TW515896B - Method for measuring broadband antenna - Google Patents

Method for measuring broadband antenna Download PDF

Info

Publication number
TW515896B
TW515896B TW90122174A TW90122174A TW515896B TW 515896 B TW515896 B TW 515896B TW 90122174 A TW90122174 A TW 90122174A TW 90122174 A TW90122174 A TW 90122174A TW 515896 B TW515896 B TW 515896B
Authority
TW
Taiwan
Prior art keywords
antenna
measuring
wideband
factor
item
Prior art date
Application number
TW90122174A
Other languages
Chinese (zh)
Inventor
Yu-Huei Wang
Gen-Huang Li
Rung-Jiun Tsai
Hai-Ching Li
Original Assignee
Electronics Testing Ct Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics Testing Ct Taiwan filed Critical Electronics Testing Ct Taiwan
Priority to TW90122174A priority Critical patent/TW515896B/en
Application granted granted Critical
Publication of TW515896B publication Critical patent/TW515896B/en

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The invention relates to a method for measuring broadband antenna, using EMC chamber to measure antenna factor of broadband antenna where a standard electrical field intensity is generated in the chamber so as to test the broadband antenna and acquire a first antenna factor, furthermore, proceed a computer simulation with respect to the broadband antenna to obtain a second antenna factor and compare the first antenna factor with the second antenna factor to acquire a lower uncertainty.

Description

515896 A 7 ____ B7 五、發明説明() 本案為一種測量寬頻天線的方法,尤指用於電波暗室測量寬頻 天線之天線因子的方法,再利用電腦模擬的方法所得的數據來驗證 天線因子的可靠度。 在曰常生活中,無線傳輸的運用已非常普及,例如無線行動電 話手機(Wireless Mobile Phone)、無線數據機(Wireless M〇dem)、 無線網路卡(Wireless Network Card)等即是。無線傳輸主要藉由射 頻(RF)傳輸的技術,來使末端的用戶或使用者可以達到即時溝通的 目的,而在收發訊號的機構設計上,天線(Antenna)係為一重要的元 件。 天線的设計’通常根據無線電波信號(Wireless Signal)波長來 配合一適當幾何形狀不同長寬高比例的金屬導線或平面來完成,常 見的覓頻天線有雙圓錐天線(Biconical Antenna)、對數週期偶極天 線(LPDA,Log periodic dipole array)、雙對數天線(Bi — 1〇g Antenna)、螺旋天線(Spirai Antenna)等等。 經濟部智.¾財產局肖工涓#;^e:-ri-印製 見頻天線必須能使用於電磁干擾⑽c)的檢測。習用的檢測係將 寬頻天線放置在一個空曠的空間,再利用天線測試設備來驗證其天 線因子在不同頻率的值。但是,由於現有的空間與環境越來越複雜, 四處都有各種姉的干擾,要細卜練淨無干_財來進行這 方面的測試相當困難。而若一味地採用開放空間的測試方法,其檢 測出來的結果顯然會因為環境的變數而產生相當大的誤差。 本案的目的即根據上述習用技術的缺點,提出一改善的方法, ,用電波暗室’來阻絕任何干擾源,同時配合電腦模擬的方法,使 1頻天線的天線因子測試更具可信度。 為達上述目的,本案提出一種測量寬頻天線的方法,包含下列 步驟: 515896 A7 B7 五、發明説明() 提供一電波暗室,藉以產生一標準電場強度,由於該電波暗室 是模擬自由空間,故該電波暗室可用來量測或校正天線,在此電波 暗至中可以知到一第一天線因子(Antenna Factor); 對该覓頻天線進行一電腦模擬,求出一第二天線因子;以及 比較該第一天線因子及該第二天線因子,以求得一不確定度 (Uncertainty)較低的天線因子。 如所述之測量寬頻天線的方法,其中該寬頻天線係包含一雙圓 錐天線(Biconical Antenna)、對數週期偶極天線(LPDA,L〇g periodic dipole array)、雙對數天線(Bi—1〇g Antenna)、螺旋天 線(Spiral Antenna)。 如所述之測量寬頻天線的方法,其中該電波暗室係為以一吸波 材料建構之一封閉空間,並且其設計應可產生一均勻的電場強度。 如所述之測量寬頻天線的方法,其中該天線測試設備係為一頻 譜分析儀(Spectrum Analyzer)。 如所述之測量寬頻天線的方法,其巾該電職擬的方法係為一 使用矩量法(Method of Moments)之電磁波電腦模擬方法。 如所述之測量寬頻天線的方法,其中該矩量法數健擬方法 (Numerical Method)更可求出一測試場地衰減值(N〇服nzed Attenuation)及一天線相位中心點。 經濟部智慧財4局3:工消骨合作社印製 如所述之測量寬頻天線的方法’其中求出該天線相位中心點 (Phase center)係包含一最小相位變化中心法、一最大電流分佈法 及一内插法。 如所述之測量寬頻天線的方法’其中該寬頻天線係為一能從事 電磁干擾(EMC)檢測的寬頻天線。 515896 Λ 7 _________Β7 五、發明説明() ~---- 本案得藉由下列圖式及詳細說明,俾得一更深入之了解: 圖一·本案較佳實施例之測量寬頻天線的系統架構。 圖二;本案較佳實施例之天線接收電場E及接收電壓vR。 圖三:本案較佳實施例之天線相位中心計算之幾何圖。 圖四··本案較佳實施例之場地衰減法配置圖。 圖一為本案較佳實施例之測量寬頻天線的系統架構,其係將產 生已知電場強度之標準天線及待測天線置於電波暗室11裡,來進行 測試的動作,經由測試,會得到第一天線因子,而另一方面,相同 的天線則可利用電腦來模擬來得到第二天線因子,二天線因子進行 比較丄若二者相近,則代表所測得的結果具有較高的可信度。 田本案主要係用來測試EMc(Eiectromagnetic Compatiblity, 電磁相容性)檢測的寬頻天線,這類天線係包含一雙 圓錐天線 (· · al Antenna)、對數週期偶極天線(lpda,Log periodic dipole array)、雙對數天線Antenna)、螺旋天線(Spiral515896 A 7 ____ B7 V. Description of the invention () This case is a method for measuring a wideband antenna, especially a method for measuring the antenna factor of a wideband antenna in an anechoic chamber, and then using the data obtained by computer simulation to verify the reliability of the antenna factor degree. In everyday life, the use of wireless transmission has become very popular, such as wireless mobile phones, wireless modems, wireless network cards, and so on. Wireless transmission mainly uses radio frequency (RF) transmission technology to enable end-users or users to achieve the purpose of real-time communication. In the design of the mechanism for transmitting and receiving signals, the antenna (Antenna) is an important element. The design of the antenna is usually completed according to the wavelength of the radio signal (Wireless Signal) with a suitable geometric shape of different length, width and height ratio of metal wires or planes. Common frequency-finding antennas include biconical antennas and logarithmic periods. A dipole antenna (LPDA, Log periodic dipole array), a dual logarithmic antenna (Bi-10g Antenna), a spiral antenna (Spirai Antenna), and so on. Ministry of Economic Affairs ¾ Property Bureau Xiaogong Juan #; ^ e: -ri-printing The IF antenna must be able to be used for the detection of electromagnetic interference (c). The conventional detection system places a broadband antenna in an open space, and then uses antenna testing equipment to verify the value of its antenna factor at different frequencies. However, due to the increasing complexity of the existing space and environment, there are all kinds of interference from all over the place. It is quite difficult to conduct thorough tests in this regard. However, if the open space test method is used blindly, the detection results will obviously cause considerable errors due to environmental variables. The purpose of this case is to propose an improved method based on the shortcomings of the above-mentioned conventional technology. An anechoic chamber 'is used to block any interference sources, and at the same time, the method of computer simulation is used to make the antenna factor test of the 1-band antenna more reliable. In order to achieve the above purpose, this case proposes a method for measuring a wideband antenna, which includes the following steps: 515896 A7 B7 V. Description of the invention () Provide an anechoic chamber to generate a standard electric field strength. Since the anechoic chamber is a simulated free space, the An anechoic chamber can be used to measure or correct the antenna, where a first antenna factor can be known in the dark of the radio; a computer simulation of the frequency-finding antenna to find a second antenna factor; and Compare the first antenna factor and the second antenna factor to obtain an antenna factor with a lower uncertainty. The method for measuring a broadband antenna as described above, wherein the broadband antenna includes a double cone antenna (Biconical Antenna), a log periodic dipole antenna (LPDA, L0g periodic dipole array), and a dual logarithmic antenna (Bi-10g Antenna), Spiral Antenna. As described in the method for measuring a wideband antenna, the anechoic chamber is a closed space constructed with an absorbing material, and its design should produce a uniform electric field strength. The method for measuring a broadband antenna as described above, wherein the antenna testing equipment is a Spectrum Analyzer. As described in the method for measuring a wide-band antenna, the electrical method is an electromagnetic wave computer simulation method using a method of moments. As described in the method for measuring a wideband antenna, the moment method can be used to obtain a test field attenuation value and an antenna phase center point. Ministry of Economic Affairs, Smart Finance, 4th Bureau 3: The method for measuring broadband antennas printed by the Industrial Cooperative Bone Cooperatives, where the phase center of the antenna is obtained includes a minimum phase change center method and a maximum current distribution method And an interpolation method. The method of measuring a broadband antenna as described above, wherein the broadband antenna is a broadband antenna capable of electromagnetic interference (EMC) detection. 515896 Λ 7 _________B7 V. Description of the Invention () ~ ---- The following drawings and detailed descriptions can be used to gain a deeper understanding: Figure 1. System architecture for measuring a wideband antenna in a preferred embodiment of the case. Figure 2. The antenna receives the electric field E and the voltage vR in the preferred embodiment of this case. Figure 3: The geometric diagram of the antenna phase center calculation in the preferred embodiment of this case. Figure 4. The layout of the site attenuation method of the preferred embodiment of this case. FIG. 1 is a system architecture for measuring a wideband antenna according to a preferred embodiment of the present invention. The standard antenna and the antenna under test that generate a known electric field strength are placed in an anechoic chamber 11 to perform a test operation. An antenna factor, on the other hand, the same antenna can be simulated by a computer to obtain a second antenna factor. The two antenna factors are compared. If they are similar, it means that the measured result has a higher probability. Reliability. The Tianben case is mainly used to test the broadband antenna of EMC (Eiectromagnetic Compatiblity, Electromagnetic Compatibility) detection. This type of antenna system includes a double cone antenna (Al Antenna), log periodic dipole antenna (lpda, Log periodic dipole array). ), Dual logarithmic antenna Antenna), spiral antenna (Spiral

Antenn^而該電波暗㈣為以—吸波材料建構之—删空間。該 天線測又備係為一頻譜分析儀(如⑺廿聊Analyzer)。該電腦模擬 的方法係為二矩量法電磁波電腦模擬方法,可精確推算天線因子。 ^ Y"T求出%地衷減及一天線相位中心點’而該天線相位中 心點係包含-最小相位變化中心法、—最大電流分佈法及—内插法。 關於使用矩量法作數值電腦模擬方法則詳述如下: 以矩量法電磁模擬方法計算天線因子 1·場地衰減 (請先閱讀背面之注意事項再頁j -裝· 經濟部智慧財產局員工消費合作社印製 (1)515896 A7 五、發明説明( 場地衰減A之定義為A=匕· 或者 AWBkV/dBuV)-VR(dBuV) V产訊號產生器之電壓 •⑵ 經濟部智慧財產局Μ工消f合汴社印製 vR二場強度計或頻譜分析儀所擷取之電壓 由方程式(1)及⑵中取得之量測值分別為訊號產生器之讀值及頻譜 分析儀之讀值,因為叫⑹.信號產生器之開路電壓v為2倍之匹 配輸出電壓VD 因此可重寫方程式(1)如下:k丄 2Vr 決定天線因子afr 對於接收天線 可推導出或者 R 2A 假設對數週期偶極天線⑽处於自由空間中,其天線饋入點之 負載阻抗Ζ0=5〇Ω,以及天線林同操作頻率下之輸入阻抗&,上 述白可由矩里錄触姉導出結果。因此’制職電壓源 v〇lt加至發射天線之饋入點時,其發射天線所產生之電場可由饋 入點以負載阻抗^ΟΩ終端之接收天線所擷取,可由 (請先閱讀背面之注意事項再頁 -裝 線為 r I I I - I · 515896 A7 B7 五、發明説明() NEC(Numerical Electromagnetic Code)電磁模擬軟體決定接收天 線上電流L大小。 假設同時使用相同設計之發射天線與接收天線時, 可得到 y=^_x(z〇 +za)Antenn ^ And the radio wave is darkened by-absorbing material construction-to delete space. The antenna test is also prepared as a spectrum analyzer (such as Qiaolian Analyzer). The computer simulation method is a two-moment method electromagnetic computer simulation method, which can accurately estimate the antenna factor. ^ Y " T finds the percentage reduction of an antenna phase center point ', and the antenna phase center point includes the minimum phase change center method, the maximum current distribution method, and the interpolation method. The numerical computer simulation method using the moment method is detailed as follows: Calculate the antenna factor 1 · site attenuation using the moment method electromagnetic simulation method (please read the precautions on the back first and then the page j-installation · the employee ’s intellectual property bureau employee consumption Printed by the cooperative (1) 515896 A7 V. Description of the invention (the definition of site attenuation A is A = kn · or AWBkV / dBuV) -VR (dBuV) Voltage of V-produced signal generator • ⑵ Intellectual Property Bureau of the Ministry of Economic Affairs f The voltages captured by the vR two-field intensity meter or spectrum analyzer printed by Fanghe are obtained from equation (1) and ⑵ are the readings of the signal generator and the readings of the spectrum analyzer, because It is called ⑹. The open circuit voltage v of the signal generator is 2 times the matching output voltage VD. Therefore, the equation (1) can be rewritten as follows: k 丄 2Vr determines the antenna factor afr for the receiving antenna. ⑽In free space, the load impedance of its antenna feed point Z0 = 50 Ω, and the input impedance of the antenna at the same operating frequency & Source v〇l When t is added to the feeding point of the transmitting antenna, the electric field generated by the transmitting antenna can be captured by the receiving antenna of the feeding point with a load impedance of ^ Ω terminal. r III-I · 515896 A7 B7 V. Explanation of the invention () NEC (Numerical Electromagnetic Code) electromagnetic simulation software determines the current L on the receiving antenna. Assuming that the transmitting antenna and receiving antenna of the same design are used at the same time, y = ^ _ x (z〇 + za)

^ A 假設在偶極元件之電流L νζ〇 X Rl 因此 [ = 4 x (z〇+D χ 1^ A Suppose the current L νζ〇 X Rl in the dipole element is therefore [= 4 x (z〇 + D χ 1

^ A Z0xIL^ A Z0xIL

對任何發射天線而s ’其在自由空間下距離d之遠場電場E (3〇户rχ G)2 dFor any transmitting antenna, s ′, its far-field electric field E (30 Ω rχ G) 2 d at a distance d in free space

Pf"輻射功率 G=天線增益 /5 =2π/λ,自由空間之波數 入二波長 但ΡΤ=Ι2 χ RA,因此可將方程式改寫如下: ^/χ(30^ xG)2 m · · d .....·......(3) 參考圖二描述天線接收電場E及接收電壓vr 天線因子(AF)之定義如下: (請先閲讀背面之注意事項再1^本頁j 裝 線 經濟部智慧財產局員工消骨合作钍印災 & 515896 A7 B7 五、發明説明Pf " radiated power G = antenna gain / 5 = 2π / λ, the wave number of free space is two wavelengths but PTT = Ι 2 χ RA, so the equation can be rewritten as follows: ^ / χ (30 ^ xG) 2 m · · d ................. (3) Refer to Figure 2 to describe the definition of the antenna receiving electric field E and the receiving voltage vr. The antenna factor (AF) is as follows: (Please read the precautions on the back before 1 ^ page j Bone Removal and Co-operation of Employees of Intellectual Property Bureau, Ministry of Economic Affairs & 515896 A7 B7 V. Description of Invention

Vr=Vr =

E AF 且有效長度h之定義為E AF and the effective length h is defined as

V二 h X E 因此 v h X AF 在50Ω終端器之電流j T丄一V2 h X E Therefore v h X AF current at 50Ω terminal j T 丄 1

V Z0 Z0xhxAF.................⑷ #著我們解釋接收天線之有效長度,完全匹配且無損耗天線之接收 功率PR為入射場功率密度Wt及天線最大接收面積Am之乘積。 Pr= WT xAm 120;r 4π 在負載之電壓vR 120 ; Ra為負載阻抗等於天線輻射阻抗 天線之開路電壓等於2倍接收電麗 ,故開路電壓應為V〇c, (請先閱讀背面之注意事項再本頁 -裝 線、· 經濟部智慧財4局員TI消f合作Titpli f0C'V Z0 Z0xhxAF ....... ⑷ #We explain the effective length of the receiving antenna. The received power PR of the perfectly matched and lossless antenna is the incident field power density Wt and the antenna maximum. Product of receiving area Am. Pr = WT xAm 120; r 4π voltage at the load vR 120; Ra is the load impedance equal to the antenna's radiation impedance; the open circuit voltage of the antenna is equal to 2 times the receiving power, so the open circuit voltage should be V〇c, (please read the note on the back first) Matters on this page-installation line, · Member of the Ministry of Economic Affairs, Smart Finance 4 Bureau, TI Consumers, Titpli f0C '

Ε'χλ r Gx R π 120 y 有效長度h之定義 voc=h x E 因此 π 120 ; ⑸Ε'χλ r Gx R π 120 y Definition of effective length h voc = h x E Therefore π 120; ⑸

=可侍到簡單結物效長度h與掏娜是不相關,因此 有政長物她物⑽電場之比值。 由方程式⑸代_辦⑷啊方程式⑹ Ύχπ , ion Ζ〇 χ 几 Gx i? x.= It can be seen that the simple effect length h is irrelevant to Ta Na, so there is a ratio of the length of the electric field between the political leader and her. Substitute by the equation ⑷ Office 方程 equation π πχπ, ion 〇〇 χ Gx i? X.

AF (6) 將方程式⑹帶w程式⑶ νχπAF (6) Bring the equation 程式 to the w equation ⑶ νχπ

x 丄 x(3〇^xG)]x 丄 x (3〇 ^ xG)]

AF d e Ίβά ⑺ e、顺 ^ AF x λ dAF d e Ίβά ⑺ e, Shun ^ AF x λ d

^l^AF^ l ^ AF

2A y、e, 2A 5Z。x# ,fM為以Maga Hertz為單位的頻率 j[F2=2^xyx/MxA ^ 5z0xaf ^r2A y, e, 2A 5Z. x #, fM is the frequency in Maga Hertz j [F2 = 2 ^ xyx / MxA ^ 5z0xaf ^ r

AF=[2^VxfM><AAF = [2 ^ VxfM > < A

5Z0 x AF x. 'ίβά d #(;), log ι〇ΐβ^χΑχβ~^ V 5^〇 d5Z0 x AF x. 'Ίβά d # (;), log ι〇ΐβ ^ χΑχβ ~ ^ V 5 ^ 〇 d

dB #(;) 40 l〇g10 \^JlfMxAye-^ dB 5^〇 d AF(~^)z= 10 1〇Sl〇 |^4ι ,^) 5Z0xj I 十 515896 A 7 ---------B7 五、發明説明() 2·天線相位中心點 天線相位中心點之定義為天線發射輻射源之位置,對數週期 偶極天線LPDA之輻射元(Radiation Elements)主動元件位置跟隨 頻率掃描而移動,因此天線相位中心點會隨頻率不同而改變位置, 這將導致發射天線與接收天線之間距離不正確。 無論如何從場地衰減去計算天線因子所需要之資訊均需使用 天線間之距離。因此若是選擇天線間之距離為固定時,這將會因 頻率變化所產生之誤差而使天線因子之推算發生錯誤,為了達成 LPDA天線因子校正有最小的不確定度要求,因此必須將距離之誤 差減少至最小。 以下介紹計算LPDA之相位中心點的三種方法: 方法一: 經濟部皙慧財產局員工消#合作社印製 使用符號標示發射天線座落在天線直線轴上之遠場相位響應產 生最小變化之單一點位置之方法 ,此法被稱為最小相位變化中 心法。 描述座標系統如圖三所示 515896 Μ 五、 發明説明 ---------丨·--^1 — (請先閱讀背面之注意事項再Ij 假設Α點與Β點距離相位中心點之距離相同時,求其相位中心 點位置如下: 相位中心點(Phase cenW)二么 +y〇2 -及2......(g) 2(i?-X〇) 上述方程式之證明如下: 因A與B距相位中心點p之距離相同 (P+R)HP+Xq)2+Y〇2 P2+2PR+R^P2+2px〇+x〇2+y〇2 2PR-2PX0=X〇2+y〇2—r2 2P(R-X〇)-X〇2+Y02-R2 P(相位中心點R2 2(R-x〇) 經濟部智慧財產局8工消費合作社印¾ 線、--- k圖二清楚可觀察出A點為座落在天線直雜上之遠場條件 下而B ·』為距維天線直線轴上移動小距離,並且平行天線 直線軸,相位中心點Ρ位於χ輛上移動之某一點位置,直至Α點 與Β點均有相同之相位。dB # (;) 40 l〇g10 \ ^ JlfMxAye- ^ dB 5 ^ 〇d AF (~ ^) z = 10 1〇Sl〇 | ^ 4ι, ^) 5Z0xj I 515 515896 A 7 ------- --B7 V. Explanation of the invention (2) Antenna phase center point The antenna phase center point is defined as the position of the antenna emitting radiation source. The position of the active element of the Radiation Elements of the log-periodic dipole antenna LPDA moves with the frequency scan. Therefore, the center point of the antenna phase will change position with different frequencies, which will cause the distance between the transmitting antenna and the receiving antenna to be incorrect. No matter how the information needed to calculate the antenna factor from the field attenuation requires the distance between the antennas. Therefore, if the distance between the antennas is selected to be fixed, this will result in an error in the estimation of the antenna factor due to the error caused by the frequency change. In order to achieve the minimum uncertainty requirement of the LPDA antenna factor correction, the distance error must be corrected. Reduced to a minimum. The following describes three methods for calculating the phase center point of LPDA: Method 1: A single point where the far-field phase response of the transmitting antenna located on the linear axis of the antenna is printed with a symbol indicating that the transmitting antenna is located on the linear axis of the antenna. The method of position is called the minimum phase change center method. The description of the coordinate system is shown in Figure 3. 515896 Μ 5. Description of the invention --------- 丨 ·-^ 1 — (Please read the precautions on the back before Ij assume that the distance between point A and point B is the phase center point When the distances are the same, find the position of the phase center point as follows: Phase center point (Phase cenW) Er + y〇2-and 2 ...... (g) 2 (i? -X〇) Proof of the above equation As follows: Because A and B are at the same distance from the phase center point p (P + R) HP + Xq) 2 + Y〇2 P2 + 2PR + R ^ P2 + 2px〇 + x〇2 + y〇2 2PR-2PX0 = X〇2 + y〇2—r2 2P (RX〇) -X〇2 + Y02-R2 P (phase center point R2 2 (Rx〇) Printed by the 8th Industrial Cooperative Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs In Figure 2, it can be clearly seen that point A is a far-field condition located on the antenna's straight line, and B · "is a small distance from the linear axis of the antenna, and parallel to the linear axis of the antenna, and the phase center point P is located on the χ vehicle. Move to a certain point until point A and point B have the same phase.

515896 經濟部智慧財產苟邊工浈#合作社印¾ A7 --—___ B7 五、發明説明() 被當作接收用的對數週期偶極天線LPDA,是以相位中心點 之天線元去接收任何入射電磁波,有效段落天線元(Antenna Elements in the Active Region)等效於相同接收頻率之共振半 波長偶極天線(Resonant Half—Wave Dipole Antenna)長度。 一般而言,最大電流落在相位中心點上。 方法二:最大電流分佈法 使用矩量法數值模擬去計算天線上每一輻射元之最大電流, 因此必須使用許多次NEC電磁模擬軟體方可計算出不同頻率 時天線上每一輻射元最大電流的資料。 當與每一頻率點對應之元件最大電流被計算出時,此時亦可 繪出頻率點對天線輻射元位置之關係圖,由於LpDA天線輕 射元位置具有不連續的先天特性,因此其曲線為步階式。 方法三:内插法 是以天線在不同之量測距離下所計算出電場強度比,進而长 取相位中心點之方法。NEC電磁模擬軟體能夠計算出離於射 (請先閱讀背面之注意事項再本頁 —^--裝 -- !=1 I ! I - I -· I - i - -i · 11 515896 A7 B7 五、發明説明( 天線之任何距離之電場強度E ;其步驟1為假定在距離發射 天線較遠之Xi(在此距離\,LPDA天線具有其相位中心點可 假設已不隨距離而變化),計算其電場強度E1,其步驟2為 取距離發射天線較近之\(1米或2米),但需至少大於離天 線前端有半波長遠。輻射電場之比值,可簡單而快速地由以 下方程式計算出相位中心點位置 d(m)二 MlzMi · Ε2-Ελ 此公式的證明如下: 由於Εγ· 1 E2〇c- (10) (請先閱讀背面之注意事項再頁) X 2 ^ E2 ~X~^d d 經濟部智«財產局自:工消#合作社印^ 令少R+R: E2 X^dR(Xi+d)=X2+dRX「X2=d-Rd=d( 1 -R) Ελχλ -e2x2515896 Intellectual Property of the Ministry of Economic Affairs, Boundary Industry Cooperative #Cooperative Stamp ¾ A7 ---___ B7 V. Description of the Invention () The log-periodic dipole antenna LPDA, which is used for reception, is an antenna element at the phase center point to receive any incident For electromagnetic waves, the Antenna Elements in the Active Region is equivalent to the length of a Resonant Half-Wave Dipole Antenna at the same receiving frequency. In general, the maximum current falls on the phase center point. Method 2: The maximum current distribution method uses numerical simulation of the moment method to calculate the maximum current of each radiating element on the antenna. Therefore, many times of NEC electromagnetic simulation software must be used to calculate the maximum current of each radiating element on the antenna at different frequencies. data. When the maximum current of the component corresponding to each frequency point is calculated, the relationship between the frequency point and the position of the antenna radiating element can also be drawn at this time. Since the position of the light emitting element of the LpDA antenna has discontinuous innate characteristics, its curve Stepwise. Method 3: Interpolation method The method is based on the electric field strength ratios calculated by the antennas at different measurement distances, and then the phase center point is taken longer. The NEC electromagnetic simulation software can calculate the off-radiation (please read the precautions on the back before this page — ^-install--! = 1 I! I-I-· I-i--i · 11 515896 A7 B7 5 、 Explanation of invention (Electric field strength E at any distance of the antenna; its step 1 is assuming that Xi is far from the transmitting antenna (at this distance \, the LPDA antenna has its phase center point can be assumed not to change with distance), calculate Its electric field strength E1, its step 2 is to get closer to the transmitting antenna (1 meter or 2 meters), but it needs to be at least greater than half a wavelength away from the front end of the antenna. The ratio of the radiated electric field can be simply and quickly determined by the following equation Calculate the position of the phase center point d (m) = MlzMi · Ε2-Ελ The proof of this formula is as follows: Since Εγ · 1 E2〇c- (10) (please read the precautions on the back first) and then X 2 ^ E2 ~ X ~ ^ dd Ministry of Economic Affairs «Property Bureau From: Gong Consumer # Cooperative Society Seal ^ Order less R + R: E2 X ^ dR (Xi + d) = X2 + dRX「 X2 = d-Rd = d (1 -R) Ελχλ -e2x2

如圖四所示’本文中所使用之方法仍假設在自由空間 纛 515896 A7 B7 五、發明説明 (請先閲讀背面之注意事項再頁) 下,使用兩支相同天線去執行NEC數值模擬。其中一支當做 發射天線41,另一支在相距發射天線任意遠d之位置做為接 收天線42。 為了比較電腦模擬天線因子與實測天線因子之差異,本 文中已提供精確計算兩天線相位中心間之距離d的方法,針 對不同測試頻率,有三種方法可供選取,但實際上每一種方 法均有極微小的誤差存在。 一個電壓源V加入發射天線之饋入點,所產生之電場由 饋入點以貞姐抗ZG(為50Ω)所終端之触天線所擷取,並 可由NEC電腦數值模擬計算出發射天線的&阻抗及接收天線 的電流IL。 因此方程式可以下列表示: 0 場地衰減 A(dB>20 i〇gl() |&(ζ〇+Λ1χ— 1 - 經濟部智慧財4局jav^t合作社印¾As shown in Figure 4, the method used in this article is still assumed to be in free space 纛 515896 A7 B7 V. Description of the invention (please read the notes on the back first and then the page), use two identical antennas to perform NEC numerical simulation. One of them serves as a transmitting antenna 41, and the other serves as a receiving antenna 42 at a position d at an arbitrary distance from the transmitting antenna. In order to compare the difference between the computer simulated antenna factor and the measured antenna factor, a method for accurately calculating the distance d between the phase centers of the two antennas has been provided in this article. There are three methods for different test frequencies to choose from, but in fact each method has Very small errors exist. A voltage source V is added to the feeding point of the transmitting antenna, and the generated electric field is captured by the feeding point with the touching antenna terminated by Zhenjie ZG (50Ω), and the & amp of the transmitting antenna can be calculated by NEC computer numerical simulation. ; Impedance and receiving antenna current IL. So the equation can be expressed as follows: 0 Site attenuation A (dB > 20 i〇gl () | & (ζ〇 + Λ1χ— 1-Printed by JAV ^ T Cooperative, 4th Bureau of Smart Finance, Ministry of Economic Affairs ¾

UA Z0 x IL 天線因子必(,)=10 1〇giQ丨2^^丨+琴) 5Z0 x d 2 整體而言,本案提出之測量寬頻 係在於將寬頻天線放在電波日立官m此a、万击其特徵 的數撼i隹;^ 、/〜 9裡進仃貝物的測試,再與電腦模擬 以免去不必要料到可靠度高的數據。同時由於測試環境單純, 、炎,使測試的結果有較小的不確定度 515896 五、發明説明 (Uncertainty)。另々卜 士安一^丄 , 作法是習職有的,所技而這樣的 惟上述之實施例尚*足涵蓋本案技術之二專利之申请’ 附。 ㈣申請專利範圍如 (請先閱讀背面之注意事項再2UA Z0 x IL antenna factor must (,) = 10 1〇giQ 丨 2 ^^ 丨 + qin) 5Z0 xd 2 In general, the measurement broadband proposed in this case lies in placing the broadband antenna on the radio wave Hitachi official website. Hit the characteristic number i 撼; ^, / ~ 9 miles into the shellfish test, and then simulate with the computer to avoid unnecessary high reliability data. At the same time, because the test environment is simple, and inflammation, the test results have less uncertainty 515896 V. Uncertainty. In addition, Shi’an An ^ 作, the practice is customary, but the above-mentioned embodiment is still sufficient to cover the application of the second patent of the technology in this case.范围 The scope of patent application is as follows (please read the precautions on the back first, then 2

--3 ---線r 經濟部智慧財產局肖工消費合作社印製--3 --- line printed by Xiao Gong Consumer Cooperative, Bureau of Intellectual Property, Ministry of Economy

Claims (1)

515896 六 經濟部智慧財產局員工消費合作社卬 Λ8 B8 CS 08 申請專利範圍 1、 一種测量寬頻天線的方法,包含下列步驟: 批一ft紐暗室,藉闕料界電魏干擾,該電波暗室係提 場強ΐ,並使用頻譜分析儀藉以驗證該寬頻天線之端 ”、、Ί,以得到一第一天線因子(Antenna Factor); 對該寬頻天線進行一電腦模擬,求出一第二天線因子;以及 比較該第一天線因子及該第二天線因子,以求得一可靠的天線 因子。 、 2、 如申睛專利範圍第1項所述之測量寬頻天線的方法,其中該寬 頻天線係包含一雙圓錐天線(Bic〇nical Antenna)、對數週期偶極天 線(LPDA, Log periodic dipole array)、雙對數天線(β卜 1〇g Antenna)、螺旋天線(spiral Antenna)。 3、 如申請專利範圍第i項所述之測量寬頻天線的方法,其中該電 波暗室係為以一吸波材料建構之一封閉空間,並其可能是EM Cell 或GTEM Cell 。 4、 如申請專利範圍第1項所述之測量寬頻天線的方法,其中應使 用不確定度為被測天線不確定度十分之一的場強測試設備(Field Strength Tester)來確實判定電波暗室中的電場強度。 5、 如申請專利範圍第1項所述之測量寬頻天線的方法,其中該電腦 模擬的方法係為一矩量法電磁場電腦模擬方法(Method of Moments, Numerical Analysis for EM Fields) 〇 6、 如申請專利範圍第5項所述之測量寬頻天線的方法,其中該矩 量法電磁場電腦模擬方法更可求出一場地衰減(Norma 1 ized Si te Attenuation)及一天線相位中心點(Phase Center)。 7、 如申請專利範圍第6項所述之測量寬頻天線的方法,其中求出 該天線相位中心點係包含一最小相位變化中心法、一最大電流分佈 "ΤΤ 請 先 閱 讀 背 之 注 意 事 項 再 ?裝 頁 訂 線 515896 ΛΒ CC 圍 I、巳 々章 利 專 主弓 --α 中 六 法及一内插法。 8、如申請專利範圍第6項所述之測量寬頻天線的方法,其中該寬 頻天線係為一能用於電磁相容(EMC)檢測的寬頻天線。 經濟部皆α、_)財產局_工消φ/it作社印515896 Sixth Intellectual Property Bureau of the Ministry of Economic Affairs Employee Cooperative Cooperative 卬 Λ8 B8 CS 08 Application for Patent Scope 1. A method for measuring a wideband antenna, including the following steps: Approve a ft new room, which is interfered with by the electrical industry in the material industry. The field strength is ΐ, and a spectrum analyzer is used to verify the end of the wideband antenna ”, Ί, to obtain a first antenna factor (Antenna Factor); a computer simulation is performed on the wideband antenna to find a second antenna Factor; and comparing the first antenna factor and the second antenna factor to obtain a reliable antenna factor. 2. The method for measuring a wideband antenna as described in item 1 of Shenjing's patent scope, wherein the wideband The antenna system includes a biconical antenna (BicOnical Antenna), a log periodic dipole antenna (LPDA, Log periodic dipole array), a dual logarithmic antenna (βb 10g Antenna), and a spiral antenna (spiral antenna). The method for measuring a wideband antenna as described in item i of the patent application, wherein the anechoic chamber is a closed space constructed with an absorbing material, and it may be an EM Cell or GTEM Ce ll. 4. The method for measuring a wideband antenna as described in item 1 of the scope of patent application, wherein a field strength tester with an uncertainty of one tenth of the uncertainty of the antenna under test should be used to make a positive determination. Electric field strength in an anechoic chamber. 5. The method for measuring a broadband antenna as described in item 1 of the scope of patent application, wherein the computer simulation method is a method of Moments, Numerical Analysis for EM Fields) 〇6. The method for measuring a wideband antenna as described in item 5 of the scope of patent application, wherein the computer simulation method of the electromagnetic method of the moment method can further obtain a field attenuation (Norma 1 ized Si Attenuation) and an antenna phase center Phase Center 7. The method for measuring a wideband antenna as described in item 6 of the scope of patent application, wherein the phase center point of the antenna is obtained by including a minimum phase change center method, a maximum current distribution " TT Read the notes on the back again? Binding line 515896 ΛΒ CC Wai I, 巳 々 张 利 专 主 主 弓 --α in the sixth method and Interpolation method. 8. The method for measuring a wideband antenna as described in item 6 of the scope of patent application, wherein the wideband antenna is a wideband antenna that can be used for electromagnetic compatibility (EMC) detection. Ministry of Economic Affairs, α, _) Property Bureau_Industrial Consumption φ / it
TW90122174A 2001-09-07 2001-09-07 Method for measuring broadband antenna TW515896B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90122174A TW515896B (en) 2001-09-07 2001-09-07 Method for measuring broadband antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90122174A TW515896B (en) 2001-09-07 2001-09-07 Method for measuring broadband antenna

Publications (1)

Publication Number Publication Date
TW515896B true TW515896B (en) 2003-01-01

Family

ID=27801518

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90122174A TW515896B (en) 2001-09-07 2001-09-07 Method for measuring broadband antenna

Country Status (1)

Country Link
TW (1) TW515896B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8443213B2 (en) 2009-03-20 2013-05-14 Asustek Computer Inc. Motherboard capable of detecting consumed power and detection method thereof
CN103605102A (en) * 2013-11-28 2014-02-26 北京无线电计量测试研究所 Field calibration method for radiated emission measurement antenna of electromagnetic compatibility experiment
TWI603099B (en) * 2016-02-26 2017-10-21 Near Field Antenna Measurement and Measurement System
TWI741906B (en) * 2020-12-08 2021-10-01 川升股份有限公司 A fast method for measuring a phase center of an antenna

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8443213B2 (en) 2009-03-20 2013-05-14 Asustek Computer Inc. Motherboard capable of detecting consumed power and detection method thereof
CN103605102A (en) * 2013-11-28 2014-02-26 北京无线电计量测试研究所 Field calibration method for radiated emission measurement antenna of electromagnetic compatibility experiment
CN103605102B (en) * 2013-11-28 2016-09-07 北京无线电计量测试研究所 Field calibration method for the radiation emission measurement antenna of EMC test
TWI603099B (en) * 2016-02-26 2017-10-21 Near Field Antenna Measurement and Measurement System
TWI741906B (en) * 2020-12-08 2021-10-01 川升股份有限公司 A fast method for measuring a phase center of an antenna

Similar Documents

Publication Publication Date Title
US9935689B2 (en) Method and system to measure the phase offset based on the frequency response in a NFC system
CN101750553B (en) Benchmark testing system and method for RFID label operating level
CN102236069B (en) Test system and test method
CN107547152B (en) Over-the-air transmission power detector and method
Eser et al. Open-area test site (OATS) calibration
Huang et al. Low‐Profile Flexible UHF RFID Tag Design for Wristbands Applications
TW515896B (en) Method for measuring broadband antenna
Lin et al. Analysis of calibration-free detection techniques for frequency-coded chipless RFID
Huang et al. Wideband antenna efficiency measurements
Pursula et al. Antenna effective aperture measurement with backscattering modulation
Rozum et al. SIMO RSS measurement in Bluetooth low power indoor positioning system
Hsu et al. System development of calibration-free 20.7-bit chipless RFID without iterative optimization of tag configurations
Ishii et al. Impedance method for a shielded standard loop antenna
Figueiredo et al. Design of a narrow-band single-layer chipless RFID tag
Ali et al. A simple RCS calibration approach for depolarizing chipless RFID tags
Aslam et al. A high capacity tunable retransmission type frequency coded chipless radio frequency identification system
Harima et al. Determination of gain for pyramidal-horn antenna on basis of phase center location
Pereira et al. Chipless strain sensor using phase modulation
Dam et al. Dual‐Band Metamaterial‐Based EBG Antenna for Wearable Wireless Devices
Svacina et al. Virtual anechoic room an useful tool for EMI pre-compliance testing
Moutis et al. A low cost automated RFID tag antenna measurement set-up based on UHF-RFID reader
Adomnitei et al. Analysis of a three-quarter wavelength antenna array for UHF satellite communication band
Bakr et al. Dynamic real‐time calibration for antenna matching in the transmitting and receiving modes
Qi et al. Shared impedance noise coupling in radio receivers
Hsu et al. Calibration-free chipless radiofrequency identification tags with enhanced data capacity

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees