TW497209B - Method for and structure of alkali earth metal oxide on gate insulators - Google Patents

Method for and structure of alkali earth metal oxide on gate insulators Download PDF

Info

Publication number
TW497209B
TW497209B TW090117573A TW90117573A TW497209B TW 497209 B TW497209 B TW 497209B TW 090117573 A TW090117573 A TW 090117573A TW 90117573 A TW90117573 A TW 90117573A TW 497209 B TW497209 B TW 497209B
Authority
TW
Taiwan
Prior art keywords
layer
single crystal
oxide
compound semiconductor
template
Prior art date
Application number
TW090117573A
Other languages
Chinese (zh)
Inventor
Jamal Ramdani
Ravindranath Droopad
Lyndee Hilt
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Application granted granted Critical
Publication of TW497209B publication Critical patent/TW497209B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02269Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by thermal evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28264Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)

Abstract

High quality epitaxial layers of stable oxides can be grown overlying compound semiconductor material substrates. The compound semiconductor substrate may be terminated with an atomic layer of gallium, for example (for a gallium arsenide substrate), forming a terminating layer. The oxide layer is a layer of monocrystalline oxide spaced apart from the compound semiconductor wafer by an oxide template layer overlying the compound semiconductor substrate via the terminating layer. The oxide template layer dissipates strain and permits the growth of a high quality monocrystalline oxide layer. Any lattice mismatch between the monocrystalline oxide layer and the underlying compound semiconductor substrate is decreased by the oxide template layer.

Description

497209 A7 B7 五、發明説明(1 ) 本申請案已於2000年7月21日在美國申請爲第09/621/77 1 號專利。 發明範疇 本發明通常係關於半導體結構、裝置與其製造,特別是 化合物半導體結構與裝置,以及含有單晶系化合物半導體 材料之半導體結構、裝置與積體電路的製造與使用。 發明背景 大多數半導體分立裝置與積體電路使用矽來製造,至少 部分是因爲有便宜、高品質的單晶矽基板可用。其他半導 體材料,如所謂的化合物半導體材料,具有包括較寬之能 隙與/或比矽晶高之遷移率,或是使這些材料對某些類型 之半導體裝置有利之直接能隙等物理屬性。在電子與光電 子工業中,通常想要在此一化合物半導體基板上成長安定 之氧化物。不幸地,自然氧化物,如神氧化物或鎵氧化 物,通常不安定且介面狀態密度太高,以致於不能具有互 補金屬氧化物半導體(CMOS)類型之特性。 於是,存在一個半導體結構與製程之需求,以製造此一 具有高品質、可於其上形成安定氧化物之單晶系化合物半 導體基板的結構。 圖式簡單説明 、 本發明以實例方式説明,並且包含參考資料所指之相似 元件而不限於附圖,其中·· 圖1-3以剖面圖解説明根據本發明各具體實施例之裝置結 構; -4- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)497209 A7 B7 V. Description of the invention (1) This application was filed in the United States as a patent No. 09/621/77 1 on July 21, 2000. Scope of the invention The present invention generally relates to the manufacture and use of semiconductor structures, devices and their manufacture, especially compound semiconductor structures and devices, and semiconductor structures, devices and integrated circuits containing single crystal compound semiconductor materials. BACKGROUND OF THE INVENTION Most semiconductor discrete devices and integrated circuits are manufactured using silicon, at least in part because of the availability of inexpensive, high-quality single crystal silicon substrates. Other semiconductor materials, such as so-called compound semiconductor materials, have physical properties including wider energy gaps and / or higher mobility than silicon crystals, or direct energy gaps that make these materials advantageous for certain types of semiconductor devices. In the electronics and photonics industries, it is often desirable to grow stable oxides on such a compound semiconductor substrate. Unfortunately, natural oxides, such as sacred oxides or gallium oxides, are often unstable and the interface state density is too high to have the characteristics of a complementary metal oxide semiconductor (CMOS) type. Therefore, there is a need for a semiconductor structure and a manufacturing process to fabricate a structure of a high-quality single crystal compound semiconductor substrate having a stable oxide formed thereon. The drawings are briefly explained, the present invention is illustrated by way of example, and includes similar elements as referred to in the reference materials without being limited to the accompanying drawings, in which Figures 1-3 illustrate the device structure according to specific embodiments of the present invention in cross-section;- 4- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

裝 玎Pretend

線 497209 A7 B7 五、發明説明(2 圖4以圖表説明在主晶與生長的社曰 ^ 」'、口叩層中,最大可 膜:与'度與晶格失配之間的關係; 圖5説明根據本發明具體實施例,句人 iT, F a ^ ^ ^ ^ ^ 匕3間極、源極與汲 極k域之裝置結構; 圖6與圖5相似,進一步説明根據本菸 仅户』又具體實施你I, 包含形成於iv族單晶系半導體基板上夕ρΕ1、 ....s ^ 上又閘極、源極與汲極 區域I裝置結構。 熟諳此藝之士會認同爲了單純與渣姑 , ”硐疋地i兄明圖中之元 件,其不需要按比例描繪。舉例來說,柏 、 ^相對於其他元件, 圖中許多元件的尺寸被誇大,以輔助改農t 人σ野本發明具體膏 施例之了解。 ^ 圖1以剖面圖解説明根據本發明各具體實施例之半導㈣ 結構100的一部份。半導體結構100包含—單晶系化合物半 導體層101、一氧化物模板層103,以及一單晶系鹼土全屬 氧化物層1〇5。在本文中,「單晶系」一詞應具有一般用 於半導體工業中之意義。此一名詞應指通常可於半導體工 根據本發明之具體實施例,單晶系化合物半導體層1〇1 是一單晶系化合物半導體基板,如砷化鎵基板。通常自單 晶系化合物半導體表面曼除任何自然氧化物(如鎵氧化 -5- 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐)Line 497209 A7 B7 V. Description of the invention (2 Figure 4 illustrates the relationship between the main film and the growth layer in the main crystal and the layer of the mouth, the maximum film: and the degree and lattice mismatch; 5 illustrates that according to a specific embodiment of the present invention, the sentence iT, F a ^ ^ ^ ^ ^ ^ 3 device structure of the pole, source and drain k domain; Figure 6 is similar to Figure 5, further illustrating that only households according to the present cigarette "I also specifically implement you, including the device structure of the gate, source, and drain regions I formed on the iv single-crystal semiconductor substrate ρΕ1, .... s ^. Those skilled in the art will agree that Simple and slag, the elements in the picture are not drawn to scale. For example, compared to other elements, the dimensions of many elements in the figure are exaggerated to assist the agricultural reform A person understands the specific paste embodiments of the present invention. ^ FIG. 1 illustrates, in cross section, a part of a semiconductor structure 100 according to various embodiments of the present invention. The semiconductor structure 100 includes a single crystal compound semiconductor layer 101, a The oxide template layer 103 and a single crystal alkaline earth are all oxide layers 105. Herein, the term "single crystal system" should have the meaning generally used in the semiconductor industry. This term should mean that the semiconductor crystal semiconductor layer 100 is a single crystal compound semiconductor Crystalline compound semiconductor substrates, such as gallium arsenide substrates. Generally, any natural oxides (such as gallium oxide) are removed from the surface of single crystal compound semiconductors. This paper is in accordance with the Chinese National Standard (CNS) A4 specification (210X297 mm).

裝 訂 業中找到足單一結晶或實質上單一結晶的材料,且應包含 那些具有相對小量’通常可於碎、鍺,或矽與鍺混合物之 基板,以及此等材料的磊晶層中找到,諸如位錯之類缺陷 的材料。Materials found in the bookbinding industry that are sufficiently monocrystalline or substantially monocrystalline, and should include those with relatively small amounts, are often found in substrates of shredded, germanium, or a mixture of silicon and germanium, and the epitaxial layers of these materials. Defective materials such as dislocations.

線 A7 I--~~___ B7 五、發明説明(3 ) 物)^ ^成典自然氧化物之神化鎵基板。之後,藉著用 朵原子層、止(即安足化)單晶系化合物半導體層1 0 1之表 面,例如對砷化鎵基板,可於單晶系化合物半導體層101 上外延地成長氧化物模板層103(與後續之單晶系鹼土金屬 氧化物層105)。在這一方面,舉例來説,以鎵、鋁或銦(視 選擇作化合物半導體層1〇1之材料而定)終止單晶系化合物 半導體層ιοί之表面,可讓終止層1〇2形成。終止層ι〇2允 許於單晶系化合物半導體層1〇1上成長一安定、高介電常 數或中等介電常數之氧化物。此外,終止層1〇2幫助初始 單晶系化合物半導體層101上氧化物模板層1〇3之成長。以 此万法,終止層102幫助減輕要不然可能發生於氧化物模 板層1 ,由於單晶系化合物半導體與氧化物模板層之晶 格苇數不同所產生之應力。減輕氧化物模板i 〇3之應力有 助於同結晶品質之單晶系鹼土金屬氧化物層1 〇5的〆成長。 終止層1 02可能形成氧化物模板層1 之部分,可是爲了描 寫之目的,仍然以單獨的層説明。 作爲説明,如果單晶系化合物半導體層1 〇丨是砷化鎵基 板’則單晶系化合物半導體層1 〇 1可藉由形成含有鎵之1 02 層來終止’接著將102層暴露於鳃與氧氣中,以形成單層 具有厚度範圍約爲4-5埃之氧化物模板層丨03。如此一來, 舉例來説,終止層102可能暴露於鳃(或鋇)鎵氧化物層中, 以幫助氧化物模板層103之成長。終止層1〇2暴露於鹼土金 屬與氧氣中,將在單晶系化合物半導體層1 〇 1上面,形成 具有鹼土金屬-鎵-氧形式(如四氧化二鎵锶(SrGa2〇4)或四氧 -6 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公爱) 497209 A7 ________ B7 五、發明説明(4 ) 化二鎵鋇(BaGa2〇4))之氧化物模板1〇3。爲了進一步説明此 一例子’氧化物模板層1 03可能包括使用單層鳃氧化物(如 氧化鳃(Sr*〇)),繼而一層鈦氧化物(如二氧化鈦(Ti〇2))。當 然,氧化物模板層1 03可以是一層或更多之單層厚的,例 如約1至10層單層。如此一來,舉例來説,氧化物模板層 103將爲互補金屬氧化物半導體(CM〇s)之應用,提供一實 質上安定之氧化物。 一旦形成氧化物模板層1〇3,可於氧化物模板層1〇3上面 形成單晶系驗土金屬氧化物層丨05。適當的單晶系鹼土金 屬氧化物層1 05材料以化學之方法鍵結於氧化物模板層i 〇3 表面上所選擇的位置,以提供後續單晶系鹼土金屬氧化物 層105磊晶成長之成核位置。單晶系鹼土金屬氧化物層1〇5 以選擇與下層之結晶相容之單晶系氧化物或氮化物材料較. 佳。結果之單晶系鹼土金屬氧化物層105可能具有約爲2至 1 00奈米之厚度,例如約5至1 〇奈米。舉例來説,材料可以 是具有本質上與下層,及任何隨後應用於其上之材料之晶 格結構相匹配的氧化物或氮化物。作爲説明,單晶系驗土 金屬氧化物層105可以是鳃-鋇-鈦-氧形式(ShBakTiC^,其 中X從0到1做變化)、鹼土金屬錫氧化物(如三氧化錫鎖 (BaSn03)),與/或諸如此類。 圖2以剖面圖解説明根據本發明進一步具體實施例之半 導體結構200的一部份。結構200與之前所述之半導體結構 100相似,除此之外,結構200亦包含一位於單晶系化合物 半導體層101中,以及氧化物模板層103下方之雜質掺雜層 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 497209 A7 _______B7 五、發明説明(5 ) (或雜質掺雜區域)2〇7。雜質摻雜層207通常是一種化合物 半導體材料(如砷化鎵),包括一般於互補金屬氧化物半導 體(CMOS)製造業中使用型或p型摻雜或雜質(如矽)。 根據本發明之一具體實施例,在單晶系化合物半導體層 10 1中,於單晶系化合物半導體層丨〇丨與氧化物模板層工 間之j面,开;?成雜質摻雜層2 〇 7。通常雜質捧雜層2 〇 7具有 大、5 500奈米範圍之厚度,約略於1 〇單層做變化。舉例 來説,雜質摻雜層207提供一製造電晶體之活性區域。如 圖5所説明,經由摻雜、擴散或離子注入,可於雜質摻雜 層207中形成源極區域217與汲極219區域以形成結構5⑽。 一旦於雜質摻雜層207中形成源極217與汲極219區域,且 於207層上形成103與105層,則可於單晶系鹼土金屬氧化 物層10 5上形成傳導電極2 1 5 (如閘極,已圖案化之金屬電 極等等),而與源極217及汲極219區域成一直線,提供絕 緣場效應電晶體之絕緣閘極結構。 圖3以剖面圖解説明根據本發明另一具體實施例之半導 體結構300的一部份。結構300與結構1〇〇及2〇〇相似,除此 之外,結構300包含一氧化物模板層309,一 iv族單晶系半 導體基板3 1 1,與可選擇性的雜質摻雜層2〇7。 根據本發明之一具體實施例,結構3〇〇亦包括一位於IV 族單晶系半導體基板3 11與氧化物模板層3〇9之間的非晶系 中間層3 15。在氧化物模板層3〇9成長期間,藉由IV族單晶 系半導體基板3 1 1之氧化,於IV單晶系半導體基板3丨丨上, 介於IV族單晶系半導體基板3 11與成長氧化物模板層3〇9之 -8 - 辜紙張尺度適财S S家料(CNS) A4規格(2l〇x 297公釐)Line A7 I-- ~~ ___ B7 V. Description of the Invention (3) Objects) ^ ^ into the deified gallium substrate of natural oxides. After that, by using an atomic layer, the surface of the single crystal compound semiconductor layer 101 can be grown epitaxially on the single crystal compound semiconductor layer 101, such as a gallium arsenide substrate. Template layer 103 (and subsequent single crystal alkaline earth metal oxide layer 105). In this regard, for example, terminating the surface of the single crystal compound semiconductor layer with gallium, aluminum, or indium (depending on the material selected as the compound semiconductor layer 101) allows the termination layer 102 to be formed. The stop layer ι02 allows a stable, high dielectric constant or medium dielectric constant oxide to be grown on the single crystal compound semiconductor layer 101. In addition, the termination layer 102 helps the growth of the oxide template layer 103 on the initial single crystal compound semiconductor layer 101. In this way, the termination layer 102 helps alleviate the stress that may otherwise occur in the oxide template layer 1 due to the difference in the number of lattice reeds of the single crystal compound semiconductor and the oxide template layer. Reducing the stress of the oxide template i 〇 3 helps the growth of the single crystal alkaline earth metal oxide layer 105 with the same crystal quality. The termination layer 102 may form part of the oxide template layer 1, but for the purpose of description, it is still described as a separate layer. By way of illustration, if the single crystal compound semiconductor layer 10 is a gallium arsenide substrate, the single crystal compound semiconductor layer 101 can be terminated by forming a 102 layer containing gallium, and then the 102 layer is exposed to the gill and In oxygen, a single-layer oxide template layer with a thickness in the range of about 4-5 angstroms is formed. As such, for example, the termination layer 102 may be exposed to the gill (or barium) gallium oxide layer to help the oxide template layer 103 grow. The termination layer 102 is exposed to alkaline earth metal and oxygen, and will form an alkaline earth metal-gallium-oxygen form (such as strontium gallium strontium tetraoxide (SrGa2 04) or tetraoxide) on the single crystal compound semiconductor layer 101 -6-This paper size applies Chinese National Standard (CNS) A4 specification (210X297 public love) 497209 A7 ________ B7 V. Description of the invention (4) Barium digallium oxide (BaGa2 04)) oxide template 103. To further illustrate this example, the oxide template layer 103 may include the use of a single layer of gill oxide (such as oxidized gills (Sr * 0)), followed by a layer of titanium oxide (such as titanium dioxide (Ti02)). Of course, the oxide template layer 103 may be one or more single-layer thick, such as about 1 to 10 single-layers. In this way, for example, the oxide template layer 103 will provide a substantially stable oxide for the application of complementary metal oxide semiconductors (CMos). Once the oxide template layer 103 is formed, a single crystal soil test metal oxide layer 05 can be formed on the oxide template layer 103. Appropriate single crystal alkaline earth metal oxide layer 105 materials are chemically bonded to selected positions on the surface of the oxide template layer i 03 to provide subsequent monocrystalline alkaline earth metal oxide layer 105 epitaxial growth. Nucleation position. The single crystal alkaline earth metal oxide layer 105 is preferably a single crystal oxide or nitride material that is compatible with the crystals of the underlying layer. The resulting single crystal alkaline earth metal oxide layer 105 may have a thickness of about 2 to 100 nanometers, for example, about 5 to 10 nanometers. For example, the material may be an oxide or nitride that has a lattice structure that essentially matches the underlying layer and any subsequent materials applied to it. By way of illustration, the single crystal soil test metal oxide layer 105 may be in the form of gill-barium-titanium-oxygen (ShBakTiC ^, where X varies from 0 to 1), alkaline earth metal tin oxide (such as tin trioxide lock (BaSn03 )), And / or the like. Fig. 2 illustrates in cross section a portion of a semiconductor structure 200 according to a further embodiment of the present invention. The structure 200 is similar to the semiconductor structure 100 described above. In addition, the structure 200 also includes an impurity-doped layer located in the single crystal compound semiconductor layer 101 and an oxide doped layer under the oxide template layer 103. This paper is applicable to China Standard (CNS) A4 specification (210 X 297 mm) 497209 A7 _______B7 5. Description of the invention (5) (or impurity-doped region) 207. The impurity doped layer 207 is typically a compound semiconductor material (such as gallium arsenide), including type or p-type doping or impurities (such as silicon) commonly used in complementary metal oxide semiconductor (CMOS) manufacturing. According to a specific embodiment of the present invention, in the single crystal compound semiconductor layer 101, the j-plane between the single crystal compound semiconductor layer and the oxide template layer is opened; Into an impurity doped layer 207. Generally, the impurity impurity layer 2007 has a large thickness in the range of 5,500 nanometers, which is slightly different from that of a single layer. For example, the impurity doped layer 207 provides an active region for making a transistor. As illustrated in FIG. 5, a source region 217 and a drain region 219 may be formed in the impurity doped layer 207 through doping, diffusion, or ion implantation to form a structure 5 ′. Once the source 217 and drain 219 regions are formed in the impurity doped layer 207, and 103 and 105 layers are formed on the 207 layer, a conductive electrode 2 1 5 can be formed on the single crystal alkaline earth metal oxide layer 105. (Such as gate, patterned metal electrode, etc.), and in line with the source 217 and drain 219 regions, to provide an insulated gate structure of the insulated field effect transistor. FIG. 3 illustrates, in cross section, a portion of a semiconductor structure 300 according to another embodiment of the present invention. The structure 300 is similar to the structures 100 and 2000. In addition, the structure 300 includes an oxide template layer 309, a group IV single crystal semiconductor substrate 3 1 1 and a selective impurity doped layer 2 〇7. According to a specific embodiment of the present invention, the structure 300 also includes an amorphous intermediate layer 3 15 located between the group IV single crystal semiconductor substrate 31 and the oxide template layer 309. During the growth of the oxide template layer 309, the group IV single crystal system semiconductor substrate 3 丨 丨 is oxidized by the group IV single crystal system semiconductor substrate 3 1 1 between the group IV single crystal system semiconductor substrate 3 11 and Growth oxide template layer 309-8-Gu paper scale Shicai SS home materials (CNS) A4 specification (2l0x 297 mm)

裝 訂Binding

線 497209 A7Line 497209 A7

Order

Hold

線 497209 A7 B7 五、發明説明(7 ) 化物或氮化物。氧化物模板層3 09以成長於下面之基板上 較佳。一旦形成氧化物模板層309,單晶系化合物半導體 層101可以在氧化物模板層309上面外延地成長。氧化物模 板層309可以是一層或更多層單層厚的,例如具有約爲卜 10單層之厚度。 結構300也包含一終止層3 13,介於氧化物模板層3〇9與單 晶系化合物半導體層101之間。藉著以單層鳃(或鋇)氧化物 (如氧》化4S(SrO)或氧化銷(BaO))或欽氧化物(如二氧化鈥)終 止(即安定化)氧化物模板層309之表面以形成終止層313, 單晶系化合物半導體層1 0 1可以在氧化物模板層3 〇 9上面外 延地成長。在此一方面,終止氧化物模板層3〇9之表面允 許形成一終·止層313。終止層3 13促進氧化物模板層3〇9上 方單晶系化合物半導體層1 0 1之成長。終止層3 1 3可能形成 氧化物模板層309之部分;可是爲了描寫之目的,313層以 單獨之層説明較方便。如上關於圖1與2之討論,可於單晶 系化合物半導體層101上形成連續層。此外,圖6說明本發 明之一具體實施例,結構600除了進一步包含形成於…族 單晶系半導體基板3 11上之閘極221、源極223,與及極225 外,其餘與結構500相似。 除了圖1 -3所説明之結構特性,圖4以圖表説明以高結晶 品質生長結晶層之可達厚度作爲主晶與生長結晶層晶格常 數失配之函數的關係。曲線40 1説明高結晶品質材料之邊 界。曲線4 0 1右邊的區域表示具有大量缺陷之層。沒有晶 格失配,理論上在主晶上可能成長一無限厚、高品質之蟲 — -10- 本紙張尺度適用中國國家標準(CNS) A4规格(210X297公酱) 497209Line 497209 A7 B7 V. Description of the Invention (7) Compounds or nitrides. The oxide template layer 309 is preferably grown on the underlying substrate. Once the oxide template layer 309 is formed, the single crystal compound semiconductor layer 101 can be epitaxially grown on the oxide template layer 309. The oxide mold layer 309 may be one or more single-layer thick, for example, having a thickness of about 1010 single layers. The structure 300 also includes a termination layer 3 13 between the oxide template layer 309 and the single crystal compound semiconductor layer 101. By terminating (ie, stabilizing) the oxide template layer 309 with a single layer of gill (or barium) oxide (such as oxygenated 4S (SrO) or oxide pin (BaO)) or oxo oxide (such as dioxide ') A stop layer 313 is formed on the surface, and a single crystal compound semiconductor layer 101 can be epitaxially grown on the oxide template layer 309. In this aspect, the surface of the termination oxide template layer 309 allows a termination stop layer 313 to be formed. The stop layer 3 13 promotes the growth of the single crystal compound semiconductor layer 101 above the oxide template layer 309. The termination layer 3 1 3 may form part of the oxide template layer 309; however, for the purpose of description, it is convenient to describe the 313 layer as a separate layer. As discussed above with reference to Figs. 1 and 2, a continuous layer can be formed on the single crystal compound semiconductor layer 101. In addition, FIG. 6 illustrates a specific embodiment of the present invention. The structure 600 is similar to the structure 500 except that the structure 600 further includes a gate electrode 221, a source electrode 223, and a sum electrode 225 formed on the ... group single crystal semiconductor substrate 31. . In addition to the structural characteristics illustrated in Figures 1-3, Figure 4 graphically illustrates the relationship between the reachable thickness of a crystalline layer grown with high crystalline quality as a function of the lattice constant mismatch between the main crystal and the grown crystalline layer. Curve 40 1 illustrates the boundaries of high crystalline quality materials. The area to the right of the curve 401 indicates the layer with a large number of defects. Without lattice mismatch, in theory, an infinitely thick, high-quality insect may grow on the main crystal — -10- This paper size applies to China National Standard (CNS) A4 (210X297 male sauce) 497209

:層。隨著晶格常數失配之增加,高品質晶格層迅速地減 ::作爲參考點,舉例來說,如果主晶與成長層間之晶格 :數失配超過約2% ’則超過約2〇奈米之單晶系磊晶層可 能含有缺陷。 根據本發明之一具體實施例 只他W 早日曰系化合物半導體層 101疋一(1〇〇)晶向之單晶系砷化镜 尔T化塚日日®,而氧化物模板層 103是一層鈦酸鋇鳃。這兩種材料間晶格常數之實質匹 配,是藉由將鈦酸鹽(如鈦酸鳃、鈦酸鋇等等)材料對坤化 鎵基板晶圓之晶體方位旋轉45度之晶體方位來達成。 單晶系基板晶才各結構之特徵在於晶才各常數與晶格方位。 同樣地,氧化物模板層103也是一單晶系材料,而此一單 晶系材料之晶格的特徵在於晶格常數與晶格方位。氧化物 模板層103之晶格常數與單晶系基板必須是實質上匹配, 或者是必須藉由一晶體方位對另一晶格方位之旋轉,達成 晶格常數之實質匹配。在本文中,「實質相等」一詞與 「實質匹配」意指晶格常數間具有充分之相似性,在;}7層 上面允终南品質結晶層之成長。 爲了在外延地生長的單晶系鹼土金屬氧化物層1〇5中達 到高結晶品質,氧化物模板層103必須是高結晶品質的。 此外’爲了在單晶系驗土金屬氧化物層1 〇 5中達到高、纟士晶 品質’需要主晶(如單晶系化合物半導體層丨〇丨)與生長晶體 (如單晶系鹼土金屬氧化物層1 05)晶體晶格常數之間的實質 匹配。由於生長晶體之晶體方位對主晶方位的旋轉,藉由 適當地選擇材料’可達成此一晶格常數之實質匹配。如果 -11- 本紙張尺度適用中國國家標準(CNS) A4规格(210 X 297公釐):Floor. As the lattice constant mismatch increases, the high-quality lattice layer rapidly decreases :: as a reference point, for example, if the lattice between the main crystal and the growth layer: number mismatch exceeds about 2% 'then it exceeds about 2 The single crystal epitaxial layer of 〇 nanometer may contain defects. According to a specific embodiment of the present invention, it is only a single-crystal compound semiconductor layer 101 (100) crystal orientation of a single crystal system arsenic mirror T chemical grazing day, and the oxide template layer 103 is a layer Barium titanate gills. The substantial matching of the lattice constants between these two materials is achieved by rotating the titanate (such as gill titanate, barium titanate, etc.) material to the crystal orientation of the Kunhua substrate wafer by 45 degrees. . Each crystal structure of a single crystal substrate is characterized by crystal constants and lattice orientation. Similarly, the oxide template layer 103 is also a single crystal system material, and the crystal lattice of this single crystal system material is characterized by a lattice constant and a lattice orientation. The lattice constant of the oxide template layer 103 and the single crystal substrate must be substantially matched, or the substantial matching of the lattice constant must be achieved by rotating one crystal orientation to another lattice orientation. In this article, the term "substantially equal" and "substantially matched" means that there is sufficient similarity between the lattice constants, and that the growth of the crystalline layer of the final quality is allowed on the 7 layers. In order to achieve high crystal quality in the epitaxially grown single crystal alkaline earth metal oxide layer 105, the oxide template layer 103 must be of high crystal quality. In addition, 'in order to achieve high and high crystal quality in the single-crystal soil test metal oxide layer 105', a main crystal (such as a single-crystal compound semiconductor layer) and a growth crystal (such as a single-crystal alkaline earth metal) are required. The oxide layer 105) substantially matches the lattice constants of the crystals. Due to the rotation of the crystal orientation of the growing crystal to the orientation of the main crystal, the substantial matching of this lattice constant can be achieved by proper selection of the material '. If -11- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

裝 訂Binding

線 497209 A7 B7 五、發明説明(9 ) 主晶是坤化鎵、砷化鎵鋁、砷化鋅或硒化硫鋅,而氧化物 模板層103是單晶系SrxBa^TiC^,且生長晶體層之晶體方 位對氧化物模板層103之方位旋轉45度,則可達到兩材料 晶格常數之實質匹配。 同樣地,如果氧化物模板層103材料是錘酸鳃或鋇、铪 酸總或鋇,或氧化鈥鋇,而單晶系驗土金屬氧化物層1 0 5 是磷化銦或砷化銦鎵或砷化銦鋁,則藉由生長晶體層(即 單晶系鹼土金屬氧化物層105)之晶體方位對主晶層旋轉45 度,可達到兩材料晶格常數之實質匹配。在一些例子中, 可利用介於主晶與生長化合物半導體層之間的結晶半導體 緩衝(或氧化物)層來減少生長之單晶系鹼土金屬氧化層105 中,可能由於晶格常數的差異所造成的應力。從而在生長 的單晶系鹼土金屬氧化物層105中,可以達到更好的結晶 品質。 參照圖1-6,單晶系化合物半導體層101是一單晶系基 板,例如單晶系砷化鎵基板。爲了特殊半導體結構之需 要,可以從任何IIIA與VA族元素(III-V族半導體化合物)、 混合III-V族化合物、II (A或B)與VIA族元素(II-VI族半導體 化合物),與/或混合II-VI族化合物中,選擇單晶系化合物 半導體層101之化合物半導體材料。舉例來説,單晶系化 合物半導體層101含有來自週期表中III族與V族之材料。 III族材料的例子包括鋁、鎵、銦等等。V族的例子包括 磷、砷、錫等等。適當化合物半導體材料的進一步例子包 括砷化銦鎵(GalnAs)、砷化鋁鎵(GaAlAs)、磷化銦鎵 -12- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 497209 A7 B7 五、發明説明(10 ) (GalnP)、砷化銦鋁(AlInAs),磷化銦(InP)、硫化鎘(CdS)、 碲化汞鎘(CdHgTe)、硒化鋅(ZnSe)、硒化硫鋅(ZnSSe)等 等。雖未説明,根據本發明,單晶系化合物半導體層1 01 可能包含一或更多層’例如神化姻嫁(Gain As)與/或坤化姻 I呂(AlInAs)在一層轉化姻(InP)上面。 單晶系化合物半導體層10 1(如形成上層313時)可能由分 子束磊、晶(MBE)、化學氣相沈積(CVD)、有機金屬化學氣 相沈積(MOCVD)、徙動強化磊晶(MEE)、原子層磊晶 (ALE)、物理氣相沈積(PVD)、化學溶液沈積(CSD)、脈衝 雷射沈積(PLD)等等來製備。 終止層1 02通常是一層鎵、鋁或其他使用於單晶系化合 物半導體層101中之材料的薄膜。舉例來説,終止層102可 能是砷化鎵單晶系化合物半導體層101中之鎵單層(或是砷 化鋁鎵單晶系化合物半導體層101中之鋁單層),以分子束 磊晶(MBE)、有機金屬化學氣相沈積(MOCVD)、原子層磊 晶(ALE)或徙動強化羞晶(MEE)之方法沈積而成。 氧化物模板層103以選擇與下層及上層材料之結晶相容 之單晶系氧化物或氮化物材料較佳。舉例來説,氧化物模 板層103之材料可以是具有本質上與基板及隨後應用之半 導體材料晶格結構相匹配的氧化物或氮化杨。適合用作氧 化物模板層10 3的材料包括如驗土金屬鈥酸鹽、驗土金屬 結酸鹽、驗土金屬铪酸鹽、驗土金屬叙酸鹽、驗土金屬釕 酸鹽、驗土金屬銳酸鹽、驗土金屬訊酸鹽之金屬氧化物, 如驗土金屬錫基#5鈥礦之#5欽氧化物、鑭铭酸鹽、氧化銳 -13- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)Line 497209 A7 B7 V. Description of the invention (9) The main crystal is gallium gallium, aluminum gallium arsenide, zinc arsenide, or zinc sulfide, and the oxide template layer 103 is a single crystal SrxBa ^ TiC ^, and a crystal is grown. By rotating the crystal orientation of the layer 45 degrees from the orientation of the oxide template layer 103, a substantial matching of the lattice constants of the two materials can be achieved. Similarly, if the material of the oxide template layer 103 is gill or barium hammer acid, total or barium gallate, or barium oxide, and the single crystal soil test metal oxide layer 105 is indium phosphide or indium gallium arsenide Or indium aluminum arsenide, the crystal orientation of the growing crystal layer (ie, the single crystal alkaline earth metal oxide layer 105) is rotated 45 degrees to the main crystal layer to achieve a substantial matching of the lattice constants of the two materials. In some examples, a crystalline semiconductor buffer (or oxide) layer between the main crystal and the growing compound semiconductor layer can be used to reduce the growth of the single crystal alkaline earth metal oxide layer 105, which may be caused by the difference in lattice constants. Caused by stress. Therefore, in the grown single crystal alkaline earth metal oxide layer 105, better crystal quality can be achieved. Referring to Figs. 1-6, the single crystal compound semiconductor layer 101 is a single crystal substrate, such as a single crystal gallium arsenide substrate. For the needs of special semiconductor structures, any IIIA and VA group (III-V semiconductor compound), mixed III-V compound, II (A or B) and VIA group (II-VI semiconductor compound), Among the group II-VI compounds, a compound semiconductor material of the single crystal compound semiconductor layer 101 is selected. For example, the single crystal compound semiconductor layer 101 contains materials from groups III and V in the periodic table. Examples of Group III materials include aluminum, gallium, indium, and the like. Examples of group V include phosphorus, arsenic, tin, and the like. Further examples of suitable compound semiconductor materials include indium gallium arsenide (GalnAs), aluminum gallium arsenide (GaAlAs), indium gallium phosphide-12-This paper is sized to the Chinese National Standard (CNS) A4 (210 X 297 mm) 497209 A7 B7 V. Description of the invention (10) (GalnP), indium aluminum arsenide (AlInAs), indium phosphide (InP), cadmium sulfide (CdS), cadmium mercury telluride (CdHgTe), zinc selenide (ZnSe), Zinc selenide (ZnSSe) and so on. Although not illustrated, according to the present invention, the single crystal compound semiconductor layer 101 may include one or more layers such as Gain As and / or AlInAs in one layer (InP) Above. The single crystal compound semiconductor layer 101 (such as when forming the upper layer 313) may be composed of molecular beam epitaxy, crystal (MBE), chemical vapor deposition (CVD), organic metal chemical vapor deposition (MOCVD), migration enhanced epitaxy ( MEE), atomic layer epitaxy (ALE), physical vapor deposition (PVD), chemical solution deposition (CSD), pulsed laser deposition (PLD), and the like. The stop layer 102 is usually a thin film of gallium, aluminum, or other materials used in the single crystal compound semiconductor layer 101. For example, the termination layer 102 may be a gallium single layer in the gallium arsenide single crystal compound semiconductor layer 101 (or an aluminum single layer in the aluminum gallium arsenide single crystal compound semiconductor layer 101), and is epitaxialized with a molecular beam. (MBE), organometallic chemical vapor deposition (MOCVD), atomic layer epitaxy (ALE), or migration enhanced shivering (MEE). The oxide template layer 103 is preferably a single-crystal oxide or nitride material that is compatible with the crystals of the lower and upper layers. For example, the material of the oxide pattern layer 103 may be an oxide or nitride nitride having a lattice structure that substantially matches that of the substrate and the semiconductor material to be subsequently applied. Materials suitable for use as the oxide template layer 103 include, for example, soil test metal's acid salt, soil test metal sulphate, soil test metal salt, soil test metal salt, soil test metal ruthenate, soil test Metal oxides, metal oxides of soil test metal salts, such as soil test metal tin-based # 5'ore # 5 chin oxide, lanthanum acid salt, oxide sharp-13- This paper size applies to Chinese national standards (CNS) A4 size (210X297 mm)

裝 訂Binding

line

4972UV 11 五、發明説明( 鑭與二化釓。另外,各種氮化物,如1化鎵、氮化銘與氮 =可用作氧化物模板層103。舉例來説,雖然釘酸認 疋導組’這些材料大部分是 ^ ^ $介你$八Μ " 疋、,巴、豕租。適带廷些材料是金屬 2 ::屬氮化物,更特別的是這些金屬氧化物或氮化 二I :至^兩種不同的金屬元素,並且具有鈣鈦礦之 、一構。在一些特定的應用中,金屬氧化物或氮化物可 能含有二種或更多不同的金屬元素。舉例來説,氧化物模 板層1〇何能含有來自單晶系化合物半導體層HH與氧之元 素。作爲進一步説明’氧化物模板層103對砰化鎵基板可 能是A-鎵-氧(A-Ga_〇)與/或Α·链·氧(α·αι·〇)的形式,或者 是對磷化銦基板之Α_銦-氧(Α七-〇)形式,其中Α是一鹼土 f屬。就這—點而論,氧化物模板層103可能是A-Ga-o的 薄層(如單層)。氧化物模板層1 03之更進一步的例子包括· 鳃鎵氧化物(如四氧化二鎵鳃,SrGaWd、鋇鎵氧化物(如 四氧化二鎵鋇,BaGa2〇4)、鎵之薄層與鳃·氧(s卜〇)之薄 層、鎵之薄層與鋇·氧(Ba-〇)之薄層、銦_錫·氧之 薄層、錫-銦•氧(如四氧化二銦錫,SnIrl2〇4)之薄層,與/或 銦之薄層與錫-氧(Sn_0)之薄層(其中「薄層」意指約一個 單層)。氧化物模板層1 〇3可能在下層上外延地成長。舉例 來説,使用任何以上討論用來形成1〇1層之方法。 適合用作單晶系驗土金屬氧化物層1〇5材料之金屬氧化 物,包括鹼土金屬鈦酸鹽、鹼土金屬锆酸鹽、鹼土金屬铪 酸鹽、鹼土金屬妲酸鹽、鹼土金屬釕酸鹽、鹼土金屬鈮酸 鹽、驗土金屬釩酸鹽之金屬氧化物,如鹼土金屬錫基約鈦 14- 497209 A7 B7 五、發明説明(12 ) 礦之鈣鈦氧化物、鑭鋁酸鹽、氧化銃鑭與氧化釓。另外, 各種氮化物,如氮化鎵、氮化鋁與氮化硼也可用作單晶系 驗土金屬氧化物層1 0 5。舉例來説,雖然釘酸鐵是導體, 這些材料大部分是絕緣體。通常這些材料是金屬氧化物或 金屬氮化物,更特別的是這些金屬氧化物或氮化物通常含 有至少兩種不同的金屬元素。在一些特定的應用中,金屬 氧化物或氮化物可能含有三種或更多不同的金屬元素。在 其他眾多製程中,單晶系鹼土金屬氧化物層105可能使用 分子束磊晶(MBE)、有機金屬化學氣相沈積(MOCVD)、原 子層磊晶(ALE)或徙動強化磊晶(MEE),在氧化物模板層 103上面蟲晶地成長。 根據本發明具體實施例之I V族單晶系半導體基板3 11, 是一單晶系半導體晶圓,其以大的直徑者較佳。此一晶圓 可能是來自週期表I V族的材料,而以來自IVA族的材料較 佳。I V族半導體材料的實例包括矽、鍺、混合的矽與鍺、 混合的矽與碳、混合的矽、鍺與碳,等等。較佳之I V族單 晶系半導體基板3 11是含矽或鍺的晶圓,而以使用於半導 體工業中之高品質單晶系矽晶圓最佳。 適合用作氧化物模板層3 0 9材料之金屬氧化物,包括如 驗土金屬鈥酸鹽、驗土金屬結酸鹽、驗土金屬铪酸鹽、驗 土金屬Is酸鹽、驗土金屬釘酸鹽、驗土金屬說酸鹽、驗土 金屬飢酸鹽之金屬氧化物,如驗土金屬錫基妈欽礦之I弓鈥 氧化物、鑭鋁酸鹽、氧化鑭钪與氧化釓。另外,各種氮化 物,如氮化鎵、氮化鋁與氮化硼也可用作氧化物模板層 _-15- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 4972094972UV 11 V. Description of the invention (La and dysprosium dioxide. In addition, various nitrides, such as gallium nitride, nitride and nitrogen = can be used as the oxide template layer 103. For example, although the nail acid identification guide group 'Most of these materials are ^ ^ $ 介 你 $ 八 M " 疋 ,, 巴, 豕 豕. Some materials are suitable for metal 2 :: belongs to nitrides, more specifically these metal oxides or nitrides I: to ^ two different metal elements, and have a perovskite structure. In some specific applications, metal oxides or nitrides may contain two or more different metal elements. For example, How can the oxide template layer 10 contain elements from the single crystal compound semiconductor layer HH and oxygen. As a further explanation, the oxide template layer 103 may be A-gallium-oxygen (A-Ga_〇) on the gallium substrate. And / or the form of A · chain · oxygen (α · αι · 〇), or the A_indium-oxygen (Α 七 -〇) form of the indium phosphide substrate, where A is an alkaline earth f. This is- In point of view, the oxide template layer 103 may be a thin layer (such as a single layer) of A-Ga-o. The oxide template layer 103 is one step further. Examples include gill gallium oxide (such as gallium tetroxide gill, SrGaWd, barium gallium oxide (such as barium gallium tetroxide, BaGa204)), a thin layer of gallium, and a thin layer of gill oxygen (sb 0). Layer, a thin layer of gallium and a thin layer of barium-oxygen (Ba-〇), a thin layer of indium-tin-oxygen, a thin layer of tin-indium-oxygen (such as indium tin tetraoxide, SnIrl204), and / Or a thin layer of indium and a thin layer of tin-oxygen (Sn_0) (where "thin layer" means about a single layer). The oxide template layer 103 may grow epitaxially on the lower layer. For example, using Any of the methods discussed above to form the 101 layer. Metal oxides suitable for use as a material for the single crystal soil test metal oxide layer 105, including alkaline earth metal titanates, alkaline earth metal zirconates, alkaline earth metals Metal oxides of acid salts, alkaline earth metal osmates, alkaline earth metal ruthenates, alkaline earth metal niobates, and earth test metal vanadates, such as alkaline earth metal tin-based titanium 14-497209 A7 B7 V. Description of the invention (12 ) Ore, perovskite oxide, lanthanum aluminate, lanthanum oxide and hafnium oxide. In addition, various nitrides, such as gallium nitride, aluminum nitride and Boron can also be used as a monocrystalline soil test metal oxide layer 105. For example, although iron nail acid is a conductor, most of these materials are insulators. Usually these materials are metal oxides or metal nitrides, and more In particular, these metal oxides or nitrides usually contain at least two different metal elements. In some specific applications, metal oxides or nitrides may contain three or more different metal elements. In many other processes, The single crystal alkaline earth metal oxide layer 105 may use molecular beam epitaxy (MBE), organic metal chemical vapor deposition (MOCVD), atomic layer epitaxy (ALE) or migration enhanced epitaxy (MEE). Worm crystals grow on the layer 103. The Group I V single crystal system semiconductor substrate 3 11 according to a specific embodiment of the present invention is a single crystal system semiconductor wafer, which is preferably a large diameter. Such a wafer may be a material from Group I V of the periodic table, and a material from Group IVA is preferred. Examples of the IV semiconductor material include silicon, germanium, mixed silicon and germanium, mixed silicon and carbon, mixed silicon, germanium and carbon, and the like. The preferred Group I V single crystal semiconductor substrate 3 11 is a wafer containing silicon or germanium, and a high-quality single crystal silicon wafer used in the semiconductor industry is the best. Metal oxides suitable for use as materials for the oxide template layer 309, including, for example, soil test metal's acid salt, soil test metal hydrate, soil test metal salt, soil test metal Is salt, soil test metal nail Acid salts, soil test metals, and metal oxides of soil test metals, such as metal oxides of the soil test metal tin-based matechin mine, lanthanum aluminates, lanthanum hafnium oxide, and hafnium oxide. In addition, various nitrides, such as gallium nitride, aluminum nitride, and boron nitride can also be used as the oxide template layer _-15- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 497209

3 09。舉例來説,雖然釕酸锶是導體,這些材料大部分是 ,緣,。通常這些材料是金屬氧化物或金屬氮化物,更特 幻的是這些禽屬氧化物或氮化物通常含有至少兩種不同的 金屬元素。在一些特定的應用中,金屬氧化物或氮化物可 能含有三#或更多不@的金屬元素。適當的氧化物模板材 料以化學之方法鍵結於氧化物模板層3〇9表面上選擇的位 置,提供後續單晶系化合物半導體層1〇1磊晶成長之成核 位置。氧化物模板層3〇9的例子包括鳃鈦氧化物(三氧化鈦 t ’ SrTi03)、鋇鈦氧化物(三氧化鈦鋇,BaTi〇3)等等。 作爲砷化鎵基板終止層313之適當材料包括锶-氧(&amp;_〇)、 鈥-氧(Ti-ο)、鎵-鐵,(Ga-Sr_〇) hi氧(As_s「〇)、数· 砷-氧(T卜As-〇)、鈦-鎵-氧(Ti-Ga_〇)等等之原子層。另一個 例=包括以銦終止單晶系化合物半導體層1〇1,並藉由沈 積單層銦,將單晶系化合物半導體層丨〇丨之銦層暴露於錫 與乳氣中,以形成一具有一層或更多單層之銦_錫_氧(1心 Sn-O)氧化物。作爲磷化銦基板終止層3 η之適當材料包括 鋇-鈥-氧(Ba-T 卜 0)、銦-鈥-氧(In-Sn-〇)、銦-献 ^(Inu) 等等之原子層。 下列實例説明根據本發明之一具體實施例、用來製造如 圖1、2與5中所描寫之結構之半導體結構的製程。舉例來 沉’此一製程始於提供一包含砷化鎵或磷化銦之單晶系化 合物半導體基板。根據本發明之一具體實施例,化合物半 導體基板是一具有(1 〇〇)晶向之坤化鎵晶圓。此一基板以軸 向或至多約2-6度偏軸較佳。如下所述,雖然其他部分可 - —- ______-1 6 _ 本紙張尺歧财_ ^:料(CNS) A4^(2i〇7i^^) 497209 A7 B7 五、發明説明(14 ) 能包含其他結構,至少化合物半導體基板之一部分具有裸 空之表面。在本文中「裸空」一詞意指已經清理一部份基 板表面以移除任何氧化物、污染物,或其他不相干的材 料。裸空的坤化鎵是高度反應性的且會迅速地形成一自然 氧化物已爲吾人所熟知。「裸空」一詞傾向於包含此一自 然氧化物。 爲了在單晶系化合物半導體基板上面外延地成長一單晶 系氧化物層,首先必須實質上移除此一自然氧化物層,以 將下面基板之結晶結構暴露出來。雖然根據本發明也可以 使用其他磊晶製程,下列製程以分子束磊晶(MBE)來實施 較佳。自然氧化物可以藉由熱解吸附作用來移除,其中基 板在滔滔不絕的砷中,被加熱到約攝氏600-650度,以獲 得一實質上砷安定之表面。此時,砷流通常是關閉的,因 此產生鎵安定之表面(如終止層)。結果之表面是鎵、無氧 的表面。高能電子偏向反射(RHEED)可以用來監視從坤安 定表面到鎵安定表面的變化。在此一例子中,結果之表面 呈現一具有鎵之終止層(如一原子層)、有序之4χ 2鎵安定 化結構。需要一化學計量表面以保持此一平面之安定。 此時,在分子束磊晶(ΜΒΕ)裝置中,終止層可能暴露於 緦、鋇、鳃與鋇之結合,或其他鹼土金屬或鹼土金屬之結 合裡。在使用锶的情況下,基板接著被加熱到溫度約攝氏 400-650度。呈現有序之4χ 2結構之結果的表面含有锶、氧 與鎵。由於單晶系氧化物上層有序之成長,此一有序之 4x 2結才聋形成一氧4匕物才莫才反(如一單層)〇氧化物才莫m共 -17- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 497209 A7 B7 五、發明説明(15 ) 核化上層晶體成長所需之化學與物理性質。 根據本發明之另一具體實施例,在低溫下藉由分子束磊 晶(MBE)沈積如氧化鳃、鳃鋇氧化物或氧化鋇之鹼土金屬 氧化物到基板表面,接著加熱此一結構到溫度約攝氏400-6 5 0度,可以移除自然氧化物,並且可以製備用來成長單 晶系氧化物層之基板表面。在此一溫度,氧化鳃與自然氧 化物之,間發生固態反應,引起自然氧化物之減少,並留下 一殘留於基板表面,含锶、氧與鎵之有序的4χ 2結構。再 一次爲有序之單晶系氧化層的後續成長形成一模板。 根據本發明之一具體實施例,緊接於自基板表面移除自 然氧化物(如氧化鎵)與基板表面之終止(如用鎵)之後,此 一基板被冷卻至約攝氏300-650度範圍之溫度,並以分子 束蟲晶(ΜΒΕ)在模板層上成長一層鈥酸總。分子束蟲晶 (ΜΒΕ)製程係從開放分子束磊晶裝置中之快門光閘以暴露 於總、鈇與氧源開始。4思與鈥的比例大約是1 : 1。氧氣分 壓初始時設定於最小値,以每分鐘約0.3 - 0.5奈米之成長速 率成長化學計量之鈦酸鳃。初始化鈦酸锶之成長後,氧氣 分壓在初始最小値之上增加。欽酸銳成長成有序之單晶, 並具有對下面基板之有序4χ 2晶體結構做45度旋轉的晶體 方位。如上所述,如果主晶與生長晶體的晶格常數之間失 配超過約2%,超過約20奈米之單晶系磊晶層可能有缺 陷。 可選擇地,根據本發明之一具體實施例,緊接於基板表 面移除氧化鎵之後,可以形成雜質摻雜層以提供活性區 -18- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 五、發明説明(16 或舉例來尤,此一活性區域允許隨後源極區域與及極區 域之开/成。或者是’舉例來説,藉由摻雜基板之一部分, 而於移除氧化鎵之前形成此等區域。 、每減合物半導體材料與單晶系氧化物層之變化使用一 適當之模板來初始化後續層之成長。舉例來説,如果化合 物半導m材料是碎化鎵銦、绅化銘銦或嶙化銦,則終止層 與:或模板氧化物可能各自含有一鎵、銘或銦之薄層,; 積驗土金屬氧化物之母體。每個這些沈積幫助形成供 單晶系鹼土金屬氧化物層沈積之模板。 '、 、根據本發明之另一具體實施例說明製造如圖3與6所描寫 〈結構4導體結構的製程。此-製程始於提供-由石夕或 鍺組成(單晶系半導體基板。根據本發明之較佳具體實施 例’半導體基板是一具有(1〇〇)晶向之矽晶圓。此一基板以 軸向或至多約0.5-6度偏軸較佳。如下所述,雖然其他部分 可能包含其他結構,至少半導體基板之一部分具有裸空之 表面。在本又巾「裸空」一詞意指已經清理一部份基板表 =以移除任何氧化物、污染物,或其他不相干的材料。裸 2的硬晶S高度反應性的,且會迅速地形成_自然氧化物 已爲吾人所熟知。「裸空」一詞傾向於包含此一自然氧化 物。也可能故意在半導體基板上成長薄的矽氧化物,雖然 此生長的氧化物對根據本發明之製程並非必要。 爲了在單晶系基板上面外延地成長一單晶系氧化物層, 首先必須移除此一自然氧化物層,以將下面基板之結晶結 構暴露出來。雖然根據本發明也可以使用其他磊晶製程, 497209 A7 B7 五、發明説明(17 ) 下列製程以分子束蟲晶(MBE)來實施較佳。在分子束磊晶 裝置中,自然氧化物首先可以藉由熱沈積一薄層之鳃、 銷、總與鋇混合物、或其他驗土金屬氧化物,或者是驗土 金屬氧化物的混合物來移除。在是使用鳃的情況下,基板 被加熱到溫度約攝氏750度,以使锶對自然矽氧化物層起 反應。鐵係用來減少碎氧化物,以留下一無氧化物之表 面。結果之表面呈現有序之2 X 1結構,並含有鳃、氧與 矽。由於單晶系氧化物上層有序之成長,此一有序之2 X 1 結構形成一模板。此一模板提供核化上層晶體成長所需之 化學與物理性質。 根據本發明之另一具體實施例,在低溫下以分子束磊晶 沈積驗土金屬氧化物,如氧化總、總鋇氧化物、或氧化銷 等到基板表面,隨後並加熱此一結構至約攝氏750度之溫 度,如此可以轉換自然碎氧化物,也可以製備單晶系氧化 層成長之基板表面。在此一溫度下,氧化锶與自然矽氧化 物發生固態反應,使自然碎氧化物減少,並留下一殘留於 基板表面之鐵、氧與碎之有序的2 X 1結構。再一次形成一 供後續有序之單晶系氧化物層之成長的模板。 根據本發明之一具體實施例,緊接於自基板表面移除矽 氧化物之後,此一基板被冷卻至約攝氏200-800度範圍之 溫度,並以分子束磊晶在模板層上成長一層鈦酸鳃。分子 束磊晶(MBE)製程係從開放分子束磊晶裝置中之快門光閘 以暴露於總、鈥與氧源開始。銳與鈥的比例大約是1 : 1。 氧氣分壓初始時設定於最小値,以每分鐘約0.3-0.5奈米之 -20- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) A7 五、發明説明(18 ^ MM學計量之鈦㈣。初始化鈇酸總之成長 !美:=在初始最小値之上增加。超壓之氧氣在下面 …:酸總之間的介面·&quot;,引起非晶系嫩物 i到下:矽虱化物層的生長是氧氣從生長之鈦酸鋇層擴 二士 ι板ΐ面上氧與矽起作用之介面的結果。鈦酸鳃 ’有序〈單印’並具有對下面基板之有序2χ 1晶體結 構做45度旋轉的晶體方位。在非晶系石夕氧化物中間層中, 已經減輕要不然可能因爲碎基板與生長晶體晶格常數之間 的些微失配而存在於鈦酸鳃層之應力。 酸(層成長到所需之厚度時,單晶系鈥酸銘被一層有 助:後續所需化合物半導體材料磊晶層之生長的模板層所 覆蓋。爲了後續一層砷化鎵之生長,彳以藉著用層單 層欽1-2層單層欽-氧或1-2層單層鳃-氧來終止成長,覆 ^鈦酸鳃單晶系層之分子束磊晶(ΜΒΕ)生長。此一終止(或 覆蓋)層形成之後,摻雜砷以形成一鈦^t(Ti-As)鍵結、鈦_ 氧-砷(Ti-0-As)鍵結或鳃-氧__(Sr_〇_As)鍵結。其中任何一 個皆可形成供砷化鎵單晶系層沈積與形成之適當模板。模 板形成足後,隨後引進鎵以與坤起反應而形成砷化鎵。或 者疋,鎵可以沈積到覆蓋層以形成鳃_氧_鎵(Sr_〇_Ga)鍵 結,隨後引進砷而與鎵形成砷化鎵。一旦形成砷化鎵層, 可以根據上述之製程形成關於圖1、2與5所述之後續層。 下列操限制、做例證的實例,説明根據本發明之各可選 擇貫施例’對結構100、200與3 00有益之材料的各種組 合。些實例只是做例證,本發明不應被這些做例證的實 ________-21- 本紙張尺度適用中國國家標準(CNS) A4規格(21〇 i 297公复)_ 4972093 09. For example, although strontium ruthenate is a conductor, most of these materials are. Usually these materials are metal oxides or metal nitrides, and even more peculiarly, these avian oxides or nitrides usually contain at least two different metal elements. In some specific applications, metal oxides or nitrides may contain three or more non-@@ metal elements. An appropriate oxide template material is chemically bonded to a selected position on the surface of the oxide template layer 309 to provide a nucleation site for subsequent epitaxial growth of the single crystal compound semiconductor layer 101. Examples of the oxide template layer 309 include gill titanium oxide (titanium oxide t'SrTi03), barium titanium oxide (barium titanium oxide, BaTi03), and the like. Suitable materials as the termination layer 313 of the gallium arsenide substrate include strontium-oxygen (&amp; _〇), ―oxygen (Ti-ο), gallium-iron, (Ga-Sr_〇) hi oxygen (As_s``〇), Number · Atomic layers of arsenic-oxygen (Tb-As-〇), titanium-gallium-oxygen (Ti-Ga_〇), etc. Another example = includes termination of a single crystal compound semiconductor layer 101 with indium, and By depositing a single layer of indium, the indium layer of the single crystal compound semiconductor layer is exposed to tin and milk gas to form an indium_tin_oxygen (1-core Sn-O with one or more single layers). ) Oxides. Suitable materials for the 3 n of the indium phosphide substrate stop layer include barium -'- oxygen (Ba-T), indium -'- oxygen (In-Sn-〇), and indium- (Inu). Atomic layers, etc. The following example illustrates a process for manufacturing a semiconductor structure with the structure as described in Figs. 1, 2 and 5 according to a specific embodiment of the present invention. For example, this process starts with providing a A single crystal compound semiconductor substrate containing gallium arsenide or indium phosphide. According to a specific embodiment of the present invention, the compound semiconductor substrate is a gallium gallium wafer having a (100) crystal orientation. This substrate is based on Off-axis to or at most about 2-6 degrees is better. As described below, although other parts can be----- ______- 1 6 _ this paper rule Qi Cai_ ^: 料 (CNS) A4 ^ (2i〇7i ^^) 497209 A7 B7 V. Description of the invention (14) It can contain other structures, at least a part of the compound semiconductor substrate has a bare surface. In this article, the term "bare blank" means that the surface of a part of the substrate has been cleaned to remove any oxidation. Materials, contaminants, or other unrelated materials. It is well-known to us that bare-spaced gallium KunFan is highly reactive and rapidly forms a natural oxide. The term "bare empty" tends to include this natural oxide. In order to epitaxially grow a single crystal oxide layer on a single crystal compound semiconductor substrate, this natural oxide layer must first be substantially removed to expose the crystal structure of the underlying substrate. Although other epitaxial processes can also be used in accordance with the present invention, the following processes are preferably implemented with molecular beam epitaxy (MBE). Natural oxides can be removed by thermal desorption, in which the substrate is heated to about 600-650 degrees Celsius in a continuous stream of arsenic to obtain a substantially arsenic stable surface. At this time, the arsenic flow is usually closed, thus creating a gallium-stabilized surface (such as a termination layer). The resulting surface is a gallium, oxygen-free surface. High-energy electron deflection (RHEED) can be used to monitor the change from the Kun stable surface to the gallium stable surface. In this example, the resulting surface presents an ordered 4 × 2 gallium stabilization structure with a gallium termination layer (such as an atomic layer). A stoichiometric surface is required to maintain the stability of this plane. At this time, in molecular beam epitaxy (MBE) devices, the termination layer may be exposed to thallium, barium, a combination of gills and barium, or other alkaline earth metals or combinations of alkaline earth metals. In the case of strontium, the substrate is then heated to a temperature of about 400-650 degrees Celsius. The surface exhibiting an ordered 4x2 structure contains strontium, oxygen, and gallium. Due to the orderly growth of the upper layer of the single crystal oxide, this orderly 4x 2 junction is deaf to form an oxygen 4 dagger, and it is not reversed (such as a single layer). The oxide is only -17- This paper size Applicable to China National Standard (CNS) A4 specification (210 X 297 mm) 497209 A7 B7 V. Description of invention (15) The chemical and physical properties required for nucleation of upper crystal growth. According to another embodiment of the present invention, an alkaline earth metal oxide such as gill oxide, gill barium oxide, or barium oxide is deposited on the substrate surface by molecular beam epitaxy (MBE) at a low temperature, and then this structure is heated to a temperature At about 400-6 ° C, natural oxides can be removed, and the surface of a substrate used to grow a single crystal oxide layer can be prepared. At this temperature, a solid state reaction occurs between the oxidized gills and the natural oxides, causing a reduction in the natural oxides, and leaving an ordered 4x2 structure remaining on the surface of the substrate containing strontium, oxygen, and gallium. Once again, a template is formed for the subsequent growth of the ordered single crystal oxide layer. According to a specific embodiment of the present invention, immediately after removing the natural oxide (such as gallium oxide) from the substrate surface and the termination of the substrate surface (such as using gallium), the substrate is cooled to a range of about 300-650 degrees Celsius. The temperature and the molecular beam worm crystal (MBE) on the template layer to grow a layer of acid. The Molecular Beam Worm Crystal (MBE) process begins with opening the shutter shutter in the molecular beam epitaxial device to exposure to total, tritium, and oxygen sources. The ratio of 4th thought to "is about 1: 1. The oxygen partial pressure is initially set to a minimum value, and the stoichiometric titanate gills are grown at a growth rate of about 0.3-0.5 nanometers per minute. After the initial growth of strontium titanate, the oxygen partial pressure increases above the initial minimum. Qin acid sharply grows into an ordered single crystal, and has a crystal orientation that rotates 45 degrees to the ordered 4 × 2 crystal structure of the underlying substrate. As described above, if the lattice constant mismatch between the main crystal and the growing crystal exceeds about 2%, the single crystal system epitaxial layer exceeding about 20 nm may be defective. Alternatively, according to a specific embodiment of the present invention, an impurity doped layer may be formed to provide an active region immediately after the gallium oxide is removed on the surface of the substrate. This paper size is applicable to China National Standard (CNS) A4 specifications ( 210 X 297 mm) 5. Description of the invention (16 or more specifically, this active region allows the subsequent development / source formation of the source region and the polar region. Or, for example, by doping a part of the substrate, These regions are formed before the gallium oxide is removed. For each change in the subtractive semiconductor material and the single crystal oxide layer, an appropriate template is used to initiate the growth of the subsequent layers. For example, if the compound semiconducting m material Is indium gallium, indium or hafnium indium, the termination layer and: or the template oxide may each contain a thin layer of gallium, indium or indium; each of the precursors of the metal oxide is tested. Each of these Deposition helps to form a template for the deposition of a single-crystal alkaline earth metal oxide layer. ',, According to another embodiment of the present invention, the process of manufacturing a conductor structure of structure 4 as described in Figs. 3 and 6 is described. This process begins with mention -Composed of Shi Xi or germanium (single crystal system semiconductor substrate. According to a preferred embodiment of the present invention, a 'semiconductor substrate is a silicon wafer having a (100) crystal orientation. This substrate is axial or at most about 0.5-6 degree off-axis is better. As described below, although other parts may include other structures, at least a part of the semiconductor substrate has a bare surface. In this case, the term "bare blank" means that a part of the substrate has been cleaned. Table = to remove any oxides, contaminants, or other irrelevant materials. The hard crystalline S of bare 2 is highly reactive and will form rapidly. Natural oxides are already well known to us. The word tends to include this natural oxide. It is also possible to intentionally grow a thin silicon oxide on a semiconductor substrate, although this grown oxide is not necessary for the process according to the invention. To grow epitaxially on a single crystal substrate For single crystal oxide layer, this natural oxide layer must be removed first to expose the crystal structure of the underlying substrate. Although other epitaxial processes can be used according to the present invention, 497209 A7 B7 5 Description of the invention (17) The following process is preferably implemented with molecular beam worm crystal (MBE). In a molecular beam epitaxial device, natural oxides can first be deposited by thermal deposition of a thin layer of gills, pins, total and barium mixtures, Or other soil test metal oxides, or a mixture of soil test metal oxides. In the case of gills, the substrate is heated to a temperature of about 750 degrees Celsius to make strontium react to the natural silicon oxide layer. The iron system is used to reduce broken oxides to leave an oxide-free surface. The resulting surface shows an ordered 2 X 1 structure and contains gills, oxygen, and silicon. Because of the ordered upper layer of the single crystal oxide, Grow, this ordered 2 X 1 structure forms a template. This template provides the chemical and physical properties required for the growth of the nucleated upper crystal. According to another embodiment of the present invention, molecular beam epitaxy is performed at low temperature. Detecting metal oxides such as total oxides, total barium oxides, or oxide pins on the surface of the substrate, and then heating this structure to a temperature of about 750 degrees Celsius, so that natural broken oxides can be converted, and single oxides can also be prepared. Oxide-based layer grown on the surface of the substrate. At this temperature, strontium oxide reacts with the natural silicon oxide in a solid state, reducing natural crushed oxides, and leaving an orderly 2 X 1 structure of iron, oxygen, and crushing remaining on the surface of the substrate. Once again, a template is formed for the subsequent growth of the ordered single crystal oxide layer. According to a specific embodiment of the present invention, immediately after the silicon oxide is removed from the substrate surface, the substrate is cooled to a temperature in the range of about 200-800 degrees Celsius, and a molecular beam epitaxial layer is grown on the template layer. Titanate gills. The molecular beam epitaxy (MBE) process starts with opening the shutter shutter in the molecular beam epitaxy device with exposure to the oxygen source. The ratio of Rui to "is about 1: 1. The oxygen partial pressure is initially set to a minimum value of about -20 to 0.3-0.5 nanometers per minute. This paper size applies to China National Standard (CNS) A4 specifications (210 X 297 mm) A7 V. Description of the invention (18 ^ Titanium rhenium measured by MM. Initialized osmium acid grows in total! Beauty: = Increased above the initial minimum 値. Overpressure oxygen is below ...: The interface between the total amount of acid &quot; causes the amorphous tender i to go down : The growth of siliceous material layer is the result of oxygen expanding from the growing barium titanate layer to the interface between oxygen and silicon on the slab surface. Titanate gills are 'ordered <single print' and have Ordered 2χ 1 crystal structure makes a 45-degree rotated crystal orientation. In the amorphous interlayer of Shixue oxide, it has been alleviated or it may exist in titanium due to a slight mismatch between the broken substrate and the lattice constant of the growing crystal The stress of the acid gill layer. When the acid layer grows to the required thickness, the single crystal system ’s acid crystal is covered by a template layer that helps: the subsequent growth of the desired epitaxial layer of the compound semiconductor material. For the subsequent layer of arsenization The growth of gallium, by using a single layer Layer Qin-oxygen or 1-2 layers of single gill-oxygen to stop growth, molecular beam epitaxy (MBE) overlying ^ titanate gill single crystal system layer grows. After this termination (or cover) layer is formed, doping Arsenic is formed to form a titanium (t)-(Ti-As) bond, a titanium-oxygen-arsenic (Ti-0-As) bond, or a gill-oxygen (_Sr_〇_As) bond. Any of these may be used. Form a suitable template for the deposition and formation of the gallium arsenide single crystal system layer. After the template is formed, gallium is subsequently introduced to react with the kunqi to form gallium arsenide. Alternatively, gallium can be deposited on the cover layer to form gills_ oxygen_ The gallium (Sr_〇_Ga) is bonded, and then arsenic is introduced to form gallium arsenide with gallium. Once the gallium arsenide layer is formed, the subsequent layers described in Figs. 1, 2 and 5 can be formed according to the above process. The following operations Restrictions and exemplifying examples illustrate various combinations of materials that are beneficial to the structures 100, 200, and 300 according to various alternative embodiments of the present invention. These examples are merely illustrative, and the present invention should not be exemplified by these ________- 21- This paper size applies to China National Standard (CNS) A4 specifications (21〇i 297 public reply) _ 497209

例所限制。 實例1 根據本發明之一具體實施例,單晶系化合物半導體層Case restrictions. Example 1 According to a specific embodiment of the present invention, a single crystal compound semiconductor layer

装 οι疋(100)方位之砷化鎵基板。此一砷化鎵基板,舉例 來說,可以是一般使用於製造互補金屬氧化物半導體 (CMOS)積體電路與其他化合物半導體裝置之基板。根據 本發明之此一具體實施例,終止層1〇2是一鎵原子層,其 暴露於鳃與氧以形成氧化物模板層1 03。就這一點而論, 氧化物模板層103是一鎵-锶-氧(如四氧化二鎵鳃,SrGa2〇4) 的單晶系層。或者是,如果終止層1〇2暴露於鳃(或鋇)、鈦 與氧,則結果之氧化物模板層1〇3是SrzBaizTi〇”其中z從 〇到1做變化。選擇2之値以獲得一個或更多個與單晶系化 合物半導體層101之相應晶格常數接近匹配的晶格常數。 訂Install a GaN (100) orientation GaAs substrate. Such a gallium arsenide substrate, for example, may be a substrate generally used for manufacturing complementary metal oxide semiconductor (CMOS) integrated circuits and other compound semiconductor devices. According to this embodiment of the present invention, the termination layer 102 is a gallium atom layer, which is exposed to the gills and oxygen to form an oxide template layer 103. In this regard, the oxide template layer 103 is a single crystal layer of gallium-strontium-oxygen (such as gallium tetraoxide gill, SrGa204). Or, if the termination layer 10 is exposed to gills (or barium), titanium, and oxygen, the resulting oxide template layer 10 is SrzBaizTi〇 "where z changes from 0 to 1. Choose 2 of 値 to obtain One or more lattice constants that closely match the corresponding lattice constants of the single crystal compound semiconductor layer 101. Order

根據本發明之一具體實施例,單晶系化合物半導體層 1 〇 1 (如圖3所5兑明)疋一層具有約1奈米到約1⑽微米(# m)之 厚度的砷化鎵(GaAs)或砷化鎵鋁(AiGaAs),而以約〇·5微米 至10微米I厚度較佳。此一厚度通常取決於將製備之層的 應用。爲促進單晶系氧化物在砷化鎵或砷化鎵鋁上之磊晶 成長氧化物模板層10 3是藉由覆蓋(即終止或安定化)單晶 系化合物半導體層1〇1來形成。在本發明之此一可仿效具 體實施例中,氧化物模板層1〇3以1-10單層鳃鎵氧化物(如 四氧化二鎵翅,SrGa2〇4)較佳。 根據本發明之此一具體實施例,一旦形成氧化物模板層 1〇3,可於氧化物模板層103上形成單晶系鹼土金屬氧化物 -22- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 497209 A7 _____B7 _ 五、發明説明(20 ) 層1 05。在此一可仿效之具體實施例中,單晶系鹼土金屬 氧化物層105是翅…鈦·氧(三氧化鈦鳃)。 實例2 根據實例1之本發明之進一步實施例,雜質摻雜層2〇7形 成於單晶系化合物半導體層1 〇丨之中或之上,以及氧化物 模板層309下面之任何事件中。根據此一可仿效之具體實 施例,,雜質摻雜層207是一層砷化鎵,其摻雜是爲電晶體 提供源極與汲極。 實例3 根據本發明之一具體實施例,單晶系化合物半導體層 101是一(100)方位之磷化銦基板。此一磷化銦基板,舉例 來説,可以是一般使用於製造互補金屬氧化物半導體 (CMOS)積體電路之基板。根據本發明之此一具體實施 例’終止層102是一銦原子層,使用分子束磊晶(mbe)、有 機金屬化學氣相沈積(M0CVD)、原子層磊晶(ALE)或徙動 強化磊晶(MEE)形成,並暴露於錫與氧以形成氧化物模板 層103。就這一點而論,氧化物模板層1〇3是一銦_錫_氧(如 In-Sn-Ο)的單晶系層。 另一選擇是,如果終止層102暴露於鳃(或鋇)、鈦與氧, 則結果之氧化物模板層103是SrzBa1-zTi〇3,其中z從0到1做 變化。選擇z之値以獲得一個或更多個與單晶系化合物半 導體層10 1之相應晶格常數接近匹配的晶格常數。 根據本發明之此一具體實施例與如圖3所説明,單晶系 化合物半導體層1 〇 1是一層具有約1奈米到約1 〇〇微米q m) _______-23- 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 4y/zuyAccording to a specific embodiment of the present invention, a single crystal compound semiconductor layer 101 (as shown in FIG. 3) is a layer of gallium arsenide (GaAs) having a thickness of about 1 nm to about 1 μm (# m). ) Or gallium aluminum arsenide (AiGaAs), and a thickness of about 0.5 μm to 10 μm is preferred. This thickness usually depends on the application of the layer to be prepared. In order to promote the epitaxial growth of the single crystal oxide on gallium arsenide or aluminum gallium arsenide, the oxide template layer 103 is formed by covering (ie, terminating or stabilizing) the single crystal compound semiconductor layer 101. In this exemplary embodiment of the present invention, the oxide template layer 103 is preferably a single layer of gill gallium oxide (such as gallium tetraoxide, SrGa204). According to this specific embodiment of the present invention, once the oxide template layer 10 is formed, a single-crystal alkaline earth metal oxide-22 can be formed on the oxide template layer 103- This paper is applicable to the Chinese National Standard (CNS) A4 Specifications (210 X 297 mm) 497209 A7 _____B7 _ 5. Description of the invention (20) Layer 1 05. In this exemplary embodiment, the single-crystal alkaline-earth metal oxide layer 105 is fin ... titanium · oxygen (titanium oxide gill). Example 2 According to a further embodiment of the present invention of Example 1, the impurity doped layer 207 is formed in or on the single crystal compound semiconductor layer 100 and any event under the oxide template layer 309. According to this exemplary embodiment, the impurity doped layer 207 is a layer of gallium arsenide, and its doping is to provide a source and a drain for the transistor. Example 3 According to a specific embodiment of the present invention, the single crystal compound semiconductor layer 101 is an (100) orientation indium phosphide substrate. Such an indium phosphide substrate, for example, may be a substrate generally used for manufacturing a complementary metal oxide semiconductor (CMOS) integrated circuit. According to this specific embodiment of the present invention, the termination layer 102 is an indium atomic layer, using molecular beam epitaxy (mbe), organometallic chemical vapor deposition (MOCVD), atomic layer epitaxy (ALE) or migration enhanced epitaxy. Crystals (MEE) are formed and exposed to tin and oxygen to form an oxide template layer 103. In this regard, the oxide template layer 103 is a single crystal system layer of indium-tin-oxygen (such as In-Sn-O). Alternatively, if the termination layer 102 is exposed to gills (or barium), titanium, and oxygen, the resulting oxide template layer 103 is SrzBa1-zTi03, where z changes from 0 to 1. The value of z is selected to obtain one or more lattice constants that closely match the corresponding lattice constants of the single crystal compound semiconductor layer 101. According to this specific embodiment of the present invention and as illustrated in FIG. 3, the single crystal compound semiconductor layer 100 is a layer having a thickness of about 1 nanometer to about 100 micrometers (qm) _______- 23- This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) 4y / zuy

之?度的磷化銦,而以約〇·5微米至1〇微米之厚度較佳。此 厚度通^取決於將製備之層的應用。爲了促進單晶系氧 物士舛化銦基板上之磊晶成長,氧化物模板層⑺3是藉 由覆| (即、.冬止或安足化)單晶系化合物半導體層1 0 1來形 成。在本發明〈此一可仿效具體實施例中,氧化物模板層 103以1· 10單層(如υ單層)锡銦氧化物較佳。 根據本發明之此一具體實施例,一旦形成氧化物模板層 103 ’可以分子束磊晶(μβε)、有機金屬化學氣相沈積 (MOCVD)原、子層系晶(ALE)或徙動強化系晶(mee)之方 法,在乳化物模板層1〇3上面形成單晶系驗土金屬氧化物 層105在此可仿效之具體實施例中,單晶系驗土金屬 氧化物層105疋一具有約8] i奈米厚度之鹼土金屬錫氧化 物。 實例4 根據實例3之本發明之進一步實施例,雜質摻雜層2〇7形 成於單晶系化合物半導體層1〇1之中或之上,以及氧化物 模板層309下面之任何事件中。根據此一可仿效之具體實 施例,雜質摻雜層207是磷化銦基板上面之一層坤化^鎵 (或坤化銦鋁),其摻雜是爲電晶體提供源極與汲極。此 外,在單晶系鹼土金屬氧化物層1〇5上面 ',可能形成一已 圖案化之金屬電極。 在前述之詳細說明中,已參考明確之具體實施例描述本 發明。不過,一般熟諳此藝之士會發現可以做各種修正或 改變,而不偏離下面申請專利範圍中所提出之本發明的範 ___ -24-_ 本紙張尺度適用中家標準(CNS) A4規格(210X29^公釐) -------- 497209 A7 B7 五、發明説明(22 ) 圍。如前所説,專利説明書與附圖應作例證説明,而不是 限制之意,並且所有此等修正傾向於包含在本發明之範圍 中〇 關於特定具體實施例之益處、其他優點,與問題之解決 方案已經描述如上。可是,此等益處、優點、問題之解決 方案,以及可能使任何益處、優點,或解決方案發生或變 得更顯.著之任何組成部分,並未被分析解釋成本申請專利 範圍之任一或全部緊要的、所要求的,或必要的特徵或組 成邵分。如此處所使用之「含有」、丨包括」,或其任何 其他變化等術語,傾向於涵蓋非排他之包含,如此一來, 製程、方法、文件,或裝置包括一_成分,不只是包含那 些組成部分,而且可能包含製程、方法、文件,或裝置之 其他未明確地列出或原有的組成部分。 ___-25- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)Which? Degrees of indium phosphide, and a thickness of about 0.5 microns to 10 microns is preferred. This thickness will generally depend on the application of the layer to be prepared. In order to promote the epitaxial growth of the single crystal oxygen indium oxide substrate, the oxide template layer ⑺3 is formed by coating | (that is, winter stop or footing) the single crystal compound semiconductor layer 1 0 1 . In this exemplary embodiment of the present invention, the oxide template layer 103 is preferably a single layer of 1 · 10 (such as a single layer of υ) tin indium oxide. According to this specific embodiment of the present invention, once the oxide template layer 103 'is formed, it can be molecular beam epitaxy (μβε), organometallic chemical vapor deposition (MOCVD), sublayer crystal (ALE), or migration enhanced system. Mee method, a single crystal soil test metal oxide layer 105 is formed on the emulsion template layer 103. In a specific example that can be emulated here, the single crystal soil test metal oxide layer 105 has About 8] i nanometer thickness of alkaline earth metal tin oxide. Example 4 According to a further embodiment of the present invention of Example 3, the impurity doped layer 207 is formed in or on the single crystal compound semiconductor layer 101 and in any event under the oxide template layer 309. According to this exemplary embodiment, the impurity doped layer 207 is a layer of gallium (or gallium indium aluminum) on the indium phosphide substrate, and its doping is to provide a source and a drain for the transistor. In addition, on the single crystal alkaline earth metal oxide layer 105, a patterned metal electrode may be formed. In the foregoing detailed description, the invention has been described with reference to specific embodiments. However, those skilled in the art will generally find that various modifications or changes can be made without departing from the scope of the invention proposed in the scope of the patent application below. -24-_ This paper size applies the Chinese Standard (CNS) A4 specification (210X29 ^ mm) -------- 497209 A7 B7 V. Description of the invention (22). As mentioned before, the patent specification and drawings should be exemplified, but not intended to be limiting, and all such modifications are intended to be included in the scope of the present invention. Regarding the benefits, other advantages, and problems of particular embodiments The solution has been described above. However, these benefits, advantages, solutions to problems, and any benefits, advantages, or solutions that may occur or become more significant. Any component that is significant is not analyzed to explain any of the scope of the patent application or All critical, required, or necessary features or components. As used herein, the terms "including", "including", or any other variation thereof, tend to cover non-exclusive inclusions. In this way, processes, methods, documents, or devices include an ingredient, not just those components Part, and may include processes, methods, documentation, or other components of the device that are not explicitly listed or original. ___- 25- This paper size applies to China National Standard (CNS) A4 (210X 297mm)

Claims (1)

497209 888 8 ABC0 經濟部智慧財產局員工消費合作社印製 六、申請專利範圍 1. 一種單晶系氧化物結構,包括: 一單晶系化合物半導體層; 开&gt; 成於單晶系化合物半導體層上之氧化物模板層, 其中含有氧與一種來自單晶系化合物半導體層之元素; 以及 一形成於模板層上面之單晶系鹼土金屬氧化物。 2·如申請專利範圍第1項之單晶系氧化物結構,進一步包 括一形成於氧化物模板層下面之單晶系化合物半導體層 中的雜質摻雜層。 〇·如申請專利範圍第2項之單晶系氧化物結構,其中單晶 系驗土金屬氧化物形成絕緣閘場效電晶體之閘極介電 質。 4·如申請專利範圍第丨項之單晶系氧化物結構,進一步包 括: 一 IV族單晶系半導體基板;以及 一外延地生長於基板之上與單晶系化合物半導體層之 下的第二單晶系氧化物,其上有單晶系化合物半導體層 外延地生長。 5 ·如申巧專利範圍第1項之單晶系氧化物結構,其中該單 晶系化合物半導體層包含一選自由砷化銦鎵(GaInAs)與 砷化銦鋁(AlInAs)等所組成之族的材料,而在此一單晶 系化合物半導體層下面更含有一磷化銦(lnp)之單晶系 層0 6.如申請專利範圍第5項之單晶系氧化物結構,其中該氧 -26- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) J------------衣--------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 497209 A8 B8 C8 D8 六、申請專利範圍 化物模板層包含一層選自由A-Ga_〇、A_As-〇,與Α-Αΐ-〇 (A含有鹼土金屬)所組成之族。 入如申請專利範圍第1項之單晶系氧化物結構,其中該單 晶系化合物半導體層包括一材料選自由砷化鎵(GaAs)、 砷化鎵鋁(AlGaAs)與磷化銦鎵(Galnp)等所組成之族。 8.如申請專利範圍第7項之單晶系氧化物結構,其中此一 模板包括一層選自由A-鎵-氧(A-Ga-〇)、A-石申-氧(A-As-O), 與A-|g-氧(A-A1-0)(A含有鹼土金屬)所組成之族。 9·如申請專利範圍第8項之單晶系氧化物結構,其中鹼土 金屬氧化物包括一氧化物選自由鹼土金屬鈦酸鹽、铪酸 鹽、锆酸鹽、鈮酸鹽,與釕酸鹽等所組成之族。 10. 如申請專利範圍第7項之單晶系氧化物結構,其中該模 板含有四氧化二鎵鳃(SrGa2〇4)。 11. 如申請專利範圍第7項之單晶系氧化物結構,其中該模 板含有四氧化二鎵鋇(BaGa2〇4)。 12·如申請專利範圍第7項之單晶系氧化物結構,其中該模 板含有一鎵之薄層’與一選自由鐵-氧(Sr-〇)與鋇_氧(如-〇) 所組成之族之薄層。 13·如申請專利範圍第12項之單晶系氧化物結構,其中該鹼 土金屬氧化物含有SrxGa^xTiO;,其中X從〇到1做變化。 14·如申請專利範圍第1項之單晶系氧化物結構,其中該單 晶系半導體層含有磷化銦(InP)。 15·如申請專利範圍第14項之單晶系氧化物結構,其中該模 板層包括一含有銦-錫-氧(Ιη-Sn-O)之薄層。 -27- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ^--------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 497209 A8 B8 C8 ^_______一 力、申請專利範圍 16.如申請專利範圍第丨5項之單晶系氧化物結構,其中該模 板層包括一四氧化二銦錫(SnIn2〇4)之薄層。 17·如申請專利範圍第14項之單晶系氧化物結構,其中該模 板層包括: 一銦之薄層;以及 一錫-氧(Sn-O)之薄層。 18·如申請專利範圍第17項之單晶系氧化物結構,其中該鹼 土金屬氧化物包括鹼土金屬錫氧化物。 19·如申請專利範圍第丨8項之單晶系氧化物結構,其中該鹼 土金屬氧化物包括三氧化錫鋇(BaSn03)。 20· —種用來製造單晶系氧化物結構之製程,包栝步驟: 提供一含矽之單晶系基板; 在基板上面形成一氧化物層; 在該氧化物層上面外延地生長一單晶系化合物半導體 層; 在單晶系化合物半導體層中形成一雜質摻雜區域; 在化合物半導體層上面形成一模板層,該模板層包含 一來自化合物半導體層之元素與氧; 在該模板層上面外延地生長一單晶系鹼土金屬氧化 物;以及 ' 在單晶系氧化物上面形成一傳導電極。 2 1 ·如申請專利範圍第2〇項之製程,其中形成該雜質摻雜區 域之步驟包括形成源極與汲極區域之步驟。 22·如申請專利範圍第2 1項之製程,其中形成該傳導電極之 -28- C請先閱讀背面之注意事項再填寫本頁) r.--------訂--------丨線一 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 297公釐) 497209 A8 B8 C8 D8 六、申請專利範圍 步驟包括形成與源極及汲極區域成一直線之閘極的步 驟。 23. —種用來製造單晶系氧化物結構之製程,包括步驟: 提供一單晶系化合物半導體層,其含有一材料選自由 坤化鎵(GaAs)、砷化銦鎵(GaInAs)、坤化鎵銘 (AlGaAs)、砷化銦鋁(AiInAs),與磷化銦鎵(GaInP)等所 組成之族; 用一層含有選自由鎵與鋁所組成之族之終止層來終止 單晶系層之表面; 將終止層暴露於鹼土金屬氧化物與氧,以於單晶系化 合物半導體層上面,形成一含有鹼土金屬·鎵-氧或鹼土 金屬-鋁-氧之模板;以及 在模板上外延地生長一層單晶系氧化物,該單晶系氧 化物含有一氧化物,選自由金屬鈦酸鹽、铪酸鹽、錘酸 鹽、鈮酸鹽,與釕酸鹽等所组成之族。 24. 如申請專利範圍第23項之製程,其中終止之步驟包括藉 由一製程沈積一鎵單層之步驟,該製程選自由分子束磊 晶(MBE)、有機金屬化學氣相沈積(MOCVD)、原子層磊 晶(ALE)或徙動強化系晶(MEE)等所組成之族。 25. 如申請專利範圍第23項之製程,其中終止之步驟包括藉 由一製程沈積一鋁單層之步驟,該製程選自由分子束磊 晶(MBE)、有機金屬化學氣相沈積(MOCVD)、原子層磊 晶(ALE)或徙動強化磊晶(MEE)等所組成之族。 26. 如申請專利範圍第23項之製程,其中該沈積之步·驟包括 -29- 本紙張尺度適用中國國家標準(CNS)A4規格(21Q x 297公髮) (請先閱讀背面之注意事項再填寫本頁) 訂---------線·· 經濟部智慧財產局員工消費合作社印製 &quot;Γ7 / 厶 A8 B8 C8 D8497209 888 8 ABC0 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 6. Application scope of patents 1. A single crystal oxide structure including: a single crystal compound semiconductor layer; on &gt; formed in a single crystal compound semiconductor layer The above oxide template layer contains oxygen and an element from a single crystal compound semiconductor layer; and a single crystal alkaline earth metal oxide formed on the template layer. 2. The single crystal oxide structure according to item 1 of the patent application scope, further comprising an impurity doped layer in the single crystal compound semiconductor layer formed under the oxide template layer. 〇 If the single crystal oxide structure of item 2 of the patent application scope, wherein the single crystal soil test metal oxide forms the gate dielectric of the insulating gate field effect transistor. 4. The single crystal oxide structure according to item 丨 of the patent application scope, further comprising: a group IV single crystal semiconductor substrate; and a second epitaxially grown on the substrate and below the single crystal compound semiconductor layer. A single crystal oxide has a single crystal compound semiconductor layer epitaxially grown thereon. 5. The single crystal oxide structure according to item 1 of Shenqiao's patent scope, wherein the single crystal compound semiconductor layer includes a member selected from the group consisting of indium gallium arsenide (GaInAs) and indium aluminum arsenide (AlInAs). The single crystal compound semiconductor layer contains an indium phosphide (lnp) single crystal layer under the single crystal compound semiconductor layer. 6. The single crystal oxide structure according to item 5 of the patent application scope, wherein the oxygen- 26- This paper size applies to China National Standard (CNS) A4 (210 X 297 public love) J ------------ clothing -------- order ------ --- line (Please read the notes on the back before filling this page) Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 497209 A8 B8 C8 D8 VI. Patent Application Scope The template layer contains a layer selected from A-Ga_〇, A_As-〇, and A-Αΐ-〇 (A contains alkaline earth metals). The single crystal oxide structure described in item 1 of the patent application range, wherein the single crystal compound semiconductor layer includes a material selected from the group consisting of gallium arsenide (GaAs), aluminum gallium arsenide (AlGaAs), and indium gallium phosphide (Galnp) ) And so on. 8. The single crystal oxide structure according to item 7 of the application, wherein the template includes a layer selected from the group consisting of A-Ga-O, A-As-O ), And A- | g-oxygen (A-A1-0) (A contains alkaline earth metal). 9. The single crystal oxide structure according to item 8 of the patent application, wherein the alkaline earth metal oxide includes an oxide selected from the group consisting of alkaline earth metal titanates, osmates, zirconates, niobates, and ruthenates. And so on. 10. The single crystal oxide structure according to item 7 of the patent application, wherein the template contains gallium tetraoxide gill (SrGa204). 11. The single crystal oxide structure according to item 7 of the application, wherein the template contains barium gallium tetraoxide (BaGa204). 12. The single crystal oxide structure according to item 7 of the patent application scope, wherein the template contains a thin layer of gallium 'and a member selected from the group consisting of iron-oxygen (Sr-〇) and barium-oxygen (such as -〇) The thin layer of the family. 13. The single crystal oxide structure according to item 12 of the application, wherein the alkaline earth metal oxide contains SrxGa ^ xTiO; and X varies from 0 to 1. 14. The single crystal system oxide structure according to item 1 of the application, wherein the single crystal semiconductor layer contains indium phosphide (InP). 15. The single crystal oxide structure according to item 14 of the application, wherein the template layer includes a thin layer containing indium-tin-oxygen (In-Sn-O). -27- This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) ^ -------------------- Order ------ --- line (Please read the precautions on the back before filling this page) Printed by the Consumers' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 497209 A8 B8 C8 ^ _______, apply for patent scope 16. If you apply for patent scope item 丨 5 The single crystal oxide structure, wherein the template layer includes a thin layer of indium tin oxide (SnIn2O4). 17. The single crystal oxide structure according to item 14 of the application, wherein the template layer includes: a thin layer of indium; and a thin layer of tin-oxygen (Sn-O). 18. The single crystal oxide structure according to item 17 of the application, wherein the alkaline earth metal oxide includes an alkaline earth metal tin oxide. 19. The single crystal oxide structure according to item 8 of the patent application, wherein the alkaline earth metal oxide includes barium tin oxide (BaSn03). 20 · —A process for manufacturing a single crystal system oxide structure, including the steps of: providing a silicon-containing single crystal substrate; forming an oxide layer on the substrate; epitaxially growing a single layer on the oxide layer A crystalline compound semiconductor layer; forming an impurity doped region in the single crystalline compound semiconductor layer; forming a template layer on the compound semiconductor layer, the template layer containing an element and oxygen from the compound semiconductor layer; on the template layer A single crystal alkaline earth metal oxide is epitaxially grown; and a conductive electrode is formed on the single crystal oxide. 2 1 · The process of claim 20 in the patent application scope, wherein the step of forming the impurity-doped region includes a step of forming a source and a drain region. 22 · If you apply for the process of item 21 in the scope of patent application, among which -28- C forming the conductive electrode, please read the precautions on the back before filling this page) r .-------- Order ---- ---- 丨 A paper size is applicable to the Chinese National Standard (CNS) A4 specification (21,297 mm) 497209 A8 B8 C8 D8 6. The scope of patent application steps includes forming a gate that is aligned with the source and drain regions Extreme steps. 23. —A process for manufacturing a single crystal oxide structure, comprising the steps of: providing a single crystal compound semiconductor layer containing a material selected from the group consisting of gallium (GaAs), indium gallium arsenide (GaInAs), and A family consisting of AlGaAs, indium aluminum arsenide (AiInAs), indium gallium phosphide (GaInP), etc .; a single crystal system layer is terminated with a termination layer containing a group selected from the group consisting of gallium and aluminum The surface; exposing the termination layer to an alkaline earth metal oxide and oxygen to form a template containing alkaline earth metal gallium-oxygen or alkaline earth metal-aluminum-oxygen on the single crystal compound semiconductor layer; and epitaxially on the template A layer of single crystal oxide is grown, and the single crystal oxide contains an oxide selected from the group consisting of metal titanate, osmate, hammered salt, niobate, and ruthenate. 24. If the process of the scope of application for item 23 is applied, the termination step includes the step of depositing a single layer of gallium by a process selected from molecular beam epitaxy (MBE), organic metal chemical vapor deposition (MOCVD) , Atomic layer epitaxy (ALE) or migration enhanced system crystal (MEE). 25. If the process of claim 23 is applied, the termination step includes the step of depositing an aluminum monolayer by a process selected from the group consisting of molecular beam epitaxy (MBE), organic metal chemical vapor deposition (MOCVD) , Atomic layer epitaxy (ALE) or migration enhanced epitaxy (MEE). 26. If the process of applying for the scope of the patent No. 23, the steps of the deposition include -29- This paper size is applicable to China National Standard (CNS) A4 specifications (21Q x 297) (Please read the precautions on the back first (Fill in this page again) Order --------- Line · Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs &quot; Γ7 / 厶 A8 B8 C8 D8 申請專利範圍 形成一具有約M〇單層厚度之模板層的步驟。 A如申請專利範„23項之製程,其中該外延地生長之牛 驟包括藉由一製程成長—層具有約5_1〇奈米厚度之單晶 系氧化物之步驟,該製程選自由分子束县晶(mbe)、有 機金屬化學氣相沈積_CVD)、原子層县晶(AM)或徙 動強化磊晶(MEE)等所組成之族。 认如申請專利範圍第23項之製程,進一步包括在單晶系化 合物半導體層中形成一雜質摻雜區域之步驟。 29. 如申請專利範圍第28項之製程,進一步包括在單晶系氧 化物層上面形成一已圖案化之金屬電極的步驟。 30. 如申請專利範圍第23項之製程,其中提供單晶系化合物 半導體層之步驟包括步驟: 提供一磷化銦(InP)之單晶系層; 在磷化銦(InP)層上面形成一單晶系層,該單晶系層選 自由坤化銦鎵(GalnAs)與坤化銦鋁(AlInAs)所組成之族。 J 1. 一種用來製造單晶系氧化物結構之製程,包括步驟: 提供一含有鱗化銦(InP)之單晶系化合物半導體層; 用一層銦來終止單晶系化合物半導體層之表面; 將該層銦暴露於錫與氧中,以形成一銦-錫-氧模板; 以及 ' 在模板上外延地生長一鹼土金屬錫氧化物。 32·如申請專利範圍第3丨項之製程,其中該終止之步驟包括 藉由一製程沈積一銦單層之步驟,該製程選自由分子束 磊晶(MBE)、有機金屬化學氣相沈積(MOCVD)、原子層 .30- 私紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂----------線一 經濟部智慧財產局員工消費合作社印製 497209 A8 B8 C8 -- D8 申請專利範圍 羞晶 3 3 ·如申 形成 34·如申 驟包 晶系 有機 徙動 3 5 ·如申 合物 36.如申 4匕物 (ALE)或徙動強化磊晶(MEE)等所組成之族。 請專利範圍第3 1項之製程,其中該沈積之步驟包括 一具有約1-2單層厚度之模板層的步驟。 請專利範圍第3 1項之製程,其中該外延地生長之步 括藉由一製程,成長一層具有約8-11奈米厚度之單 氧化物心步驟,該製程選自由分子束磊晶(MBE)、 金屬化學氣相沈積(M0C VD)、原子層磊晶(ALE)或 強化磊晶(MEE)等所組成之族。 請專利範圍第31項之製程,進一步包括在單晶系 半導體層中形成一雜質摻雜區域之步驟。 凊專利範圍第3 5項之製程,;隹 ^ 衣杈進一步包括在單晶系 層上面形成一已圖案化之金屬電極的步驟。 化 氧 1·------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 -31 -The scope of the patent application is the step of forming a template layer having a thickness of about Mo. A. According to the process of applying for patent 23 items, the epitaxially grown step includes a process of growing a layer of a single crystal oxide having a thickness of about 5-10 nanometers. The process is selected from the molecular beam county Crystal (mbe), organometallic chemical vapor deposition (CVD), atomic layer county crystal (AM) or migration enhanced epitaxial (MEE), etc. It is considered that the process of applying for the scope of the patent No. 23, further includes The step of forming an impurity-doped region in the single crystal compound semiconductor layer. 29. The process of claim 28 in the patent application scope further includes the step of forming a patterned metal electrode on the single crystal oxide layer. 30. If the process of claim 23 is applied, the step of providing a single crystal compound semiconductor layer includes the steps of: providing a single crystal layer of indium phosphide (InP); forming a layer on the indium phosphide (InP) layer Single crystal system layer, the single crystal system layer is selected from the group consisting of indium gallium (GalnAs) and indium aluminum (AlInAs). J 1. A process for manufacturing a single crystal oxide structure, including steps : Provide a scale containing (InP) single crystal compound semiconductor layer; using a layer of indium to terminate the surface of the single crystal compound semiconductor layer; exposing the layer of indium to tin and oxygen to form an indium-tin-oxygen template; and 'in the template' An alkaline earth metal tin oxide is epitaxially grown. 32. As in the process of claim 3, the termination step includes a step of depositing an indium monolayer by a process selected from molecular beam epitaxy (MBE), Organometallic Chemical Vapor Deposition (MOCVD), Atomic Layer. 30- Private paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page ) Order ---------- Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 497209 A8 B8 C8-D8 Patent application scope Shame crystal 3 3 Rucheng formation 34 Rucheng peritectic system Organic migration 3 5 · Ru Shen 36. Ru Shen 4 dagger (ALE) or migratory enhanced epitaxy (MEE), etc. Please apply for the process of item 31 of the patent scope, in which the step of deposition A step including a template layer having a thickness of about 1-2 single layers. Please refer to the process of item 31 in the patent scope, wherein the step of epitaxial growth includes the step of growing a single oxide core layer having a thickness of about 8-11 nanometers by a process selected from the molecular beam epitaxy (MBE) , Metal chemical vapor deposition (M0C VD), atomic layer epitaxy (ALE) or enhanced epitaxy (MEE), etc. The family of the scope of the patent claim 31, further including the formation of a single crystal semiconductor layer An impurity-doped region step. The process of item 35 of the patent scope; the step further includes the step of forming a patterned metal electrode on the single crystal layer. Oxygen 1 · ------------------- Order --------- line (Please read the precautions on the back before filling this page) Intellectual Property of the Ministry of Economic Affairs Printed by Bureau Staff Consumer Cooperatives -31-
TW090117573A 2000-07-21 2001-07-18 Method for and structure of alkali earth metal oxide on gate insulators TW497209B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US62177100A 2000-07-21 2000-07-21

Publications (1)

Publication Number Publication Date
TW497209B true TW497209B (en) 2002-08-01

Family

ID=24491561

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090117573A TW497209B (en) 2000-07-21 2001-07-18 Method for and structure of alkali earth metal oxide on gate insulators

Country Status (3)

Country Link
AU (1) AU2001278949A1 (en)
TW (1) TW497209B (en)
WO (1) WO2002009157A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10303875B4 (en) * 2003-01-31 2006-03-16 Technische Universität Clausthal Structure, in particular semiconductor structure, and method for producing a structure
US8314420B2 (en) * 2004-03-12 2012-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device with multiple component oxide channel
US10020374B2 (en) * 2009-12-25 2018-07-10 Ricoh Company, Ltd. Field-effect transistor, semiconductor memory display element, image display device, and system
US10475930B2 (en) 2016-08-17 2019-11-12 Samsung Electronics Co., Ltd. Method of forming crystalline oxides on III-V materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962883A (en) * 1994-03-23 1999-10-05 Lucent Technologies Inc. Article comprising an oxide layer on a GaAs-based semiconductor body
US5767543A (en) * 1996-09-16 1998-06-16 Motorola, Inc. Ferroelectric semiconductor device having a layered ferroelectric structure
EP0926739A1 (en) * 1997-12-24 1999-06-30 Texas Instruments Incorporated A structure of and method for forming a mis field effect transistor
JP2001144087A (en) * 1999-11-12 2001-05-25 Natl Research Inst For Metals Ministry Of Education Culture Sports Science & Technology Method of stabilizing interface between oxide and semiconductor by group v element and stabilized semiconductor

Also Published As

Publication number Publication date
WO2002009157A3 (en) 2002-06-20
AU2001278949A1 (en) 2002-02-05
WO2002009157A2 (en) 2002-01-31

Similar Documents

Publication Publication Date Title
TW515098B (en) Heterojunction tunneling diodes and process for fabricating the same
US6673646B2 (en) Growth of compound semiconductor structures on patterned oxide films and process for fabricating same
US10727051B2 (en) Semiconductor nanowire fabrication
TWI301292B (en) Semiconductor device
US7211852B2 (en) Structure and method for fabricating GaN devices utilizing the formation of a compliant substrate
US20030207589A1 (en) Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate
US20030013223A1 (en) Structure and method for fabricating semiconductor structures and devices utilizing the formation of a compliant III-V arsenide nitride substrate used to form the same
TW527631B (en) Low-defect semiconductor structure, device including the structure and method for fabricating structure and device
TW567525B (en) Method for real-time monitoring and controlling perovskite oxide film growth and semiconductor structure formed using the method
TW497209B (en) Method for and structure of alkali earth metal oxide on gate insulators
US6693298B2 (en) Structure and method for fabricating epitaxial semiconductor on insulator (SOI) structures and devices utilizing the formation of a compliant substrate for materials used to form same
WO2002093618A2 (en) Semiconductor structure including low-leakage, high crystalline dielectric
WO2002009159A2 (en) Thin-film metallic oxide structure and process for fabricating same
WO2002009158A2 (en) Semiconductor structure including a magnetic tunnel junction
TW531786B (en) Semiconductor structures having a compliant substrate
US6890816B2 (en) Compound semiconductor structure including an epitaxial perovskite layer and method for fabricating semiconductor structures and devices
US20020003239A1 (en) Semiconductor structure and device including a carbon film and method of forming the same
US20020000584A1 (en) Semiconductor structure and device including a monocrystalline conducting layer and method for fabricating the same
US20020153524A1 (en) Structure and method for fabricating semiconductor structures and devices utilizing perovskite stacks
TW552699B (en) Structure and method for fabricating semiconductor structures with coplanar surfaces
TW517282B (en) Structure and method for fabricating semiconductor devices
KR20030051820A (en) Semiconductor structure having high dielectric constant material
TW546692B (en) Structure and method for fabricating complementary III-V structures and devices utilizing the formation of a compliant substrate for materials used to form the same
TW508659B (en) Selective growth of semiconductor structure and process for fabricating same
US20020084461A1 (en) Structure and method for fabricating III-V nitride devices utilizing the formation of a compliant substrate

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees