TW513757B - Manufacture method of ultra fine metal gate - Google Patents

Manufacture method of ultra fine metal gate Download PDF

Info

Publication number
TW513757B
TW513757B TW90131752A TW90131752A TW513757B TW 513757 B TW513757 B TW 513757B TW 90131752 A TW90131752 A TW 90131752A TW 90131752 A TW90131752 A TW 90131752A TW 513757 B TW513757 B TW 513757B
Authority
TW
Taiwan
Prior art keywords
gate
layer
metal
item
scope
Prior art date
Application number
TW90131752A
Other languages
Chinese (zh)
Inventor
Hung-Huei Tzeng
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW90131752A priority Critical patent/TW513757B/en
Application granted granted Critical
Publication of TW513757B publication Critical patent/TW513757B/en

Links

Abstract

This invention discloses a manufacture method of metal gate using a damascene process. Firstly, a mask layer is formed on a semiconductor substrate and the mask layer is defined to from a gate opening. Then, according to requirements, a pair of dielectric separation layers is formed on the sidewall of the gate opening to further shrink width of the gate opening. A gate dielectric layer is formed on the substrate exposed by the gate opening and a polysilicon gate is formed at the bottom of the gate opening. A metal layer is formed on the mask layer and used to fill the gate opening. A planarization step is carried out on the metal layer to expose the mask layer so that a metal gate is formed on the polysilicon gate. After removing the mask layer, an ion implantation step is used to form source/drain regions to complete the preparation of the transistor.

Description

513757 五、發明說明(1) 【發明領域】 本發明係有關於積體電路中金屬閘極的製造方法,且 特別有關於一種利用鑲嵌式製程(damaSCene pr〇cess)製 作極精細金屬閘極的方法。 【發明背景】 曰隨著積體電路日趨精密與複雜化,為了能夠在有限的 晶片表面上製造出高積集度的積體電路,必須配合許多先 進的製程以縮小元件尺寸。 π件尺寸的縮小伴隨著許多問題,除了短通道效應 (sh0rt-channei effect)之外,接觸電阻的增加也是一個 重要課題。在金屬化製程之後,小尺寸元件的接觸電阻 (士主動區與金屬接觸之間)比大尺寸元件的接觸電阻大。同 t,小尺寸元件的性能也會降低。因此,在習知技術中便 ^出利用金屬閘極來降低基底與閘極之間的接觸電阻,同 時降低閘極的片電阻。 材暂=而田ΐ作金屬問極有一個關鍵的困難處,就是金屬 = =的方式定義。因& ’本發明便提出-種利 达鑲嵌式I私(damascene process)來製作金屬閘極的方 法’以避免金屬閘極的蝕刻。 【發明概述】 本發明的目的之一就是提供一種金屬閘極的製造方法 ,其不需對金屬閘極進行蝕刻。 製造ΐ:明ί二::二就是提供一種極精細之金屬閘極的 表仏方法其閘極寬度可小於微影極限。 五、發明說明(2) 為達上述目的,本發 T法二包括下列主要步驟:形成二種金屬閘極的製造 ,定義此罩幕層,以在罩幕層 層於一半導體基底 極開口露出的基底上,形成一乂成—閘極開口;在閘 ,成一複晶矽層於上述閘極介;声^電層;在閘極開口中 其表面低於閘極開口,而在 曰丄回蝕刻複晶矽層使 :岸:成一金屬層於罩幕層上並i滿々:形成一複晶矽閘 :層進行平坦化直到露出罩幕層,、,2開口;以及對金 成一金屬閘極。 稽乂在複晶矽閘極上形 本發明所提供t J括下列主要步驟··形成一 ^ = 的製造方法, 義罩幕層,以在罩幕芦中 ^ 半導體基底上;定 相對側壁形成一對介‘二一閘極開口;在閘極開口的 在間極開口露出的:i:隔勿,縮小閉極開口之寬度; 口中形成一複晶石夕層於閉問極介電層;在閘極開 極;形成-金罢:在問極開口底部形成-複晶石夕閘 屬層進行平坦化▲到層上並填滿閘極開口;以及對金 成-金屬閘極。⑬出罩幕層,藉以在複晶矽間極上形 顯易ί讓和其他㈣、特徵、和優點能更明 細說明如下:佳實施例,並配合所附圖式,作詳 【圖式之簡單說明】 第1 7圖為一系列剖面圖,用以說明本發明一較佳實 0516-7142TWf;90043;esmond.ptd 第5頁 513757 五、發明說明(3) 施例製作的金屬閘極的流程。 用以說明本發明另一較佳 1 2〜隔離結構; 1 6〜閘極開口; 1 8〜閘極介電層; 20a〜複晶矽閘極 2 4〜金屬層; Μ〜源極/汲極區 第8〜1 0圖為一系列剖面圖 實施例製作的金屬閘極的流程 【符號說明】 10〜半導體基底; Η〜罩幕層; 1 6a〜縮小化之閘極開口; 2 〇〜複晶矽層; 22〜凹口; 24a〜金屬閘極; 28〜介電間隔物。 【實施例】 *程以::ΐί第卜7圖詳細說明本發明製作金屬閘極的 rid ’詩示在—半導體基底10上形 成有隔離結構12。半導體基底1〇較佳為一單晶矽晶圓美 底上的隔離結構丨2較佳為淺溝槽隔離結構(s h &丨丨〇 * - trench is〇iati〇n),係用以隔離出基底上數個不同的主 動區。 第2圖所示係在上述半導體基底1〇上形成一罩幕層“ ,其材質較佳為氧化矽、氮化矽、氮氧化矽或前述之組合 。罩幕層14可用化學氣相沉積法(CVD)沉積而得,其較佳 厚度範圍為1000〜5000A。請繼續參閱第2圖,利用微影成 像與非等向性餘刻(anis〇tr〇pic etching),在罩幕層η 中定義出一閘極開口 1 6。後續的製程,將會在閘極開口 J 6513757 V. Description of the Invention (1) [Field of the Invention] The present invention relates to a method for manufacturing a metal gate in an integrated circuit, and more particularly to a method for manufacturing an extremely fine metal gate by using a damascene process. method. [Background of the Invention] With the increasing precision and complexity of integrated circuits, in order to be able to fabricate integrated circuits with a high degree of integration on a limited wafer surface, many advanced processes must be matched to reduce the component size. The reduction of the π-piece size is accompanied by many problems. In addition to the short-channel effect (sh0rt-channei effect), the increase in contact resistance is also an important issue. After the metallization process, the contact resistance of the small-sized component (between the active area and the metal contact) is greater than the contact resistance of the large-sized component. At the same time, the performance of small-sized components will be reduced. Therefore, it is known in the art to use a metal gate to reduce the contact resistance between the substrate and the gate, and at the same time reduce the sheet resistance of the gate. There is a key difficulty for Tian Yi to make metal problems, which is the way that metal == is defined. Because of the & ' the present invention proposes a method of making a metal gate by a damascene process, to avoid etching of the metal gate. [Summary of the Invention] One of the objectives of the present invention is to provide a method for manufacturing a metal gate, which does not require etching of the metal gate. Manufacturing ΐ: Ming 二 2 :: The second is to provide a very fine metal gate surface display method, whose gate width can be less than the lithographic limit. V. Description of the invention (2) In order to achieve the above purpose, the second method of the present invention includes the following main steps: manufacturing of two kinds of metal gates, and defining the mask layer to expose the mask layer layer through an opening of a semiconductor substrate. On the substrate, a gate-gate opening is formed; at the gate, a polycrystalline silicon layer is formed on the gate dielectric; an acoustic layer; the surface of the gate opening is lower than the gate opening, and in the gate-back Etching the polycrystalline silicon layer to: shore: form a metal layer on the mask layer and fill it: forming a polycrystalline silicon gate: the layer is flattened until the mask layer is exposed, and the metal is made into a metal gate pole. The shape of the complex silicon gate electrode provided by the present invention includes the following main steps: forming a manufacturing method of ^ =, forming a mask layer on the semiconductor substrate in the mask, and forming an opposite sidewall to form a Intermediate 'two-one gate openings; exposed at the gate openings at the inter-electrode openings: i: Gewu, reducing the width of the closed-electrode openings; a polycrystalline stone layer is formed in the mouth to the closed-electrode dielectric layer; The gate is open; formation-gold strikes: the formation of the polycrystalline slab gate layer at the bottom of the interrogator opening is flattened to the layer and fills the gate opening; and the gold-metal gate is formed. The mask layer is pulled out, so that the shape and other features, features, and advantages of the polycrystalline silicon can be more clearly explained as follows: The preferred embodiment, in conjunction with the accompanying drawings, will be detailed [the simplicity of the drawings [Explanation] Figure 17 is a series of cross-sectional views used to illustrate a preferred embodiment of the present invention 0516-7142TWf; 90043; esmond.ptd page 5 513757 V. Description of the invention (3) The process of the metal gate electrode fabricated in the embodiment . To illustrate another preferred 12 ~ isolation structure of the present invention; 16 ~ gate openings; 18 ~ gate dielectric layer; 20a ~ polycrystalline silicon gate 2 4 ~ metal layer; M ~ source / drain Figures 8 ~ 10 of the polar region are a series of cross-sectional views of the metal gate electrode fabrication process. [Symbols] 10 ~ semiconductor substrate; Η ~ mask layer; 16a ~ reduced gate opening; 2〇 ~ Compound silicon layer; 22 ~ notch; 24a ~ metal gate; 28 ~ dielectric spacer. [Embodiment] The process shown in FIG. 7 is detailed to illustrate the rid of the metal gate electrode produced by the present invention. The isolation structure 12 is formed on the semiconductor substrate 10. The semiconductor substrate 10 is preferably an isolation structure on a monocrystalline silicon wafer. The substrate 2 is preferably a shallow trench isolation structure (sh & 丨 丨 **-trench is〇iati〇n), which is used for isolation. Several different active areas on the substrate are identified. As shown in FIG. 2, a mask layer "is formed on the semiconductor substrate 10, and its material is preferably silicon oxide, silicon nitride, silicon oxynitride, or a combination thereof. The mask layer 14 can be formed by chemical vapor deposition. (CVD) deposition, its preferred thickness range is 1000 ~ 5000A. Please continue to refer to Figure 2, using lithography imaging and anisotropic etching (anis〇tr〇pic etching), in the mask layer η Define a gate opening 1 6. For subsequent processes, the gate opening J 6

0516-7142TWf;90043;esmond.ptd0516-7142TWf; 90043; esmond.ptd

513757513757

中製作出一個包含複晶矽閘極與金屬閘極的複合閘極。 請參閱第3圖,在閘極開口16露出的基底ι〇上形成一 閘極”電層18。閘極介電層18較佳為厚度15〜2〇〇入的閘氧 化層,其可利用熱氧化法在65〇〜1〇〇(rc之間,反應5 36〇〇 秒鐘而得。請繼續參閱第3圖,在閘極開口16中沈積一複 晶石夕層20於閘極介電層18上。複晶石夕層2()可用低壓化學氣 相沈積法(LPCVD)在525〜575 °C之間沈積而得,其厚度範圍 最好在1 0 0 0〜5 0 0 0 A之間,以能夠填滿閘極開口丨6為準。 對於N型元件而言,可在沈積複晶矽層2〇時,於矽烷氣體 中加入磷化氫(phosphine)或砷化三氫(arsine)進行 in-situ摻雜,或者,亦可先沈積複晶矽層2〇後,再以磷 離子或砷離子進行離子佈植,佈植能量範圍約25〜75 KeV ’佈植濃度範圍約1E1 4〜1 El 6原子/平方公分。 請參閱第4圖,將複晶矽層2 0加以回餘刻,使其表面 低於閘極開口 1 6而形成凹口 2 2。此餘刻步驟可使用含有 C I〗的钱刻氣體以選擇性地去除複晶石夕。凹口 2 2的深度最 好低於罩幕層14的上表面500〜2000 A。敍刻出凹口22的目 的是為了讓後續的步驟可以填入金屬閘極,並且藉此在閘 極開口 1 6的底部定義出複晶矽閘極2 0 a。 請參閱第5圖,在罩幕層14與複晶矽閘極2〇a上沈積一 層金屬層24,並使其填滿凹口22。金屬層24的材質可為Ti 、W、A1、Ta、Cu、Co、Cr、Pt或為前述之合金或為前述 金屬的氮化物,例如TiN、WN、TaN等等。金屬層24的沈積 可採用電漿加強化學氣相沈積法(PECVD)、濺鍍法或最佳A composite gate including a complex silicon gate and a metal gate was fabricated in the process. Referring to FIG. 3, a gate electrode layer 18 is formed on the substrate ι exposed by the gate opening 16. The gate dielectric layer 18 is preferably a gate oxide layer having a thickness of 15˜200 Å, which can be used. The thermal oxidation method is obtained at a temperature between 65 and 100 (rc and a reaction time of 5 36,000 seconds. Please continue to refer to FIG. 3. A polycrystalline spar layer 20 is deposited in the gate opening 16 in the gate electrode. The electrical layer 18. The polycrystalline spar layer 2 () can be deposited by low pressure chemical vapor deposition (LPCVD) between 525 ~ 575 ° C, and its thickness preferably ranges from 1 0 0 0 to 5 0 0 0 Between A, it is to be able to fill the gate openings. 6 For N-type components, phosphine or arsenide can be added to the silane gas when the polycrystalline silicon layer is deposited at 20 °. (Arsine) doped in-situ, or you can also deposit a polycrystalline silicon layer 20, and then ion implantation with phosphorus ions or arsenic ions, the implantation energy range is about 25 ~ 75 KeV Approximately 1E1 4 ~ 1 El 6 atoms / cm 2. Please refer to Fig. 4 for the polycrystalline silicon layer 20 to be etched back so that its surface is lower than the gate opening 16 to form a notch 2 2. At this moment step A coin-cut gas containing CI can be used to selectively remove the polycrystalline stone. The depth of the notch 22 is preferably lower than the upper surface of the cover layer 14 by 500 to 2000 A. The purpose of the notch 22 is to In order to allow the subsequent steps to be filled with metal gates, a polycrystalline silicon gate 20 a is defined at the bottom of the gate opening 16. Referring to FIG. 5, the mask layer 14 and the polycrystalline silicon gate are defined in FIG. 5. A metal layer 24 is deposited on the electrode 20a and fills the recess 22. The material of the metal layer 24 may be Ti, W, A1, Ta, Cu, Co, Cr, Pt or the aforementioned alloy or the aforementioned Metal nitrides, such as TiN, WN, TaN, etc. The metal layer 24 can be deposited using plasma enhanced chemical vapor deposition (PECVD), sputtering, or best

0516-7142TWf;90043;e smond.p t d 第7頁 513757 五、發明說明(5) 者’採用化學氣相沈積法。 請參閱第6圖,以化學機械研磨法(CMP)對金屬層24進 行平坦化製程,直到露出罩幕層1 4為止。如此一來,便在 閘極開口 16中留下一金屬閘極24a堆疊在複晶矽閘極2〇a 上。此外,雖然此步驟亦可使用回蝕刻去除多餘的金屬材 料’但是製程上較不適合。本發明之主要優點即是此處金 屬閘極2 4a的定義不需要透過蝕刻程序,因此可免除金屬 姓刻所帶來的種種困難。依照本發明所得之金屬閘極24a 與底下的複晶矽閘極2 〇 a共同構成一複合閘極。由於金屬 具有非常低的電阻,此複合閘極之片電阻低於大部分的複 晶石夕化金屬(p〇ly icide ; p〇iysi 1 i c〇n一 si! icide)閘極。 請參閱第7圖,以濕蝕刻或選擇性的乾蝕刻法將罩幕 層1 4從基底1 〇表面去除,留下閘極結構。接下來,以複合 閘極為佈植罩幕對基底丨〇進行離子佈值,以在基底中形成 f極/汲極區26,完成一M0S電晶體結構。對於N型元件而 a ’佈值所使用離子可為砷或磷,又以砷較佳。以砷離子 形成源極/汲極區26時,可以卜1〇〇KeV的佈植能量,1E15〜 8E1 5原子/平方公分的佈值劑量進行佈植。 第8〜1 〇圖繪示本發明另一較佳實施例。在此實施例 中間極開口 1 6在尚未製作閘極結構之前,先形成一對介 電間隔物28以進一步縮小閘極開口的尺寸。請參閱第8圖 :過如第1〜2圖所不之步驟後,在閘極開口丨6的相對侧 ^上开^人成兩個介電間隔物28,目此形成較窄的閘極開口 …。介電間隔物28的製作,可先沉積一層介電層在問極0516-7142TWf; 90043; e smond.p t d p. 7 513757 V. Description of the invention (5) The one ′ uses a chemical vapor deposition method. Referring to FIG. 6, the metal layer 24 is planarized by a chemical mechanical polishing method (CMP) until the mask layer 14 is exposed. In this way, a metal gate 24a is left in the gate opening 16 and stacked on the polycrystalline silicon gate 20a. In addition, although this step can also use etch-back to remove excess metal materials', it is less suitable in manufacturing process. The main advantage of the present invention is that the definition of the metal gate 24a here does not need to pass through the etching process, so it can avoid all the difficulties caused by the metal surname engraving. The metal gate 24a obtained in accordance with the present invention and the underlying polycrystalline silicon gate 20a together form a composite gate. Because the metal has a very low resistance, the sheet resistance of this composite gate is lower than that of most polysilicon (polly pesticide; poiysi 1 i con-si! Pesticide) gates. Referring to FIG. 7, the mask layer 14 is removed from the surface of the substrate 10 by wet etching or selective dry etching, leaving a gate structure. Next, the substrate is implanted with a composite gate electrode to perform ion distribution on the substrate to form an f-pole / drain region 26 in the substrate to complete a MOS transistor structure. For N-type elements, the ions used for the a 'distribution may be arsenic or phosphorus, and arsenic is preferred. When the source / drain region 26 is formed with arsenic ions, the implantation energy can be 100KeV, and the implantation dose can be 1E15 ~ 8E1 5 atom / cm2. Figures 8 to 10 show another preferred embodiment of the present invention. In this embodiment, before the gate structure is formed, a pair of dielectric spacers 28 are formed to further reduce the size of the gate opening. Please refer to Fig. 8: After following the steps shown in Figs. 1 and 2, open the two dielectric spacers 28 on the opposite side of the gate opening 丨 6 to form a narrower gate. Opening ... The dielectric spacer 28 can be manufactured by first depositing a dielectric layer on the interlayer

0516.7142Bff;90043;esraond.ptd 第8頁 ^/57 、發明說明(6) j 口 16與罩幕層14上,再施以非等向性的蝕刻而得。如此 。來’藉由介電間隔物28的厚度可使閘極開口 16a的寬度 可以縮小到小於微影設備的解析度。 又 接下來,依照上一個實施例所述之方法,在縮小化的 ^ ^開口16a中依序形成閘極介電層18、複晶矽閘極2〇&、 f閘極24a。如第9圖所示,閘極結構的寬度事實上為閘 与,口16的寬度減去兩倍間隔物28的寬度,因此可超越微 〜極限。 之後’將罩幕層14與介電間隔物28去除,並以閘極妹 ίί佈植f幕對基底1G進行離子佈植,以形成源極/沒‘ 度。,所得之電晶體如第1 0圖所示,具有極精細的閘極寬 雖然上述製作金屬閘極的實施例是以形成NM0S元件 明,但本發明並不在此限,熟悉此技藝者亦可依昭 迷方法輕易製作PMOS或CMOS元件。 …、 雖然本發明已以較佳實施例揭露如上, :;::明丄任何熟習此技藝者,在不脫離;發=二 乾圍當視後附之申請專利範圍所界定者為準。 ’、農0516.7142Bff; 90043; esraond.ptd page 8 ^ / 57, description of the invention (6) j port 16 and the mask layer 14, and then obtained by anisotropic etching. in this way . The width of the gate opening 16a can be reduced to a resolution smaller than that of the lithographic apparatus by the thickness of the dielectric spacer 28. Next, in accordance with the method described in the previous embodiment, a gate dielectric layer 18, a polycrystalline silicon gate 20 &, and an f gate 24a are sequentially formed in the reduced opening 16a. As shown in Fig. 9, the width of the gate structure is actually the gate width, and the width of the port 16 minus twice the width of the spacer 28, so it can exceed the micro-limit. After that, the mask layer 14 and the dielectric spacers 28 are removed, and the substrate 1G is ion-implanted with a gate electrode implanted curtain to form a source / negative degree. As shown in FIG. 10, the obtained transistor has a very fine gate width. Although the above-mentioned example of making a metal gate is formed by forming an NMOS device, the present invention is not limited thereto, and those skilled in the art may also Easily make PMOS or CMOS devices according to Zhaomei method. …, Although the present invention has been disclosed in the preferred embodiment as above,:; :: Anyone who is familiar with this technique will not be disengaged; hair = Erganwei will be determined by the scope of the attached patent. ’,

0516-7142TWf;90043;esmond.ptd 第9頁0516-7142TWf; 90043; esmond.ptd Page 9

Claims (1)

'申請專利範圍 1 · 一種金屬閘極的製造方法,包括下列步驟: 形成一罩幕層於一半導體基底上; 疋義該罩幕層,以在該罩幕層中形成一閑極開口; 在該閘極開口露出的基底上,形成一閘極介電層; 在該閘極開口中形成一複晶石夕層於該閘極介電層上· 回触刻該複晶矽層使其表面低於該閘極開口,而在該 閘極開口底部形成一複晶矽閘極; μ 形成一金屬層於該罩幕層上並填滿該閘極開口;以及 對該金屬層進行平坦化直到露出該罩幕層,藉以在該 複晶矽閘極上形成一金屬閘極。 2 ·如申睛專利範圍第1項所述之金屬閘極的製造方法 ’其中該罩幕層之材質係擇自下列所組成之族群··氧化石夕 、氮化矽、氮氧化矽、以及前述之組合。 3 ·如申請專利範圍第1項所述之金屬閘極的製造方法 ’其中該罩幕層之厚度為1 000〜500 0 Α。 4 ·如申請專利範圍第1項所述之金屬閘極的製造方法 ’其中該閘極介電層為一閘氧化層。 5 ·如申請專利範圍第1項所述之金屬閘極的製造方法 ’其中該複晶矽閘極之低於該閘極開口 5 〇 〇〜2 〇 〇 〇 Α。 6 ·如申請專利範圍第1項所述之金屬閘極的製造方法 ’其中該金屬層之材質係擇自下列所組成之族群:T i、 W、Al、Ta、Cu、Co、Cr、Pt、以及前述之合金或氮化 物0 7 ·如申請專利範圍第1項所述之金屬閘極的製造方法'Application patent scope 1 · A method for manufacturing a metal gate, including the following steps: forming a mask layer on a semiconductor substrate; defining the mask layer to form a free-electrode opening in the mask layer; A gate dielectric layer is formed on the exposed substrate of the gate opening; a polycrystalline stone layer is formed on the gate opening on the gate dielectric layer. The polycrystalline silicon layer is etched back to make the surface Below the gate opening, a polycrystalline silicon gate is formed at the bottom of the gate opening; μ forms a metal layer on the mask layer and fills the gate opening; and planarizes the metal layer until The cover layer is exposed to form a metal gate on the polycrystalline silicon gate. 2 · The manufacturing method of the metal gate electrode as described in item 1 of Shenjing's patent scope ', wherein the material of the cover layer is selected from the following groups: · stone oxide, silicon nitride, silicon oxynitride, and A combination of the foregoing. 3 · The method for manufacturing a metal gate electrode as described in item 1 of the scope of patent application ′, wherein the thickness of the cover layer is 1 000˜500 0 A. 4. The method for manufacturing a metal gate as described in item 1 of the scope of the patent application, wherein the gate dielectric layer is a gate oxide layer. 5 · The method for manufacturing a metal gate as described in item 1 of the scope of the patent application ′, wherein the polycrystalline silicon gate is lower than the gate opening by 50,000 to 20,000. 6 · The manufacturing method of the metal gate electrode as described in item 1 of the scope of the patent application, wherein the material of the metal layer is selected from the group consisting of: T i, W, Al, Ta, Cu, Co, Cr, Pt And the aforementioned alloy or nitride 0 7 · The manufacturing method of the metal gate as described in item 1 of the scope of patent application 0516-7142TWf;90043;esmond.ptd 第10頁 六、申請專利範圍 ’其!之平坦化係以化學機械研磨法為之。 ,其中在UiC項所述之金屬問極的製造方法 去除該ΪΠ之平坦化之後更包括下列步驟: 9由:=請專利範圍第8項所述之 ,其中在去除該罩幕層之後更包括下列步驟的I造方法 中形區為佈植罩幕進行離子佈值’…基底 ^ ^ t W ^ 8 ^ ^ ^ ^ ^ t ^ ^ Y ^ ^ A罩幕層之前更包括下列步驟: 在該基底中形成隔離結構,以隔離出主動區。 11 · 一種金屬閘極的製造方法,包括下列步 ,成一罩幕層於一半導體基底上; 定義該罩幕層,以在該罩幕層中形成一閘極開口; 在該問極開口的相對側壁形成一對介電間隔物,以縮 小該閘極開口之寬度; 在該閘極開口露出的基底上,形成一閘極介電層; 在4閘極開口中形成一複晶石夕層於該閘極介電層上; 回ϋ刻該複晶矽層使其表面低於該閘極開口,而在該 間極開口底部形成一複晶矽閘極; 形成一金屬層於該罩幕層上並填滿該閘極開口; β及 、 對該金屬層進行平坦化直到露出該罩幕層,藉以在该 複晶石夕閘極上形成一金屬閘極。 12·如申請專利範圍第11項所述之金屬閘極的製造方 _ 第11頁 〇516.7142m;90043;esmond.ptd 申請專利範圍 法 矽 法 法 法 法 W 物 f 7中_罩幕層之材質係擇自下列所組成之族群:氧化 、虱化石夕、i备^ J 3 乳乳化矽、以及前述之組合。 # ·如申請專利範圍第11項所述之金屬閘極的製造方 \其4中該罩^層之厚度為1 0 0 0〜5 00 0 Α。 # ·如申請專利範圍第11項所述之金屬閘極的製造方 ,/、中該閘極介電層為一閘氧化層。 ,2·如申請專利範圍第11項所述之金屬閘極的製造方 ’八中該複晶石夕閘極之低於該閘極開口 5 0 0〜2 0 〇 0 a。 16·如申請專利範圍第11項所述之金屬閘極的製造方 、’其中該金屬層之材質係擇自下列所組成之族群·· Ti、 1 Ta、Cu、Co、' pt、以及前述之合金或氮化 ο 、17·如申請專利範圍第丨丨項所述之金屬閘極的製造方 法’其中該金屬層之平坦化係以化學機械研磨法為之。 、18·如申請專利範圍第11項所述之金屬閘極的製造方 法,其中在該金屬層之平坦化之後更包括下列步驟: 去除該罩幕層。 、19·如申請專利範圍第18項所述之金屬閘極的製造方 法’其中在去除該罩幕層之後更包括下列步驟: 以該金屬閘極為佈植罩幕進行離子佈值,以在該基底 中形成源極/汲極區。 / 土 - 2〇·如申請專利範圍第18項所述之金屬閘極的製造方 法’其中形成該罩幕層之前更包括下列步驟: 在該基底中形成隔離結構,以隔離出主動區。0516-7142TWf; 90043; esmond.ptd Page 10 6. Scope of Patent Application ′ The flattening of! Is based on chemical mechanical polishing method. The method for manufacturing the metal interposer described in the UiC item further includes the following steps after removing the flattening of the ΪΠ: 9 by: = Please refer to item 8 of the patent scope, wherein after removing the cover layer, it further includes: In the following steps, in the manufacturing method, the shape area is used for the ion implantation of the implantation mask '... base ^ ^ t W ^ 8 ^ ^ ^ ^ ^ t ^ ^ Y ^ ^ A. The mask step further includes the following steps: An isolation structure is formed in the substrate to isolate the active area. 11. A method for manufacturing a metal gate, including the following steps, forming a mask layer on a semiconductor substrate; defining the mask layer to form a gate opening in the mask layer; A pair of dielectric spacers are formed on the side wall to reduce the width of the gate opening; a gate dielectric layer is formed on the substrate exposed by the gate opening; a polycrystalline stone layer is formed in the 4 gate opening; On the gate dielectric layer; engraving the polycrystalline silicon layer so that its surface is lower than the gate opening, and forming a polycrystalline silicon gate at the bottom of the interelectrode opening; forming a metal layer on the mask layer And fill the gate opening; β and, planarize the metal layer until the cover layer is exposed, thereby forming a metal gate on the polycrystalline stone gate. 12 · The manufacturer of the metal gate as described in item 11 of the scope of patent application_ Page 11 〇516.7142m; 90043; esmond.ptd The material is selected from the following groups: oxidized, lice fossils, i prepared ^ J 3 milk emulsion silicon, and the combination of the foregoing. # · The manufacturer of the metal gate electrode as described in item 11 of the scope of the patent application. \ The thickness of the cover layer in 4 is 1 0 0 0 ~ 5 0 0 Α. # · According to the manufacturer of the metal gate described in item 11 of the scope of the patent application, the gate dielectric layer is a gate oxide layer. 2. According to the manufacturer of the metal gate described in item 11 of the scope of the patent application, 'the polycrystalline stone gate in the eighth is lower than the gate opening 5 0 0 ~ 2 0 0 a. 16. The manufacturer of the metal gate described in item 11 of the scope of the patent application, 'wherein the material of the metal layer is selected from the group consisting of: Ti, 1 Ta, Cu, Co,' pt, and the foregoing Alloys or nitrides 17. The method for manufacturing a metal gate as described in the item 丨 丨 of the scope of the patent application, wherein the planarization of the metal layer is performed by a chemical mechanical polishing method. 18. The method for manufacturing a metal gate according to item 11 of the scope of the patent application, wherein the planarization of the metal layer further includes the following steps: removing the mask layer. 19. The method for manufacturing a metal gate electrode as described in item 18 of the scope of the patent application, wherein the method further includes the following steps after removing the mask layer: the metal gate electrode is used to fabricate the mask to perform ion distribution, A source / drain region is formed in the substrate. / Soil-2〇. The method for manufacturing a metal gate electrode as described in item 18 of the scope of patent application, wherein the method further includes the following steps before forming the cover layer: forming an isolation structure in the substrate to isolate the active area. 〇516.7142Wf;90043;esmond.ptd 第12頁〇516.7142Wf; 90043; esmond.ptd Page 12
TW90131752A 2001-12-20 2001-12-20 Manufacture method of ultra fine metal gate TW513757B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90131752A TW513757B (en) 2001-12-20 2001-12-20 Manufacture method of ultra fine metal gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90131752A TW513757B (en) 2001-12-20 2001-12-20 Manufacture method of ultra fine metal gate

Publications (1)

Publication Number Publication Date
TW513757B true TW513757B (en) 2002-12-11

Family

ID=27752390

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90131752A TW513757B (en) 2001-12-20 2001-12-20 Manufacture method of ultra fine metal gate

Country Status (1)

Country Link
TW (1) TW513757B (en)

Similar Documents

Publication Publication Date Title
JP4863882B2 (en) Method for changing etching selectivity of film
CN105448863B (en) Semiconductor structure with contact plunger
TWI579925B (en) Semiconductor structure and method of fabricating the same
US7666727B2 (en) Semiconductor device having a laterally modulated gate workfunction and method of fabrication
US7671471B2 (en) Method for making a semiconductor device having a high-k dielectric layer and a metal gate electrode
TWI242262B (en) Integrating n-type and p-type metal gate transistors
TWI392030B (en) Method for making a semiconductor device
JP4027064B2 (en) Method for manufacturing MOSFET device
CN109768013A (en) Fin integrated circuit device and its threshold voltage adjustment method
TW201013758A (en) Semiconductor device and method for making semiconductor device having metal gate stack
JP2003163280A (en) Vertical replacement-gate junction field-effect transistor
TWI556427B (en) Buffer layer on gate and methods of forming the same
TW548703B (en) Manufacturing method of semiconductor device
TW201729280A (en) Semiconductor device structure
TWI715218B (en) Semiconductor device and method manufacturing same
US11152508B2 (en) Semiconductor device including two-dimensional material layer
US11855181B2 (en) Tuning threshold voltage in field-effect transistors
TWI226667B (en) Transistor fabrication method
CN106158932B (en) With TaAlCN layers of metal gate stacks part
JP2009117621A (en) Semiconductor device and manufacturing method thereof
JP2003179214A (en) Method of manufacturing self-aligned ferroelectric memory transistor
TW513757B (en) Manufacture method of ultra fine metal gate
US6100142A (en) Method of fabricating sub-quarter-micron salicide polysilicon
US7416968B2 (en) Methods of forming field effect transistors having metal silicide gate electrodes
CN114975275A (en) Semiconductor device and method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees