors without changing the focal point. The optical design of the optical connector 16 requires knowledge of error patterns due to manufacturing defects and acceptable correction methods in the final optical switching system. The detailed design of the optical surface and the selection of optical materials may include those known to those familiar with optical design. The optical connector 16 using the convex spherical surface 100 can be manufactured by using a series of spheres and fastening those spheres to a flat plate with machined holes. In order to fix these spheres, the simplest method is to shrink them in a cold basin (such as liquid nitrogen) and insert them into the holes in the flat plate. The plate can also be heated to expand the hole before inserting the sphere. Proper assembly methods will insert a large number of spheres simultaneously and precisely. Alternatively, the auto-aligned holes can be engraved on the plate to capture the spheres automatically. Yet another method is to use a convex abrasive drill to produce the desired array surface. There are many possible manufacturing technologies known and include those familiar with optical manufacturing. -20- This paper size βΓϊ® Home Standard (CNS) ▲ Grid (Momo 297)

裝 訂Binding

線 531674Line 531674

A7 18A7 18

—-- 五、發明説明( 之人士所熟知的技術。 使用如上述之光學連接器 壓到最小。然而,若體積的 可輕易地達到提供光學連接 光纖陣列以連接每一個介面 夾钳予以夾在一起。儘管較 連接器且成本較低。 可將光學切換系統的最終體積 大小不重要,藉由普通的光纖 之較為間早的方法。可設計一 ,其中每一個介面係藉由機械 不小巧’可輕易地構造一光纖 圖7 A描述藉由一微機械製程所製成的小型切換元件6 〇的 範例性具體實施例。此範例性具體實施例因具有兩個輸入 及兩個輸出而為一2x2切換元件60 ;當然,可增加或減少輸 入數及輸出數。切換元件60的具體實施例具有兩個整合於 載體平台110上部之上的波導。此組合結構(波導和載體)係 連結於一基底62且其位置使得切換元件6〇懸置於一空氣缺 口之上’或懸置於一之前在基底62上所姓刻的凹洞 (cavity)lll之上。載體平台n〇最好懸置於促動電極112上 方約30微米處。波導丨14、U6一般小於1〇微米且在此實 施例中’需要小型通道尺寸以確保僅單一模式光信號之 傳輸°結構之尺寸及支承彈簧丨3 〇之設計取決於所使用之 促動機制的類別。本具體實施例將使用靜電吸引作為促 動的方法。 為了靜電促動,載體平台11〇和固定式電極112、126兩者 必須能導電,因而使載體uo移向電極112、126,如圖7B及 圖7C所示。載體平台u〇若由介電材料所製成,則可在其 底部(即面對固定式促動電極U2的表面)被覆如金或鎳的金 -21 - 本紙張尺度適用中國國家標準(CNS) A4規格(21〇Χ297公釐) A7 B7 531674 7. 25 五、發明説#( l ----- 屬使其導電。載體平台1 10若由如矽的半導體材料所製成, 則可予以摻雜以提升導電性。於凹洞1 i丨底部製作圖樣的固 定式電極112、126與載體平台110相對並呈平行。這些電極 112、126藉由傾斜表面上的行徑圖樣連接至基底62的上部 。在凹洞111内製有兩固定式電極112、126 ,其中一電極 112係用於促動載體平台no的移動而另一電極126則用於迴 授感測載體平台110的位置。 切換元件60的範例性具體實施例運作如下。光信號5〇於 位置A和B進入切換元件60的左側。光信號5〇因本具體實施 例波導的特殊結構而進入波導114、116並交岔(cross over) 。來自位置A和B的光信號50分別離開位於位置d和C的切換 元件60。原始的光信號50已由A橫越至D並由B橫越至C。當 特定具體實施例中要求光信號50不橫越時,需要由控制硬 體送出電氣信號。藉由將一電壓施加至基底62上的固定式 電極112並將另一不同的電壓施加至載體平台11〇之電極, 電壓差將產生一靜電吸引力。此一吸引力將藉由彎曲支承 彈簧130將載體平台11〇(以及載體平台11〇所承載的波導U4 、116)向下拉(此處小於1〇微米)向固定式電極112、126,並 因而於此程序中自光學路徑移除波導114、116。來自位置A 的光信號50接著直接通向(經由無障礙空間120)點C,且來 自位置B的光信號50則直接通向(經由無P章礙空間122)位置D 。圖7B描述載體平台11〇因沒有電源施加於促動電極112而 處於其休止狀態;此處,來自位於載體平台110輸入側的固 定式波導之位置A和B的光信號50分別融入可移動式波導 -22- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 裝 訂--- V. Description of the invention (A technique well known to those skilled in the art. Use the optical connector as described above to minimize the pressure. However, if the volume can be easily reached, the optical fiber array can be provided to connect each interface clamp to be clamped. Together. Although it is lower than the connector and lower cost. The final volume of the optical switching system can be made less important, using an earlier method of ordinary optical fiber. One can be designed, where each interface is not mechanically compact. An optical fiber can be easily constructed. FIG. 7A depicts an exemplary embodiment of a small switching element 60 manufactured by a micromechanical process. This exemplary embodiment is one because it has two inputs and two outputs. 2x2 switching element 60; Of course, the number of inputs and outputs can be increased or decreased. The specific embodiment of the switching element 60 has two waveguides integrated on the upper part of the carrier platform 110. This combined structure (waveguide and carrier) is connected to one Base 62 and its position such that the switching element 60 is suspended over an air gap 'or a cavity engraved on the base 62 previously l. The carrier platform no is best suspended at about 30 microns above the actuation electrode 112. The waveguides 14, U6 are generally less than 10 microns and in this embodiment 'a small channel size is required to ensure only a single mode light Signal transmission ° The size of the structure and the design of the support springs depend on the type of actuation mechanism used. This specific embodiment will use electrostatic attraction as the actuation method. For electrostatic actuation, the carrier platform 11 and Both of the fixed electrodes 112 and 126 must be able to conduct electricity, so that the carrier uo is moved to the electrodes 112 and 126, as shown in FIGS. 7B and 7C. If the carrier platform u0 is made of a dielectric material, it can be at the bottom (That is, the surface facing the fixed actuating electrode U2) Gold-21 covered with gold or nickel-This paper size applies Chinese National Standard (CNS) A4 specifications (21〇 × 297 mm) A7 B7 531674 7. 25 V.发明 说 # (l ----- is to make it conductive. If the carrier platform 1 10 is made of a semiconductor material such as silicon, it can be doped to improve the conductivity. The pattern on the bottom of the cavity 1 i 丨The fixed electrodes 112 and 126 are opposite to and parallel to the carrier platform 110 These electrodes 112 and 126 are connected to the upper part of the base 62 by a pattern on the inclined surface. Two fixed electrodes 112 and 126 are made in the recess 111, and one of the electrodes 112 is used to actuate the movement of the carrier platform no. The other electrode 126 is used to feedback the position of the carrier platform 110. The exemplary embodiment of the switching element 60 operates as follows. The light signal 50 enters the left side of the switching element 60 at positions A and B. The light signal 50 Due to the special structure of the waveguide of this embodiment, the waveguides 114, 116 enter and cross over. The optical signals 50 from positions A and B leave the switching elements 60 at positions d and C, respectively. The original optical signal 50 has crossed from A to D and from B to C. When the optical signal 50 is not required to cross in a specific embodiment, the electrical signal needs to be sent by the control hardware. By applying a voltage to the fixed electrode 112 on the substrate 62 and applying a different voltage to the electrode of the carrier platform 110, the voltage difference will generate an electrostatic attractive force. This attractive force will pull the carrier platform 11 (and the waveguides U4, 116 carried by the carrier platform 11) downward (here less than 10 microns) toward the fixed electrodes 112, 126 by the bending support spring 130, and thus The waveguides 114, 116 are removed from the optical path in this procedure. The optical signal 50 from the position A then directly goes (via the accessible space 120) to point C, and the optical signal 50 from the position B goes directly (via the P-free obstacle space 122) to position D. FIG. 7B depicts that the carrier platform 11 is in its resting state because no power is applied to the actuation electrode 112; here, the optical signals 50 from the positions A and B of the fixed waveguide located on the input side of the carrier platform 110 are incorporated into the movable type, respectively. Bird-22- This paper size applies to Chinese National Standard (CNS) A4 (210 X 297 mm) binding

線 531674 年为“日絛正/ _________Β7 五、發明説明(2〇 ) 114、116至載體平台110輸出側之固定式波導的位置d和c ,波導114、116因隨著載體平台11〇之移動而移動故視為“ 可移動式”。當電源施加至促動電極112時,圖7C描述最 終結構’其中載體平台n〇已移向促動電極丨12 ;此處,來 自位於載體平台110輸入側之固定式波導之位置A和b的光 化號50分別直接經由無障礙空間通至位於載體平台n〇輸出 側之固定式夜導的位置c和D,因為可移動式波導丨丨4、1 i 6 已移離光信號50的範圍。 亦可實行其它促動方法。固定式促動因設計及運作的簡 單性而為較佳的選擇。主要的缺點在於運作最終元件所需 的較南電壓,導因於大型缺口,一般落於2〇至1〇〇伏特的範 圍内。替代性促動方法包含磁式及熱式技術。這些方法係 熟悉微機械設計的人士所熟知。 基底62上的感測電極126係用於偵測載體平台n0的位置 ’其方法係藉助感測載體平台11〇之電極與與電極126之間 電容值的變化,此變化係導因於載體平台u〇移動所導致的 缺口變化。亦可實行其它感測方式,如壓阻性、磁性、光 學架構。來自感測電極126的信號係用於(經由閉迴路控制) 精確地於光學入口和出口上放置波導114、116。 光信號的主要漏失將位於可移動式波導114、u6的入口 處(在切換元件60的載體平台11〇上)且位於固定式波導的入 口處。減少位置A/C之間和B/D之間的距離可使此種漏失達 到最小。為了徹底使漏失達到最小,但增加製告複雜度, 一輔助性波導138、140可設計在載體平台11〇的底部上。在 -23- 本紙張尺度適用中國國家標準(CNs) A4規格(210X297公董) 531674Line 531674 is "Sundial Masaru / _________B7 V. Description of the invention (20) 114, 116 to the positions of the fixed waveguides d and c of the carrier platform 110, as the waveguides 114 and 116 move with the carrier platform 11o And mobile is regarded as “movable.” When power is applied to the actuation electrode 112, FIG. 7C depicts the final structure 'where the carrier platform n0 has moved to the actuation electrode 12; here, from the input located on the carrier platform 110 The photochemical numbers 50 at the positions A and b of the fixed waveguide on the side directly lead to the positions c and D of the fixed night guide at the output side of the carrier platform n0 through the barrier-free space, respectively. 1 i 6 has moved out of the range of optical signal 50. Other actuation methods can also be implemented. Fixed actuation is a better choice due to the simplicity of design and operation. The main disadvantage is the relatively low voltage required to operate the final component Due to large gaps, they generally fall in the range of 20 to 100 volts. Alternative actuation methods include magnetic and thermal techniques. These methods are well known to those familiar with micromechanical design. The substrate 62 Sense electrode 126 The method is used to detect the position of the carrier platform n0. The method is to sense the change in the capacitance between the electrode on the carrier platform 11 and the electrode 126. This change is caused by the change in the gap caused by the movement of the carrier platform u. Other sensing methods can also be implemented, such as piezoresistive, magnetic, optical architecture. The signal from the sensing electrode 126 is used (via closed-loop control) to accurately place the waveguides 114, 116 on the optical entrance and exit. Light The main signal loss will be at the entrance of the movable waveguide 114, u6 (on the carrier platform 110 of the switching element 60) and at the entrance of the fixed waveguide. Reduce the position between A / C and B / D The distance can minimize this kind of leakage. In order to minimize the leakage completely, but increase the complexity of reporting, an auxiliary waveguide 138, 140 can be designed on the bottom of the carrier platform 110. In -23- this paper size applies China National Standards (CNs) A4 Specification (210X297 Public Director) 531674

該案例中,固定式波導與可移動式波導144、116之間的開 口可減少至2微米之下,取決於蝕刻製程。圖7D描述一載體 平台110,上部之上具有波導114、U6且底部之上具有波導 138、140 ’其中一組係設計用於直線傳遞且另一組則用於 橫向傳遞。如圖7D表示的具體實施例所顯示,在此案例中 ’載體平台110因沒有電源施加至促動電極U2而處於休止 狀態’來自位於載體平台i丨〇輸入側之固定式波導之位置A 和B的光信號50經由可移動式波導138、ι4〇通至位於載體平 台110輸出側之固定式波導。同樣地,當電源施加至促動電 極112時’載體平台no移向促動電極112,故來自位於載體 平台110輸入侧之固定式波導之位置A和b的光信號50現在 經由位於載體平台11〇輸出側之固定式波導之波導114、n6 通過,因為可移動式波導138、14〇已移離光信號50的範圍 且可移動式波導114、116已移至光信號50的範圍内。當然 ’在一使用二個可移動式波導的具體實施例中,如圖所 描述,内定者可直線通過或橫越。換句話說,波導丨14、 116可用於直線傳遞而波導138、14〇則用於橫向傳遞,反之 亦然。 現在說明一 MEMS光學切換元件60之另一具體實施例。 切換元件60之移動並未侷限於垂直於基底62垂直方向之切 換元件。圖8A描述一 MEMS切換元件之範例性它種具體實 施例,其中促動方向係橫向或本質上平行於基底62的平面 。圖8B描述一依靠旋轉移動之MEMS切換元件之範例性它 種具體實施例。當然,一光學切換系統1 〇可產生自全部依 -24- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)In this case, the opening between the fixed waveguide and the movable waveguides 144, 116 can be reduced below 2 microns, depending on the etching process. Figure 7D depicts a carrier platform 110 with waveguides 114, U6 above and waveguides 138, 140 'above the bottom, one of which is designed for linear transmission and the other for lateral transmission. As shown in the specific embodiment shown in FIG. 7D, in this case 'the carrier platform 110 is in a rest state because no power is applied to the actuation electrode U2' from the positions A and A of the fixed waveguide located on the input side of the carrier platform i The optical signal 50 of B passes through the movable waveguides 138 and ι40 to a fixed waveguide located on the output side of the carrier platform 110. Similarly, when power is applied to the actuation electrode 112, the 'carrier platform no moves to the actuation electrode 112, so the optical signals 50 from the positions A and b of the fixed waveguide located on the input side of the carrier platform 110 now pass through the carrier platform 11 〇 The waveguides 114 and n6 of the fixed waveguide on the output side pass because the movable waveguides 138 and 14 have moved out of the range of the optical signal 50 and the movable waveguides 114 and 116 have moved into the range of the optical signal 50. Of course, in a specific embodiment using two movable waveguides, as shown in the figure, the defaulter can pass straight or cross. In other words, the waveguides 14 and 116 can be used for linear transmission and the waveguides 138 and 14 can be used for lateral transmission, and vice versa. Now, another specific embodiment of a MEMS optical switching element 60 will be described. The movement of the switching element 60 is not limited to a switching element perpendicular to the vertical direction of the substrate 62. FIG. 8A illustrates an exemplary embodiment of a MEMS switching element, in which the actuation direction is transverse or substantially parallel to the plane of the substrate 62. Fig. 8B illustrates an exemplary embodiment of a MEMS switching element that relies on rotational movement. Of course, an optical switching system 10 can be produced in full accordance with -24- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm)

531674 9i 7. 2 i、發明説明f ^ ) 相同方式(例如全部垂直移動、全部橫向移動、或全部 移動)移動的光學切換元件,或依不同 轉 万式移動(例如某些垂 直移動而其它橫向移動、或某些垂直移動而其它旋轉移 、或某些橫向移動而其它旋轉移動)的光學切換元件。橫向 移動可藉由將不同的電壓施加於如圖8A所示的又合式(已知 為MEMS中的梳指(comb finger))結構而予以產生。說明圖 8A所描述者,MEMS切換元件6〇包含一基底Q。懸置於美底 a上,例如-凹洞或其它者之上,的為_可移動式光傳ς平 台11〇。平台11〇因其具有傳輸光信號或光束50的結構(例如 波導網路200、202)而述明具有“光傳輸性”;不希望意指 整個平台本身必須具有光傳輸性。平台11〇之一側係耦接至 支承彈簧130且此等支承彈簧130之此等相對末端係耦接或 固定於基底62。平台110具有電極2〇4。在此實施例中,電 極204與促動電極112呈叉合式。藉由將不同電壓施加至平 台110—側的促動電極112和電極204,如同相對於平台11〇 之另一侧,平台110相對於基底62之平面以橫向或本質上水 平之方式移動。在圖8 Α中,此橫向移動意指平台1丨〇向上或 向下移動。 平台110承載波導網路200、202,其中起自光信號50輸入 側終至輸出側的光學路徑取視平台11 〇的位置而變。例如, 若平台處於一第一位置(例如一休止位置),則入射光信號5〇 對波導網路200、202輸入A、B、C和D之對準係選擇而使得 光信號50進入輸入C和D。由於本實施例波導網路2〇〇、202 之特殊結構,進入波導網路200、202輸入C和D的光信號50 -25- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 裝 訂 線 531674 - -—^—刀 日修血/ n/碰 五、發明説明(23 ) ----— 分別融合並離開輸出!^F。若平台11〇接著移至其第二位置 入射光L號50將進入輸入a*b,並分別直線通過輸出e i G田」波導網路200、202可互換而其内定為直線通過 。波導網路之結構可依任何形狀或形式以達成任何想要的 光學路徑。 圖8Α所示的橫向移動方法具有不需要底部電極的優點, 因而減少製私中的許多步驟。缺點則在於電極區的面積因 最終結構的短高度而受到偈限,因而需要大量的㈣以產 生足夠的及引力圖8Α運作橫向移動切換元件所需的電極 區比圖7Α之垂直移動切換元件大非常多。 轉到圖8Β ’可移動式光傳輸平台nG依相對於基底的旋轉 或樞軸式的方式移動。如圖8B所示,平台11〇相對於基本依 一非平行方式旋轉。^ 了達到在一切換元件6〇内旋轉移動 的目的,如較佳具體實施例所用的相同靜電吸引力將作用 。為了感測平台110的位置,將應用較佳具體實施例中所說 明的類似電容债測技術。如說明,一旋轉平台丨1〇之範例性 具體實施例使得輸入A和B在平台110處於一第一位置時 此等光信號對準。當平台110旋轉至其第二位置時,輸入c 和D則與此等光信號對準。如同所有的具體實施例,波導和 波導網路之結構可為任何想要的形狀以達到想要的光學路 徑。 儘管已說明各種應用具體實施例,本行人士顯知有更多 可能的具體實施例和實現係在主題發明之範疇内。例如,— 一具體實施例之每-項特徵可予以混合並與其它具趙實施 -26- 本纸張尺度適用巾關家料(CNS) A4規格(21GX297公^--------- 531674 _年 Η 日倐正_;_ 五、發明説明(24 ) 例中所示的其它特徵匹配。熟悉光纖之人士所已知的特徵 同樣地可依所需予以涵蓋。附加地且明顯地,可視需要增 加或減少特徵,且因而可考慮光學路徑多於兩組之可移動 式平台,其中平台移至三個或更多個位置中的任何一個而 使得每一個位置促動另一組不同的光學路徑。如另一實施 例,光學切換器可接收的輸入多於2並提供超過2個輸出。 可組合光學切換器以便產生具有更多埠之更大的光學切換 器。因此,本發明除了按照附加之申請專利範圍及其相等 物之外,並不受到限制。 元件符號說明 10 光學切換系統 64 波導 12,14 OXC方塊 66 電氣行徑 16,16a,16b,16c 光學連接器 68 電氣連結腳墊 18 光纖 70 載體 20 輸入介面 72 材料 22 輸出介面 78 導管 24 電氣交連器 80,82 晶圓 30 介面和控制電子電路 90 切換元件 32 板子 100 球面(球狀表面) 4〇,42,44,46 切換層 102 影像點 50 光束 110 載體平台 60 切換元件 111 凹洞 62 基底 112 促動電極 63 帽狀晶圓 114,116 波導 -27- 裝 訂531674 9i 7. 2 i. Description of the invention f ^) Optical switching elements that move in the same way (such as all vertical movements, all horizontal movements, or all movements), or move in different ways (such as some vertical movements and other horizontal movements) (Or some vertical movement and other rotation movement, or some lateral movement and other rotation movement). The lateral movement can be generated by applying different voltages to the recombination (known as comb finger in MEMS) structure as shown in FIG. 8A. 8A, the MEMS switching element 60 includes a substrate Q. Suspended on the base a, such as-a hollow or other, is a _movable optical transmission platform 11. The platform 11 is stated to have "light transmission properties" because it has a structure that transmits optical signals or light beams 50 (such as the waveguide networks 200, 202); it is not intended to mean that the entire platform itself must have light transmission properties. One side of the platform 110 is coupled to the support spring 130 and the opposite ends of the support springs 130 are coupled or fixed to the base 62. The stage 110 has an electrode 204. In this embodiment, the electrode 204 and the actuation electrode 112 are in a bifurcated type. By applying different voltages to the actuation electrodes 112 and the electrodes 204 on one side of the platform 110, the platform 110 moves in a lateral or substantially horizontal manner relative to the plane of the substrate 62, as opposed to the other side of the platform 110. In FIG. 8A, this lateral movement means that the platform 10 moves upward or downward. The platform 110 carries the waveguide networks 200, 202. The optical path from the input side to the output side of the optical signal 50 varies depending on the position of the platform 110. For example, if the platform is in a first position (eg, a rest position), the alignment of the incident light signal 50 to the waveguide networks 200, 202 inputs A, B, C, and D is selected so that the optical signal 50 enters the input C And D. Due to the special structure of the waveguide networks 200 and 202 in this embodiment, the optical signals of C and D are entered into the waveguide networks 200 and 202 50 -25- This paper size applies to the Chinese National Standard (CNS) A4 specification (210 X 297 (Mm) Binding line 531674---^-knife day repair blood / n / touch five, invention description (23) -----merge and leave the output! ^ F. If the platform 11 is then moved to its second position, the incident light L number 50 will enter the input a * b and pass straight through the output lines respectively. The waveguide networks 200 and 202 are interchangeable and the internal line is determined to pass straight. The structure of the waveguide network can be in any shape or form to achieve any desired optical path. The lateral movement method shown in FIG. 8A has the advantage that a bottom electrode is not required, thereby reducing many steps in manufacturing. The disadvantage is that the area of the electrode area is limited due to the short height of the final structure, so a large amount of maggots is needed to generate sufficient and gravitational force. Figure 8A The electrode area required to operate the lateral movement switching element is larger than the vertical movement switching element in Figure 7A Much. Turning to Fig. 8B ', the movable optical transmission platform nG moves in a rotational or pivotal manner relative to the substrate. As shown in FIG. 8B, the platform 110 rotates in a substantially non-parallel manner with respect to the platform. ^ In order to achieve the purpose of rotational movement within a switching element 60, the same electrostatic attractive force as used in the preferred embodiment will work. In order to sense the position of the platform 110, a similar capacitive debt detection technique as described in the preferred embodiment will be applied. As illustrated, an exemplary embodiment of a rotating platform 10 makes the inputs A and B aligned when the platform 110 is in a first position. When the platform 110 is rotated to its second position, the inputs c and D are aligned with these optical signals. As with all embodiments, the structure of the waveguide and waveguide network can be any desired shape to achieve the desired optical path. Although various application specific embodiments have been described, it will be apparent to those skilled in the art that many more possible specific embodiments and implementations are within the scope of the subject invention. For example,-each feature of a specific embodiment can be mixed and implemented with other -26- this paper size applies to towels and household materials (CNS) A4 specifications (21GX297 public ^ -------- -531674 _ 年 Η 日 倐 正 _; _ 5. The other features shown in the description of the invention (24) are matched. The features known to those familiar with optical fiber can also be covered as required. Additionally and obviously Features can be added or removed as needed, and thus movable platforms with more than two sets of optical paths can be considered, where the platform moves to any one of three or more positions to make each position actuate a different set Optical path. As another embodiment, the optical switch can receive more than 2 inputs and provide more than 2 outputs. The optical switch can be combined to produce a larger optical switch with more ports. Therefore, the present invention Except according to the scope of the attached patent application and its equivalent, it is not limited. Description of component symbols 10 Optical switching system 64 Waveguide 12, 14 OXC box 66 Electrical path 16, 16a, 16b, 16c Optical connector 68 Electrical connection pin Pad 18 Optical fiber 70 Carrier 20 Input interface 72 Material 22 Output interface 78 Conduit 24 Electrical connector 80, 82 Wafer 30 Interface and control electronics 90 Switching element 32 Board 100 Spherical (spherical surface) 4〇, 42,44,46 Switching layer 102 Image point 50 Beam 110 Carrier platform 60 Switching element 111 Cavity 62 Base 112 Actuating electrode 63 Cap wafer 114, 116 Waveguide-27- Binding

線 本纸張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 531674 91. 7· 25 Β7 -#=~fi~~口哆正 / 更正 五、發明説明(25 ) 120,122 無障礙空間 126 感測電極 130 支承彈簧 138,140 波導 200,202 光學路徑網路 204 電極 300,304 塗覆材料 302 蕊心材料 -28-本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)The paper size of the paper is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 531674 91. 7 · 25 Β7-# = ~ fi ~~ 口 哆 正 / CORRECTION 5. Description of the invention (25) 120,122 Barrier-free space 126 Sensing electrode 130 Support spring 138, 140 Waveguide 200, 202 Optical path network 204 Electrode 300, 304 Coating material 302 Core material -28- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

Claims (1)

六 、申請專利範 圍 光::包―含第,路徑切換"二光學路 基底; ί微基底上以微影製程形成之微機械性平台,今 I礅機械性平台適於相對於基底旋轉’· 该 示致使平台相對於基底自一第一位 i置的促動機制;以及 疋轉1第—位 第 且 雾兮止光學路徑網路,其具有一第一輸入和-第二輸入, 塗二::徑=:=:第台而;吏得光學路徑網路隨著 否 r田平口處於第一位置時,光作轳推入 變—輸入並於光學路 進入 !當平二虑μ 者第一光學路徑傳遞, f fΓ 、第一位置時,光信號進入第二輸入並在光學 |路從網路内沿著第二光學路徑傳遞。 在先干 2·=Π利2第1項之裝置,其中該平台具有-光信號 位置。光學路亦不經由第二光學路徑傳播的中立 3. 2請專利範圍第!項之裝置,其中該光學路徑網路係— 波導網路。 4. ^請專利範圍第3項之裝置,其中該波導網路包含許多 5·=請專利範圍第4項之裝置,其中該等許多波導包含至 夕第—和第二波導,波導的位置使得平台之旋轉於第 一與第二波導之間作選擇。 6.如申請專利範圍第5項之裝置,其中第—和第二波導係彼 -29- 本紙張尺度,巾S @家標準(CNS) A4規格(210X297公爱) W年/月^日修正/欠士6. Scope of patent application Light :: package-including the first, path switching " two optical circuit substrates; ί micro-mechanical platform formed by lithographic process on the micro-substrate, today I mechanical platform is suitable for rotation relative to the substrate ' An actuation mechanism that causes the platform to be positioned relative to the substrate from a first position; and a first-position and first-position foggy optical path network, which has a first input and a second input; 2 :: Path =: =: The first stage; the optical path network will change as Tian Pingkou is in the first position, the light will be pushed into the input—and entered in the optical path! The first optical path is transmitted. When f fΓ and the first position, the optical signal enters the second input and is transmitted along the second optical path in the optical path from the network. The first-to-do 2 · = 2 device of item 2 wherein the platform has a -optical signal position. Neutral in which the optical path does not propagate through the second optical path 3.2 The device in the scope of patent claim 2, wherein the optical path network is a waveguide network. 4. ^ Please refer to the device of the patent scope item 3, wherein the waveguide network includes a number of 5 · = Please refer to the patent scope device of the fourth item, wherein the many waveguides include the first and second waveguides. The position of the waveguide is such The rotation of the platform is selected between the first and second waveguides. 6. The device according to item 5 of the scope of patent application, in which the first and second waveguides are -29- this paper size, towel S @ 家 standard (CNS) A4 specification (210X297 public love) W year / month ^ day amendment / Owe 此至Hereto 9. 11. 導m2ί偏移而置’致使平台之旋轉於第—與第二波 導之間作選擇。 如申凊專利範圍第1項之裝詈 衮置進一步包含一將平台懸置 於基底上方的支承結構。 8. 如t請專利範圍第1項之裝置,其中該基底包含一凹洞或 空亂缺口,平台係懸置於凹洞或空氣缺口上方。 如二請專利範圍第W之裝置,進一步包含_耗接至基底 =入固定式光學路徑結構且其放置位置乃將光信號傳 輸至光學路徑網路之第—輸入或第二輸入。 ίο.如申請專利範圍第!項之裝置,進一步包含一_基底 之輸出固定式料路徑結構且其放置位置乃自光學路徑 網路接收光信號。 如申請專利範㈣9項之裝置,進—步包含1接至基底 之輸出固定式光學路徑結構且其放置位置乃自光學路徑 網路接收光信號。 A如申請專利範圍第工項之裝置,其中該光學路徑網路包含 一第一輸出和一第二輸出。 13. 如申請專利範圍第12項之裝置,進—步包含一 美 底之輸出固定式光學路徑結構且其放置位置乃自光學ς 徑網路之第一輸出或第二輸出接收光信號。 14. 如申請專利範圍第9項之裝置,其中該輸入固定式光學路 徑結構係一輸入固定式波導。 15.如申請專利範圍第1G項之裝置,其中該輸出固定式光學 路徑結構係一輸出固定式波導。 -30· 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 、申請專利範園 16·如申請專利範圍第13項 技#全士_ ^ 置其中該輸出固定式光學 路仏、、Ό構係一輸出固定式波導。 青專利範圍第!項之裝置,進_步包含1接至_ :主動電極且其中該促動機制包含—促動電極,該促: 電極係放置以與該主動電極靜電性地互相作用。 18. 如申請專利範圍第17項之裝 動電極又合。 f八中該促動電極與該主 19. ί申請專利範圍第1項之裝置,進-步包含-置於光學路 徑,用路輸人或光學路徑網路輸出之光學連接器。 20. 如申請專利範圍第19項之裝置,其中該光學路徑網路包 含一波導。 A如切專利範圍第19項之裝置,其中該光學連接器包含 一對準校正表面’該對準校正表面校正—光信號之 執道誤差。 22.如申請專利範圍第21項之裝置,其中對準校正表面係一 球狀表面。 23. 如申請專利範圍第3項之裝置,其中該波導網路包含一以 塗覆材料包圍一蕊心材料而形成之波導,該蕊心材料之 折射係數大於該塗覆材料的折射係數。 24. 如申請專利範圍第3項之裝置,其中該波導網路包含一 ’、有上°卩、底部及側面的波導,其中該波導的上部 和側面與一真空或空氣接觸而其底部則與一中間材料 連π,其中該中繼材料的折射係數低於該波導的折射 係數。 六、申請專利範圍 25. 26. 其中該波導網路包含一•與 ) 進一步包含一用於判斷平 如申請專利範圍第3項之裝置, 基底形成一單一性結構的波導 如申請專利範圍第1項之裝置, 台位置的感測電極。 π如申請專利範圍第旧之裝置,其中若平台處於第— ,則光信號在、㈣光學路徑㈣料㈣ Γ刀換至第二光學路徑,而若平台處於第二位置時: 光信號直線通過光學路徑網路。 π如申請專利範圍第旧之裝置,其中若平台處於第—位置 ,則光信號直線通過光學路徑網路,而若平台處於第二 位置時’則光&號在經由光學路徑網路傳輸期間自第— 光學路徑切換至第二光學路徑。 29·如申請專利範圍第!項之裝置,其中該平台具有一中立位 置且該平台自該中立位置旋轉至第一位置或第二位置。 30·如申叫專利範圍第}項之裝置,其中該促動機制係藉由在 基底上以一微影製程予形成。 31. 如申請專利範圍第丨項之裝置,其中該光學路徑網路係藉 由在基底上以一微影製程予以形成。 32. 如申請專利範圍第31項之裝置,其中該促動機制係藉由 在基底上以一微影製程予形成。 33. —種光學切換系統,其包含: 一光學切換層,含有: (a) —光學切換元件,内含: (1) 一基底; -32- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 、申請專利範園 ⑺-藉由在基底上以—微影製料 ’且該平台適於相對於該基錢轉; 十口 么3) 一促動機制,其使平台相對於基底自一第一位 置%轉至一第二位置;以及 風路三Li:、彳第一輸入及一第二輸入的可旋轉式光 網路,該光學轉網路_接至平“使得該光 予路徑網路隨著平台旋轉,其中當平台處於第—位置時 輸人並沿著光學路徑網路中的第一 光=路徑傳遞,且當平台處於第二位置時,光信號進 =第二輸人並沿著光學路徑網路中的第q學路徑傳 (b)許多具有輸入及輸出的光學切換元件; ⑷許多減至該等許多光學㈣元件輸入之固定 式輸入光學路徑結構,該等固定式輸入光學路徑結構將 光信號傳輸至該等光學切換元件;以及 (d)許多耦接至該等許多光學切換元件之輸出的固 定式輸出光學路徑結構,該等固定式輸出光學路徑結構 自該等光學切換元件接收光信號。 34·如申請專利範圍第33項之光學切換系統,進一步包含· 第一許多光學切換層,其係配置以依一第一方向^換 光信號; ' 第二許多光學切換層,其係配置以依一不同於第一方 向之第二方向切換光信號;以及 一耦接第一和第二許多光學切換層的光學連接器。 -33- 531674 4 I年/汽乃日修正/曼$ /補A89. 11. The offset m2 is placed so that the rotation of the platform is chosen between the first and second guides. The installation according to item 1 of the patent scope further includes a support structure for suspending the platform above the base. 8. If the device according to item 1 of the patent scope is requested, wherein the base includes a recess or an air gap, the platform is suspended above the recess or the air gap. For example, the second device of the patent scope W further includes _ consumption to the substrate = into the fixed optical path structure and its placement position is to transmit the optical signal to the first input or the second input of the optical path network. ίο. According to the device of the scope of patent application, the device further includes a substrate-fixed output path structure and its placement position receives optical signals from the optical path network. For example, the device of item 9 of the patent application, further includes an output fixed optical path structure connected to the substrate and its placement position is to receive optical signals from the optical path network. A The device as claimed in the scope of patent application, wherein the optical path network includes a first output and a second output. 13. If the device of the scope of patent application is No. 12, further includes a fixed output optical path structure with a base and its placement position is to receive optical signals from the first output or the second output of the optical network. 14. The device of claim 9 in which the input fixed optical path structure is an input fixed waveguide. 15. The device of claim 1G, wherein the output fixed optical path structure is an output fixed waveguide. -30 · This paper size is applicable to Chinese National Standard (CNS) A4 specification (210X297 mm), patent application park 16. If the scope of patent application is the 13th technology # 全 士 _ ^ Wherein the output fixed optical circuit, , Ό system is an output fixed waveguide. Green patent range first! The device of this item further includes 1 to _: an active electrode and wherein the actuation mechanism includes-an actuating electrode, the electrode: the electrode is placed to electrostatically interact with the active electrode. 18. If the moving electrode of item 17 of the patent application is closed again. f. The actuating electrode and the device of the main patent application item No. 1 further include-an optical connector placed in an optical path and output by a human or an optical path network. 20. The device of claim 19, wherein the optical path network includes a waveguide. A device according to item 19 of the patent range, wherein the optical connector includes an alignment correction surface ', and the alignment correction surface correction—the optical signal's track error. 22. The device of claim 21, wherein the alignment correction surface is a spherical surface. 23. The device of claim 3, wherein the waveguide network includes a waveguide formed by surrounding a core material with a coating material, and the refractive index of the core material is greater than that of the coating material. 24. The device of claim 3, wherein the waveguide network includes a waveguide having a top, bottom, and sides, wherein the upper and sides of the waveguide are in contact with a vacuum or air and the bottom is in contact with An intermediate material is connected to π, wherein the refractive index of the relay material is lower than that of the waveguide. 6. The scope of patent application is 25. 26. The waveguide network includes an AND) and further includes a device for judging Pingru's patent application No. 3, and the substrate forms a unitary structure waveguide such as the patent application No. 1 Item of the device, the sensing electrode of the stage position. π If the device is the oldest in the scope of patent application, if the platform is in the-position, the optical signal is changed to the second optical path. If the platform is in the second position, the optical signal passes straight Optical path network. π As the oldest device in the scope of patent application, if the platform is in the first position, the optical signal passes straight through the optical path network, and if the platform is in the second position, then the light & number is transmitted through the optical path network Switch from first — optical path to second optical path. 29 · If the scope of patent application is the first! The device of item, wherein the platform has a neutral position and the platform rotates from the neutral position to the first position or the second position. 30. The device as claimed in the patent scope item}, wherein the actuation mechanism is formed by a lithography process on the substrate. 31. For the device under the scope of patent application, the optical path network is formed by a lithography process on a substrate. 32. The device of claim 31, wherein the actuation mechanism is formed by a lithography process on a substrate. 33. — An optical switching system, comprising: an optical switching layer containing: (a) — an optical switching element containing: (1) a substrate; -32- This paper size applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm), patent application Fan Yuanhuan-by using-lithographic materials on the substrate and the platform is suitable for rotation with respect to the base money; ten mouthpieces 3) an actuation mechanism, which enables The platform is turned from a first position to a second position relative to the substrate; and a rotatable optical network with three Li :, 彳 first inputs, and a second input relative to the substrate, the optical transfer network_connected to flat "Make the light path network rotate with the platform, where when the platform is in the first position, the person enters and passes along the first light = path in the optical path network, and when the platform is in the second position, the light signal Enter = the second input and pass along the qth learning path in the optical path network. (B) Many optical switching elements with input and output. ⑷ Many fixed input optical paths reduced to these many optical 输入 element inputs. Structure, these fixed input optical path structures convert optical signals To the optical switching elements; and (d) a plurality of fixed output optical path structures coupled to the outputs of the plurality of optical switching elements, the fixed output optical path structures receiving optical signals from the optical switching elements 34. The optical switching system according to item 33 of the patent application scope, further comprising: a first plurality of optical switching layers configured to change light signals in a first direction ^ a second plurality of optical switching layers configured Optical signals are switched in a second direction that is different from the first direction; and an optical connector that couples the first and second optical switching layers. -33- 531674 4 Year 1 / Automotive Correction / Man $ / Make up A8 35·如申喷專利範圍第34項之光學切換系統,進一步包含一 置於該等第一許多,光學切換層輸入之輸入光學連接器。 36. 如申研專利範圍第34項之光學切換系統,進一步包含一 置於該等第二許多光學切換層冑出之輸出光學連接器。 37. 如申:青專利範圍第34項之光學切換系統,纟中該光學 連接器包含;^正-光信號之對準執道誤差的對準校正 面。 38. 如申請專利範圍第37項之光學切換系統,其中該等對準 才父正表面係呈球狀。 39. 如申請專利範圍第35項之光學切換系統,其中該輸入光 學連接H包含該等校正光信號之對準軌道誤 正表面。 仪 40. ^申請專利範圍第39項之光學切換系統,其中該等對準 才父正表面係呈球狀。 41. 42. 如申請專利範圍第35項之光學切換系統,纟中該輸出为 學連接器包含該等校正光信號之對準軌道誤差的對準相 正表面0 如申請專利範圍第41項之光學切換系站 #丄 ^ 干々供糸統,其中該等對準 校正表面係呈球狀。35. The optical switching system according to item 34 of the patent application scope further includes an input optical connector which is placed in the first and many optical switching layers. 36. The optical switching system according to item 34 of the Shenyan patent scope further includes an output optical connector placed on the second and many optical switching layers. 37. As claimed: The optical switching system of item 34 in the patent scope, wherein the optical connector includes: ^ Positive-alignment correction plane for alignment error of optical signal. 38. The optical switching system of item 37 of the patent application, wherein the front surfaces of the alignment lenses are spherical. 39. The optical switching system of claim 35, wherein the input optical connection H includes an alignment track misalignment surface of the corrected optical signals. Instrument 40. ^ The optical switching system of the 39th scope of the patent application, wherein the front surfaces of the alignment lenses are spherical. 41. 42. If the optical switching system of the scope of patent application No. 35, the output in this case is the alignment surface of the connector containing the alignment track error of the correction optical signal. Optical switching system station # 丄 ^ Dry supply system, where the alignment correction surfaces are spherical. 裝 訂Binding 43· 44. 45. 如申請專利範圍第33項之光學切換系統 制係在基底上以一微影製程予以形成。 其中該促動機 如申請專利ϋ圍第33項之光學切換系&,其中該光風 徑網路係在基底上以一微影製程予以形成。 干 如申請專利範圍第44項之光學切換系統,纟中該促動 -34- Ϊ«尺度適財 a S 家標準(CNS) Α4_210 X 297公釐)~'~^:_______ 、申請專利範圍 制係在基底上以一微影製程予以形成。 46·如申請專利範圍第33項之光學切換系統,其中該平台相 對於基底以一非平行方式呈樞軸式。 47·如申請專利範圍第旧之裝置,其中該微機械性平台相對 於基底以一非平行方式旋轉。 48.:種將一光信號自一第一光學路徑切換至—第二光學路 控的方法,該方法包含步驟如下: 么將該光信號傳向適於相對於一基底旋轉的平台,該平 :係藉由在基底上以一微影製程予以形成,該平台‘含 八有第一輸入和一第二輸入的波導網路,該波導網 路係Μ接至該平台而使得該波導網路隨著該平台旋轉 判斷該光信號是否沿著第_或第二光學路徑傳播;以 A 當 相對於基底選擇性地將該平台旋轉至一第一位置或 =二位置,其中當該平台處於第—位置時,光信號進 第一輸入並沿著波導網路内的第—光學路徑傳遞,而 平台處於第二位置時,光信號進入第二輸入並沿著波驾 網路内的第二光學路徑傳遞。 49·如申請專利範圍第48項 進一步包含校正光信號 中對準軌道誤差的步驟。 50·如申請專利範圍第49項之方法 乃古其中該校正光信號中對 準軌道誤差的步驟使用一球狀表面以校正誤差。 5 1 ·如申請專利範圍第48項 乃次其中該波導網路包含彼 此呈垂直而放置第一和第-诂连,技〜 弟一波導,使得平台之旋轉取決43. 44. 45. The optical switching system of item 33 of the patent application is formed on a substrate by a lithography process. Among them, the motivator is the optical switching system & in the patent application No. 33, wherein the optical wind path network is formed on a substrate by a lithography process. For example, if you apply for the optical switching system of the 44th scope of the patent, you should actuate the -34- Ϊ «Standards for Financial Standards (CNS) Α4_210 X 297 mm) ~ '~ ^: _______, patent scope system It is formed on a substrate by a lithography process. 46. The optical switching system of claim 33, wherein the platform is pivoted in a non-parallel manner with respect to the substrate. 47. The oldest device in the scope of patent application, wherein the micromechanical platform rotates in a non-parallel manner relative to the substrate. 48 .: A method for switching an optical signal from a first optical path to a second optical path control. The method includes the following steps: transmitting the optical signal to a platform suitable for rotation relative to a substrate, the flat : It is formed by a lithography process on a substrate. The platform includes eight waveguide networks with a first input and a second input. The waveguide network is connected to the platform to make the waveguide network. With the rotation of the platform, it is determined whether the optical signal propagates along the _ or the second optical path; A is used to selectively rotate the platform to a first position or = two position relative to the substrate, where when the platform is in the first At the-position, the optical signal enters the first input and passes along the first optical path in the waveguide network, and when the platform is in the second position, the optical signal enters the second input and follows the second optical path in the wave network. Path passing. 49. The 48th scope of the patent application further includes a step of correcting the alignment track error in the optical signal. 50. The method of claim 49 in the scope of patent application is a method in which the step of aligning orbital errors in the optical signal is corrected using a spherical surface to correct the errors. 5 1 · If item 48 of the scope of the patent application is applied, then the waveguide network includes the first and the first -couplings, which are placed perpendicular to each other, and the first one, so the rotation of the platform depends on 本纸張尺度適用中國國家標準(CNS) A4規格(210X297 公釐) 531674 47年? /:)¾㈡胗~、申請專利範圍 A8 B8 C8 D8 於波導相對於基底的垂直位置而於第一與第二波導之間 作選擇。 52·如申請專利範圍第48項之方法,其中該波導網路包含彼 此呈橫向而放置第一和第二波導,使得平台之旋轉取決 於波導相對於基底的橫向位置而於第一與第二波導之間 作選擇。 53.如申請專利範圍第48項之方法,其中該波導網路包含彼 此呈角度偏移而放置的第一和第二波導,使得平台之 旋轉取決於波導之角度偏移而於第一與第二波導之間作 選擇。 54·如申請專利範圍第48項之方法,進一步包含感測平台位 置的步驟。 55.如申請專利範圍第旧之裝置,其中該基底係一半導體。 56·如申請專利範圍第33項之光學切換系統,其中該基底係 一半導體。 57. 如申請專利範圍第48項之方法,其中該基底係一半導 體。 58. 如申請專利範圍第旧之裝置,其中該基底係石英。 59·如:請專利範圍第33項之光學切換系統,其中該基底係 石英。 60. 如申請專利範圍第48項之方法,其中該基底係石英。 61. 如申請專利範圍第旧之裝置,其中該基底係石夕土。 62. 如申請專利範圍第33項之光學切換系統,其中該基底係 矽土。 -36- 531674 A B c D 六、申請專利範圍 63. 如申請專利範圍第48項之方法,其中該基底係矽土。 64. 如申請專利範圍第34項之光學切換系統,其中該光學連 接器包含一光學-至-電氣-至-光學連接器。 65. 如申請專利範圍第34項之光學切換系統,其中該光學連 接器包含一光纖管束。 66. 如申請專利範圍第34項之光學切換系統,其中該光學連 接器包含許多鏡面。 -37- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)This paper size applies to China National Standard (CNS) A4 (210X297 mm) 531674 47 years? / :) ¾㈡ 胗 ~, patent application scope A8 B8 C8 D8 Choose between the first and second waveguides based on the vertical position of the waveguide relative to the substrate. 52. The method of claim 48, wherein the waveguide network includes placing the first and second waveguides in a lateral direction with respect to each other, so that the rotation of the platform depends on the lateral position of the waveguides with respect to the substrate and between the first and second Choose between waveguides. 53. The method of claim 48, wherein the waveguide network includes first and second waveguides that are placed at an angular offset from each other, so that the rotation of the platform depends on the angular offset of the waveguides and is between the first and the second. Choose between two waveguides. 54. The method of claim 48, further comprising the step of sensing the position of the platform. 55. The oldest device in the scope of patent application, wherein the substrate is a semiconductor. 56. The optical switching system according to claim 33, wherein the substrate is a semiconductor. 57. The method of claim 48, wherein the substrate is a semiconductor. 58. The oldest device in the scope of patent application, wherein the substrate is quartz. 59. For example, the optical switching system according to item 33 of the patent, wherein the substrate is quartz. 60. The method of claim 48, wherein the substrate is quartz. 61. The oldest device in the scope of patent application, wherein the substrate is Shi Xitu. 62. The optical switching system according to item 33 of the patent application, wherein the substrate is silica. -36- 531674 A B c D 6. Scope of Patent Application 63. For the method of claim 48, the substrate is silica. 64. The optical switching system of claim 34, wherein the optical connector includes an optical-to-electrical-to-optical connector. 65. The optical switching system of claim 34, wherein the optical connector includes a fiber optic tube bundle. 66. The optical switching system of claim 34, wherein the optical connector includes a plurality of mirrors. -37- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 531674 Μ年^月斤日修正/要具 第090123027號專利申請案 中文圖式修正頁(91年7月)531674 Correction / requisition of the year and month of the year M No. 090123027 Patent Application Chinese Schematic Correction Page (July 91)
TW90123027A 2000-09-19 2001-09-19 Method and apparatus for switching optical signals using rotatable optically transmissive microstructure TW531674B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23367200P 2000-09-19 2000-09-19
US24176200P 2000-10-20 2000-10-20

Publications (1)

Publication Number Publication Date
TW531674B true TW531674B (en) 2003-05-11

Family

ID=28794151

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90123027A TW531674B (en) 2000-09-19 2001-09-19 Method and apparatus for switching optical signals using rotatable optically transmissive microstructure

Country Status (1)

Country Link
TW (1) TW531674B (en)

Similar Documents

Publication Publication Date Title
US6577793B2 (en) Optical switch
JP3184653B2 (en) Optical fiber switch
EP0935149B1 (en) Switching element having an expanding waveguide core
US6483962B1 (en) Optical cross connect switching array system with optical feedback
TW535016B (en) Optical switching element having movable optical transmissive microstructure and method of switching an optical signal
US6625341B1 (en) Optical cross connect switching array system with electrical and optical position sensitive detection
US7003188B2 (en) Low loss optical switching system
US6687428B2 (en) Optical switch
US6694071B2 (en) Method and apparatus for switching optical signals using rotatable optically transmissive microstructure
US6647168B2 (en) Low loss optical switching system
JPH04275519A (en) Optical matrix switch
US6678436B2 (en) Optical switch with moving lenses
US6961486B2 (en) Non-blocking mechanical fiber optic matrix switch
TW531674B (en) Method and apparatus for switching optical signals using rotatable optically transmissive microstructure
US6711315B1 (en) 3-D electro optical switch
US6647170B2 (en) Optical switching system that uses movable microstructures to switch optical signals in three dimensions
Fernandez et al. Modular MEMS design and fabrication for an 80 x 80 transparent optical cross-connect switch
US6813057B2 (en) Configurations for an optical crossconnect switch
EP1825307A1 (en) An opto-mechanical switching system
JP2002090663A (en) Method and device for replacing optical fiber
WO2002021180A1 (en) Optical switch
JPH04241305A (en) Optical switching device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees