TW502341B - Method for preventing nitrogen contamination in silicon ions implantation - Google Patents

Method for preventing nitrogen contamination in silicon ions implantation Download PDF

Info

Publication number
TW502341B
TW502341B TW90122392A TW90122392A TW502341B TW 502341 B TW502341 B TW 502341B TW 90122392 A TW90122392 A TW 90122392A TW 90122392 A TW90122392 A TW 90122392A TW 502341 B TW502341 B TW 502341B
Authority
TW
Taiwan
Prior art keywords
ion
ion implantation
silicon
source
ion source
Prior art date
Application number
TW90122392A
Other languages
Chinese (zh)
Inventor
Shu-You Ye
Jr-Bin Chen
Jeng-Yi Huang
Chau-Jie Tsai
Liu-Jang Chen
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW90122392A priority Critical patent/TW502341B/en
Application granted granted Critical
Publication of TW502341B publication Critical patent/TW502341B/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

A method for preventing contamination of N2+ molecules during silicon ion implantation comprises at least: increasing the current of source magnet during silicon ion implantation to dissociate N2 into N+. As a preferable example, it is necessary for the ratio of N2+/N+ to be less than 1, and an energy analyzer is used to select silicon ions to perform silicon ion implantation.

Description

502341 五、發明說明α) 發明領域: 本發明揭露一種有關於矽離子之離子佈植,特別是有 關於一種防止氮氣對矽離子之離子佈植污染的方法。 發明背景: 積體電路製程,絕大多數係以矽做為半導體基板,再 適當地摻雜導電性雜質以形成ρ型或η型掺雜區。若擴散區 換雜的是碼或BF2^同時有一複晶$夕導體層若跨越擴散區 就形成了基本的P型電晶體。相對的若擴散區摻雜的是砷 或磷離子,且有一複晶矽導體層跨越該擴散區,就形成了 基本的Γ1型電晶體。 當電晶體通道長度邁入深次微米時代,不但閘極氧化 層厚度變薄,源/汲極接面也只有幾百埃而已。因此,若 源/汲極接觸為降低阻抗而形成鈦矽化物時,首需面對的 便是鈦矽化物反應消耗矽基板而影響源/汲極接面的問 題,此時利用矽佈植於鈦金屬層内的離子混合 (i ο η - m i X i n g )技術,是一常見解決上述問題的對策。此 外,另一種源/汲極佈植後再形成鈦金屬矽化物的情況, 也常會在源/汲極佈植前,先利用矽離子轟擊也常用於做 為半導體基板預非晶質化(pre- amorous )的手段,以防止 通道效應,主要原因在於矽離子不會影響η或ρ型電性,原502341 V. Description of the invention α) Field of the invention: The present invention discloses an ion implantation related to silicon ions, and more particularly, a method for preventing nitrogen ion implantation from contaminating silicon ions. Background of the Invention: In the integrated circuit manufacturing process, most of the silicon substrates are silicon, and conductive impurities are appropriately doped to form p-type or n-type doped regions. If the diffusion area is replaced by a code or BF2 ^ and a complex crystal conductor layer is crossed across the diffusion area, a basic P-type transistor is formed. In contrast, if the diffusion region is doped with arsenic or phosphorus ions and a polycrystalline silicon conductor layer crosses the diffusion region, a basic Γ1 type transistor is formed. When the transistor channel length enters the deep sub-micron era, not only the gate oxide thickness becomes thinner, but the source / drain interface is only a few hundred angstroms. Therefore, if the source / drain contact forms titanium silicide in order to reduce the impedance, the first problem that needs to be faced is the titanium silicide reaction that consumes the silicon substrate and affects the source / drain interface. The ion mixing (i ο η-mi Xing) technology in the titanium metal layer is a common countermeasure to solve the above problems. In addition, another case where titanium silicide is formed after the source / drain is implanted is often used before the source / drain is implanted. The silicon ion bombardment is also used to pre-amorphize the semiconductor substrate. -amorous) to prevent channel effects, the main reason is that silicon ions will not affect η or ρ-type electrical properties.

502341 五、發明說明(2) 子量係2 8。 然而與一般離子佈植所遭遇的情況相同,矽離子佈 植也會有污染(contamination)的問題。常見於離子佈植 機的污染,主要來自同一元素,二價和三價離子不能分 開。或者由於離子團在真空中和氮氣碰撞解離而形成帶正 電氮分子(N 2+)。解決N 2污染的問題,一般有將離子朿路徑 (b e a m 1 i n e p a t h )變短以減少碰撞機會。另一個是用能量 過濾器(energy filter)。 而最令離子佈植工程師困擾的是矽離子佈植被N 2污染 的問題。一般而言,N 2钓污染對矽離子佈植後阻質是有影 響的。以鈦金屬矽化物層而言,其阻值和鈦金屬矽化物完 整性有關。石夕離子佈植量愈高,鈦金屬石夕化物完整性愈 好,阻值也愈低。但若佈植時真空度愈差。鈦金屬^夕化物 層的品質就愈差,上述的事實說明,N 2的污染的確會影響 鈦金屬石夕化物層的品質。 而不幸的是矽原子克原子量為2 8克,與帶正電氮分子 N2f量相同。氮又是大氣中含量最高的氣體即使真空環境· 下也仍會有氮氣被離子團解離為N 2+。利用質量分析磁鐵 (analyzing magnet),根本難以將石夕離子和氮氣分離。因 此就習知離子佈植機而言,N 2離子是無法避免的矽離子佈 植污染源。此外,氮氣卻是最常用以為開真空閥門(vent)502341 V. Description of the invention (2) The sub-quantity is 2 8. However, similar to the situation encountered in general ion implantation, silicon ion implantation also has a problem of contamination. Common pollution in ion implanters is mainly from the same element. Divalent and trivalent ions cannot be separated. Or due to the ionic group colliding with nitrogen in a vacuum to dissociate and form positively charged nitrogen molecules (N 2+). To solve the problem of N 2 pollution, generally, the path of the ion krypton (b e a m 1 i n e p a t h) is shortened to reduce the chance of collision. The other is to use an energy filter. The most disturbing problem for ion implantation engineers is the N 2 pollution of silicon ionization vegetation. In general, N 2 fishing pollution has an impact on the resistance of silicon ion implantation. For the titanium silicide layer, its resistance is related to the integrity of the titanium silicide. The higher the amount of Shixi ion implantation, the better the integrity of the titanium metal Shixi compounds, and the lower the resistance value. However, the degree of vacuum becomes worse when planting. The worse the quality of the titanium metal oxide layer, the above facts show that the pollution of N 2 does affect the quality of the titanium metal oxide layer. Unfortunately, the atomic weight of silicon atoms is 28 grams, which is the same as that of N2f, which is a positively charged nitrogen molecule. Nitrogen is the highest gas in the atmosphere. Even in a vacuum environment, nitrogen will still be dissociated by ion groups to N 2+. Using an analyzing magnet, it is difficult to separate Shi Xi ions from nitrogen. Therefore, as far as conventional ion implanters are concerned, N 2 ions are an unavoidable source of silicon ion implantation pollution. In addition, nitrogen is most commonly used to open vacuum valves (vent)

502341 五、發明說明(3) 的氣體,及其他控制環境壓力的氣體。 當然利用氬氣離子(Ar +)替代N用以為控制氣體,是一 減少N 2污染矽離子佈植的手段。另一種做法係在抽真空 後,進行1 2小時的假佈植(dummy run ),即以控片,取代 真正的試片。不過實質上,矽源頭就已因大氣環境下和氮 氣混合。在離子佈植機台又轉變為N 2+。因此,上述兩種方 案,仍然不能徹底解決上述污染的問題。 有鑑於此,本發明將提出一方法,改善上述污染問題。 發明目的及概述: 本發明目的係提供一種簡單易用的離子佈植機台角度 校正工具,以提供快速而準確的機台零度角調整。 本發明揭露一種石夕離子佈植時防止被帶正電之氮氣分 子(N 2+)污染之方法,其方法至少包含:於矽離子佈植時增 加離子源磁鐵(s 〇 u r c e m a g n e t)電流以使N 2解離成帶正電 子氮原子(N +)。以一較佳的實施例而言,離子源磁電流應 至少高於3 0安培,以使得N 2 V N +含量比小於1 ;最後再利用 能量分析儀篩選矽離子電漿,以進行矽離子佈植。 發明詳細說明:502341 V. Gas of invention description (3), and other gases that control ambient pressure. Of course, the use of argon ions (Ar +) instead of N as a control gas is a means to reduce the implantation of silicon ions contaminated by N 2. Another method is to perform a dummy run for 12 hours after vacuuming, that is, to replace the real test piece with a control piece. In essence, however, the silicon source has been mixed with nitrogen due to atmospheric conditions. In the ion implantation machine, it turns into N 2+ again. Therefore, the above two schemes still cannot completely solve the above-mentioned pollution problems. In view of this, the present invention will propose a method to improve the above pollution problem. Object and Summary of the Invention: The object of the present invention is to provide a simple and easy-to-use ion implantation machine angle correction tool to provide fast and accurate machine zero-degree angle adjustment. The invention discloses a method for preventing contamination by positively charged nitrogen molecules (N 2+) during stone ion implantation. The method at least comprises: increasing an ion source magnet (sourmagnet) current during silicon ion implantation so that N 2 dissociates into a positron-containing nitrogen atom (N +). In a preferred embodiment, the magnetic current of the ion source should be at least higher than 30 amperes, so that the N 2 VN + content ratio is less than 1. Finally, the silicon ion plasma is screened by an energy analyzer to perform silicon ion distribution. plant. Detailed description of the invention:

502341 五、發明說明(4) 有鑑於如發明背景所述,由真空度的變化會影響矽預 非晶質化,再形成鈦金屬矽化物之品質說明N 2的污染,並 不能被忽視。而傳統離子佈植機之質量分析磁鐵 (a n a 1 y z i n g m a g n e t)並不能將N 2+自S i源頭過濾出去。為 解決上述問題,就得先了解離子佈植機,離子佈植源頭到 加速的離子電漿的產生過程。 請參考圖一所示之離子佈植機剖面圖,可分為幾段加 以描述。初始段係離子源(s 〇 u r c e )的部分1 0,利用熱燈絲 放出之電子並以源磁鐵增加其迴旋半徑以增加撞擊源氣體 的機會而產生帶正電的電漿。再利用離子萃取電極 (extraction electrodes)板產生聚焦之離子朿並吸引出 來。帶正電的聚焦之離子朿再利用中段部分20包括一質量 分析磁鐵(analyzing magnet),利用質量不同,在磁場迴 旋半徑的差異性,以篩選所要佈植之離子朿。最後是前段 30,經由加速電壓或減速電壓包含水平、垂直位置之校準 器,將通過質量分析磁鐵的電衆經由加速電壓或減速電 壓,再經法接弟籠 (f a r a d a y c u p )精確計算植入之離子劑 量,將離子朿植入目標晶圓。 發明人等認為欲使離子朿純正,只靠質量分析磁鐵是 不足的,因為N 2和S i +克原子量相同都是2 8,而應該就產 生矽離子源頭處堵住N 2+。因此,發明人提出一種重要觀 念。請參考圖二。圖二示一弧反應室(arc chamber)35,502341 V. Description of the invention (4) As stated in the background of the invention, the change in the degree of vacuum will affect the pre-amorphization of silicon, and then the quality of the titanium silicide shows that the pollution of N 2 cannot be ignored. The mass analysis magnet (a n a 1 y z i n g m a g n e t) of the traditional ion implanter cannot filter N 2+ from the source of Si. In order to solve the above problems, we must first understand the ion implantation machine, the source of ion implantation, and the accelerated generation process of ion plasma. Please refer to the sectional view of the ion implanter shown in Figure 1, which can be divided into several sections for description. The initial section is part 10 of the ion source (s0 u r c e), which uses the electrons emitted by the hot filament and increases its radius of gyration with the source magnet to increase the chance of impacting the source gas to generate a positively charged plasma. An ion extraction electrode plate is used to generate focused ions and attract them. The positively-charged focused ion plutonium reuse middle section 20 includes an analyzing magnet, which utilizes the difference in the radius of the magnetic field rotation radius to screen the ion plutonium to be implanted. The last is the first paragraph 30. The accelerating voltage or decelerating voltage includes a horizontal and vertical position calibrator, and the electric mass passing through the mass analysis magnet will pass the accelerating voltage or decelerating voltage, and then accurately calculate the implanted ions through the faradaycup. Dose, implant the ion plutonium into the target wafer. The inventors believe that it is not enough to rely solely on mass analysis to make ions pure, because N 2 and Si + have the same atomic weight of 2 8 and N 2+ should be blocked at the source of silicon ions. Therefore, the inventor came up with an important idea. Please refer to Figure 2. Figure 2 shows an arc chamber 35,

502341 五、發明說明(5)502341 V. Description of the invention (5)

包含一氣體源注入口 4 2、蒸發器入口 4 3及一燈絲4卜弧反 應室3 5外則是離子源磁鐵(s 〇 u r c e m a g n e t) 4 0。熱燈絲4 2 用以產生電子,電子再撞擊氣體源注入口 4 2注入之氣體或 蒸發器入口 4 3注入固體源蒸氣以撞出二次電子,並繼續撞 擊,直到弧反應室3 5產生大量的電漿,而離子源磁鐵4 0, 則是用以產生磁場,當離子源磁鐵4 0設定一適當電流值, 將使電子作迴旋狀如路徑A行進,以增進行進路徑,並增 進游離效率。當離子源磁鐵4 0電流設定更高的情況下,將 使電子減少迴旋的半徑,進一步增加行進路徑如路徑B。 此時電子撞擊的機率將大幅增加。而使帶正電氮分子N 2迫 一步再分解為N + 本發明即利用高強度離子源磁鐵增加電子撞擊的機率 而將帶正電氮分子N 2造一步再分解為ίΝ +。N漠耳原子量僅 1 4克而已,因此,將無法通過質量分析磁鐵,而因此防止 了氮氣Ν 25亏染矽離子的問題。圖三示離子源磁電流與 N 2V Ν比值的關係^圖中示對離子源磁電流在1 0安培時, N 2 V N +比值約為2 . 5,2 7安培時即可使N 2+/ N比值小於1。並 隨離子源磁電流進一步增加而使小於1的N 2+/ N妓:值更小且 趨於穩定。發明人發現,不同之離子源(s 〇 u r c e )欲產生 0 最大之離子朿電流(bean current)就需不同的離子源磁電 流。為順應不同之離子源(source)將離子源磁電流調整為 3 0安培(含)以上時可以獲得穩定最小污染之離子朿電流,Including a gas source injection port 4 2, an evaporator inlet 43, and a filament 4 arc reaction chamber 3 5 is an ion source magnet (s 0 u r c e m a g n e t) 40. The hot filament 4 2 is used to generate electrons, which then impinge on the gas source injection port 4 2 and the gas inlet or evaporator inlet 4 3 is injected with a solid source vapor to knock out the secondary electrons and continue to impinge until the arc reaction chamber 3 5 generates a large amount of electrons. The ion source magnet 40 is used to generate a magnetic field. When the ion source magnet 40 is set to an appropriate current value, the electrons will travel in a convolutional manner like path A to increase the path and increase the free efficiency. . When the current of the ion source magnet 40 is set higher, the radius of the electrons will be reduced, and the travel path such as path B will be further increased. At this time, the probability of electron impact will increase significantly. The positively-charged nitrogen molecule N 2 is further decomposed into N +. In the present invention, a high-intensity ion source magnet is used to increase the probability of electron impact, and the positively-charged nitrogen molecule N 2 is further decomposed into Ν +. The atomic weight of N is only 14 grams. Therefore, the magnet cannot be analyzed by mass analysis, and the problem of nitrogen 25 deficient in silicon ions is prevented. Figure 3 shows the relationship between the magnetic current of the ion source and the ratio of N 2V N. The figure shows that when the magnetic current of the ion source is 10 amps, the ratio of N 2 VN + is about 2.5, and 2 2+ can make N 2+ / N ratio is less than 1. And as the magnetic current of the ion source further increases, N 2+ / N prostitutes with a value smaller than 1 are smaller and tend to be stable. The inventors have discovered that different ion sources (s0 u r c e) require different ion source magnetic currents to produce a maximum ion current of 0 (bean current). In order to comply with different ion sources (sources), the ion source magnetic current can be adjusted to more than 30 amps (inclusive) to obtain a stable and minimally polluted ion current.

502341502341

第ίο頁 502341 圖式簡單說明 本發明的較佳實施例將於往後之說明文字中輔以下列 圖形做更詳細的闡述: 圖一顯示離子佈植機台的示意圖。 圖二顯示離子源磁電流與產生之電漿路徑之關係。 圖三示離子源磁電流與N 2 V N牝值的關係。 圖號對照表: 離子源(s 〇 u r c e )部分 10 質量分析磁鐵(analyzing magnet)20 離子佈植機前段 30 離子源磁鐵 40 弧反應室 35 燈絲 41 氣體源注入口 42 蒸發器入口 43Page ο 502341 Brief description of the drawings The preferred embodiment of the present invention will be described in more detail in the following explanatory text with the following figures: Figure 1 shows a schematic diagram of an ion implantation machine. Figure 2 shows the relationship between the magnetic current of the ion source and the generated plasma path. Figure 3 shows the relationship between the ion source magnetic current and the value of N 2 V N 牝. Figure number comparison table: Ion source (s 〇 r c e) part 10 Mass analysis magnet (analyzing magnet) 20 Ion implanter front section 30 Ion source magnet 40 Arc reaction chamber 35 Filament 41 Gas source injection port 42 Evaporator inlet 43

第11頁Page 11

Claims (1)

502341 六、申請專利範圍 1. 一種矽離子佈植時防止被帶正電之氮氣分子(N 2+)污染之 方法,該方法至少包含: 於石夕離子佈植時增加離子源磁鐵(s 〇 u r c e m a g n e t )電流至 可將N 2解離成帶正電子氮原子(N +),以使得N 2V N +含量比 小於1 ;及 利用能量分析儀過濾、,以進行石夕離子佈植。 2. 如申請專利範圍第1項之方法,其中上述之離子源磁電 流至少大於30安培。 3. 如申請專利範圍第1項之方法,其中上述之增加離子源 磁鐵(s 〇 u r c e m a g n e t)電流係增加氮氣分子和原子團碰撞 的機率。502341 VI. Application Patent Scope 1. A method for preventing contamination by positively charged nitrogen molecules (N 2+) during silicon ion implantation, the method at least comprises: adding an ion source magnet (s 〇) during stone ion implantation. urcemagnet) to dissociate N 2 into positron-containing nitrogen atoms (N +), so that the N 2 V N + content ratio is less than 1; and filter with an energy analyzer to perform ion implantation. 2. The method according to item 1 of the patent application, wherein the above-mentioned ion source magnetic current is at least 30 amps. 3. The method according to item 1 of the patent application range, wherein increasing the current of the ion source magnet (s0 u r c e m a g n e t) increases the probability of collision of nitrogen molecules and radicals. 第12頁Page 12
TW90122392A 2001-09-10 2001-09-10 Method for preventing nitrogen contamination in silicon ions implantation TW502341B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90122392A TW502341B (en) 2001-09-10 2001-09-10 Method for preventing nitrogen contamination in silicon ions implantation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90122392A TW502341B (en) 2001-09-10 2001-09-10 Method for preventing nitrogen contamination in silicon ions implantation

Publications (1)

Publication Number Publication Date
TW502341B true TW502341B (en) 2002-09-11

Family

ID=21679279

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90122392A TW502341B (en) 2001-09-10 2001-09-10 Method for preventing nitrogen contamination in silicon ions implantation

Country Status (1)

Country Link
TW (1) TW502341B (en)

Similar Documents

Publication Publication Date Title
TWI426541B (en) Beam stop assembly for a mass analyzer, ion implantation system and method for preventing particle conamination in an ion implantation system
JP3749924B2 (en) Ion implantation method and semiconductor device manufacturing method
KR102031577B1 (en) Ion implantation system for processing substrate and method of processing substrate
US7994031B2 (en) Method of manufacturing CMOS devices by the implantation of N- and P-type cluster ions
US7491953B2 (en) Ion implantation device and a method of semiconductor manufacturing by the implantation of boron hydride cluster ions
US8410459B2 (en) Ion implantation device and a method of semiconductor manufacturing by the implantation of boron hydride cluster ions
TWI228543B (en) Pretreatment process for plasma immersion ion implantation
US20080305598A1 (en) Ion implantation device and a method of semiconductor manufacturing by the implantation of ions derived from carborane molecular species
JP2007525838A (en) Method for forming doped and undoped strained semiconductor and method for forming semiconductor thin film by gas cluster ion irradiation
CN102113094A (en) Ion source cleaning method and apparatus
US4851691A (en) Method for photoresist pretreatment prior to charged particle beam processing
US7816656B2 (en) Method of implanting ion species into microstructure products by concurrently cleaning the implanter
US7442631B2 (en) Doping method and method of manufacturing field effect transistor
US8524584B2 (en) Carbon implantation process and carbon ion precursor composition
US20180247801A1 (en) Gallium implantation cleaning method
TW502341B (en) Method for preventing nitrogen contamination in silicon ions implantation
US9922800B2 (en) System and method for generating ions in an ion source
US6605812B1 (en) Method reducing the effects of N2 gas contamination in an ion implanter
JP2006253659A (en) Doping method and method of manufacturing field effect transistor
US7888661B2 (en) Methods for in situ surface treatment in an ion implantation system
US6982215B1 (en) N type impurity doping using implantation of P2+ ions or As2+ Ions
JP2001511953A (en) Ion implantation treatment method
JPS63124355A (en) Ion injector
CN114334633A (en) Ion implantation method for wafer
JP2004096102A (en) Ion implantation method and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent