TW530388B - Flash memory cell with a P-channel - Google Patents

Flash memory cell with a P-channel Download PDF

Info

Publication number
TW530388B
TW530388B TW90114369A TW90114369A TW530388B TW 530388 B TW530388 B TW 530388B TW 90114369 A TW90114369 A TW 90114369A TW 90114369 A TW90114369 A TW 90114369A TW 530388 B TW530388 B TW 530388B
Authority
TW
Taiwan
Prior art keywords
flash memory
floating gate
type doped
channel
region
Prior art date
Application number
TW90114369A
Other languages
Chinese (zh)
Inventor
Liann-Chern Liou
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW90114369A priority Critical patent/TW530388B/en
Application granted granted Critical
Publication of TW530388B publication Critical patent/TW530388B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A P-channel flash memory cell includes an N-type doped substrate, a floating gate formed above the N-type doped substrate and isolated from the N-type doped substrate by a tunneling oxide layer, a control gate stacked above the floating gate and isolated from the floating gate by an oxide-nitride-oxide (ONO) dielectric layer, a P+ source, a P+ drain, and an N-type doped extension region adjacent to the P+ drain formed beneath the floating gate within a P-channel region of the N-type doped substrate.

Description

530388 五、發明說明(1) 發明之領域 本發明係提供一種p通道(p - c h a η n e 1 )快閃記憶體 (flash memory)及其製作方法,尤指一種具有高效率帶對 帶穿透(band-to-band tunneling, BTBT)寫入 (programming)操作之p通道快閃記憶體及其製作方法。 背景說明 近年來’隨著可攜式電子產品的需求增加,快閃記憶 體的技術以及市場應用也日益成熟擴大。這些可攜式電子 產品包括有數位相機的底片、手機、遊戲機(vide〇 game apparatus)、個人數位助理(personai digital a s s i s t a n t,P D A )之記憶體、電話答錄裝置以及可程式j c 等等。由於可攜式電子產品大多是由電池提供所需之電 源,因此如何降低快閃記憶體的能源耗損(energy dissipation)以及電性表現,即成為快閃記憶體的發展重 點。 基本上’依基底(substrate)以及源極/汲極 (source/drain,S/D)的摻雜電性來區分,快閃記憶體可 被歸類為P通道(P-channel)以及N型通道(N —^^^丨)兩530388 V. Description of the invention (1) Field of the invention The present invention provides a p-channel (p-cha η ne 1) flash memory and its manufacturing method, especially a high-efficiency band-to-band penetration (Band-to-band tunneling, BTBT) p-channel flash memory for programming operation and manufacturing method thereof. Background In recent years, as the demand for portable electronic products has increased, flash memory technology and market applications have also matured and expanded. These portable electronic products include digital camera negatives, cell phones, video game apparatus, personal digital assistant (PAI) memory, telephone answering devices, programmable j c and so on. Since most portable electronic products are powered by batteries, how to reduce the energy dissipation and electrical performance of flash memory has become the focus of flash memory development. Basically, it is distinguished according to the doping properties of the substrate and source / drain (S / D). Flash memory can be classified into P-channel and N-type. Channel (N — ^^^ 丨) two

$ 5頁 530388 五、發明說明(2) s )的特性,因此適合應用於需要低耗能需求之可攜式電子 產品領域。P通道快閃記憶體的寫入方式可以區分為通道 熱電洞引發熱電子(channel hot hole induced h〇t electron )注入機制、帶對帶穿透(band-to-band tunneling, BTBT)注入機制,以及福樂諾漢 (Fowler-Nordheim tunneling,FN tunneling)注入機制 等三種。 199 5年,日本三菱1\0111181^(1〇等人提出之’|1^〇乂61 Electron Injection Method Using Band-to-Band Tunneling Induced Hot Electron (BBHE) for Flash Memory wi th A P-Channe 1 Ce 1 1n論文中,閘極引發沒極 漏電流(Gate induced drain leakage, GIDL)經由橫向電 場加速以產生熱電子首次被應用在P通道快閃記憶體的寫 入操作。 請參閱圖一(a )以及圖一(b ),圖一(a )顯示一典型P通 道快閃記憶體單元1 0在一寫入操作模式(programming m 〇 d e )下之剖面示意圖,圖一(b )顯示圖一(a)中沿著A A ’切 線之能帶圖(energy band diagram)。如圖一(a)所示,P 通道快閃記憶體單元1 〇包含有一 N型摻雜基底1 2、一 N型摻 雜控制閘極1 4、一 N型摻雜浮動閘極1 6、一 P摻雜源極 17、一 P播雜沒極18、一隧穿氧化層(tunneling oxide 1 a y e r ) 2 1介於浮動閘極1 6以及基底1 2之間,以及一 0 N 0介$ 5 pages 530388 5. The characteristics of the invention description (2) s), so it is suitable for the field of portable electronic products that require low energy consumption. The writing method of the P-channel flash memory can be divided into a channel hot hole induced hot electron injection mechanism and a band-to-band tunneling (BTBT) injection mechanism. And Fowler-Nordheim tunneling (FN tunneling) injection mechanisms. 199 5 years, Japan's Mitsubishi 1 \ 0111181 ^ (1〇 and others proposed '| 1 ^ 〇 乂 61 Electron Injection Method Using Band-to-Band Tunneling Induced Hot Electron (BBHE) for Flash Memory wi th A P-Channe 1 In the Ce 1 1n paper, the gate induced drain leakage (GIDL) is accelerated by a lateral electric field to generate thermionic electrons which are first applied to the write operation of the P-channel flash memory. See Figure 1 (a ) And FIG. 1 (b), FIG. 1 (a) shows a schematic cross-sectional view of a typical P-channel flash memory cell 10 in a programming mode (programming mode), and FIG. 1 (b) shows FIG. 1 (A) Energy band diagram along the AA 'tangent line. As shown in FIG. 1 (a), the P-channel flash memory cell 1 includes an N-type doped substrate 12 and an N-type substrate. Doped control gate 14, an N-type doped floating gate 16, a P-doped source 17, a P doped anode 18, a tunneling oxide 1 ayer 2 1 between Between floating gate 16 and base 12 and a 0 N 0 reference

530388 五、發明說明(3) 電層2 2介於控制閘極1 4以及浮動閘極1 6之間。 一般在帶對帶電子穿越寫入模式下,通入閘極為一正 電壓1 0伏特(V ο 11 ),通入汲極為一負電壓-6伏特,而基底 為接地(g r 〇 u n d e d ),源極保持浮動(f 1 〇 a t i n g )狀態。帶對 帶電子穿越(Band to Band tunneling)在沒極18處發生, 產生電子電洞對,其中電子被汲極處的側向電場排斥到浮 動閘極的通道,部份電子獲得高能量而克服隧穿氧化層2 1 之能障,而注入浮動閘極1 6,進而完成寫入動作。需注意 的是,BTBT機制之寫入效率與汲極-浮動閘極重疊區域處 的價帶(valance band, Εν)-傳導帶(conduction band, Ec)能隙有關,能隙越小,BTBT發生越容易,寫入效率也 會提高。 其中帶對帶電子穿越機制,如圖一(b)所示,由於控 制閘極上施加一正偏壓,產生一垂直於S i -S i 02介面方向 的電場,使汲極與浮動閘極之間重疊區域產生能帶彎曲, 進而使重疊區域汲極導電位能接近價帶位能,而發生價帶 電子穿越至傳導帶,並產生電子電洞對(electron-hole p a i r )。電子被外加的没極負偏壓排斥到通道區域,部份 電子獲高能量進而注入浮動閘極中,完成寫入動作。由此 可知,P通道帶對帶寫入模式快閃記憶體的寫入效率決定 於帶對帶電子穿越的機率大小。換言之,只要提高帶對帶 電子穿越的機率,即可以提高P通道快閃記憶體的寫入效530388 V. Description of the invention (3) The electric layer 2 2 is between the control gate 14 and the floating gate 16. Generally in the band-to-band electron pass-through writing mode, the gate is a positive voltage of 10 volts (V ο 11), the drain is a negative voltage of -6 volts, and the base is ground (gr und). The poles remain floating (f 1 0ating). Band-to-band tunneling occurs at 18 poles, generating electron hole pairs, in which electrons are repelled to the channel of the floating gate by the lateral electric field at the drain, and some electrons get high energy to overcome The energy barrier of the oxide layer 21 is tunneled, and the floating gate electrode 16 is injected to complete the writing operation. It should be noted that the writing efficiency of the BTBT mechanism is related to the valance band (Ev) -conduction band (Ec) energy gap at the overlap region of the drain-floating gate. The smaller the energy gap, the BTBT occurs. The easier it is, the higher the write efficiency. Among them, the band-to-band electron crossing mechanism, as shown in Fig. 1 (b), because a positive bias voltage is applied to the control gate, an electric field perpendicular to the direction of the Si-Si 02 interface is generated, which makes the drain and floating gate The inter-overlapping region produces energy band bending, so that the conduction potential of the drain electrode of the overlapping region approaches the valence band potential, and electrons in the valence band pass through to the conduction band, and an electron-hole pair is generated. The electrons are repelled to the channel area by the applied negative pole bias, and some electrons get high energy and are injected into the floating gate to complete the writing operation. It can be seen that the write efficiency of the flash memory of the P-channel band-to-band write mode is determined by the probability of the band-to-band electron crossing. In other words, as long as the probability of band-to-band electron crossing is increased, the write efficiency of the P-channel flash memory can be improved.

第7頁 530388 五、發明說明(4) 率。 因此,本發明之目的在提供一種具有高寫入效率之p 通道快閃記憶體元件。 本發明係一種?通道(^1]^111^1)快閃記憶單元(^133]1 memory cel 1 )’包含有:一 N型摻雜基底;一浮動閘極, 0N0介電層與該浮動閘極隔離; 以及一 Ρ摻雜汲極(P+ drain); extension regi〇n)緊鄰於該 p 極下方該N型摻雜基底之一 p通 形成於該N型摻雜基底上並藉由一隧穿氧化層與該N型摻雜 基底隔離·’ 一控制閘極,堆疊於該浮動閘極上,並藉由一 维;一 P摻雜源極(P+ source) n) ; — N型摻雜延伸區(n doped 該P勝雜沒極形成於該浮動閘 P通道區域中。 區域係定義為一汲極Page 7 530388 V. Description of Invention (4) Rate. Therefore, an object of the present invention is to provide a p-channel flash memory device with high write efficiency. This invention is a kind? The channel (^ 1] ^ 111 ^ 1) flash memory unit (^ 133] 1 memory cel 1) 'includes: an N-type doped substrate; a floating gate; the 0N0 dielectric layer is isolated from the floating gate; And a P-doped drain (P + drain); extension region) is formed directly on the N-type doped substrate and a p-channel is formed by a tunneling oxide layer immediately below the p-pole. Isolated from the N-type doped substrate. A control gate is stacked on the floating gate and is one-dimensional; a P-doped source (P + source) n); — N-type doped extension region (n doped The P-doped electrode is formed in the P-channel region of the floating gate. The region is defined as a drain.

該P換雜汲極與該浮動閘極重疊區M 對閘極重疊區域(drain —1〇 —gate N型摻雜延伸區係用來加強該汲極對閘極 側向電場(1 a十p r q〗f ; p ] η、,你& ,一… 530388The P-doped drain and the floating gate overlap region M-gate overlap region (drain —10—gate N-type doped extension region is used to strengthen the drain-gate lateral electric field (1 a ten prq 〖F; p] η, you & one ... 530388

五、發明說明(5) 明參閱圖二’圖二為本發明一 P通道快閃記憶單元4 〇 二剖面示意圖。如圖二所示,本發明之p通道快閃記情 包含有一 N型摻雜基底42、一 N型摻雜控制閘極S'、一 型摻雜浮動閘極4 6、一隧穿氧化層5 1介於浮動閘極4 6以 及基底42之間、一 0N0介電層52介於控制閘極44以及浮動 閘極4 6之間、一 ρ摻雜源極4 7、一 Ρ摻雜汲極4 8、以及一 Ν 型摻雜延伸區49緊鄰於Ρ摻雜汲極48形成於浮動閘極46下 方Ν型摻雜基底42之ρ通道區域55中。ρ摻雜汲極乜與浮動 閑極4 6重疊區域又稱為沒極對閘極重疊區域 (dra.in-to-gate overlap region)61,其重疊長度約為 〇 〇5至 0.1微米(micrometer)左右。 在本發明之較佳實施例中,N型摻雜基底4 2係為一 N型 井(N - w e 1 1 ),形成於一具有< 1 0 0 >晶格排列方向且摻雜濃 度約為3E15-5E15cm-3左右之P型單晶矽基底表面。然而, 本發明並不限定於此,其它基底,例如利用一般S I Μ0Χ法 所形成之商業化石夕覆絕緣(silicon-on-insulator,SOI) 基底,亦適用於本發明。隧穿氧化層51的厚度約為90至 1 3 0埃(a n g s t r 〇 m )左右。此N型井係利用植入劑量約為 1E12〜lE13cm—乏磷植入。P摻雜源極47以及P摻雜汲極48 係植入BF 2,植入劑量約為1E1 5cm_2。N型摻雜延伸區49係 利用鱗口袋離子佈植(ρ 〇 c k e t i m ρ 1 a n t)形成,其植入劑量 約為 1E13 〜lE14cm_2。V. Description of the invention (5) Refer to FIG. 2 for reference. FIG. 2 is a schematic cross-sectional view of a P-channel flash memory cell 402 of the present invention. As shown in FIG. 2, the p-channel flash memory of the present invention includes an N-type doped substrate 42, an N-type doped control gate S ′, a type-doped floating gate 4 6, and a tunneling oxide layer 5 1 between floating gate 46 and substrate 42, a 0N0 dielectric layer 52 between control gate 44 and floating gate 46, a p-doped source 4 7 and a p-doped drain 48, and an N-type doped extension region 49 is formed next to the P-doped drain electrode 48 and is formed in the p-channel region 55 of the N-type doped substrate 42 below the floating gate 46. The overlapped region of ρ-doped drain 浮动 and floating idler 46 is also called dra.in-to-gate overlap region 61, and its overlap length is about 0.05 to 0.1 micrometers. )about. In a preferred embodiment of the present invention, the N-type doped substrate 4 2 is an N-type well (N-we 1 1), which is formed in a lattice arrangement direction with a doping concentration of < 1 0 0 > The surface of a P-type single crystal silicon substrate with a thickness of about 3E15-5E15cm-3. However, the present invention is not limited to this, and other substrates, such as a commercial fossil silicon-on-insulator (SOI) substrate formed by a general SI MOX method, are also applicable to the present invention. The thickness of the tunneling oxide layer 51 is about 90 to 130 angstroms (an g strom). This N-type well system is implanted with an implantation dose of about 1E12 ~ 1E13cm-deficiency phosphate. The P-doped source 47 and the P-doped drain 48 are implanted into BF 2 with an implantation dose of about 1E1 5 cm 2. The N-type doped extension region 49 is formed by squamous pocket ion implantation (ρ oc k e t i m ρ 1 a n t), and the implantation dose is about 1E13 to 1E14cm_2.

第9頁 530388 五、發明說明(6) 在本發明之其它實施例中,N型摻雜延伸區4 9亦可以 利用砷(arsenic )口袋離子佈植或其它N型離子離子佈植方 式形成,其植入能量以及植入劑量則可由習知該項技藝者 參考並修改本發明内容以及目的之後而得到一最理想操作 範圍。 本發明P通道快閃記憶單元4 0之技術特徵在於P通道區 域5 5内增加一 N型摻雜延伸區4 9。N型摻雜延伸區4 9係緊鄰 於P摻雜汲極4 8形成於汲極對閘極重疊區域6 1周圍並且於 浮動閘極下方P通道區域5 5朝P摻雜源極4 7方向延伸。在 一寫入模式下,控制閘極4 4接一正電壓1 0伏特,通入汲極 為一負電壓-6伏特,而基底為接地,源極保持浮動狀態。 由B T B T產生之電子由没極4 8流出朝向浮動閘極下的通道區 移動,部份電子獲得高能量而能克服隧穿氧化層5 1之能 障,而注入浮動閘極46中。如前所述,BTBT機制之寫入效 率或電子穿透機率與汲極-浮動閘極重疊區域處的價帶 (Εν)-傳導帶(Ec)能隙有關,即能隙越小,BTBT的發生機 率越大。 本發明P通道快閃記憶單元4 0之N型摻雜延伸區4 9可以 明顯增加P通道快閃記憶單元40經由BTBT機制之寫入效 率。這可能是由於N型摻雜延伸區4 9加強了汲極對閘極重 疊區域6 1附近的側向電場(1 a t e r a 1 f i e 1 d ),使沒極對閘Page 9 530388 5. Description of the invention (6) In other embodiments of the present invention, the N-type doped extension region 49 can also be formed by using arsenic pocket ion implantation or other N-type ion implantation methods. The implantation energy and implantation amount can be obtained by those skilled in the art after reference and modification of the content and purpose of the present invention to obtain an optimal operating range. The technical feature of the P-channel flash memory cell 40 of the present invention is that an N-type doped extension region 49 is added to the P-channel region 55. The N-type doped extension region 4 9 is formed next to the P-doped drain electrode 4 8 and is formed around the drain-to-gate overlap region 6 1 and under the floating gate P channel region 5 5 toward the P-doped source electrode 4 7 extend. In a write mode, the control gate 44 is connected to a positive voltage of 10 volts, and the sink drain is a negative voltage of -6 volts, while the substrate is grounded, and the source remains floating. The electrons generated by B T B T flow out from the poles 4 8 and move toward the channel region under the floating gate. Part of the electrons obtain high energy and can overcome the energy barrier of tunneling the oxide layer 51 and are injected into the floating gate 46. As mentioned earlier, the writing efficiency or electron penetration probability of the BTBT mechanism is related to the valence band (Eν) -conduction band (Ec) energy gap at the overlap region of the drain-floating gate. The greater the chance of occurrence. The N-type doped extension region 49 of the P-channel flash memory cell 40 of the present invention can significantly increase the writing efficiency of the P-channel flash memory cell 40 via the BTBT mechanism. This may be because the N-type doped extension region 4 9 strengthens the lateral electric field (1 a t e r a 1 f i e 1 d) near the overlapped region of the drain-to-gate overlap 6 1, so that the non-pole-to-gate

第10頁 530388 五、發明說明(7) 極重疊區域6 1之價帶電子加速,而能於寫入:Page 10 530388 V. Description of the invention (7) Electron acceleration of the valence band of the pole overlap region 61 1 can be written in:

獲得能量進人傳導帶1生大的BTBW 數增加’進而增加穿越隧穿氧化層5 二::: 效率提高。 $于歎目使付寫入 更明確的說,由於N型摻雜延伸區 向電場使沒極對間極重疊區域6 i之價帶電斤/朝生的增強側 Si-SiO界面方向加速,使電子具 I二 穿越至傳導帶,形成BTBT現象。換言之门的:里而更谷易 施加於"參雜没極48之負電壓,一般介於m:特 之間,於P摻雜汲極48與N型摻雜延產寺 側向電場’等效上降低了 Si-SM面附近 價鍵帶位能間的能隙,進而增加BTBm制發生機率。 快門ΐΐΐ ί 3以應用於具有單一電晶㉙(1T)之p通道 :【:己um可以被應用在具有雙電晶體(2τ)之 陕閃圮丨思體早兀中。請參閱圖三,圖三顯示本 J例:2丁快問記憶體單元70之示意圖。如圖三所示,2τ: 元7〇包含有一 PM〇#動閘極電晶體7〇a以及一 ^擇笔晶體三select transist〇r)7〇b形成於一 n型井 此外,一第一 p擴散區77用來作為pM〇s浮動門梅雷 晶體7〇a之源極,一第二p搞散 , 甲 電 極電晶體7〇3之:及荇以月用ΐ t 來作為PM〇S浮動閘 :电日曰體70a之及極u及用來作為pM〇s選擇 極,—第三P擴散區87用來作為pM 电日日體70b之源 马PM0S4擇電晶體7〇b之汲 530388The number of BTBWs generated by gaining energy into the conduction band increases ’and then increases through the tunneling oxide layer 5 2: :: The efficiency is improved. Yu Yugu made the writing more explicit, because the N-type doped extension region toward the electric field accelerates the valence charge of the non-pole-to-pole overlap region 6 i / toward the Si-SiO interface of the enhanced side, which makes the electrons I II crosses to the conduction band, forming a BTBT phenomenon. In other words: the negative voltage of the gate is easily applied to the "parasitic hybrid electrode 48", which is generally between m: special between the P-doped drain electrode 48 and the N-type doped sideline electric field. Equivalently, the energy gap between the valence bond band potential energy near the Si-SM plane is reduced, thereby increasing the occurrence probability of the BTBm system. The shutter ί 3 is applied to the p-channel with a single transistor (1T): [: um can be used in the Shaanxi Shan 圮 思 early thinking with a double transistor (2τ). Please refer to FIG. 3. FIG. 3 shows a schematic diagram of the example J: 2 DQ memory unit 70. As shown in Fig. 3, 2τ: Yuan 70 includes a PM 0 # moving gate transistor 7a and a selective pen crystal 3 select transistor 70b formed in an n-type well. In addition, a first The p-diffusion region 77 is used as the source of the pM0s floating gate Merley crystal 70a, a second p is scattered, and the a-electrode transistor 703: and 月 t is used as PM0S. Floating gate: the pole u of the electric sun body 70a and used as the pM0s selection pole, the third P diffusion region 87 is used as the source of the pM electric sun body 70b. 530388

極’並電連接一位元線(b i t 1 i n e )。 浮動閘極電晶體70a另包含有一浮動閘極76藉由 /隧穿氧化層81與N型井72隔離,以及一控制閘極74藉由 〆0N0介/電層82與浮動閘極76隔離。一 P通道區域85被定義 為位^浮動閘極76下方Ν型井72表面介於第一 ρ擴散區 以及第一 Ρ擴散區7 8之間的區域。一 ν型摻雜延伸區7 9緊 鄰於第二Ρ擴散區7 8形成於浮動閘極7 6下方Ν型井7 2之Ρ通 道區域85中。 在此實施例中,PM0S選擇電晶體70b係用來控制流入 PM0S浮動閘極電晶體7〇a之電流。PM〇s選擇電晶體7〇b包含 有一閘極84,其可以為N型摻雜或p型摻雜。隧穿氧化層8丄 的厚度約為80至130埃左右。N型井72係利用植入劑量約為 1E12〜lE13cnr^磷楂入。第一 p擴散區77、第二p獷散區 78以及第三p擴散區87係皆植入π。其植入劑量約為 ^E^Scnr2。Ν型摻雜延伸區79係利用磷口袋離子佈植形成, 其植入劑量約為1Ε13〜1E14cm_2。Ν型摻雜延伸區Μ可以明 顯增加Ρ通道快閃記憶單元7〇經由ΒΤΒΤ機制之寫入效率。 極雪ΐ Ϊ ?广之快閃記憶單元,* *明係☆ PM0S浮動閘 Y^ ^ ^ ^加—N型掺雜延伸區79。N型摻雜延伸區 79緊郇於弟二ρ擴散區78形成於浮動閘極7 之P通運區域85中。在寫入模式下,施加於第二ρ擴散區The pole 'is electrically connected to a one-bit line (b i t 1 i n e). The floating gate transistor 70a further includes a floating gate 76 isolated from the N-well 72 by the / tunneling oxide layer 81, and a control gate 74 isolated from the floating gate 76 by the 〆0N0 dielectric / dielectric layer 82. A P-channel region 85 is defined as a region between the surface of the N-well 72 below the floating gate 76 between the first p diffusion region and the first p diffusion region 78. A v-type doped extension region 79 is formed adjacent to the second P diffusion region 78 in the P-channel region 85 of the N-well 72 under the floating gate 76. In this embodiment, the PMOS selection transistor 70b is used to control the current flowing into the PMOS floating gate transistor 70a. PMOS selection transistor 70b includes a gate 84, which can be N-type doped or p-type doped. The thickness of the tunneling oxide layer 8A is about 80 to 130 angstroms. The N-type well 72 was implanted with a dose of about 1E12 ~ 1E13cnr ^ phosphate. The first p-diffusion region 77, the second p-diffusion region 78, and the third p-diffusion region 87 are all implanted with π. The implantation dose is about ^ E ^ Scnr2. The N-type doped extension region 79 is formed by ion implantation with a phosphorus pocket, and the implantation dose is about 1E13 ~ 1E14cm_2. The N-type doped extension region M can significantly increase the writing efficiency of the P-channel flash memory cell 70 through the BTTB mechanism. Extreme snow ΐ 广 Wide flash memory unit, * * Ming Department ☆ PM0S floating gate Y ^ ^ ^ ^ plus-N-type doped extension region 79. The N-type doped extension region 79 is formed immediately after the second p diffusion region 78 and is formed in the P-transport region 85 of the floating gate 7. In write mode, applied to the second p diffusion region

530388 五、發明說明(9) 7 8之負電壓,於第二P擴散區7 8與N型摻雜延伸區7 9界面 所產生的側向電場,等效上降低了 S i -S i 0界面附近導電 帶位能與價鍵帶位能間的能隙,進而增加BTBT機制的發生 機率。 以上所述僅為本發明之較佳實施例,凡依本發明申請 專利範圍所做之均等變化與修飾,皆應屬本發明專利之涵 蓋範圍。 m530388 V. Description of the invention (9) The negative voltage of (8), the lateral electric field generated at the interface between the second P diffusion region (78) and the N-type doped extension region (79), equivalently reduces S i -S i 0 The energy gap between the conduction band energy near the interface and the valence bond band energy increases the probability of occurrence of the BTBT mechanism. The above description is only a preferred embodiment of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application for the present invention shall fall within the scope of the invention patent. m

第13頁 530388 圖式簡單說明 圖示之簡單說明 圖一(a )顯示一典型P通道快閃記憶體單元之剖面示意 圖。 圖一(b)顯示圖一(a)中沿著AA’切線之能帶圖。 圖二為本發明一 P通道快閃記憶單元的剖面示意圖。 圖三為本發明另一實施例一 2T快閃記憶體單元之示意 圖。 圖示之符號說明 10 P通道快閃記憶體單元 12 N型摻雜基底 14 控制閘極 16 浮動閘極 17 P摻雜源極 18 P摻雜汲極 21 隧穿氧化層 22 ΟΝΟ介電層 40 P通道快閃記憶單元 42 Ν型摻雜基底 44 N型摻雜控制閘極 46 Ν型摻雜浮動閘極 47 P摻雜源極 48 Ρ摻雜汲極 49 N型摻雜延伸區 51 隧穿氧化層 52 0 N 0介電層 55 Ρ通道區域 61 汲極對閘極重疊區域 70 2T快閃記憶體單元 70a PMOS浮動閘極電晶體 70b PMOS選擇電晶體Page 13 530388 Simple illustration of the diagram Simple illustration of the diagram Figure 1 (a) shows a schematic cross-sectional view of a typical P-channel flash memory unit. Fig. 1 (b) shows the band diagram along AA 'tangent in Fig. 1 (a). FIG. 2 is a schematic cross-sectional view of a P-channel flash memory unit according to the present invention. FIG. 3 is a schematic diagram of a 2T flash memory unit according to another embodiment of the present invention. Explanation of symbols in the figure 10 P-channel flash memory cell 12 N-type doped substrate 14 control gate 16 floating gate 17 P-doped source 18 P-doped drain 21 tunnel oxide layer 22 ONO dielectric layer 40 P-channel flash memory cell 42 N-type doped substrate 44 N-type doped control gate 46 N-type doped floating gate 47 P-doped source 48 P-doped drain 49 N-type doped extension region 51 tunneling Oxide layer 52 0 N 0 Dielectric layer 55 P channel region 61 Drain-to-gate overlap region 70 2T flash memory cell 70a PMOS floating gate transistor 70b PMOS select transistor

第14頁 530388 圖式簡單說明 72 N型井 74 控制閘極 76 浮動閘極 77 第一 P擴散區 78 第二P擴散區 79 N型摻雜延伸區 84 選擇閘極 85 P通道區域 87 第三P擴散區Page 14 530388 Brief description of the diagram 72 N-well 74 Control gate 76 Floating gate 77 First P diffusion region 78 Second P diffusion region 79 N-type doped extension region 84 Select gate 85 P channel region 87 Third P diffusion zone

第15頁Page 15

Claims (1)

530388 _案號90114369_年月日__ 六、申請專利範圍 1 1.如申請專利範圍第7項之PM0S雙電晶體(2Τ)快閃記憶 單元,其中該Ν型摻雜延伸區係利用一磷口袋離子佈植形 成。 12. 如申請專利範圍第11項之PM0S雙電晶體(2Τ)快閃記 憶單元,其中該磷口袋離子佈植之植入劑量約為 1Ε13 〜lE14cra_2。 13. 如申請專利範圍第7項之PMOS雙電晶體(2T)快閃記憶 單元,其中該PM0S選擇電晶體係用來控制流入該浮動閘 極電晶體之電流。530388 _Case No. 90114369_ 年月 日 __ VI. Scope of patent application 1 1. For the PM0S dual transistor (2T) flash memory cell in the scope of patent application item 7, the N-type doped extension region uses a Phosphorus pocket ion implantation was formed. 12. For example, the PM0S dual transistor (2T) flash memory unit in the scope of the patent application, wherein the implantation dose of the phosphorus pocket ion implantation is about 1E13 ~ 1E14cra_2. 13. For example, the PMOS dual-transistor (2T) flash memory cell in the scope of the patent application, wherein the PMOS selection transistor system is used to control the current flowing into the floating gate transistor. 第19頁Page 19
TW90114369A 2001-06-14 2001-06-14 Flash memory cell with a P-channel TW530388B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90114369A TW530388B (en) 2001-06-14 2001-06-14 Flash memory cell with a P-channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90114369A TW530388B (en) 2001-06-14 2001-06-14 Flash memory cell with a P-channel

Publications (1)

Publication Number Publication Date
TW530388B true TW530388B (en) 2003-05-01

Family

ID=28787735

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90114369A TW530388B (en) 2001-06-14 2001-06-14 Flash memory cell with a P-channel

Country Status (1)

Country Link
TW (1) TW530388B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8258029B2 (en) * 2007-04-10 2012-09-04 Macronix International Co., Ltd. Semiconductor structure and process for reducing the second bit effect of a memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8258029B2 (en) * 2007-04-10 2012-09-04 Macronix International Co., Ltd. Semiconductor structure and process for reducing the second bit effect of a memory device

Similar Documents

Publication Publication Date Title
TWI304266B (en) Memory cell and memory cell array
TW569428B (en) Semiconductor memory cell and semiconductor memory device
US7859046B2 (en) Ballistic direct injection NROM cell on strained silicon structures
JP5130269B2 (en) Method for manufacturing transistor and memory cell having very short gate shape
US8466505B2 (en) Multi-level flash memory cell capable of fast programming
TW200537504A (en) Flash memory programming using gate induced junction leakage current
JPH05110114A (en) Nonvolatile semiconductor memory device
JP2005294498A (en) Non-volatile semiconductor storage device
TW200849607A (en) Nonvolatile semiconductor memory devices with charge injection corner
KR20000053369A (en) Eeprom memory cell and method of fabricating the same
US9082490B2 (en) Ultra-low power programming method for N-channel semiconductor non-volatile memory
US20070272974A1 (en) Twin-gate non-volatile memory cell and method of operating the same
JP2005252034A (en) Nonvolatile semiconductor memory device, its charge injection method, and electronic device
JPH11330280A (en) Manufacture of flash memory cell structure by erasing/ writing channel and its operation method
US7148537B2 (en) Semiconductor memory device
EP1818974A2 (en) Non-volatile memory cells and methods for fabricating the same
TW201532198A (en) High voltage double-diffused MOS (DMOS) device and method of manufacture
TW530388B (en) Flash memory cell with a P-channel
JP2004022575A (en) Semiconductor device
US20070194378A1 (en) Eeprom memory cell for high temperatures
TW201131743A (en) Two pFET SOI memory cells
KR20100072405A (en) Semiconductor device, method of fabricating the same and flash memory device
CN104332469B (en) n-channel nonvolatile memory element and compiling method thereof
CN109712984A (en) NOR FLASH device architecture and its manufacturing method
JPH02295169A (en) Nonvolatile semiconductor memory

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees