TW522473B - Method and apparatus for improved temperature control in atomic layer deposition - Google Patents

Method and apparatus for improved temperature control in atomic layer deposition Download PDF

Info

Publication number
TW522473B
TW522473B TW90128082A TW90128082A TW522473B TW 522473 B TW522473 B TW 522473B TW 90128082 A TW90128082 A TW 90128082A TW 90128082 A TW90128082 A TW 90128082A TW 522473 B TW522473 B TW 522473B
Authority
TW
Taiwan
Prior art keywords
temperature
substrate
patent application
scope
chamber
Prior art date
Application number
TW90128082A
Other languages
Chinese (zh)
Inventor
Tony P Chiang
Karl F Leeser
Original Assignee
Angstron Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/812,352 external-priority patent/US20020104481A1/en
Priority claimed from US09/812,285 external-priority patent/US6428859B1/en
Priority claimed from US09/812,486 external-priority patent/US6416822B1/en
Application filed by Angstron Systems Inc filed Critical Angstron Systems Inc
Application granted granted Critical
Publication of TW522473B publication Critical patent/TW522473B/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

A system and method for that allows one part of an atomic layer deposition (ALD) process sequence to occur at a first temperature while allowing another part of the ALD process sequence to occur at a second temperature. In such a fashion, the first temperature can be chosen to be lower such that decomposition or desorption of the adsorbed first reactant does not occur, and the second temperature can be chosen to be higher such that comparably greater deposition rate and film purity can be achieved. Additionally, the invention relates to improved temperature control in ALD to switch between these two thermal states in rapid succession. It is emphasized that this abstract is provided to comply with rules requiring an abstract. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.

Description

522473 A7 _______B7__ 五、發明說明(/ ) 相關申請案交互參照 本申請案聲明下列申請案之利益:皆於2 0 0 0年1 2月6臼申請之美國臨時申請案第60/251, 795 號及第60/254,280號,皆於20〇1年3月1 9曰申請之美國專利申請案第09/812, 285號、 第 09/812,352 號及第 09/812,486號 以及於2001年5月10日申請之美國專利申請案第〇 9/854,092 號。 發明背景 發明之領域 本發明係關於薄膜沈積之領域,且特別係關於用於改 良及加強原子層沈積(A L D )之溫度控制之方法及設備 〇 背景技術之說明 本發明大致係關於先進薄膜沈積方法之領域,其一般 係用在半導體、資料儲存、平面顯示器以及相關及其它工 業。更具體地說,本發明係關於改良原子層沈積,藉此第 一前導物之吸附之動力以及與第二前導物之接續反應係分 離的。分離係表示引起第一前導物之反應(亦即,吸附) 係與用於與第二前導物反應所需之溫度狀態在不同溫度狀 態下進行。更重要的,揭示用於改良A L D中溫度控制之 方法及設備,其能快速地連續在兩種溫度狀態之間切換。 習知A L D之缺點係進一步討論於下列在具有相同受 讓人之共同審查中專利申請案中:名稱爲〃利用調整離子 _____j__ 私紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂------- _!線丨·-----------^——7------- 522473 A7 _____B7 ____ 五、發明說明(r) 題而極爲複雜。 化學氣相沈積(C V D )製程提供改良之階躍式覆蓋 率,因其可定製C V D製程以提供一致之薄膜。一致性確 保沈積薄膜與下層基板形狀相符合’且特徵物內側之薄膜 厚度係均勻且等於特徵物外部之厚度。不幸的,C V D需 要相當高之沈積溫度,遭受影響薄膜完整性之高雜質濃度 ,且因長成核時間及低前導物利用效率而具有較高之持有 成本。於含障礙層範例的鉬之後,C V D钽及氮化鉬薄膜 需要範圍從攝氏5 0 0至超過攝氏8 0 0之基板溫度,並 受到範圍從數至數十原子百分濃度之雜質濃度(一般係碳 及氧)。此通常導致高薄膜阻抗(超過PVD達數個數量 級),及其它薄膜性能之降級。這些沈積溫度及雜質濃度 使得C VD鉅及氮化鉅不適用於I C製造,特別係在銅金 屬化及低k積體製程中尤然。 C h e η等人於1999年發表於】· Vac. S c i . Techno 1. B 17(1)第 182 - 1 8 5頁的(〃用於銅金屬化之利用五溴化钽之低溫電 漿輔助氮化鉬化學氣相沈積〃)(L 〇 w tempera ture plasma-assisted chem i c a 1 vapor deposition 〇f tantalum nitride from tan t a 1 u m pentabromide for c o pper metal 1 izat ion);以及 1998 年發表於J· Vac. S c i . Techno 1. -----7__________ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) ----,----------------訂---------^ IAWI (請先閱讀背面之注意事項再填寫本頁) 522473 A7 ______B7___ 五、發明說明(4 ) B 16 (5)第2 8 8 7 — 2 8 9 0頁的"用於銅金屬 化之利用五溴化鉅之低溫電漿加強鉅化學氣相沈積〃(L 〇 w temperature P“sma— 〇ted chemical v a p 〇 r , VUr depos from t a pentabromi^ i t i 〇 n of tantalum n t a 1 u m e 〇r c opper metaiiiZdL1〇n )已證實使用五 溴化鉅(丁 a B r 5 )作爲前導物之電漿輔助(p A c v D )漿增強(P E C: V D ) C v D方法可減低沈積溫度 。鉅及氮化鉅薄膜係在攝氏3 5 0度至4 5 〇度沈積,且 包a 2· 5至3原子百分濃度之溴。雖然沈積溫度已藉由增 加通過電獎之氣%則導物氣體之比例(且因此增加阻抗) 而降低’但相同之比例卻導致不希望之雜質沈積。希望及 不希望兩種種類之前導物之氣態比例自然地限制住此方法 之效率。 , 近年來,已提出原子層化學氣相沈積(AL - CVD )或原子層沈積(A L D )作爲用於在相當低溫下沈積一 致超薄膜的化學氣相沈積之替代方法。A L D係類似C V D,除了基板係相繼地一次曝露在一種反應物中之外。槪 念上,其係一種簡單製程··導入第一反應物至加熱基板上 ’藉此在基板表面上形成單一層。過多之反應物則被抽出 。接著,導入第二反應物並與第一反應物反應,以藉由自 限制表面反應形成單層之所欲薄膜。此製程係爲自限制的 ’因一但開始吸附(物理或化學吸附)之單層第一反應物 z a (請先閱讀背面之注意事項再填寫本頁) 本·紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐 > n H ϋ n n n n^OJt MM MM I I n I I n n ft n n n n n a— n n n ϋ n n is n d 522473 A7 __B7_ 五、發明說明(?) 與第二反應物完全反應後,則沈積反應停止。最後,多餘 第二反應物被排除。上述事件順序包含一個沈積週期。所 欲之膜厚度藉由重複所需次數之沈積週期而獲得。 實際上,A L D在製程溫度設定點之仔細選擇方面係 很複雜的,其中兩點,1 )至少反應物其中之一足以吸收 成單層,及2 )表面沈積反應能以適當之成長速率及薄膜 純度進行。若用於沈積反應所需之基板溫度過高,則發生 第一吸附反應物之去吸附或分解,因此去除了層接層製程 。若溫度過低,則沈積反應可能不完全(亦即,非常慢) ,完全不進行,或導致低劣薄膜品質(例如,高電阻率及 /或高雜質含量)。因ALD製程係完全地高溫,適合溫 度窗口之可用前導物(亦即,反應物)之選擇變得困難且 有時不可行。因上述溫度相關問題,A L D—般係限制在 沈積半導體及絕緣體,而非金屬。 延續氮化钽範例,氮化鉬膜之A L D係限制在攝氏4 0 0度至5 0 0度之窄小溫度範圍內,一般係以〇 . 2埃 /週期之最大沈積速率進行,且可包含氯及氧的高達數原 子百分濃度之雜質。氯具有腐餽性,會侵蝕銅,並導致可 靠度問題。上述製程因高沈積溫度、低沈積速率及包含氯 雜質,故不適用於銅金屬化及低k積體製程。 在習知金屬薄膜的ALD中,氣態氫(H2)或元素 鋅(Ζ η )常作爲第二反應物。選擇這些反應物係因將其 作爲還原劑以將包含在第一反應物之金屬原子帶至所欲之 氧化狀態以沈積最終之薄膜。氣態雙分子氫(Η 2 )因其化 _— _9 ___ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) --------訂 i i emmme Bmmi —ϋ m ϋ I 線-------- 522473 A7 ___B7 _ 五、發明說明(?) 非所期望地與覆蓋或下層薄膜以及與接觸到的IC製程所 通常使用之氣體進行反應。 另一項R E A L D之限制係原子基產生及傳送爲無效 率且不希望的。做爲例如原子氫之第二反應物之原子基之 R F (例如1 3 . 5 6百萬赫茲)電漿產生係不如微波電漿 般有效率,因爲微波能量之增強效率轉移至電子而用作支 撐及分離導入電黎之反應物。此外,因具有一種下游結構 ,藉此原子基產生電漿係包含在位在遠離置放基板之主腔 室之獨立容器內,並使用小孔徑以從遠端電漿容器導入原 子基至主腔室主體,此明顯地減低第二基反應物之傳輸效 率。氣態及側壁兩者之再結合將降低可到達基板之所需原 子基之流通量。在原子氫的範例中,該等再結合路徑將導 致雙原子H2之形成,其爲更無效率之還原劑。若用以產生 原子基之電漿係直接放置在基板上,則可能類似電漿輔助 C V D之情況而發生不需要之雜質及顆粒之沈積。 最後,A L D (或例如R E A L D之任何衍生物)基 本上係緩慢的,因其依賴一連續製程,其中每個沈積週期 包含至少兩種獨立反應物流動及排除步驟,其以習知閥門 及腔室技術可能進行數分鐘之久。故需要明顯改進而導致 較快之A L D,以使其更適用於商業化I C製造。 發明槪要 一種用於在一腔室中一基板上沈積一薄膜之方法,其 包含調整該基板之溫度至一第一溫度,引入一第一反應物 氣體至該腔室,大致上吸附至少一層該第一反應物氣體至 ____JUL_____ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁)522473 A7 _______B7__ 5. Description of the Invention (/) Cross Reference to Related Applications This application declares the benefits of the following applications: US Provisional Application No. 60/251, 795, which was filed on February 6, 2000 And No. 60 / 254,280, U.S. Patent Application Nos. 09/812, 285, 09 / 812,352 and 09 / 812,486, which were filed on March 19, 2001, and US Patent Application No. 09 / 854,092 filed on May 10, 2001. BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to the field of thin film deposition, and in particular, to methods and equipment for improving and enhancing the temperature control of atomic layer deposition (ALD). Description of the Background The present invention is generally related to advanced thin film deposition methods In the field, it is generally used in the semiconductor, data storage, flat display and related and other industries. More specifically, the present invention relates to an improved atomic layer deposition whereby the kinetics of the adsorption of the first precursor and the subsequent reaction with the second precursor are separated. Separation means that the reaction (i.e., adsorption) that causes the first lead is performed at a different temperature state from the temperature state required for the reaction with the second lead. More importantly, the method and equipment for improving temperature control in A L D are disclosed, which can quickly switch continuously between two temperature states. The shortcomings of the conventional ALD are further discussed in the following patent applications under joint examination with the same assignee: The name is 〃Using Adjustment Ions _____j__ The size of the private paper applies the Chinese National Standard (CNS) A4 specification (210 X 297 public Li) (Please read the notes on the back before filling this page) Order ------- _! Line 丨 · ----------- ^ —— 7 ------- 522473 A7 _____B7 ____ 5. The description of the invention (r) is extremely complicated. The chemical vapor deposition (C V D) process provides improved step coverage because it can be customized to provide a consistent film. Consistency ensures that the deposited film conforms to the shape of the underlying substrate 'and that the thickness of the film on the inside of the feature is uniform and equal to the thickness on the outside of the feature. Unfortunately, C V D requires a relatively high deposition temperature, suffers from high impurity concentrations that affect film integrity, and has a high cost of ownership due to long nucleation time and low lead utilization efficiency. After the example of barrier layer containing molybdenum, CVD tantalum and molybdenum nitride films require substrate temperatures ranging from 500 ° C to over 800 ° C, and subject to impurity concentrations ranging from a few to tens of atomic percent concentrations (generally Department of carbon and oxygen). This usually results in high film resistance (several orders of magnitude over PVD), and degradation of other film properties. These deposition temperatures and impurity concentrations make CVD giants and nitride giants unsuitable for IC manufacturing, especially in copper metallization and low-k product systems. Published by C He η et al. In 1999] · Vac. S ci. Techno 1. B 17 (1) pages 182-1 8 5 ((〃Low temperature plasma using tantalum pentabromide for copper metallization) Assisted Molybdenum Nitride Chemical Vapor Deposition 〃 (L 〇w temperature plasma-assisted chem ica 1 vapor deposition 〇f tantalum nitride from tan ta 1 um pentabromide for co pper metal 1 izat ion); and published in 1998. Vac. S ci. Techno 1. ----- 7__________ This paper size applies to China National Standard (CNS) A4 (210 x 297 mm) ----, ------------ ---- Order --------- ^ IAWI (Please read the notes on the back before filling this page) 522473 A7 ______B7___ V. Description of the invention (4) B 16 (5) Section 2 8 8 7 — Page 2 8 9 " Enhanced giant chemical vapor deposition using pentabromide giant low temperature plasma for copper metallization〃 (L 〇w temperature P "sma— 〇ted chemical vap 〇r, VUr depos from ta pentabromi ^ iti 〇 〇 n of tantalum nta 1 ume 〇rc opper metaiiiZdL1〇n) has been confirmed to use pentabromide giant (butyl a B r 5) as the precursor of plasma assisted (p A c v D) slurry enhanced (PEC: VD) C v D method can reduce the deposition temperature. Giant and nitrided giant films are deposited at 350 to 450 degrees Celsius, and include a 2.5 to 3 atomic percent Concentration of bromine. Although the deposition temperature has been reduced by increasing the percentage of gas passed through the electricity prize (and therefore the impedance), the same ratio results in the deposition of unwanted impurities. Both hoped and undesired The gaseous ratio of the precursors before the species naturally limits the efficiency of this method. In recent years, atomic layer chemical vapor deposition (AL-CVD) or atomic layer deposition (ALD) has been proposed as a uniform An alternative method for chemical vapor deposition of thin films. ALD is similar to CVD, except that the substrate is exposed to a reactant one after the other. In theory, it is a simple process... The first reactant is introduced onto the heated substrate 'This forms a single layer on the substrate surface. Excessive reactants are extracted. Next, a second reactant is introduced and reacted with the first reactant to form a desired single-layer film by self-limiting surface reaction. This process is a self-limiting, single-layer first reactant za that starts to adsorb (physical or chemical adsorption) (please read the precautions on the back before filling this page). This paper size applies Chinese national standards (CNS ) A4 specification (210 X 297 mm > n H ϋ nnnn ^ OJt MM MM II n II nn ft nnnnna— nnn ϋ nn is nd 522473 A7 __B7_ 5. After the invention description (?) Completely reacts with the second reactant, Then the deposition reaction stops. Finally, the excess second reactant is eliminated. The above sequence of events includes a deposition cycle. The desired film thickness is obtained by repeating the required number of deposition cycles. In fact, ALD is at the set point of the process temperature. Careful selection is complicated, two of which are 1) at least one of the reactants is sufficient to absorb into a single layer, and 2) the surface deposition reaction can proceed at an appropriate growth rate and film purity. If the temperature of the substrate required for the deposition reaction is too high, desorption or decomposition of the first adsorption reactant occurs, so the layer-by-layer process is removed. If the temperature is too low, the deposition reaction may be incomplete (ie, very slow), do not proceed at all, or result in poor film quality (eg, high resistivity and / or high impurity content). Because the ALD process is completely high temperature, the selection of available precursors (i.e., reactants) suitable for the temperature window becomes difficult and sometimes not feasible. Because of the above temperature-related issues, AL D- is generally limited to deposited semiconductors and insulators, not metals. Continuing the example of tantalum nitride, the ALD of the molybdenum nitride film is limited to a narrow temperature range of 400 degrees Celsius to 500 degrees Celsius, and is generally performed at a maximum deposition rate of 0.2 Angstroms / cycle, and can include Impurities up to several atomic percent of chlorine and oxygen. Chlorine is corrosive and can erode copper and cause reliability issues. The above processes are not suitable for copper metallization and low-k product systems due to high deposition temperature, low deposition rate, and inclusion of chlorine impurities. In the conventional metal thin film ALD, gaseous hydrogen (H2) or elemental zinc (Z η) is often used as the second reactant. These reactants are selected because they are used as reducing agents to bring the metal atoms contained in the first reactant to the desired oxidation state to deposit the final thin film. Gaseous bimolecular hydrogen (Η 2) due to its change _— _9 ___ This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page) --- ----- Order ii emmme Bmmi —ϋ m ϋ I line -------- 522473 A7 ___B7 _ V. Description of the invention (?) Unexpectedly related to the covering or underlying film and the IC process in contact with The reaction is usually carried out using a gas. Another limitation of R E A L D is that the generation and transmission of atomic radicals is inefficient and undesirable. Atomic-based RF (eg 13.56 megahertz) plasma generation as the second reactant of atomic hydrogen, for example, is not as efficient as microwave plasma, because the enhanced efficiency of microwave energy is transferred to electrons and used as Support and separate the reactants introduced into Li Li. In addition, due to a downstream structure, the atomic radical generating plasma system is contained in a separate container located away from the main chamber where the substrate is placed, and a small aperture is used to introduce the atomic radical from the remote plasma vessel to the main cavity The main body of the chamber, which significantly reduces the transmission efficiency of the second-based reactant. The recombination of the gaseous and side walls will reduce the flow of the required atomic radicals that can reach the substrate. In the case of atomic hydrogen, these recombination pathways will lead to the formation of diatomic H2, which is a more inefficient reducing agent. If the plasma used to generate the atomic radical is directly placed on the substrate, it may be similar to the situation where the plasma assists C V D and unwanted impurities and particles are deposited. Finally, ALD (or any derivative such as REALD) is basically slow because it relies on a continuous process in which each deposition cycle includes at least two independent reactant flow and rejection steps, using known valves and chambers Technology can take several minutes. Therefore, there is a need for significant improvements leading to faster A L D to make it more suitable for commercial IC manufacturing. The invention requires a method for depositing a thin film on a substrate in a chamber, which comprises adjusting the temperature of the substrate to a first temperature, introducing a first reactant gas into the chamber, and substantially adsorbing at least one layer The first reactant gas to ____JUL_____ This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page)

522473 A7 __B7___ 五、發明說明(Μ ) 該基板上,從該腔室排除任何多餘之該第一反應物氣體, 調整該基板之溫度至一第二溫度,引入一第二反應物氣體 至該腔室以與該第一反應物氣體反應以在該基板上產生該 薄膜,及從該腔室排除任何多餘之該第二反應物氣體;以 及調整該基板之溫度至一第三溫度。 一種用於在一腔室內之一基板上沈積一薄膜之系統, 其包含一種用於調整該基板之溫度至一第一溫度之機構, 一種用於引入一第一反應物氣體至該腔室之機構,一種用 於大致上吸附至少一層該第一反應物氣體至該基板上之機 構,一種用於從該腔室排除任何多餘之該第一反應物氣體 之機構,一種用於調整該基板之溫度至一第二溫度之機構 ,一種用於引入一第二反應物氣體至該腔室以與該第一反 應物氣體反應以在該基板上產生該薄膜之機構,一種用於 從該腔室排除任何多餘之該第二反應物氣體之機構,以及 一種用於調整該基板之溫度至一第三溫度之機構。 圖式簡單說明 圖1係顯示用於結合兩種(或多種)分離溫度狀態之 改良A L D方法之順序的相關時序圖; 圖2係顯示用於結合兩種(或多種)分離溫度狀態之 改良A L D方法之另一種順序的相關時序圖; 圖3係結合用於快速加熱基板之燈泡陣列以及用於快 速冷卻基板之冷凍靜電夾具(E S C )的A L D系統示意 圖; 圖4係結合用於快速加熱基板之機械掃描雷射(與晶 __12_______ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁)522473 A7 __B7___ 5. Description of the Invention (M) Exclude any excess first reactant gas from the chamber on the substrate, adjust the temperature of the substrate to a second temperature, and introduce a second reactant gas to the chamber The chamber reacts with the first reactant gas to generate the film on the substrate, and excludes any excess of the second reactant gas from the chamber; and adjusts the temperature of the substrate to a third temperature. A system for depositing a thin film on a substrate in a chamber, comprising a mechanism for adjusting the temperature of the substrate to a first temperature, and a method for introducing a first reactant gas into the chamber. Mechanism, a mechanism for substantially adsorbing at least one layer of the first reactant gas on the substrate, a mechanism for excluding any excess of the first reactant gas from the chamber, and a mechanism for adjusting the substrate A mechanism for temperature to a second temperature, a mechanism for introducing a second reactant gas into the chamber to react with the first reactant gas to generate the thin film on the substrate, and a mechanism for removing from the chamber A mechanism for excluding any excess of the second reactant gas, and a mechanism for adjusting the temperature of the substrate to a third temperature. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a related timing diagram showing the sequence of an improved ALD method for combining two (or more) separation temperature states; FIG. 2 is a modified ALD method for combining two (or more) separation temperature states A related timing diagram of another sequence of the method; Figure 3 is a schematic diagram of an ALD system combining a bulb array for rapid heating of a substrate and a frozen electrostatic fixture (ESC) for rapid cooling of a substrate; Figure 4 is a combination of rapid heating of a substrate Mechanical scanning laser (with crystal __12_______ This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling in this page)

· ϋ n n eel n n n 一 OT I n ·ϋ ϋ n ϋ I— m I ϋ an ·ϋ n i i flu n n ϋ «ϋ n n I I an n ϋ ϋ n n n 1:' I I 522473 A7 B7 五、發明說明(I丨) 圓旋轉連接)以及用於快速冷卻基板之冷凍靜電夾具(E S C )的A L D系統示意圖; 圖5係顯示基板溫度對照射之響應以及背側氣體壓力 之狀態相依控制的相關時序圖。 元件符號說明 1〇0 · · ·第一曝露 1 0 2 · · ·曝露 1 0 4 · · ·曝露 110···第二曝露 112···導入 1 2 0 · · ·排除 1 2 2 · · ·排除 1 2 4 · · ·第一排除 1 2 6 · · ·第二排除 1 3 0 · ·,基板溫度 1 3 2 · · ·第一溫度 1 3 4 · · ·升溫速率 1 3 6 · · ·第二溫度 1 3 8 · · ·降溫速率 1 3 9 · · ·第一溫度 2 0 0 · · ·第一曝露 2 0 2 · · ·曝露 2 0 4 · · ·曝露 210···第二曝露 本纸張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) -ϋ n n ϋ n n n^OJ« n n ϋ n ϋ n ϋ I n _ 522473 A7 B7 五、發明說明(θ) 2 12·· 2 2 0·· 2 2 2·· 2 2 4·· 2 2 6·· 2 3 0·· 2 3 2·· 2 3 4·· 2 3 6·· 2 3 8·· 2 3 9·· 3 0 0·· 3 10·· 3 2 0·· 3 3 0·· 3 4 0·· 3 4 5·· 3 5 0·· 3 6 0·· 3 6 5·· 3 7 0·· 4 10·· 5 0 0·· 5 10·· 導入 排除 排除 第一排除 第二排除 基板溫度 第一溫度 升溫速率 第二溫度 降溫速率 第一溫度 快速加熱處理系統 燈泡陣列 前導物A 前導物B 背側氣體 調節及控制 再循環冷凍器> 基板 空間 冷凍靜電夾具 雷射源 輻射曝露 •背側氣體壓力 (請先閱讀背面之注意事項再填寫本頁) .·--------訂---------線! 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 522473 A7 _____B7_ 五、發明說明(A ) 5 2 Ο · · ·基板溫度 較佳實施例之詳細說明 本發明解決了使用單一固定基板溫度設定點作爲控制 或驅使沈積反應之主要機構的A L D溫度困境。本發明係 藉由容許一部份A L D製程順序(例如,吸收第一反應物 )在第一溫度(一般較低)進行,並容許另一部份A L D 製程順序(例如,第二反應物與吸收之第一反應物之間之 反應)在第二溫度(一般較高)進行而達成此目的。以此 種方式,第一溫度可選擇在較低之階度以使得吸收之第一 反應物之分解或去吸附無法進行,而第二溫度可選擇在較 高之階度以能達成相當大之沈積速率及薄膜純度。更重要 的是,本發明係關於用於可在兩種溫度狀態之間快速連續 切換之改良A L D之溫度控制之方法及設備。透過該方法 及設備,可解決前導物選擇之限制,且同時改良製程性能 及沈積速率。具體地說,可擴展前導物之選擇以包含金屬 -先前無法以習知A L D實行但高度希望之材料種類。 因A L D定義上係緩慢製程,導入第二溫度狀態一般 將與增加製程速度之希望衝突,亦即,A L D流入一排除 一流入-排除程序將費時更久。此在一般用於A L D之習 知絕熱熱壁或阻抗式加熱臺座反應器系統中特別正確。此 係因反應器或臺座需加熱至較高溫度且接著冷卻至較低溫 度,因涉及大溫度質量故可能需時數分鐘或更久。因每次 沈積週期形成至多單一層之薄膜厚度,此製程將非常緩慢 (甚至遠慢於習知A L D及其衍生物),且非常不適用於 ____1-5 —--- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 一 I H I I ^1 II ϋ An I n —1 Bn n n n n I— n I 1 -I ·· Ϋ nn eel nnn-OT I n · ϋ ϋ n ϋ I— m I ϋ an · ϋ nii flu nn ϋ «ϋ nn II an n ϋ ϋ nnn 1: 'II 522473 A7 B7 V. Description of the invention (I 丨) (Circular rotation connection) and schematic diagram of an ALD system of a frozen electrostatic fixture (ESC) for rapid cooling of substrates; Figure 5 is a timing diagram showing the dependent response of substrate temperature to irradiation and the state of back-side gas pressure. Explanation of component symbols 100 · · · 1st exposure 1 0 2 · · · exposure 1 0 4 · · · exposure 110 · · · 2nd exposure 112 · · · import 1 2 0 · · · exclude 1 2 2 · · · Excluded 1 2 4 · · · First Excluded 1 2 6 · · · Second Excluded 1 3 0 · ·, Substrate Temperature 1 3 2 · · · First Temperature 1 3 4 · · · Heating rate 1 3 6 · · · Second temperature 1 3 8 · · · Cooling rate 1 3 9 · · · First temperature 2 0 · · · First exposure 2 0 2 · · · Exposure 2 0 4 · · · Exposure 210 · · · Second Exposure to this paper is in accordance with China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page) -ϋ nn ϋ nnn ^ OJ «nn ϋ n ϋ n ϋ I n _ 522473 A7 B7 V. Description of the invention (θ) 2 12 ·· 2 2 0 ·· 2 2 2 ·· 2 2 4 ·· 2 2 6 ·· 2 3 0 ·· 2 3 2 ·· 2 3 4 ·· 2 3 6 ·· 2 3 8 ·· 2 3 9 ·· 3 0 0 ·· 3 10 ·· 3 2 0 ·· 3 3 0 ·· 3 4 0 ·· 3 4 5 ·· 3 5 0 ·· 3 6 0 ·· 3 6 5 ·· 3 7 0 ·· 4 10 ·· 5 0 0 ·· 5 10 ·· Introduction exclusion first exclusion second exclusion substrate temperature first temperature rise Rate second temperature cooling rate first temperature rapid heating system bulb array leader A leader B backside gas regulation and control recirculation freezer > substrate space freezing electrostatic fixture laser radiation exposure • backside gas pressure (please Please read the notes on the back before filling this page). · -------- Order --------- Line! This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 522473 A7 _____B7_ V. Description of the invention (A) 5 2 0 · · · Detailed description of the preferred embodiment of the substrate temperature The invention solves the problem of using a single unit. The ALD temperature dilemma of fixing the substrate temperature set point as the main mechanism for controlling or driving the deposition reaction. The present invention is performed by allowing a part of the ALD process sequence (for example, absorbing the first reactant) at a first temperature (generally lower), and allowing another part of the ALD process sequence (for example, the second reactant and absorption). The reaction between the first reactants) is performed at a second temperature (generally higher) to achieve this purpose. In this way, the first temperature can be selected at a lower order so that the decomposition or desorption of the absorbed first reactant cannot be performed, and the second temperature can be selected at a higher order to achieve a considerable degree. Deposition rate and film purity. More importantly, the present invention relates to a method and apparatus for temperature control of an improved A L D that can be rapidly and continuously switched between two temperature states. By this method and equipment, the limitation of the choice of the lead can be solved, and the process performance and the deposition rate can be improved at the same time. Specifically, the choice of lead can be extended to include metals-a type of material that was previously impossible to implement with the conventional A L D but is highly desirable. Because A L D is a slow process by definition, the introduction of a second temperature state will generally conflict with the desire to increase the process speed, that is, the A L D inflow-exclusion-inflow-exclusion process will take longer. This is especially true in conventional insulated wall or impedance heated pedestal reactor systems commonly used in ALD. This is because the reactor or pedestal needs to be heated to a higher temperature and then cooled to a lower temperature, which may take several minutes or more due to the large temperature mass involved. Due to the film thickness of up to a single layer formed per deposition cycle, this process will be very slow (even much slower than the conventional ALD and its derivatives), and very unsuitable for ____ 1-5 ----- this paper scale is applicable to China National Standard (CNS) A4 Specification (210 X 297 mm) (Please read the notes on the back before filling this page) IHII ^ 1 II ϋ An I n — 1 Bn nnnn I — n I 1 -I ·

Claims (1)

522473 C8 D8 六、申請專利範圍 1·一種用於在一腔室中一基板上沈積一薄膜之方法 ,其包含: (請先閲讀背面之注意事項再塡寫本頁) 調整該基板之溫度至一第一溫度; 引入一第一反應物氣體至該腔室中; 大致上吸附至少一單層該第一反應物氣體至該基板上 J 從該腔室排除任何多餘之該第一反應物氣體; 調整該基板之溫度至一第二溫度; 引入一第二反應物氣體至該腔室以與該第一反應物氣 體反應,以在該基板上產生該薄膜; .從該腔室排除任何多餘之該第二反應物氣體;以及 調整該基板之溫度至一第三溫度。 2 .如申請專利範圍第1項之方法,其中,在該第二 溫度以及該第三溫度之間進行之升溫速率係至少每秒攝氏 1 0 0度。 , 3 .如申請專利範圍第1項之方法,其中,該調整該 基板之溫度至一第一溫度、該調整該基板之溫度至一第二 溫度、以及該調整該基板之溫度至一第三溫度係藉由曝露 在從包含離子、電子、光子及熱流之群組中選出之流體而 完成。 4 .如申請專利範圍第3項之方法,其中,該調整該 基板之溫度至一第一溫度、該調整該基板之溫度至一第二 溫度、以及該調整該基板之溫度至一第三溫度係使用從包 含至少一種鎢絲鹵素燈、一雷射、一電子束源及一 X射線 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 522473 C8 _— _D8__ 六、申請專利範圍 源之群組中選出之能量源而完成。 (請先閱讀背面之注意事項再填寫本頁) 5 .如申請專利範圍第1項之方法,其中,調整該基 板之溫度至一第二溫度之步驟係在排除任何多餘之該第一 反應物氣體之步驟時發生。 6 ·如申請專利範圍第1項之方法,其中,調整該基 板之溫度至一第二溫度之步驟係在引入一第二反應物氣體 至該腔室之步驟時發生。 7 . 一種用於在一薄膜沈積設備中影響一臺座上一基 板溫度之方法,其包含: 藉由以一能量源照射該基板而增高該基板之溫度,並 使該臺座以及該基板之間之一熱量轉移氣體處於一低壓; 以及 藉由不以該能量源照射該基板而減低該基板之溫度, 並使該臺座以及該基板之間之該熱量轉移氣體處於一高壓 〇 , 8 .如申請專利範圍第7項之方法,其中,該基板溫 度係另外被阻抗式加熱該臺座所影響。 經濟部智慧財產局員工消費合作社印製 9 ·如申請專利範圍第7項之方法,其中,該基板溫 度係另外被流過該臺座之冷卻流體所影響。 1 0 .如申請專利範圍第7項之方法,其中,該高壓 係約在3至2 0托耳之間。 1 1 ·如申請專利範圍第7項之方法,其中,該低壓 係小於3托耳。 12.—種用於在一原子層沈積系統中控制一基板之 2 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) A8B8C8D8 522473 六、申請專利範圍 溫度之溫度控制系統,該溫度控制系統包含: 一沈積腔室; 一藕合至該沈積腔室之真空幫浦; 一位在該沈積腔室內之基板支架,該基板支架具有一 通道以用於使一背側氣體流動至該基板支架以及該基板支 架上之該基板之間的空間; 一藕合至該沈積腔室之氣體入口;以及 一藉由照射而加熱該基板支架上之該基板之能量源。 1 3 .如申請專利範圍第1 2項之溫度控制系統,進 一步包含一用於調節及控制該背側氣體之壓力之機構。 1 4 ·如申請專利範圍第1 2項之溫度控制系統,其 中,該基板支架係一靜電夾具。 1 5 ·如申請專利範圍第1 4項之溫度控制系統,其 中,該靜電夾具係具有一用於使一流體流動於其內之機構 Ο - 1 6 ·如申請專利範圍第1 5項之溫度控制系統,其 中,該靜電夾具係至少具有2 0 0瓦/平方公尺-度K之 冷卻容量。 1 7 ·如申請專利範圍第1 2項之溫度控制系統,其 中,該基板係以每秒至少攝氏1 0 0度之升溫速率加熱。 1 8 ·如申請專利範圍第1 2項之溫度控制系統,其 中,該能量源係從包含一雷射、一電子束及一X射線源之 群組中選出。 1 9 ·如申請專利範圍第1 8項之溫度控制系統,其 3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -------------------------______ (請先閲讀背面之注意事項再塡寫本頁) 11 線一 522473 餡 C8 D8 六、申請專利範圍 中,該基板係以每秒至少攝氏2 0 0度之升溫速率加熱。 (請先閲讀背面之注意事項再塡寫本頁) 2 0 ·如申請專利範圍第1 8項之溫度控制系統,進 一步包含一用於在該基板之表面上掃描該能量源之輸出之 機構。 2 1 ·如申請專利範圍第1 8項之溫度控制系統,進 一步包含一用於相對於該能量源之輸出而掃描該基板之機 構。 2 2 · —種用於在一腔室內之一基板上沈積一薄膜之 方法,其包含: 調整該基板之溫度至一第一溫度並引入一第一反應物 氣體至該腔室,以在從該腔室排除任何多餘之該第一反應 物氣體之前大致上吸附至少一單層該第一反應物氣體至該 基板上;以及調整該基板之溫度至一第二溫度並引入一第 二反應物氣體至該腔室,.以在從該腔室排除任何多餘之該 第二反應物氣體之前與該第一反應物氣體反應,以在該基 板上產生該薄膜。 2 3 ·如申請專利範圍第2 2項之方法,其中,該方 法係重複以沈積額外之薄膜層。^ 2 4 .如申請專利範圍第2 2項之方法,其中,在該 第一溫度以及該第二溫度之間進行之升溫速率係至少每秒 攝氏2 0 0度。 2 5 . —種用於在一腔室內之一基板上沈積一薄膜之 系統,其包含: 一用於調整該基板之溫度至一第一溫度之機構; 4 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 522473 El 六、申請專利範圍 一用於引入一第一反應物氣體至該腔室之機構; 一用於大致上吸附至少一單層該第一反應物氣體至該 基板上之機構; 一用於從該腔室排除任何多餘之該第一反應物氣體之 機構; 一用於調整該基板之溫度至一第二溫度之機構; 一用於引入一第二反應物氣體至該腔室以與該第一反 應物氣體反應以在該基板上產生該薄膜之機構; 一用於從該腔室排除任何多餘之該第二反應物氣體之 機構;以及 一用於調整該基板之溫度至一第三溫度之機構。 (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)522473 C8 D8 6. Application scope 1. A method for depositing a thin film on a substrate in a chamber, which includes: (Please read the precautions on the back before writing this page) Adjust the temperature of the substrate to A first temperature; introducing a first reactant gas into the chamber; substantially adsorbing at least a single layer of the first reactant gas to the substrate; J excluding any excess of the first reactant gas from the chamber Adjust the temperature of the substrate to a second temperature; introduce a second reactant gas into the chamber to react with the first reactant gas to generate the film on the substrate; exclude any excess from the chamber The second reactant gas; and adjusting the temperature of the substrate to a third temperature. 2. The method of claim 1 in the scope of patent application, wherein the heating rate between the second temperature and the third temperature is at least 100 degrees Celsius per second. 3. The method according to item 1 of the scope of patent application, wherein the temperature of the substrate is adjusted to a first temperature, the temperature of the substrate is adjusted to a second temperature, and the temperature of the substrate is adjusted to a third Temperature is achieved by exposure to a fluid selected from the group consisting of ions, electrons, photons, and heat flux. 4. The method of claim 3 in the scope of patent application, wherein the temperature of the substrate is adjusted to a first temperature, the temperature of the substrate is adjusted to a second temperature, and the temperature of the substrate is adjusted to a third temperature The system uses at least one tungsten halogen lamp, a laser, an electron beam source, and an X-ray. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 522473 C8 _— _D8__ VI. Application The energy source selected from the group of patent scope sources is completed. (Please read the notes on the back before filling this page) 5. If the method of applying for the scope of the first item of the patent application, wherein the step of adjusting the temperature of the substrate to a second temperature is to exclude any excess of the first reactant Occurs during the gas step. 6. The method of claim 1 in the scope of patent application, wherein the step of adjusting the temperature of the substrate to a second temperature occurs during the step of introducing a second reactant gas into the chamber. 7. A method for affecting the temperature of a substrate on a pedestal in a thin film deposition apparatus, comprising: increasing the temperature of the substrate by irradiating the substrate with an energy source, and causing the pedestal and the substrate to One of the heat transfer gases is at a low pressure; and the temperature of the substrate is reduced by not irradiating the substrate with the energy source, and the heat transfer gas between the pedestal and the substrate is at a high pressure of 0.8. For example, the method of claim 7 in which the substrate temperature is additionally affected by the resistance heating of the pedestal. Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 9 · For the method in the scope of patent application No. 7, wherein the substrate temperature is additionally affected by the cooling fluid flowing through the pedestal. 10. The method according to item 7 of the scope of patent application, wherein the high pressure is about 3 to 20 Torr. 1 1 · The method according to item 7 of the patent application scope, wherein the low pressure is less than 3 Torr. 12.—A type of paper used to control 2 substrates in an atomic layer deposition system. This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) A8B8C8D8 522473 6. Temperature control system for patent application temperature, The temperature control system includes: a deposition chamber; a vacuum pump coupled to the deposition chamber; a substrate holder in the deposition chamber, the substrate holder having a channel for allowing a backside gas to flow To the substrate holder and the space between the substrate on the substrate holder; a gas inlet coupled to the deposition chamber; and an energy source for heating the substrate on the substrate holder by irradiation. 13. The temperature control system according to item 12 of the scope of patent application, further comprising a mechanism for adjusting and controlling the pressure of the backside gas. 1 4 · The temperature control system according to item 12 of the patent application scope, wherein the substrate holder is an electrostatic fixture. 1 5 · The temperature control system according to item 14 of the scope of patent application, wherein the electrostatic fixture has a mechanism for flowing a fluid therein. 0-1 6 · The temperature according to item 15 of the scope of patent application The control system, wherein the electrostatic fixture has a cooling capacity of at least 200 watts per square meter-degree K. 17 • The temperature control system according to item 12 of the scope of patent application, wherein the substrate is heated at a heating rate of at least 100 degrees Celsius per second. 18 · The temperature control system according to item 12 of the patent application range, wherein the energy source is selected from the group consisting of a laser, an electron beam and an X-ray source. 1 9 · If the temperature control system of item 18 in the scope of patent application, 3 paper sizes are applicable to China National Standard (CNS) A4 (210 X 297 mm) ------------- ------------______ (Please read the precautions on the back before writing this page) 11 Line 1 522473 Stuffing C8 D8 6. In the scope of patent application, the substrate is at least 2 degrees Celsius per second Heating at a heating rate of 0 ° C. (Please read the precautions on the back before writing this page) 2 0. If the temperature control system of item 18 of the patent application scope, further includes a mechanism for scanning the output of the energy source on the surface of the substrate. 2 1 · The temperature control system according to item 18 of the scope of patent application, further comprising a mechanism for scanning the substrate with respect to the output of the energy source. 2 2 · A method for depositing a thin film on a substrate in a chamber, comprising: adjusting the temperature of the substrate to a first temperature and introducing a first reactant gas to the chamber to The chamber substantially adsorbs at least a single layer of the first reactant gas onto the substrate before excluding any excess of the first reactant gas; and adjusting the temperature of the substrate to a second temperature and introducing a second reactant Gas to the chamber to react with the first reactant gas before excluding any excess of the second reactant gas from the chamber to produce the thin film on the substrate. 2 3 · The method according to item 22 of the patent application scope, wherein the method is repeated to deposit an additional thin film layer. ^ 2 4. The method according to item 22 of the scope of patent application, wherein the heating rate between the first temperature and the second temperature is at least 200 degrees Celsius per second. 2 5. A system for depositing a thin film on a substrate in a chamber, comprising: a mechanism for adjusting the temperature of the substrate to a first temperature; 4 This paper size is applicable to Chinese national standards (CNS ) A4 size (210 X 297 mm) 522473 El 6. Scope of patent application-a mechanism for introducing a first reactant gas into the chamber;-for substantially adsorbing at least a single layer of the first reactant gas A mechanism to the substrate; a mechanism for removing any excess of the first reactant gas from the chamber; a mechanism for adjusting the temperature of the substrate to a second temperature; a mechanism for introducing a second A mechanism for reactant gas to the chamber to react with the first reactant gas to produce the film on the substrate; a mechanism for excluding any excess of the second reactant gas from the chamber; and a mechanism for A mechanism for adjusting the temperature of the substrate to a third temperature. (Please read the precautions on the back before filling this page) This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm)
TW90128082A 2000-12-06 2001-11-13 Method and apparatus for improved temperature control in atomic layer deposition TW522473B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US25179500P 2000-12-06 2000-12-06
US25428000P 2000-12-06 2000-12-06
US09/812,352 US20020104481A1 (en) 2000-12-06 2001-03-19 System and method for modulated ion-induced atomic layer deposition (MII-ALD)
US09/812,285 US6428859B1 (en) 2000-12-06 2001-03-19 Sequential method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)
US09/812,486 US6416822B1 (en) 2000-12-06 2001-03-19 Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)

Publications (1)

Publication Number Publication Date
TW522473B true TW522473B (en) 2003-03-01

Family

ID=28046921

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90128082A TW522473B (en) 2000-12-06 2001-11-13 Method and apparatus for improved temperature control in atomic layer deposition

Country Status (1)

Country Link
TW (1) TW522473B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412063B (en) * 2005-01-18 2013-10-11 Asm Inc Reaction system for growing a thin film
TWI613744B (en) * 2012-03-30 2018-02-01 應用材料股份有限公司 Substrate processing system having susceptorless substrate support with enhanced substrate heating control
CN111527585A (en) * 2018-01-02 2020-08-11 美光科技公司 Including a method of atomic layer deposition sequence

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412063B (en) * 2005-01-18 2013-10-11 Asm Inc Reaction system for growing a thin film
TWI613744B (en) * 2012-03-30 2018-02-01 應用材料股份有限公司 Substrate processing system having susceptorless substrate support with enhanced substrate heating control
CN111527585A (en) * 2018-01-02 2020-08-11 美光科技公司 Including a method of atomic layer deposition sequence

Similar Documents

Publication Publication Date Title
US6878402B2 (en) Method and apparatus for improved temperature control in atomic layer deposition
US7601393B2 (en) Controlling the temperature of a substrate in a film deposition apparatus
TWI597378B (en) Method of depositing metals using high frequency plasma
US7645484B2 (en) Method of forming a metal carbide or metal carbonitride film having improved adhesion
JP5959991B2 (en) Method for forming tungsten film
US9255329B2 (en) Modulated ion-induced atomic layer deposition (MII-ALD)
US9966268B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
TW201525173A (en) Methods of selective layer deposition
JP2007530797A (en) Method and apparatus for forming a metal layer
US7727912B2 (en) Method of light enhanced atomic layer deposition
JPS63203772A (en) Vapor growth method for thin copper film
JP2004536970A (en) Method of manufacturing a coated substrate
TW522473B (en) Method and apparatus for improved temperature control in atomic layer deposition
JP2006128611A (en) Film forming material and method, and element
WO2014197803A1 (en) Methods for the deposition of manganese-containing films using diazabutadiene-based precursors
US9236467B2 (en) Atomic layer deposition of hafnium or zirconium alloy films
TWI671422B (en) Thin film formation method
WO2022050099A1 (en) Etching method
KR20060013321A (en) Film forming material, film forming method and device
JP2004277864A (en) Film deposition method, and film deposition system
US10522361B2 (en) Atomic layer deposition method
CN112670173A (en) Method for forming copper metal layer and semiconductor structure
TWI515803B (en) Doping aluminum in tantalum silicide
US8551565B2 (en) Film forming method and film forming apparatus
TW202031923A (en) A process for producing a thin film of metallic ruthenium by an atomic layer deposition method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent