TW496999B - Image display device and alignment adjusting method - Google Patents

Image display device and alignment adjusting method Download PDF

Info

Publication number
TW496999B
TW496999B TW90105157A TW90105157A TW496999B TW 496999 B TW496999 B TW 496999B TW 90105157 A TW90105157 A TW 90105157A TW 90105157 A TW90105157 A TW 90105157A TW 496999 B TW496999 B TW 496999B
Authority
TW
Taiwan
Prior art keywords
light
optical
lens
mirror
display device
Prior art date
Application number
TW90105157A
Other languages
Chinese (zh)
Inventor
Jiro Suzuki
Hiroshi Suzuki
Kohei Teramoto
Shinsuke Shikama
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of TW496999B publication Critical patent/TW496999B/en

Links

Landscapes

  • Lenses (AREA)

Abstract

The object of the present invention is to provide an image display device which is thinner than the conventional ones. The present invention provides an image display device which includes a refracting optical lens 15 to project light from transmitting means onto a convex mirror 16 to correct for pincushion distortion of the convex mirror 16.

Description

496999 五、發明說明(1) 發明所屬技術領域 本發明係有關於將供給影像資料之光影像信號投影至 顯示裝置而顯示影像之影像顯示裝置,又係有關於在該影 像顯示裝置使用之光學系構成元件之對準調整方法。 習知技術 圖9 5係表示習知之影像顯示裝置之構造圖。1係輸出 光之發光體’ 2係如自發光體π輸出之光變成大致平行般 反射之拋物面反射鏡,3係將自拋物面反射鏡2反射之光聚 光之聚光透鏡。發光體1、拋物面反射鏡2以及聚光透鏡3 構成照明光源系。 4係依照影像資料將聚光透鏡3所聚光之光在空間上調 變強度之光閥,5係將利用光閥4調變強度後之光投影至銀 幕6之投影光學透鏡,6係將自投影光學透鏡5投影之光顧 示成影像之銀幕。 其次說明動作。 自發光體1輸出之光被抛物面反射鏡2反射後,利用聚 光透鏡3向光閥4聚光。光閥4依照影像資料將所聚光之光 在空間上調變強度。調變強度後之光利用投影光學透鏡5 自後方(圖9 5之左方)投影至銀幕β。影像顯示裝置之利用 者自圖95之銀幕6之前方(圖95之右方)看景彡像。 圖95之影像顯示裝置之深度相當於自^由發光體1、拋 物面反射鏡2以及聚光透鏡3構成之照明光源系至銀幕6為 止之距離。若係可顯不大小相同之影像之影像顯示裝置, 該深度儘量薄的較好。由於這種理由,在圖95所示之習知496999 V. Description of the Invention (1) Technical Field of the Invention The present invention relates to an image display device for projecting a light image signal supplied with image data to a display device to display an image, and also relates to an optical system used in the image display device. Method for adjusting alignment of constituent elements. Conventional Technology Fig. 95 is a structural diagram showing a conventional video display device. 1 is a luminous body outputting light '2 is a parabolic mirror that reflects as light output from the luminous body π becomes approximately parallel, and 3 is a condenser lens that condenses light reflected from the parabolic mirror 2. The luminous body 1, the parabolic mirror 2, and the condenser lens 3 constitute an illumination light source system. 4 is a light valve that spatially adjusts the intensity of the light collected by the condenser lens 3 according to the image data. 5 is a projection optical lens that projects the light after the intensity is adjusted by the light valve 4 to the screen 6. The light projected by the projection optical lens 5 is displayed as a screen of an image. The operation will be described next. After the light output from the illuminant 1 is reflected by the parabolic mirror 2, the light is collected by the condenser lens 3 toward the light valve 4. The light valve 4 spatially adjusts the intensity of the collected light according to the image data. The light after the intensity is adjusted is projected onto the screen β from the rear (left of Fig. 95) by the projection optical lens 5. The user of the image display device looks at the scene from the front of the screen 6 in Fig. 95 (right of Fig. 95). The depth of the image display device of FIG. 95 is equivalent to the distance from the illumination light source composed of the luminous body 1, the parabolic mirror 2 and the condenser lens 3 to the screen 6. If it is an image display device capable of displaying images of different sizes, the depth is preferably as thin as possible. For this reason, the knowledge shown in Figure 95

2103-3823-PF ; AHDDUB.ptd 五、發明說明(2) =影像顯示裝置,為了儘量抑制影像顯示裝置之深度而可 里化使用廣角之投影光學透鏡5將影像顯示於銀幕6。 可是,因投影光學透鏡5之廣角有限,為了使圖95之 2像顯不裝置更薄型化,如圖96所示,設置相對於水 =糾度之平面鏡7,如將來自投影光學透鏡5之光 曲後投影至銀幕6般構成。 $ (夕圖Γ之影像顯示裝置,在影像顯示裝置之高度方向 鏡5之方配置照明光源系或光閥4、投影光學透 鏡5之各構成疋件,使得影像顯示 =影=裝置之深度相當於自平面了鏡=二 影光干、、牛,土 t ^ 疋光閥4及光源部分和投 ,、九干以先破遮住而光路脫離銀幕6。 圖9心Ϊ ;7開ΤΓ67號公報,公開使用凸面鏡替代2103-3823-PF; AHDDUB.ptd 5. Description of the invention (2) = image display device. In order to minimize the depth of the image display device, it can be converted to a wide-angle projection optical lens 5 to display the image on the screen 6. However, since the wide-angle of the projection optical lens 5 is limited, in order to make the image display device of FIG. 95-2 thinner, as shown in FIG. 96, a flat mirror 7 with respect to water = correction is provided. After the light curve, it is projected to the screen like 6. $ (Xi Tu's image display device, the illumination source system or light valve 4 and the projection optical lens 5 are arranged at the height direction mirror 5 of the image display device, so that the depth of the image display = shadow = device is equivalent In the self-planning, the mirror = two shadow light stems, light bulbs, earth, t ^, light valve 4 and light source parts, and light sources, and nine light stems are first broken and the light path is off the screen 6. Figure 9 heart; 7 open ΓΓ67 Gazette, public use of convex mirror instead

反射光後放大顯示影像之影像顯示裝置 1-疋在銀幕β顯示變形之影像。 个 I 發明要解決之課題 因習知之影像顯示裝置如上一 裝置之薄型化右版 七卜 义所不構成,在影像顯示 本=為薄型化之課題。 顯示裝置,可入=放=^課題,其目的在於得到一種影像 更薄型化。7所放大顯示影像不會變形’而且可比以^ 又,本發 影像顯示裝置 明之目的在於得到一 之光學系構成元件進 種對準調整方法,對該 行對準調整。An image display device 1- which displays an enlarged image after reflecting light, displays a distorted image on a screen β. The problem to be solved by the invention is that the conventional image display device is the thin version of the previous device. The right version is not composed, and the image display is a problem of thinning. The display device can be inserted into the subject, and its purpose is to obtain a thinner image. 7 enlarged display image will not be deformed 'and can be compared with ^. The purpose of the image display device of the present invention is to obtain an alignment adjustment method of an optical system component, and adjust the alignment of the line.

五、發明說明(3) 解決課題之 本發明 號;及投影 補償該扭曲 射光學部構 该光影像信 本發明 影像信號之 號向該反射 示裝置經由 射面及該折 本發明 源部,發射 照明光源部 作為光影像 本發明 裝置傳送之 本發曰月 之凸面鏡。 本發明 之夫瑞乃鏡 方式 影像顯 光學裝 像差而 成;使 號。 之影像 反射面 部投影 該投影 射面之 之影像 照明光 發出之 信號反 之影像 光影像 之影像 顯示裝 ;及投 之折射 光學裝 至少一 顯示裝 :及反 照明光 射。 顯示裝 信號之 顯示裝 :裝置包括:反射 置,由在該反射部 :將該光影像信號 侍戎顯示裝置經由 £包括:反 衫光學裝置 面之折射光 置感光該光 個面形成非 置,使得傳 射型影像資 ’而且供給 置’使得反 旋轉非球面 置’使得反 部,反射該光影像信 具有扭曲像差之情況 向該反射部投影之折 該投影光學裝置感光 射部,具有反射該光 ,具有將該光影像信 學部構成;使得該顯 影像信號,而且該反 球面形狀。 送裝置包括:照明光 料賦與部,接受自該 該照明光影像資料後 射部包括反射自傳送 〇 射部設為具有負功率 之影像顯示裝置,使得反射部設為具有負功率 本發明之影像顯示裝置,使得反射部包括反射面,由 在自傳送裝置傳送之光影像信號透射之方向積層之低分散 介質及高分散介質構成,具有負功率並反射透射了該低分V. Description of the invention (3) The invention number for solving the problem; and the projection compensation optical unit to construct the light image signal and the image signal number of the present invention to the reflection display device through the emitting surface and the source portion of the present invention to emit The illuminating light source part is used as a light image. The convex mirror of the present invention is transmitted by the device of the present invention. The Freuner lens of the present invention is formed by displaying aberrations in an optical device; The image reflecting surface part projects the image of the projected projection surface. The signal emitted by the illumination light is opposite to the image. The image display device of the light image; and the refracting optical device. At least one display device: and the reflection light. The display device of the display device: the device includes: a reflection device, and in the reflection part: the light image signal is provided to the display device via the reflection light of the optical device surface of the reverse shirt, and the light surface is formed, The transmission-type image data is provided and the anti-rotational aspheric surface is set to make the reverse part reflect the light image signal to have a distorted aberration when projected on the reflection part. The projection optical device is a light-receiving part having a reflection. The light has a structure of the optical imaging information department; the image signal is displayed, and the anti-spherical shape. The sending device includes: an illumination light material imparting unit, and the receiving unit receives the illumination light image data, and the transmitting unit includes a reflection self-transmission unit. The transmitting unit is set to have an image display device with negative power, so that the reflecting unit is set to have negative power. The image display device is such that the reflecting portion includes a reflecting surface, and is composed of a low-dispersion medium and a high-dispersion medium that are laminated in the transmission direction of the optical image signal transmitted from the transmission device, and has a negative power and reflects and transmits the low score

2103-3823-PF ; AHDDUB.ptd 第6頁 五、發明說明(4) 散介質及古八 本發Γ刀ί介質之光影像信號之該光影像信號。 在光軸^ ί影像顯示裝置,使得反射部具有反射面,如 形成。 具有大凸之曲率並隨著接近周邊該曲率變小般 之項構$:,影像顯示裝置’使得反射部具有在由偶數次 面形狀之G f員式加上可數次之項後所求得之奇數次非球 〜久射面。 數次影像顯示裝置,使得折射光學部具有在由偶 非球面形狀之ί ί項式加上奇數次之項後所求得之奇數次 队 < 折射面。 開該反射部=::::2:’使得反射部或折射光學部避 。 一 Α 、子邛之光軸附近,導引光影像信號 本I明之影像顯示裝置 射部之像面胃、自t H _ 、光予σ卩包括抵消反 个W〶Φ之像面芩曲補償透鏡。 本t明之影像顯示裝置走 (Mzval)和補償透鏡,由具有正y率射光學部包括轴兹伐 功率且折射率比該正透鏡之折射率透鏡和具有負 反射部之珀茲伐(petzval)和貢獻成分。、透鏡構成,補償 本發明之影像顯示裝置,使得 & 裝置向反射部投影之光影像信號之::2學裝?在自傳送 該主光線之集中處包括非球面形狀光學面之分散處及/或 本發明之影像顯示裝置,使得投影狀 射光學部向反射部反射光影像信光^ =包括自折 九路彎曲裝置,在包2103-3823-PF; AHDDUB.ptd Page 6 V. Description of the invention (4) The light image signal of the light image signal of the bulk medium and the ancient eight books. The image display device is provided on the optical axis so that the reflecting portion has a reflecting surface such as formed. An image structure with a convex curvature and a curvature that becomes smaller as it approaches the periphery. The image display device 'makes the reflection portion have a G f member form with even-order surface shapes plus a countable term. Obtained an odd number of aspheric shots ~ long shots. The multiple-time image display device enables the refractive optical section to have an odd-numbered line obtained by adding an odd-numbered term from an even aspheric shape term < a refractive surface. Turn on the reflection part = :::: 2: ’to avoid the reflection part or refractive optical part. Α, near the optical axis of the child, the image surface stomach of the image display device of the image display device that guides the light image signal, since t H _, the light to σ 卩 includes the image surface curvature compensation that cancels the opposite W 〶 lens. The image display device (Mzval) and the compensating lens of the present invention are composed of a refractive index lens having a positive y-emissivity optical section including an axial zvat power and a refractive index higher than the positive lens and a petzval having a negative reflection And contributing ingredients. 2. Lens structure and compensation The image display device of the present invention makes the & device project the light image signal of the reflection part :: 2 school equipment? The aspheric-shaped optical surface is dispersed at the concentrated place where the main light is transmitted and / or the image display device of the present invention, so that the projection-shaped optical portion reflects the light to the reflecting portion. In the package

2103-3823-PF ; AHDDUB.ptd 夂、發明說明(b) 含該反射部之光軸之砍 管成適^角度。 面内將該折射光學部之光軸方向 透鏡f ’使得折射光學部包括自第 。 透鏡…射光影像信號之光:;:|置一 本發明之影像顯 樹脂製造之至少1 :透鏡:使得折射光學部包括由合成 本發明之影像顯千鞋$ 光軸共同化,並以旋轉對稱形折射光學部及反射部之 本發明之影像顯示裝置 自投影光學裝置之光影像信號之向顯示裝置反射來 面鏡=使得顯示“之感光面和平 光學ΐ發透有,包"向 ,本發明之影像顯示裝置 鏡群及1組負透鏡群構成。 、本發明之影像顯示裝置 鏡群及1組負透鏡群構成。 本發明之影像顯示裝置 透鏡,具有145 ιν疋竽透鏡包括:| 刍从玄 · 上1 · 7 2 2以下之折射率之平均佶廿I古 負功率;及正裱供 〜卞β值亚具有 夂正透鏡,具有大於1?22而小於丨q u # J义i · y之折射率之 及折射光學透鏡,;以之負透鏡 像4號往反射部之射出角度。 光予糸之光影 使得反向光學系由2組正透 使得反向光學系由1組正透 使得折射光學透鏡包括:負 五、發明說明(6) 平均值並具有正功率。 本發明之影像顯示裝置,使得折射光學透鏡包括:負 透鏡,具有25以上38以下之阿貝數之平均值並具有負功率 古鏡,具有大於38而小於6〇之阿貝數之平 有正功率。 六' 鏡之ίΪΓί影像顯示裝置,使得折射光學部由構成正透 料構成。 上i以下之透鏡玻璃材 本I明之影像顯示裝置,彳* ί曰k 鏡之玻璃材料之阿貝數之平均= = 由構成正透 之阿貝數之平均值^構成負透鏡之玻璃材料 構成。 為0以上16以下之透鏡玻璃材料 本t明之景》像顯示裝置八 複數透鏡之中最接近傳 自構成折射光學部之 =出面為止之後側焦距和面:透鏡至該傳送襄 折射光學部之入射瞳位置為止适裝置光射出面至該 本發明之影傻骷_壯 之距離一致。 線之低處包括具有負::負J :投影光學裝置在邊部光 本發明之影像顯示裝置;ί。 f成在折射光學部不遮住自光t :: W光軸方向之彎曲角度 光路之範圍接近該光路…路幫曲裝置至反射部為:: 本發明之影像_ _壯π 設成在第一透f酤 不、置,使得將光^^ 透鏡敦置不遮住自光路以方向之彎曲角度 -~----- 衣置至第二透鏡裝 ptd 2103-3823-PF ; AHDDUB. 頁 第9 五、發明說明(7) 置為止之光路之範圍接近該光路。 本發明之影像顯令梦署 部設置面A 夕早”、 使得將自折射光學部至及身+ 面為止之最短距離設為厚 至反射 本發明之影像顯示裝置下:範圍。 弯曲裝置為止之最長距離或自14自反射部設置面至光路 部為止之最長 1自邊反射部設置面至折射 等。取長距離之中較長之該最長距離和厚度限 f曲裝置^:::不裝置,使得自反射部設置面至 部為止之ίϊ:::;離和自該反射部設置面至折 本發明之影像_ 光影:;號不通過部r:;r折射光學部刪除 顯示装置反射光影;= ”為自反射部切掉不向 本發明之影像g壯非反射部分之形狀。 射部保持成一體化之保:】椹使得包括將折射光學部及反 本發明之影像顯示罟 曰 寫曲裝置以及反射部^二使得包括將折射光學部、光 少古本發明之影像顯*裝w成—f化之保持機構。 向處包括具有正^ ,使得折射光學部在邊部光線 心本發明之影像顯二ΪΓΪ。 〜 線之向度設為h。時,滿足2103-3823-PF; AHDDUB.ptd 夂, description of the invention (b) The chopped tube containing the optical axis of the reflecting portion is at an appropriate angle. The lens f 'in the plane of the optical axis of the refractive optical portion is included in the plane so that the refractive optical portion includes the first lens. Lens ... light of the image signal of the light:;: | set at least 1 made of the image display resin of the present invention: lens: make the refractive optical unit including the image display of the present invention to synthesize the optical axis, and rotate symmetry The image display device of the present invention having a shape-refracting optical portion and a reflecting portion reflects the light image signal from the projection optical device toward the display device to the mirror = so that the light-sensitive surface and the optical surface of the display "are transparent, including" The image display device mirror group and a negative lens group of the invention are formed. The image display device mirror group and one negative lens group of the invention are formed. The image display device lens of the invention has a 145 ιν 疋 竽 lens including: | The average 佶 廿 I ancient negative power of the refractive index from Xuan · Shang 1 · 7 2 2 and below; and the positive mounting ~ 卞 β value has a 夂 positive lens, with greater than 1? 22 and less than 丨 qu # J 义 i · The refractive index of y and the refractive optical lens; the negative angle of the negative lens like No. 4 toward the reflection part. The light and shadow of the light makes the reverse optical system from two groups of positive transmission and the reverse optical system from one group of positive transmission Make refracted light The lens includes: negative 5. Description of the invention (6) The average value and a positive power. The image display device of the present invention makes the refractive optical lens include a negative lens, which has an average value of Abbe number of 25 to 38 and has negative power. An ancient mirror with an Abbe number of greater than 38 and less than 60 has a positive power. Six 'mirror image display device, so that the refractive optical part is composed of a positive transmission material. The lens glass material below the upper i Image display device, 彳 * ί The average Abbe number of the glass material of the k-mirror = = The average value of the Abbe number constituting the positive transmission ^ The glass material constituting the negative lens. The lens glass material is 0 to 16 Among the eight complex lenses of the "Bright Scenery" image display device, the closest focal length and surface are transmitted from the = composing surface of the refractive optical section: the lens is suitable for the light exit surface of the device to the entrance pupil position of the transmitting refractive optical section. The distance between the shadow silly skull of the present invention is the same. The lower part of the line includes a negative :: negative J: the projection optical device lights the image display device of the present invention on the side; f 成 在The optical part does not cover the range of the bending angle of the light path from the direction of the optical t: W optical axis. The range of the light path is close to the light path ... The road help device to the reflection part is: The image of the present invention _ _ π is set at the first transmission f Do not set, so that the light ^^ lens does not cover the bending angle in the direction from the optical path-~ ----- clothing to the second lens installation ptd 2103-3823-PF; AHDDUB. Page 9 five Explanation of the invention (7) The range of the light path up to the position is close to the light path. The image of the present invention makes the dream department to set the surface A evening early ", so that the shortest distance from the self-refracting optical portion to the body + surface is set to be thick To the reflection of the image display device of the present invention: the range. The longest distance from the bending device or the longest distance from 14 from the reflecting surface to the optical path portion 1 from the side reflecting surface to refraction. Take the longer of the longest distance and the thickness limit f-curve device ^ ::: No device, so that the self-reflecting part installation surface to the end of the ϊ :::; from and from the reflective part installation surface to the book The image of the invention _ light and shadow :; the non-passing section r :; r refracting optical section deletes the reflected light and shadow of the display device; = ”is the shape of the non-reflective section cut away from the reflective section of the invention. The guarantee of integration:] 椹 makes the refractive optical part and the image display of the present invention 罟 the writing device and the reflection part ^ two makes the refractive optical part, the light of the image display of the present invention * installed w-f The holding mechanism of the transformation. It has a positive ^ at all directions, so that the refractive optical part is centered on the edge of the light. The image of the present invention shows two ΪΓΪ. ~ When the direction of the line is set to h.

21〇3-3823-PF ; AHDDUB.ptd 第10頁 ί部光線之高度設為hl^使得將射入該折射光學部之 ,正透鏡之邊部光線之,在配置於該折射光學部中央部 七射出之光之邊部 $向度設為hm 1自該折射 496999 五、發明說明(8) 3hi 及〇.3hi<ho<hi 之關係。 本發明之影像顯示裝置,使得投 之光軸中心附近之光學性能差,而提裝置之不使用 範圍之成像性能。 巧使用之該光軸外之 本發明之影像顯示裝置,使得投影壯 心之成像位置和該光軸周邊之成像伋 I衣置之光軸中 本發明之影像顯示裝置,使得投影=一平面内。 中心附近之扭曲像差,提高使用之大^ =凌置容許光軸 本發明之影像顯示裝置,使得4 =成像性能。 性能惡化之範圍限制為只和晝面底邊= 本發明之影傻-壯娶 蚀〜 關之像角範圍。 月之〜像顯不裝置,使侍自 裝”射光影像信號之平面鏡具有補償:㈡二: 扭曲像差之形狀。 4又〜光子衣置之 wit ΪΓ象顯示裝置,使得折射光學部在構造上將 ί ::i 近之射出光之射出曈和往該反射部之周 邊之射出光之射出瞳偏移,調整對於該反射部之該射出光 之入射位置及入射角。 ^發明之影像顯示裝置,使得反射部將自作為反射光 影像彳§5虎之反射面之前面至設為該前面之背面之後面為止 之厚度形成等厚。 本發明之影像顯示裝置,使得反射部包括在不反射光 影像信说之非投影前面以該反射部之光軸為中心設置之平 面形狀之低反射面和具有比該低反射面小之面積並在該低 反射面内部以該光軸為中心設置之平面形狀之高反射面。21〇3-3823-PF; AHDDUB.ptd Page 10 The height of the light rays is set to hl ^ so that the light rays incident on the refracting optical part, the edges of the positive lens, are arranged in the central part of the refracting optical part. The direction of the $ direction of the side of the emitted light is set to hm 1 from the refraction 496,999. 5. The relationship between the invention description (8) 3hi and 0.3hi < ho < hi. The image display device of the present invention makes the optical performance near the center of the optical axis of the projection poor, and improves the imaging performance in the non-use range of the device. The image display device of the present invention, which is used outside the optical axis, is used to make the imaging position of the projection center and the imaging device around the optical axis placed in the optical axis of the image display device of the present invention, so that the projection = in a plane. Distortion aberration near the center, which improves the use of ^ = the allowable optical axis of the image display device of the present invention makes 4 = imaging performance. The range of deterioration in performance is limited to only the bottom of the day surface = the shadow silly of the present invention-the eclipse ~ the range of the image angle. Moonlight ~ The display device does not allow the self-equipped plane mirror to compensate for the light image signal: ㈡2: The shape of the distorted aberration. 4 ~~ Wit 置 Γ image display device, which makes the refractive optics structure. Shift the exit pupil of ί :: i near the outgoing light and the exit pupil of the outgoing light to the periphery of the reflecting part, and adjust the incident position and incident angle of the outgoing light to the reflecting part. ^ Invented image display device So that the reflective portion has a thickness equal to the thickness from the front surface of the reflecting surface of the reflected light image 彳 §5 to the rear surface of the front surface of the tiger. The image display device of the present invention allows the reflective portion to include no reflected light. The non-projected image is said to have a low-reflection surface with a plane shape centered on the optical axis of the reflection portion and a plane having a smaller area than the low-reflection surface and centered on the optical axis inside the low-reflection surface. Highly reflective surface.

2103-3B23-PF * AHDDUB.ptd2103-3B23-PF * AHDDUB.ptd

第11頁 五、發明說明(9) 資料:ΐ:2 Ξ ί Ϊ示裝置,使得傳送裝置包括伴嘆 之增減和該變動相反2照f玻璃罩之光學上之厚度 鉍由該玻璃罩及該 二予杜厚度之補償 本發明之影像顯示穿貝透鏡向折射光學部射出光。 f置之照明光之入射側=使得折射光學部在來自傳送 機構。 包括拆裝補償玻璃之補償玻璃拆裝 本發明之影像顯示 及顯示袭置之感光面正吏仔具有和平面鏡之反射面 位於該顯示裝置所顯矛面;纟藉著纟自用線段連接 ;像之中心之第一點^之影像之底邊上並最遠離 第—點、反射往該第二夕二弟一點之光線之平面鏡上之 該第-點自該底面之續:線之反射部上之第三點、將 、將該第二點自該底面:::向該底面投影之第一投影點 影點、將該第三點自兮麻2線方向向該底面投影之第二投 三投影點所產生之配置x =之法線方向向該底面投影之第 本發明之影像顯以配置 學系主要部分,由發射照 使付傳运裳置包括:聚光光 光源部之射出光依次之照明光源部、將來自照明 照明光之射出端面之昭八=色輪、使來自照明光源部之 以及將來自該棒形積乂二:”均勻化後射出之棒形積分器 物鏡,使來自該中繼1;之中繼透鏡構成; 及反射型影像資料賦盘 …、a九之主光線方向一致;以 資料後作為光影像作声仏給來自该物鏡之照明光影像 ”虎反射;在配置空間將該聚光光學系 第12頁 2103-3823-PF » AHDDUB.ptd 496999 發明說明(10) ^主要°卩^=置為構成元件,而且包括將來自該聚光光學 狀罢=Ϊ邛刀之照明光向該物鏡依次反射之第二光路彎曲 衣置及第三光路彎曲裝置。 八夕i f:之影像顯示裝置,使得將聚光光學系之主要部 刀 4 6又置成和顯示裝置之感光面及底面平行。 八之ΐ Γ:之影像顯示裝置,使得將聚光光學系之主要部 二明来:ί置成和顯示裝置之感光面平行,而且令傾斜成 i 1和該光軸之交點在鉛垂方向比中繼透鏡和該光 苹由之父點高。 t發明之影像顯示裝置,使得傳送裝置包括設置聚光 收ί第5 =要部分及物鏡之調整台’而且在該調整台包括 收滅第二光路彎曲裝置之收藏孔。 本:明之影像顯示裝置’使得聚光光學系 2路彎曲裝置或第三光路彎曲裝置之至少―:: 子面δ又為曲面形狀。 方之光 本發明之影像顯示裝置,使得反射邱 。 行汉耵一由合成樹脂製成 本發明之影像顯示裝置,使得反射部如 看到之正面形狀變成長方形般切掉不向壯/、光輛方向 像信號之非反射部A;而且包括第-螺絲;t f反射光影 方形之下邊上以既定之偏心距離設於光輛附=σ卩,在該長 反射部安裝機構樞軸固定;第二螺絲固定、,對於第一 形之下$以外t ·,對於第=反射部:巷言曼於該長方 ,以及第三螺絲固定部,設於該長方 、冓保持成滑動 、下邊以外之邊,Page 11 V. Description of the invention (9) Information: ΐ: 2 Ξ ί Ϊ 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 display device, so that the transmission device includes the increase and decrease of companion sigh and the opposite of the change The compensation of the thickness of the two y-dur layers of the present invention shows that the penetrating lens emits light toward the refractive optical portion. f is set to the incident side of the illuminating light = so that the refracting optical portion comes from the transmitting mechanism. Compensating glass including disassembling and disassembling and disassembling and disassembling and compensating the glass The photosensitive surface of the image display and display device of the present invention is provided with a reflective surface of the flat mirror on the surface of the display device; 纟 connected by 纟 own line segments; like The first point on the center of the image on the bottom edge of the image that is furthest from the first point, the second point on the plane mirror that reflects the light towards the second point of the second night from the bottom: the line on the reflection part of the line The third point, the second point from the bottom surface :: the first projection point shadow point projected on the bottom surface, the second projection three projection of the third point from the direction of the line 2 to the bottom surface The configuration of the point generated by the point x = the image of the present invention projected on the bottom surface to the bottom surface is the main part of the Department of Configuration. The emission photo to make Fu Chuanyun set includes: the light emitted from the spotlight source section in order. Illumination light source part, the color wheel from the emitting end face of the illumination light = color wheel, make from the illumination light source part and from the rod-shaped product: "The rod-shaped integrator objective lens emitted after homogenization, from the Relay 1; the relay lens configuration; and The distribution of the radiographic image data ... The main light direction of the nine is the same; after the data is used as a light image, the sound is reflected to the illumination light image from the objective lens "Tiger reflection; in the configuration space, the condensing optical system is on page 12, 2103. -3823-PF »AHDDUB.ptd 496999 Description of the invention (10) ^ Main ° 卩 ^ = is set as a constituent element, and includes a second light which sequentially reflects the illumination light from the condensing optics to the objective lens Light path bending clothing and third light path bending device. The image display device of the star festival i f: makes the main part of the focusing optical system knife 4 6 parallel to the photosensitive surface and the bottom surface of the display device. Hachinojo Γ: The image display device makes the main part of the condensing optical system Er Minglai: placed parallel to the photosensitive surface of the display device, and the tilt point i 1 and the intersection of the optical axis in the vertical direction Higher than the relay lens and the father of this light. The image display device invented by the invention enables the conveying device to include an adjustment table for condensing and collecting the fifth part and the objective lens, and also includes a storage hole for the second optical path bending device in the adjustment table. Ben: Ming's image display device 'makes at least one of the two-way bending device or the third light-path bending device of the condensing optical system: the sub-plane δ has a curved shape. Fang Zhiguang The image display device of the present invention reflects Qiu. Xing Hanyi made the image display device of the present invention from a synthetic resin, so that the reflective part cuts out the non-reflective part A that does not look like the signal in the direction of the optical signal when the front shape becomes rectangular; and includes the first-screw ; Tf reflected light and shadow below the square with a predetermined eccentric distance is set at the attachment of the vehicle = σ 卩, pivotally fixed in the long reflection part mounting mechanism; the second screw is fixed, for the first shape below $ t, For the = reflection part: the alley is on the rectangular side, and the third screw fixing part is provided on the rectangular side, the cymbal is kept sliding, and the other side is below,

2103-3823-PF ; AHDDUB. 第13頁 496999 五、發明說明(11) 對於第三反射部安襄機構保持成滑動。 本發明之影像顯示裝置,使 — 第一螺絲固定部利用推拔螺絲〜,—反射部安装機構及 该推拔螺絲之推拔部分一致之螺、纟 而且具有推拔形狀和 本發明之影像顯示裝置,使2孔。 看到之正面形狀變成長方形般切2反射部如自其光軸方向 像信號之非反射部分;而且^括二^"向顯示裝置反射光影 上以既定之偏心距離設於光 =卩:在該長方形之下邊 和該凹部嵌合;2支彈簧,其一1,圓柱支撐體,其曲面 右,對該反射部供給拉力;赏一端各自固定於該凹部之左 形之下邊以外之邊,對於第—二螺絲固定部,設於該長方 動;以及第三螺絲固定部2射部安裝機構保持成滑 ,對於第三反射部安裝機構保持成滑動。 卜之邊 本發明之,像顯示裝置,使得反射部如自其 看到之正面形狀變成長方形般切掉不向暴員示裝置反射^ 像信號之非反射部分;而且包括凸部,在該長方形2 Θ 上以既定之偏心距離設於光軸附近;¥槽支撐體,該下邊 嵌入其V槽·,2支彈簧,其—端各自固定於該凸部之左& 4 對該反射部供給拉力;第二螺絲固定部,設於該長方形, 下邊以外之邊,對於第一反射部安裝機構保持成滑動,之 及第三螺絲固定部,設於該長方形之下邊以外之邊,對以 第三反射部安裝機構保持成滑動。 f ^ 本發明之影像顯示震置,使得反射部包括2支彈^ 其一端各自固疋於為弟 螺絲固定部之左右,而且另' 2103-3823-PF : AHDDUB.ptd 第14頁2103-3823-PF; AHDDUB. Page 13 496999 V. Description of the invention (11) The Anxiang mechanism of the third reflecting part is kept sliding. According to the image display device of the present invention, the first screw fixing portion uses a push screw ~, the reflecting portion mounting mechanism and the screw of the push screw and the push portion of the push screw are consistent, and has a push shape and the image display of the present invention Device to make 2 holes. The shape of the front surface is seen as a rectangle, and the 2 reflecting parts are like non-reflective parts of the signal from the direction of its optical axis; and ^ brackets 2 " set the light and shadow on the display device at a predetermined eccentric distance to the light = 卩: in The lower side of the rectangle is fitted with the recess; two springs, one of which is a cylindrical support, has a curved right side, which provides tension to the reflecting portion; one end is fixed to the side other than the lower left side of the recess. The second screw fixing portion is provided in the rectangular motion; and the third screw fixing portion 2-radial portion mounting mechanism is kept slid, and the third reflection portion mounting mechanism is kept sliding. According to the present invention, like the display device, the reflective portion is cut into a rectangular shape as seen from the front, and the non-reflective portion of the image signal is not reflected to the mob display device; and includes a convex portion in the rectangle. 2 Θ is set near the optical axis with a predetermined eccentric distance; ¥ groove support body, the lower side is embedded in its V groove ·, 2 springs, the ends of which are respectively fixed to the left of the convex portion & 4 is provided to the reflecting portion Pulling force; the second screw fixing portion is provided on the rectangle, and the other side is lower than the lower side, and the first reflecting portion mounting mechanism is kept in a sliding state; and the third screw fixing portion is provided on the side other than the lower side of the rectangle. The three-reflection part mounting mechanism is held to slide. f ^ The image of the present invention shows the vibration setting, so that the reflection part includes 2 bullets ^ One end is fixed to the left and right of the screw fixing part, and another '2103-3823-PF: AHDDUB.ptd page 14

五、發明說明(12) 固定於共同點,對該反射部供給拉力。 蟬ί之影像顯示裝置’使得第—螺絲固定部、第二 【、、=疋:以及第三螺絲固定部對於第一反射部安裝機 反射部安裝機構以及第三反射部安裝機構各自將 、太^日5旒之反射部之前面側保持成接觸。 設於=顯示裝置’使得包括2支滑動支擇柱, 學部之部分透鏡群支撐成滑動.m u鏡鲆或该折射光 湣叙±秘上 月動,弟一安裝板,位於該2支 於,2支Ί之二並固定於該保持機構上;第三安裝板;位 透鏡群Λ气 之間並固定於構成折射光學部之全部 一安梦柘艿姑结-〜# 以及壓電兀件’如由該第 ^ 第一女裝板夾住般伴括垃總 -Γ I m ^ r 制電壓之辦、、志y»兮k 6 1 保持接觸’利用施加之控 ίί: 折射光學部之光軸方向伸縮。 保持機i:之ΐ像顯示裝置,使得包括齒輪支撐柱,設於 群或該折射# @ %!r械構折射光學部之全部透鏡 乂豕折射先學部之部分透鏡群之豆中之一。 本發明之影像顯示裝置’使 持機構所保持之折射#…7令丨裔,將保 加熱冷卻。斤射先予部或邊保持機構之中之至少一方 本發明之影像顯示裝置,使得包㈤ 折射光學部之鏡筒溫户·、、w片σ =又$ ’、丨态,感測 哎,/皿度感測為,咸測保胜她盆 部溫度,·以及控制單元m α而保持機構之内 ΐ π ^ 丄凡备-自该鏡筒溫度及該内邱、、四许 之中之至少一種。 w輪機構或加熱冷卻器5. Description of the invention (12) It is fixed at a common point, and a pulling force is supplied to the reflecting portion. The image display device of the cicada 'makes the first screw fixing part, the second [,, = 疋: and the third screw fixing part for the first reflecting part mounting machine reflecting part mounting mechanism and the third reflecting part mounting mechanism respectively, too. ^ The front side of the reflecting part at 5 日 is kept in contact. Set at = display device 'so that it includes 2 sliding support columns, part of the lens group of the faculty is supported to slide. Mu mirror 鲆 or the refracted light 湣 described last month, a mounting plate, located in the 2 branches, Two of the two are fixed to the holding mechanism; the third mounting plate; the bit lens group Λ is fixed between all of the annulus 柘 艿-~ # and the piezoelectric element which constitute the refractive optical section. As it is sandwiched by the first ^ first women's board, it is accompanied by the general manager-Γ I m ^ r voltage control, and 、 y »xi k 6 1 keep in touch 'use the control applied: refracting the light of the optical part Telescopic direction. Holder i: The image display device includes a gear supporting column, and is provided in the group or the lens of the refraction # @%! R mechanism to refract all the optics of the refraction optics. The image display device ′ of the present invention keeps the refractions # ... 7 held by the holding mechanism to heat and cool. At least one of the pre-shooting part or the side holding mechanism of the image display device of the present invention makes the lens barrel temperature of the refracting optical part · ,, w piece σ = and $ ', 丨 state, sense hey, The sensing degree is to measure the temperature of the basin, and control the unit m α to keep the inside of the mechanism ΐ ^ 丄 备 备-from the lens barrel temperature and at least one of the inner Qiu and the four Xu . w-wheel mechanism or heating cooler

五、發明說明(13) 本發明之影 環境溫度;及控 之焦點調整點得 點補償量控制壓 少其中一種。 本發明之影 入顯示裝置之非 制單元,按照該 機構或加熱冷卻 本發明之影 入顯示裝置之非 本發明之影 感光之光強度分 值後,控制成使 本發明之影 感光之光強度分 位準之寬後,控 本發明之影 感光之光強度分 之傾斜後,控制 本發明之影 光學部及反射部 之高度和線膨脹 本發明之景多 像顯示 制單元 @之線 電元件 像顯示 影像顯 焦點資 器之中 像顯示 影像顯 像顯示 布作為 該尖峰 像顯示 布作為 制成使 像顯示 布作為 成使該 像顯示 之多支 率之積 像顯示 裝置,使得 示區域之光 料之分析結 之至少一種 裝置,使得 示區域之光 裝置,使得 焦點資料, 值變大。 裝置,使得 焦點資料, 該既定位準 裝置,使得 焦點資料, 傾斜變大。 裝置,保持 支撐柱;使 全部相等。 裝置,使得 、置’使得包括溫度感測器,感測 ’按照供給自至少2點以上之不同 性插值式該環i竟溫度後所求得之集 、齒輪機構或加熱冷卻器之中之至 包括CCD元件,感光射 後檢測焦點資料;及控 果控制壓電元件、齒輪 〇 包括向CCD元件反射射 之小型反射鏡。 控制單元將CCD元件所 分析該焦點資料之尖峰 控制單元將CCD元件所 分析該焦點資料之既定 之寬變小。 控制單元將CCD元件所 分析該焦點資料之肩部 機構包括分別支撐折射 得該支撐柱在錯垂方向 反射部包括具有高反射V. Description of the invention (13) The ambient temperature of the shadow of the present invention; The non-manufactured unit of the shadow-into-display device of the present invention is controlled in accordance with the mechanism or heating to cool the light-intensity score of the shadow-into-display device of the present invention that is not the light-sensing light of the invention, and is controlled to make the light-intensity of the shadow of the present invention light-sensitive After the quantization level is wide, after controlling the inclination of the light intensity of the shadow photosensitivity of the present invention, the height and linear expansion of the shadow optical part and the reflection part of the present invention are controlled. The scene multi-image display system of the present invention @ 之 线 电 elet The image display image display cloth is used as the spike image display cloth as the peak image display cloth, and the image display cloth is used to make the image display cloth as a multi-image product display device to make the image display, so that the light of the display area At least one device for the analysis of data is required to make the light device of the display area to make the focus data larger. The device enables the focus data to be positioned accurately so that the focus data has a larger tilt. Device, holding support column; make all equal. The device is such that the temperature sensor is included and the sensor is sensed according to the difference, the gear mechanism, or the heating cooler, which is obtained after the temperature of the ring i is supplied from a differential interpolation formula of at least 2 points or more. Including CCD element, detecting focus data after light shooting; and controlling the piezoelectric element and gear, including small reflection mirror which reflects to CCD element. The control unit reduces the peak width of the focus data analyzed by the CCD element. The control unit reduces the predetermined width of the focus data analyzed by the CCD element. The control unit analyzes the shoulder of the focus data analyzed by the CCD element. The mechanism includes supporting and refracting the support pillars in a staggered direction. The reflecting section includes high reflection.

2103-3823-PF ; AHDDUB.ptd 第16頁 496999 五、發明說明(14) - 面及低反射面或者整個面高反射面之及έ 部。 久射凸部或反射凹 本發明之影像顯示裝置,使得反射 像信號之反射面之前面包括透鏡層。σ在作為反射光〜 本發明之影像顯示裝置,包括前部筐體,# 底面上亚具有顯示裝置;後部筐體,认;王— 上部斜面、左部斜面、右部斜面,設於面上;以及 後部筐體之間並和該底面一起形成收藏;该則部筐體至該 斜面及右部斜面在該前部筐體之背面保:二;使得該左部 行之平行面’在後部值體之側 和員示裝置平 垂直面。 T 顯不裝置垂直之 本發明之影像顯示裝置,包括連接構件θ ^ 顯示裝置之左右之其中一側之平行面連==具有和影像 位於與該平行面同側之垂直面連接之 2弟一端面、和 二端面平行之連接面;,吏得該 以及和該第 接面連結。 別的連接構件之連 本發明之影像顯示裝置,使 具有和影像顯示裝置同一言择 、 牛匕括第三端面 二端面正交,和別的連接構件連結。 第一端面及第 * ΐ:: i影像顯示裝置,“經由上部钭面* 面以及右部斜面使排氣 、左部斜 部通過。 Λ电、見規s匡體之内部向外 本發明之種對準調整方法, 反射部射入直線前進光,而 = 列步驟··向該 叫且调整該反射部之姿勢,令射 2103*3823-PF ; AHDDUB.ptd 第17頁 496999 五、發明說明(15) 面之該直線前進光之去路和被該 之忒直線刖進光之回路一致之步驟; 射面反射 經由該折射光學部之該回路之直線:了 :反射面射入 光學部射出被該高反射面反射之該回路J直線;自該折射 整該折射光學部之姿勢,使自該折射光 :進光,調 之直線前進光之功率變成最大。 子。’出之該回路 本發明之對準調整方法,使得包括下列步 射入忒治具顯示裝置後透射了該第一 亚一垂直的 該高反射面反身士 ’在該高反射面和該第一透射:行光束被 平行,束之去路和回路一致之步驟;自該之間令該 向該高反射面依次反射以該折射光學部:理想::f射鏡 心之平行光束,在該高反射面和該 ^ 軸為中 置具有和該折射光學部之光轴對;;置:J鏡;持凸緣設 空反射鏡,自該光路彎曲反射鏡經 弟射孔之孔2103-3823-PF; AHDDUB.ptd Page 16 496999 V. Description of the invention (14)-Surface and low-reflection surface or high-reflection surface of the entire surface. Long projections or reflective recesses The image display device of the present invention is such that the front surface of the reflective surface of the reflected image signal includes a lens layer. σ is the reflected light ~ The image display device of the present invention includes a front case, and a display device is located on the bottom surface; the rear case is recognized; the king—the upper slope, the left slope, and the right slope are provided on the surface ; And the rear case is formed between the bottom case and the bottom surface together; the part case to the bevel and the right bevel are secured on the back of the front case: two; so that the parallel plane of the left row is at the rear The side of the value body and the plane of the indicating device are vertical. The video display device of the present invention in which the T display device is vertical includes a connecting member θ ^ connected to a parallel plane on one of the left and right sides of the display device == 2 having a connection with the image on a vertical plane on the same side as the parallel plane The end surface and the connecting surface parallel to the two end surfaces; Connection of other connection members The image display device of the present invention has the same option as the image display device, and the third end face and the second end face are orthogonal to each other, and are connected to other connection members. The first end face and the * th ΐ :: i image display device, "exhaust, left sloping part through the upper 钭 face * and right bevel. Δ 电, see the inside of the body of the invention outward A kind of alignment adjustment method, the reflection part shoots straight forward light, and the sequence of steps is to adjust the position of the reflection part to make it shoot 2103 * 3823-PF; AHDDUB.ptd page 17496999 5. Description of the invention (15) The step of the straight forward light path of the surface is the same as that of the circuit of the straight line of incoming light; the reflecting surface reflects the straight line of the circuit through the refracting optical part: The high-reflective surface reflects the straight line of the circuit J; the posture of the refracting optical part is adjusted from the refraction, so that the power of the self-refracted light: the incoming light, the linearly advancing light is maximized. Son. 'Out of the circuit of the present invention The alignment adjustment method includes the following steps, which are transmitted to the display device of the jig and transmit the first sub-a vertical reflection of the highly reflective surface of the reflector on the highly reflective surface and the first transmission: the line beam is parallel, Steps that go the same way as the circuit From there, the reflecting optical section is sequentially reflected toward the highly reflecting surface: ideally: a parallel beam of the f-ray mirror center, the light having the reflecting optical section and the refracting optical section are centered on the highly reflecting surface and the ^ axis. Axis pair; Set: J mirror; Hold the flange to set an empty mirror, bend the mirror from the optical path through the hole of the perforation of the younger brother

射以該折射光學部之理想:向該J 射面向該光路彎曲反射鏡依次反射之回二自該高反 行;:向:致之”;自該透鏡保持凸緣拆ΐ:行光束之 鏡後认置6亥折射光學部之步驟;以&設置該昭⑽孔空反射 該影像資料賦與部,利:月光源部及 :以及該反射部令該光影像信匕!部、該 顯不凌置上之正常之位置之步驟。 〜成像於治具The ideal of the refracting optical part: the J-plane facing the optical path of the curved reflector is reflected in turn from the high retroreflection; the direction is the same; it is removed from the lens holding flange: the line beam mirror The step of recognizing the 6H refracting optical part is later set; the & set the Zhaoying hole to reflect the image data donating part is beneficial: the moon light source part and: and the reflecting part makes the light image beckon! Part, the display Steps to keep the normal position on top. ~ Imaging on the fixture

2103-3823-PF ; AHDDUB.ptd 第18頁 496999 五、發明說明(16) 發明之實施例 以下,說明本發明之一實施例。 實施例1 圖1係表示本發明之實施例1之影像顯示裝置之構造 圖。1 1係發出光之發光體,1 2係如自發光體1 1發出之光變 成大致平行般反射之拋物面反射鏡,1 3係將自拋物面反射 鏡12反射之光聚光之聚光透鏡。發光體11、拋物面反射鏡 1 2以及聚光透鏡1 3構成照明光源系(傳送裝置、照明光源 部)。2103-3823-PF; AHDDUB.ptd Page 18 496999 V. Description of the invention (16) Embodiment of the invention An embodiment of the invention will be described below. Embodiment 1 FIG. 1 is a diagram showing the structure of an image display device according to Embodiment 1 of the present invention. 1 1 is a luminous body that emits light, 12 is a parabolic mirror that reflects light from the luminous body 1 1 into a substantially parallel reflection, and 13 is a condenser lens that condenses light reflected from the parabolic mirror 12. The luminous body 11, the parabolic mirror 12 and the condenser lens 13 constitute an illumination light source system (transmission device, illumination light source section).

1 4係是反射型之光空間調變元件之微反射鏡裝置(傳 送裝置、反射型影像資料賦與部、Digital Micromirror Device ,簡稱DMD , Texas Instruments Incorporated(TI)之登記商標),微反射鏡裝置14利用其 反射面將聚光透鏡1 3所聚之光在空間上調變強度後,作為 供給影像資料之光影像信號,反射強度調變光。本發明可 應用於包括所有的光空間調變元件之影像顯示裝置,但是 在以下使用微反射鏡裝置1 4說明。1 5係具有木桶型扭曲像 差(補償像差)之折射光學透鏡(折射光學部),1 6係具有線 軸型扭曲像差之凸面鏡(反射部),1 7係由折射光學透鏡1 5 和凸面鏡1 6構成之投影光學系(投影光學裝置)。投影光學 系1 7係將利用微反射鏡裝置丨4在空間上調變強度後之光投 影至銀幕1 8的,利用微反射鏡裝置丨4調變強度後之光利用 折射光學透鏡15投影至凸面鏡16後反射。凸面鏡16之反射 面具有負之功率,將入射光之像擴大投影至銀幕丨8。丨8係1 4 is a micromirror device (transmission device, reflective image data distribution unit, Digital Micromirror Device, DMD, registered trademark of Texas Instruments Incorporated (TI)) for reflective light spatial modulation elements, micromirror The device 14 uses the reflecting surface to modulate the intensity of the light collected by the condenser lens 13 in space, and then uses the reflection intensity to modulate the light as a light image signal for supplying image data. The present invention can be applied to an image display device including all light space modulation elements, but it will be described below using a micromirror device 14. 1 5 series of refracting optical lenses (refractive optics) with barrel-type distortion aberrations (compensating aberrations), 1 6 series of convex mirrors (reflecting parts) with spool-type distortion aberrations, 1 7 series of refractive optical lenses Projection optics (projection optics) consisting of a convex mirror 16 The projection optics system 17 projects the light after the intensity is adjusted spatially using a micro-mirror device 丨 4 onto the screen 18. The light after the intensity is adjusted using the micro-mirror device 丨 4 is projected onto the convex mirror using the refractive optical lens 15 After 16 reflection. The reflective surface of the convex mirror 16 has a negative power, and enlarges and projects the image of the incident light onto the screen.丨 8 series

496999 五、發明說明(17) ----- 感光自投影光學系1 7投影之光後顯示影像之銀幕(顯示 置)。以前號表示光路。 在本實施例1,設置成微反射鏡裝置丨4之反射面和銀 幕1 8之感光面平行,影像顯示裝置之深度變成最小。又' 為了避免投影之光之陰影(eclipSe),在高度方向配置成 微反射鏡裝置1 4和銀幕1 8不重疊。此外,在滿足上述之微 反射鏡裝置1 4和銀幕1 8之配置條件下,將投影光學系丨7配 置成微反射鏡裝置14之像和銀幕18之像保持共軛關係。^ 其次說明動作。 自發光體11輸出之光被拋物面反射鏡丨2反射後,經由 聚光透鏡13自斜方向射入微反射鏡裝置η之反射面。微反 射鏡裝置1 4依照影像資料將所射入之光在空間上調變強 度。強度調變之光利用投影光學系1 7投影至銀幕1 8而顯示 影像。影像顯示裝置之利用者自圖1之銀幕1 8之左方看影 像。 y 在此’說明微反射鏡裝置1 4。 微反射鏡裝置1 4具有按照1 7 # m間距將1 6 // m正方之小 反射鏡配置成二次元陣列形之反射面,該小反射鏡和影像 格式一般成一對一對應。例如利用自圖上未示之控制器施 加之電壓令各小反射鏡之傾斜個別的變化,可各自改變來 自各小反射鏡之反射光之方向。 即,在使來自某小反射鏡之反射光投影至銀幕1 8之情 況,如光向投影光學系1 7之開口之方向反射般改變該小反 射鏡之傾斜。又,在使來自某小反射鏡之反射光不投影至496999 V. Description of the invention (17) ----- The screen (display position) that displays the image after the light projected from the light-sensitive projection system 17. The previous number indicates the light path. In the first embodiment, the reflecting surface of the micro-mirror device 4 is arranged parallel to the photosensitive surface of the screen 18, and the depth of the image display device becomes minimal. In order to avoid the shadow of the projected light (eclipSe), the micro-mirror device 14 and the screen 18 are arranged so as not to overlap in the height direction. In addition, the projection optical system 17 is configured such that the image of the micro-mirror device 14 and the image of the screen 18 maintain a conjugate relationship under the condition that the above-mentioned configuration of the micro-mirror device 14 and the screen 18 are satisfied. ^ The operation is explained next. The light output from the luminous body 11 is reflected by the parabolic mirrors 2 and then enters the reflecting surface of the micro-mirror device η from the oblique direction through the condenser lens 13. The micro-mirror device 14 adjusts the intensity of the incident light spatially according to the image data. The intensity-modulated light is projected onto a screen 18 by a projection optical system 17 to display an image. The user of the image display device looks at the image from the left side of the screen 18 in FIG. 1. y Here, the micromirror device 14 will be described. The micro-mirror device 14 has a reflecting surface in which a small square mirror of 1 6 // m is arranged in a two-dimensional array at a pitch of 1 7 # m. The small mirror and the image format generally correspond one-to-one. For example, by using a voltage applied from a controller not shown in the figure to individually change the tilt of each small mirror, the direction of reflected light from each small mirror can be changed individually. That is, when the reflected light from a small mirror is projected onto the screen 18, the tilt of the small mirror is changed as if the light is reflected in the direction of the opening of the projection optical system 17. In addition, the reflected light from a small mirror is not projected onto

2103-3823-PF ; AHDDUB.ptd 第20頁 五、發明說明(18) ------ 銀幕1 8之情況,,. Μ 4- ^ ϊ如光向偏離投影光學系1 7之開口之方向反 日f ^ 以”反射鏡之傾斜。改變小反射鏡之傾斜所需之 全、vwc以下,微反射鏡裝置14可高速的調變光之 強度。 因诞反射鏡裝置1 4係反射型之光空間調變元件,可將 f相對於其反射面傾斜之方向射人之光調變強度後反射。 f光空間調變元件上例如使用液晶之情況,因光必須自液 曰曰之裡面大致垂直的射入,考慮影像顯示裝置之薄型化受 到配置於裡面之照明光源系之限制時,微反射鏡裝置丨4之 有效性變彳于明顯。如本實施例丨所示,藉著使用微反射鏡 裝置1 4,將照明光源系配置於微反射鏡裝置丨4射出光之側 ’可在光空間調變元件和將光路彎向銀幕丨8之凸面鏡丨6之 間配置照明光源系,可有效利用影像顯示裝置之高度方向 之空間,可防止照明光源系突出。 其次說明投影光學系1 7。 利用微反射鏡裝置14調變強度後之光向投影光學系17 反射。如圖1所示,折射光學透鏡丨5之光軸設置成和微反 射鏡装置14之反射面及銀幕18之感光面垂直,而且偏離微 反射鏡裝置1 4之中心及銀幕1 8之中心。因此,只將折射光 學透鏡15之視角之一部分用於來自微反射鏡裝置14之光之 投影。在圖1,因光自折射光學透鏡15之下方射入,光向 上方射出。 圖2係在概念上說明折射光學透鏡之木桶型扭曲像差 補償凸面鏡之線轴型扭曲像差之動作之圖。如圖2所示,2103-3823-PF; AHDDUB.ptd Page 20 V. Description of the invention (18) ------ the case of the screen 18, Μ 4- ^ If the light direction deviates from the opening of the projection optical system 17 The direction of anti-sun f ^ is based on the tilt of the mirror. All that is needed to change the tilt of the small mirror, below vwc, the micro-mirror device 14 can adjust the intensity of light at high speed. Because the mirror device 14 is a reflective type The light space modulation element can reflect the light modulation intensity of the light f in a direction inclined with respect to its reflection surface, and then reflects it. For example, in the case of using liquid crystal on the f light space modulation element, the light must be approximately from the inside of the liquid. For vertical injection, considering that the thinning of the image display device is limited by the lighting source system arranged inside, the effectiveness of the micro-mirror device 4 becomes apparent. As shown in this embodiment, by using the micro Reflector device 14, the illumination light source system is arranged on the side of the micro-mirror device 丨 4. The light source system can be arranged between the light space modulation element and the convex mirror that bends the light path to the screen 丨 8. Effectively use the space in the height direction of the image display device, It can prevent the illumination light source system from protruding. Next, the projection optical system 17 will be described. The light after the intensity is adjusted by the micro-mirror device 14 is reflected to the projection optical system 17. As shown in FIG. 1, the optical axis of the refractive optical lens 5 is set to It is perpendicular to the reflecting surface of the micro-mirror device 14 and the photosensitive surface of the screen 18, and deviates from the center of the micro-mirror device 14 and the center of the screen 18. Therefore, only a part of the viewing angle of the refractive optical lens 15 is used from the micro-mirror device. The projection of the light of the mirror device 14. In FIG. 1, the light is emitted upward due to the light self-refractive optical lens 15 coming in. FIG. 2 is a conceptual illustration of the barrel-type distortion aberration compensation convex mirror of the refractive optical lens. The motion of the spool-type distortion aberration. As shown in Figure 2,

496999 五、發明說明(19) 折射光學透鏡1 5設計成具有木桶型扭曲 裝置14將表示格子狀之像(圖2(a))之 私2微反射鏡 投影時,該格子狀之像變成成木桶型(圖學透鏡1 5 型扭曲像差具有補償在凸面鏡丨6發生 1 。该木桶 (圖2(c))之特性(補償像差),係依據 ?曲像差 曲像差設計的。 據螺絲1〇6之線軸型扭 補償了變形之光投影至銀幕18時, 狀之像(圖2(d))。-般,利用信號處理也 發生之影像之變开但是因影像之精細度 惡化’在本貫施例1,在光學上補償扭曲像差。 在此,說明凸面鏡1 6之線軸型扭曲像差。 圖3係在概念上表示以光路追蹤求經由無像差之折射 光學透鏡19利用凸面鏡16或平面鏡21反射來自微反射鏡裝 置14之光時之像之方法之圖。在圖3 ’平面鏡21所反射之 光路以實線、凸面鏡16所反射之光路以虛線表示。 在自微反射鏡裝置u射出了具有格子狀之像(圖3(a)) 之光之情況,透射了無像差之折射光學透鏡19之光之像不 會發生變形(圖3(b))。因此,用平面鏡21令反射透射了無 像差之折射光學透鏡19之光後,在垂直於折射光學透鏡19 之光軸20之A-A截面上觀察時,變成黑點(鲁)等間隔的存 在(圖3(d))。即,在由無像差之折射光學透鏡19和平面鏡 21構成之投影光學系之情況,—直保持格子狀之像,無扭 曲像差。 而,在用凸面鏡16反射透射了無像差之折射光學透鏡496999 V. Description of the invention (19) The refraction optical lens 15 is designed to have a barrel-type distortion device 14. When the private 2 micromirror that represents a grid-like image (Figure 2 (a)) is projected, the grid-like image becomes Wooden barrel type (graphical lens 15 type distortion aberrations have compensation that occurs in convex mirrors 1 and 6. 1) The characteristics (compensation aberrations) of the barrel (Figure 2 (c)) are based on? Designed according to the spool twist of the screw 106 which compensates the distorted light when projected onto the screen 18 (Fig. 2 (d)).-Generally, the image changes that also occur with signal processing but due to the image Deterioration of the fineness' In the present Example 1, the distortion aberration is optically compensated. Here, the bobbin-type distortion aberration of the convex mirror 16 will be described. Fig. 3 is a conceptual representation of the optical path tracking to obtain the difference through the aberration-free. Refractive optical lens 19 is a diagram of a method of reflecting an image when the light from the micro-mirror device 14 is reflected by the convex mirror 16 or the flat mirror 21. In FIG. 3, the light path reflected by the flat mirror 21 is shown by a solid line, and the light path reflected by the convex mirror 16 is shown by a broken line. A self-micromirror device u emits a grid-like image (Figure 3 (a)) In the case of light, the image of light transmitted through the aberration-free refractive optical lens 19 will not be deformed (Figure 3 (b)). Therefore, the plane mirror 21 is used to transmit the reflection through aberration-free refractive optical After the light from the lens 19, when viewed on the AA cross section perpendicular to the optical axis 20 of the refractive optical lens 19, it becomes a black dot (Lu) with equal intervals (Figure 3 (d)). In the case of a projection optical system composed of a refractive optical lens 19 and a flat mirror 21, a lattice-shaped image is kept straight without distortion aberration. However, a convex lens 16 reflects and transmits a refractive optical lens with no aberration.

—^y\3yyy 五 發明說明(20) 1 9之光之情、、w 位置因各光路而在凸面鏡16之反射面之光軸方向之反射 發生線轴型在A_A’ *面上變成如白圈(0)所示, 因利用光路1像(圖3(c))。決定凸面鏡16之形狀後, 算結果設計圖丨鞭可^·算該線軸型扭曲像差,只要依據該計 扭曲設計方法折口射先學透鏡15之扭曲像差即可。關於 即可,在此省欢*只要依照習知之折射光學系之設計進行 社此名略說明。 之木桶=j =使得如具有補償凸面鏡16之線軸型扭曲像差 带之&役ί像差般使用折射光學透鏡15,變成可將益變 形之衫像放大顯示於銀幕18,、:爻 相對於影像顯示裝置之各構成元化的構成銀幕18 此外 凸面鏡16藉著將由二次曲繞破紅祐絲 旋轉非球面作為其反射面之形狀:::;=所:到之 作,可大幅度削減製造費用。 ^ 可谷易製 自由設計凸面鏡16,只要設計=之規格 之線軸型扭曲像差之木桶型扭曲 ^ 面鏡16 可。 1豕差之折射先學透鏡1 5即 又,在習知之技術,如圖96之 一 影光學系1 7以外,還需要光路彎兄不’除Τ投 1,因投影光學系1 7之一部分也呈右、,一疋在本實施例 元件之個數變少,可縮短銀幻 先路:曲作用’光學 力反所示,在照明光源系大面二^ 加反射來自投影光學系丨7之光之平々大—^^况,追 向銀幕18,可最大限度的利用影鏡22婆猎著將光路彎 ^不裝置之空間。此外— ^ Y \ 3yyy Explanation of the five inventions (20) 1 9 The feeling of light, the position of w in the optical axis direction of the reflecting surface of the convex mirror 16 due to each optical path, the bobbin shape on the A_A '* surface becomes white As shown by circle (0), one image of the optical path is used (Fig. 3 (c)). After the shape of the convex mirror 16 is determined, the calculation result design diagram can be used to calculate the bobbin-type distortion aberration, as long as the distortion aberration of the aperture learning advance lens 15 can be calculated according to the distortion design method. Regarding this, here in the province * just explain the name according to the design of the conventional refractive optical system. The barrel = j = enables the use of a refractive optical lens 15 like the & service aberration of the bobbin-type twisted aberration band of the compensating convex mirror 16, which can enlarge the deformed shirt image on the screen 18,: 爻Constituting the composition screen 18 with respect to the respective components of the image display device, the convex mirror 16 has a shape that uses an aspheric surface that is rotated by a quadratic curve around the red silk as its reflection surface ::; Significantly reduce manufacturing costs. ^ Kogu Easy Manufacturing Co., Ltd. can design convex mirror 16 freely, as long as it is designed with barrel-type distortion of bobbin-type distortion aberration ^ mirror 16 is acceptable. 1 the difference of refraction before learning the lens 15 again, in the conventional technology, as shown in Figure 96, one of the shadow optics 17, but also need to bend the light path, except for the TT cast 1, because the projection optics 17 part It is also right. As soon as the number of elements in this embodiment is reduced, the silver magic first path can be shortened: the optical effect of the curved effect is shown in the large surface of the illumination light source system, and the reflection comes from the projection optics system. The flatness of the light — ^ ^ status, chasing to the screen 18, you can make the most of the space where the mirror 22 hunts and bends the light path. Besides

496999 五、發明說明(21) - ,也可替換平面鏡22和投影光學系17,又使得使用和投影 光學系17不同之投影光學裝置替代平面鏡22也可。 如以上所示,若依據本實施例1,因使得包括傳送裝 置,由照明光源系及微反射鏡裝置14構成,輸出依照影像 資料所調變強度之光影像信號;銀幕丨8,接受光影像信號 後顯示依照影像資料之影像;凸面鏡丨6,具有負功率,向 銀幕1 8反射依照影像資料所調變強度之光;以及折射光學 透鏡15 ’具有補償凸面鏡16之線軸型扭曲像差之木桶型扭 曲像差’ ό又置成將來自傳送裝置之光向凸面鏡投影;可 補償自凸面鏡1 6接受依照影像資料所調變之光之線軸型扭 曲像差後將放大影像顯示於銀幕丨8,可將銀幕丨8配置於最 適合影像顯示裝置之薄型化之位置,得到可構成比以往薄 型化之影像顯示裝置之效果。 又,若依據本實施例1,因使得用由發光體1 1、拋物 面反射鏡1 2以及聚光透鏡丨3構成之照明光源系和依照影像 資料調變自照明光源系射入之光後反射之微反射鏡裝置1 4 構成傳送裝置,變成可在微反射鏡裝置1 4射出光之側配置 照明光源系,可構成比使用液晶等透射型光空間調變元件 之習知之影像顯示裝置更薄型化之影像顯示裝置之效果。 此外,若依據本實施例1,因使得利用投影光學系1 7 令自微反射鏡裝置1 4反射之光向銀幕1 8反射,不必另外設 置用以將光路彎向銀幕1 8之光學元件,得到令光學元件之 個數減少並縮短銀幕丨8和凸面鏡1 6之間之距離之效果。 此外,若依據本實施例1,因使得凸面鏡1 6變成旋轉496999 V. Description of the Invention (21)-It is also possible to replace the plane mirror 22 and the projection optics 17 and make it possible to use a projection optical device different from the projection optics 17 instead of the plane mirror 22. As shown above, according to the first embodiment, because the transmission device is included, it is composed of an illumination light source system and a micro-mirror device 14 and outputs a light image signal whose intensity is adjusted according to the image data; the screen 8 receives the light image After the signal is displayed, the image according to the image data is displayed; the convex mirror 丨 6, which has negative power, reflects the light modulated by the image data to the screen 18; and the refractive optical lens 15 ′ has a wood-like distortion aberration compensation lens 16 The barrel-type distortion aberration is set to project the light from the transmission device onto a convex mirror; it can compensate the spool-type distortion aberration of the convex mirror 16 that accepts the light modulated according to the image data and displays the enlarged image on the screen. 8 The screen 8 can be arranged at the position most suitable for the thinning of the image display device, and the effect of forming a thinner image display device than in the past can be obtained. In addition, according to the first embodiment, the illumination light source system composed of the illuminant 11, the parabolic mirror 12 and the condenser lens 丨 3 is used, and the light incident from the illumination light source system is adjusted and reflected according to the image data. The micro-mirror device 14 constitutes a transmission device, and can be configured as an illumination light source system on the side where the micro-mirror device 14 emits light. It can be made thinner than a conventional image display device using a transmissive optical spatial modulation element such as a liquid crystal. The effect of a transformed image display device. In addition, according to the first embodiment, since the light reflected from the micro-mirror device 14 is reflected toward the screen 18 by the projection optical system 17, it is not necessary to separately provide an optical element for bending the light path to the screen 18, The effect of reducing the number of optical elements and shortening the distance between the screen 8 and the convex mirror 16 is obtained. In addition, according to the first embodiment, the convex mirror 16 is rotated.

2103-3823-PF ; AHDDUB.ptd 第24頁 4969992103-3823-PF; AHDDUB.ptd page 24 496999

得到可大幅度削 非球面形狀,利用鏡面車床可容易製 減製造費用之效果。 & 實施例2 在實施例1,使得利用具有木桶型 學透鏡15和具有線軸型扭曲像差之凸之折射光 夺1 7,作是在本每浐办丨9 面鏡1 6構成投影光學 糸Η 仁疋在本貝轭例2,說明和凸面鏡一樣 投影距離放大影像,利用不1右 ’月匕乂紐的 投影光學系之情況。 大知^鏡構成 圖5係表不本發明之實施例2之影像顯示裝置之構造圖 。在圖5,23係無像差之折射光學透鏡(折射光學部),24 係反射來自折射光學透鏡23之光後投影至銀幕18夫瑞乃鏡 (反射部^) ’ 25係由折射光學透鏡23和夫瑞乃鏡24構成之投 影光學系(投影光學裝置)。和凸面鏡16 一樣,夫瑞乃鏡24 之反射面具有負功率。在此,省略照明光源系之圖示。 圖6係放大了夫瑞乃鏡之圖。在圖6也一樣的表示在實 施例1所示之凸面鏡16。如圖6之凸面鏡16和夫瑞乃鏡2 4之 對應所示’夫瑞乃鏡24係將凸面鏡16之反射面各自分割成 小區間,具有和相當於所分割之位置之部分相同之傾斜, 而且具有變成週期性構造之反射面之形狀的。由圖6得知 ’夫瑞乃鏡24之形狀比凸面鏡16的薄。 圖7係比較凸面鏡16和夫瑞乃鏡24之扭曲像差之差異 之圖。如在實施例1所述,用凸面鏡1 6反射了在微反射鏡 裝置14或無像差之折射光學透鏡23之格子狀之像(圖7a、 b)之光路(圖7c之虛線)因由凸面形狀所引起之各光路之反The result is that the aspheric shape can be sharply cut, and the manufacturing cost can be easily reduced by using a mirror lathe. & Example 2 In Example 1, a refracted light having a barrel-type lens 15 and a convex lens having a bobbin-type distortion aberration was used to obtain 17 as a projection lens 9 and a lens 16 to form a projection. Optics 糸 Η In this example of the yoke, Insect Example 2 illustrates the case where the projection distance magnified image is the same as the convex mirror, and the projection optical system using the right lens is not used. Figure of Mirror Structure Fig. 5 is a structural diagram of an image display device according to Embodiment 2 of the present invention. In Fig. 5, 23 series of aberration-free refractive optical lenses (refractive optical section), 24 series reflect the light from the refractive optical lens 23 and project them to the screen 18 Fresnel mirror (reflecting section ^) 25 series of refractive optical lenses Projection optics (projection optics) composed of 23 and Fresnel mirror 24. Like the convex mirror 16, the reflecting surface of the Freuner mirror 24 has negative power. Here, the illustration of the illumination light source system is omitted. Fig. 6 is an enlarged view of a Freyn mirror. Fig. 6 also shows the convex mirror 16 shown in the first embodiment. As shown in the correspondence between the convex mirror 16 and the Freyna mirror 24 as shown in FIG. 6, the Freyna mirror 24 divides the reflecting surface of the convex mirror 16 into small sections, each having the same inclination as the part corresponding to the divided position, and Having the shape of a reflecting surface that becomes a periodic structure. It is understood from FIG. 6 that the shape of the Freuner mirror 24 is thinner than that of the convex mirror 16. FIG. 7 is a graph comparing the difference in distortion of the aberration of the convex mirror 16 and the Fresnel mirror 24. FIG. As described in Example 1, the convex mirror 16 reflects the light path (dashed line in FIG. 7c) of the grid-like image (FIG. 7a, b) of the micromirror device 14 or the aberration-free refractive optical lens 23 due to the convex surface. The reversal of each light path caused by the shape

2103-3823-PF ; AHDDUB.ptd 第25頁 496999 五、發明說明(23) 射位置之差異’在垂直於折射光學透鏡23之光軸27之A-A, 戴面上發生線軸型扭曲像差(圖7c,〇)。而,在使用了夫 ^乃鏡2 4之情況,因光軸方向之反射位置全部相同,和圖 3之平面鏡21 —樣不會發生扭曲像差(圖7d,#)。因此, 藉著使用夫瑞乃鏡24構成投影光學系25,不必考慮扭曲像 差之補償’直接使用無像差之折射光學透鏡23即可。關於 其他之構造或動作,因和實施例1 一樣,省略說明。2103-3823-PF; AHDDUB.ptd Page 25, 496999 V. Explanation of the invention (23) Difference in shooting position 'AA perpendicular to the optical axis 27 of the refractive optical lens 23, a linear distortion aberration on the wearing surface (Figure 7c, 0). However, in the case of using the lens 24, since the reflection positions in the optical axis direction are all the same, no distortion aberration occurs as in the plane mirror 21 of FIG. 3 (FIG. 7d, #). Therefore, by using the Fresnel lens 24 to form the projection optical system 25, it is not necessary to consider the compensation of distortion aberration 'and use the refractive optical lens 23 without aberration. The other structures and operations are the same as those of the first embodiment, and descriptions thereof are omitted.

如以上所示,若依據本實施例2,因使用^^和凸面 鏡一樣對以短距離放大影像後透射之光之像不賦與變形之 夫瑞乃鏡2 4和無像差之折射光學透鏡2 3構成投影光學系2 5 ’ι不必利用折射光學透鏡補償實施例1之凸面鏡丨6之線軸 型扭曲像差,就可將影像放大顯示於銀幕丨8,得到可使得 影像顯示裝置之設計、製造變得容易之效果。 又,若依據本貫施例2,因使得在投影光學系2 5使用 構造比凸面鏡16薄之夫瑞乃鏡24,得到可構成比實施例j 更薄型化之影像顯示裝置之效果。 實施例3 在本實施例3,說明由用凸面形狀之反射面構成光之As shown above, according to the second embodiment, the image of the light transmitted after magnifying the image at a short distance is not imparted to the deformed Fresnel lens 24 and the aberration-free refractive optical lens because of the use of a convex lens and a convex lens. 2 3 constitutes a projection optics system 2 5 ′ The image can be enlarged and displayed on the screen 8 without having to use a refractive optical lens to compensate the bobbin-type distortion of the convex lens of Example 1 and the design of the image display device can be obtained. The effect of making it easy. In addition, according to the second embodiment, the use of a Fresnel mirror 24 having a structure thinner than that of the convex mirror 16 in the projection optical system 25 results in an effect that an image display device that is thinner than that of the embodiment j can be obtained. Embodiment 3 In this embodiment 3, a description will be given of a configuration in which light is formed by a convex-shaped reflecting surface.

^ ^ ^和反側之面之光學元件及折射光學透鏡構成折射光 學透鏡之情·況。 圖8係表示本發明之實施例3之影像顯示裝置之構造圖 。在圖8,2 8係折射光學透镑f k盘μ、 尤千边鏡〔折射光學部),29係由分散 特性不同之2種光學材料構成 ― ,t 于刊了叶偁风之先學兀件(反射部),3 0係^ ^ ^ The situation where the optical element and the refractive optical lens on the opposite side constitute a refractive optical lens. FIG. 8 is a structural diagram showing an image display device according to a third embodiment of the present invention. In Figures 8 and 28, refracting optics fk disc μ, Euqian edge mirror (refracting optics), 29 series are composed of two kinds of optical materials with different dispersion characteristics. Pieces (reflection section), 30 series

由折射光學透鏡2 8和光學亓杜9 Q姐上、 L 不尤子70件29構成之投影光學系(投影Projection optics (projection optics) consisting of refracting optical lens 28 and optics Du 9 Q, Shang, L Buyouzi 70 pieces 29

496999 五、發明說明(24) 光學裝置)。此外,在此省略照明光源部之圖示。 圖9係放大了光學元件29之圖。31、33各自係低分散 玻璃(低分散介質)、高分散玻璃(高分散介質),3 2係低分 散玻璃31和高分散玻璃33之邊界面,34係成為高分散玻^ 33和空氣之邊界之反射面。自光之入射側看時,^面” 如具有正功率般構成凹面形狀,反射面34如具有負功率般 構成凸面形狀。和稜鏡之原理一樣,因在光射入光學元件 29時發生色差,將低分散玻璃31和高分散破螭33組合,消 除色差。 其次說明動作。496999 V. Description of the invention (24) Optical device). The illustration of the illumination light source unit is omitted here. FIG. 9 is an enlarged view of the optical element 29. 31 and 33 are low-dispersion glass (low-dispersion medium), high-dispersion glass (high-dispersion medium), 3 2 is the boundary surface of low-dispersion glass 31 and high-dispersion glass 33, and 34 is a high-dispersion glass Boundary reflective surface. When viewed from the incident side of the light, the "plane" constitutes a concave shape as if it has positive power, and the reflective surface 34 constitutes a convex shape as if it has negative power. As with the principle of 稜鏡, chromatic aberration occurs when light enters the optical element 29. The combination of the low-dispersion glass 31 and the high-dispersion glass 33 is used to eliminate chromatic aberration. Next, the operation will be described.

圖10係表示在光學元件之内部射入之光路之圖。在圖 10,邊界面32之左側相當於低分散玻璃3丨(折射率^),右 側相^於低分散玻璃3 3 (折射率π2)。、η2可任意選擇, 但是在此係n〆%。又,準備具有和反射面34同一形狀之凸 面鏡,將該凸面鏡作為反射面3 4,以虛線表示只是彎曲入 射光之光路。 比車父貫線和虛線後得知,和利用單純之凸面鏡彎曲之 情況之光路相比’利用在構造上依次透射低分散玻璃3工、 鬲分散玻璃3 3後射入凸面形狀之反射面3 4之光學元件2 9之FIG. 10 is a diagram showing an optical path incident into the optical element. In Fig. 10, the left side of the boundary surface 32 corresponds to the low-dispersion glass 3 (refractive index ^), and the right side corresponds to the low-dispersion glass 3 3 (refractive index? 2). And η2 can be arbitrarily selected, but here n〆%. Further, a convex mirror having the same shape as that of the reflecting surface 34 was prepared, and the convex mirror was used as the reflecting surface 34, and the optical path of only the incident light is shown by a broken line. Compared with the car line and dashed line, it is known that compared with the light path using a simple convex mirror to bend, it uses the structure to transmit low-dispersion glass 3 in order, 鬲 dispersion glass 3 3 and then enters the convex-shaped reflective surface 3 Optical element of 4 2 of 9

光路可以更大角度彎曲光路,可將更廣角之影像投影至銀 幕1 8 〇 若使用本光學兀件2 9,和實施例1之凸面鏡丨6相比, 因可更廣角的投影影像,可成比例的使反射面34之凸面形 狀變小。可降低反射面34之線軸型扭曲像差。又,因藉著The light path can be bent at a larger angle, and a wider-angle image can be projected onto the screen 1 800. If the optical element 29 is used, compared with the convex mirror of the first embodiment, the projection image can be wider-angle The proportion makes the convex shape of the reflecting surface 34 smaller. The bobbin-type distortion of the reflecting surface 34 can be reduced. Also, because by

496999 五、發明說明(25) 凋整低分散玻璃31或高分散玻璃33之光 制光之射出位置,可在光學元件29之内;=厚度可控 發生之扭曲像差。 門。卩補償在反射面34 其次說明消除光學元件29之色差之原理 向一方向展開被反射面34折回之光學 ® 1係表不 。在圖",分別以實線、虛線表示紅1=光匕之圖 於波長之差之折射率變化大之情況稱為;;=路验將相對 況稱為低分,。一•玻璃材料具有長;::拆射:=情 之特性。 β久反又短時折射率變大 因此如圖1 1所示,在低分散破璃3 1所折勒夕本 波長之藍之折射大,長波長έ 斤射之先,短 分散玻璃33,田拓4 ^ 折射不像藍的大。在高 :政,璃33 α顏色所引起之折射之程度和低 的不同’在功率比低分散玻璃 - 散玻璃3 1發生之色差之分气。而、賦與可補償在低分 功率之消色差it#二气因而,藉著本組合可構成正 只要使低分散玻璃31和高分散玻則二f透鏡之情況’ lL . l ^ 刀月文圾埽3 3之組合相反即可。 此外,在圖9將低分散玻璃31 是如圖12所示,也有採用為本夕似置於光之射入側,但 ,接箬异掖八畔士 Α 〇 在先之射入側使用高分散玻璃36 接者疋低为散玻璃38,然後是具 構造之光學.元件35的得到比較高、丨反射面39之 這些在設計時可自由選^之靖色差之效果之情況。 士、上所示若依據本實施例3,因使得使用由在光 之透射方向積層之低分散破刺ρ ^便付便用由在光 ^ ^ % ^ 政破璃31和向分散玻璃33構成、具 7成了反射透射了低分散玻璃31及高分散玻璃 第28頁 2103-3823-PF ; AHDDUB.ptd 496999 發明說明(26) 33之光之反射面34之光學元件29將光投影至銀幕18,能以 更緩和之凸面形狀將具有和實施例1之凸面鏡丨6相同之廣 角之光投影,而且調整低分散玻璃3丨或高分散玻璃3 3之厚 度可在光學元件29、35之内部補償在反射面34發生之扭曲 像差,得到在反射面34發生之線軸型扭曲像差之補償變得 容易之效果。 實施例4 圖 圖。在 裝置、 球面凸 狀之折 43係具 、反射 球面透 明光源 依 之反射 之折射 。在本 用於主 例 球面凸 置14之 1 3係表不本發明之實施例4之影像顯示裝置之構造 圖13,40係具有正功率之折射光學透鏡(投影光學496999 V. Description of the invention (25) The light emitting position of the light from the low-dispersion glass 31 or the high-dispersion glass 33 can be within the optical element 29; = Controllable thickness of the distortion aberration. door.卩 Compensation on the reflecting surface 34 The principle of eliminating the chromatic aberration of the optical element 29 will be explained next. The optical ® 1 folded back by the reflecting surface 34 in one direction is shown. In the graph ", the red 1 = light dagger graph is shown by solid line and dotted line, respectively. The case where the refractive index changes due to the difference in wavelength is called;; = road test, the relative situation is called low score. I. Glass material has a long; β long time and short time, the refractive index becomes large. Therefore, as shown in Figure 11, the low refraction of the blue wavelength at the low dispersion breaking glass 31 is large, and before the long wavelength is shot, the short dispersion glass 33, Tian Tuo 4 ^ Refraction is not as big as blue. The difference between the degree of refraction caused by the color of the high and low glass 33 α and the low ’is the difference in the color difference between the low-dispersion glass and the diffuse glass 31 that occur in the power ratio. In addition, it is possible to compensate for the achromatic aberration it # at low power. Therefore, by using this combination, it is possible to form a case of two f lenses as long as the low-dispersion glass 31 and the high-dispersion glass are used. The combination of garbage 3 3 can be reversed. In addition, in FIG. 9, the low-dispersion glass 31 is shown in FIG. 12, and it is also placed on the light-incident side on the same day. The dispersion glass 36 is lowered to the dispersion glass 38, and then the structured optical element 35 is relatively high, and the reflection surface 39 can be freely selected during design. According to the embodiment 3 shown above, since the use is made of low-dispersion puncture ρ ^ laminated in the direction of light transmission, the application is composed of the light ^ ^% ^ government break glass 31 and the dispersion glass 33 7 has become a low-dispersion glass 31 and a high-dispersion glass with reflection and transmission. Page 28 2103-3823-PF; AHDDUB.ptd 496999 Description of the invention (26) 33 The light reflecting surface 34 of the optical element 29 projects the light onto the screen 18. It is possible to project a light with the same wide angle as the convex mirror of Example 1 in a more gentle convex shape, and the thickness of the low-dispersion glass 3 or the high-dispersion glass 3 3 can be adjusted inside the optical elements 29 and 35. The effect of compensating for the distortion aberration occurring on the reflecting surface 34 and obtaining the bobbin-type distortion aberration occurring on the reflecting surface 34 becomes easy. Example 4 Figure Figure. In the device, the spherical convex fold 43 is provided, and the reflective spherical transparent light source is refracted by the reflection. In the present example, 1 of the spherical convex position 14 is 3, which shows the structure of the image display device of the fourth embodiment of the present invention. Figs. 13, 40 are refractive optical lenses (projection optics) having a positive power.

折射光學部),41係具有非球面形狀之反射面之非 面鏡(投影光學裝置、反射部),42係具有非球面升 射面之非球面透鏡(投影光學裝置、折射光學部), 有球面形狀之反射面之球面凸面鏡(投影光學裝置 =,44係折射光學透鏡4〇、非球面凸面鏡“、非 鏡42以及球面凸面鏡43共有之光軸。此外,省略黑 部、銀幕之圖示。 據費馬原理分析時,得知為 ^ ^ ^ ^ ^ UI 在透鏡之折射面或反射顧 面a又為球面形狀之情況盔 面或反射鏡之反射二役像差,而將透箱Refracting optics), 41 is an aspherical mirror (projection optics, reflecting unit) with an aspherical reflecting surface, 42 is an aspheric lens (projecting optics, refractive optics) with an aspherical ascending surface, yes Spherical convex mirror with spherical reflecting surface (projection optics =, 44 series refracting optical lens 40, aspherical convex mirror ", aspheric mirror 42 and spherical convex mirror 43. The optical axis is omitted. In addition, the illustration of the black part and the screen is omitted. According to Fermat's principle analysis, it is known that ^ ^ ^ ^ ^ UI is the reflection second aberration of the helmet surface or the mirror when the refractive surface or reflection surface a of the lens is spherical.

杏#办丨/1 -.. "為非球面形狀時,像差變J杏 # 办 丨 / 1-.. " When the shape is aspherical, the aberration becomes J

貫施例4,糟著將呈有該非 光绫之八噌卢 八有非球面形狀之光學元件應 先線之77月欠處,使得補償扭曲像差。 如’如圖1 3 (a )所示,經由批 面鏡4 1反射氺ώ a、 射光學透鏡4 0利用非 面鏡4 i反射來自作為光空一 光後,將井於旦/ s门 丄间凋變兀件之微反射鏡裝 光後冑光技影至圖上未示之銀幕18。Throughout Example 4, the optical element with an aspherical surface that has the non-optical surface should be in line with the 77-month deficit, so that the distortion aberration can be compensated. As shown in FIG. 13 (a), the reflection through the batch mirror 41, the optical lens 40, and the non-facet mirror 4i are used to reflect the light from the air as a light, and then the light will be removed. After the micro-mirror of the decaying element of the cymbal is lighted, the light technology shadow is moved to the screen 18 (not shown).

496999 五、發明說明(27) 又’如圖13(b)所示’在折射光學透鏡4〇和球面凸面 鏡43之間之主光線之分散處設置非球面透鏡42,經由折射 光干透鏡40、非球面透鏡42利用球面凸面鏡43將來自微反 射鏡裝置14之光反射,將光投影至銀幕18。 i 因非球面凸面鏡4 1之反射面形狀或非球面透鏡4 2之折 射面形狀和扭曲像差成一對一對應,在任一情況都利用光 路追蹤將其形狀設計成減輕扭曲像差。 、因此,因在圖13(a)、(b)之任一情況,都使得以具有 =球面形狀之非球面凸面鏡41、非球面透鏡42為媒介將光 才=衫至銀幕1 8 ’可將影像顯示裝置構成薄型化,而且可補 償投影至銀幕1 8之影像之變形。 、又,如圖1 3 (c)所示,使得都包括非球面透鏡4 2、非 球面凸面鏡41也可。藉著這樣做,可更容易補償扭曲像差 〇 ^此外’雖然省略圖示,非球面透鏡42未限定為1片, 使付在折射光學透鏡40和非球面凸面鏡41 (或球面凸面鏡 4 3)之間包括複數非球面透鏡4 2也可,可更補償扭曲像差 為了使以上所說明之利用非球面形狀之扭曲像差之補 償更有效,·有以下3種方法。 圖1 4係表示本發明之實施例4之影像顯示裝置之構造 圖。省略照明光源部、銀幕之圖示。在圖丨4,4 5係具有在 光軸44之中心具有大凸之曲率,隨著接近周邊而曲率變小 之反射面之#球面凸面鏡(投影光學裝置、反射部)。為了496999 V. Description of the invention (27) As shown in FIG. 13 (b), an aspherical lens 42 is provided at a scattered position of the main ray between the refractive optical lens 40 and the spherical convex mirror 43, and the refractive lens 40, The aspheric lens 42 reflects the light from the micro-mirror device 14 using a spherical convex mirror 43 and projects the light onto the screen 18. i Because the shape of the reflecting surface of the aspheric convex mirror 41 or the aspheric lens 42 of the aspheric lens 42 corresponds to the one-to-one correspondence, in either case, the shape is designed to reduce the distortion by using optical path tracing. Therefore, in any of the cases of Figs. 13 (a) and (b), it is necessary to use the aspheric convex mirror 41 and the aspherical lens 42 having a spherical shape as the medium to transfer the light from the shirt to the screen 1 8 ' The image display device is thin and can compensate the distortion of the image projected onto the screen 18. As shown in FIG. 13 (c), both of the aspherical lens 4 and the aspherical convex lens 41 may be included. By doing so, it is easier to compensate for distortion aberration. In addition, although the illustration is omitted, the aspherical lens 42 is not limited to one, and the refractive optical lens 40 and the aspherical convex lens 41 (or the spherical convex lens 4 3) are attached. It is also possible to include a plurality of aspheric lenses 42 in between, which can more compensate the distortion aberration. In order to make the compensation of distortion aberration using the aspheric shape described above more effective, there are three methods as follows. Fig. 14 is a diagram showing the structure of an image display device according to a fourth embodiment of the present invention. The illustration of the lighting source and the screen is omitted. In Figs. 4, 4 and 5 are #spherical convex mirrors (projection optics, reflecting section) having a reflecting surface with a large convex curvature at the center of the optical axis 44 and a decreasing curvature as it approaches the periphery. in order to

2103-3823-PF ; AHDDUB.ptd 第30頁 496999 五、發明說明(29) 扭曲像差之補償和軸外之投影光 光學系。 X像将性之投影 5包含-次之奇數次項之奇數次非球 鏡之中心部在原理上曲率不連續,發生 非球面透 混亂,成像特性惡化。 尤/折射先之 因此’在本實施例4 ’ #著令避開這些 之中心部(光軸上之點)的反射/透射 =非球面 信幻導至銀幕18上,使得實現良好之成以束(先影像 r,反射鏡裝置14令有效顯示面挪移至光:二 也可將可數次非球面應用於折射光學透鏡。 ,1 61表示本發明之實施例4之影像顯示 ,。在圖16,47係將朝向非球面凸面賴之 構: :數次非球面之非球面透鏡(投影光學裝4、折射光學成二 尤其,因愈接近折射光學透鏡之非球面凸 射面之射出部分主光線愈分 之折 形狀,可將其形狀控制成使扭曲像差 更4射出部分之 如以上所示,若依據本實施例4,因 面形狀之反射面之非球面凸面鏡41,得到二非球 幕1 8之光之扭曲像差之效果。 貝扠衫至銀 又,若依據本實施例4,因使得在 凸面鏡之間之主光線之分散處設置至少斤—射先 之非球面透鏡42 ’得到可補償投影至銀幕18之 2103-3823-PF ; AHDDUB.ptd 第32頁 496999 五、發明說明(30) 光之扭曲像差之效果 中心Ϊ二卜士右依據本實施例,因使得包括具右, 有大凸之曲率,隨著接 /、有在光軸44之 之非球面凸面鏡45,得到 ^ 率變小之反射面 像差之效果。 補W又影至銀幕〗8之光之扭曲 此外,若依據本實施例4,因&彳 球面之偶數次之多項式加上奇數 次非球面為非球面凸面項所形成之奇數 曲像差之補償和軸外之投 _ 仵到可實現兼具扭 學系之效果。 之良好之成像特性之投影光 此外,若依據本實施例4,因 f非球面之偶數次之多項式加上奇數次括从在表示偶數 久非球面為折射面之非喪 員所形成之奇數 面之形狀,得到可容鏡46 ’局部性變更該折射 像性能之效果易的減輕扭曲像差並可改良軸外之成 之折::與ί Ϊ計影像顯示裝置時可任意選擇庫用;^以, =學透鏡和凸面鏡之各形狀,只要選 鏡心折:::::=;'、rr透鏡42、非球面透 片折射光學透鏡,;著::,如:=::m少- 量生產。相對於-要之非球面 製用玻璃之溶點約5 0 0。。 /、 J之,點約7 0 0。。、模 L塑胗合成樹脂之熔點比這些材 第33頁 2103-3823-PF ; AHDDUB.ptd 496999 五、發明說明(31) 料的低,藉著 提高,得到可 當然,利 製造成型也可 ,和用塑膠材 溫度範圍、濕 選定,只要發 •用途•規格 實施例5 如在實施 面之非球面凸 鏡補償扭曲像 面彎曲,發生 減輕像面彎曲 在考察像 (Petzval)和P P- ΣΡί 樹脂製造折射光學透鏡,生產力 降低〜像顯示裝置之費用之效果。 用”二破璃模製法將非球面透鏡42 在此情況’目用玻璃材料構成: 料製造之情況相比,可提古】;;球面透鏡 度範圍等)。1於折射光學Vr透:=用 揮各材料之優 透鏡材料之 決定即可“έ幻“像顯示裳置之目的 =^具有料㈣狀之反射 面鏡或具有非球面形狀之折射面之 差,但是此時在投影至銀幕丨8之 像模糊之現象。在本實施:說: 面彎曲之大小上一般常用的係珀 ,如下式(1 )所示。 =Σ[1/(ηί ·ίΐ)] = Σ[1/( 、…、Ν)(” 在式(1),Σ係意指對於和之指數丨之總和 i係光學元件之編號,N係光學元件之總數。?丨係f子’ 學元件之珀茲伐(Petzval)和貢獻成分,ni係第一 件之折射率,fi係第i個光學元件之焦距,干凡2103-3823-PF; AHDDUB.ptd Page 30 496999 V. Description of the invention (29) Compensation for distortion aberrations and off-axis projection light Optical system. The projection of the X image will include the odd-numbered odd-numbered aspheric lens. The central part of the aspherical lens has a curvature discontinuity in principle, aspheric distortion occurs, and imaging characteristics deteriorate. You / refraction first therefore 'in this embodiment 4' # order to avoid the reflection / transmission of the central part (point on the optical axis) = aspherical guide to the screen 18 to achieve a good success Beam (first image r, the mirror device 14 moves the effective display surface to light: two, aspheric surfaces can be applied to the refractive optical lens several times., 1 61 represents the image display of the fourth embodiment of the present invention. 16,47 is the structure that will face the aspherical convex surface:: Aspheric lens with aspheric surface several times (projection optics 4. Refractive optics are two, especially because the closer to the emitting part of the aspheric convex surface of the refracting optical lens, the main The shape of the light is more and more folded, and the shape can be controlled to make the distortion aberration more. The output part is as shown above. According to the fourth embodiment, the aspheric convex mirror 41 of the reflecting surface of the surface shape is obtained as two aspheric lenses. The effect of the distortion of the light of Curtain 18. The tee shirt to silver, if according to this embodiment 4, because the main light rays between the convex mirrors are scattered at least jin—the aspheric lens 42 ' Get Compensable Projection to Screen 18-2103-3823-P F; AHDDUB.ptd Page 32, 496999 V. Description of the invention (30) Effect center of distortion of light Ϊ The right is based on this embodiment, because it includes a curvature with a right and a large convexity. There is an aspheric convex mirror 45 on the optical axis 44 to obtain the effect of reducing the aberration of the reflecting surface. The distortion of the light is added to the screen. In addition, according to the fourth embodiment, because of &彳 Spherical even-numbered polynomials plus odd-numbered aspheric surfaces are compensated for odd-numbered aberrations formed by the aspherical convex terms and off-axis projections _ 仵 to achieve the effect of twisting science. Good imaging characteristics In addition, according to the fourth embodiment, the shape of the odd-numbered surface formed by the non-marred person representing the even-numbered aspheric surface as the refracting surface is obtained by adding the even-numbered polynomial of f aspheric surface to the odd-numbered polynomial, and obtaining Capacitor 46 'The effect of locally changing the performance of this refracted image is easy to reduce distortion aberrations and improve off-axis folds: when using the image display device, you can choose the library; arbitrarily, = learn lenses And convex mirrors, just choose the lens center ::::: =; ', rr lens 42, aspherical lens for refracting optical lenses ;;:, such as: = :: m less-mass production. Relative to-the melting point of glass for aspheric surface About 5 0 0 / / J, the point is about 7 0 0 ..., the melting point of plastic L plastic resin synthetic resin than these materials on page 33 2103-3823-PF; AHDDUB.ptd 496999 5. Description of the invention (31) It can be obtained by improving the material low. Of course, it is also possible to manufacture and shape, and use plastic material temperature range and wet selection, as long as it is developed, used, and specified. Example 5 If the aspheric convex mirror on the implementation surface compensates the distorted image surface Bending, reducing the occurrence of image surface bending In the examination of the image (Petzval) and PP resin made of refractive optical lenses, productivity is reduced ~ the effect of the cost of the image display device. The aspheric lens 42 is formed by the "two-break glass molding method" in this case, which is made of glass material: compared with the case of material manufacturing, it can be mentioned]; the spherical lens degree range, etc.). The determination of the superior lens material of each material can be used to display the purpose of "hand-like magic" = ^ the difference between a reflective mirror with a material shape or a refractive surface with an aspherical shape, but at this time it is projected to the screen The phenomenon of image blurring in 8. In this implementation: Say: The commonly used tether in the size of the surface curvature is shown in the following formula (1). = Σ [1 / (ηί · ίΐ)] = Σ [1 / ( (..., N) ("In formula (1), Σ means the sum of the index of sum 丨 i is the number of the optical element, N is the total number of optical elements.? 丨 is the Fitz's element of Petzval (Petzval) and contribution components, ni is the refractive index of the first piece, fi is the focal length of the i-th optical element, Gan Fan

2103-3823-PF ; AHDDUB.ptd 第34頁 496999 五、發明說明(32) 對於平面物體,用以得到無像面彎曲之平面像之條件 稱為珀茲伐(P e t z v a 1)條件,當p = 〇時滿足珀兹伐 (Petzval )條件。即,在影像顯示裝置,藉著使珀茲伐 (P e t z v a 1)和接近〇可將減輕了像面彎曲之影像顯示於銀幕 18 〇 # 如圖1 7所示,考慮將折射光學透鏡(投影光學裝置、 折射光學部、珀茲伐(Petzval)和補償透鏡)48應用於例如 圖13(a)之情況。折射光學透鏡48係由正透鏡48a和負透鏡 4 8 B構成之消色差透鏡。 現在,考慮非球面凸面鏡41(i=3),因係折射率n3=〜 1,而且具有絕對值大之負功率03(<〇),藉著負值間之除 法’非球面凸面鏡4 1對ί ό茲伐(p e t z v a 1 )和貢獻之站茲伐 (Petzval)和貢獻成分P3易變成正值。 因此’藉著設計抵消非球面凸面鏡4 1之貢獻成分p 3之 折射光學透鏡4 8,補償像面彎曲。即,利用由具有正功率 之正透鏡4 8A(i二1)和具有負功率之負透鏡48B(i二2)構成之 折射光學透鏡48 ’使對於珀茲伐(pe^zvai)和貢獻之成分 P1+P2變成負值,使得和非球面凸面鏡41之成分p3抵消。 首先,因正透鏡4 8A具有正功率01(>〇),藉著使正透 鏡48A之折射率nl變大,使貢獻成分P1= 0 1/nl与〇,使得 減輕對於ϊό茲伐(P e t z v a 1 )和之影響。 如以上所示,藉著使得正透鏡48A、負透鏡48B之折射 率變成nl> n2,使P1+P2儘量接近負值,可減輕ρι+ρ2對p3 之影響。2103-3823-PF; AHDDUB.ptd Page 34 496999 V. Description of the invention (32) For a planar object, the condition for obtaining a planar image without curvature of the image plane is called Petzva 1 condition. When p When = 0, Petzval conditions are satisfied. That is, in an image display device, by reducing Petzva 1 and approaching 〇, an image with reduced image surface curvature can be displayed on the screen 18 〇 # As shown in FIG. 17, consider a refractive optical lens (projection The optical device, the refractive optical section, the Petzval, and the compensation lens 48 are applied to, for example, the case of FIG. 13 (a). The refractive optical lens 48 is an achromatic lens composed of a positive lens 48a and a negative lens 4 8 B. Now, consider the aspheric convex mirror 41 (i = 3), because the refractive index n3 = ~ 1, and it has a negative power 03 (< 〇) with a large absolute value. By the division between negative values, the aspheric convex mirror 4 1 Petzva 1 and contribution station Petzval and contribution component P3 are easy to become positive. Therefore, by designing the refractive optical lens 48 which cancels the contribution component p 3 of the aspherical convex mirror 41, the curvature of the image plane is compensated. That is, a refractive optical lens 48 ′ composed of a positive lens 48A (i-2) having a positive power and a negative lens 48B (i-2) having a negative power is used to make the The component P1 + P2 becomes a negative value, so that the component p3 of the aspherical convex mirror 41 is canceled. First, since the positive lens 48A has a positive power 01 (> 0), by making the refractive index nl of the positive lens 48A larger, the contribution components P1 = 0 1 / nl and 0, so that the etzva 1) and the effect. As shown above, by changing the refractive index of the positive lens 48A and the negative lens 48B to nl > n2, making P1 + P2 as close to a negative value as possible can reduce the effect of ρ + ρ2 on p3.

2103-3823-PF ; AHDDUB.ptd 第35頁 496999 五、發明說明(33) 此外,藉著將正透鏡48A之阿貝數v 1和負透鏡48B之 阿貝數u 2設為接近之值,可使得更滿足珀茲伐(Petzval) 條件。一般,設波長變化所引起之折射率變化為Δη時, 以阿貝數u = ( η — 1 ) / △ η (η係折射率)定義,在阿貝數小之 情況意指分散值大之光學材料。 設圖17之折射光學透鏡48之正透鏡48Α、負透鏡48Β之 合成功率為Φ時,由合成功率之式子φ=Σ(0〇和消色差 條件之式子Σ ( 0 i / z; i) = 〇,得到式子(2 )、( 3 )。 Φ 1= Φ · ^1( v \ — v 2) (2) 02=— φ · v v \ — v 2) (3) 將式子(2 )、( 3 )各自變形成式子(4)、( 5 ),相對於 (^ 2/ 1)之(0 1/ φ )、( $ 2/ Φ )之絕對值之變化之情況 如圖1 8所示。 0 1/ Φ二 1/[1 —( v 2/ w1)] (4) Φ^/ V2/ v\)/[\ v2/ v\)] (5) 在圖18,橫軸表示(V 2/ Μ),縱軸表示式子(4)、 (5)之絕對值| 0ΐ/φ|| 02/ΦΙ 。由圖18得知,使( 1)愈接近值1,即,使vl、之值愈接近,正透鏡48A、 負透鏡48B之功率、02愈大。 利用圖1 8之結果,使構成折射光學透鏡4 8之正透鏡 48A、負透鏡48B之功率變大,可使得更滿足珀兹伐 (Petzval)條件。即,使正透鏡48A之折射率“變大,使負 透鏡48B之折射率“變小,將正透鏡48a之阿貝數^丄和負' 透鏡48B之阿貝數^ 2設為接近之值。2103-3823-PF; AHDDUB.ptd page 35 496999 V. Description of the invention (33) In addition, by setting the Abbe number v 1 of the positive lens 48A and the Ab number u 2 of the negative lens 48B to close values, This can make Petzval conditions more satisfied. Generally, when the refractive index change caused by the wavelength change is Δη, it is defined by the Abbe number u = (η — 1) / △ η (η is the refractive index). When the Abbe number is small, it means that the dispersion value is large. Optical materials. When the combined power of the positive lens 48A and the negative lens 48B of the refractive optical lens 48 of FIG. 17 is Φ, the formula of the combined power is φ = Σ (0〇 and the formula of achromatic conditions Σ (0 i / z; i ) = 〇 to get the formulas (2) and (3). Φ 1 = Φ · ^ 1 (v \ — v 2) (2) 02 = — φ · vv \ — v 2) (3) Put the formula ( 2) and (3) are respectively transformed into expressions (4) and (5), and the changes of the absolute values of (0 1 / φ) and ($ 2 / Φ) of (^ 2/1) are shown in the figure 1 8 shown. 0 1 / Φ 二 1 / [1 — (v 2 / w1)] (4) Φ ^ / V2 / v \) / [\ v2 / v \)] (5) In Figure 18, the horizontal axis represents (V 2 / Μ), and the vertical axis represents the absolute values of the expressions (4) and (5) | 0ΐ / φ || 02 / ΦΙ. It is known from FIG. 18 that the closer (1) is to the value 1, that is, the closer the value of v1, the greater the power, 02 of the positive lens 48A and the negative lens 48B. Using the result of FIG. 18, the power of the positive lens 48A and the negative lens 48B constituting the refractive optical lens 48 is increased, so that the Petzval condition can be more satisfied. That is, the refractive index of the positive lens 48A is "larger, and the refractive index of the negative lens 48B" is made smaller. The Abbe number of the positive lens 48a ^ 丄 and the Abbe number of the negative lens 48B ^ 2 are set to close values .

2103-3823-PF ; AHDDUB.ptd 4969992103-3823-PF; AHDDUB.ptd 496999

例如,設正透鏡48A、負透鏡48B之折射率各自為“二 π2 = 1· 6 ,設正透鏡48A、負透鏡48B之阿貝數各自為^卜5〇 、^ 2二30,在式子(2)、(3)假設合成功率φ = 1,則0 1=5〇 /(50—30) = 2·5,02= — 30/(50—30)=~h5,此時折射光 學透鏡48之珀茲伐(Petzval)和變成pi+p2 = (2 5/1 6) + (— 1·5/1· 6)=0· 625 。 * * 如由此狀悲接近ίό效伐(P e t z v a 1 )條件般使正透镑4 8 a 之折射率變大,使負透鏡·之折射率變小。:如=8 、η2 = 1·6 ’使正透鏡4 8A之折射率大於負透鏡48B之折射率 時,珀茲伐(Petzval)和變成 P1+P2 = (2.5/1.8) + ( ~1 5/1 6) = 0· 4514,比改變折射率nl、n2前更接近負值,就改善 珀茲伐(P e t ζ ν a 1)和。 接著’將正透鏡48A、負透鏡48B之各阿貝數、>2 設為接近之值。例如如1 = 4 5、2 = 4 3般使阿貝數之差值 ul —變小時,由式子(2)、(3)得到 01 二 45/(45-43) = 22.5,42=—43/(45—43)=—21·5(設 φ = 1),珀茲伐 (Petzval)和變成Ρ1+Ρ2 = (22·5/1·8) + ( - 21·5/1·6)=-0·9 ’可使折射光學透鏡48之ίό兹伐(Petzval)和Ρ1+Ρ2變成負 值。因此,可使包含了非球面凸面鏡4 1之圖1 7之珀茲伐 (Petzval)和P之值接近〇,可減輕像面彎曲。 如以上所示,若依據本實施例5,因使得包括折射光 學透鏡48,由具有正功率之正透鏡“A和具有負功率之負 透鏡48B構成,使正透鏡48A之折射率大於負透鏡48B之折 射率,將正透鏡48A之阿貝數和負透鏡48B之阿貝數設為接For example, let the refractive index of the positive lens 48A and the negative lens 48B be "two π 2 = 1.6, and let the Abbe numbers of the positive lens 48A and the negative lens 48B be ^ Bu 50, ^ 2 30, respectively. (2), (3) Assuming the combined power φ = 1, then 0 1 = 50 / (50-30) = 2.5, 02 = — 30 / (50-30) = ~ h5, at this time the refractive optical lens Petzval of 48 and becomes pi + p2 = (2 5/1 6) + (— 1.5 / 5/1 6) = 0. 625. * * If this is the case, it is close to the effect cut (P etzva 1) Normally, the refractive index of the positive lens 4 8 a becomes larger, and the refractive index of the negative lens · becomes smaller. For example, = 8 and η2 = 1.6. Make the refractive index of the positive lens 4 8A larger than the negative lens. At the refractive index of 48B, the Petzval sum becomes P1 + P2 = (2.5 / 1.8) + (~ 1 5/1 6) = 0.44514, which is closer to a negative value than before changing the refractive indices nl and n2. Improve Petzval (P et ζ ν a 1) and. Then, set the Abbe numbers of the positive lens 48A and the negative lens 48B, and > 2 to close values. For example, 1 = 4 5, 2 = 4 In general, make the difference ul of the Abbe number small — and get 01 2 45 / (45-43) = 22.5, 42 = —43 / (45—43) = — 21 from equations (2) and (3). 5 ( Let φ = 1), Petzval and P1 + P2 = (22 · 5/1 · 8) + (-21 · 5/1 · 6) =-0 · 9 'can make the refractive optical lens 48 Petzval and P1 + P2 become negative values. Therefore, the values of Petzval and P of FIG. 17 including the aspherical convex mirror 41 can be made close to 0, and the curvature of the image plane can be reduced. As shown above, according to the fifth embodiment, since the refractive optical lens 48 is included, it is composed of a positive lens "A having a positive power and a negative lens 48B having a negative power, so that the refractive index of the positive lens 48A is greater than that of the negative lens 48B. The refractive index of the positive lens 48A and the negative lens 48B Abbe number

五、發明說明(35) 近之值,補償扭曲像差,而且使得滿足珀茲伐(p ) 條件,可補償像面彎曲,得到可提高成像性能之效果。 與此外,在以上之說明,在圖1 3 (a)使用圖1 7之折射光 :透鏡48,但是本實施例5未限定如此,也可應用於在實 也例4所示之別的構造。 實施例6 在本實施例6,說明為了補償在非球面凸面鏡發生之 象面彎曲而用折射光學透鏡產生過大之像面彎曲之方法。 圖1 9係說明在非球面凸面鏡發生之過小之像面彎曲之 圖。在圖19(a),49係折射光學透鏡,5〇係折射光學透鏡 1光軸,、51係垂直於光軸5〇之平面。透射了折射光學透 見之光成像於平面5 1上,在圖1 9 (a )得到平坦之影像。 凸面3該光學透鏡49將光投影至實施例4之1〔球面 、兄守 在非球面凸面鏡發生過小之像面彎'曲,曰 佳像面變成凹面朝向投影光學系側之曲面。 取 例如如圖1 9 ( b )所示,自折射光學透鏡4 9向 ^射出光時,所反射之光如像面52般顯示 ,銀幕18顯示焦點模糊之影像。為了補償 = 4 :過小之像面彎曲,使得在折射光學系 ::: 彎曲,使得投影像面平坦化。 人之像面 即,如圖20所示,利用在微反射鏡裝置 :鏡41之間包括之折射光學透鏡⑽光學裝置、折球射面光凸 予部、像面彎曲補償透鏡)產生具有自光軸44至遠離^ 點為止之距離變遠之過大之像面彎曲之像面53,折射光學V. Description of the invention (35) A value close to that compensates for distortion aberration, and satisfies the Petzval (p) condition, which can compensate the curvature of the image plane and obtain the effect of improving imaging performance. In addition, in the above description, the refracted light: lens 48 of FIG. 17 is used in FIG. 13 (a), but this embodiment 5 is not limited to this, and can also be applied to other structures shown in Example 4 . (Embodiment 6) In this embodiment 6, a method for generating an excessively large image surface curvature using a refractive optical lens in order to compensate the image surface curvature occurring in an aspherical convex mirror will be described. Fig. 19 is a diagram illustrating an excessively small image plane curvature occurring in an aspherical convex mirror. In Fig. 19 (a), the 49 series refracting optical lens, the 50 series refracting optical lens 1 and the optical axis 51, 51 are planes perpendicular to the optical axis 50. The light transmitted through the refractive optical image is imaged on the plane 51, and a flat image is obtained in FIG. 19 (a). Convex surface 3 This optical lens 49 projects light to Example 1 [Spherical surface, spheroidal lens] The aspherical convex lens has a small image surface curvature, which means that the good image surface becomes a curved surface with a concave surface facing the projection optical system side. For example, as shown in FIG. 19 (b), when the self-refracting optical lens 49 emits light toward ^, the reflected light is displayed as the image plane 52, and the screen 18 displays a blurred image. In order to compensate = 4: the image plane is too small to bend in the refractive optical system ::: to bend, so that the projection image plane is flattened. The human image plane, as shown in FIG. 20, is produced by using a refractive optical lens (optical device, a spherical projection light convex portion, and an image surface curvature compensation lens) included between the micro-mirror device: the mirror 41. The image surface 53 with a curved image surface 53 whose distance from the optical axis 44 to a distance away from the ^ point becomes too large, refracts optics

2103-3823-PF ; AHDDUB.ptd 第38頁 496999 五、發明說明(36) 透鏡54之過大之像面彎曲和非球面凸面鏡4 1之過小之像面 •彎曲相抵消。藉著這樣做,可補償為了補償扭曲像差而使 用之非球面凸面鏡4 1之過小之像面彎曲,可顯示無扭曲像 差而且未發生像面彎曲之影像。 折射光學透鏡5 4之折射面之形狀利用使用電腦之光路 追縱之數值計算可決定最佳之折射面形狀。 又’藉著將非球面形狀之光學元件應用於主光線之分 散處或主光線之集中處,由光路追蹤之數值計算結果得知 在主光線之分散處可有效的減輕扭曲像差,在主光線之集 中處可有效的減輕像面彎曲。其一例如圖2丨所示。 圖2 1係將非球面應用於光之集中處或光之分散處之圖 ,使得在來自圖上未示之微反射鏡裝置14之光之集中處設 置非球面透鏡(投影光學裝置、折射光學部、非球面形狀 光于元件)55,在來自非球面透鏡55之光之分散處設置非 球面透鏡(投影光學裝置、折射光學部、非球面形狀光學 元件)56A、56B,在來自非球面透鏡566之光之分散處設 ^非球面凸面鏡(投影光學裝置、反射部、非球面形狀光 :π件)57,將非球面凸面鏡57所反射之光投影至圖上未 不^銀幕18。非球面透鏡55可有效的減輕像面彎曲,非球 ,、鏡56 A 5 6Β、非球面凸面鏡57可有效的減輕扭曲像 在圖2 2使用之 但,z係距離 〈數值實施例6A&gt; 圖22表示圖21之數值計算結果之一 非球面形狀之定義式如式子(6)、(7)所示2103-3823-PF; AHDDUB.ptd Page 38 496999 V. Description of the invention (36) The image surface of the lens 54 is too large and the aspherical convex lens 41 is the image surface of the one that is too small • The curvature is offset. By doing so, it is possible to compensate an excessively small image plane curvature of the aspherical convex mirror 41 used for compensating the distortion aberration, and it is possible to display an image having no distortion aberration and no image curvature. The shape of the refractive surface of the refractive optical lens 54 can be determined by the numerical calculation of the optical path trace using a computer to determine the optimal shape of the refractive surface. Also, by applying aspherical optical elements to the scattered places of the principal rays or the concentrated places of the principal rays, it is known from the numerical calculation results of the optical path tracing that the distorted aberrations of the principal rays can be effectively reduced, and Concentration of light can effectively reduce the curvature of the image plane. One example is shown in Figure 2 丨. FIG. 21 is a diagram in which aspheric surfaces are applied to a place where light is concentrated or a place where light is scattered, so that aspherical lenses (projection optics, refractive optics, etc.) And aspheric lens elements 55), aspherical lenses (projection optics, refractive optics, aspherical optics) 56A, 56B are provided at the scattered points of light from the aspherical lens 55, An aspheric convex mirror (projection optics, reflecting part, aspherical light: π pieces) 57 is provided at the scattered position of the light of 566, and the light reflected by the aspherical convex mirror 57 is projected onto the screen 18 on the screen. The aspheric lens 55 can effectively reduce the curvature of the image surface. The aspheric lens, the mirror 56 A 5 6B, and the aspherical convex lens 57 can effectively reduce the distortion image. However, the z-series distance <numerical example 6A> 22 shows one of the aspherical surface definitions of the numerical calculation results of Fig. 21 as shown in equations (6) and (7)

496999 五、發明說明(37) 通過光學面之旋轉中心之下垂量,c係在面頂點之曲率(曲 率半徑之倒數),k係圓錐係數,r係距z軸之距離。此外, 圖22之諸元係f = 5.57mm(在波長546.1nm之焦距)、ΝΑ = 0·17 (微反射鏡裝置側數值孔徑)、Υ 〇 b = 1 4 · 2 2 m m (微反射鏡裝置 側物體高度)、Μ = 86· 3(投影倍率)。 z-cr2/[l + {l - (1+k) c2r2 }0.5 ] + Ar4 + Br6+Cr8 + Dr10 + Er12 + Fr14 + Gr16 十 Hr18 +Jr20 (6) z = cr2/[l + {l -(1+k) c2r2}0*5] + ARlr+ AR2r2+ AR3r3+ … + 如以 透鏡54產 過大之像 像面彎曲 又, 面應用於 之集中處 減輕扭曲 此外 別的非球 實施例7496999 V. Description of the invention (37) According to the sagging amount of the rotation center of the optical surface, c is the curvature (reciprocal of the radius of curvature) of the surface apex, k is the cone coefficient, and r is the distance from the z axis. In addition, the element systems of FIG. 22 are f = 5.57 mm (focal length at a wavelength of 546.1 nm), NA = 0 · 17 (numerical aperture on the micromirror device side), and Υ 〇b = 1 4 · 2 2 mm (micromirror Device-side object height), M = 86 · 3 (projection magnification). z-cr2 / [l + {l-(1 + k) c2r2} 0.5] + Ar4 + Br6 + Cr8 + Dr10 + Er12 + Fr14 + Gr16 Ten Hr18 + Jr20 (6) z = cr2 / [l + (l- (1 + k) c2r2} 0 * 5] + ARlr + AR2r2 + AR3r3 +… + If the image surface produced by the lens 54 is too large and the surface is applied to reduce distortion, other aspheric embodiments 7

若依據本實施例6,因使得用折射光學 面:曲5’面凸面鏡41之過小之像面彎曲相抵消之 :::::得到補償扭曲像差而且可顯示補償了 之景彡像之效果。 只j 若依據本實施例6,因使得 光之分散處和主光線之华中將/球面形… 可有效的減輕像面彎曲、在n侍到在主光線 像差之效果。 在先之分散處可有效的 ’折射光學透鏡54也可應If according to the sixth embodiment, the use of a refractive optical surface: curved 5'-convex convex lens 41 to compensate for the excessively small curvature of the image surface cancels it ::::: Compensated distortion aberration can be displayed and the effect of the compensated scene image can be displayed . If only according to the sixth embodiment, the dispersion of the light and the central / spherical shape of the main rays of light can effectively reduce the effects of image surface curvature and the aberration of the main rays in n. The refraction optical lens 54 that is effective at the previous dispersion can also be used.

面凸面鏡,得到一樣之效】。、在貫施例4所示之Convex mirror, get the same effect]. As shown in Example 4

圖2 3係表示本發 圖23(a) 、 (b)、 貝之影像顯示 之 c )各自係影像龜— # ^ 豕顯不裝置之正視圖、Fig. 23 shows the present invention Fig. 23 (a), (b), the image display of c. C) The respective image turtles-# ^

五、發明說明(38) 上視圖、側現圖。在圖23,58係媒介來自 之光之折射光學透鏡(投影光學裝置折自:/上鏡裝置1 4 2 =之光之光路彎曲反射鏡(光=射“, 施例所說明之凸面鏡。6 i係凸面鏡反射/ ) ’手卜在各實 23,省略照明光源系之圖示。 先軸。此外,在圖 囷Μ之折射光學透鏡58和凸面鏡6〇以 ,為了採用圖23之配置構造,夢著:共同之先軸製造 ’使得將折射先學透鏡5匕=:光路彎曲反射鏡59 ㈣之水平面内;;之光 f/:凸面鏡6。之光軸-致之狀態:;二; 光軸繞包含凸面鏡6〇夕氺1 7研射先子远鏡58之 方位為止。π ^样〃先軸6 1之水平面之法線轉至適當之 裝置之空的‘空^ 將折射光學透鏡58配置於影像顯示 光首:3二4* t ‘反射鏡裝置1 4透射了折射光學透鏡5 8之 6〇對於反射光反斯夕止射鏡向凸面鏡60側反射,凸面鏡 反射,、蚀〜a I莖光利用在實施例1所說明之平面鏡2 2 反射面和^ 幕18廣角投影。尤其,11著將平面鏡22之 構成田^ ^^感光面(或影像顯示面)配置成平行,可 利用:t 影像顯示裝置。在本實施例7,重點在於 示裝置之空空間之=:兄0反射來自配置於影像顯 妬1+土组、工 斤射光學透鏡58之光。因在空空間配置 、 &gt;子透鏡58或圖上未示之照明光源系,可滅少影像顯 第41頁 2103-3823-PF;AHDDUB.ptd 496999 五、發明說明(39) 示裝置之厚度。 藉著比較圖23和圖24、 59之效果。 圖25可理解本光路彎曲反射鏡 即,在圖24,因未包括光路曲 60直接射出透射了折射光學射、兄59,向凸面鏡 、平面㈣、&amp;面鏡二之光,需要在由銀幕18 光-二然設置光路-曲反射鏡59,因將折射 先二透鏡58之先軸方向彎向包含凸面賴之光轴之水平面 在詈1:5為垂直面内),變成將折射光學透鏡58 面㈣下m圖上未示之照明光源系等配置於比凸 高,1 ’冓成銀幕下部高度比圖23之影像顯示裝置的 射光ϊ Ϊ二圖2丄3所示藉著使用將來自配置於空空間之折 旦:=8之光向凸面鏡6〇反射之光路彎曲反射鏡59, 將衫像顯不裝置更薄型化,可構成低之銀幕下部高度。 、类於雖省略圖示,使得在由複數透鏡構成之折^光學 透鏡(杈影光學裝置、折射光學部)使用光路彎曲反射鏡也 可。即,在構成折射光學透鏡之複數透鏡之中之一 $ 裝置和第二透鏡裝置之間插入光路彎曲反射鏡,使 ^ 光路f曲反射鏡之反射令媒介2片透鏡間之光。第一 裝置、第二透鏡裝置係由至少1片之折射光學透 = :鏡:。在此情況,因第一透鏡裝置之光軸和第成 置之光軸不必構成同軸,可將2個光軸彎曲的構成折射兄衣 2103-3823-PF; AHDDUB.ptd 第42頁 496999 五、發明說明(40) 學透鏡。照這樣 化° 此外,在折 按照透鏡之個數 又,使得併 光路彎曲反射鏡 意之透鏡之光之 置之規格設計。 如以上所示 曲反射鏡5 9,在 學透鏡58之光軸 射光學透鏡58射 系配置於影像顯 且使銀幕下部高 又’若依據 反射來自構成折 曲反射鏡,可將 軸彎曲的構成折 可構成更薄型化 效果。 做 也和圖23 —樣可將影像顯示裝置薄型 射光學透鏡由複數透鏡構成之情況,使得 使用複數光路彎曲反射鏡也可。 用向凸面鏡反射來自折射光學透鏡之光之 和向別的透鏡反射來自折射光學透鏡之任 光路彎曲反射鏡也可,可按照影像顯示裝 ’若依 包含凸 方向彎 出之光 示裝置 度低之 本實施 射光學 第一透 射光學 而且使 據本實施例7,因使得包括光路彎 面鏡6 0之光軸之水平面内將折射光 成適當之角度後向凸面鏡反射折 ’可將折射光學透鏡5 8或照明光源 之空空間,得到可構成更薄型化而 影像顯示裝置之效果。 例7 ’因使得包括向第二透鏡裝置 透鏡之第一透鏡裝置之光之光路彎 鏡裝置之光軸和第二透鏡裝置之光 透鏡’利用空空間配置透鏡,得到 銀幕下部高度低之影像顯示裝置之 此外, 實施例8 本實施例7可應用於各實施例1 6 如在貫施例6之數值實施例6 A — # — j /、體的求用以達成本發明V. Description of the invention (38) Top view, side view. In Fig. 23, 58 is a refracting optical lens of light from a medium (projection optical device is folded from: / upper mirror device 1 4 2 = light path bending mirror of light (light = radiation ", the convex mirror described in the embodiment. 6 I-series convex mirror reflection /) 'Hand Bump in each case 23, the illustration of the illumination light source system is omitted. The first axis. In addition, the refractive optical lens 58 and convex mirror 60 in FIG. Dreaming: common anterior axis manufacturing 'makes the refraction of the prior learning lens 5 = = the optical path bending mirror 59 in the horizontal plane of the light; the light f /: the convex mirror 6. The optical axis-the state caused by: two; light The axis wraps around the convex mirror 60 ° and 17 ° to shoot the azimuth telescope 58. π ^ 〃 The normal of the horizontal plane of the first axis 6 1 is turned to the empty 'space of the appropriate device'. The refracting optical lens 58 Placed in the image display light head: 32 * 4 * t 'mirror device 1 4 transmits the refractive optical lens 5 8/6. The reflected light is reflected to the convex mirror 60 side by the stopper mirror, the convex mirror reflects, and etched ~ a The stem light uses the plane mirror 2 2 reflecting surface and the screen 18 wide-angle projection described in Example 1. Among them, the configuration of the flat surface 22 of the plane mirror 22 is arranged in a light-sensing surface (or image display surface) in parallel, which can be used: t image display device. In this embodiment 7, the focus is on the empty space of the display device =: brother The 0 reflection comes from the light arranged in the image display 1+ soil group and the optical lens 58. Due to the configuration in the empty space, &gt; the sub-lens 58 or an illumination light source system not shown in the figure, the image display can be eliminated. Page 2103-3823-PF; AHDDUB.ptd 496999 V. Description of the invention (39) shows the thickness of the device. By comparing the effects of Figure 23 and Figures 24 and 59. Figure 25 can be understood that this optical path bending mirror, that is, Figure 24 Since the light path curve 60 is not included, it directly emits the light that transmitted through the refracting optical lens, brother 59, and to the convex mirror, the plane plane, and the mirror two. It is necessary to set the light path-curve mirror 59 on the screen 18 light-eran, because Bend the first axis of the refractive first lens 58 to the horizontal plane including the optical axis of the convex surface (詈 1: 5 is a vertical plane), and change the arrangement of the illumination light source system (not shown in the figure below m) on the 58th surface of the refractive optical lens. Higher than convex, the height of the lower part of the screen is higher than that of the image display device in Fig. 23 As shown in Fig. 2 and Fig. 3, the light path bending reflector 59 which reflects the light from the 8-folded convex lens 60 to the convex mirror 60 is used to reduce the thickness of the shirt image. , Can form a low height of the lower part of the screen. Although similar to the illustration is omitted, it is also possible to use an optical path bending mirror for a fold optical lens (a shadow optical device, a refractive optical section) composed of a plurality of lenses. An optical path bending mirror is inserted between one of the plural lenses of the refractive optical lens and the second lens device, so that the reflection of the optical path f curved mirror makes the light between the two lenses of the medium. The first device and the second lens device are composed of at least one refractive optical lens =: mirror. In this case, since the optical axis of the first lens device and the optical axis of the first lens device do not need to be coaxial, the two optical axes can be bent to form the refractive clothing 2103-3823-PF; AHDDUB.ptd page 42 496999 V. Description of the invention (40) Learn lenses. In this way, In addition, according to the number of lenses, the design of the light position of the lens intended to bend the optical path of the mirror is also designed. As shown above, the curved mirror 59, the optical lens 58 of the lens 58 is located in the image display, and the lower part of the screen is high. If the bending mirror is formed based on reflection, the axis can be bent. Folding can make a thinner effect. In the same manner as in Fig. 23, the case where the thin-type optical lens of the image display device is composed of a plurality of lenses makes it possible to use a complex optical path bending mirror. It is also possible to reflect the light from the refracting optical lens to the convex mirror and to reflect any light path bending reflector from the refracting optical lens to other lenses. It can be installed according to the image display. This embodiment is the first transmission optics and according to the seventh embodiment, because the refracted light is reflected at a proper angle in the horizontal plane including the optical axis of the optical path curved mirror 60, the refracted optical lens 5 can be refracted to the convex mirror. 8 or the empty space of the illuminating light source, to obtain the effect that a thinner and thinner image display device can be formed. Example 7 'Because the light path of the light path of the first lens device including the lens of the second lens device is bent and the optical axis of the second lens device and the light lens of the second lens device are used, the lens is arranged in an empty space to obtain an image display with a low height below the screen In addition to the device, Embodiment 8 This embodiment 7 can be applied to each of the embodiments 16 as the numerical embodiment 6 of the embodiment 6 A — # — j /.

496999 五、發明說明(41) 之目的之光學系之最佳構造。在本實施例8,公開該數值 計算結果。 圖2 6係表示本發明之實施例8之影像顯示裝置之構造 圖,使用數值實施例6 A (圖2 1)。和圖1相同之符號丨4係微 反射鏡裝置。在圖26,62係由具有正功率之正透鏡群及具 有負功率之負透鏡群構成之反向光學系(投影光學裝置、 折射光學部),63係微調光之射出角度之折射光學透鏡(投 影光學裝置、折射光學部),64係反射來自折射光學透鏡 之光而補償扭曲像差之非球面凸面鏡(投影光學裝置、反 射部)。省略照明光源部、銀幕之圖示。 來自圖上未示之微反射鏡裝置之光透射反向光學系62 後,經由折射光學透鏡6 3向凸面鏡6 4射出,投影至圖上未 示之銀幕。此時,反向光學系62具有聚光作用,而且輔助 擴大向銀幕投影之光線之像角之作用。又,折射光學透鏡 63具有補償用非球面凸面鏡64無法完全補償之扭曲像差之 作用。反向光學系62或折射光學透鏡63包含在各實施例所 說明之各種折射光學透鏡。 更具體而言,由圖27 (a)之2組正透鏡群62 A、62B以及 1組負透鏡群62C、圖27(b)之2組正透鏡群62D、β2Ε以及j 組負透鏡群62F、圖&quot;(cOii組正透鏡群62(^及1組負透鏡 群62H各自構成反向光學系62。 以上之構造係為達成本發明之目的而利用數值計算推 導之構造,藉著使用在各數值實施例所示之數值計算結果 再進行數值計算可容易理解可構成抑制扭曲像差或像面f496999 5. The best structure of the optical system for the purpose of the invention (41). In the eighth embodiment, the numerical calculation results are disclosed. Fig. 26 is a diagram showing the structure of an image display device according to the eighth embodiment of the present invention, using numerical embodiment 6A (Fig. 21). The same symbols as in FIG. 4 are micromirror devices. In Fig. 26, 62 are reverse optical systems (projection optics, refractive optics) consisting of a positive lens group with a positive power and a negative lens group with a negative power, and 63 are refracting optical lenses (the optical angles for fine adjustment of the light output angle) Projection optics, refractive optics), 64 series aspherical convex mirrors (projection optics, reflecting parts) that reflect light from a refractive optical lens and compensate for distortion. The illustration of the lighting source and the screen is omitted. The light from the micro-mirror device not shown in the figure is transmitted through the reverse optical system 62, and then exits through the refractive optical lens 63 to the convex mirror 64, and is projected onto a screen not shown in the figure. At this time, the reverse optical system 62 has a light-condensing effect and assists in expanding the image angle of the light projected onto the screen. Further, the refractive optical lens 63 has a function of distorting the distortion aberration that the aspherical convex mirror 64 cannot completely compensate. The reverse optical system 62 or the refractive optical lens 63 includes various refractive optical lenses described in the embodiments. More specifically, two groups of positive lens groups 62 A, 62B and one group of negative lens groups 62C in FIG. 27 (a), and two groups of positive lens groups 62D, β2E, and j group 62F in FIG. 27 (b). (Figure) (cOii group positive lens group 62 (^ and one group of negative lens group 62H each constitute a reverse optical system 62. The above structure is a structure derived by numerical calculations to achieve the purpose of the present invention.) The numerical calculation results shown in each numerical example can be easily understood by performing numerical calculations, and the distortion aberration or image plane f can be suppressed.

第44頁 496999 五、發明說明(42) 曲、薄型化之影像顯示裝詈夕 衣罝之欢果。具體之數值計算結果 分別以數值實施例8A、8B、8C表厂、。 〈數值實施例8A &gt; 、身、Page 44 496999 V. Description of the invention (42) The thin and thin image shows the joy of wearing clothes and clothes. Specific numerical calculation results are shown in Numerical Examples 8A, 8B, and 8C. <Numerical Example 8A &gt;

圖28、29係各自表示數值實施娜之數值資料、構造 ^ 27(a) I 構成之消色差透鏡。 1 M U i 〈數值實施例8B &gt; 實施例8B之數值資料、構造 正透鏡群62E由一片透鏡構 圖2 8、2 9係各自表示數值 之圖’和圖2 7 ( b )對應。在此, 成。 〈數值實施例8C &gt; 圖3 2、3 3係各自矣+ 之圖,和圖2Uc)對應數值貫施例以之數值資料、構造 此外,在圖3 4〜3 7 /入μ μ ^ + 4Β,在圖38、39公開關於汗—;錢施例4之數值實施例4A、 &lt;數值實施例4A、4B〉貫施例7之數值實施例7A,。 圖3 4、3 5係各自丰+垂 … 之圖,圖36、37係各^ 1施例4A之數值資料、構造 造之圖。都和實44自對表應不=施例… 球面凸面鏡46的用壓克力;* 土球面透鏡47之中接近非 一般,塑膠之把i ίI^:%離的用聚碳酸酿製造。 斤射率溫度係數、線膨長率、、w碎 玻璃的大約2位數,在、、w 凊/長羊1度係數比 考慮使用方法。因此在/皿之環境使用時需要特別 面透鏡47之形狀,使φ、、邾八+厂貝把例415在2片非球 使中心部分之厚度和周邊部分之厚度大Figures 28 and 29 are numerical data showing the numerical implementation and the structure ^ 27 (a) I achromatic lens. 1 M U i <numerical example 8B &gt; numerical data and structure of example 8B The positive lens group 62E is composed of a single lens, and 28, 29 are diagrams each showing a numerical value 'corresponding to FIG. 27 (b). Here, Cheng. <Numerical Example 8C &gt; Figures 3, 2 and 3 are diagrams of the respective 矣 + and Figure 2Uc) corresponding numerical data and structure of the numerical implementation examples. In addition, in Figure 3 4 ~ 3 7 / Enter μ μ ^ + 4B, FIG. 38 and FIG. 39 disclose the numerical example 4A of the money example 4 and the numerical example 7A of the seventh example. Figures 3, 3, and 5 are each a figure of abundant + vertical, and Figures 36 and 37 are each a numerical data and structure diagram of Example 4A. Duhe Shi 44 self-alignment table should not = Example ... The spherical convex lens 46 is made of acrylic; * The soil spherical lens 47 is close to normal, and the plastic handle i ^:% is made of polycarbonate. The temperature coefficient of radiance, linear expansion rate, and w broken glass are approximately two digits. The coefficient of use is considered at 1, w w / long sheep 1 degree coefficient ratio. Therefore, it is necessary to use the special shape of the lens 47 when using it in a plate environment, so that φ ,, 邾, and +8 are used in two aspheric pieces, so that the thickness of the central portion and the thickness of the peripheral portion are large.

496999 五、發明說明(43) 致相等’使得可減輕溫度變化對 ^ ^ ^坦古γ 反艾亿玎於非球面透鏡47之形狀變 化之衫響,抚同%境特性。 艾 〈數值實施例7Α &gt; 圖38、39係各自表示數值實施例 應,相當於將光路彎曲反射鏡插入圖 之奇曲位置以貫現影像顯示裝置之薄型化之情況。α 狀之Ϊ::Γ = ί之全部數值實施例之諸元或非球面形 —计r除了在波長546. lnm之焦距f之值以外,和數 實施例6 A之情況一樣。久齡佶與A 值496999 V. Description of the invention (43) Equivalent ’makes it possible to reduce the temperature change. ^ ^ ^ Tangu γ anti-Ai Yiyu assimilated the shape change of the aspheric lens 47, to alleviate the characteristics of the environment. Ai <Numerical Example 7A> Figs. 38 and 39 each show a numerical example application, which corresponds to a case where a light-path bending mirror is inserted into a singular position of the figure to realize the thinness of the image display device. α-shaped Ϊ :: Γ = All elements of the numerical embodiment or aspheric shape of the embodiment-except that the value of the focal length f at a wavelength of 546.1 nm is the same as that of the embodiment 6A. Old age and A value

數值實施例4A 數值實施例4B 數值實施例7A 數值實施例8A 數值實施例8B 數值實施例8 C 5.3881mm f=4·9898mm ί=4.8675mm f=5·2190mm f-5. 0496mm — m 各數值貝轭例之焦距f如下所示〇 f = 5. 5 768mm 在反 向光3t之各數值實施例所示之數值資料時 子糸6 2具有之透鏡可發現如下之特徵。 (特徵1)具有負功率之倉 ave 一 Nn、呈右不Λ玄 負透鏡之折射率之平均值 自A〗:有功率之正透鏡之折射率之平均值ave Np 自為 1· 45 $ave — Nn si 722 vejp. (特徵2)負透鏡之阿貝數y之平:ve- ά 9。 阿貝數〉之平油佶 千句值ave-〉dn、正透鏡之 3 8&lt;ave— y dp MO _―1&quot;祁各自為25 ^aVe—〉dn $38、 特徵3 )構成正透鏡之玻璃材料之折射率之平均值和 496999Numerical example 4A Numerical example 4B Numerical example 7A Numerical example 8A Numerical example 8B Numerical example 8 C 5.3881mm f = 4 · 9898mm ί = 4.8675mm f = 5.22190mm f-5. 0496mm — m each value The focal length f of the yoke example is shown as follows: f = 5. 5 768mm When the numerical data shown in the numerical examples of 3t of reverse light is used, the following characteristics can be found with the lens 糸 6 2. (Characteristic 1) The average value of the refractive index of a negative posited warehouse ave-Nn, which is a right non-Λ negative lens from A: the average value of the refractive index ave Np of a positive lens with power is 1.45 $ ave — Nn si 722 vejp. (Character 2) The Abbe number y of the negative lens: ve-ά 9. Abbe's number> of flat oil 佶 thousands of values ave-> dn, positive lens of 3 8 &lt; ave—y dp MO _―1 &quot; Qi respectively 25 ^ aVe—> dn $ 38, feature 3) the glass constituting the positive lens The average value of the refractive index of the material

率之平均值之差值dif_ave 構成負透鏡之玻璃材料之折身十 一N 為 0.04Sdif —ave —〇 (特徵4)構成正透鏡之破 構成負透鏡之玻璃材料之阿貝 為 0 Sdif_ave— i^d $16 。 璃材料之折射率之阿貝數和 數之平均值之差值dif ave_ 特徵1、2相當於在實施例5所示之折 正透鏡48A之折射率高,使負透鏡48B之折射率低又一 般在消色差等用途也使用阿貝數為7〇〜9〇的,但是由特徵2 得知,阿貝數之值為6 0以下。 以上係利用使用電腦之光路追蹤之數值計算所推導之 數值實施例之結果。 在本發明’因將微反射鏡裝置偏心配置於投影光學系 共同之光軸外’光斜射入光學系,必須注意避免光線之一 部分被透鏡框等遮住而令有效之光束減少。在本實施例 8,為了消除光之陰影,如圖2 6所示構成。 即,在圖2 6之構造,使得令係自最接近微反射鏡裝置 14之透鏡至微反射鏡裝置14(傳送裝置光射出面)為止之距 離之後側焦距(Back Focal Length,簡稱為BFL)和自微反 射鏡裝置1 4至反向光學系6 2之入射瞳位置為止之距離一致 ,將光之陰影最小化’可提高對銀幕之照明效率。說明其 理由如下。 自微反射鏡裝置1 4之小反射鏡各自反射之主光線集中 於入射瞳位置。因來自各小反射鏡之反射光之擴散角固定 ,如圖4 0 (a)所示,在入射瞳位置和B F L —致之情況,因在The difference between the average value of the rate of dif_ave of the glass material constituting the negative lens is eleven N is 0.04Sdif —ave — 0 (characteristic 4) The abbe of the glass material constituting the negative lens is 0 Sdif_ave— i ^ d $ 16. The difference between the Abbe number and the average value of the refractive index of the glass material is dif ave_ Features 1 and 2 correspond to the high refractive index of the folded positive lens 48A shown in Example 5, which makes the refractive index of the negative lens 48B low and low. Generally, an Abbe number of 70 to 90 is also used for applications such as achromaticity. However, it is known from feature 2 that the value of the Abbe number is 60 or less. The above are the results of numerical examples derived using numerical calculations of optical path tracking using a computer. In the present invention, 'because the micro-mirror device is eccentrically arranged outside the common optical axis of the projection optical system', the light enters the optical system obliquely. Care must be taken to prevent a part of the light from being blocked by a lens frame or the like, thereby reducing the effective beam. In the eighth embodiment, in order to eliminate the shadow of light, it is configured as shown in FIG. That is, in the structure of FIG. 26, the back focal length (Back Focal Length, BFL for short) is made after the distance from the lens closest to the micromirror device 14 to the micromirror device 14 (the light exit surface of the transmission device). Consistent with the distance from the micro-mirror device 14 to the entrance pupil position of the reverse optical system 62, minimizing the shadow of light can improve the lighting efficiency of the screen. The reason is explained below. The principal rays reflected by the small mirrors of the micro-mirror device 14 are concentrated at the entrance pupil position. Because the diffusion angle of the reflected light from each small mirror is fixed, as shown in Figure 4 0 (a), at the entrance pupil position and B F L-

2103-3823-PF : AHDDUB.ptd 第47頁 496999 五、發明說明(44) 構成負透鏡之玻璃材料之折射率 _N 為 0.0“dif_ave_Ng。 十勺值之差值 chLave 構成ΐί正透鏡之玻璃材料之折射率之阿貝數和 m 之阿貝數之平均值之差值dif謂 馮 USdif — ave— vd$16。 —— 正读'2相當於在實施例5所示之折射光學透賴使 正透叙48Λ之折射率高,使負透鏡48B之折射率低。又,一 消色差等用途也使用阿貝數為7〇〜9〇的,但是由特徵2 付知,阿貝數之值為6 〇以下。 以上係利用使用電腦之光路追蹤之數值計算之 數值實施例之結果。 在本發明,因將微反射鏡裝置偏心配置於投影光學系 共同之光軸外,光斜射入光學系,必須注意避免光線之;; 部分被透鏡框等遮住而令有效之光束減少。在本實施例 8 ’為了消除光之陰影,如圖26所示構成。 即’在圖2 6之構造,使得令係自最接近微反射鏡裝置 14之透鏡至微反射鏡裝置14(傳送裝置光射出面)為止之距 離之後側焦距(Back Focal Length,簡稱為BFL)和自微反 射鏡裝置1 4至反向光學系6 2之入射曈位置為止之距離一致 ’將光之陰影最小化,可提高對銀幕之照明效率。說明其 理由如下。 自微反射鏡裝置1 4之小反射鏡各自反射之主光線集中 於入射瞳位置。因來自各小反射鏡之反射光之擴散角固定 ’如圖4 0 (a)所示,在入射瞳位置和β l —致之情況,因在2103-3823-PF: AHDDUB.ptd Page 47 496999 V. Description of the invention (44) The refractive index _N of the glass material constituting the negative lens is 0.0 "dif_ave_Ng. The difference of ten spoons chLave constitutes the glass material of the positive lens The difference dif of the refractive index between the Abbe number and the average value of the Abbe number of m is called Feng USdif — ave — vd $ 16. — Positive reading '2 is equivalent to the refractive optical transparency shown in Example 5 to make positive The refractive index of 48Λ is high, which makes the refractive index of negative lens 48B low. In addition, the Abbe number of 70 ~ 90 is also used for achromatic and other purposes, but according to feature 2, it is known that the value of Abbe number is 6 〇 Below. The above are the results of numerical examples calculated using numerical values of optical path tracking using a computer. In the present invention, since the micro-mirror device is eccentrically arranged outside the common optical axis of the projection optical system, light enters the optical system obliquely. Pay attention to avoid the light; The part is blocked by the lens frame, etc., so that the effective light beam is reduced. In this embodiment 8 'in order to eliminate the shadow of light, it is structured as shown in Figure 26. That is, the structure in Figure 26 makes From the closest to the micromirror device 14 Back Focal Length (BFL) after the distance to the micro-mirror device 14 (the light exit surface of the transmission device) and the distance from the micro-mirror device 14 to the entrance position of the reverse optical system 62 Consistently 'Minimizing the shadow of light can improve the lighting efficiency of the screen. The reason is explained below. The main rays reflected by the small mirrors of the micromirror device 14 are concentrated at the entrance pupil position. The diffused angle of the reflected light is fixed, as shown in Fig. 4 (a).

2103-3823-PF; AHDDUB.ptd 第47頁 496999 五、發明說明(45) ---- BFL位置光線最集中,可將配置於折射光學透鏡66之大小 (直徑)最小化。又,此時,將來自圖上未示之照明光源 之光向微反射鏡裝置1 4媒介之折射光學透鏡65不會遮住 微反射鏡裝置14往折射光學透鏡66之光。 而,例如如圖40(b)所示,非球面透鏡55、56、微反 射鏡裝置14之大小或配置保持不變,而使入射瞳位置自 BFL偏移時,來自各小反射鏡之主光線集中於偏移之入射 瞳位置,因光之擴散角固定,和圖4〇(a)相比,BFL之位 之光線擴散,接受該光之透鏡直徑變大。又,自微反射 裝置射入折射光學透鏡66之光被折射光學透鏡65遮住。 這導致有效光束減少,令照明效率惡化。 由於以上之理由,使自微反射鏡裝置14至入射瞳位置 為止之,離和BFL相等,藉此,可將折射光學透鏡之大小 (直徑)最小化,使光之陰影變小,可提高照明效率。當然 ,在此所示使陰影最小化之手法也可應用於別的實施例。 此外’關於數值實施例4 a、4 B,變成入射瞳位置和 B F L大致一致之狀態,但是藉著令完全一致可得到最佳之 效果。 、如以上所示,若依據本實施例8,因使得包括由正透 鏡群及負透鏡群構成之反向光學系62、微調光之射出角度 =折射光學透鏡63以及補償扭曲像差之非球面凸面鏡64, 1到可構成抑制扭曲像差或像面彎曲並薄型化之 裝置之效果。 又若依據本實施例8,因使得由正透鏡群6 2 A ( 6 2 D)2103-3823-PF; AHDDUB.ptd Page 47 496999 V. Description of the invention (45) ---- The light at the BFL position is most concentrated, and the size (diameter) of the refractive optical lens 66 can be minimized. At this time, the refractive optical lens 65 that directs light from an illumination light source (not shown) to the medium of the micro-mirror device 14 does not block the light of the micro-mirror device 14 toward the refractive optical lens 66. However, for example, as shown in FIG. 40 (b), the size or configuration of the aspheric lenses 55, 56, and the micro-mirror device 14 remains unchanged, and when the position of the entrance pupil is shifted from the BFL, the master from each small mirror The light is concentrated at the shifted entrance pupil position, and the diffusion angle of the light is fixed. Compared with FIG. 40 (a), the light at the BFL position is diffused, and the diameter of the lens receiving the light becomes larger. Further, the light incident from the micro-reflection device into the refractive optical lens 66 is blocked by the refractive optical lens 65. This leads to a decrease in the effective light beam and deteriorates the lighting efficiency. For the above reasons, the distance from the micro-mirror device 14 to the entrance pupil position is equal to the BFL, whereby the size (diameter) of the refractive optical lens can be minimized, the shadow of light can be reduced, and the illumination can be improved. effectiveness. Of course, the method of minimizing shadows shown here can also be applied to other embodiments. In addition, as for the numerical examples 4a and 4B, the positions of the entrance pupil and B F L are almost the same. However, the best effect can be obtained by completely matching them. As shown above, if this embodiment 8 is used, the reverse optical system 62 consisting of a positive lens group and a negative lens group, a fine-tuning light emission angle = a refractive optical lens 63, and an aspheric surface that compensates for distortion aberration are included. The convex mirrors 64, 1 can provide effects of suppressing distortion aberrations or reducing the curvature of the image surface. According to the eighth embodiment, the positive lens group 6 2 A (6 2 D)

2103-3823-PF ; AHDDUB.ptd 第48頁 496999 五、發明說明(46) 、正透鏡群6 2B(62E)以及負透鏡群62C(62F)構成反向光學 系6 2 ’得到可更具體的構成抑制扭曲像差或像面彎曲: 型化之影像顯示裝置之效果。 缚 此外’若依據本實施例8,因使得由正透鏡群6 2 G、 透鏡群6 2H構成反向光學系62,得到可更具體的構成抑、 扭曲像差或像面彎曲並薄型化之影像顯示裝置之效果。 此外,若依據本實施例8,因使負透鏡之折射率平 值位於1· 45以上ΐ·722以下之範圍,使正透鏡之折射率平 η比&quot;22大而小於1,9之範圍,得到可更具體的 ρ丑曲像差或像面彎曲並薄型化之影像顯示裝置之 效果。 4且〈 料之二卜勒ΐ ί據本實施例8,因將構成負透鏡之玻璃材 均值設為25以上38以下,將構成正透鏡之 貝ί之平均值設為比38大而小於6〇,得到可 ί裝制扭曲像差或像面弯曲並薄型化之影像顯 璃姑:ί據本貫施例8 ’因使得由構成正透鏡之玻 璃材枓之折射率之平均值和構成 率之平均值之差值為〇.。4以】i成以負下透之鏡玻 光學透鏡,得到可更具體的構成抑制差' 成气, 並薄型化之影像顯示裝置之效果。 像差或像面穹曲 此外’若依據本實施例8,因 璃材料之阿貝數之平均值和構 透由構成正透鏡之玻 數之平均值之差值為G以上16 '材料之阿貝 卜之坡璃材料構成折射光 2103-3823-PF ; AHDDUB.ptd 第49頁 五、發明說明(47) 學透鏡,得到可更具體的 薄型化之影像顯示裝置之效果。曲像差戈像面k曲並 r牡ΐιΐ之ΪΓ據本實施例8 ’因使得令自最接近微反射 ΐ 透鏡至微反射鏡裝置14為止之BFL和 自你支反射鏡裝置14$ π ^ 1丨4至反向先學糸62之入射瞳位置為止之距 一 /,付可將折射光學透鏡之大小(直徑)最小化,而 且將光之陰影最小化並提高照明效率之效果。 實施例9 在本實施例9,說明在自微反射鏡裝置至反射鏡為止 之間將具有負功率之負透鏡配置於邊部光線(marginal ray)低處,令滿足珀茲伐(petzval )條件之手法。 圖41係表示本發明之實施例9之影像顯示裝置之構造 圖’圖41 (a )、( b)各自係整體圖、放大圖。省略照明光源 部、微反射鏡裝置、銀幕等之圖示。在圖41,67、68各自 係折射光學透鏡,6 9係具有正的珀茲伐(pe t z va丨)和貢獻 成分之凸面鏡,70係折射光學透鏡67、68及凸面鏡69共有 之光軸,71係自圖上未示之微反射鏡裝置向凸面鏡69行進 之光之邊部光線,7 2係配置於邊部光線7 1之低處之具有負 功率之負透鏡。 如在實.施例5所述,因凸面鏡6 9具有正之珀茲伐 (Petzval)和貢獻成分’由折射光學透鏡67、68、凸面鏡 69構成之投影光學系整體之珀茲伐(Petzval)和易變成正 值,發生像面彎曲。因此,藉著追加絕對值大之具有負功 率之負透鏡72,產生負之珀茲伐(Petzval)和貢獻成分,2103-3823-PF; AHDDUB.ptd Page 48 496999 V. Description of the invention (46), positive lens group 6 2B (62E) and negative lens group 62C (62F) constitute the reverse optical system 6 2 'can be more specific Constitutes suppression of distortion aberrations or curvature of field: the effect of a shaped image display device. In addition, according to the eighth embodiment, since the reverse optical system 62 is constituted by the positive lens group 6 2 G and the lens group 6 2H, a more specific structure, distortion aberration, or curvature of the image plane can be obtained. Effect of image display device. In addition, if the refractive index of the negative lens is in the range of 1.45 or more and 722 or less according to the present embodiment 8, the refractive index of the positive lens is larger than &quot; 22 and smaller than 1,9. , To obtain the effect of a more specific ρ ugly aberration or an image display device with a curved and thin image plane. 4 and <Material No. 2 Buller ΐ According to this embodiment 8, because the average value of the glass material constituting the negative lens is set to 25 or more and 38 or less, and the average value of the shell material constituting the positive lens is set to be greater than 38 and less than 6 〇, to obtain an image display that can be distorted aberrations or image planes that are curved and thinned: According to the present Example 8 'because the average value of the refractive index and the composition ratio of the glass material constituting the positive lens The difference between the averages is 0. (4) The optical glass lens with negative penetration is obtained by i, to obtain the effect of a more specific image display device that can suppress the difference of formation and reduce the thickness. Aberration or curvature of the image surface In addition, according to the present embodiment 8, the difference between the average value of the Abbe number of the glass material and the average value of the glass number constituting the positive lens is greater than G. 16 ' Beibu's slope glass material constitutes refracted light 2103-3823-PF; AHDDUB.ptd page 49 5. Description of the invention (47) The lens is obtained, and the effect of a more specific and thin image display device can be obtained. The aberrations of the aberrations and the curvature of the image are described in accordance with Example 8 'because the BFL from the lens to the micro-mirror device 14 and the self-supporting mirror device 14 $ π ^ The distance from 1 ~ 4 to the position of the entrance pupil of the reverse learning 糸 62 is 1 /, which can minimize the size (diameter) of the refractive optical lens, and minimize the shadow of light and improve the lighting efficiency. Embodiment 9 In this embodiment 9, it is described that a negative lens having a negative power is arranged at a low position of a marginal ray from the micromirror device to the reflector, so that a petzval condition is satisfied. Method. Fig. 41 shows the structure of an image display device according to a ninth embodiment of the present invention. Figs. 41 (a) and (b) are an overall view and an enlarged view, respectively. Illustrations of the illumination light source section, the micro-mirror device, and the screen are omitted. In Figs. 41, 67, and 68, respectively, are refractive optical lenses, 6 and 9 are convex lenses having a positive Petz va and contributing components, and 70 are optical axes common to the refractive lenses 67, 68 and convex mirror 69. 71 is a side ray of light traveling from a micro-mirror device not shown in the figure toward the convex mirror 69, and 72 is a negative lens having a negative power arranged at a low position of the side ray 71. As described in Example 5, since the convex mirror 69 has a positive Petzval and a contribution component 'Petzval and the entire projection optical system composed of the refractive optical lenses 67 and 68 and the convex mirror 69 It is easy to become a positive value, and image surface bending occurs. Therefore, by adding a negative lens 72 having a large absolute value and having a negative power, a negative Petzval and a contribution component are generated.

2103-3823-PF ; AHDDUB.ptd 第50頁 496999 五、發明說明(48) 光學系整體之拍兹伐(Petzval)和變成0,可減少像 在配置違負透鏡7 2時,將邊部光線7 1之低處選為負透 鏡72之配置處上係本實施例9之重點。即,在本實施例9, f自圖上未示之微反射鏡裝置至凸面鏡69之間,使得在邊 部光線71之低處配置負透鏡72。在邊部光線71之低處,光 集中於光軸70之周圍。2103-3823-PF; AHDDUB.ptd Page 50 496999 V. Description of the invention (48) The Petzval sum of the optical system becomes 0, which can reduce the side light when the lens 7 2 is disposed. The selection of the negative position of 71 as the position of the negative lens 72 is the focus of this embodiment 9. That is, in the ninth embodiment, f is between a micro-mirror device (not shown) and a convex mirror 69, so that a negative lens 72 is arranged at a low position of the side light 71. The light is concentrated around the optical axis 70 at a low position of the side light 71.

藉著這樣做,因光集中於負透鏡72之中心周邊之微小 部分透射,可幾乎忽略負透鏡72對於光之透鏡效果。因此 ,對於依據折射光學透鏡67、68、凸面鏡69之光路設計, 不必考慮負透鏡72之影響,而且可將投影光學系之正之珀 兹伐(Petzval)和貢獻成分相抵消。不必考慮對於光路之 影響,因只考慮負功率之絕對值及玻璃材料之折射率,使 得滿足ίό茲伐(Petzval)條件即可,可容易減少像面彎 曲0 更具體而言’使得在實施例8之反向光學系6 2設置負 透鏡72也可,又,因微反射鏡裴置之反射面(在液2等透 射型光空間s周變元件之情況為射出面)相當於邊部光線71 之低處,使得將聚光透鏡(field flattner)作為負透鏡72 並接近反射面(射出面)也可。 負透鏡72之構造未特別限定為一片透鏡,使得包括由 複數透鏡構成之負透鏡72也可。 如以上所示’若依據本實施例9,因使得在邊部光線 71之低處配置具有負功率之負透鏡72,不必考慮負透鏡72By doing so, since a small part of the light concentrated on the periphery of the center of the negative lens 72 is transmitted, the lens effect of the negative lens 72 on the light can be almost ignored. Therefore, for the optical path design based on the refractive optical lenses 67, 68, and the convex mirror 69, it is not necessary to consider the influence of the negative lens 72, and the positive Petzval and contribution components of the projection optical system can be offset. It is not necessary to consider the influence on the optical path, because only the absolute value of negative power and the refractive index of the glass material are considered so that the Petzval condition can be satisfied, and the image surface curvature can be easily reduced. More specifically, The reverse optical system 8 of 8 2 may be provided with a negative lens 72, and the reflective surface of the micromirror (the exit surface in the case of a transmissive optical space s-periodic element such as liquid 2) is equivalent to the side light The low level of 71 makes it possible to use a field flattner as the negative lens 72 and close to the reflecting surface (emission surface). The structure of the negative lens 72 is not particularly limited to one lens, so that a negative lens 72 composed of a plurality of lenses may be included. As shown above ', if the negative lens 72 having a negative power is arranged at the low position of the side light 71 according to the ninth embodiment, the negative lens 72 need not be considered.

496999 五、發明說明(49) 對於透射光之透鏡效果,產生抵消投影光學系之正之始兹 伐(Petzval)和貢獻成分之負之珀茲伐(petzval)和貢 分,變成可容易滿拍兹伐(Petzval)條件,得到可構成 少像面彎曲之影像顯示裝置之效果。 實施例1 0 3ίΐ!例7,為了將影像顯示裝置之厚度·銀幕下部 面度雙方敢小化,在折射光學透鏡58和凸面 入光路f曲反射鏡59,使得在包含 j f 光路。在本實施例10,說明在實祐二1之水千面内育曲 射鏡59和折射光學透鏡58對於 铲不之光路彎曲反 件。 了於凸面鏡60之相對性配置條 圖42係用以說明光路彎曲反 40(a)及(b)各自係側視圖及上視义-己置條件之圖,圖 之正視圖。對於和圖23相同或二^ =40(c)係凸面鏡60 。在圖42,m系折射光學透鏡58: ^造賦與相同之符號 ”彎曲反射鏡59而令凸面 J 係假設拿掉 情況之折射光學透鏡58。 疋軸bl和光軸73—致之 光軸61和光軸73在水平面 自和光轴61 —致之狀態在水 角度Θ交又。光軸73 成如圖40(b)所示。p 囬円只旋轉180〜0後,變 射光學透鏡58之相交線1各之自2:包之水平面和折 射鏡59往凸面鏡6〇之光路之 p取接近自光路彎曲反 面鏡22之影像顯示震 面二如、將最接近設置了平 又,自設置了凸面。之;;;:;=\置 ___ 直之凸面鏡設置 496999 五、發明說明(50) ----- — 面至光路彎曲反射鏡59之位置(光軸61和“ 止之距離為b,包含光軸61之水平面和=光軸73之交點)為 之相交線上之點中最接近凸面鏡設置面路聲曲反射鏡5 9 將離凸面鏡設置面最遠之點稱為最遠點之點稱為最近點, 鏡設置面為止之距離係a,自最遠點至凸自最近點至凸面 之距離係c。距離c成為自凸面鏡設置面鏡設為m面為止 59為止之最長距離。 光路彎曲反射鏡 此外,設自光路彎曲反射鏡5 9之最古听 之高度為„!,自點Q至凸面鏡設置面為止:距=軸61為止 射光學透鏡58z之射出曈位置至凸面鏡設離為g,自折 為f。距離g成為自凸面鏡設置面至折射又面為止之距離 最長距離。因此,自折射光學透鏡二==為止之 位置至凸面鏡設置面為止之水平方向;;9之 f。 、祀雕之和也變成 由圖42(a)得知,要將係自銀幕18之最下 為止之距離之銀幕下部高度最小化,令往銀軸61 之凸面鏡6〇之反射光線75通過令儘量接近光轴 比較有利。而,光路通過過低之位置時,光路 路^ 反==住而在銀幕上成為陰影,發生無法顯示之= 往ΐίΓ8::,,必須如避免光路-曲反射鏡59遮住令 1 ί 凸面鏡6〇之反射光線般決“路彎曲 反射鏡5 9之大小•位置。 格弓曲 關於光路彎曲反射鏡59之位置,為了令凸面鏡⑽之反 第53頁496999 V. Description of the invention (49) For the lens effect of transmitted light, the Petzval and Petzval and Gong points that offset the positive of the projection optical system and the negative of the contributing component can be easily shot. Petzval conditions, to obtain the effect of an image display device that can form a small image plane. Example 10 In Example 7, in order to reduce both the thickness of the image display device and the lower surface of the screen, the refracting optical lens 58 and the convex entrance light path f-curve mirror 59 are included so that the j f optical path is included. In the tenth embodiment, it will be described that the curved mirror 59 and the refracting optical lens 58 are used to bend the optical path of the optical path in the surface of the water. The relative configuration bar of the convex mirror 60 is shown in Fig. 42. Fig. 42 is a diagram for explaining the bending of the optical path 40 (a) and (b), respectively, which are a side view and a top view-a set condition, and a front view of the figure. It is the same as FIG. 23 or two ^ = 40 (c) series convex mirrors 60. In FIG. 42, the m-type refractive optical lens 58: ^ is made with the same symbol “bending mirror 59” and the convex surface J is a refractive optical lens 58 assuming that the case is removed. The optical axis 73 intersects with the optical axis 61 at the horizontal plane at the water angle Θ. The optical axis 73 is shown in Figure 40 (b). P After the rotation is only 180 ~ 0, the morphing optical lens 58 intersects Line 1 has two parts: the horizontal plane of the package and the p of the optical path of the refracting mirror 59 to the convex mirror 60. The image close to the curved mirror 22 of the optical path shows that the seismic surface is two, the closest is flat, and the convex surface is set. . ;;;:; = \ Set___ Straight convex mirror setting 496999 V. Description of the invention (50) ----- — The position from the surface to the optical path bending mirror 59 (the distance between the optical axis 61 and "stop is b, Including the horizontal plane of the optical axis 61 and the intersection of the optical axis 73) is the point on the line of intersection that is closest to the convex mirror setting surface acoustic curve mirror 5 9 The point furthest from the convex mirror setting surface is called the farthest point For the closest point, the distance from the mirror setting surface is a, and the distance from the furthest point to the convex from the nearest point to the convex surface is c. The distance c becomes the longest distance from the convex mirror installation mirror to the m-plane 59. Optical path curved mirror In addition, the most ancient height from the optical path curved mirror 5 9 is set to „!, From the point Q to the convex mirror setting surface: from the distance = axis 61 to the projection position of the optical lens 58z to the convex mirror. Is g, self-folding to f. The distance g becomes the longest distance from the convex mirror setting surface to the refracting surface. Therefore, the position of the self-refracting optical lens 2 == to the horizontal direction to the convex mirror setting surface; 9 of f The sum of the sacrifice carving has also been learned from FIG. 42 (a). To minimize the height of the lower part of the screen, which is the distance from the bottom of the screen 18, the reflected light 75 to the convex mirror 60 of the silver axis 61 passes through. It is advantageous to make it as close to the optical axis as possible. However, when the optical path passes through a position that is too low, the optical path ^ counter == lives and becomes a shadow on the screen, which cannot be displayed = To ΐίΓ8 ::, you must avoid the optical path-curved reflection The mirror 59 covers the reflecting light of the convex mirror 60, which determines the size and position of the road bending mirror 59. Grid bow About the position of the light path bending mirror 59, in order to make the convex mirror reverse

2103-3823-PF : AHDDUB.ptd 五、發明說明(51) 射光線以儘量低之光路通過, 影像顯示裝置之厚度,因有由$ 儘量大。而,關於2103-3823-PF: AHDDUB.ptd V. Description of the invention (51) The light is transmitted through the light path as low as possible. The thickness of the image display device is as large as possible because of $. And, about

制值,距離C需要1 A / ^'化之規格決定之厚度)TP 六、 為该厚度限制值以下。 在按,、?、以上之條件彎 包含折射光學透鏡58之 自^况,距離f過短時, 凸面為止之光線。曲反射紛至 P不遮住自光路f曲反射鏡59至凸面J射光學透鏡58之點 距離a變成超出需要的短。而,距離 為止之光線時, 6 〇之感光面或光路彎曲反射鏡5 9之位置:‘件依:::鏡 ==過度遠離光路彎曲反射_條;果 反射鏡59變大’必須將光路彎曲反射鏡5 =:: ,就遮住自凸面鏡6〇反射後往二又°又為大值 75。因而,在距_存在最V值 取下端之反射光線 關1彎曲角度Θ,由圖42⑻得知,將f曲角度0設 為太大時,距離g或距離c就超過厚度限制值,而且距離a 變短,就提高往銀幕18之最下端之來自凸面鏡6〇 線之高度。 反之]若使彎曲角度Θ變小,因距離g或距離c也變小 ’折射光學透鏡5 8或光路彎曲反射鏡5 9變成在厚度之觀點 上有利。可是,使彎曲角度0太小時,包含折射光學透鏡 58之點P之部分進入自光路彎曲反射鏡59至凸面鏡⑽為土 之光路而遮光,發生無法投影影像之陰影之部分。因此, 在彎曲角度0也存在最佳值。 依據上述事項,對於自光路彎曲反射鏡59至凸面鏡60The value of the distance C is 1 A / ^ (thickness determined by the specifications) TP 6. It is below the thickness limit value. According to the above conditions, the light rays including the refracting optical lens 58 are bent, and when the distance f is too short, the light rays up to the convex surface. The point P from which the curved reflection reaches P does not cover the light path f from the curved mirror 59 to the convex J-ray optical lens 58. The distance a becomes shorter than necessary. However, when the light reaches a distance, the position of the light-sensitive surface or the light path bending mirror 59 of 60 is: 'piece by ::: mirror == excessively far away from the light path and curved reflection; if the mirror 59 becomes large, the light path must be The curved mirror 5 = ::, then shields the reflection from the convex mirror 60 and then the angle is 75 again. Therefore, when there is the most V value at the distance _ there is a reflection angle at the lower end of the bending angle 1 and the bending angle Θ, as can be seen from FIG. 42. a becomes shorter, the height of the line 60 from the convex mirror toward the lower end of the screen 18 is increased. Conversely, if the bending angle Θ is made smaller, the distance g or distance c is also reduced. The refractive optical lens 58 or the optical path bending mirror 59 is advantageous from the viewpoint of thickness. However, when the bending angle 0 is too small, a part including the point P of the refractive optical lens 58 enters the light path from the light path bending mirror 59 to the convex mirror ⑽ as a light path to block light, and a part where a shadow cannot be projected occurs. Therefore, there is also an optimal value at the bending angle 0. According to the above matters, from the optical path bending mirror 59 to the convex mirror 60

2103-3823-PF ; AHDDUB.ptd 第54頁 五、發明說明(52) 士止之光路,如在不遮光之範圍令p點 定光路之彎曲角度Θ。 说里接近先路般決 又彎曲角度0 —決定,因此時限制影像 予又的為距離g或距離C,將這些距離之中較大: 限制值般決定距離f。尤其將距離 、”、、旱度 可將銀幕下部高度抑制為最低。 、為相等時, # &amp;此外,也有依據影像顯示裝置之其他彳if # % I i α 但是和上述之情況-樣 、 上之結果整理成如下之1〜3 〇 Μ签上、 將距離f及彎曲角度Θ最佳化 會‘ ° :下之卜3般 陰影部分,得到可在滿足厚度限制3值\= ^ 高度抑制成低之效果。 限制下將銀幕下部 1.在利用光路彎曲反射鏡59彎曲光路之产 住自光路靑曲反射鏡59至凸面鏡6〇為止之光不遮 ,折射光學透鏡58之Ρ點儘量接近該光路般決定二圍角度如 在依據影像顯示裝置之其他條件預先 Θ之情況,在不遮住自光路彎曲 疋弓曲角度 之光路之範圍,如使折射光學透鏡58之至凸日面細為止 路且距離g或距離。成為厚度限制值般設定距離V近該光 3.為了將銀幕下部高度抑制成最低,在二。 号曲反射鏡59至凸面鏡6〇為止之光路之 自光路 學透鏡58之P點儘量接近該光路般設定彎二如使折射光 如距離g或距離C成為厚度限制值般設定距離f 而且 496999 五、發明說明(53) 此外,藉著自折射光學透鏡58刪除包含了光線不通過 之點P之部分(非透射部分),在使點P接近自光路彎曲反射 鏡59至凸面鏡60為止之光路時,和對於自光路 59至凸面鏡60為此之光路不刪除之情況相比, 學透鏡58更接近。又,例如由圖!或圖4得知,:二 個凸面鏡之反射面將光投影至銀幕,只用凸面= 下=反射面投影。因此,例如如圖42(c)之凸面鏡⑽所牛示乂 ,若在構造上切掉具有未將光投影至銀幕 ,、 夕卹八^G U如八、 丁 ^仅〜王跟举之不用之反射面 之4刀(非反射部分),在構造上使凸面鏡小 用部分,得到可降低影像顯示裝置之費用, 影像顯示裝置内部之構造空間。此外,也:::用 1片凸面鏡切成二等分後,將―等八、方疋轉成型之 影像顯干F ¥ ,讦1 將一等刀之各凸面鏡應用於2台 〜像顯不衣置,可間化影像顯示裝置之製程。 口 在本發明’因使得如補償扭曲像差 =折射光學透鏡58或光路f曲反射鏡59、凸=縱, 構成元件之形狀後配置之,需要保持構成 之各 而正確的形成光路。因而,使得設=係 74 ’將折射光學透鏡以、光路彎曲反射鏡59 =持機構 !持成-體化。藉著這樣做,固定相 凸面鏡60 兩精度的製造構成元件間之光路,自光學季^係,變成 應力或各種環境條件(、、w 糸之外部施加之 透鏡58 .、反射鏡、凸皿面又^之又荨,生變化’折射光學 得到可使影像裝置$ =關係也難變化, ._ …,即利用保持機構只保持折射; 2103-3823-PF ; AHDDUB.ptd 第56頁 496999 五、發明說明(54) 學透鏡58和凸面鏡6〇也可。 又,如在實施例7所述,替代在折射光學透鏡58和凸 面鏡6 0之間配置光路彎曲反射鏡5 9,藉著在構成折 透鏡58之第一透鏡裝置和第二透鏡裝置之間設置光路 反射鏡:將光路彎曲,也可抑制影像顯示裝置之厚度。圖 44係表示此時之影像顯示裝置之構造之圖。對於和^42相 同或相當之構造賦與相同之符號。來自圖上未示之微反射 鏡裝置之光透射折射光學透鏡58之第一透鏡裝置,被光路 彎曲反射鏡59反射後透射折射光學透鏡58之第二 ,向凸面鏡60行進。 表 在此情況,距離g成為自凸面鏡設置面至折射光學透 鏡為止之最長距離。又,為了將係自銀幕18之最下端至光 軸6 1為止之距離之銀幕下部高度最小化,因將往銀幕丨8之 最下端之凸面鏡6〇之反射光線75設為應通過儘量令接近光 軸6 1之低位置’使折射光學透鏡58儘量遠離凸面鏡6〇比較 有利。尤其,反射光線75自折射光學透鏡58之射出面之最 高部R通過低位置時,光路被折射光學透鏡58遮住。因而 ,在距離g不超過厚度之範圍將自凸面鏡設置面至折射光 學透鏡58為止之最短距離a配置成儘量長。由以上之條件 ,在圖44之情況,在自凸面鏡設置面至折射光學透鏡58之 射出目里為止之距離f存在最佳值。 又’光路之彎曲角度0和在透鏡和凸面鏡之間使用光 路彎曲反射鏡之情況一樣,由薄型化之觀點應設為儘量小 之值。可是,彎曲角度&lt;9太小時,第一透鏡裝置就遮住2103-3823-PF; AHDDUB.ptd Page 54 V. Description of the invention (52) For the light path of Shizhi, if the point p is set in a range that does not block the light, the bending angle Θ of the light path is fixed. It is determined that the approach is close to the first line and the bending angle is 0—therefore, the time limit image is again the distance g or distance C, which is the larger of these distances: the limit value generally determines the distance f. In particular, the distance, ", and the degree of drought can suppress the height of the lower part of the screen to the minimum. When equal, # & In addition, there are other 彳 if #% I i α according to the image display device, but the same as the above, The above results are sorted into the following 1 ~ 3 0M signs, and the distance f and the bending angle Θ will be optimized. °: The shaded parts like the following are obtained, which can meet the thickness limit of 3 values \ = ^ height suppression The lower part of the screen is restricted. 1. The light path from the light path bending mirror 59 to the convex mirror 60 is not blocked when the light path is bent by the light path bending mirror 59. The P point of the refractive optical lens 58 is as close as possible. This optical path determines the angle of the two circumferences. In the case of Θ according to other conditions of the image display device, in the range that does not cover the optical path of the bending angle from the optical path, such as making the refractive optical lens 58 as thin as possible to the convex surface Distance and distance g or distance. Set the distance V as close to the thickness as the thickness limit value. 3. In order to suppress the height of the lower part of the screen to the minimum, the number is 2. The optical path lens 5 from the reflection path 59 to the convex mirror 60. Point P of 8 is set as close as possible to the optical path. Set the distance f as if the refracted light is a distance g or distance C as a thickness limit. And 496999 V. Description of the invention (53) In addition, the self-refractive optical lens 58 is deleted to include The part (non-transmissive part) where the point P does not pass, when the point P is close to the light path from the optical path bending mirror 59 to the convex mirror 60, and the optical path from the light path 59 to the convex mirror 60 is not deleted. Compared with, the lens 58 is closer. Also, for example, as shown in Figure! Or Figure 4, the reflecting surfaces of the two convex mirrors project light onto the screen, and only the convex surface = the bottom = the reflective surface is projected. Therefore, for example, as shown in Figure 42 (c) The convex mirror ⑽ is shown in the figure. If the structure is cut off, there is no reflection on the screen. Non-reflective part), the convex mirror is small in structure, which can reduce the cost of the image display device, and the structural space inside the image display device. In addition, it is also ::: cut into two halves with a convex lens, and then- Waiting for eight Image display F ¥, 讦 1 Applies two convex mirrors of the first class to 2 sets ~ The display display can be used to intersperse the process of image display device. It is stated in the present invention that the compensation for distortion aberration = refraction optics The lens 58 or the optical path f-curve mirror 59, convex = vertical, are arranged after the shape of the component, and it is necessary to maintain the structure of each and accurately form the optical path. Therefore, let the lens system 74 'reflect the refractive optical lens with a curved optical path. Mirror 59 = holding mechanism! Holding into a body. By doing so, the optical path between the two precision manufacturing constituent elements of the stationary phase convex mirror 60, from the optical quarter system, becomes stress or various environmental conditions (,, w w the outside The applied lens 58, the reflector, and the convex surface are different from each other, and the 'refraction optics' can be obtained to make the imaging device $ = the relationship is difficult to change...., That is, only the refraction is maintained by the holding mechanism; 2103-3823 -PF; AHDDUB.ptd page 56 496999 5. Description of the invention (54) The lens 58 and the convex mirror 60 are also available. As described in Example 7, instead of arranging the optical path bending mirror 59 between the refractive optical lens 58 and the convex mirror 60, it is provided between the first lens device and the second lens device constituting the fold lens 58. Light path reflector: The light path can be bent to reduce the thickness of the image display device. Fig. 44 is a diagram showing the structure of the image display device at this time. The same symbol is assigned to the same or equivalent structure as ^ 42. The first lens device of the light-transmitting and refracting optical lens 58 from the micro-mirror device not shown in the figure is reflected by the optical path bending mirror 59, and then the second lens of the transflective optical lens 58 travels toward the convex mirror 60. In this case, the distance g is the longest distance from the convex mirror installation surface to the refractive optical lens. In addition, in order to minimize the height of the lower part of the screen, which is the distance from the lower end of the screen 18 to the optical axis 61, the reflected light 75 to the convex mirror 60 at the lower end of the screen 8 should be set as close as possible. The low position of the optical axis 61 makes it more advantageous to keep the refractive optical lens 58 as far away from the convex mirror 60 as possible. In particular, when the highest portion R of the exit surface of the reflected light 75 from the self-refractive optical lens 58 passes through the low position, the optical path is blocked by the refractive optical lens 58. Therefore, the shortest distance a from the convex mirror installation surface to the refractive optical lens 58 is arranged as long as possible within a range where the distance g does not exceed the thickness. From the above conditions, in the case of FIG. 44, there is an optimal value of the distance f from the convex mirror installation surface to the projection of the refractive optical lens 58. The angle of bend of the optical path 0 is the same as in the case of using an optical path curved mirror between the lens and the convex mirror. From the viewpoint of thinning, the value should be made as small as possible. However, when the bending angle &lt; 9 is too small, the first lens device is blocked

2103-3823-PF : AHDDUB.ptd 第 57 頁 4969992103-3823-PF: AHDDUB.ptd page 57 496999

光路 圖44 彎曲反射鏡至第二透鏡裝詈A l ^ , 心兄衣直马止之光路。因此,得知 之情況也存在彎曲角度(9之最佳值。 外’在實施例7、1 0,替代杏攸料此 曰n九路彎曲反射鏡,使 路彎曲裝置使用稜鏡也可,可得到一樣之效果 施例1 在本貫施例11,說明藉著在構造上使自微反射鏡裝置 至反射鏡為止之間之折射光學透鏡之入射光側及射出光側 之透鏡直徑比透鏡中央部的小,構成滿足珀茲伐(Petzval )條件而且對彎曲條件有利之光學系之手法。 圖4 5係表示本發明之實施例11之影像顯示裝置之構造 圖’省略照明光源部、銀幕之圖示。在圖4 5,1 4係微反射 鏡裝置,76係折射光學透鏡(折射光學部),77係具有正的 ί白茲伐(Petzval)和貢獻成分之凸面鏡,78係折射光學透 鏡76及凸面鏡77共有之光軸,79係自微反射鏡裝置η向凸 面鏡7 7行進之光之邊部光線。 在折射光學透鏡7 6 ’ 8 0係配置於邊部光線7 9之高處之 具有正功率之正透鏡,81及82各自係正透鏡80之入射側透 鏡群及射出側透鏡群,來自微反射鏡裝置1 4之光依次透 射入射側透鏡群8 1、正透鏡8 〇、射出側透鏡群8 2後往凸面 鏡77。 如在實施例5所述,因凸面鏡7 7具有正之珀茲伐 (P e t z v a 1)和貢獻成分,投影光學系整體之珀茲伐 (P e t z v a 1)和易變成正值,發生像面彎曲。因此,若使構 成折射光學透鏡76之具有正功率之正透鏡80之功率儘量Light path Figure 44 Bend the reflector to the second lens unit A l ^, and the light path of the brother is straight. Therefore, it is known that there is also a bending angle (the optimal value of 9). In addition, in Embodiments 7 and 10, instead of Xing Youyi, this is a nine-way bending mirror, so that the road bending device can also be used. The same effect is obtained. Example 1 In the present Example 11, the diameter of the incident light side and the emitted light side of the refracting optical lens from the micromirror device to the reflecting mirror is explained to be greater than the center of the lens. The small part constitutes an optical system that satisfies the Petzval condition and is favorable for bending conditions. Fig. 4 and 5 are structural diagrams showing an image display device according to Example 11 of the present invention. As shown in Fig. 4, 5 and 14 series of micro-mirror devices, 76 series of refractive optical lenses (refractive optics), 77 series of convex mirrors with positive Petzval and contributing components, and 78 series of refractive optical lenses The optical axis shared by the 76 and the convex mirror 77, 79 is a side ray of light traveling from the micro-mirror device η to the convex mirror 7 7. The refracting optical lens 7 6 '8 0 is arranged at a high position of the side ray 79. Positive lens with positive power 81 and 82 are the incident-side lens group and the outgoing-side lens group of the positive lens 80, and the light from the micro-mirror device 14 passes through the incident-side lens group 81, the positive lens 80, and the outgoing-side lens group 8 2 in this order. Convex mirror 77. As described in Example 5, since the convex mirror 7 7 has a positive Petzva 1 and a contribution component, the Petzva 1 and the projection optical system as a whole easily become positive values, and an image is generated. The surface is curved. Therefore, if the power of the positive lens 80 with positive power constituting the refractive optical lens 76 is made as much as possible,

2103-3823-PF ; AHDDUB.ptd 第58頁 ^6999 五、發明說明(56) &quot; &quot; 】、’可抑制珀茲伐(P e t z v a 1 )和增加。 在將正透鏡80配置於邊部光線79之高處上係本實施例 之重點。即’考慮珀茲伐(petzval )條件,使正透鏡8〇 之功率儘量小時,隨著正透鏡80之透鏡作用之效果也變小 二但是在小功率之正透鏡8 〇之配置位置上,若使得選擇自 光軸看光擴散之邊部光線之高處,正透鏡80之入射面•射 2面之各微小面積和透射各微小面積之各光線之對應變得 容易。因此,可更細致的設計對於透射光之正透鏡80之入 射面·射出面之形狀,可使得小功率之正透鏡80之透鏡作 用充分有效。 , 於是,利用和在邊部光線71之低處配置負透鏡72而使 得可幾乎忽略透鏡作用效果之實施例9相反之構想,藉著 將具有正之小功率之正透鏡8 〇配置於邊部光線7 9之高處, 不會抽害正透鏡8 0之透鏡作用,可抑制轴兹伐(p e ^ v &amp; 1 ) 和增加。 使用圖45具體說明。在圖45,折射光學透鏡76中央部 之正透鏡8 0係本實施例11之具有正功率之正透鏡,設置於 邊部光線7 9之高處。藉著設置正透鏡80之入射側透^群、 81及射出側透鏡群82,採用在正透鏡80之邊部光線^辦古 之構造。 、、、文同 圖46係表示實施例11之數值實施例11A之圖。圖46之 諸元係卜一 0·74ππη(在波長546·1ηπι之焦距)、NA = 〇 微 反射鏡裝置側數值孔徑)、Y〇b= 1 4 · 2mm (微反射鏡裝置側'物 體高度)、Μ = 86· 3(投影倍率)。在圖46之非球面形&amp;狀之定2103-3823-PF; AHDDUB.ptd page 58 ^ 6999 V. Description of the invention (56) &quot; &quot; The important point of this embodiment is that the positive lens 80 is arranged at a high position of the side light 79. That is, considering the Petzval condition, make the power of the positive lens 80 as small as possible, and the effect of the lens function of the positive lens 80 also becomes smaller. However, in the position of the small power positive lens 80, if This makes it easy to select the heights of the light rays on the side of the light diffusion viewed from the optical axis, and the correspondence between the minute areas of the incident surface and the incident 2 surface of the positive lens 80 and the light rays transmitted through the minute areas. Therefore, the shape of the entrance surface and the exit surface of the positive lens 80 that transmits light can be designed in more detail, so that the lens function of the low power positive lens 80 can be sufficiently effective. Therefore, in contrast to the embodiment 9 in which the negative lens 72 is disposed at a lower position of the side light 71 so that the lens effect can be almost ignored, the positive lens 8 having a positive small power is disposed on the side light. At a height of 79, the lens effect of the positive lens 80 will not be jeopardized, and the axial zva (pe ^ v &amp; 1) and increase can be suppressed. This will be specifically described using FIG. 45. In FIG. 45, the positive lens 80 at the center of the refractive optical lens 76 is a positive lens with positive power in the eleventh embodiment, and is disposed at a high position of the light rays 79 on the side. By providing the incident-side transparent group 81, and the outgoing-side lens group 82 of the positive lens 80, a structure in which light rays are formed on the sides of the positive lens 80 is used. Fig. 46 is a diagram showing a numerical example 11A of the eleventh embodiment. The elementary systems of Fig. 46 are 0 · 74ππη (focal distance at a wavelength of 546 · 1ηπ), NA = 0 numerical aperture on the micromirror device side), and Yb = 1 4 · 2mm (the object height on the micromirror device side) ), M = 86 · 3 (projection magnification). Aspheric shape &amp; shape in Figure 46

496999 五、發明說明(57) 義和數值實施例6 A的一樣。 驗證本數值計算結果,若設射入折射光學透鏡76之光 之邊部光線79之高度為^、通過折射光學透鏡76中央部之 正透鏡80之光之邊部光線79之最大高度為hm、自折射光學 透鏡76射出之光之邊部光線79之高度為“,這些Μ、-、 ho 滿足1.05hi&lt;hm&lt;3hi 及 0.3hi&lt;h〇&lt;hi 之關係。即,因變 ·Μ,在滿足以上之 2 個不 等式之hi、hm、ho,h〇變成最小。 又,圖45所示之構造藉著使射出部分之透鏡直徑變 小,除了前面之拍兹伐(Petzval)條件以外,因如在實施 ,之說明所示在不遮住自光路弯曲裝置至反射部為止之 路,對於光路彎曲反射;:3,大之情況更接近光 透鏡80如在後述之數值實施例彳軌圍也有餘裕。此外,正 鏡構成也可。 值…⑽之圖53所示’用複數透 ml4:=以 功率之正透細,目為門抑之制邊光部:之高處配置具有正 增加而使正透鏡80之功率變,丨、予f,珀k伐^^以1)和 作用,可抑.制投影光學李 政利用正透鏡8 0之透鏡 成分,得到可構成減少像4::旦兹;= = 和貢獻 又,因使得射入折射光學之效果。 高度hi、通過折射光學透鏡7fif^76之光之邊部光線79之 部光線79之最大高度hm、自折尖2之正透鏡80之光之邊 折射先學透鏡76射出之光之邊496999 V. Description of the invention (57) The meaning is the same as that of the numerical example 6A. Verifying the numerical calculation results, if the height of the side light 79 of the light entering the refractive optical lens 76 is ^, and the maximum height of the side light 79 of the light passing through the positive lens 80 at the center of the refractive optical lens 76 is hm, The height of the side rays 79 of the light emitted from the self-refracting optical lens 76 is ", and these M,-, and ho satisfy the relationship of 1.05hi &lt; hm &lt; 3hi and 0.3hi &lt; h0 &lt; hi. When hi, hm, ho, and h0 satisfy the above two inequalities, the structure shown in FIG. 45 reduces the diameter of the lens at the exit portion, except for the Petzval condition described above. Because it is implemented, the description shows that the path from the optical path bending device to the reflection part is not covered, and the optical path is curved and reflected; 3, the larger case is closer to the optical lens 80 as shown in the numerical examples described later. There is also a margin. In addition, a positive mirror configuration is also possible. Values ... ⑽ shown in Figure 53 'use complex number ml4: = power through the thin through, the door is controlled by the edge of the light section: the height of the configuration has a positive increase And the power of the positive lens 80 is changed, 丨, I f, Per k ^^ 1) Function, can be suppressed. Projection optics Li Zheng uses the lens component of the positive lens 80 to obtain a composition that can reduce the image 4 :: dentz; = = and contribution, because it makes the effect of incident refracting optics. High hi, through refraction Optical lens 7fif ^ 76 The edge of the light 79 The maximum height hm of the light 79 The edge of the light from the positive lens 80 of the fold tip 2 refracts the edge of the light emitted by the prior lens 76

2103-3823-PF ; AHDDUB.ptd 第6〇頁 496999 五、發明說明(58) 部光線79之高度ho滿足l〇5hi&lt;hm&lt;3hi及(K3hi&lt;ho&lt;hi之關 係’可抑制投影光學系之正的珀茲伐(petzva 1 )和貢獻成 分’得到可構成減少像面彎曲之影像顯示裝置之效果。 又’右滿足1.05hi&lt;hm&lt;3hi及0.3hi&lt;ho&lt;hi之關係,可 使折射光學透鏡7 6之射出部分之透鏡直徑變小,得到可構 成在光路彎曲反射鏡之插入範圍具有餘裕之影像顯示裝置 之效果。 實施例1 2 在實施例4,將微反射鏡裝置14之有效顯示面挪移而 偏心配置於奇數次非球面之光軸44外,避開奇數次非球面 之中心部(光軸上之點)的令反射/透射,使得將投影光束 (光影像信號)導至銀幕1 8上。因不使用光軸中心附近,可 用奇數次非球面,因而,非球面凸面鏡之自由度提高,成 ,性能提高,但是在本實施例1 2,說明藉著採用將在周邊 口 P之光軸方向之成像位置相對於在光軸中心之光軸方向 之成像位置偏移之構造,令具有光學系之自由度, 性能提高之例子。 取1冢 ^圖47係表示一般之光學系之成像關係之圖。在圖47, 14係相&amp;對於光輛偏心配置之微反射鏡裝置,83係折射光學 透鏡(投影光學裝置),84係凸面鏡(投影光學裝置),85 = 包含光軸中心之成像位置且垂直於光軸之平面之成 ’,、 86A及86B係光輛外之成像面85上之成像位置。 、 在圖4 7之先學系,設計成以光軸中心之成像位置兔 準取垂直於光軸之平面,將其作為成像面85時,軸外:^2103-3823-PF; AHDDUB.ptd Page 60 496999 V. Description of the invention (58) The height ho of the light 79 satisfies the relationship of 105hi &lt; hm &lt; 3hi and (K3hi &lt; ho &hi; hi), which can suppress the projection optical system. The positive Petzva 1 and the contribution component 'get the effect of forming an image display device that can reduce the curvature of the image plane.' Also, the relationship of 1.05hi &lt; hm &lt; 3hi and 0.3hi &lt; ho &hi; The lens diameter of the exit portion of the refractive optical lens 76 is reduced to obtain an effect of forming an image display device having a margin in the insertion range of the optical path bending mirror. Example 1 2 In Example 4, the micromirror device 14 The effective display surface is shifted and eccentrically arranged outside the optical axis 44 of the odd-numbered aspheric surface, avoiding the reflection / transmission of the central portion (point on the optical axis) of the odd-numbered aspheric surface, so that the projection beam (light image signal) To the screen 18. Since the aspheric surface can be used an odd number of times since the vicinity of the center of the optical axis is not used, the degree of freedom of the aspheric convex mirror is improved, and the performance is improved. However, in this embodiment 12, it will be explained that the Light of mouth P The structure in which the imaging position in the axial direction is shifted from the imaging position in the optical axis direction at the center of the optical axis is an example of the degree of freedom of the optical system and the performance is improved. Take 1 mound ^ Figure 47 shows the imaging of the general optical system The relationship diagram. In Figure 47, the 14-series phase &amp; for the micro-mirror device with eccentric configuration, 83-series refractive optical lens (projection optics), 84-series convex mirror (projection optics), 85 = including the optical axis center The imaging position of the imaging position and perpendicular to the plane of the optical axis', 86A and 86B are imaging positions on the imaging surface 85 outside the optical vehicle. In the predecessor system of Figure 47, the imaging position is designed with the optical axis center When the rabbit takes a plane perpendicular to the optical axis and uses it as the imaging surface 85, the axis is outside the axis: ^

2103-3823-PF : AHDDUB.ptd 第61頁2103-3823-PF: AHDDUB.ptd Page 61

五、發明說明(59) 像位置86A及86B都位於成像面85上。可是,在 ^ ,難在相同平面内取得成像位置,成像位置之^角,學系 小,但是像面彎曲了。對於其對策,說明 ,量有大 、9、1 1等所示之表示滿足珀茲伐(Petzva 貫施例5 之條件並減少像面彎曲之手法。 1乘件之光學系 而,在本實施例12,因不使用光軸中心, 像位置和實際使用之軸外之成像位置不同也卩刀之^ 示像面f曲之光學系之例子,87係折射光學=I圖48表 面鏡,89係彎曲之像面,90A及90B係軸外之之^偟係凸 如圖48所示,著眼於容許如在 =位置。 像面f曲係本實施例12之重點。按照以下 離珀茲伐(PetZval)條件之透鏡,因狀構成脫 度就變寬。因而之制條件,設計之自* 侍知易付到更面之成像性能。 τ ’右依據本實施例1 2,阳蚀γ也▲丄山 成像位置避開光轴周邊之成像位置所2 光學透鏡87之設朴μ々ώ^ Μ所在之问一千面,折射 之成像性能之^ #上自由度曰加,得到可構成具有優異 之成像性此之衫像顯示裝置之效 實施例1 3 之手法以外,^ ,除了在貫施例5所示之減輕像面彎曲 遷說明可減輕像面彎曲之手法。 如在卜-述之^'4 邊部翹曲之形肖大值實施例所*,3 ^鎖;之形狀I變成周 中心部分之&amp;而i考眼於該凸面鏡之局部性曲率時,光軸 、兄之曲率係凸,翹曲部分之凸面鏡之曲率V. Description of the invention (59) The image positions 86A and 86B are both located on the imaging surface 85. However, in ^, it is difficult to obtain the imaging position in the same plane. The angle of the imaging position is small, but the image plane is curved. For the countermeasures, it is explained that a large amount, 9, 11 and so on indicate that the method of Petzva (Petzva implements the conditions of Example 5 and reduces the curvature of the image plane. 1) The optical system of the multiplier is implemented in this implementation. Example 12, because the center of the optical axis is not used, the image position is different from the actual imaging position outside the axis. It is also an example of the optical system of the image plane f-curve, 87 series refracting optics = I Figure 48 surface mirror, 89 The curved image plane, 90A and 90B are ^ 轴 convex outside the axis as shown in Figure 48, focusing on the allowable = position. The image plane f-curve is the focus of this embodiment 12. According to the following from Petzval (PetZval) conditions of the lens, depending on the composition of the widening of the degree of dislocation. Therefore, the manufacturing conditions, the design of the self-help * easy to pay more imaging performance. Τ 'right according to this embodiment 12, eclipse γ also ▲ The imaging position of Laoshan avoids the imaging position around the optical axis. 2 The design of the optical lens 87 μ 々 ^ ^ The location of the image is 1,000, and the imaging performance of refraction is ^ #The degree of freedom is increased, and it can be composed to have Excellent imaging properties This shirt is like the effect of the display device in Example 13 except that The method of reducing image surface bending shown in Example 5 can reduce the image surface bending. As described in ^ '4, the shape of the edge warp is large, and the shape I becomes When the &amp; i test of the central part of the circle is on the local curvature of the convex mirror, the curvature of the optical axis and the brother is convex, and the curvature of the convex mirror of the warped part

496999 五、發明說明(60) 也變成凹。因在 反射鏡光聚光, 光學部之射出光 散光。 考慮在光軸 聚光時,可容易 困難。換言之, 生大的像面彎曲 制像面彎曲上有 折射光學透鏡之 部之翹曲的,其 圖4 9係表示 圖。在圖49,91 部翹曲之凸面鏡 折射光學透鏡91 近之射出光,9 6 相對於光軸附近 9 1相對於周邊部 出之情況之周邊 自折射光學 近之射出光9 5和 9 7射出的。在此 鏡93之關係得知 償了扭曲像差之 凸之曲率之 為成像於銀 在光軸中心 中心產生會 推測設計合 在使用一般 。因而,抑 大的效果。 射出瞳具有 理由如下所 本發明之實 係折射光學 ’ 9 3係改善 和凸面鏡9 2 係周邊部之 之射出光9 5 之射出光9 6 部之射出光 透鏡9 1射出 周邊部之射 ,由圖4 9之 ,射出光9 6 狀態只要射 反射鏡光發散,在凹之 幕上,射入凸面鏡之來 需要會聚光,在周邊部 聚光之透鏡在周邊部也 乎此條件之折射光學透 之折射光學透鏡之情況 制凸面鏡之周邊部之翹 在本實施例1 3,係表示 瞳像差,可抑制該凸面 示〇 施例1 3之影像顯示裝置 透鏡(折射光學部),g 2 了周邊部魅曲之凸面鏡 、9 3共有之光軸,9 5係 射出光,9 7係折射光學 之射出瞳,9 8係折射光 之射出瞳’ 9 9係自射出 〇 之光如圖49之通過了光 出光99般,一般都是自 射出光96、凸面鏡92以 被凸面鏡9 2反射後,要 出瞳在9 7之位置即可, 曲率之 自折射 需要發 產生會 鏡係很 ’就發 曲在抑 藉著令 鏡周邊 之構造 係周邊 ,9 4係 光軸附 透鏡91 學透鏡 瞳9 7射 軸94附 射出瞳 及凸面 變成補 但是要496999 Fifth, the description of the invention (60) also becomes concave. Because the light is collected in the mirror, the light emitted by the optical part is scattered. When focusing on the optical axis, it can be easy and difficult. In other words, a large image plane curvature has a warping of a portion of the refractive optical lens on the image plane curvature. FIG. In FIG. 49, 91 warped convex mirrors refract the light emitted from the optical lens 91, 9 6 relative to the vicinity of the optical axis 9 1 relative to the peripheral self-refracting optics, and 9 5 and 9 7 are emitted. of. The relationship between the mirror 93 here shows that the convex curvature that compensates for the distortion aberration is imaged on the silver center at the center of the optical axis. It is speculated that the design is in general use. Therefore, the effect is suppressed. The exit pupil has the following reasons: the actual system of the present invention is refracting optics; 9 3 is an improvement and a convex mirror 9 2 is an exiting light at the peripheral portion 9 5 is an exiting light 9 6 is an exiting light lens 9 1 is an exiting peripheral portion. As shown in Figure 4-9, the emitted light 9 6 only needs to diverge the light from the reflecting mirror. On the concave curtain, the light entering the convex mirror needs to converge, and the lens condensing at the peripheral part is also refracting at the peripheral part. In the case of the refractive optical lens, the warping of the peripheral portion of the convex lens in this example 13 indicates pupil aberration, and the convex surface can be suppressed. The lens (refractive optical portion) of the image display device of Example 13 is g 2 The convex mirror of the peripheral charm, the common optical axis of 9 3, 9 5 series of outgoing light, 9 7 series of refracting optics exit pupil, 9 8 series of refracting optics exit pupil '9 9 series of self-emission 0 light as shown in Figure 49 After passing the light exit 99, the self-emission light 96 and the convex mirror 92 are reflected by the convex mirror 92, and the exit pupil can be at the position of 97. The self-refraction of curvature needs to be generated. Qu Zaiyi by making the structure around the mirror Department periphery 94 of the lens 91 is attached to the optical axis based optical lens exit pupil 97 attached to shaft 94 into a convex surface and the exit pupil to fill it

2103-3823-PF ; AHDDUB.ptd 第63頁 496999 五、發明說明(61) ' 變成如凸面鏡93般滿足無翹曲之形狀而且射出光96被凸面 鏡9 3反射後補償了扭曲像差之狀態,只要如射出瞳9 8般將 光軸9 4中心附近之射出瞳9 7和周邊部之射出光之射出曈μ 如圖4 9所示故意錯開即可。 如以上所示,藉著調整往凸面鏡9 3之光之入射位置和 入射角,可如凸面鏡9 3般抑制在端部之翹曲,得到可抑制 像面彎曲之效果。此外,此特徵係在上述全部之數值實 例認識之特徵。 實施例1 4 在本實施例14,說明在投影光學部容許光軸中心附近 之扭曲像差而令提高成像性能之手法。2103-3823-PF; AHDDUB.ptd page 63 496999 V. Description of the invention (61) 'It becomes a shape that satisfies no warpage like a convex mirror 93 and the emitted light 96 is reflected by the convex mirror 9 3 to compensate for the distortion aberration, Just as the exit pupil 98, the exit pupil 9 7 near the center of the optical axis 9 4 and the exit light from the peripheral part 部 μ are intentionally staggered as shown in FIG. 4 9. As described above, by adjusting the incident position and the incident angle of the light to the convex mirror 93, it is possible to suppress the warpage at the end like the convex mirror 93, and the effect of suppressing the curvature of the image is obtained. In addition, this feature is a feature recognized in all the numerical examples described above. Example 14 In this Example 14, a method for improving the imaging performance by allowing distortion aberration near the center of the optical axis of the projection optical section will be described.

圖5 〇係表示本發明之實施例1 4之影像顯示裝置之構造 圖二=圖5〇,100係銀幕,1〇1係圖上未示之投影光學系和 =幕ίο有之光軸,102係表示以光軸ι〇ι為中心之圓只 在銀幕100之底邊相交之最大之範圍。 曲像差時發生在銀幕周邊::、t性能。可疋’發生扭 少這些不良.,需大或過小之不良。A 了4盡量減Fig. 5 is a diagram showing the structure of an image display device according to Embodiment 14 of the present invention. Fig. 2 = Fig. 50, 100 is a screen, and 100 is a projection optical system and a light axis not shown in the figure. 102 indicates the largest range where the circle centered on the optical axis ιm only intersects at the bottom edge of the screen 100. Aberrations occur around the screen::, t performance. It is possible to reduce these defects. Large or small defects are required. A reduced by 4 as much as possible

為中心晝圓之情况 之广圍102所示’在以光軸101 他邊不交叉之範圍為,者至和銀幕100之底邊交叉而和其 之絕對值,在比該圓’增大投影光學部發生之扭曲像差 卜側之區域將扭曲像差之絕對值抑制In the case of the central circle of the day, as shown in the wide circumference 102, the range where the other side does not intersect with the optical axis 101 is that the absolute value of the intersection with the bottom edge of the screen 100 is larger than the circle. The area of the distortion aberration occurring on the optical side suppresses the absolute value of the distortion aberration

五、發明說明(62) 為小,可將扭曲像差之影經σ 他3邊可形成正確矩形 θ八、疋於銀幕1〇〇之底邊,其 ▲ V %狀之影像。 又,以變形相對於與 發生之扭曲像差。即,扭 距離之比例定義在光學系 離愈近實際之變形量也2曲像差之值係相同,與光軸之距 之變形感對於晝面内部^二 又,由視覺上之觀點,影像 之最外周部變形而本來係^像難判別,可容易的判別畫面 依據本發明,在接近光轴線之晝面邊界部變成曲線。若 性,但是因自光軸至這一 $ 邊發生扭曲’失去該邊之線 之相對性變形量小,得 ,止之距離短,相對於其他邊 ,若在該邊上有光軸,在,部難變成曲線之效果。此外 本特徵在組合顯示器而:不失去線性。 效。圖51係表示以多台構造夕。構造使用之情況特別有 圖。在圖51,l〇〇A~1(f〇F ^用之情況之影像顯示裝置之 裝置之圖上未示之投影光學’ 1〇1A〜1〇1F係各影像顯示 軸’祕蕭係表示以光 銀幕100A〜100F之底邊相交之田1 A〜1〇1F為中心之圓只在 如圖51所示,在縱向禮;:大之範圍。 示器之情況也若抑制底邊以面、在橫向構成多面多顯 之連接部分之圖之重:邊=部分之扭曲像差,在晝面 以…&quot;2 間隙等幾乎不發生。 值叶瞀姓果声^盘依據數值計算推導之結果。將具體之數 值计、、、口果表不為數值實施例1 4 A。 之數 〈數值實施例14A &gt; ° 圖52、53係各自表示數值實施例i4A之數值資料、構V. Description of the invention (62) is small, and the distortion of the distortion aberration can be formed into a correct rectangle by 3 sides. Θ8, the bottom edge of the screen 100, its ▲ V% shape image. Also, the distortion occurs with respect to the distortion aberrations caused by and. That is, the ratio of the twist distance is defined as the actual amount of distortion of the optical system is closer. The value of the aberration is the same. The distortion of the distance from the optical axis is the same for the interior of the day surface. From a visual point of view, the image The outermost peripheral part is deformed and the original image is difficult to distinguish. According to the present invention, the screen can be easily discerned, and the curve becomes a curve at the boundary portion of the day plane near the optical axis. If it is, but because the distortion from the optical axis to this $ edge occurs, the relative deformation of the line that loses the edge is small, so the distance between them is short. Compared with other edges, if there is an optical axis on the edge, the The effect is difficult to turn into a curve. In addition, this feature is combined in the display without losing linearity. effect. FIG. 51 shows a structure with a plurality of units. The construction is particularly illustrated. In Fig. 51, the projection optics "100A ~ 101F are each image display axis", which is not shown in the diagram of the device of the image display device in the case of 100A ~ 1 (f0F ^), is shown in the secret system. The circle centered on the field 1A ~ 10F where the bottom edges of the light screen 100A ~ 100F intersect is only as shown in Figure 51, in the vertical ceremony ;: a large range. In the case of the indicator, if the bottom edge is restricted to the surface 2. The weight of the figure that forms the connecting parts with multiple faces and multiple displays in the horizontal direction: the edge = part of the distortion aberration, which rarely occurs in the daytime with ... &2; Results. Specific numerical meters, and fruits are shown as Numerical Example 1 4 A. Numbers <Numerical Example 14A &gt; ° Figs. 52 and 53 are numerical data and structure of numerical example i4A, respectively.

2103-3823-PF 496999 五、發明說明(63) 造之圖。圖52之諸元係f = 3.31mm(在波長546·1ηιη之焦距) 、ΝΑ = 0· 17(微反射鏡裝置側數值孔徑)、Y〇b=14. 65mm (微反射鏡裝置側物體高度)、Μ = 8 6 · 9 6 (投影倍率)。 本數值實施例1 4Α之扭曲像差之數值計算結果如圖54 所不。為和容許扭曲像差之設計之對比,在圖5 5表示數值 實施例4Α之扭曲像差。由圖55得知,數值實施例4Α之扭曲 像差大致係〇· 1%以下,而圖54所示之數值實施例之扭 ! = ϋ示和光軸之距離之像高小之範圍容許最大約2 % 曲像ΐ ΐ菩ί ΐ t扭曲像差之設計結果之光學系發生之扭 1象差f者々在光路彎曲等使用之 。即,為了補償該扭曲像差,芒A 3客“二 補仏 17之光後往銀幕18之光將反射來自投影光學系 補償影像顯示裝置整i ^ :之平面鏡22之形狀變形,可 實施例15 川體之扭曲像差。 在本貫施例1 5,對Λ 可提高對於溫度變化之==種广夫。利用一種卫夫 影像顯示襄置之組立二,利用一種工夫可使得在 圖56係表示本發=王:對準調整變得容易。 圖。圖5 6 (a.)係影像顯—貝施例1 5之影像顯示裝置之構造 或銀幕等之圖示。又,不哀置之側視圖,省略照明光源系 圖、正視圖。在圖56,圖56(b)、(c)各自係凸面鏡之上視 ,在包含光軸之水而在凸面鏡具有之光軸之方向取z軸 軸正交般取y軸。 如和Z軸正交般取X軸,如和X軸及z2103-3823-PF 496999 V. Description of Invention (63) Drawings. The element systems of Fig. 52 f = 3.31mm (focal length at a wavelength of 546 · 1ηιη), NA = 0 · 17 (numerical aperture on the side of the micromirror device), Yob = 14.65mm (height of the object on the side of the micromirror device) ), M = 8 6 · 9 6 (projection magnification). The numerical calculation results of the distortion aberration of 4A in the numerical example 1 are shown in Fig. 54. For comparison with the design of allowable distortion aberration, the distortion aberration of the numerical example 4A is shown in Figs. It can be seen from FIG. 55 that the distortion aberration of the numerical example 4A is approximately 0.1% or less, and the distortion of the numerical example shown in FIG. 54! = The range of the image height between the distance and the optical axis is the most approximate 2% curved image ΐ ΐ ί ί ΐ t Twist aberration design result of the optical system Twist 1 aberration f is used when the optical path is curved and so on. That is, in order to compensate for the distortion aberration, the light of the second lens "17" and the light on the screen 18 will be reflected from the projection optical system to compensate for the distortion of the shape of the flat mirror 22, which can be implemented as an example. 15 Distortion aberration of the Sichuan body. In the present Example 1, 5 can improve the temperature change = = Zhong Guangfu. Using a Weifu image to show the second group of Xiang Zhi, using a kind of time can make the This means that the hair = King: alignment adjustment becomes easy. Figure. Figure 6 (a.) Is an image display-the illustration of the structure of the image display device or the screen of Example 15 of Besch. In the side view, omitting the illumination light source diagram and front view. Viewing on top of each of the convex mirrors in Figs. 56 and 56 (b) and (c), take z in the direction of the optical axis that contains water in the optical axis and in the convex lens. The axis is orthogonal to the y axis. The axis is orthogonal to the Z axis, such as the X axis and z.

第66頁 496999Page 66 496999

在圖56,14係微反射鏡裝置,1〇3A、1〇3B各自係在各 $施例所示之折射光學透鏡(折射光學部),1〇4係賦與本 貫施例1 5特徵之凸面鏡(反射部),丨〇5係折射光學透鏡 1〇3A、1〇3B或凸面鏡1〇4共有之光軸。&amp;面鏡ι〇4自以光軸 1 0 5為中〜之旋轉對稱形之凸面鏡丨〇 4切掉非反射部分1 〇 4 c 而構成凸面鏡104(圖56(b)、(c),參照實施例1〇)。 在凸面鏡104,l〇4F係將來自折射光學透鏡1〇3八、 103B之光反射之作為凸面鏡丨〇4之反射面之前面,丨 设置於前面1 04F之背側之凸面鏡丨〇 4之後面。 、 在本發明,因為了補償扭曲像差而利用細致的光路 縱設計前面104F之非球面形狀,因使用環境之溫度變化而 f凸面鏡1 04之各部位之收縮或膨脹之程度發生差異時, 前面1 04F之形狀微秒的變化影響扭曲像差之補償。在誃⑽ 度變化之對策上,使得自前面1()4F至後面1()41?為止之厚= 變成均勻係對凸面鏡1 〇 4所下之第一種工夫。 &amp; 圖57係用以說明對於溫度變化之凸面鏡在厚度方 形狀變化之圖。圖57(a)表示收縮之凸面鏡1〇4,圖5?(之 表不膨脹之凸面鏡104。對於和圖56相同或相當之構 與相同之符號。 ^ 因利用線膨脹率一樣之材質製造凸面鏡丨〇4,藉 自前面1〇4F自後面1041?為止之厚度均勻,凸面鏡1〇4 = 溫度變化之厚度變化在各部位全部相等。因此,利用、 追蹤設計表面形狀後所製造之前面1〇4F(虛線)、後面1〇 (虛線)之各部位對於光軸1〇5平行的收縮、膨脹,變成前In FIG. 56 and the 14-series micromirror device, 103A and 103B are respectively attached to the refractive optical lens (refracting optical section) shown in each embodiment, and the 104 series is provided with features of this embodiment 15 The convex lens (reflection part) is the optical axis shared by the refractive optical lens 103A, 103B or convex lens 104. &amp; Face mirror ι04 Since a convex mirror with a rotational symmetry centered on the optical axis 105 is cut off, the non-reflective portion 1 〇4 c is cut out to form a convex mirror 104 (Fig. 56 (b), (c), (See Example 10). The convex mirror 104 and 104F reflect the light from the refracting optical lenses 108 and 103B as the front surface of the convex mirror. The front surface of the convex mirror is provided on the back side of the front lens. . In the present invention, because the distortion aberration is compensated, the aspheric shape of the front surface 104F is designed with a detailed optical path longitudinally. When the temperature of the use environment changes, the degree of shrinkage or expansion of each part of the f convex mirror 104 is different. The microsecond change of the 04F shape affects the compensation of distortion aberrations. With regard to the countermeasures for the change in the angle, the thickness from the front 1 () 4F to the rear 1 () 41? = Becomes the first time that the uniform mirror 104 is placed. &amp; Fig. 57 is a diagram for explaining the change in the thickness shape of the convex mirror with respect to the temperature change. Fig. 57 (a) shows the contracted convex mirror 104, and Fig. 5? (The inflated convex mirror 104. For the same or equivalent structure and the same symbol as in Fig. 56. ^ The convex mirror is made of the same material with the same linear expansion coefficient.丨 〇4, the thickness from the front 104F to the rear 1041? Is uniform, and the convex mirror 104 is equal to the temperature change in all parts. Therefore, the front surface 1 manufactured after the shape of the design is used and tracked The 4F (dotted line) and the rear 10 (dotted line) parts shrink and expand parallel to the optical axis 105 and become front

11 2103-3823-PF ; AHDDUB.ptd 第67頁11 2103-3823-PF; AHDDUB.ptd page 67

496999496999

面104F’(實線)、後面i〇4R,(實線)。因凸面鏡1〇4之厚度 在各部位相等,前面104F,保持前面i〇4F之形狀,可抑制 前面1 04F對於環境溫度變化之形狀變化。 對凸面鏡104所下之另一種工夫係在前面i〇4F之光軸 105附近形成了低反射面104L及高反射面l〇4H(圖56)。低 反射面104L之反射率設為遠低於高反射面1〇4}1之反射率。 在將微反射鏡裝置1 4相對於光軸1 〇 5偏心配置之本發 明之影像顯示裝置之凸面鏡1〇4,因不將前面i〇4F之光軸 105附近(非投影之前面)用於銀幕或對於平面鏡之光之反 射’在該前面104F之光軸105附近設置低反射面104L、高 反射面1 0 4 Η。 前面104F之光軸105附近,例如在包含光軸1〇5並和X 軸正交之圖56(a)之剖面圖,相當於在通過折射光學透鏡 103Β〜104間之最接近光軸1〇5之光線106之比在前面104F之 反射點1 0 6 Ρ低之部分。 低反射面1 0 4 L、高反射面1 0 4 Η不是非球面形狀,都在 和以光軸1 0 5為心之圓形(半圓)形狀之光軸1 〇 5正交之小平 面上形成。設自前面1 0 4 F和光軸1 0 5之交點至反射點1 〇 6 ρ 為止之距離為R時,以將比R小之值rL、rH各自作為低反射 面104L、局反射面104H之半徑’並以光轴1〇5為中心之同 心圓(半圓)分別形成低反射面1 0 4 L、高反射面1 〇 4 Η。因設 成rL〉rH ’南反射面104Η位於低反射面104L之内部,高反 射面104H比低反射面104L接近光軸105。 藉著使得在凸面鏡104設置低反射面l〇4L、高反射面Surface 104F '(solid line), rear surface 104 (, solid line). Because the thickness of the convex mirror 104 is equal in all parts, the front surface 104F and the shape of the front surface 104F can keep the shape change of the front surface 104F from environmental temperature changes. Another method for the convex mirror 104 is to form a low-reflection surface 104L and a high-reflection surface 104H near the optical axis 105 of the front 104F (Fig. 56). The reflectance of the low-reflection surface 104L is set to be much lower than that of the high-reflection surface 104 * 1. The convex mirror 104 of the image display device of the present invention in which the micromirror device 14 is eccentrically arranged with respect to the optical axis 105 is not used near the optical axis 105 of the front i04F (not the front surface of the projection). The screen or the reflection of light from a flat mirror 'is provided with a low-reflection surface 104L and a high-reflection surface 10 4 Η near the optical axis 105 of the front surface 104F. Near the optical axis 105 of the front 104F, for example, in the cross-sectional view of FIG. 56 (a) including the optical axis 105 and orthogonal to the X axis, it corresponds to the closest optical axis 1 passing through the refractive optical lenses 103B to 104. The ray 106 of 5 is lower than the reflection point 10 6 P of the front 104F. The low-reflection surface 1 0 4 L and the high-reflection surface 1 0 4 Η are not aspheric shapes, but are on a small plane orthogonal to the optical axis 1 〇5 of a circular (semi-circular) shape centered on the optical axis 105. form. When the distance from the intersection of the front 1 0 4 F and the optical axis 1 0 5 to the reflection point 1 〇 6 ρ is R, the values rL and rH smaller than R are taken as the low reflection surface 104L and the local reflection surface 104H. Concentric circles (semicircles) of radius' and centered on the optical axis 105 respectively form a low reflection surface 104 L and a high reflection surface 104 mm. Since it is set that rL> rH ', the south reflecting surface 104' is located inside the low reflecting surface 104L, the high reflecting surface 104H is closer to the optical axis 105 than the low reflecting surface 104L. The low-reflection surface 104L and the high-reflection surface are provided in the convex mirror 104

2103-3823-PF ; AHDDUB.ptd 第68頁 4969992103-3823-PF; AHDDUB.ptd page 68 496999

可使得在影像顯示裝 置之組立製程之對準調整變得 104H, 容易。 和 圖58係表示使用凸面鏡1〇4之對準調整方法之圖 圖5 6相同之付號表不構造相同。 在圖58 ’1G7係輸出直㈣進性高之雷 光)…,m係只使來自雷射1〇7之雷射光單 過進 而自回來之雷射光保護雷射1〇7夕隐雜抑 1λλ -1HQ ^ ^ ^ 耵1(^之^離裔,1〇9係設於隔離 益108和凸面鏡104之間之半反射鏡,u〇係檢測來自半反 射鏡109之雷射光之功率之檢測器。又,被賦與符號⑴、 112之箭號各自係對準調整時之去路、回路之雷射光,被 賦與符號11 3之2點虛線係由雷射光丨丨J、112所產生之假相 光軸。 心 首先,依據圖5 8 (a)之構造設定對於凸面鏡丨〇 4之假相 光軸113。和水平面平行的自雷射1〇7射出之雷射光通過g 離器108、半反射鏡109後往凸面鏡丨04。此時,用機械手 等微調關於X軸方向之平行調整Μχ、繞x軸之旋轉調整Rx、 y軸方向之平行調整My、繞y軸之旋轉調整Ry之凸面鏡1〇4 之姿勢,使得高反射面104H向半反射鏡丨09反射雷射光m 後經由半反射鏡1 0 9用檢測器1 1 0檢測之雷射光丨j 2之功率 變成最大。 檢測到最大功率之狀態係凸面鏡1 〇 4變最希望之姿勢 時,即係自半反射鏡109往凸面鏡1 04之去路之雷射光丨J i 和自凸面鏡104往半反射鏡109之回路之雷射光112完全一 致之情況’令具有高反射率之平面鏡之高反射面l〇4H和雷It can make the alignment adjustment of the assembly process in the image display device 104H, which is easy. Fig. 58 and Fig. 58 are diagrams showing the alignment adjustment method using the convex mirror 104. Fig. 56 is the same as the number table, and the structure is not the same. In Fig. 58, the 1G7 series outputs high-permeability laser light) ..., the m series only passes the laser light from the laser 107, and then the laser light from the back protects the laser 107, and it is suppressed 1λλ- 1HQ ^ ^ ^ 耵 1 (^ 之 ^ origin, 109 is a half mirror located between the isolation mirror 108 and the convex mirror 104, and u0 is a detector that detects the power of the laser light from the half mirror 109. In addition, the arrows assigned to the symbols 系 and 112 are the laser light of the way out and the circuit when the alignment is adjusted, and the two dotted lines assigned to the symbol 11 3 are false phase lights generated by the laser light 丨 丨 J, 112. First, according to the structure of Fig. 5 8 (a), the false phase optical axis 113 for the convex mirror is set. The laser light emitted from the laser parallel to the horizontal plane 107 passes through the g-ionizer 108 and the half mirror 109. Back to the convex mirror 丨 04. At this time, use a robot to fine-tune the parallel adjustment of the X-axis direction Μχ, the rotation around the x-axis adjustment Rx, the parallel adjustment of the y-axis direction My, the rotation adjustment of the y-axis convex mirror 1〇 Position 4 so that the highly reflective surface 104H reflects the laser light m to the half mirror 丨 09 and then passes through the half mirror 1 0 9 for the detector 1 1 0 The detected laser light 丨 j 2 becomes the maximum power. The state where the maximum power is detected is the convex mirror 1 〇 4 becomes the most desirable posture, that is, the laser light from the half mirror 109 to the convex mirror 1 04. J The case where the laser light 112 in the loop from the convex mirror 104 to the half-mirror 109 is completely the same, so that the highly reflective surface 104H

2103-3823-PF » AHDDUB.ptd2103-3823-PF »AHDDUB.ptd

496999 五、發明說明(67) 射光1 1 1正交時,因雷射光之直線前進性高,雷射光1丨1、 1 1 2完全一致而可產生假想光軸1 1 3。 在凸面鏡1〇4之姿勢大為偏移之情況,因凸面鏡1〇4反 射之雷射光1 1 2經由半反射鏡1 09未射入檢測器1 1 〇,檢測 器1 1 0未檢測到功率。又,凸面鏡1 〇 4之姿勢接近希望之狀 態,有光軸偏差時平面鏡之低反射面1 〇 4 L也向半反射鏡 109反射雷射光111。因低反射面l〇4L之反射率低,經由半 反射鏡1 09檢測器11 〇所檢測之雷射光11 2之功率係低位準 ,可檢測光軸偏差。由此方法考慮時,得知只要自光軸偏 差之容許範圍決定高反射面104H之半徑Rh之值即可。 又,利用4個感光元件1 l〇A、1 10B、1 10C、1 10D將檢 測器11 0之感光面分割成「田字形」(2列2行之矩陣,圖 58(c))後,藉著進行各感光元件11 〇A〜11 0D之輸出信號之 差值計算’可高精度檢測調整凸面鏡1 〇4之傾斜Rx、Ry。 此外,藉著4分割之感光元件1 10A〜1 10D之輸出之加法 運算,也可求射入感光元件之總光功率,也可檢測光軸偏 差Mx、My。因而,藉著採用此構造,可進行Μχ、My、Rx、 Ry之綜合調整。 於是’藉著邊監視檢測器11 〇所檢測之雷射光邊微調 凸面鏡104之姿勢,可產生依據雷射光m、112之假想光 軸113。 其次’依據圖58(b)之構造進行折射光學透鏡1〇3Α、 1 0 3 Β之對準調整。對於產生圖5 8 (a )之假想光軸1 1 3之構 造,插入折射光學透鏡103A、l〇3B。在此情況,也當折射496999 V. Description of the invention (67) When the laser light 1 1 1 is orthogonal, because the laser light has a high linear advancement, the laser light 1 丨 1, 1 1 2 are completely consistent, and an imaginary optical axis 1 1 3 can be generated. In the case where the posture of the convex mirror 104 is greatly deviated, the laser light 1 12 reflected by the convex mirror 104 does not enter the detector 1 1 〇 and the detector 1 1 0 does not detect power through the half mirror 1 09 . In addition, the convex mirror 104 has a near-desired posture, and the low-reflection surface 104 L of the flat mirror also reflects the laser light 111 toward the half mirror 109 when the optical axis is deviated. Due to the low reflectance of the low reflection surface 104L, the power of the laser light 112 detected by the half mirror 10 09 detector 11 〇 is at a low level, and the optical axis deviation can be detected. When considering this method, it is known that the value of the radius Rh of the high reflection surface 104H may be determined as long as the allowable range of the deviation from the optical axis is determined. In addition, after the four photosensitive elements 110A, 110B, 110C, and 10D were used to divide the photosensitive surface of the detector 110 into a "field shape" (a matrix of two columns and two rows, FIG. 58 (c)), By calculating the difference between the output signals of the photoreceptors 110A to 110D, it is possible to detect and adjust the inclination Rx and Ry of the convex mirror 104 with high accuracy. In addition, by adding the output of the four divided photosensitive elements 110A to 110D, the total optical power incident on the photosensitive elements can also be obtained, and the optical axis deviations Mx and My can also be detected. Therefore, by adopting this structure, comprehensive adjustment of Mx, My, Rx, and Ry can be performed. Then, by finely adjusting the posture of the convex mirror 104 by monitoring the laser light detected by the detector 110, an imaginary optical axis 113 based on the laser light m, 112 can be generated. Secondly, the alignment adjustment of the refractive optical lenses 103A and 103B is performed according to the structure of FIG. 58 (b). Refraction optical lenses 103A and 103B are inserted into the structure that produces the imaginary optical axis 1 1 3 of Fig. 5 (a). In this case, also when refraction

2103-3823-PF ; AHDDUB.ptd 496999 五、發明說明(68) 光學透鏡103A、103B之姿勢變成希望之狀態時,雷射光 111、112就通過折射光學透鏡103Α、103Β&lt;中心。 即’雷射光111、112正交的通過折射光學透鏡、 103B之中心時,因不發生折射光學透鏡1〇3Α、1〇3β對雷射 光1 1 2之透鏡作用’在檢測器1 1 〇得到最大功率。該希望之 狀態相當於折射光學透鏡1〇3A、103B之光軸和假想光轴 1 1 3 —致之情況。 〜 如以上所示,若依據本實施例15,因使得包括自前面 10 4F至後面104R為止等厚之凸面鏡1〇4,可抑制相對於溫 度變化之前面104F之形狀變化,得到可提高影像顯示裝&quot;置 之環境特性。 ~ 又,若依據本實施例1 5,因使得凸面鏡丨〇 4包括設於 前面104F之光軸105附近之低反射面i〇4L和比低反射$、 1 〇 4 L更接近前面1 〇 4 F之光軸1 0 5之具有光軸偏差之容許範 圍之大小之高反射面1 04H,可利用檢測器之功率監視器及 運算處理產生假想光軸1 1 3,得到在影像顯示裝置之組立 製程可容易的進行折射光學透鏡l〇3A、1〇3Β之對準調整之 效果。 &quot;正 實施例1 6 装置之構造 圖 圖5 9係表示本發明之實施例1 6之影像顯示 。省略照明光源系、平面鏡或銀幕等之圖示 在圖59 ’ 14係微反射鏡裝置(傳送裝置),U4係保護 微反射鏡裝置1 4之反射面之玻璃罩(傳送裝置),1 1 5係補 償玻璃罩1 1 4之光學上之厚度之變動之補償玻螭(傳送裝2103-3823-PF; AHDDUB.ptd 496999 V. Description of the invention (68) When the postures of the optical lenses 103A and 103B become desired, the laser light 111 and 112 pass through the refractive optical lenses 103A and 103B &lt; That is, when the laser light 111 and 112 pass through the centers of the refracting optical lenses 103 and 103B orthogonally, since the lens effects of the refracting optical lenses 103A and 103β on the laser light 1 12 are not generated, it is obtained at the detector 1 1 〇 Maximum power. This desired state corresponds to the case where the optical axes of the refractive optical lenses 103A, 103B and the virtual optical axis 1 1 3 are the same. ~ As shown above, according to this embodiment 15, if the convex mirror 104 having the same thickness from the front 104F to the rear 104R is included, the shape change of the front surface 104F with respect to the temperature change can be suppressed, and the image display can be improved. Install the environment characteristics. ~ Also, if according to this embodiment 15, the convex mirror 丨 〇4 includes a low-reflection surface i04L located near the optical axis 105 of the front 104F and closer to the front 104 than the low-reflection $ 1, 104L. The optical axis 1 of F has a high reflection surface 1 04H with a tolerance range of optical axis deviation, and a virtual optical axis 1 1 3 can be generated by using the power monitor of the detector and calculation processing to obtain an assembly in the image display device. The process can easily perform the alignment adjustment effect of the refractive optical lenses 103A and 103B. &quot; Positive Embodiment 16 Structure of the device Fig. 5-9 shows an image display of Embodiment 16 of the present invention. The illustration of the illumination source system, flat mirror, or screen is omitted in Fig. 59'14. Micro-mirror device (transport device), U4 is a glass cover (transport device) that protects the reflective surface of the micro-mirror device 14, 1 1 5 It is a compensation glass that compensates for the change in optical thickness of the glass cover 1 1 4 (transport equipment

496999496999

之折射光學透鏡(折射 射光學透鏡7 6、凸面 置)’ 7 6及7 7各自係在各實施例所示 光學部)及凸面鏡(反射部),7 8係折 鏡7 7之光轴。 , 在微反射鏡裝置1 4組裝由複數小反射鏡構成之用以保 護反射面之玻璃罩114。來自由發光冑、拋物面反射鏡以 及聚光透鏡等構成之圖±未示《照明《源系m呈由玻璃 罩114射入反射面。又,被反射面調變強度後之光通過玻 璃罩114後往折射光學透鏡76、凸面鏡77。 —而,,璃罩114之厚度未限定為總是固定之基準值, 在=卉之最大尺寸厚度和最小尺寸厚度之差之所謂的公差 之範圍内製造。又,也設想未來在規格上變更厚度之基準 值之情況。因影像顯示裝置所利用之光一定通過玻璃罩 114 ’厚度之個體差異或基準值之規格變更所引起之厚度 變動影響通過玻璃罩丨丨4之光,光學系整體之光路設計就 文到玻璃罩114之厚度之個體差異左右。 在本貫施例1 6,為了補償玻璃罩1 1 4之厚度變動,使 知在圖上未示之照明光源系或折射光學透鏡7 6和玻璃罩 114之間設置補償玻璃115。 使用圖60說明利用補償玻璃115補償玻璃罩114之厚度 之個體差異之手法如下。 圖60係表示玻璃罩丨丨4之厚度和補償玻璃丨丨5之厚度之 關係圖。在此,為了簡化說明,設玻璃罩丨丨4之折射率“ 和補倡玻璃11 5之折射率n 2相等(設η 1 = η 2 = η ),但是如後述 所示’折射率nl、η2不同也可。Refractive optical lenses (refractive optical lenses 76, convex surfaces) '7 6 and 7 7 are respectively attached to the optical axis shown in the embodiments) and convex mirrors (reflecting portions), 7 8 are optical axes of the folding mirror 7 7. A glass cover 114 composed of a plurality of small mirrors for protecting a reflecting surface is assembled in the micro-mirror device 14. The figure from the figure consisting of a light emitting chirp, a parabolic mirror, and a condenser lens, etc. is not shown in "Illumination". The source system m is incident on the reflecting surface through a glass cover 114. In addition, the light whose intensity has been adjusted by the reflecting surface passes through the glass cover 114 and then goes to the refractive optical lens 76 and the convex mirror 77. In addition, the thickness of the glass cover 114 is not limited to a reference value that is always fixed, and is manufactured within a range of a so-called tolerance that is the difference between the maximum dimension thickness and the minimum dimension thickness. In addition, the case where the reference value of the thickness is changed in the specifications in the future is also assumed. Because the light used by the image display device must pass through the thickness of the glass cover 114 'or the change in the thickness of the reference value, the thickness change caused by the change in the thickness of the glass cover. Individual thickness of 114 varies. In the present embodiment 16, in order to compensate for the thickness variation of the glass cover 114, a compensation glass 115 is provided between an illumination light source system or a refractive optical lens 76 and a glass cover 114 (not shown). The method for compensating the individual difference in the thickness of the cover glass 114 using the compensation glass 115 is described below using FIG. 60. Fig. 60 is a diagram showing the relationship between the thickness of the glass cover 丨 4 and the thickness of the compensation glass 丨 5. Here, in order to simplify the description, it is assumed that the refractive index of the glass cover 丨 4 is the same as the refractive index n 2 of the supplementary glass 115 (set η 1 = η 2 = η), but as shown below, the refractive index nl, η2 may be different.

2103-3823-PF ; AHDDUB.ptd 第72頁 五、發明說明(70) *基準狀態 圖60(a)表示玻璃罩114之厚度u為基準值以之情況。 此時,經由厚度t2 = T2之補償玻璃丨丨5和組 ?之微反射鏡裝置14交換光。因此,該光通過在等么軍 厚度t-Tl+T2、折射率n之玻璃介質。看成厚度卜丁“。、 =率η之玻璃介質存在’設計照明光源系或折射光學透 鏡76、凸面鏡77等其他之光學系。 *補償例1 ’、 j 60(b)表示玻璃罩114之厚度t自基準值η只偏移個 _二ΔΤ( ΔΤ包含正負之符號)而變成Τ1+ ΔΤ之情況。 時,經由厚度t2 = T2 — δτ之補償玻璃115和組裝了玻璃罩 114之微反射鏡裝置14交換光。 即,因玻璃罩114之厚度bTl+ΔΤ和補償玻璃115之厚 又12 T 2 △ T之合计值係和該基準狀態相同之厚度t = τ 1 + T2,和組裝了玻璃罩丨丨4之微反射鏡裝置丨4交換之光通過 在專價上厚度t = Tl+T2、折射率n之玻璃介質。因此,儘管 因玻璃罩114之厚度tl之個體差異而發生變動么丁,藉著變 更玻璃罩11 4之厚度12抵消該變動△ τ,可不必變更設計的 利用基準狀態之光學系。 13 *補償例2 圖60(c)表示玻璃罩114之厚度t在規格上自基準值τι 變更為基準值T3之情況。此時,彳慮補償例為, ,經由厚度t2= T2 —(T3 — T1)=T3 — ΔΤ之補償玻璃 11 5和組裝了玻璃罩丨丨4之微反射鏡裝置丨4交換光。 第73頁 2103-3823-PF ; AHDDUB.ptd 4969992103-3823-PF; AHDDUB.ptd Page 72 V. Description of the invention (70) * Reference state Fig. 60 (a) shows the case where the thickness u of the glass cover 114 is a reference value. At this time, light is exchanged through the compensation glass 5 with a thickness t2 = T2 and the micro-mirror device 14 of the group. Therefore, the light passes through a glass medium having a thickness of t-Tl + T2 and a refractive index n. It can be regarded as a thickness pudding. "The glass medium with the ratio η exists. 'Design illumination light source system or refractive optical lens 76, convex mirror 77 and other optical systems. * Compensation example 1', j 60 (b) represents the glass cover 114. The thickness t is shifted from the reference value η by two _ΔΔT (ΔT contains positive and negative signs) to become T1 + ΔT. In this case, the compensation glass 115 with thickness t2 = T2-δτ and the micro-mirror with glass cover 114 assembled The device 14 exchanges light. That is, the total value of 12T 2 ΔT due to the thickness bTl + ΔΤ of the glass cover 114 and the thickness of the compensation glass 115 is the same thickness as the reference state t = τ 1 + T2, and the glass is assembled The micromirror device of the cover 丨 4 The light exchanged by 4 passes through the glass medium with the thickness t = Tl + T2 and the refractive index n at the specific price. Therefore, does it change due to the individual differences in the thickness tl of the glass cover 114? D. By changing the thickness 12 of the glass cover 11 4 to offset the change Δτ, it is not necessary to change the design of the optical system using the reference state. 13 * Compensation example 2 Figure 60 (c) shows that the thickness t of the glass cover 114 is in the specification When the reference value τι is changed to the reference value T3. At this time, Consider the compensation example as follows, the light is exchanged via the thickness t2 = T2 — (T3 — T1) = T3 — ΔTT and the micromirror device 4 assembled with the glass cover 丨 4. Page 2103-3823 -PF; AHDDUB.ptd 496999

和補4員例1 一樣’因玻璃罩11 4之厚度11 = τ 1 + (T 3 — T1) = Τ1+ ΔΤ和補償玻璃115 之厚度t2= 了2 _(Τ3 _Τ1) = Τ2 — Δτ 之合什值變成和該基準狀態相同之厚度t = T1+T2,和微反 射鏡裝置14交換之光通過在等價上厚度t = T1+T2、折射率^ 之玻璃介質。因此,儘管發生因玻璃罩114之厚度tl在規 $上自基準值τι變更為基準值T3所引起之厚度偏差, 藉著變更玻璃罩114之厚度t2抵消該厚度偏差△?,可不必 變更設計的利用基準狀態之光學系。 由以上之基準狀態、補償例1、2得知,在本實施例 16,按照來自玻璃罩114之厚度tl具有之基準值n之變動 (或厚度偏差)ΔΤ之增減,將補償玻璃ι15之厚度t2之基準 值T 2只相反的減加變動(或厚度偏差)△ τ,因使得合計值 t = Tl+T2變成定值,可看成在微反射鏡裝置14之反射面等 &quot;ί貝的組裝厚度t = Τ1 + T 2、折射率η之玻璃介質,不會受到變 動(或厚度偏差)左右’可直接利用基準狀態之光學系。當 然,不限微反射鏡裝置1 4,也可將本實施例丨6應用於液晶 等其他的光空間調變元件。 在以上,考慮將玻璃罩11 4和補償玻璃丨丨5具有相等之 折射率η的,但是玻璃罩1 1 4和補償玻璃1 1 5各自具有不同 之折射率η 1、η 2的,而以也顧慮到折射率η 1、η 2之光學上 之厚度思考的更具一般性。 即,考慮玻璃罩114之光學上之厚度丨丨/“和補償玻璃 Η5之光學上之厚度t2/n2,使得如滿足rtl/nl+t2/n2二定 值」之條件般決定補償玻璃1 1 5之厚度11、折射率n 1。照Same as Example 1 of the 4th member, because the thickness of the glass cover 11 4 11 = τ 1 + (T 3 — T1) = Τ1 + ΔΤ and the thickness t2 of the compensation glass 115 = 2 _ (Τ3 _Τ1) = Τ2 — Δτ The value becomes the same thickness t = T1 + T2 as the reference state, and the light exchanged with the micro-mirror device 14 passes through the glass medium having the equivalent thickness t = T1 + T2 and the refractive index ^. Therefore, although the thickness deviation caused by changing the thickness t1 of the cover glass 114 from the reference value τι to the reference value T3 occurs, by changing the thickness t2 of the cover glass 114 to offset the thickness deviation Δ ?, it is not necessary to change the design. Optical system using the reference state. It is known from the above reference states and compensation examples 1 and 2 that in this embodiment 16, according to the increase or decrease in the change (or thickness deviation) Δτ of the reference value n provided by the thickness t1 of the glass cover 114, the glass 15 will be compensated. The reference value T 2 of the thickness t2 has only the opposite decrement (or thickness deviation) Δ τ, because the total value t = Tl + T2 becomes a fixed value, which can be regarded as the reflection surface of the micromirror device 14 &quot; ί The assembled thickness t = Τ1 + T 2. The glass medium with the refractive index η will not be affected by the variation (or thickness deviation). The optical system in the reference state can be directly used. Of course, the micro-mirror device 14 is not limited, and the present embodiment 6 can also be applied to other optical space modulation elements such as liquid crystal. In the above, it is considered that the glass cover 11 4 and the compensation glass 5 have the same refractive index η, but the glass cover 1 1 4 and the compensation glass 1 1 5 each have different refractive indices η 1 and η 2 and It is also considered that the optical thicknesses of the refractive indexes η 1 and η 2 are more general. That is, considering the optical thickness of the glass cover 114 / / and the optical thickness t2 / n2 of the compensation glass Η5, so that the compensation glass 1 1 is determined as if the condition rtl / nl + t2 / n2 is satisfied. The thickness is 5 and the refractive index is n 1. According to

2103-3823-PF ; AHDDUB.ptd 第74頁 五、發明說明(72) 之變動 這樣做,可補償補償玻璃115之厚度t 。 外射率n 1 一又,右在保持折射光學透鏡76 (折射光風 不之鏡筒之入射側(微反射鏡裝置14側)採用予可:):圖上未 璃11 5之構造(補償玻璃拆裝機構),和破璃置裝補償破 更或厚度變動對應的更換為厚度最n厚度變 〈數值實施例16A &gt; 铺饧玻璃115。 圖6 1、62係各自表示數值實施例丨6A之數 造之圖。和圖45、49相同之符號表示相同或相告之、、、構一 件。圖61之諸元係卜3· 39mm(在波長546· lnm之焦距)、N凡 〇· 1 7(微反射鏡裝置側數值孔徑)、Y〇b=14. 65_(微反^ 裝置側物體高度)、Μ = 86· 96(投影倍率)。因玻璃罩丨勺兄 含補償玻璃11 5計算,在圖6 2綜合圖示。 匕 在,6 1所示之數值資料以玻璃罩丨丨4和補償玻璃丨丨5之 和表示第2面之厚度4· 5mm。例如,係設想玻璃罩之基準厚 度3mm、補償玻璃之厚度1 · 5mm之狀況後進行像差補償之鲈 果。 、、、口 如以上所示’若依據本實施例丨6,在組裝於微反射鏡 裝置1 4之反射面之玻璃罩11 4和折射光學透鏡7 6或照明光 源糸之間’因按知、因製造上之公差或設計變更而增減之玻 璃罩11 4之光學上之厚度之變動,設計具有相反的減加該 變動之光學上之厚度之補償玻璃11 5,使得和微反射鏡裝 置1 4之反射面交換光,抵消玻璃罩11 4之厚度之變動,可 看成利用總是具有固定之光學上之厚度之介質保護微反射2103-3823-PF; AHDDUB.ptd Page 74 V. Changes in the description of the invention (72) By doing so, the thickness t of the compensation glass 115 can be compensated. The external emissivity n 1 is again and again, and the right is maintained on the refracting optical lens 76 (the incident side of the lens barrel that refracts light and wind (the side of the micro-mirror device 14) :): The structure of Wei Li 11 5 on the picture (compensating glass (Removable mechanism), and replacement of the broken glass installation compensation or thickness change is replaced by the thickness of the nth thickness change <numerical example 16A &gt; Figs. 6 and 62 are diagrams each showing a numerical example of a numerical example 6A. The same symbols as in Figs. 45 and 49 indicate that they are the same or inform each other. The elements of Fig. 61 are 3.39mm (focal length at a wavelength of 546 · lnm), N Fan 〇 · 17 (numerical aperture on the side of the micromirror device), Y〇b = 14.65_ (微 反 ^ Device-side object Height), M = 86 · 96 (projection magnification). Calculated because the glass cover 丨 spoon contains the compensation glass 115, shown in Figure 6 2 comprehensively. In the numerical data shown in 61, the sum of the glass cover 丨 4 and the compensation glass 丨 5 indicates the thickness of the second surface 4.5 mm. For example, it is assumed that the standard thickness of the glass cover is 3 mm, and the thickness of the compensation glass is 1.5 mm, and then the aberration compensation is performed. ",", As shown above, "If according to this embodiment 丨 6, between the glass cover 11 4 and the refractive optical lens 76 or the illumination light source 组装 assembled on the reflecting surface of the micro-mirror device 1 4" 2. The optical thickness of the glass cover 11 4 which is increased or decreased due to manufacturing tolerances or design changes, and the compensation glass 11 5 is designed to have the opposite optical thickness of the change, which makes the micro-mirror device The reflecting surface of 1 4 exchanges light to offset the change in thickness of the glass cover 11 4. It can be seen as protecting the micro-reflection with a medium that always has a fixed optical thickness.

2103-3823-PF : AHDDUB.ptd 第75頁 496999 五、發明說明(73) --- 鏡裝置1 4之反射面,得到可不必變更設計的利用照明光源 糸或折射光學透鏡76、凸面鏡77。 又,若依據本實施例丨6,因使得在保持折射光學透鏡 76之圖上未示之鏡筒之入射側(微反射鏡裝置丨4側)包括可 拆裝補償玻璃11 5之構造,得到和玻璃罩丨丨4之厚度變更或 厚度變動對應的更換為厚度最佳之補償玻璃丨丨5之效果。 實施例1 7 圖6 3係表示使用實施例1之平面鏡2 2 (圖4 )、實施例 7、1 0之光路彎曲反射鏡5 9 (圖2 3等)之影像顯示裝置之構 造圖,係影像顯示裝置之透視立體圖。對於和圖4、2 3相 同或相當之構造賦與相同之符號。又,省略包含照明光源 糸之聚光光學系、微反射鏡裝置、折射光學透鏡等之圖 示。 在圖6 3,1 1 6係長方體形狀之影像顯示裝置,1丨7係影 像顯示裝置11 6之銀幕下部,11 8係影像顯示裝置11 6之水 平之底面’設置了銀幕18及凸面鏡60之面和設置了平面鏡 22之面和底面118正交。在圖63,利用包含光軸61並和底 面118正交之平面將影像顯示裝置1 16切成兩半。在銀幕18 之法線方向取f軸、在底面1 1 8之法線方向取ψ軸,而在 和I:、ψ軸正交之方向取『軸。 11 9係在凸面鏡(反射部)6 0上之點p反射後往平面鏡2 2 上之點Q(第2點)之光線’ 120係在平面鏡22上之點q反射後 銀幕(顯示裝置)18上之點R(第1點)之光線。點r係位於顯 示於銀幕18之四角形之影像之底邊(和底面118平行而且接2103-3823-PF: AHDDUB.ptd Page 75 496999 V. Description of the invention (73) --- The reflecting surface of the mirror device 14 is obtained by using an illumination light source 糸 or a refractive optical lens 76 and a convex mirror 77 without changing the design. In addition, according to this embodiment 丨 6, because the incident side (micro-mirror device 丨 4 side) of the lens barrel (not shown on the drawing holding the refractive optical lens 76) includes a structure in which the compensation glass 115 is detachable, it is obtained The effect of changing the thickness of the glass cover 4 or the thickness change to the compensation glass 5 with the best thickness. Embodiment 1 7 FIG. 6 3 is a structural diagram of an image display device using the plane mirror 2 2 (FIG. 4) of Embodiment 1 and the optical path bending mirror 5 9 (FIG. 2 3, etc.) of Embodiment 7 and 10, Perspective perspective view of an image display device. Structures identical to or equivalent to those in Figs. 4 and 23 are assigned the same reference numerals. In addition, illustrations of a condensing optical system, a micro-mirror device, a refractive optical lens, and the like including an illumination light source 糸 are omitted. In Figure 6, 3, 1 16 series of rectangular parallelepiped-shaped image display devices, 1 丨 7 series of image display devices 116, the lower part of the screen, 11 8 series of image display devices 116, the horizontal bottom surface is provided with a screen 18 and convex mirror 60 The surface and the surface on which the plane mirror 22 is provided are orthogonal to the bottom surface 118. In Fig. 63, the image display device 116 is cut in half by a plane including the optical axis 61 and orthogonal to the bottom surface 118. Take the f-axis in the normal direction of the screen 18, the ψ axis in the normal direction of the bottom surface 1 1 8 and the "axis" in the direction orthogonal to the I: and ψ axes. 11 9 Light reflected on the point p on the convex mirror (reflection part) 6 to the plane mirror 2 2 Point Q (point 2) on the plane mirror 2 120 Light reflected on the screen q on the plane mirror 22 (display device) 18 The light at point R (point 1). The point r is at the bottom edge of the quadrangle image displayed on the screen 18 (parallel to the bottom surface 118 and connected to

2103-3823-PF ; AHDDUB.ptd2103-3823-PF; AHDDUB.ptd

第76頁Page 76

496999 五、發明說明(74) 近底面118之邊)上且且離影像中心最遠之點。又,i2i、 1 2 2各自係將光線1 1 9、1 2 〇自ψ轴方向向底面1 1 8投影時之 線段,點P 、Q’ 、R,(各自係第3、2、丨之投影點)係將點 P、Q、R各自自ψ軸方向向底面丨丨8投影時之點。 此時’抽出由點P、Q、R、P,、q,、R,構成之空間(配 置空間)s時,變成如圖63(b)所示。在本實施例17,在聚 光=學系等之配置空間上著眼於空間s,使得銀幕下部117 之咼度增加,因光線11 9、1 2 〇係和點R對應之光線,在空 間S配置聚光光學系之構成元件時,若注意避免遮住光線 119、120,其他之全部光線也不會被遮住。 圖64係表示本發明之實施例丨7之影像顯示裝置之構造 圖’圖64(a)係自f軸方向看影像顯示裝置丨丨6之比銀幕下 端,低之部分之正視圖,圖64(b)係自ψ軸方向看影像顯 不裝置1 1 6之上視圖。和圖1、4、2 3、63相同之符號係相 同或相當之構造。又,圖65(a)、(b)係利用和銀幕18正交 之A Α Ββ平面各自表示影像顯示裝置之剖面圖。b — b, 平面係比A-A’平面接近線段q,—q,之面。 在圖64 ’ 123係由發光體η、拋物面反射鏡12以及聚 光透鏡U構成之照明光源系(傳送裝置、照明光源部、聚 光光學系主要部分),丨24係將來自照明光源系丨23之光(照 明光)依^著色成三原色之彩色輪(傳送裝置、聚光光學系 主要部分),125係在入射面接受來自彩色輪124之光後自 射出面射出照度分布均勻之光之棒形積分器,126係將來 自棒形積分器125中繼之中繼透鏡(傳送裝置、聚光光學系496999 V. Description of the invention (74) Point near the bottom surface 118) and farthest from the image center. In addition, i2i and 1 2 2 are line segments when the light rays 1 1 9 and 1 2 0 are projected from the ψ axis direction to the bottom surface 1 1 8 respectively, and the points P, Q ', and R (each of which are 3, 2 and 丨). Projection point) is the point when the points P, Q, and R are projected from the ψ axis direction to the bottom surface. At this time, when the space (arrangement space) s formed by the points P, Q, R, P,, q, and R is extracted, it becomes as shown in Fig. 63 (b). In this embodiment 17, focusing on the space s in the configuration space of the light-concentration = academic department, etc., increases the degree of the lower part of the screen 117, because the light corresponding to the light 119, 120 and the point R is in the space S When arranging the components of the condenser optics, if you take care to avoid blocking the light 119, 120, all other light will not be blocked. FIG. 64 is a structural diagram of an image display device according to Embodiment 7 of the present invention. FIG. 64 (a) is a front view of the lower portion of the screen and the lower portion of the screen viewed from the f-axis direction. FIG. 64 (b) A top view of the image display device 1 1 6 viewed from the ψ axis direction. The same symbols as in Figures 1, 4, 2, 3, and 63 are the same or equivalent structures. 65 (a) and (b) are cross-sectional views each showing an image display device using A Α β β planes orthogonal to the screen 18. b — b, the plane is closer to the line segment q, —q, than the A-A 'plane. In Fig. 64 '123, the illumination light source system (transport device, illumination light source section, and condenser optical system main part) composed of the luminous body η, the parabolic mirror 12, and the condenser lens U, and the 24 series will come from the illumination light source system. The light of 23 (illumination light) is colored in three primary colors (transport device, the main part of the concentrating optics), and 125 is the light with uniform illumination distribution from the exit surface after receiving the light from the color wheel 124 on the incident surface. Rod integrator, 126 is a relay lens that relays from rod integrator 125 (transmission device, condenser optics

第77頁 496999 五、發明說明(75) 主要部分)。 又,127及128各自係賦與本實施例17特徵之第二光路 彎曲反射鏡(第二光路彎曲裝置)及第三光路、彎曲反射鏡 (第三光路彎曲裝置),129係使來自中繼透鏡126之光之主 線線方向一致後向微反射鏡裝置(傳送裝置、反射型影像 資料賦與部)14射入之物鏡(傳送裝置)。來自中繼透鏡126 之光利用第二、第三光路彎曲反射鏡1 2 7、1 2 8依次反射後 往物鏡1 2 9。 將光向微反射鏡裝置1 4聚光之聚光光學系由照明光源 系1 2 3、彩色輪1 2 4、棒形積分器1 2 5、中繼透鏡1 2 6、第二 光路彎曲反射鏡127第三光路彎曲反射鏡丨28以及物鏡丨29 構成,尤其將照明光源系1 2 3、彩色輪1 2 4、棒形積分器 125以及中繼透鏡126稱為聚光光學系主要部分。 1 3 0係聚光光學系主要部分共有之光軸,1 3 1係影像顯 示裝置11 6之剩餘空間,在構成一般之影像顯示裝置丨J 6 曰守’因切掉剩餘空間1 3 1 ’認為不是構成元件之配置空間 。在圖6 4 ’在空間S將聚光光學系主要部分配置成其光軸 130和影像顯示裝置116之底面118及銀幕18之感光面平行 〇 其理由之一如圖6 6所示,係因在水平面上之具有光軸 1 3 0之照明光源系1 2 3傾斜而變成光軸1 3 〇 a之照明光源系 123A之情況,光軸130和光軸130A之失角0超過規定值(例 如1 5。)時,構成照明光源系丨23之發光體丨丨之内部溫度分 布偏離規定狀態’照明光源系1 2 3之壽命變短之緣故。對Page 77 496999 V. Description of Invention (75) Main part). In addition, 127 and 128 are the second optical path bending mirror (second optical path bending device) and the third optical path and curved mirror (third optical path bending device), which are characteristic of the 17th embodiment. The objective lens (transmission device) that the light of the lens 126 has the same main line direction and enters the micro-mirror device (transmission device, reflective image data application unit) 14. The light from the relay lens 126 is sequentially reflected by the second and third optical path bending mirrors 1 2 7 and 1 2 8 and then goes to the objective lens 1 2 9. The light-concentrating optical system that focuses light toward the micro-mirror device 14 is composed of an illumination light source system 1 2 3, a color wheel 1 2 4, a rod-shaped integrator 1 2 5, a relay lens 1 2 6, and a second optical path curved and reflected. The mirror 127 is composed of a third optical path curved reflecting mirror 28 and an objective lens 29. In particular, the illumination light source system 1 2 3, the color wheel 1 2 4, the rod integrator 125, and the relay lens 126 are referred to as the main parts of the condensing optical system. 1 3 0 is the optical axis shared by the main parts of the condensing optical system, 1 3 1 is the remaining space of the image display device 11 6 and constitutes a general image display device. J 6 shou 'because the remaining space is cut off 1 3 1' It is considered that it is not the arrangement space of a component. In FIG. 64 ′, the main part of the condensing optical system is arranged in the space S such that its optical axis 130 is parallel to the bottom surface 118 of the image display device 116 and the photosensitive surface of the screen 18. One of the reasons is shown in FIG. In the case where the illumination light source with the optical axis 1 3 0 on the horizontal plane 1 2 3 is inclined to become the illumination light source 123A with the optical axis 1 3 〇a, the misalignment angle 0 of the optical axis 130 and the optical axis 130A exceeds a predetermined value (for example, 1 5.), the internal temperature distribution of the luminous body 丨 23 constituting the illumination light source system 22 deviates from the prescribed state because the life of the illumination light source system 1 2 3 is shortened. Correct

496999496999

於以光軸130為中心之轉動, 題0 照明光源系1 2 3不會發生問 限於所示,係因影像顯示裝置116不只 、&amp;面118故成水平之利用形態(圖6 在用作掛在牆壁用之影像顯+狀蓄夕陣、以也。又心例 ^ η 〇 ^用像顯不裝置之情況,自水平面令底 平面八底\ 1 之利用形恶(圖6 7 (b)),或上下顛倒後自水 千^面118稍微傾斜之利用形態(圖67(c))等之緣故。 之镇:/二兩個理由以外’為了滿足影像顯示裝置116 $軸方向之尺寸之最小化)或銀幕下部117之高 幕,下部117之'軸方向之尺寸之最小化),採 ^圖64之配置構造。藉著這樣做,如圖67(b)、(c)所示, ^令Λί象顯裝置116傾斜之情況,也因對於照明光源系 ,交ί:光軸130為中心之轉動,不會損害照明光源系 1^23之哥中,可_適應影像顯示裝置丨16之各種利用形態。此 :二处如圖6 5所不’為了避免遮住自凸面鏡6 0往銀幕1 8之光 (傾斜部分)’在比Α-Α’平面更接近Β_β’平面之區域配置 大的構成元件。 而,如在實施例7、10所述,和銀幕18平行的設置平 面鏡22,自相對於該平面鏡22適當的配置之光路彎曲反射 鏡59、凸面鏡60之位置決定折射光學透鏡58、微反射鏡裝 置14之位置。因此,為了將來自配置於空間s之聚光光學 系主要部分之光射入微反射鏡裝置丨4,使得在中繼透鏡 126和物鏡129之間設置第二、第三光路彎曲反射鏡127、 128,作為光之媒介。為了避免遮住凸面鏡㈤之射出光,In the rotation centered on the optical axis 130, the problem 0 illumination light source system 1 2 3 will not occur. It is limited to the shown, because the image display device 116 is not only the &amp; surface 118, it is horizontally used (Figure 6 is used as The image used to hang on the wall shows a positive shape and a positive shape. Another example ^ η 〇 ^ If the image display device is not used, the use of evil is made from the horizontal plane to the bottom plane and the bottom plane \ 1 (Figure 6 7 (b )), Or the use form that tilted slightly from the water surface 118 after being turned upside down (Figure 67 (c)), etc. Town: / 2 or two reasons other than 'In order to meet the size of the image display device 116 $ axis direction Minimization) or the height of the lower part 117 of the screen, and the minimization of the size of the lower part 117 in the axial direction). By doing so, as shown in Figs. 67 (b) and (c), the case where the Λί image display device 116 is tilted is also caused by the rotation of the optical axis 130 as the center of the illumination source system, which will not damage it. Among the 1 ^ 23 brothers, the lighting source can adapt to various usage forms of the image display device 16. Here: As shown in Fig. 6 and 5, in order to avoid blocking the light (inclined portion) from the convex mirror 60 to the screen 18, a large component is arranged in a region closer to the B_β 'plane than the A-A' plane. As described in Embodiments 7 and 10, a plane mirror 22 is provided in parallel with the screen 18, and the refractive optical lens 58 and the micro-reflector are determined from the positions of the light path bending mirror 59 and the convex mirror 60 which are appropriately arranged with respect to the plane mirror 22. Location of the device 14. Therefore, in order to enter the light from the main part of the condensing optical system arranged in the space s into the micro-mirror device 4, the second and third optical path bending mirrors 127 and 127 are provided between the relay lens 126 and the objective lens 129. 128 as the medium of light. In order to avoid blocking the light emitted by the convex mirror,

496999 五、發明說明(77) 位於比第三光路彎曲反射鏡丨2 8高之位置之第二光路,彎曲 反射鏡1 2 7設置於儘量低之位置。 在第二、第二光路彎曲反射鏡127、128之配置位置上 ,選擇中繼透鏡1 2 6和物鏡1 2 9之間之理由係因別的構成元 件之相互位置關係依據成像等光學條件決定,而藉著調整 中繼透鏡1 2 6之焦距和物鏡1 2 9之焦距,可適當的決定自中 繼透鏡126至物鏡129為止之光路長度之緣故。 於疋,使彳于在空間S將聚光光學系主要部分配置成光 軸1 3 0對於影像顯示裝置丨丨6之底面丨丨8及銀幕丨8平行,利 用第二、第三光路彎曲反射鏡127、128媒介自中繼透鏡 126往物鏡129之光,可自空間s之聚光光學系主要部分向 係反射型光空間調變元件聚光。 此外,為了抑制銀幕下部丨丨7之高度,也可採用以下 =方法。即,將光軸丨3 〇設置成和底面丨丨8平行時, 相 = 巧及彩色輪124等直徑大之構成元件決: 此,如0 68所'又(底面118之Ψ軸方向之位置)之情況。因 二匕如圖68所π,使得由照明 3β =積分器㈣以及中繼透鏡126Β構成之聚光光 ::=:130B&quot;傾斜角0傾斜。當然,傾斜角= 先源糸123Β之規定值以内。 隹…、月 ,軸130Β和銀幕18之感光面平行,而且令傾斜 之’交點J :13:Β之交點比中繼透鏡126B和光軸130Β 規疋值以内,而且注意避免照明光源系123B或彩^輪496999 V. Description of the invention (77) The second optical path is located at a higher position than the third optical path curved mirror 丨 28, and the curved reflective mirror 1 2 7 is set at a position as low as possible. In the positions of the second and second optical path curved mirrors 127 and 128, the reason for selecting the relay lens 1 2 6 and the objective lens 1 2 9 is determined by the mutual positional relationship of other constituent elements according to optical conditions such as imaging By adjusting the focal length of the relay lens 1 2 6 and the focal length of the objective lens 1 2 9, the length of the optical path from the relay lens 126 to the objective lens 129 can be appropriately determined. Yu Yan, arranged the main part of the condensing optical system in the space S so that the optical axis 1 3 0 is parallel to the bottom surface of the image display device 丨 丨 8 and the screen 丨 8, and the second and third optical paths are used to bend and reflect The light from the medium of the mirrors 127 and 128 from the relay lens 126 to the objective lens 129 can be focused from the main part of the condensing optical system of the space s to the reflective optical space modulation element. In addition, in order to suppress the height of the lower part of the screen, the following method can also be used. That is, when the optical axis 丨 3 〇 is set to be parallel to the bottom surface 丨 丨 8, the phase diameter and the color wheel 124 and other large-diameter constituent elements are determined: Therefore, as shown in 0 68 'and (the position of the bottom axis 118 in the y-axis direction) ). Because the two daggers are as shown in Fig. 68, the condensed light consisting of the illumination 3β = integrator ㈣ and the relay lens 126B :: =: 130B &quot; tilt angle 0 is tilted. Of course, the inclination angle is within the specified value of the first source 糸 123B.隹 ..., month, the axis 130B is parallel to the photosensitive surface of the screen 18, and the intersection point of the tilt J: 13: B is less than the threshold value of the relay lens 126B and the optical axis 130B, and care should be taken to avoid the light source 123B or color ^ Round

五、發明說明(78) 1 24B遮住光線1 1 9、1 20。隨著光軸丨3〇B之傾斜,第二光路 •靑曲反射鏡127B在Ψ軸方向之位置變低,照明光源系123B 、f色輪124B在Ψ軸方向之位置變高。而,銀幕下部117 之同度由位於最低位置之第三光路彎曲反射鏡丨2 8決定。 、此外,在以上之狀悲,使得在配置於聚光光學系之下 部並保持各構成元件而且調整其設置位置之調整台丨3 2設 置收,第三光路彎曲反射鏡128之收藏孔丨33也可(圖69)。 藉此,可更抑制銀幕下部1 1 7之高度。 如以上之說明,將第二、第三光路彎曲反射鏡丨2 7、 1 2 8 §作平面鏡處理,但是本實施例丨7未限定如此,使得 使用2片或丨片曲面鏡也可。藉著將第二、第三光路彎曲反 射鏡127、128之至少一方設為曲面鏡後對其曲面形狀之反 射面(光學面)下工夫,可賦與光線之控制自由度。 =,和實施例7、10之光路彎曲反射鏡59 一樣,將第 二、、第三光路彎曲反射鏡127、128之至少一方設為具有平 面或曲面形狀之折射面(光學面)之稜鏡也可。 /藉著這樣做,可改善對微反射鏡裝置丨4之照明效率、 棒形積分裔1 2 5之射出面對微反射鏡裝置丨4之成像條件、 中繼透鏡1 26系之傅立葉變換面對折射光學透鏡58之入射 瞳,成像條件、微反射鏡裝置丨4之照明光之照度分布均勻 化專各種光學性能。 如以上所不,若依據本實施例丨7,因使得在藉著各自 ,,段連接位於銀幕1 8所顯示之四角形之影像之底邊上並 隶返離〜像之中心之點R、自平面鏡2 2往點r之光線1 2 〇之V. Description of the invention (78) 1 24B blocks the light 1 1 9, 1 20. With the inclination of the optical axis 丨 30B, the position of the second optical path • the curved mirror 127B in the axis direction becomes lower, and the position of the illumination light source system 123B and the f color wheel 124B in the axis direction becomes higher. However, the same degree of the lower part of the screen 117 is determined by the third optical path bending mirror 丨 2 8 located at the lowest position. In addition, in the above situation, the adjustment table arranged below the condensing optical system and holding the various components and adjusting its setting position is set to 3, and the storage hole of the third optical path curved mirror 128 is set to 33 Also possible (Figure 69). This can further reduce the height of the lower part of the screen 1 1 7. As described above, the second and third optical path curved mirrors 2 7 and 1 2 8 are treated as plane mirrors, but this embodiment 7 is not limited to this, so that two or curved mirrors can be used. By setting at least one of the second and third optical path curved reflecting mirrors 127 and 128 as a curved mirror and working on the reflecting surface (optical surface) of its curved shape, a degree of freedom in controlling light can be imparted. = At least one of the second and third optical path curved mirrors 127 and 128 is the same as the optical path curved mirror 59 of Examples 7 and 10. also may. / By doing so, the lighting efficiency of the micromirror device 丨 4, the imaging condition of the rod-shaped integral lens 1 2 5 facing the micromirror device 丨 4, and the Fourier transform surface of the relay lens 1 26 series can be improved For the entrance pupil of the refractive optical lens 58, the imaging conditions and the illumination distribution of the illumination light of the micro-mirror device 4 are uniformized for various optical properties. As mentioned above, if according to this embodiment, the segment connection is located on the bottom edge of the quadrangular image displayed on the screen 18 and returns to the point R ~ The light from the plane mirror 2 2 to the point r 1 2 〇

2103-3823-PF; AHDDUB.ptd 第81頁 496999 五、發明說明(79) 平面鏡22上之反射點q、自凸面鏡6〇往反射點^之光線 之凸面鏡60上之反射點p、將點P、q、R各自自水平之广1 118之法線方向向底面118投影之p,、Q, ^,所產生之=面 S配置聚光光學系主要部分(在圖64之例子,自照明光:間 123至中繼透鏡126為止),得到在由平面鏡以和銀幕^糸 定之影像顯示裝置之薄度之範圍可抑制銀幕下部丨17 2 度之效果。 、向 、又,若依據本實施例17,因使得包括反射來自自昭 光源系123至中繼透鏡126為止之聚光光學系主要部分·、、、“ 之第二光路彎曲反射鏡127和經由物鏡129向微反射二^, =射入來自第二光路彎曲反射鏡127之反射光之第三光、路置 考曲反射鏡128,得到利用配置於空間s之聚光光學系主 4刀可對係反射型光空間調變元件之微反射鏡裝置丨4 之效果。 、此外,若依據本實施例1 7,因將聚光光學系主要部分 =光軸1 3 0 ,又置成和銀幕丨8及底面丨丨8平行,得到可構成不 =使照明光源系123之壽命變短、抑制銀幕下部117之高度 、’可適應各種利用形態之影像顯示裝置丨1 6之效果。 八=外,若依據本實施例1 7,因使得聚光光學系主要部 :轴13〇B和銀幕18平行,而且使光軸130B在照明光源 ^ j ^之傾斜角之規定值以内傾斜成照明光源系123B之發 位罟古在曰Ψ軸方向之位置比中繼透鏡126B在ψ軸方向之 ^ ^彳于到&gt;不會使照明光源系1 2 3之壽命變短、抑制銀 Η 1 7之同度以及可構成可適應各種利用形態之影像2103-3823-PF; AHDDUB.ptd Page 81 496999 V. Description of the invention (79) The reflection point q on the plane mirror 22, the reflection point p on the convex mirror 60 of the light from the convex mirror 60 to the reflection point ^, and the point P , Q, R are respectively p, Q, ^ projected from the normal direction of the horizontal wide 1 118 to the bottom surface 118, and the generated = plane S configures the main part of the condensing optical system (in the example in FIG. 64, the self-illuminating light : Between 123 and relay lens 126), the effect that the thickness of the image display device determined by the flat mirror and the screen can be suppressed to 17 2 degrees below the screen. According to this embodiment 17, the second optical path bending mirror 127 and the second optical path bending reflection mirror 127 which are included in the focusing optical system from the light source system 123 to the relay lens 126 are reflected. The objective lens 129 is reflected slightly toward the mirror ^, = the third light incident on the reflected light from the second optical path bending mirror 127, and the road test curve mirror 128 are obtained. The effect of the micro-mirror device of the reflection type optical space modulation element 丨 4. In addition, according to this embodiment 17, because the main part of the condensing optical system = the optical axis 1 3 0, and the screen is set丨 8 and the bottom surface 丨 丨 8 are parallel to obtain the effect that can not constitute = shorten the life of the lighting source system 123, suppress the height of the lower part of the screen 117, and 'can adapt to various forms of use of the image display device 丨 16 effects. 8 = outside If according to this embodiment 17, the main part of the condensing optical system: the axis 13B and the screen 18 are made parallel, and the optical axis 130B is inclined into the illumination light source system within the prescribed value of the inclination angle of the illumination light source ^ j ^ The position ratio of 123B's hair position in the ancient axis direction [Psi] ^ relay lens 126B in the axial direction of the left foot on the ^ &gt; use of various forms of image without the illumination source line 123 of short life, with the inhibition of 17 Η silver and constitute the adaptable

五、發明說明(80) 顯示裝置1 1 6之效果。 此外,若依據本實施例1 7,因使p 系之調整台132,而且在調整台132設置叹置聚光光學 反射鏡1 2 8之收藏孔1 3 3,得到可構成更女藏第二光路彎曲 之高度之影像顯示裝置1 1 β之效果。 Ρ制銀幕下部11 7 此外,若依據本實施例17,因將第一 1 127、第三光路彎曲反射鏡128之至少—路彎曲反射, 著對其曲面形狀下工夫,可賦與光線二鏡’精 可改善各種光學性能之效果。 之控制自由度,得到 又:因圖63(a)之影像顯示裝置116切成兩半,在一台 影像顯示裝置11 6存在相對稱之2個空間s,使彳σ在一方 :間s配置、聚光光學系,而且在另一方之空間3付配置電源之等 其他之構成元件也可。 又,在將液晶等透射型之光空間調變元件應用於本影 像顯示裝置之情況,不使用第二、第三光路彎曲反射鏡 1 2 7、1 2 8,而使得在空間s配置共有光轴1 3 ο之自照明光源 系1 2 3至物鏡1 2 9為止之聚光光學系,按照圖β 4或圖6 8使光 軸1 3 0和$ -(面大致平行,向透射型之光空間調變元件直 接射入光即可。 此外,藉著使得設置媒介自第三光路彎曲反射鏡1 2 8 至微反射鏡裝置1 4為止之光和自微反射鏡裝置1 4至折射光 學透鏡58為止之光之周知之TIR稜鏡(全反射稜鏡),在折 射光學透鏡5 8之入射瞳位置表面上位於無限點之遠心投影 光學糸也可應用本實施例1 7。V. Description of the Invention (80) The effect of the display device 1 1 6. In addition, if according to this embodiment 17, the p-type adjustment table 132 is used, and the storage hole 1 3 3 of the condensing condenser optical mirror 1 2 8 is provided on the adjustment table 132, which can form a second female collection. The effect of the image display device 1 1 β at the height of the curved optical path. The lower part of the screen made of P is 11 7 In addition, if at least one of the first 1 127 and the third optical path curved reflector 128 is curved and reflected according to this embodiment 17, it is possible to give the light two mirrors by working on its curved shape. Fine can improve the effect of various optical properties. The degree of freedom of control is obtained again: because the image display device 116 of Fig. 63 (a) is cut in half, there are two symmetrical spaces s in one image display device 116, so that 彳 σ is arranged on one side: room s , Condensing optics, and three other components such as a power supply in the other space. When a transmissive optical space modulation element such as a liquid crystal is applied to this image display device, the second and third optical path bending mirrors 1 2 7 and 1 2 8 are not used, and a common light is arranged in the space s. Condensing optics from axis 1 3 ο from the illumination light source system 1 2 3 to the objective lens 1 2 9, according to Figure β 4 or Figure 6 8 make the optical axis 1 3 0 and $-(the plane is approximately parallel, to the transmission type The optical space modulation element may directly enter the light. In addition, by setting the medium from the third optical path bending mirror 1 2 8 to the micro-mirror device 14 and the light from the micro-mirror device 14 to the refractive optics The well-known TIR 稜鏡 (total reflection 稜鏡) of the light up to the lens 58 and the telecentric projection optical 投影 located at an infinite point on the surface of the entrance pupil of the refractive optical lens 58 can also be applied to this embodiment 17.

2103-3823-PF; AHDDUB.ptd 第83頁 立 發明說明(81) 實施例1 8 在實施例4說明利用塑膠合成樹脂射出成型 折射光學透鏡,但是使得用塑膠合成樹脂製造各餘彳之 凸面鏡(投影光學裝置、反射部)也可,和折二:例之 情況-樣,得到可容易形成非球面等之形 2鏡之 價格大量生產之效果。 且犯以低 在用合成樹脂製作應用於影像顯示裝置之 影像顯示裝置在使用環境下之溫度變化對策成 打, 一。由於溫度變化所引起之熱膨脹•熱收縮,凸面;之 球面形狀變形或發生光軸偏差時,影像顯示 非 能就惡:。以下’在本實施例18說明採 之凸面鏡。 /又文化對朿 圖70係表示本發明之實施例丨8之影像 圖’圖70(a)、(b)各自係正視圖、側視圖.。’、衣之構造 在圖70 ’ 134係合成樹脂製之凸 反射部),係在各實施例所示的。i 35 杈如光予衣置、 。凸面鏡m形成自以光軸m為中心旋二鏡134之光轴 狀之凸面鏡i 3 4 0切掉不向銀幕投影光(光轉旦/稱之^球面形 射部分之形狀(圖70(a) ’參照實施例$〜像佗唬)之非反 U4F至後面134R等厚(圖7〇 (b),參ϋ使得自前面 而,在切割非球面形狀時,使得在m &amp; 自具有螺絲孔136Η、137Η、138Η之第 面鏡134 a又置各 第二螺絲固定部⑶以及第三螺絲固v部=固rr 三螺絲固定部136〜138如以下之說明所示固定螺;V,: 496999 五、發明說明(82) — ' 將凸面鏡1 34保持於影像顯示裝置。此外’希望將凸面鏡 134之反射面之變形抑制成最小,而且和凸面鏡134同時形 成螺絲固定部136〜138與其螺絲孔1 36H〜138ΪΙ。 第一螺絲固定部136設於光軸135之附近。即,在自光 軸135之方向看之正視圖(圖70(a))看起來長方形之凸面鏡 134,將第一螺絲固定部136配置成位於最接近前面以“和 光軸135之凸面鏡頂點ι35Ρ(圖70(a)ix記號)之下邊上, 且自光轴135至螺絲孔13611之中心為止之偏心距離在該下 邊上最短。關於偏心距離之容許範圍將後述。 第一螺絲固定部136利用固定於影像顯示裝置之凸面 鏡安裝機構(第一反射部安裝機構)丨4〇、推 塾圈139W以及螺帽13龍將和凸面鏡134之光軸135'垂直之面 内位置樞軸(Pivot,旋轉軸)固定於凸面鏡安裝機構14〇之 安裝面。利用樞軸固定,除了以推拔螺絲139插入螺絲孔 136H之方向為軸之轉動以外,凸面鏡134之自由度全部固 定。 由於該樞軸固定,凸面鏡安裴機構丨4〇及至第一螺絲 固定部136之螺絲孔136H為止都配合推拔螺絲139之推拔 分決定孔之形狀(推拔形狀),推拔螺絲139通過凸面安1 裝機構140後通過螺絲孔136H後’使用例如墊圈139评、 帽139N鎖緊。藉著將凸面鏡安裝機構14〇及至第一螺絲固 定部136之螺絲孔136}1為止都形成推拔形狀,可確實的 仃樞軸固定。螺絲固定完了後,推拔螺絲丨3 9之推拔八 留在凸面鏡安裝機構140之内部,自凸面鏡安裝機構“Ο刀突2103-3823-PF; AHDDUB.ptd Page 83 of the invention description (81) Example 1 8 In Example 4, the use of plastic synthetic resin injection molding refractive optical lens, but the use of plastic synthetic resin to make each convex lens ( Projection optical device, reflecting part) is also possible, as in the case of the second case: the effect of mass production of the shape 2 mirror which can easily form an aspheric surface is obtained. In addition, the countermeasures against the temperature change of the image display device used in the image display device made of low-use synthetic resin in the use environment are one. When the thermal expansion and thermal contraction caused by the temperature change, the convex surface; when the spherical shape is deformed or the optical axis deviation occurs, the image display will be evil. Hereinafter, a convex mirror will be described in the eighteenth embodiment. / Also cultural confrontation Fig. 70 is a video showing an embodiment of the present invention. Fig. 70 (a) and (b) are a front view and a side view, respectively. The structure of the clothing is shown in Fig. 70 '(134, convex reflection part made of synthetic resin), as shown in each embodiment. i 35 The branches are like light to the clothes. The convex mirror m is formed from the optical axis-shaped convex mirror i 3 4 0 with the optical axis m as the center of the rotating second mirror 134. The shape of the projection part that does not project light onto the screen (light conversion / called ^ spherical projection part (Figure 70 (a ) 'Refer to the example $ ~ like a bluff) non-inverted U4F to the rear 134R and the same thickness (Figure 70 (b), see the example from the front, when cutting the aspheric shape, so that m &amp; own screws The first mirrors 134a of the holes 136Η, 137Η, and 138Η are provided with the second screw fixing portion ⑶ and the third screw fixing portion v = solid rr. The three screw fixing portions 136 ~ 138 are fixed as shown in the following description; V ,: 496999 V. Description of the invention (82) — 'Keep the convex mirror 1 34 on the image display device. In addition,' It is desirable to suppress the deformation of the reflecting surface of the convex mirror 134 to a minimum, and to form the screw fixing portions 136 to 138 and the screw holes simultaneously with the convex mirror 134 1 36H ~ 138Ϊ1. The first screw fixing portion 136 is provided near the optical axis 135. That is, when the front view (FIG. 70 (a)) looks from the direction of the optical axis 135, the convex mirror 134 looks rectangular, and the first screw The fixed portion 136 is configured to be the convex mirror closest to the front side with the "and optical axis 135" The point below 35mm (Figure 70 (a) ix), and the eccentric distance from the optical axis 135 to the center of the screw hole 13611 is the shortest on this bottom. The allowable range of the eccentric distance will be described later. The first screw fixing portion 136 utilizes a convex mirror mounting mechanism (first reflecting portion mounting mechanism) fixed to the image display device. 4 40, a push ring 139W, and a nut 13 are positioned in the plane perpendicular to the optical axis 135 'of the convex mirror 134 (Pivot (Rotation axis) is fixed to the mounting surface of the convex mirror mounting mechanism 14. By using the pivot fixing, the degrees of freedom of the convex mirror 134 are all fixed except for the rotation in the direction of the push screw 139 inserted into the screw hole 136H. Because of the pivot Fixing, convex mirror Anpei mechanism 丨 40 and up to the screw hole 136H of the first screw fixing part 136 are determined by the push-pull screw 139 to determine the shape of the hole (push shape), and the push-screw 139 is installed through the convex surface. After the mechanism 140 passes through the screw hole 136H, it is locked using, for example, a washer 139 and a cap 139N. By fixing the convex mirror mounting mechanism 14 to the screw hole 136} 1 of the first screw fixing portion 136, Taper shape, may be fixed pivot exact Ding after finished screws, screws Shu taper 39 of the push pull eight remain inside the mounting mechanism 140 of the convex mirror, from the convex mirror mounting mechanism "Ο projecting knife

五、發明說明(83) 出之部分用墊圈139W、螺帽139N固定。 相對於這種第一螺絲固定部136,第二螺絲固定部137 、、第三螺絲固定部138分別設置於圖70(a)之凸面鏡134正 視圖之左邊、右邊,使得用線段連接第二螺絲固定部丨37 之中心點、第二螺絲固定部1 3 8之中心點以及凸面鏡頂點 iMP而成之等邊三角形之面積儘量變大。 這些第二螺絲固定部137、第三螺絲固定部ι38各自 使用直螺絲1 4 1保持成相對於影像顯示裝置之凸面鏡安裳 機構(分別為第二反射部安裝機構、第三反射部安裝機構) 二之*安裝面滑動。保持成滑動意指凸面鏡134熱膨脹•熱 ,細時,使得第二螺絲固定部137、第三螺絲固定部138 各自沿著凸面鏡安裝機構丨42之安裴面偏移。 艘2於二=成滑動,第二螺絲固定部137之螺絲孔137H 秘f絲孔138H之孔徑都設成比直螺絲141之螺絲徑大,又 增大凸面鏡安裝機構丨42之安裝面,保牲與 保持和第二螺絲固定部1 3 7、第二蟬岭㈤α &quot; ,使用例如墊圈141w或螺帽141N&lt; =㈣孔137H(138H) 熱收縮之情況以沿著凸面鏡安裝機H面鏡134熱膨服· 鏡安裝機構U2之安裝面和螺/固?1該滑動,在凸面 兩亜^iπ 疋部1 3 7 ( 1 36 )之間按照 需要设置由潤滑劑構成之潤滑層。 如以上之說明所示,利用第—〜第三螺絲固定部136〜 1 3 8將凸面鏡1 3 4以3點固定保持於旦&lt; 卞付於衫像顯示裝置以圖謀凸5. Description of the invention (83) The part shown in (83) is fixed with a washer 139W and a nut 139N. With respect to the first screw fixing portion 136, the second screw fixing portion 137 and the third screw fixing portion 138 are respectively provided on the left and right sides of the front view of the convex mirror 134 in FIG. 70 (a), so that the second screw is connected by a line segment. The area of the center point of the fixing part 37, the center point of the second screw fixing part 1 38, and the equilateral triangle formed by the apex of the convex mirror iMP should be as large as possible. Each of the second screw fixing portion 137 and the third screw fixing portion ι38 is held with respect to the convex mirror mounting mechanism of the image display device using straight screws 1 4 1 (the second reflecting portion mounting mechanism and the third reflecting portion mounting mechanism, respectively).二 之 * The mounting surface slides. Keeping sliding means that the convex mirror 134 is thermally expanded and heated. When thin, the second screw fixing portion 137 and the third screw fixing portion 138 are shifted along the surface of the convex mirror mounting mechanism 42. The ship 2 slides in two. The screw holes 137H and 138H of the second screw fixing part 137 are set larger than the screw diameter of the straight screw 141, and the mounting surface of the convex mirror mounting mechanism 丨 42 is increased. The holder and the second screw fixing portion 1 3 7, the second cicada ridge α &quot; use, for example, a washer 141w or a nut 141N &lt; ㈣㈣137H (138H) heat shrinkage condition to install the machine H mirror 134 thermal expansion · The mounting surface of the mirror mounting mechanism U2 and the screw / solid lens 1 should be slid, and a lubricating layer composed of a lubricant is provided between the two convex surfaces 3iπ 疋 1 1 7 (1 36) as required. As shown in the above description, the convex mirror 1 3 4 is fixedly held at 3 points by the first to third screw fixing portions 136 to 1 3 8 &lt; 卞 is attached to the shirt image display device to plan the convexity

496999496999

鏡1 3 4之溫度變化對ϋ上&gt; 、 ▲ ι 5Τ汞工1乐本貫^例1 8之特徵。說明 /JDL度變化之凸面鏡1 3 4之動作如下 圖71係表示常溫下之凸面鏡134因溫度變化而熱膨脹 之情況之圖。對於和圖70相同之符號表示相同之構造。 圖71重宜表不#溫下之凸面鏡134和自常溫開始溫升而 熱膨脹之凸面鏡134’。無記號「,」之符號表示凸面鏡134 之構成兀件、,严加了記號「’」之符號表示熱膨脹之凸面 鏡134之構成元件。 在圖7 1 (a ),因第一螺絲固定部丨3 6樞軸固定對於光 135之面内位置,成為應力變形之不動點,熱膨脹所引起 之形狀變化之應力作用於凸面鏡丨34之其他部分。此時, 因第一螺絲固定部1 3 Θ以既定之偏心距離設置於光軸1 3 近’可將光轴1 3 5之偏移抑制成最低限。 寸 而,因溫度變化而轉為熱膨脹時發生之應力被 保持成滑動之第二螺絲固定部丨37、第三螺絲固定部、成 偏移。圖7 1 (b)係放大了常溫下之第三螺絲固定部丨3 8之 線)和最大熱膨脹時第三螺絲固定部138,(實線)之圖 虛 如上述所示,和直螺絲1 4 1之螺絲徑相比,因第二 絲固定部138之螺絲孔138H(137H)之孔徑製成較大,=螺 螺絲固定部1 3 8沿著凸面鏡安裝機構1 4 2之安裝面滑動胃— 面鏡1 34之前面1 34F在常溫下和熱膨脹後並形狀相 ’凸 ^的眷 化,可抑制影像顯示裝置對於溫度變化之光學性〜 化。當然,發生熱收縮也可一樣的思考。 心The temperature change of the mirror 1 3 4 has the following characteristics: ▲ 5 5 Mercury Worker 1 Le Ben Guan ^ Example 18 features. Explanation The operation of the convex mirror 1 3 4 with a change in the degree of / JDL is as follows. FIG. 71 is a diagram showing the thermal expansion of the convex mirror 134 at normal temperature due to temperature changes. The same symbols as those in FIG. 70 indicate the same structure. FIG. 71 shows the convex mirror 134 under the temperature and the convex mirror 134 'that thermally expands from a temperature rise. The symbol without the symbol "," indicates the constituent elements of the convex mirror 134, and the symbol with the symbol "'" strictly indicates the constituent elements of the thermally expanded convex mirror 134. In Fig. 7 (a), the position of the first screw fixing part 丨 36 in the plane of the light 135 becomes a fixed point of stress deformation, and the stress of the shape change caused by thermal expansion acts on the other of the convex mirror 34 section. At this time, since the first screw fixing portion 1 3 Θ is set near the optical axis 1 3 at a predetermined eccentric distance, the deviation of the optical axis 1 3 5 can be suppressed to a minimum. In addition, the stress generated when the temperature is changed to thermal expansion due to a change in temperature is maintained as the sliding second screw fixing portion 37 and the third screw fixing portion are offset. Fig. 7 1 (b) is an enlarged view of the third screw fixing portion at room temperature (the line of the third screw) and the third screw fixing portion 138 at the maximum thermal expansion (the solid line) is as shown above, and the straight screw 1 Compared with the screw diameter of 41, the diameter of the screw hole 138H (137H) of the second wire fixing portion 138 is made larger, = the screw screw fixing portion 1 3 8 slides the stomach along the mounting surface of the convex mirror mounting mechanism 1 4 2 — The front surface 1 34F of the front mirror 1 34 is shaped at a normal temperature and after thermal expansion, and can be shaped in a convex shape, which can suppress the optical properties of the image display device against temperature changes. Of course, the same thought can be given to the occurrence of heat shrinkage. heart

由圖7 1 ( c )得知,螺絲According to Figure 7 1 (c), the screw

2103-3823-PF ; AHDDUB.ptd 第87頁 496999 五、發明說明(85) 絲徑之相對大小只要依據影像顯示裝置之溫度規格,由膨 脹至最大時之螺絲孔138H,及收縮至最小時之螺絲孔138H, 之挪移位置關係(偏移量)決定即可。螺絲孔1 3 7H和直螺絲 1 4 1之螺絲徑之相對大小也可一樣的決定。 此外,第一螺絲固定部1 3 6與凸面鏡頂點1 3 5 P之偏心 距離例如可如下所示決定。圖72係用以說明凸面鏡1 34以 偏心距離EXC之第一螺絲固定部為中心轉動時凸面鏡頂點 1 3 5 P之偏差角△( Θ )之圖。和圖7 0相同之符號係相同之構 成元件。 因利用第一螺絲固定部1 3 6樞轴固定凸面鏡1 3 4,凸面 鏡134之凸面鏡頂點135P之位置也由第一螺絲固定部136決 定。因此,在影像顯示裝置之組立製程,在將第一螺絲固 定部136樞軸固定時發生凸面鏡頂點135P之偏差角△( 0 ) 〇 即,如圖72 (a)所示,以自凸面鏡頂點135P只偏心了 偏心距離EXC之螺絲孔136H為中心,凸面鏡134只轉動角度 (9時因組立誤差而發生凸面鏡頂點1 35P在鉛垂方向之偏差 角△( 0 )。由此思考,如由凸面鏡1 34之大小或在組立製 糕之轉動誤差0之可調整範圍將第一螺絲固定部1 36之偏 心距離EXC決定成偏差角△ ( Θ )位於容許範圍即可。 現在,在圖72(a),可求得光軸135之偏差角△( Θ)為 △ ( Θ )= EXC · [1 — cos( 0 · ΤΓ/180)]。依據此式,例如 設偏心距離EXO2Omm時之轉動誤差Θ和偏差角△( 0 )之關 係如圖7 2 (b )所示。橫軸、縱軸各自係轉動誤差Θ、偏差2103-3823-PF; AHDDUB.ptd Page 87 496999 V. Description of the invention (85) The relative size of the wire diameter is based on the temperature specification of the image display device, from the screw hole 138H when it expands to the maximum, and when it shrinks to the minimum. The position (movement) of the screw hole 138H can be determined. The relative sizes of the screw diameters of the screw holes 1 3 7H and the straight screws 1 4 1 can also be determined in the same way. The eccentric distance between the first screw fixing portion 1 3 6 and the convex mirror vertex 1 3 5 P can be determined as follows, for example. Fig. 72 is a diagram for explaining the deviation angle Δ (Θ) of the vertex 1 3 5 P of the convex mirror when the convex mirror 1 34 is rotated around the first screw fixing portion of the eccentric distance EXC as a center. The same reference numerals as those in Fig. 70 indicate the same constituent elements. Since the convex mirror 1 3 4 is pivotally fixed by the first screw fixing portion 1 3 6, the position of the vertex 135P of the convex mirror of the convex mirror 134 is also determined by the first screw fixing portion 136. Therefore, in the assembly process of the image display device, the deviation angle Δ (0) of the convex mirror apex 135P occurs when the first screw fixing portion 136 is pivotally fixed, that is, as shown in FIG. 72 (a), the self-convex mirror apex 135P is used. Only the eccentric distance of the screw hole 136H of the eccentric distance is taken as the center, and the convex mirror 134 only rotates at an angle (9 o'clock due to the assembling error of the convex mirror, the deviation angle △ (0) of the convex mirror 35P in the vertical direction. Consider this, for example, by the convex mirror 1 The size of 34 or the adjustable range of the rotation error of the assembled cake is 0. The eccentric distance EXC of the first screw fixing portion 1 36 is determined so that the deviation angle △ (Θ) is within the allowable range. Now, in Fig. 72 (a) , The deviation angle △ (Θ) of the optical axis 135 can be obtained as △ (Θ) = EXC · [1 — cos (0 · ΤΓ / 180)]. According to this formula, for example, the rotation error Θ and The relationship between the deviation angle △ (0) is shown in Fig. 7 2 (b). The horizontal axis and vertical axis are respectively rotation errors Θ and deviations.

2103-3823-PF ; AHDDUB.ptd 第88頁 496999 五、發明說明(86) 角△( Θ ) 〇 例如,設轉動誤差(9之可調整範圍為2deg,偏差角△ (0)之最大容許值為0.1 mm時,由圖72(b)之曲線,因對於 Θ =2deg,△(ehO.OZmm,將第一螺絲固定部136製成偏 心距離EXC = 20mm之凸面鏡134,具有5倍以上之充分之組立 餘裕。 此外,,使得偏心距離EXC二0,即令螺絲孔136H之中 心和凸面鏡頂點1 35P —致也可。當然在此情況,因該凸面 鏡頂點1 35P之偏差角△ ( Θ )未發生,能以更理想之狀態保 持凸面鏡1 3 4。 又,在圖7 0,用螺絲固定成第一〜第三螺絲固定部1 3 6 〜1 3 8比凸面鏡安裝機構1 4 0、1 4 2接近後面1 3 4 R側,其理由 係利用凸面鏡安裝機構1 4 0、1 4 2保持高精度形成之前面 134F之形狀及位置,使得因溫度變化而發生之凸面鏡134 之應力變成後面1 3 4 R之形狀變化。因而,可抑制前面1 3 4 ρ 之形狀變化。 以上說明了採取溫度變化對策之凸面鏡丨34,但是其 形狀未限定為圖70所示的’例如圖73所示之凸面鏡丨^ 〇 圖73係採取溫度變化對策之凸面鏡134之構造變化圖 ,都是正視圖。和圖70相同之符號係相同或相 在圖73(a),替代第一螺絲固定邱 心冲1 3 6,形成凹都〗4 4 ,使得將圓柱支撐體145之曲面嵌入m“ ll 1 a八凹部144。此時,因需 要將凹部144壓在圓柱支撐體145,右阳μ彳η —丄 在凹部144之左右設置2103-3823-PF; AHDDUB.ptd Page 88 496999 V. Description of the invention (86) Angle △ (Θ) 〇 For example, set the rotation error (the adjustable range of 9 is 2deg, the maximum allowable value of the deviation angle △ (0) When it is 0.1 mm, from the curve of Fig. 72 (b), for Θ = 2deg, △ (ehO. OZmm), the first screw fixing portion 136 is made into a convex mirror 134 with an eccentric distance EXC = 20mm, which is more than 5 times sufficient. In addition, make the eccentric distance EXC 20, so that the center of the screw hole 136H and the convex mirror vertex 1 35P may be the same. Of course, in this case, the deviation angle △ (Θ) of the convex mirror vertex 1 35P does not occur. It is possible to hold the convex mirror 1 3 4 in a more ideal state. In FIG. 70, the first to third screw fixing portions 1 3 6 to 1 3 8 are fixed with screws than the convex mirror mounting mechanism 1 4 0, 1 4 2 The reason for approaching the rear 1 3 4 R side is to use the convex mirror mounting mechanism 1 4 0, 1 4 2 to maintain the shape and position of the front surface 134F with high accuracy, so that the stress of the convex mirror 134 due to temperature changes becomes the rear 1 3 4 The shape of R is changed. Therefore, it is possible to suppress the shape change of the previous 1 3 4 ρ. The convex mirror 34 which takes measures against temperature changes has been described above, but its shape is not limited to that shown in FIG. 70, for example, the convex mirror shown in FIG. 73. ^ ^ FIG. 73 is a structural change diagram of the convex mirror 134 taken with measures against temperature changes. It is a front view. The same symbols as those in FIG. 70 are the same or correspond to those in FIG. 73 (a). Instead of fixing the first screw Qiu Xinchong 1 3 6 to form a concave capital 4 4, the curved surface of the cylindrical support 145 is embedded in m ”ll. 1 a eight recesses 144. At this time, because the recesses 144 are pressed against the cylindrical support 145, the right sun μ 彳 η — 丄 is set around the recesses 144.

第89頁Chapter 89

496999 五、發明說明(87) 將凸面鏡134接向錯垂下方之彈菁143。 在圖73(b) ’替代第一螺絲固定部丨36,形成凸部146 ,使得凸部146後入V槽支撐體丨47。和圖73 (a) 一樣,因需 要將凸部146壓在V槽支撐體147,在凸部146之左右設置將 凸面鏡134接向錯垂下方之2支彈簧143。在此情況,若使 得凸面鏡頂點1 3 5 P位於圓弧形之凸部丨4 6之中心,在圖7 2 所說明之偏心距離變成〇,能以更理想之狀態保面鏡 134 ° 又,如圖73(c)所示,使得在和設置了第一螺絲固定 部1 36之一邊相向之上邊設置第二螺絲固定部丨3了、第三螺 絲固定部138也可,得到和圖70之情況一樣之效果。 此外,因也設想令影像顯示裝置上下顛倒的使用之情 況(參照實施例17),此時如圖74之正視圖所示,在上下颠 凸面鏡134,在第一螺絲固定部136之左右之彈箬固定 4146A、146B各自固定2個彈簧143之一端,將,4 另-端都固定w使得用彈簀143拉凸面鏡134也可 此時,彈簧1 4 3之1點固定之位 ⑽高,使得謂㈣於凸面 136^T ^ 143 ^ ^ t ^ ^ - ^ ;,,; 之應力,可如间弟一螺絲固定部丨36之可靠性。 如以上所不,右依據本實施例丨8,因使厶 樹脂製造凸面鏡,得到可容易的 π B 成 價格大量生產之效果。 升/成其形狀,而且能以低496999 V. Description of the invention (87) The convex mirror 134 is connected to the elastic 143 below the staggered down. In Fig. 73 (b) ', instead of the first screw fixing portion 36, a convex portion 146 is formed so that the convex portion 146 enters the V-groove support body 47. As in Fig. 73 (a), since the convex portion 146 is pressed against the V-groove supporting body 147, two springs 143 are provided on the left and right sides of the convex portion 146 to connect the convex mirror 134 to the lower side. In this case, if the apex 1 3 5 P of the convex mirror is located at the center of the convex portion 丨 4 6 of the arc, the eccentric distance illustrated in FIG. 7 2 becomes 0, and the mirror can be maintained in a more ideal state at 134 °. As shown in FIG. 73 (c), the second screw fixing portion 3 and the third screw fixing portion 138 can be provided on the side opposite to one of the first screw fixing portions 136, and the same as in FIG. The same effect. In addition, it is also assumed that the image display device is used upside down (refer to Example 17). At this time, as shown in the front view of FIG.箬 Fixing 4146A and 146B each fix one end of the two springs 143, and the other 4 ends are fixed w so that the convex mirror 134 can be pulled by the spring 143. At this time, the fixed point of the spring 1 4 3 is high, so that It is said that the stress on the convex surface 136 ^ T ^ 143 ^ ^ t ^ ^-^; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 36, and, 36, have a high reliability, can be used as stress. As described above, according to this embodiment, right, since the convex lens is made of 厶 resin, the effect of easily mass-producing π B can be obtained. Rise / form into its shape, and

2103-3823-PF ; AHDDUB.ptd 第90頁 496999 五、發明說明(88) 又’若依據本實施例18,因使得在凸面鏡丨34設置在 凸面鏡1 34之正面下邊以既定之偏心距離EXC設於凸面鏡頂 點1 3 5 P附近並樞軸固定之第一螺絲固定部丨3 6、在凸面鏡 1 34之正面左邊保持成滑動之第二螺絲固定部1 37以及在凸 面鏡1 34之正面右邊保持成滑動之第三螺絲固定部1 38,抑 制因溫度變化所引起之熱膨脹•熱收縮而發生之凸面鏡 1 34之_形狀變形或凸面鏡頂點1 35P之偏移,得到可防止影 像顯示裝置之光學性能惡化之效果。 此外’若依據本實施例丨8,因凸面鏡安裝機構丨4〇及 第一螺絲固定部136利用推拔螺絲139固定,而且使得具有 推拔形狀和推拔螺絲139之推拔部分一致之孔,得到可確 實進行樞軸固定之效果 此外,右依據本實施例丨8,因使得在凸面鏡丨34設置 在凸面鏡1 3 4之ιΤ_面下;嘉丨ν卩$中 ^ F逯以既疋之偏心距離EXC設於凸面鏡 頂點1 3 5 P附近之凹都1 “ d念甘# 邛144將其曲面嵌入凹部144之圓柱支 按體1 4 5、在凹部144夕产亡久自m + /144之左右各自固定其一端並具有拉力之 2個弹黃1 4 3、保持成湣翻夕铉-碑w #、、典知—结- 成月動之弟一螺絲固定部1 3 7以及保持 成,月動之第二螺絲固定部1 3 8,永生 埶膨胳•勒^ 抑制因溫度變化所引起之 …、私脹 熱收縮而發生之凸面镑1 q /1 ^ 乏他级^ ^ 凸面鏡134之形狀變形或光軸135 之偏移,付到可防止影傻顯示梦罢 果。 〜傢”、、貞不衣置之光學性能惡化之效 此外,若依據本實施例18,因使得包括直一端久自因 定於第一螺絲固定部136之左右,^括,、鳊各自固 點而具有拉力之2支彈簧143,纟 '固定於共同之- 〜像顯示裝置上下顛倒2103-3823-PF; AHDDUB.ptd Page 90, 496999 V. Description of the invention (88) Also 'if according to this embodiment 18, because the convex mirror 丨 34 is set under the front of the convex mirror 1 34 with a predetermined eccentric distance EXC set The first screw fixing portion which is pivotally fixed near the vertex of the convex mirror 1 3 5 P. 3 6. The second screw fixing portion 1 37 which slides on the left side of the front side of the convex mirror 1 34 and the right side of the front side of the convex mirror 1 34. The sliding third screw fixing portion 1 38 suppresses thermal deformation and thermal contraction caused by temperature change of the convex mirror 1 34_ shape deformation or convex mirror vertex 1 35P shift, thereby preventing the optical performance of the image display device from being deteriorated The effect. In addition, 'if according to this embodiment 丨 8, because the convex mirror mounting mechanism 丨 40 and the first screw fixing portion 136 are fixed by the push screw 139, and a hole with the same shape as the push portion of the push screw 139 is made, Obtain the effect that the pivot can be fixed. In addition, according to this embodiment, the right side, because the convex mirror 34 is disposed under the surface of the convex mirror 1 3 4; Jia 丨 ν 卩 $ 中 ^ F 中The eccentric distance EXC is set at the concave center near the apex of the convex mirror 1 3 5 P 1 "念念 甘 # 邛 144 The curved surface is embedded in the cylindrical support 144 of the concave portion 144. The left and right sides are respectively fixed at one end and have two elastic yellow 1 4 3, which is kept as a 湣 turning evening 铉-Monument w # 、、 典 知 — 结-Cheng Yuedong's younger brother, a screw fixing part 1 3 7 and holding , The second screw fixing part of the moon moving 1 3 8 , Eternal life expansion. Le ^ Inhibit the convex surface caused by the temperature change ..., convex thermal contraction 1 q / 1 ^ lack of other grade ^ ^ convex mirror 134 Deformation of the shape or shift of the optical axis 135 can prevent the shadow silly from showing the dream. ~ Home "、, Zhen In addition, according to the eighteenth embodiment, the performance of the optical performance of the cloth is deteriorated. Since the straight end is fixed to the first screw fixing portion 136, the brackets 鳊 and 鳊 each have a fixing point of 2 due to their fixed points. Support spring 143, 纟 'fixed to the common-~ like the display device upside down

496999496999

後利用之情況,可向彈簧丨43分散集中於第一螺絲固定部 1 3 6之應力,可提高第一螺絲固定部丨3 6之可靠性。 此外’若依據本實施例1 8,因使得將螺絲固定部丨36 、137、138之中係凸面鏡134之反射面之前面1341?保持和 凸面鏡安裝機構140、142接觸,得到可高精度的配置凸面 鏡134之反射面之效果。 此外,在以上之說明,將凸面鏡丨34設為繞光軸丨35旋 轉對稱之形狀,但是本實施例丨8也可應用於非旋轉對稱= 合成樹脂製之構成元件。 又,第二螺絲固定部丨37、第三螺絲固定部丨38未各限 定為1個,使得設置2個以上也可。 實施例1 9 接著實施例1 8,本實施例1 9也說明採用了溫度變 策之影像顯示裝置。 圖75係表示本發明之實施例丨9之影像顯示裝置之構造 圖’省略照明光源系或凸面鏡以後之構造之圖示。 &amp; 在圖75,148係微反射鏡裝置(傳送裝置、影像資料賦 與部),149係各實施例之折射光學透鏡,15〇係折射光學 透鏡149之光軸,151係設置微反射鏡裝置148或折射: 透鏡149等光學系之光學底座(保持機構)。光學底座^^相 當於圖4 3所示之保持機構7 4 (參照實施例丨〇 ),將 與 透鏡149或圖上未示之光路彎曲反射鏡•凸面鏡保持成一子 體化,而且在此也保持微反射鏡裝置148。 、 152、153係固定於光學底座151並將折射光學透鏡149In the case of subsequent use, the stress concentrated on the first screw fixing portion 136 can be dispersed to the spring 丨 43, and the reliability of the first screw fixing portion 316 can be improved. In addition, if according to the embodiment 18, the front surface 1341 of the reflecting surface of the convex mirror 134 among the screw fixing parts 36, 137, and 138 is kept in contact with the convex mirror mounting mechanisms 140 and 142, and a highly accurate configuration can be obtained. The effect of the reflective surface of the convex mirror 134. In addition, in the above description, the convex mirror 34 is set to have a rotationally symmetrical shape about the optical axis 35, but this embodiment 8 can also be applied to a component made of non-rotational symmetry = synthetic resin. The second screw fixing portion 37 and the third screw fixing portion 38 are not limited to one each, so that two or more may be provided. Embodiment 19 Following Embodiment 18, this embodiment 19 also describes an image display device using a temperature change. Fig. 75 is a diagram showing the structure of an image display device according to the embodiment 9 of the present invention; &amp; In Figure 75, 148 series of micro-mirror devices (transmission device, image data application unit), 149 series of refractive optical lenses of each embodiment, 150 series of optical axes of refractive optical lens 149, and 151 series of micro-mirrors Device 148 or refraction: Optical base (holding mechanism) of optical system such as lens 149. The optical base ^^ is equivalent to the holding mechanism 7 4 shown in FIG. 4 (refer to Example 丨 0), and is held as a unitary body with the lens 149 or an optical path bending mirror and convex mirror not shown in the figure. Hold the micro-mirror device 148. , 152, 153 are fixed to the optical base 151 and the refractive optical lens 149

五、發明說明(90) 滑動支撐之2支滑動支撐桎。杯 撐柱152、153上向光軸15〇之方向滑動。 社 154係固定於光學底座151 折射光學透鏡149下部之安/板上='板,155係固定於 雷、、a a * a , 辰板’ 1 5 6係利用自圖上未示之 =源鉍加之直流之控制電壓改變光 ;f::;安裝板154、155都位於滑動支擇二動支 ^ 之間,使付在相向之面剛好夾住壓電it件156,各 自和壓電元件1 5 6保持接觸。 自微反射鏡裝置1 48射出$忠,止旦/ a - 光學透鏡149後,如在4:=(_先景:;象信號)經由折射 你合只轭例所不,依次往圖上未示之 $面鏡、+面鏡以及銀幕。此時,例如在常溫下初期調聲 :i τ t銀幕之影像之焦點之情況,由於影像顯示裝置之 使用%丨兄之溫度變化,發生影像之焦點失準。 該焦點失準係因折射光學透鏡1 49内之各透鏡群及各 透鏡之間隔、以及光學底座151或光學底座151上之各光學 糸構成元件之溫度分布•線膨脹率之差異而發生的,因在 光軸150一方向之熱膨脹•熱收縮之程度各自相異,光學系 各構成7C件之相對位置關係偏移而發生的。特別有問題的 係自微反射鏡裝置148至折射光學透鏡149為止之光軸15〇 方向之長度LG之變化,由數值分析等之結果得知對於焦 點失準影響大的因f。有二個要因,一是因透鏡本身之溫 度k化,成為最佳焦點之L〇之值變化,最佳值[〇變成l〇a ,另一要因係因物理上之溫度變化,L〇值本身變化,物理 距離L0變成L0B。在此,若溫度變化了也保持叫=_之關V. Description of the invention (90) Two sliding support 桎 of the sliding support. The cup stays 152 and 153 slide toward the optical axis 15 °. The 154 series is fixed on the optical base 151 and the bottom of the refracting optical lens 149 is mounted on the plate / plate = 'plate, the 155 series is fixed on the thunder, aa * a, and the celestial plate. In addition, the DC control voltage changes the light; f ::; the mounting plates 154 and 155 are located between the sliding support two moving supports ^, so that the piezoelectric it member 156 is sandwiched between the opposing faces, and the piezoelectric device 1 5 6 Keep in touch. From the micro-mirror device 1 48, $ Zhong, Zhi Dan / a-After the optical lens 149, as shown in 4: = (_ 先 景:; Shown $ face mirror, + face mirror and screen. At this time, for example, in the case of initial adjustment of the focus of the image on the screen of i τ t at room temperature, the focus of the image is misaligned due to the temperature change of the use of the image display device. This focus misalignment occurs due to the differences in the lens group and the interval between the lenses in the refractive optical lens 149, and the difference in the temperature distribution and linear expansion rate of the optical base 151 or the optical frame components on the optical base 151. The degree of thermal expansion and thermal contraction in one direction of the optical axis 150 are different, and the relative positional relationship of the 7C components of the optical system is shifted. Particularly problematic is the change in the length LG in the direction of the optical axis 15o from the micro-mirror device 148 to the refractive optical lens 149. From the results of numerical analysis and the like, it is known that the factor f has a large effect on the focus misalignment. There are two factors. One is that the value of L0, which becomes the best focus, changes due to the temperature of the lens itself. The optimal value [0 becomes 10a, and the other factor is the change in physical temperature, L0. Itself changes, the physical distance L0 becomes L0B. Here, if the temperature changes, keep calling = _ 之 关

496999 五、發明說明(91) 係,就不會發生焦點失準。可是在L〇 A关LOB之情況,發生 焦點失準。 為了補償該長度LOA — LOB之變化,在圖75使得設置可 利用控制電壓調整光軸15〇方向之長度之壓電元件156。 即,在對壓電元件1 5 6施加了控制電壓之起始偏置之 狀態進行最初之焦點調整。然後,按照影像顯示裝置之使 用環境之溫度變化調整對壓電元件丨5 6施加之控制電壓。 照這樣,改變壓電元件156之光軸150方向之長度,令 和壓電元件1 5 6保持接觸之安裝板1 5 4、1 5 5間之距離變化496999 V. Description of the invention (91) system, there will be no focus misalignment. However, in the case of LOA off LOB, focus misalignment occurred. In order to compensate for the change in the length LOA-LOB, a piezoelectric element 156 is provided in Fig. 75 so that the length in the direction of the optical axis 15 can be adjusted by the control voltage. That is, the initial focus adjustment is performed in a state where the initial bias of the control voltage is applied to the piezoelectric element 156. Then, the control voltage applied to the piezoelectric element 56 is adjusted according to the temperature change of the use environment of the image display device. In this way, by changing the length in the direction of the optical axis 150 of the piezoelectric element 156, the distance between the mounting plate 1 5 4 and 1 5 5 which is in contact with the piezoelectric element 1 5 6 is changed.

時,折射光學透鏡149就沿著光軸1 50在滑動支撐柱丨52、 1 5 3上滑動。 例如’在因溫度變化而長度L〇 A _ l〇b變成比起始調整 狀態長之情況,減少控制電壓而令壓電元件156之長度變 短。因而’折射光學透鏡1 4 9在滑動支撐柱1 5 2、1 5 3上滑 動’因沿著光軸1 5 0方向接近微反射鏡裝置丨48,可使受到 度k化影響之長度回到起始調整狀態。 反之,在長度L0A —L0B變短之情況,增加控制電壓而 令壓電元件156之長度變長。因而,折射光學透鏡149在At this time, the refractive optical lens 149 slides on the sliding support posts 52, 1 5 3 along the optical axis 1 50. For example, when the length L0 A — 10b becomes longer than the initial adjustment state due to a change in temperature, the control voltage is reduced to shorten the length of the piezoelectric element 156. Therefore, the 'refractive optical lens 1 4 9 slides on the sliding support column 1 5 2, 1 5 3', because the micro-mirror device is approached along the optical axis 1 50 direction, 48, the length affected by the degree k can be returned to Initial adjustment status. Conversely, when the lengths L0A-L0B become shorter, the control voltage is increased to make the length of the piezoelectric element 156 longer. Therefore, the refractive optical lens 149 is

柱152、153上滑自,因沿著光轴150方向離開微 ^ 1 4 8,可使文到溫度變化影響之長度L 〇回到起 在囷75之構仏,稭者調整對壓電元件15Θ之控 電反可補償對焦點失準影鲤 _ ^ 、、w 干p曰大之長度L0之變化,可調整 /皿度艾化引起之焦點失準Columns 152 and 153 slide upwards. As they move away from the micro axis along the direction of the optical axis 150, the length L of the effect of temperature change can be returned to the structure at 囷 75. The control of 15Θ can compensate for the misalignment of the focus point _ ^,, w, and the change in length L0, which can be adjusted / adjusted.

2103-3823-PF : AHDDUB.ptd 第94頁 496999 五、發明說明(92) 一 又’在對於焦點失準之溫度變化對策上也想到圖76所 示之構U。圖7 6係表示本發明之實施例1 9之影像顯示裝置 之構造圖。和圖70相同之符號係相同之構成元件。省略照 明光源糸或凸面鏡以後之構造之圖示。 乂在圖76 ’ 157係固定於光學底座151上之齒輪支撐柱, 係卸用包含了馬達等之齒輪機構157G精密且在光軸丨5〇方 向之背隙小的令折射光學透鏡丨49往光軸丨5〇方向移動的。 1 58、1 59係溫度感測器,溫度感測器丨58感測折射光 學透鏡149之鏡筒溫度T1,溫度感測器159感測光學底座 151之溫度T2。 又’ 1 6 0係將光學底座丨5 1加熱·冷卻之加熱冷卻器, 泊耳帖tl件係其代表例。} 6丨係cpu等控制單元,按照溫度 T1、T 2進行齒輪機構1 5 7 G或加熱冷卻器1 6 〇之回授控制。 在圖75利用壓電元件156調整長度[〇儿—l〇b ,但是在 圖76利用齒輪機構157G令折射光學透鏡149向光軸15〇方向 移動,調整長度LOA—L0B。照這樣做,也得到和圖75之情 況一樣之效果。 又’在圖7 6 ’特徵點在於利用溫度感測器丨5 8、丨5 9 各自即時感,折射光學透鏡149、光學底座151之溫度Tl、 T2後,控制單元161按照這些溫度n、了2進行齒輪機構 15 7G、加熱冷卻器16〇之回授控制。 現在’設折射光學透鏡丨4 9之鏡筒之線膨脹率、光學 底座之線膨脹率各為Pi、Ρ2,設自其光入射端至齒 輪支撐柱157為止之在光軸15〇方向之折射光學透鏡149之2103-3823-PF: AHDDUB.ptd Page 94 496999 V. Description of the Invention (92) I ’m also thinking about the structure U shown in FIG. Fig. 76 is a diagram showing the structure of an image display device according to Embodiment 19 of the present invention. The same symbols as those in FIG. 70 are the same constituent elements. The illustration of the structure after the light source 糸 or the convex mirror is omitted.图 In Figure 76, 157 is a gear supporting column fixed on the optical base 151, and it is a 157G precision gear mechanism that includes a motor and other gear mechanisms and a small backlash in the direction of the optical axis. The 50 ° direction makes the refractive optical lens 49. The optical axis moves in the 50 direction. 1 58 and 1 59 series temperature sensors, the temperature sensor 58 detects the temperature T1 of the barrel of the refractive optical lens 149, and the temperature sensor 159 detects the temperature T2 of the optical base 151. Also, '1 60' is a heating cooler that heats and cools the optical base 5'1, and a Peltier element is a representative example. } 6 丨 is a control unit such as a CPU, which performs feedback control of the gear mechanism 15 7 G or the heating cooler 16 0 according to the temperatures T1 and T 2. In FIG. 75, the piezoelectric element 156 is used to adjust the length [0〇—10b, but in FIG. 76, the gear mechanism 157G is used to move the refractive optical lens 149 in the direction of the optical axis 15o, and the length LOA-LOB is adjusted. In this way, the same effect as in the case of Fig. 75 is obtained. Also, in FIG. 7 6 ′, the characteristic point is that using the temperature sensors 丨 5 8 and 丨 5 9 to sense the real-time sense, refracting the temperatures T1 and T2 of the optical lens 149 and the optical base 151, the control unit 161 controls the temperature n, 2 Perform feedback control of gear mechanism 15 7G and heating cooler 160. Now, set the linear expansion coefficient of the lens barrel of 4 9 and the linear expansion coefficient of the optical base to Pi and P2 respectively. Set the refraction in the direction of the optical axis from the light incident end to the gear support column 157 Optical lens 149 of

496999 五、發明說明(93) 長度為L 1 ( L 0 + L1 = L 2 ),設在焦點初期調整時之折射光學透 鏡149、光學底座151之各溫度都是τ〇。 而’影像顯示裝置在使用環境下在其内部發生溫度斜 率,長度L 0變成L 0 B = L 0 + △ L 0時,設溫度感測器1 5 8、丨5 9 各自感測折射光學透鏡149、光學底座151之溫度為n、 T2(T1 =^T2)。此時可求得變化量,△[⑽二。· · (T2—TO) —LI · pi ·(Τ1_τ〇)。又,預先令控制單元l61 記憶對於透鏡鏡筒溫度71之焦點成為最佳之L〇值之 △ L0B。 巧制單元161計算該長度l〇之物理性變化量後, 控制單兀161調整齒輪機構丨57G,如光學焦點移動董 — △LOB變成零般調整L〇之長度。藉著這樣做,如抵消光 學焦點㈣量ALOA — (焦點補償量)般利用齒輪機構 157G向光軸15〇方向移動折射光學透鏡149,可和使用環境 下之溫度變化不相依的保持顯示於銀幕之影像之焦點。當 然,和壓電元件156 一樣以控制電壓令齒輪機構l57G動作田 ^,控制單元161自溫度感測器158、159輸入溫度以 二2時,不用齒輪機構以%調整長㈣,而 冷部器16〇將光學底座151加熱·〇ρ,利用光學底座ΐ5ι、,、 =f ^服•熱收縮控制長度L2也可。藉著這樣做,可控制 之溫度斜率,可和使用環境下之溫度變化: 相依的保持顯示於圖上未示之銀幕之影像之焦點。 此外,利用溫度感測器158、159、控制單元161以及496999 V. Description of the invention (93) The length is L 1 (L 0 + L1 = L 2), and the temperatures of the refractive optical lens 149 and the optical base 151 set at the initial adjustment of the focus are τ0. When the image display device has a temperature slope in the use environment, and the length L 0 becomes L 0 B = L 0 + △ L 0, the temperature sensors 1 5 8 and 5 9 are respectively set to detect refractive optical lenses. 149. The temperature of the optical base 151 is n, T2 (T1 = ^ T2). At this time, the amount of change can be obtained, △ [⑽ 二. (T2—TO) —LI • pi • (T1_τ〇). In addition, the control unit 161 is made to memorize in advance Δ L0B which is the optimal L0 value for the focal point of the lens barrel temperature 71. After the ingenuity unit 161 calculates the physical change amount of the length 10, the control unit 161 adjusts the gear mechanism 57G, and adjusts the length of L0 as the optical focus moving director ΔLOB becomes zero. By doing so, the gear mechanism 157G is used to move the refracting optical lens 149 in the direction of the optical axis 150 like the offset optical focus amount ALOA — (focus compensation amount), which can be displayed on the screen independently of the temperature change in the use environment The focus of the image. Of course, like the piezoelectric element 156, the gear mechanism 157G is actuated by the control voltage. When the control unit 161 inputs the temperature from the temperature sensors 158 and 159 to 2, the gear unit is not adjusted by%, and the cooler 160. The optical base 151 is heated by 〇ρ, and the optical base ΐ5ι, 、, = f ^ service • heat shrinkage control length L2 may be used. By doing so, the temperature gradient that can be controlled can be related to the temperature change in the use environment: keep the focus of the image displayed on a screen not shown in the figure dependently. In addition, the temperature sensors 158, 159, the control unit 161, and

496999 五、發明說明(94) 齒輪機構157G之溫度變化對策及利用溫度感測器158、ι59 、控制單元1 6 1以及加熱冷卻器丨6 〇之溫度變化對策只採用 其中一方也可,併用也可。 又溫度感測器1 58、1 59之數量未特別限定,一樣的加 熱冷卻器1 6 0之數量未限定,溫度感測器丨5 8、1 5 9及埶 冷卻器160之位置也未限定。 、此外 八要係影像顯示裝置之性能上未特別發生問題 之範圍,也想到利用加熱冷卻器16〇將折射光學透X鏡149加 熱·冷卻。 此外,將圖76之溫度感測器158、159、控制單元161 應用於圖75之壓電元件156也可。 此外’溫度感測器158、159所感測之溫度n、T2未必 反映影像之焦點,在控制單元161設置學習功能,利用該 子白功月b進行溫度變化對策也可。 調整者在某環境溫度T3下進行焦點初期調整 即 令496999 V. Explanation of the invention (94) The temperature change countermeasures of the gear mechanism 157G and the temperature change countermeasures using the temperature sensors 158, ι59, the control unit 1 6 1 and the heating cooler 丨 6 ○ can. The number of the temperature sensors 1 58 and 1 59 is not particularly limited. The number of the same heating cooler 1 60 is not limited. The positions of the temperature sensors 5 8, 1 5 9 and 埶 cooler 160 are also not limited. . In addition, it should be a range in which the performance of the image display device does not particularly cause problems. It is also thought that the refracting optical X-ray lens 149 is heated and cooled by a heating cooler 160. In addition, the temperature sensors 158 and 159 and the control unit 161 of FIG. 76 may be applied to the piezoelectric element 156 of FIG. 75. In addition, the temperatures n and T2 sensed by the 'temperature sensors 158 and 159 do not necessarily reflect the focal point of the image. A learning function is provided in the control unit 161, and it is also possible to take countermeasures against temperature changes using the sub-boiler month b. The adjuster performs the initial focus adjustment at a certain ambient temperature T3.

Km記憶此時之長度旧]13 著—樣的在某環境 胍度Γ4 (关T3 )下也進行焦點初期調整,令控 憶此時之長度[LG]T4。 H161 §己The length of Km memory at this time is old] 13 The same way, the initial focus adjustment is also performed under a certain environment guanidine degree Γ4 (off T3), so as to control the length [LG] T4 at this time. H161 § Self

藉此’控制單元161 自(T3、[L0]T3)、(T4、[L 焦點調整點將該2點直線插值,導出插值關係式。然1灸, 控制單元1 6 1用溫度感測器感測位於實際環境 ^ 裝置之任思之環境溫度Τχ後,由插值關係式求對於严产 5之=之長度[L0]TX後’用壓電元件156或齒輪::皿 補彳員長度L〇(焦點補償量)。With this, the control unit 161 interpolates the two points straight from the (T3, [L0] T3), (T4, [L focus adjustment points) to derive the interpolation relationship. Then 1 moxibustion, the control unit 1 6 1 senses with the temperature sensor After measuring the ambient temperature Tx of the device located in the actual environment ^, calculate the length for the strict production 5 = [L0] TX 'by using the interpolation relationship. After using the piezoelectric element 156 or the gear :: the length of the repairer L. (Focus compensation amount).

^yjyyy 五、發明說明(95) 個以L右Λ學習次數設為3次以上之11次(焦點調整點為3^ yjyyy V. Description of the invention (95) Set the number of learning times from L to right Λ to 11 times (focus adjustment point is 3

Si」上 度對應之11個最佳之長度之值和溫度之 關係導入插值關係式,焦點補償可更正 在該學習控制方士 $衿、、w 對靡户产、四&amp; 工 Η ,因用調整者之眼一對一的 :焦點之關係後令控制單元161學習該結果 5| 士 Τ I、目I » ,之焦點調整。此外,在此情況之溫度感測 益如可感測%境溫度般設於影像顯示裝置。 二卜’由於和上述學習控制方式-樣之理由,不是未 伤瓶一姑恶 酿度ΤΙ Τ2,而使得直接檢測顯示於影 ”、、不^ /之衫像之焦點後進行回授控制也可。 Θ系表示本發明之貫施例1 9之影像顯示裝置之構造 回。和圖75、76相同之符號係相同或相當之構成元件。 在圖7 7 1 1 6 2係各實施例之凸面鏡(投影光學裝置、反 ί邛)’ 1 6 3係平面鏡(實施例丨),i 6 4係銀幕(顯示裝置)。 過掃描顯示銀幕164上之顯示影像後,分割成影像顯示區 域=5和非影像顯示區域166。例如在l〇24 X 768 2Xga規格 自影像之上下左右各刪除丨2位元時,影像顯示區域丨6 5變 成1 0 00 X 744 ’非影像顯示區域166變成晝斜線之12位元寬 之帶。The relationship between the 11 best length values and temperature corresponding to "Si" is introduced into the interpolation relationship formula, and the focus compensation can correct the learning control formulas $ 、,, w for household properties, and four &amp; workers. The eye of the adjuster is one-to-one: the focus relationship causes the control unit 161 to learn the result 5 | In addition, the temperature sensing benefit in this case is set on the image display device as if it can sense the ambient temperature. Erbu ', because of the same reasons as the learning control method described above, is not an unharmed bottle of glutinous degree ΤΙ Τ2, so that the direct detection and display of the focus on the image of the shadow "and" ^ / shirt image "and the feedback control also Yes. Θ represents the structure of the image display device of Embodiment 19 of the present invention. The same symbols as in Figs. 75 and 76 are the same or equivalent components. Fig. 7 7 1 6 2 Convex mirror (projection optics, anti- 邛) '1 6 3 series flat mirror (Example 丨), i 6 4 series screen (display device). After scanning the display image on the screen 164, it is divided into image display area = 5 And non-image display area 166. For example, when the 1024 X 768 2Xga specifications are deleted from the top and bottom of the image and 2 bits each, the image display area 6 65 becomes 1 00 X 744 'the non-image display area 166 becomes a day diagonal 12-bit wide band.

又’ 167係小型反射鏡,168係CCD元件。小型反射鏡 167反射自平面鏡163向非影像顯示區域166投影之光,CCD 兀件1 6 8感測被小型反射鏡1 6 7反射之光後,向控制單元 161輸出自該光得到之焦點資料。 在此’控制微反射鏡裝置1 48之小反射鏡,例如使得It's a 167 series compact mirror and a 168 series CCD element. The small mirror 167 reflects the light projected from the flat mirror 163 to the non-image display area 166. After the CCD element 1 6 8 senses the light reflected by the small mirror 1 6 7, it outputs the focus data obtained from the light to the control unit 161 . Here, the small mirror of the micromirror device 1 48 is controlled, for example,

2103-3823-PF ; AHDDUB.ptd -- 第98頁 496999 五、發明說明(96) 用CCD元件168 —直感測相當於1位元顯示影像之光。此外 ’ CCD元件1 68之感光面和1 64之影像形成面配置於相對於 由折射光學透鏡149、凸面鏡162構成之投影光學系光路長 度相等之位置。 其次說明動作。 來自微反射鏡裝置148之光依次往折射光學透鏡丨49、 凸面鏡1 6 2、平面鏡1 6 3以及銀幕1 6 4,在影像顯示區域丨6 f 顯示影像。按照一樣之順序射入銀幕164之非影像顯示區 域166之1位元顯示影像之光被小型反射鏡〗67反射後 CCD 元件 168。2103-3823-PF; AHDDUB.ptd-page 98 496999 V. Description of the invention (96) Use CCD element 168 — Straight sensing light equivalent to 1-bit display image. In addition, the photosensitive surface of the CCD element 1 68 and the image forming surface of 1 64 are disposed at positions having the same optical path length as the projection optical system composed of the refractive optical lens 149 and the convex mirror 162. The operation will be described next. The light from the micro-mirror device 148 is sequentially directed to the refractive optical lens 49, the convex mirror 16, the flat mirror 16 3, and the screen 1 64, and the image is displayed in the image display area 6 f. The light of the 1-bit display image that is incident on the non-image display area 166 of the screen 164 in the same order is reflected by a small mirror 67 and a CCD element 168.

在CCD元件168參照CCD元件内之全像素後,自i位元顯 不影像之光得到顯示於影像顯示區域丨65之影像之隹點 ,後’作為第:次之焦點f料向控制單元161輸出:控制 斤弟一次之焦點資料,進行包括了圖75或圖76 之構xe之回授控制,進行影像之焦點調整。 一般進行焦點調整時,由於光學上 = 面上之位置稍微移動之情況。因I每;:After the CCD element 168 refers to all the pixels in the CCD element, the light from the i-bit display image is obtained at the point of the image displayed in the image display area 65, and the latter is used as the focus of the f-th direction to the control unit 161. Output: Control the focus data of Jin once, perform feedback control including the structure xe of Figure 75 or Figure 76, and adjust the focus of the image. Generally, when focus adjustment is performed, the position of the optical surface is slightly shifted. Because I every ;:

元件m上之焦點位二8移内。之全部像素,可補償在CCDThe focal point on element m is shifted within eight. All pixels can be compensated in the CCD

影像顯示:Ξ ::光學透鏡149之大部分之光之Image display: Ξ :: most of the light of optical lens 149

元件168檢測往#;^;§域165。利用小型反射鏡⑴、CCD ^ ^ ^ ^ Λ : &quot; ^ ^166 ^ ^ ^ ^ ^ ^ ^ 學透鏡149之回俨;:引貝料,用於控制單元161對於折射光 又抆制。以下第三次以後也重複一樣之動Element 168 detects the field 165. Utilizing a small mirror, CCD ^ ^ ^ ^ ^: &quot; ^ ^ 166 ^ ^ ^ ^ ^ ^ ^ Learning lens 149; quoting material for the control unit 161 to control refracted light. Repeat the same thing after the third time

4969^ 五、發明說明(97) 作。 於是,因利用CCD元件168自 之1位元顯示影像之光檢測焦點次咐八非衫像顯示區域1 66 之資料,就可進行直接反映焦’/使用溫度等二次 對於投影光學系進行焦點調敕ί ,調整: 千機械上的移動或扭曲特性微量==,影光學系有若 位元顯示影像位置會稍微移動。义 疋件1 6 8上之1 置整體之情況,也^自外部 =,在移動了影像顯示裝 化,投影光學系機械上微4;像二示4置… 稍微移動。 / 1位兀.、、、員不影像位置會 在任一種情況,使CCD元件168 範圍,使得即使U立元顯示^大於像之移動 168。藉著這樣做,每次量:;動也不會超出CC1)元件 其周邊資料,發生影像之移=測位兀顯不影像位置及 果,可進行正確之焦點調整。偏移)也不會影響量測結 分析Ϊ ΐ灰明在以上之動作中控制單元161之焦點資料之 圖78係表示一 h 圖示圖78(a) 〜(c)\f = =1 61之焦點資料之分析方法圖, 之位置座標,實際上為^。橫軸係⑽元件168之感光面 度。 μ為一久凡座標。又,縱軸表示光之強 、2、···)之焦點資料,m#、CmH各自係第m次、m+l次(m=l ,Cm、Cm+1係自二二—^示光之強度分布特性。具體而古 …陣列狀之CCD元件168之各單位感;4969 ^ V. Description of Invention (97). Therefore, since the light detection focus of the 1-bit display image of the CCD element 168 is used to order the data of the eight non-shirt image display area 1 66, it is possible to directly focus on the projection optical system, such as direct reflection focus / use temperature.敕 敕 调整, adjustment: the movement or distortion characteristics of the thousands of machines are small ==, if the position of the shadow optics image is slightly shifted. In the case of the whole set of one of the files 1 6 8, it is also ^ from the outside =, when the image display device is moved, the projection optics is mechanically micro 4; like the two shown 4 sets ... move slightly. / 1 position. The position of the image will be in either case, so that the range of the CCD element 168 is such that even if the U Li Yuan display ^ is larger than the image shift 168. By doing this, the amount of each time: the movement will not exceed CC1) component and its surrounding data, the shift of the image occurs = the position of the image is displayed, and the correct focus adjustment can be performed. (Offset) will not affect the measurement junction analysis. Ϊ́ Gray Ming Figure 78 of the focus data of the control unit 161 in the above action represents an h diagram. Figure 78 (a) ~ (c) \ f = = 1 61 The analysis method diagram of the focus data, the position coordinates are actually ^. The horizontal axis is the photosensitive surface of the ⑽ element 168. μ is the coordinates of Yijiufan. In addition, the vertical axis represents the focal data of light intensity, 2, ...), m # and CmH are the mth and m + 1 times (m = 1, Cm, Cm + 1 are from the second two- ^) Light intensity distribution characteristics. Specific and ancient ... Each unit sense of the array-shaped CCD element 168;

2103-3823-PF ; AHDDUB.ptd 第100頁 在圖78(a)〜(c) ,「 496999 五、發明說明(98) 元件得到之電氣信號,具有和射入CCD元件168上之1位元 顯示影像之光之照度分布成正比之輪廓。 又,圖78(a)之Peakm、Peakm+l各自係焦點資料Cm、 Cm+1之強度尖峰值,圖78(b)之FWHMm、FWHMm+1各自係焦 點資料Cm、Cm+1 之半值全寬(Full width Half Maximum) 此外,圖78(c)之GRADm、GRADm+1各自係自在焦點資 料Cm、Cm+ 1之尖峰值換算之肩部之傾斜之大小,例如表示 連接得到大峰值強度之1 〇 %、9 〇 %之焦點資料c m、c m + 1上之 特定點之直線之傾斜。肩部之傾斜為連接得到尖峰值之 a、y5%(〇%&lt; α ,/? &lt;1 〇〇%,α妾冷)之2點之直線之傾斜。 •在按照圖78(a)之分析方法之情況,如第m+1次之焦點 貝料之尖峰值Peakm+1比自第m次之焦點資料得到之尖峰 Peakm大般控制單元丨61對折射光學透鏡丨49進行回授控 制。 工 〜 ()隋况,如弟m+1次之焦點資料之半值全 IF W Η M m + 1比自第m次之隹點二欠斗立/曰不丨、丄 抓二门、 展點貝抖得到之半值全寬FWHMm小 二二 情況,如第m+1次之焦點資料之肩π 之,斜GRADm +1比自第m次之焦點 部 / 大般控齡161對折射光學透綱進行回授控:斜 此外,對於焦點資料之本办 1/10之強度之寬1/e2之強隹之寬,例如如 強度之寬(既定位準之算船Λ隹 點貧料將供給既定位準之寬最小化當然也可 “、、 在圖78(a)〜(C)之任-情況,都可自CCD元件168得到2103-3823-PF; AHDDUB.ptd Page 100 in Figure 78 (a) ~ (c), "496999 V. Description of Invention (98) The electrical signal obtained by the component has one bit that is injected into the CCD component 168 The illuminance distribution of the light of the displayed image is proportional to the contour. Also, Peakm and Peakm + 1 in Fig. 78 (a) are the intensity peaks of the focus data Cm and Cm + 1, and FWHMm and FWHMm + 1 in Fig. 78 (b). Each is the full width half maximum of the focus data Cm and Cm + 1. In addition, the GRADm and GRADm + 1 of Figure 78 (c) are the shoulders of the focus data Cm and Cm + 1, respectively. The magnitude of the inclination, for example, indicates the inclination of a straight line at a specific point on the focal point cm and cm + 1 obtained by connecting 10% and 90% of the large peak intensity. The inclination of the shoulder is a and y5% of the peak value obtained by the connection. (〇% &lt; α, /? &Lt; 100%, α 妾 cold) of the inclination of a straight line at 2 points. • In the case of the analysis method according to Fig. 78 (a), such as the focus at the m + 1th time The peak Peak + 1 of the shell material is larger than the peak Peakm obtained from the m-th focus data, and the control unit 61 performs feedback control on the refractive optical lens 49. () Sui situation, such as the full value of the focus data of the brother m + 1 times IF W Η M m + 1 than the m-th point of the second point owing to stand / say no 丨, grabbing two doors, exhibition point shell The half-value full-width FWHMm obtained by the dithering is smaller than the second and second cases, such as the shoulder π of the focus data at the m + 1th time, and the oblique GRADm +1 ratio is from the focus portion of the mth time / the general control age 161 pairs of refractive optical transmission Perform feedback control: oblique In addition, for the focus data, the width of the intensity is 1/10 of the intensity and 1 / e2 of the intensity. For example, if the intensity is wide Minimizing the width of the positioning accuracy can of course also be obtained from the CCD element 168 in any of the cases in FIGS. 78 (a) to (C).

2103-3823-PF ; AHDDUB.ptd 第101頁 496999 五、發明說明(99) 之焦點資料進行顯示於影像顯示區域1 65之影像之焦點調 此外’在圖77(a) ’將小型反射鏡167、CCD元件168配 直於非影像顯示區域166,但是如圖77(b)所示,在將影像 ^下羞置之筐體(以二點鏈線表示)限制為影像顯示咗域 極限之情況,小型反射鏡1 6 7表示特別有效之效果。 1 fis夕即丄,在筐體之限制下,不會發生投影至影像顯示區域 7之光之陰影,將小型反射鏡旧、CCD元件168配置於僮 體内。卩,可檢測焦點資料。 ,於小型反射鏡167、CCD元件168之配置位置,配 成滿足以下之條件。 將小型反射鏡1 6 7配置於遠離銀幕丨6 4之位置。 鏡U7小至型銀反二T:7止和CCDM^ 、跟参lb4為止之光路長度。 當然,如圖9所; ,t 只配置CCD元件ι68 ,在非影像顯示區域166之位意位置 度分布也可。 ’使得直接檢測相當於1位元之光之照 又,焦點調整用一 ,設為線狀或十牮括顯不圖案外了 1位元顯示影像以外 在此,記載—個\之顯示影像也可。 在以上之說明,和溫度變化對策相關之數值實施例。 於溫度變化之焦點士移動折射光學透鏡1 4 9整體,進行對 在本專利說明圖之^ &amp; 但疋本實施例1 9未限定如此。如 複數透鏡構成,為 々所5兒明般’因折射光學透鏡1 4 9由 焦、點調整,使得利用和圖75〜圖78 —2103-3823-PF; AHDDUB.ptd Page 101 496999 V. Focus information of the invention description (99) is displayed in the image display area 1 65 The focus of the image is adjusted In addition, in Fig. 77 (a) 'the small mirror 167 The CCD element 168 is aligned with the non-image display area 166. However, as shown in FIG. 77 (b), the image display area is limited to the limit of the image display area when the image frame (shown by the two-dot chain line) is limited. The small mirror 1 6 7 shows a particularly effective effect. Immediately after the fis, the shadow of the light projected onto the image display area 7 will not occur under the restrictions of the housing. The small mirror and the CCD element 168 are arranged in the child. Alas, focus data can be detected. In the arrangement position of the small-sized reflecting mirror 167 and the CCD element 168, the following conditions are satisfied. Place the small mirror 1 6 7 away from the screen 丨 6 4. The mirror U7 is as small as the length of the light path of the silver reverse T: 7 and CCDM ^, followed by the reference lb4. Of course, as shown in FIG. 9, only the CCD element ι68 is disposed, and the distribution of the degree of position in the non-image display area 166 is also possible. 'Make direct detection of light equivalent to 1-bit light, focus adjustment is one, set to linear or ten-frame display pattern outside the 1-bit display image, here is recorded-a \' s display image also can. In the above description, numerical examples related to countermeasures against temperature changes. The refracting optical lens 1 4 9 is moved at the focal point of the temperature change, and the alignment is illustrated in the illustration of this patent. However, this embodiment 19 is not limited to this. It is composed of a plurality of lenses, and it is as bright as the lens 5 'Because the refractive optical lens 1 4 9 is adjusted by the focus and the point, the use of FIG. 75 to FIG. 78 —

2103-3823-PF ; AHDDUB.ptd 第102頁 496999 五、發明說明(100) -- 樣之手法令構成折射光學透鏡149之全透鏡群之一部分或 凸面鏡162移動也可。在令凸面鏡162移動時’在凸面鏡之 保持使用包括齒輪機構157(;之齒輪支撐柱157,控 機構1 5 7 G之驅動即可。 ” 例如,在圖80再表示在數值實施例14A所示影像顯示 之構造(圖53)。 構成折射光學透鏡丨49之全透鏡群之中,令最接近圖 80中圖上未示之凸面鏡之透鏡149A、在透鏡““之後接近 凸面鏡之透鏡149B以及在透鏡149B之後接近凸面鏡之透鏡 14 9C向光軸150方向移動時,由數值計算結果得知在將成 像性能之惡化抑制為最低限下,可補償自微反射鏡裝置 148至折射光學透鏡149為止之距離l〇之變化。 在本實施例19之最後說明各構成元件在鉛垂方向之溫 度變化對策。 如圖81所示,關於光學底座(保持機構)151上之各構 成元件因溫度變化而承受鉛垂方向(光學底座丨5 i之法線方 向)之偏移,例如只要在將折射光學透鏡丨4 9之滑動支撐柱 152、153、凸面鏡161固定支撐於光學底座上之固定支撐 柱1 6 9設計成滑動支撐柱丨5 2、1 5 3、固定支撐柱丨6 9之鉛垂 方向之高度和線膨脹率之積相等即可。 藉著這樣做,溫度變化所引起之鉛垂方向之偏移在任 一構成元件都變成定值,可防止光軸丨5〇在鉛垂方向之偏 移。此外,在圖8 1,省略微反射鏡裝置丨4 8之支撐柱之圖 示,但是關於微反射鏡裝置148之支撐柱,也使得鉛垂方2103-3823-PF; AHDDUB.ptd Page 102 496999 V. Description of the Invention (100)-The same method can be used to move a part of the full lens group constituting the refractive optical lens 149 or the convex mirror 162. When the convex mirror 162 is moved, 'the holding of the convex mirror may include the driving of the gear support post 157 (, the gear supporting post 157, and the control mechanism 157 G.'), for example, as shown in FIG. 80 and shown in Numerical Example 14A The structure of the image display (Figure 53). Among the full lens groups constituting the refractive optical lens 49, the lens 149A closest to the convex mirror not shown in Figure 80, the lens 149B near the convex mirror after the lens "", and After the lens 149B, which is close to the convex lens, the lens 14 9C is moved toward the optical axis 150. From the numerical calculation results, it is known that the deterioration of the imaging performance can be minimized, and the compensation can be made from the micro-mirror device 148 to the refractive optical lens 149. The change of the distance l0. At the end of this embodiment 19, the countermeasures against the temperature change of each component in the vertical direction will be described. As shown in FIG. 81, each component on the optical base (holding mechanism) 151 is subjected to temperature changes. The offset in the vertical direction (the normal direction of the optical base 丨 5 i), for example, as long as the sliding support columns 152 and 153 of the refractive optical lens 4 9 and the convex mirror 161 are fixed The fixed support column 1 6 9 supported on the optical base is designed as a sliding support column 丨 5 2, 1 5 3, the fixed support column 丨 6 9 The product of the height in the vertical direction and the linear expansion rate can be equal. By this way The vertical direction shift caused by the temperature change becomes constant in any constituent element, which can prevent the optical axis shift in the vertical direction. In addition, in Figure 81, the micro-mirror device is omitted. The illustration of the support column of 8 but the support column of the micro-mirror device 148 also makes the vertical square

五、發明說明(101) 向之高度和線膨脹率之積和其他之支撐柱的相等。 如以上所示,若依據本實施例19,因使得包括設於光 予&amp;座151上並滑動支撐折射光學透鏡149之全透鏡群 部分之透鏡群之2支滑動支撐柱152、153、各自固定於光 學底座151上及折射光學透鏡149之整體或其一部分之透鏡 ^之下部且Λ於滑動支撐柱152、153之間之安裝板154、 以及如被安裝板丨54、丨55挾住般保持接觸並利用控制 電壓之調整在*軸150方向?文變其長度之壓電元件15 到可調整f溫度變化而發生之焦點失準之效果。 ⑴Λ’/Λ·據本實施例19 ’因使得包括設置於光學底座 :K,157G向光軸150方向移動折射光學透 或其—部分之透鏡群之齒輪支料157,得 1 D凋因溫度變化而發生之焦點失準之效果。 折射透實施例19,因使得在光學底座151或 M i(P t ^ ^ 中之至少一方設置加熱冷卻器1 6 0,得 效果。在使用環境下發生之溫度斜率並可調整焦點失準之 學透於Ίί依據本實施例19 ’因使得包括感測折射光 底座1】1之肉透鏡鏡筒溫度了1之溫度感測器158、感測光學 溫产τΛ Λ部溫度T2之溫度感測器158、159以及自鏡筒 ^ 溫度Τ2計算長度L0之最佳值或溫度差分ΔΤ 中5小:^電①件1 5 6、齒輪機構1 5 7 G或加熱冷卻器1 6 0之 度變ϋϊΐ回授控制之控制單元161,得到可調整因溫 度欠化而發生之焦點失準之效果。V. Description of the invention (101) The product of the height and the linear expansion coefficient is the same as that of other supporting columns. As shown above, according to Embodiment 19, the two sliding support columns 152 and 153 of the lens group including the entire lens group portion that slidably support the full lens group portion of the refractive optical lens 149 are provided on the light-and-amplifier base 151, respectively. A mounting plate 154 fixed on the optical base 151 and the whole or a part of the refractive optical lens 149, and mounted between the sliding support columns 152 and 153, and held by the mounting plates 54 and 55 The effect of keeping the contact and adjusting the control voltage in the direction of the * axis 150? The length of the piezo element 15 can be adjusted to the focus misalignment caused by temperature changes. ⑴Λ '/ Λ · According to this embodiment 19', because it is included in the optical base: K, 157G moves the refracting optical lens 157 or the lens group of the lens group to the direction of the optical axis 150 to obtain 1 D withered temperature The effect of focus misalignment caused by changes. Example 19 was refracted, because a heating cooler 160 was provided on at least one of the optical base 151 or M i (P t ^ ^), and the effect was obtained. The temperature slope occurring under the use environment and the focus misalignment can be adjusted Learned through the following: According to this embodiment 19, the temperature of the flare lens barrel 1 which includes sensing the refracted light base 1] 1 is detected by a temperature sensor 158, and the optical temperature is detected by the temperature sensor τΛ Λ temperature T2. 158, 159 and the lens barrel ^ Temperature T2 Calculate the optimal value of the length L0 or the temperature difference ΔT 5 small: ^ electric ① pieces 1 5 6, gear mechanism 1 5 7 G or heating cooler 1 6 0 degree change ϋϊΐThe control unit 161 of the feedback control can obtain the effect of adjusting the focus misalignment that occurs due to the temperature decrease.

五、發明說明(102) ,外,若依據本實施例19,因使得包括感測使用環境 :之/皿度之/皿度感测器及按照將在焦點初期調整之環境溫 y丨之長度[l〇]T3和在焦點初期調整之環境溫度^之長度 〇 η線性插值之線性插值式計算適合使用環境下之溫度 之長度u後進行壓電元件156或齒輪機構157〇之回授控制 =控制單元161 ’使環境溫度和焦點之關係一對一對應, 付到可進行更正確之焦點調整之效果。 此外若依據本實施例19,因使得包括自射入銀幕 B八之影像顯示區域1 66之光檢測焦點資料之CCD元件1 68 之焦點資料後進行壓電元件156 七J機構i,之回授控制之控制單元161,得到不使用 =ί ί 7 _人之孩料就可直接反映焦點失準的進行焦點調整 之先向CCD兀件168反射之 到在將箧體限制為影像顯示區域16 =7 : 焦點資料之效果。 F之It况也了 k測 此外’若依據本實施例〗q 元件m之光之強度分布特:二控二^ 資料之尖峰值Peakm儘量】;= 賢料’如焦點 接反映焦點失準的進行^授控制,得到可直 此外,若依據本實施例19, 之光之強度分布特性輪廊設= -貝料之半值全寬FWHM 貝枓,如焦點 里文小般進仃回授控制,得到可V. Description of the invention (102) In addition, according to this embodiment 19, because it includes the use environment: / / degree of / / degree sensor and the length of the environmental temperature y 丨 adjusted in the initial focus [10] T3 and the length of the ambient temperature ^ adjusted in the initial stage of the focus. Linear interpolation of linear interpolation is used to calculate the length u suitable for the temperature in the use environment. Then the feedback control of the piezoelectric element 156 or the gear mechanism 157 is performed. The control unit 161 'corresponds one-to-one with the relationship between the ambient temperature and the focus, so that a more accurate focus adjustment can be performed. In addition, according to this embodiment 19, since the focus data including the CCD element 1 68 including the light detection focus data that has been incident into the image display area 1 66 of the screen B 8 is made, the piezoelectric element 156 and the J mechanism i are returned. The control unit 161 of the control is able to directly reflect the focus misalignment without using = ί 7 _ The child's material can be reflected by the focus adjustment before reflecting to the CCD element 168 until the carcass is limited to the image display area 16 = 7: Effect of focus data. It is also tested in F. In addition, if the light intensity distribution of q element m according to this embodiment: two controls two ^ Peak Peak of the data as far as possible] = = "Material" if the focus reflects the inaccuracy of the focus Perform the feedback control to obtain the direct control. In addition, according to the embodiment 19, the light intensity distribution characteristics of the light corridor setting =-the full-width half width FWHM of the shell material, and the feedback control is as small as the focus. And get available

2103-3823-PF ; AHDDUB.ptd 第105頁 五、發明說明(103) 直接反映焦點失準的進行焦點調整之效 此外,若依據本實施例19, ^ : 元件168之光之強度分布特性早疋161將射入CCD 資料之肩部之傾斜GRADM盡量;焦點資料’如焦點 可直接反映焦點失準的進行焦點調整之效果制付到 此外,若依據本實施例丨9, 之滑動支撐柱152、153、凸面^彳使侍折射光學透鏡149 千古A夕古痒4括抽, 凸面1兄161之固定支撐柱169在鉛 垂方向之同度和線%脹率之積全立 15〇在錯垂方向偏移。 積王/卩相專,得到可防止光軸 以微反射鏡裝置說明 他的光空間調變元件 此外,以上在光空間調變元件上 ,但是使用透射型或反射型液晶等其 也得到一樣之效果。 實施例2 0 圖82係表示應用於本發明之實施例20之影像顯示裝3 之凸面鏡之構造圖。在圖82,17〇 影光學裝置、反射部)’形成自-光軸m為中心繼I: 之凸面鏡1 700切掉非反射部分之形狀,在凸面鏡1?〇之前 面之光軸171附近(非投影前面)具有反射凸部172。 反射凸部172係將實施例15所示之凸面鏡1〇4之高反j 面104H及低反射面104L凸型化的或將整個面設為高反射」 面的’比凸面鏡⑺之前面突出,係在進行以下所述之影 像顯示裝置之對準調整方法時利用的。#代反射凸部m ,使得在凸面鏡170設置圖82(b)所示之反射凹部173也可 。當然,反射凹部173係將實施例15所示之凸面鏡1〇4之2103-3823-PF; AHDDUB.ptd Page 105 V. Description of the invention (103) The effect of focus adjustment that directly reflects the focus misalignment In addition, according to this embodiment 19, ^: The intensity distribution characteristic of the light of the element 168 is early疋 161 Try to tilt the GRADM of the shoulder shot into the CCD data as far as possible; focus data 'if the focus can directly reflect the out-of-focus focus adjustment effect of focusing adjustment In addition, if according to this embodiment 丨 9, the sliding support column 152 153. Convex ^ 侍 refractive index optical lens 149 Eternity Axi ancient itch 4 embossed, convex convex 1 161 fixed support column 169 in the vertical direction of the same degree and the linear% expansion of the product is 15 Offset in vertical direction. Jaeger-LeCoultre / Song Xiang special, get the optical space modulation element that can prevent the optical axis from being explained by a micro-mirror device. In addition, the above is on the optical space modulation element, but it is the same with the transmissive or reflective liquid crystal. effect. Embodiment 2 0 FIG. 82 is a structural diagram showing a convex mirror of an image display device 3 applied to Embodiment 20 of the present invention. In FIG. 82, the 1700 shadow optical device and the reflection part) are formed from a convex lens 1700 with the center of the self-optical axis m as follows: the shape of the non-reflective part is cut out, and the optical axis 171 is near the convex lens 1? 0 ( Non-projected front) has a reflective convex portion 172. The reflective convex portion 172 is a convex shape of the high-reflection surface 104H and the low-reflection surface 104L of the convex mirror 104 shown in Example 15 or the entire surface is highly reflective. It is used when performing the alignment adjustment method of the image display device described below. # 代 reflective convex portion m, so that the convex concave mirror 170 may be provided with a reflective concave portion 173 as shown in FIG. 82 (b). Of course, the reflective concave portion 173 is the same as that of the convex mirror 104 of the fifteenth embodiment.

2103-3823-PF ; AHDDUB.ptd 第 1〇β 頁 496999 五、發明說明(104) 反射面104H及低反射面104L凹型化的或將整個面設為高反 射面的。反射凸部1 7 2、反射凹部1 7 3之反射面係平面,該 平面之法線和光軸1 7 1平行。 圖8 3係表示本發明之實施例2 0之對準調整方法之流程 圖。又,圖84〜88係表示按照圖83之對準調整方法之各步 驟依次配置光學系構成元件下去之情況之圖。和圖8 0相同 之符號係相同之構成元件。 〈步驟ST1 :對於治具銀幕之凸面鏡之對準調整〉 在圖8 4 (a ),設置成自雷射光源1 7 4射出之平行光束和 治具銀幕(治具顯示裝置)之法線平行。自雷射光源174射 出截面積比反射凸部172大之平行光束,平行光束經由分 光鏡175垂直的射入治具銀幕176。 在治具銀幕176之光軸周圍設置透射孔(第一透鏡孔) 176H(圖84(b)) ’透射了分光鏡175之平行光束之一部分透 射透射孔176H後向設置於光學底座177(保持機構,圖43, 參照實施例1 0 )上之凸面鏡1 7 0之反射凸部1 7 2前進。 在凸面鏡1 7 0,反射凸部1 7 2反射平行光束後,令朝和 去路之平行光束反方向透射透射孔176H。其回路之平行光 束在透射透射孔1 7 6 Η後射入分光鏡1 7 5,朝和來自雷射光 源174之平行光束正交之方向前進後,用聚光透鏡^8向四 分割檢測器1 7 9 (圖5 8 (c )之檢測器)之中心聚光。 藉著調整凸面鏡1 7 0之姿勢,使四分割檢測器丨7 g之四 個感光元件各自檢測之各光功率相等時,在透射孔1 7 6 Η — 反射凸部1 72間之光束之去路和回路變成和光轴丨7 i 一致之2103-3823-PF; AHDDUB.ptd page 10 β 496999 V. Description of the invention (104) The reflective surface 104H and the low reflective surface 104L are concave or the entire surface is set to a high reflective surface. The reflective convex portion 17 2 and the reflective surface of the reflective concave portion 1 7 3 are planes, and the normal of the plane is parallel to the optical axis 1 7 1. Fig. 8 is a flowchart showing an alignment adjustment method in Embodiment 20 of the present invention. 84 to 88 are diagrams showing the arrangement of the optical system constituent elements in order according to the steps of the alignment adjustment method of FIG. 83. The same reference numerals as those in FIG. 80 indicate the same constituent elements. <Step ST1: Alignment of Convex Mirror for Fixture Screen> In Figure 8 (a), set the parallel light beam emitted from the laser light source 174 and the normal line of the fixture screen (fixture display device) to be parallel . From the laser light source 174, a parallel light beam having a larger cross-sectional area than that of the reflective convex portion 172 is emitted, and the parallel light beam enters the fixture screen 176 perpendicularly through the beam splitter 175. A transmission hole (first lens hole) 176H is provided around the optical axis of the fixture screen 176 (FIG. 84 (b)) 'A part of the parallel light beam which transmitted through the beam splitter 175 is transmitted through the transmission hole 176H, and is then set on the optical base 177 (holding The mechanism, FIG. 43, refers to the reflective convex portion 17 2 of the convex mirror 170 on the embodiment 10). After the convex mirror 170 and the reflecting convex portion 17 2 reflect the parallel light beams, the parallel light beams toward and away from the parallel light beams are transmitted through the transmission holes 176H. The parallel beam of the loop passes through the transmission hole 1 7 6 Η and enters the beam splitter 175. After advancing in a direction orthogonal to the parallel light beam from the laser light source 174, the condenser lens ^ 8 is used to the quadrant detector. The center of 1 7 9 (detector in Fig. 5 8 (c)) focuses light. By adjusting the posture of the convex mirror 170, the four light-sensing elements of the four-segment detector 丨 7 g each detect the same light power, the transmission path of the light beam between the transmission holes 1 7 6 Η —reflection convex 1 72 And the loop becomes consistent with the optical axis 丨 7 i

496999496999

,態(假想光軸),完成對於治具銀幕176之凸面鏡17〇 &lt;步驟ST2 :對於凸面鏡之光路彎曲反射鏡之對準調整 自圖8 4 ( a )之狀態,在保持相互關係下移動雷射光源 1 7 4、分光鏡1 7 5、聚光透鏡1 7 8以及四分割檢測器1 7 9,令 $自雷射光源174、分光鏡175之平行光束之中心和折射^ 干透鏡之理想之光軸1 8 〇 —致。然後,進行對於凸面鏡1 7 〇 之光路彎曲反射鏡(圖23等,參照實施例7、1 〇 ) 1 8 1之對準 調整(圖8 5 )。 在圖85,自雷射光源174經由分光鏡175射出截面積比 反射凸部1 7 2大之平行光束後,利用配置於既定之位置之 光路彎曲反射鏡181向反射凸部172反射。因反射凸部172 成為比射入之平行光束小之反射面,只有平行光束之一部 分向光路彎曲反射鏡1 8 1反射。 來自反射凸部1 7 2之平行光束被光路彎曲反射鏡1 § 1反 射後往分光鏡1 7 5,經由聚光透鏡1 7 8用四分割檢測器1 7 9 檢測。和圖84 (a)之情況一樣,對於凸面鏡170之光路彎曲 反射鏡181之對準調整(2軸之仰角調整)變成理想時,在四 分割檢測器1 7 9之各感光元件各自檢測之各光功率全部相 等。 此時’反射凸部1 7 2 —为光鏡1 7 5間之平彳亍光束經由光 路彎曲反射鏡181之去路和回路一致,用雷射光源174之光 束產生折射光學透鏡之理想之光軸1 8 0之假想光軸。 〈步驟ST3 :孔空反射鏡之透鏡保持凸緣之對準調整〉(Imaginary optical axis), complete the convex mirror 17 of the fixture screen 176 &lt; Step ST2: the alignment adjustment of the convex path of the optical path bending mirror is adjusted from the state of Fig. 8 (a), and move while maintaining the relationship Laser light source 174, beam splitter 175, condenser lens 178 and quadruple detector 179, make the self-centering and refraction of the parallel beam of laser light source 174 and beam splitter 175 ^ of the dry lens The ideal light axis is 180 °. Then, the alignment adjustment of the light path bending mirror 170 (see FIG. 23 and the like, with reference to Example 7 and 10) of the convex mirror 170 is performed (see FIG. 8 5). In FIG. 85, a parallel light beam having a cross-sectional area larger than that of the reflective convex portion 172 is emitted from the laser light source 174 through the beam splitter 175, and then is reflected toward the reflective convex portion 172 by the optical path bending mirror 181 disposed at a predetermined position. Since the reflecting convex portion 172 becomes a reflecting surface smaller than the incident parallel light beam, only a part of the parallel light beam reflects toward the optical path bending mirror 1 8 1. The parallel light beam from the reflecting convex portion 17 2 is reflected by the optical path bending mirror 1 § 1 and then is reflected to the beam splitter 1 7 5 and is detected by a four-division detector 1 7 9 through a condenser lens 1 7 8. As in the case of FIG. 84 (a), when the alignment adjustment (adjustment of the two-axis elevation angle) of the light path curved mirror 181 of the convex mirror 170 becomes ideal, each of the photosensitive elements of the quadrant detector 179 detects each The optical powers are all equal. At this time, the "reflection convex part 1 7 2-is the smooth path of the flat beam between the optical mirrors 1 7 and 5 through the optical path bending mirror 181 and the return path are the same, and the beam of the laser light source 174 is used to generate the ideal optical axis of the refractive optical lens 1 8 0 imaginary optical axis. <Step ST3: Alignment of the Lens Holding Flange of the Hollow Mirror>

2103-3823-PF ; AHDDUB.ptd 第108頁 496999 五、發明說明(106) 對於在圖8 5所產生之理想之光軸丨8 〇,設置保持折射 光學透鏡之透鏡保持凸緣,和在透鏡保持凸緣丨8 2設置替 代折射光學透鏡安裝之孔空反射鏡183(圖86(&amp;))。孔空反 射鏡183在其中心具有光透射之透射孔(第二透鏡孔)183H (圖86(b)),透射來自雷射光源174、分光鏡175之平行光 束。透射孔183H之周邊成為反射面。 在圖86(a),透射透射孔183H之平行光束自光路彎曲 反射鏡181往反射凸部172。反射凸部172所反射之平行光 束被光路彎曲反射鏡1 8 1反射後,透射孔空反射鏡丨8 3之透 射孔183H後往分光鏡175,經由聚光透鏡178用四分割檢測 器1 7 9檢測。 又’被孔空反射鏡183之透射孔183H周邊之反射面反 射之光束也同時重疊的射入四分割檢測器丨7 9。對於凸面 鏡170之透鏡保持凸緣182、孔空反射鏡183之對準調整(透 鏡保持凸緣1 8 2之2軸仰角調整)變成理想時,四分割檢測 器1 7 9之各感光元件所檢測之光功率變成全部相等。 〈步驟S T 4 ·在透鏡保持凸緣設置折射光學透鏡〉 自變成理想之對準狀態之透鏡保持凸緣丨8 2拆下孔空 反射鏡1 8 3,替代的設置折射光學透鏡(投影光學裝置、折 射光學部)184,拆下174、分光鏡175、聚光透鏡178以及 四分割檢測器1 7 9 (圖8 7 )。 〈步驟ST5 :將微反射鏡裝置之影像向治具銀幕投影〉 在圖8 8 ’將微反射鏡裝置(傳送裝置、影像資料賦與 部)1 8 5設置於既定之位置,自照明光源系(傳送裝置、照2103-3823-PF; AHDDUB.ptd, page 108, 496999 V. Description of the invention (106) For the ideal optical axis produced in Fig. 85, a lens retaining flange for retaining the refractive optical lens is provided, and the lens The holding flange 8 2 is provided with a hole empty mirror 183 instead of the refractive optical lens mounting (&amp; 86). The hole-air reflecting mirror 183 has a transmission hole (second lens hole) 183H (Fig. 86 (b)) at the center thereof, and transmits parallel light beams from the laser light source 174 and the beam splitter 175. The periphery of the transmission hole 183H becomes a reflective surface. In Fig. 86 (a), the parallel light beam transmitted through the transmission hole 183H is bent from the optical path to the reflecting mirror 181 toward the reflecting convex portion 172. The parallel light beam reflected by the reflective convex portion 172 is reflected by the light path bending mirror 1 8 1 and the transmission hole is empty. The transmission hole 183H of the 3 3 is passed to the beam splitter 175 and the condenser lens 178 is used to use a quadruple detector 1 7 9 detection. Also, the light beams reflected by the reflection surface around the transmission hole 183H of the hole-empty mirror 183 are also incident on the four-division detector at the same time. When the alignment adjustment of the lens holding flange 182 of the convex mirror 170 and the hole-reflection mirror 183 (the adjustment of the 2-axis elevation angle of the lens holding flange 1 8 2) becomes ideal, it is detected by each photosensitive element of the quadrant detector 1 7 9 The optical power becomes all equal. <Step ST 4 · Setting a refractive optical lens on the lens holding flange> The lens holding flange that has been turned into an ideal alignment 丨 8 2Remove the hole empty mirror 1 8 3, and install a refractive optical lens instead (projection optics) , Refracting optics) 184, remove 174, beam splitter 175, condenser lens 178, and quadruple detector 179 (Fig. 8 7). <Step ST5: Project the image of the micro-mirror device onto the fixture screen> In Figure 8 8 'set the micro-mirror device (transmission device, image data application unit) 1 8 5 at a predetermined position, and the self-illuminating light source system (Transport device, photo

2103-3823-PF ; AHDDUB.ptd 第 109 頁 496999 五、發明說明(107) 明光源部)1 86向微反射鏡裝置1 85照射光。在微反射鏡裝 置1 85得到影像資料之來自照明光源系丨86之光經由折射光 學透鏡184、光路彎曲反射鏡181、凸面鏡17〇向治具銀幕 1 7 6投影。 如所投影之光在治具銀幕丨76上成像於銀幕面内之正 常之位置般進行照明光源系丨8 6、微反射鏡裝置丨8 5之對準 調整(主要係由微反射鏡裝置丨85之①面内位置2軸、②繞 面之法線之旋轉1軸、③仰角2軸以及④在面之法線方向之 移動1軸構成之調整,①及②係用以確保顯示位置、③及 ④係用以確保成像性能之重要之調整)後,完成一連串之 對準調整。 如以上所示,若依據本實施例2〇,因使得在凸面鏡 170之前面之光軸1〇5附近設置反射凸部172或反射凹部173 ’得到在影像顯示裝置之組立製程可容易的進行光學系構 成元件之對準調整之效果。 又,若依據本實施例20,因使得包括透射了治具銀幕 176之透射孔176H之平行光束被反射凸部172(或反射凹部 173)反射,在反射凸部172(或反射凹部173)和透射孔176H 之間令去路和回路一致之步驟ST!、按照光路彎曲反射鏡 181、反射凸部172(或反射凹部丨73)之順序反射和折射光 學透鏡之理想之光軸180 —致之平行光束,在反射凸部172 (或反射凹部1 7 3 )和光路彎曲反射鏡丨8 1之間令去路和回路 一致之步驟ST2、令經由設置於透鏡保持凸緣182之孔空反 射鏡183之透射孔183H射入光路弯曲反射鏡Mi之平行光束2103-3823-PF; AHDDUB.ptd page 109 496999 V. Description of the invention (107) Bright light source section 1 86 irradiates light to the micromirror device 185. The light from the illumination light source system 86 obtained from the micromirror device 1 85 is projected onto the fixture screen 176 through the refractive optical lens 184, the optical path bending mirror 181, and the convex mirror 170. The illumination light source system is adjusted as if the projected light is imaged on the fixture screen 丨 76 at a normal position within the screen surface 丨 8, micro-mirror device 丨 85 alignment (mainly by the micro-mirror device 丨The adjustments of ① 2 positions in the plane, 1 axis rotating around the normal of the plane, ② 2 elevation axis, and ④ 1 axis moving in the direction normal to the plane, ① and ② are used to ensure the display position, ③ and ④ are important adjustments to ensure imaging performance), and then complete a series of alignment adjustments. As shown above, according to the embodiment 20, the reflection convex portion 172 or the reflection concave portion 173 'can be provided near the optical axis 105 of the front surface of the convex mirror 170, so that the assembly process of the image display device can be easily performed optically. It is the effect of alignment adjustment of constituent elements. In addition, according to the embodiment 20, the parallel light beam including the transmission hole 176H transmitting the fixture screen 176 is reflected by the reflection convex portion 172 (or the reflection concave portion 173), and the reflection convex portion 172 (or the reflection concave portion 173) and Step ST! That makes the return path and the circuit consistent between the transmission holes 176H, the ideal optical axis 180 of the optical lens that reflects and refracts in accordance with the order of the light path bending mirror 181, the reflective convex portion 172 (or the reflective concave portion 73), and is parallel The light beam, step ST2 of matching the return path and the return path between the reflecting convex portion 172 (or the reflecting concave portion 1 7 3) and the light path bending mirror 丨 81, and passing through the hole empty mirror 183 provided in the lens holding flange 182 Parallel beam of 183H transmitted through the light path bending mirror Mi

2103-3823-PF ; AHDDUB.ptd 496999 五、發明說明(108) 透射後被孔空反射鏡183之透射孔18311之周邊部反射之光 束和在光路彎曲反射鏡181、反射凸部172(或反射凹部173 )來回反射之光束之行進方向一致之步驟ST3、自透鏡保持 凸緣1 8 2拆下孔空反射鏡1 8 3後替代的設置折射光學透鏡 184之步驟ST4以及令經由折射光學透鏡184、光路彎曲反 射鏡1 8 1以及凸面鏡丨7 〇之來自照明光源系丨8 6及微反射鏡 I置185之光成像於治具銀幕丨76上之正常之位置之步驟 ST5 ’得到在影像顯示裝置之組立製程可有系統且容易的 進行光學系構成元件之對準調整之效果。 此外,在步驟ST卜ST5,表示藉著使四分割檢測器 1 79之分割檢測器輸出相等進行多元件之對準調整之例子 ,但是此外,在四分割檢測器丨79之位置配置晝了成為對 準之目標之十字線等之毛玻璃治具後,用經由目鏡等目視 觀測之目視觀測裝置也可調整往該毛玻璃治具之聚光光束 〇 又,因以上所示之對準調整表示調整反射面之角度偏 差之方法,、利用使用相同之治具可量測面之傾斜之裝置 (例如自動準直儀)也可調整。 、 當然,本實施例20所示之對準調整方法在實施之 凸面鏡104也可,在實施例15所示之 施例20之凸面鏡17〇也可。 正方法在本貫 實施例2 1 圖89係本發明之實施例21之影像顯示 省略照明光源系或平面鏡、銀幕等之圖示。之構以圖2103-3823-PF; AHDDUB.ptd 496999 V. Description of the invention (108) After transmission, the light beam reflected by the peripheral portion of the transmission hole 18311 of the hole empty mirror 183 and the light path bending mirror 181, the reflection convex portion 172 (or reflection) Recess 173) Step ST3 of the same direction of travel of the light beam reflected back and forth, Step ST4 of setting a refractive optical lens 184 after removing the hole-retaining mirror 1 8 2 from the lens holding flange 1 8 3, and passing the refractive optical lens 184 Step ST5 of the light path bending mirror 1 8 1 and convex mirror 丨 7 〇 from the lighting source 丨 86 and the micro-mirror I set 185 on the fixture screen 丨 76 in a normal position on the screen The assembly process of the device can have a systematic and easy effect of aligning and adjusting the components of the optical system. In addition, at steps ST5 and ST5, an example is shown in which the alignment adjustment of multiple elements is performed by making the division detector outputs of the four-division detector 1 79 equal. After the frosted glass fixture such as the crosshairs of the target is aligned, the condensing light beam to the frosted glass fixture can also be adjusted with a visual observation device such as visual observation through an eyepiece. Furthermore, the alignment adjustment shown above indicates adjustment of reflection. The method of surface angle deviation can also be adjusted by using the same jig to measure the tilt of the surface (such as an automatic collimator). Of course, the convex mirror 104 implemented in the alignment adjustment method shown in this embodiment 20 may be used, and the convex mirror 170 in the embodiment 20 shown in embodiment 15 may be used. The positive method is in Embodiment 2. 1 FIG. 89 is an image display of Embodiment 21 of the present invention. The illustration of the illumination source system, the flat mirror, and the screen is omitted. Map

2103-3823-PF ; AHDDUB.ptd 第111頁 496999 五、發明說明(109) 在圖89,187係微反射鏡裝置,188係各實施例之折射 光學透鏡(投影光學裝置、折射光學部),189係各實施例 之凸面鏡(投影光學裝置、反射部),i 90係折射光學透鏡 188及凸面鏡189之光軸,191係和凸面鏡189之前面189F黏 接形成之玻璃或合成樹脂等之透鏡層。 在圖89,來自微反射鏡裝置187、折射光學透鏡188之 光(光影像信號)在透鏡層191之入射出面1911 0首先折 射,透射透鏡層191之内部後射入凸面鏡189之前面18評。 然後,被凸面鏡189之前面l89F反射之光 層⑻之内部,在其入射出面191…斤射後 平面鏡或銀幕。 1 口上禾不之 即,和凸面鏡I 89交換之光因透鏡層19 1 9 1 I 0之形狀或其介皙而為“ 土風a κ入射出面 、而又到光予作用。因此,Μ基、奋$ =设计透鏡層1 91之表面形狀 :二田 等,可更細致的進行光路控制。 K折射革*散) 如以上所示,若钬协1 — BO之前面刪設置透依/二實施例Η ’因使得在凸面鏡 入射出面19110之= 鏡層191,藉著將透鏡層191本身之 得到令光路設計之自ά ☆或其折射率、分散設為適當的, 之效果。 X增加、可進行更細致的光路控制2103-3823-PF; AHDDUB.ptd p. 111 496999 V. Description of the invention (109) Figure 89, 187 series of micro-mirror device, 188 series of refractive optical lenses (projection optics, refractive optics), 189 series of convex mirrors (projection optics, reflecting part) of each embodiment, i 90 series of optical axis of refractive optical lens 188 and convex mirror 189, 191 series of lens layer of glass or synthetic resin formed by adhering to front surface 189F of convex mirror 189 . In FIG. 89, the light (light image signal) from the micro-mirror device 187 and the refractive optical lens 188 is first refracted on the entrance surface 1911 0 of the lens layer 191, and the inside of the lens layer 191 is incident on the front surface 18 of the convex mirror 189. Then, the inside of the light layer 反射 reflected by the front surface 189F of the convex mirror 189 is incident on the plane 191 or the flat surface mirror or screen after its incident surface 191 ... The light exchanged with the convex mirror I 89 due to the shape of the lens layer 19 1 9 1 I 0 or the appearance of the lens is “earth wind a κ incident on the surface, but it acts on the light. Therefore, the M base Fen $ = Design the surface shape of the lens layer 1 91: Ertian, etc., for more detailed control of the optical path. K refracting leather * scattered) As shown above, if the Xie Xie 1 — BO before the front panel is set to transparent / two Example Η 'Because the entrance surface of the convex mirror 19110 is equal to the mirror layer 191, the lens path 191 itself can be used to customize the design of the optical path ☆ or its refractive index and dispersion are set to appropriate effects. X increases, Allows finer light path control

實施例2 2 利用了多 之影像顯 在設計影像顯示裝 個斜面之形狀置之@體日守*採用有 示裝置更薄。 ,使得在視覺上覺得薄型Example 2 2 Using multiple image displays The image display device is designed with a slanted surface. @ 体 日 守 * uses a display device to make it thinner. Makes it visually thin

496999 五、發明說明(110) 習知u t:在各實施例所示之影像顯示裝置收藏於 視圖、上視圖。省略自照明光源系至凸面 鏡為止之先學系構成元件之圖示。 ϋ ® 、在圖90 ’192係銀幕,193係收藏圖上未示之光學 成兀件之銀幕下部,194係由銀幕192及銀 之筐體前部,195係設置成和銀幕192平行之“鏡(=之 平面鏡22,參照實施例υ,196係收藏平面鏡195之筐體後 部,又197U、197L、197R係各自形成影像顯示裝置之筐體 之上部及左右部之斜面(上部斜面、左部斜面、右部斜面) ,1 9 8係影像顯示裝置之底面。 在圖90之情況’筐體前部194之高度由銀幕192在鉛垂 方向之設置咼度及銀幕下部193之高度決定,筐體前部194 之寬度由銀幕192之水平方向長度決定。又,筐體後部196 之高度•寬度各自由平面鏡195在錯垂方向之設置高度· 水平方向長度決定(但決定筐體後部1 9 6之大小的未限定為 平面鏡1 9 5,依據影像顯示裝置之構造例如在未使用平面 鏡195之情況也可能變為凸面鏡等)。 分別比較筐體前部1 94及筐體後部1 96之高度•寬度 時,因在筐體前部1 9 4設置銀幕1 9 2,可說筐體後部1 9 6比 筐體前部1 9 4小。這對於一般之影像顯示裝置也一樣。 圖90之影像顯示裝置之筐體利用3個斜面197U、197 L、197R設計成包圍自大的筐體前部194至筐體後部196為 止之空間。在此,筐體前部1 94和筐體後部1 96因左右之斜496999 V. Description of the invention (110) Knowing u t: The image display device shown in each embodiment is stored in the top view. The illustration of the components of the prior learning system from the lighting source system to the convex mirror is omitted. ϋ ® In the lower part of the screen shown in Fig. 90 '192 series screen, 193 series of optical components not shown on the collection picture, 194 series by the screen 192 and the front of the silver box, 195 series is set parallel to the screen 192 " Mirror (= plane mirror 22, referring to the embodiment, 196 is the rear of the housing for storing the flat mirror 195, and 197U, 197L, and 197R are the inclined surfaces (upper inclined surface, left portion) of the upper and left and right portions of the casing of the image display device. Oblique surface, right oblique surface), the bottom surface of the 198 image display device. In the case of FIG. 90, the height of the front portion 194 of the casing is determined by the setting angle of the screen 192 in the vertical direction and the height of the lower portion 193 of the screen. The width of the front part 194 is determined by the horizontal length of the screen 192. The height and width of the rear part 196 are determined by the height and horizontal length of the flat mirror 195 in the staggered direction (but it determines the rear part of the body 1 9 6 The size is not limited to the flat mirror 195. Depending on the structure of the image display device, for example, it may become a convex mirror without the flat mirror 195). Compare the height of the front of the case 1 94 and the rear of the case 1 96 respectively. width When the screen is installed at the front part of the cabinet, it is said that the rear part of the case is smaller than the front part of the case. This is the same for a general video display device. Figure 90 The casing of the display device is designed to surround the space from the front of the large casing 194 to the rear of the casing 196 using three inclined surfaces 197U, 197 L, and 197R. Here, the front of the casing 1 94 and the rear of the casing 1 96 Because of left and right

2103-3823-PF ; AHDDUB.ptd 第113頁 4969992103-3823-PF; AHDDUB.ptd p. 113 496999

面 197L、 197R而變成自長方體分別切掉其 角落之形狀(圖 90(c)) 〇 藉著這樣做,在斜(圖90(c)之箭號方向)看影像 ΐίΐΪ況,可完全未被遮住的一眼看清筐體後部196不 可在視覺上給與影像顯示裝置之薄型化印像。可是, 多台構成長方體之筐體之情況相比,使用斜面19几、ΐ9η 、197R之影像顯示裝置因若將銀幕192保持在同一平面時 斜面間=接觸,有難採用多台構造(實施例14)之缺點。 本實施例22之影像顯示裝置以多台構造為構想,對圖 90之筐體下如下之工夫。 ^圖91係本發明之實施例22之影像顯示裝置之筐體之概 觀圖、,圖91(a)、(b)、(c)各自係筐體之正視圖、側視圖 、上視圖。對於和圖9 〇相同或相當之構造賦與相同之符號 在圖91 ’其特徵在於不因左右之斜面197L、i97R而都 切掉盧體前部194之角落194C、筐體後部196之角落196, 使得在筐體前部1 94之背面(筐體後部丨96側)保留和銀幕 192平行之平行面194P,在筐體後部196之側方保留和銀幕 192垂直之垂直面U6V(圖91(c))。 藉著這樣做,在保持賦與該薄型化印象之視覺上之效 果下’在以多台構成影像顯示裝置之情況可得到以下之效 果。 圖9 2、9 3係表示採用2台圖9 1之影像顯示裝置之多台 構造之情況之圖。圖9 2、9 3各自係上視圖、立體圖。對於The surfaces 197L and 197R are cut from the corners of the rectangular parallelepiped (Fig. 90 (c)). By doing this, the image is viewed obliquely (in the direction of the arrow in Fig. 90 (c)). It can be seen at a glance that the rear portion 196 of the casing cannot visually give a thin print of the image display device. However, compared with the case of a plurality of cuboid-shaped enclosures, it is difficult to adopt a multi-unit structure because the image display device using the slanted surfaces 190, ΐ9η, and 197R holds the screen 192 on the same plane = contact between the slanted surfaces = contact (Example 14 ) Disadvantages. The image display device of the twenty-second embodiment is designed with a plurality of structures, and the following work is performed on the casing of FIG. 90. ^ FIG. 91 is a general view of a casing of an image display device according to Embodiment 22 of the present invention, and FIGS. 91 (a), (b), and (c) are front, side, and top views of the casing, respectively. For the same or equivalent structure as in Fig. 9, the same symbols are assigned in Fig. 91 ', which is characterized by not cutting off the corner 194C of the front part of the Lu body 194C, and the corner 196 of the rear part 196 of the body because of the left and right bevels 197L and i97R. , So that a parallel plane 194P parallel to the screen 192 is retained on the back of the front of the chassis 1 94 (the back of the chassis 96 side), and a vertical plane U6V perpendicular to the screen 192 is retained on the side of the rear of the chassis 196 (Figure 91 ( c)). By doing so, the following effects can be obtained in the case where a plurality of video display devices are constructed while maintaining the visual effect of giving the thin impression. Figs. 9 and 9 are diagrams showing the structure of a plurality of video display devices of Fig. 91. Figs. Figures 9 and 9 are top and perspective views, respectively. for

2103-3823-PF ; AHDDUB.ptd 第114頁 4969992103-3823-PF; AHDDUB.ptd Page 114 496999

和圖90、91相同或相當之構造賦與相同之 夕 台構造將2台影像顯示裝置上子唬。在此,夕 在橫向顯示大的影冑。 了 #的接_並連接,使得 在圖92、93,199係L字形戴面之連 台構造連接保持影像顯示裝置。在以夕△ ^用以以夕 左之影像顯示裝置,連接位於影像顯之 面_ =連接構件199之端面(第一端面)_,右連^之還^丁 位於影像顯示裝置之右側之垂直面19〇和連接彳冓 端面(第二端面)199B(圖92 (b))。而,在圖92(a)右之影 像顯不裝置’一樣的連接別的連接構件丨99,用連 / 199C彼此連接2個連接構件199。 端面199A、199B相正交,而且平行面194p、垂直面 194V各自之面積大致相同’又,因端面19“和連接面19% 平行,和以多台構成收藏於長方體之筐體之影像顯示裝置 一樣,付到可尚精度的以多台構成影像顯示裝置並可提高 設置作業效率之效果。 Μ 其效果係由於為了可使用連接構件丨9 9而在影像顯示 裝置之筐體設置了平行面194P和垂直面194V,在圖90之'筐 體之情況,因對於斜面197L、197R之連接構件之力之作^ 方法向偏移方向作用,無法簡單的得到一樣之效果。 又,使得設置貫穿連接構件1 9 9之連接面1 9 9 C或背面 199D之孔199H,利用由連接構件199及斜面197L、197R形 成之空間,也可經由孔1 99H使排氣•排熱或電纜類之通過 等。Structures that are the same as or equivalent to those in Figures 90 and 91 are the same. Here, a large shadow is displayed in the horizontal direction. The connection and connection of the # makes it possible to connect and maintain the image display device in the connection structure of the L-shaped wearing surface shown in Figs. 92, 93, and 199. In the image display device ^ ^ is used to connect the image display device on the left of the image display _ = the end surface (first end surface) of the connection member 199, and the right connection ^ is also vertical on the right side of the image display device The surface 190 and the connecting end surface (second end surface) 199B (FIG. 92 (b)). On the right side of Fig. 92 (a), the other video connection means 99 is connected, and two connection members 199 are connected to each other by a connection / 199C. The end surfaces 199A and 199B are orthogonal, and the areas of the parallel surface 194p and the vertical surface 194V are substantially the same. Also, since the end surface 19 "and the connection surface 19% are parallel, the image display device is composed of a plurality of cuboids. In the same way, it is possible to increase the efficiency of installation work by constructing an image display device with multiple units with acceptable accuracy. Μ The effect is that a parallel surface 194P is provided in the casing of the image display device in order to allow the use of the connecting member 9 9 In the case of the casing of 194V in the vertical plane, in the case of the casing shown in FIG. 90, the same effect cannot be obtained simply because the force acting on the connecting members of the inclined planes 197L and 197R acts in the offset direction. Moreover, the through-connection is set. The connection surface 1 9 9 C of the component 1 9 9 or the hole 199H on the back surface 199D uses the space formed by the connection member 199 and the bevels 197L and 197R, and can also be used to pass exhaust gas, heat, or cables through the hole 1 99H. .

2103-3823-PF ; AHDDUB.ptd 第 115 頁 五、發明說明(113) 此日f 外輸出排裔? ϋ自*面197L、mR向影像顯示裝置之筐 lqqH ” ·排熱或電纜類。自斜面197L、197R經由孔 1 9 9 Η穿過電纜_眭,旦〈你θ 丄y Κ、&amp;田札 面,可令景4 顯示裝置之背面,成完全之平 11 ΐ 1置之背面和例如房間之壁面等密接。 号US I Ϊ接構件199之鉛垂方向未特別限定,-般係 〜像顯不I置之高度以下。 圖9 4係表不採用4台影像顯示裝置之多 =〜。cn圖,:⑻各自係前方立體圖、後方立體圖。和 :供9目同之符號係相同之構成元件。在此,乡台構造 f備2組上下一樣的接鄰並連接之2台影像顯示裝置,使得 在縱向•橫向都顯示大的影像。 ^在圖94之情況,在由上下之影像顯示裝置之斜面 彼此構成之空間使排氣•排熱或電纜類通過也可。在此情 况可令衫像顯示褒置和房間之壁面等密接。而且,藉著 將上下之影像顯示裝置之連接配置成令連接構件1 9 9之斜 面19 7 U側之端面接觸,高精度的排列上下之影像顯示裝置 ’並簡單且在短時間固定。為了令連接構件1 g 9之第三端 面接觸並可連結上下,將連接構件1 9 9之高度設為和影像 顯示裝置之高度相同,而且和銀幕垂直的形成第三端面( 第三端面和端面199A、199B都正交)。 如以上所示,若依據本實施例2 2,包括設於底面1 9 8 上並設置銀幕192之筐體前部194、設於底面198上並收藏 平面鏡195之筐體後部196以及設於自筐體前部194至筐體 後部196為止之間之斜面197U、197L、197R,如在筐體前2103-3823-PF; AHDDUB.ptd page 115 V. Description of the invention (113) What is the output rank of f? 197From the surface 197L, mR to the basket lqqH of the image display device ”· Heat exhaust or cables. From the beveled 197L, 197R through the cable 1 9 9 Η through the cable _ 眭, once you θ 你 y Κ, &amp; Tian The wall surface can make the back surface of the scene 4 display device completely flat. The back surface of 11 11 1 and the wall surface of the room are tightly sealed. The vertical direction of No. US I Ϊ the connection member 199 is not particularly limited. The display height is not higher than the figure. Figure 9 4 series table does not use as many as 4 image display devices = ~. Cn picture: ⑻ each is a front perspective view, rear perspective view. And: the same symbol for 9 heads is the same structure Here, two sets of two image display devices adjacent to each other and connected in the same structure are provided in the rural platform structure, so that large images are displayed both vertically and horizontally. ^ In the case of FIG. 94, the upper and lower images are displayed. The space formed by the inclined surfaces of the devices can pass exhaust gas, heat, or cables. In this case, the shirt can be closely connected to the display setting and the wall of the room. Furthermore, the upper and lower image display devices are connected and arranged. So that the end faces of the inclined surface 19 7 U side of the connecting member 1 9 9 are in contact with each other The high-precision arrangement of the upper and lower image display devices is simple and fixed in a short time. In order to make the third end face of the connecting member 1 g 9 contact and connect up and down, the height of the connecting member 1 9 is set to the image display device. The height is the same, and the third end surface is formed perpendicular to the screen (the third end surface and the end surfaces 199A and 199B are orthogonal). As shown above, according to the second embodiment of the present invention, the third end surface is provided on the bottom surface 1 9 8 and is set. The front portion 194 of the casing 192 on the screen 192, the rear portion 196 of the casing provided on the bottom surface 198 and storing the flat mirror 195, and the inclined surfaces 197U, 197L, 197R provided from the front portion 194 to the rear portion 196 of the casing, as in In front of the enclosure

2103-3823-PF ; AHDDUB.ptd 第116頁 五、發明說明(114) 部194之筐體後部196側保留和銀幕Π2平行之平行面mp 芬而且保留和銀幕192垂直…面 :=2103-3823-PF; AHDDUB.ptd Page 116 V. Description of the invention (114) The rear part of the casing of the 194 side 196 retains a parallel plane mp fen parallel to the screen Π2 and keeps perpendicular to the screen 192 ... plane: =

及斜面197R ’得到可高精度的以 像成斜面19JL 可提高設置作業效率之效果。 ,、像颂不裝置並 ” ΐ 2依據本實施例22,因使得利用具有和影像顯- 衣 工之其中—側之平行面194Ρ連接之端面lqqA不 與平行面194P同側之φ古品99Α、和And the slanted surface 197R 'can obtain the slanted surface 19JL with high accuracy, which can improve the setting work efficiency. ", Like a song without a device" ΐ 2 According to this embodiment 22, because the use of the end surface lqqA connected to the parallel surface 194P of the video display-clothing worker-side parallel 194P is not the same as the parallel surface 194P φ ancient product 99A ,with

面199Β平行之連接面1q^ f連接之端面1996以及和端 ^ u ϋ Λ 之連接構件199連結和別的影I 連接之連接構件199,和以多台構成收藏於長方 ,之匡體之影像顯示裝置一樣,得 長方 成影像顯示F:置並可提高設置作業效率之效广夕口構 卜右依據本貫施例2 2,因使得經由斜面1 g 7 υ、 1 97L、1 97R自影像顯示裝置之筐體内部向外部使 熱或電镜類通過,々旱丨八%德g 〃 ^八 k巧侍到可令衫像顯不裝置和房間之壁面等 凡ί ,接之效果。在使背面靠壁而且使上部及下部打開之 狀悲’由連接構件199和斜面197R(197L)包圍之三角柱&quot;之 區域可用作上下方向之排熱用管。若採用這種構造, 待和煙囱一樣之效果,可提高排熱效果。 ’ 反射各實施例’ m明了在光空間調變元件上使用微 =表置之情況,但是使得在光空間調變元件使用液晶 構成影像顯示裝置也可,和使用液晶之習知之影像顯示: 置相比’可構成更薄型化之影像顯示裝置。 ’&quot; 、 又’如也在實施例丨所述,對於微反射鏡裝置、液晶 以外之各種光空間調變元件,當然也可應用本發明,可發Face 199B parallel connection surface 1q ^ f connection end surface 1996 and connection member 199 connected to end ^ u ϋ Λ and connection member 199 connected to other shadow I, and a plurality of units are stored in the rectangular shape, which The image display device is the same as the rectangular display image display F: set and can improve the efficiency of the setting operation. Guangxikou structure is based on Embodiment 2 2 of the present example, because the bevel is 1 g 7 υ, 1 97L, 1 97R. Pass the heat or electron microscope from the inside of the housing of the image display device to the outside, and 々 八 % % % g 八 八 k 巧 巧 巧 巧 巧 巧 can make the shirt display device and the wall of the room and other effects. . The area of the triangular column surrounded by the connection member 199 and the beveled surface 197R (197L) is used as a heat exhaust pipe in the vertical direction in the state where the back surface is against the wall and the upper and lower portions are opened. If this structure is adopted, the same effect as the chimney can be used to improve the heat removal effect. 'Reflective Embodiments' The case of using micro = surface setting on the light space modulation element is clear, but it is also possible to use liquid crystal to constitute the image display device with the light space modulation element, and the conventional image display using liquid crystal: Compared with ', it can form a thinner image display device. ‘&Quot; and’ As also described in the embodiment 丨, for various light space modulation elements other than micro-mirror devices and liquid crystals, of course, the present invention can also be applied, and

第117頁 I— 五、發明說明(115) 揮可薄型化的構成影像顯示襄置。 此外’如在圖3或圖13 射光學透鏡和凸面鏡之光軸共同&quot;化,不,在本發明使得折 學系整體。考慮在光軸未共同/匕之产以旋轉對稱形構成光 對稱性,藉著將光轴共_,^3生對於光抽之非 造折射光學透鏡或凸面鏡,紅轉成形可容易製 發明之效果 也合易调整對準之效果。 如以上所示,若依據本發明,包 光影像信號’·及投影光學裝置,由在节及反射該 差之情況補償該扭曲像差而且將$二反射σ卩具有扭曲像 投影之折射决與都姓1 影像信號向該反射部 學= :因使得該顯示裝置經由該投影光 =就之自反射部接受之扭曲像差後在顯示裝置顯示放大 衫像,可將顯示裝置配置於最適合影像顯示裝置之薄逛化 =位置,得到可構成比以往更薄型化之影像顯示裝置之效 右依據本發明’包括:反射部,具有反射該光影像信 號之反射面;及投影光學裝置,具有將該光影像信號向該 反射部投影之折射面之折射光學部構成;因使得該顯示裝 置、、由ό亥投影光學裝置感光邊光影像信號,而反該反射面 及該折射面之至少一個面形成非球面形狀,得到將影像顯 不裝置薄型化並可補償向顯示裝置投影之光之扭曲像差之 效果。 若依據本發明,因使得傳送裴置包括:照明光源部, 2103-3823-PF ; AHDDUB.ptd 第118頁Page 117 I— V. Description of the invention (115) The thin and thin component image display is displayed. In addition, as shown in FIG. 3 or FIG. 13, the optical axes of the radiation optical lens and the convex mirror are collectively used. Considering the fact that the optical axis is not common / produced with rotational symmetry to form optical symmetry, by combining the optical axis with the optical axis, the non-refractive optical lens or convex lens for light extraction can be easily formed by red-rotation molding. The effect is easy to adjust the effect of alignment. As shown above, according to the present invention, if the light image signal and the projection optical device are included, the distortion aberration is compensated by the difference between the reflection and the difference, and the second reflection σ 卩 has the refraction of the distortion image projection. All surnames 1 The image signal is learned from the reflection unit =: Because the display device passes the projection light = the distortion aberration accepted by the reflection unit is displayed on the display device to enlarge the shirt image, the display device can be configured to the most suitable image The thinness of the display device = position, to obtain the effect of an image display device that can be made thinner than in the past. According to the present invention, it includes: a reflecting portion having a reflecting surface that reflects the light image signal; and a projection optical device having a The refracting optical portion of the refracting surface where the light image signal is projected onto the reflecting portion is formed; because the display device and the edge optical image signal are received by the projection optical device, at least one of the reflecting surface and the refracting surface is reflected. The aspheric shape is formed, and the effect of thinning the image display device and compensating for the distortion aberration of the light projected on the display device is obtained. According to the present invention, the transmission device includes: a lighting source section, 2103-3823-PF; AHDDUB.ptd page 118

五、發明說明(116) 發射照明光 源部發出之 影像信號反 與部之反射 等透射型光 之影像顯示 ,及反射型 照明光,而 射;可在射 面側配置照 空間調變元 裝置之效果 影像資料賦 且供給該照 出光影像信 明光源部, 件之習知之 與部,接受 a月光影像資 號之反射型 得到可構成 景’像顯示裝 自該照明光 料後作為光 影像資料賦 比使用液晶 置更薄型化 、、/若依據本發明,因使得反射部包括反射自傳送裝置傳 送之光衫像k號之旋轉非球面,利用鏡面車床可容易製 作’得到可大幅度削減製造費用之效果。 、 若依據本發明,因使得反射部設為具有負功率之凸面 鏡’得到反射部之製造變得容易之效果。 若依據本發明,因使得反射部設為具有負功率之夫瑞 乃鏡’折射光學部不必補償扭曲像差就可放大影像,得到 可使影像顯示裝置之設計、製造變成容易之效果,而且得 到可構成更薄型化之影像顯示裝置之效果。 若依據本發明,因使得反射部包括反射面,由在自傳 ,^置傳送之光影像信號透射之方向積層之低分散介質及 咼刀政’丨貝構成’具有負功率並反射透射了該低分散介質 及南分散介質之光影像信號之該光影像信號,可用緩和之 凸面形狀將光信號廣角的投影,而且調整低分散介質或高 分散介質之厚度,在光學元件之内部補償在反射面發生之 扭曲像差’彳于到扭曲像差之補償變得容易之效果。 若依據本發明,因使得反射部具有反射面,如在光轴 周圍具有大凸之曲率並隨著接近周邊該曲率變小般形成,V. Description of the invention (116) The image display of the transmissive light such as the reflection of the image signal from the light source and the reflection of the part, and the reflected illumination light, and the light is emitted; the side of the radiation surface can be equipped with a spatial modulator device. The effect image data is provided to the light source of the illuminated light image, and the conventional part of the light source is accepted. The reflection type of a moonlight image number is received to obtain a scene that can be composed. The image display is installed as the light image data ratio after being installed in the lighting material. Using a liquid crystal device to make it thinner, according to the present invention, since the reflecting portion includes a reflective k-shaped rotating aspheric surface transmitted by a self-transmitting device, it can be easily manufactured by a mirror lathe. effect. According to the present invention, since the reflecting portion is a convex mirror having a negative power, it is easy to obtain the effect of manufacturing the reflecting portion. According to the present invention, since the reflection part is a Freyn mirror with a negative power, the refracting optical part can enlarge the image without compensating for distortion aberration, and the effect that the design and manufacture of the image display device can be easily obtained is obtained. It can form the effect of a thinner image display device. According to the present invention, because the reflecting portion includes a reflecting surface, a low-dispersion medium and a shovel structure that are laminated in the direction of transmission of the optical image signal transmitted by the auto-transmission device and the shovel structure have negative power and reflect the transmission. The light image signal of the light image signal of the dispersion medium and the south dispersion medium can be used to project the light signal at a wide angle with a gentle convex shape, and the thickness of the low dispersion medium or the high dispersion medium can be adjusted to compensate for the occurrence on the reflective surface inside the optical element. Twisted aberrations' effect is to make it easy to compensate for distortions. According to the present invention, since the reflecting portion is provided with a reflecting surface, it is formed such that it has a large convex curvature around the optical axis and the curvature becomes smaller as it approaches the periphery.

2103-3823-PF ; AHDDUB.ptd 4969992103-3823-PF; AHDDUB.ptd 496999

得到可 若 成之多 之反射 光之良 若 項構成 形狀之 易減輕 若 射部或 可實現 更補償 依據本 項式加 面,得 好之成 依據本 之多項 折射面 扭曲像 依據本 該折射 良好之 向顯示 發明, 上奇數 到可實 像特性 發明, 式加上 ,局部 差並可 發明, 光學部 成像性 裝置投 因使得 次之項 現兼具 之投影 因使得 奇數次 性變更 改善軸 因使得 之光軸 能之效 影之光 反射部 後所求 扭曲像 光學系 折射光 之項後 該射出 外之成 反射部 附近, 果。 具有在 得之奇 差之補 之效果 學部具 所求得 部分之 像性能 或折射 導引光 冬左又效果。 由偶數次之項構 數次非球面形狀 償和軸外之投影 〇 有在由偶數次之 之奇數次非球面 形狀,得到可容 之效果。 光學部避開該反 影像信號,得到 ’若依據本發明,因使得折射光學部包括抵消反射部之 像面彎曲之像面彎曲補償透鏡,得到補償扭曲像差而且可、) 顯不補償了像面彎曲之影像之效果。 若依據本發明,因使得折射光學部包括致兹伐 (Petzval)和補償透鏡,由具有正功率之正透鏡和具有負 功率且折射率比該正透鏡之折射率小之負透鏡構成,補償 反射部之珀茲伐(Petzval)和貢獻成分,補償扭曲像差, 而且可如滿足珀茲伐(petzval )條件般補償像面彎曲,得 到可提高成像性能之效果。 若依據本發明,因使得投影光學裝置在自傳送裝置向 反射部投影之光影像信號之主光線之分散處及/或該主光 線之集中處包括非球面幵&gt; 狀光學面,得到在主光線之集中Get as much reflected light as possible. If the term is easy to reduce the shape of the shape, if the shooting part can achieve more compensation, add the surface according to this formula, and get a good number of refracting planes. Orientation display invention, from the odd number to the real image characteristic invention. In addition, the local difference can be invented. The imaging factor of the optical unit imaging factor makes the second item now has the projection factor to make the odd number of changes to improve the axial factor. After the light reflection part of the effect of the optical axis energy is reflected, the distortion of the optical system is required to refract light, and the light should be emitted near the reflection part. It has the effect of the odd difference and the supplementary effect. The department has the image performance or refraction of the part obtained. The aspheric shape is composed of even-numbered terms, and the off-axis projection is 〇 There is an aspheric shape with odd-numbered times, and a tolerable effect is obtained. The optical part avoids the inverse image signal and obtains' if according to the present invention, because the refractive optical part includes an image plane curvature compensation lens which cancels the image plane curvature of the reflection part, the distortion aberration can be compensated and the image is not compensated. The effect of curved surface. According to the present invention, since the refractive optical portion includes a Petzval and a compensation lens, it is composed of a positive lens having a positive power and a negative lens having a negative power and a refractive index smaller than that of the positive lens to compensate for reflection. The Petzval and contribution components of the component compensate for distortion aberrations, and can compensate for curvature of the image surface as petzval conditions are satisfied, thereby obtaining the effect of improving imaging performance. According to the present invention, since the projection optical device includes an aspherical optical surface at the scattered position and / or the concentrated position of the main ray of the optical image signal projected from the transmission device to the reflection portion, the optical surface at the main Concentration of light

2103-3823-PF ; AHDDUB.ptd 第120頁 496999 五、發明說明(H8) — ^ ________ 處可有效的減輕像面彎曲、在主光線之分 輕扭曲像差之效果。 &quot;处可有效的減 若依據本發明,因使得投影光學裝置包 邛向反射部反射光影像信號之光路彎曲裝置,折射光學 射部之光軸之水平面内將該折射光學部之在包含該反 當之角度,得到可構成更薄型化而且將 ^方,彎成適 成低之影像顯示裝置之效果。 。卩高度抑制 若依據本發明,因使得折射光學部包括 鏡裝置反射光影像信號之光路彎透鏡褒 裝置之效果。 卩回度抑制成低之影像顯示 若依據本發明,因使得折射光學部 t之至 &gt;、一片之透鏡,折射光學部之口成樹脂製 p中低影像顯示裝置之價格之效果。產力提尚,得到可 若依據本發明,因使得 ::射並以旋轉對稱形構成,得到;用?=部之光輛共 若依據本發明,因“t:;也容易之效果。衣 光學裝置之光影像信號之平=铲1,不裝置反射來自投岑 像顯示裝置之空間並可將影像二:至』最大限度的利用;; 若依據本發明,因使得顯示壯、衣置溥型化之致果。 反射面設為平行之關係到^衣置之感光面和平 置之玫果‘。 于到可構成薄型化之影像&amp;之 若依據本發明,因使得折^ ^裝 __ — 先于部包括:反向光學系 2103-3823-PF ; AHDDUB.ptd 第121 頁 496999 五、發明說明(119) ,由具有正功率之正透鏡群及具 •,及折射光學透鏡,㈣爽&quot;后二::之負透鏡群構成 往反射1M + # 末 向光學系之光影像信號 彺反射邓之射出角度,得到可構 曲並;型化之影像顯示裝置之效果 曲像差或像面4 若依據本發明,因使得反向光學系由2 組負透鏡群構成,得到可更且俨 、'、正透鏡群及 面彎曲it㈣“更八體的構成抑制扭曲像差或像 面弓,亚溥型化之影像顯示裝置之效果。 右依據本發明,因使得反向光學系由1 組負透鏡群構成,得到更且 、、、正透鏡群及1 面弯曲並薄型化之影像=裝抑制扭曲像差或像 丨以以下之折射率之平均 :及正透鏡,具有大於! 7??而丨认,^ 並^、有負功率 廿ι古X丄古 Κ 722而小於I 9之折射率之平均值 並具有正功率,得到可更且 手之十勺值 •彎曲並薄型化之旦::的構成抑制扭曲像差或像面 弓 1,寻孓化之衫像顯示裝置之效果。 若依據本發明,因使得折射 具有25以上38以下之阿貝數 =二,·負透鏡, 透鏡,呈有大於Μ 千句值並具有負功率;及正 八有大於38而小於60之阿貝數之平均佶祐且女工丄 率,得到可更具體的構 像有正功 化之影像顯示裝置之效果。?曲像差$像面以並薄型 若依據本發明,因使得庳 璃材料之折射率之平灼# $ 、子口 構成正透鏡之破 率之平均值之差值為0.04以上丨以m枓之折射 ,得到可更且體的槎^下之透鏡玻璃材料構成 更八體的構成抑制扭曲像差或 第122頁 2103-3823-PF ; AHDDUB.ptd 496999 五、發明說明(120) 之影像顯示裝置之效果。 若依據本發明,因使得折射 璃材料之阿貝數之平均值和構成2由構成正透鏡之破 數之平均值之差值為。以上16構以^ 得到可更且體的槿点女生丨4 &amp; 之透鏡玻璃材料構成, 付巧J更具體的構成抑制扭曲像 影像顯示裝置之效果。 或像面穹曲亚薄型化之 若依據本發明,因传得合自 鏡之中最接近傳送裝置光射出面之=鏡==部數透 該傳送裝置光射:面 即直徑最小化,而且將光之遮住 f透鏡之尺寸 效果。 ¾伍破小化而提向照明效率之 若依據本發明’因使得投影 f包括具有負功率之負透鏡,不 ^透,效果,就可產生抵消投影光學系之正射 (? = ”&amp;1)和貝獻成分之負之珀茲伐(以4”1)和貢 ’容易的滿足珀茲伐(petzval )條件 、 刀 面彎曲之影像顯示裝置之效果。到了構成減少像 若依據本發明,因使得將光軸方向之彎曲 μ 折射光學部不遮住自光路彎曲裝置至反射部為止在 範圍接近該光路,不會發生影像無法投影之陰之 :Ϊ Ϊ足厚度限制值之限制並可將銀幕下部;Ϊ抑制:低 若依據本發明,因使得將光軸方向之彎曲角度設成在 4969992103-3823-PF; AHDDUB.ptd Page 120 496999 V. Description of the invention (H8) — ^ ________ can effectively reduce the curvature of the image surface and lightly distort the aberration in the main light. &quot; According to the present invention, since the projection optical device includes an optical path bending device that reflects a light image signal toward the reflecting portion, the refractive optical portion is included in the horizontal plane of the optical axis of the refracting optical transmitting portion. Conversely, the effect is obtained that the image display device can be made thinner and bent squarely into a low-profile image display device. .卩 High suppression According to the present invention, the effect of the device is that the refractive optical section includes a light path curved lens 反射 device that reflects a light image signal by a mirror device. Image display with low suppression of refraction According to the present invention, since the refractive optical portion t is &gt; one lens, the mouth of the refractive optical portion becomes a resin p medium-low image display device. Productivity improvement is obtained. According to the present invention, it is obtained by making :: shoot and constitute with rotational symmetry; use? = The light of the ministry according to the present invention, because "t :; also easy effect. The level of the light image signal of the optical device = shovel 1, no reflection of the space from the video display device can be installed and the image two : To "maximum use; if according to the present invention, the effect of making the display strong and the shape of the clothes is sculpted. The reflective surface is set to be parallel to the light-sensitive surface of the clothes and the rose fruit." To the extent that a thin image can be formed &amp; according to the present invention, because it is folded ^ ^ installed __ — the predecessor includes: reverse optics 2103-3823-PF; AHDDUB.ptd page 121 496999 5. Description of the invention (119), consisting of a positive lens group with positive power and a refractive lens, and a refracting optical lens, the latter two: the negative lens group constitutes a 1M + # reflection of the optical image signal of the end optical system, reflecting Deng According to the present invention, the reverse optical system is composed of two groups of negative lens groups. '、 Positive lens group and surface curvature it 更 "Suppression of constitution of more eight bodies Or image surface curvature aberration bow, the video effects apparatus of the type po alkylene display. Right According to the present invention, because the reverse optical system is composed of a group of negative lens groups, an image with more, ,, and positive lens groups and one surface curved and thinner is obtained. = Distortion aberration or image reduction is suppressed. The average of the rate: and positive lens, with greater than! 7 ?? It is recognized that ^ and ^ have negative power 廿 ιX 丄 古 Κ 722 and are smaller than the average value of the refractive index of I 9 and have a positive power, which can be changed to ten spoonfuls of value • Bent and thin The composition of Transformed Dan :: suppresses distortion aberrations or image bows 1, and seeks the effect of a transformed shirt like a display device. If according to the present invention, because the refraction has an Abbe number of 25 or more and 38 or less = two, a negative lens, the lens has a value greater than M thousand sentences and has a negative power; and the positive eight has an Abbe number of greater than 38 and less than 60. The average rate of female workers and the rate of female workers can obtain the effect of a more specific image display device with positive power. ? According to the present invention, the curvature aberration $ image plane is thin, because the refractive index of the glass material is flat, the difference between the average value of the breakage rate of the positive lens constituting the positive lens is 0.04 or more. Refraction results in a more solid lens glass material structure, a more eight-body structure, suppression of distortion aberrations, or 2103-3823-PF on page 122; AHDDUB.ptd 496999 5. Image display device of the invention description (120) The effect. According to the present invention, the difference between the average value of the Abbe number of the refracting glass material and the average value of the number of breaks constituting the positive lens is made up. The above 16 structures are made of ^ 4, which can be made into a more realistic lens glass material, and Fu Qiao's more specific structure suppresses the effect of distorted image image display device. Or if the image surface dome is thinner, according to the present invention, it is transmitted from the mirror closest to the light exit surface of the transmission device = mirror = = number of light transmission through the transmission device: the surface is the smallest diameter, and The size effect of blocking the f lens by the light. According to the present invention, because the projection f includes a negative lens with negative power, the effect can be generated to offset the orthography of the projection optical system (? = "&Amp; 1) The effect of Petzval (with 4 "1) and Gong'an, which is the negative component of the image, is easy to meet the Petzval condition and the effect of the curved image display device. When the composition reduction image is obtained according to the present invention, the bending of the optical axis direction μ refracting optical portion does not cover the optical path from the optical path bending device to the reflecting portion in a range close to the optical path, and there will be no shadow of the image that cannot be projected: The thickness of the foot can be limited and the lower part of the screen can be suppressed. Ϊ Suppressed: Low. According to the present invention, the bending angle in the direction of the optical axis is set to 496999.

496999 五、發明說明(122) 可有效利用影像顯示裝置 ' 可將旋轉成形之—個凸面鏡二等間之效果,還得到 置之效果 〜於2台影像顯示敦 若依據本發明,因使得包括 持成一體化之保持機構,固定折射=先學部及反射部保 之位置關係、,可和構成元件間之光路::及反射部之互相 顯不裝置之性能更穩定化之效果。,^,得到可使影像 若依據本發明,因使得 裝置以及反射部保持成一體化之保;:=學部、光路彎曲 部 '光路彎曲襄置以及反射部之互冓,固定折射光學 士元件間之光路對應,得到 :巧係,可和構 定化之效果。 私”、、貞不裝置之性能更穩 若依據本發明,因使得折射光 包括具有正功率之正透冑 光線之高處 影光學系之轴兹伐(Petzval j用透八鏡作θ用’可抑制投 少”象面彎曲之影像顯示裝置之貝效獻果成刀,-到可構成減 線之;Πΐι發明,因使得將射入該折射光學部之邊部光 ^ :度6又為hl、將在配置於該折射光學部中央部之正透 鏡之邊部光線之最大高产执兔“ _ ^ 夕伞夕、真加企a 度5又為h 將自該折射光學部射出 ° 、各之尚度設為h〇時,滿足1.05hi&lt;hm&lt;3hi及 〇.3hl&lt;ho&lt;hl之關係,可抑制投影光學系之轴茲伐 (Petwal)和貢獻成分,得到可構成減少了像面彎曲之影 像顯不裝置之效果,而且可使折射光學部之射出部分之透 鏡直徑變小,得到可構成在光路彎曲反射鏡之插入範圍具496999 V. Description of the invention (122) The image display device can be effectively used. The effect of rotating and forming a convex mirror second class can also be achieved. The effect is also displayed on two image displays. An integrated holding mechanism, fixed refraction = the positional relationship between the first learning department and the reflection department, and the optical path between the components: and the reflection unit's mutual display device performance is more stable. , ^, It can be obtained that if the image is in accordance with the present invention, the device and the reflection section are kept integrated; == The Faculty, the optical path bending section 'the optical path bending and the reflection section are mutually connected, and the refractive optical elements are fixed between Corresponding to the light path, we get: clever system, which can be combined with the effect of structure. The performance of the "private" device is more stable. According to the present invention, the refracted light includes the axis of the high-order shadow optical system with positive power and transparent light. The image effect of the image display device that can suppress the "throw less" image effect is a knife,-to the extent that it can form a reduced line; Πΐι invention, because the edge light that enters the refractive optical part ^: degree 6 is again hl. The largest high-yield ray rabbit that will emit light at the side of the positive lens disposed in the central part of the refractive optical section. "Xi Xiu Xi, Zhen Jia Qi a degree 5 and h will be emitted from the refractive optical section °, each When the value is set to h0, the relationship between 1.05hi &lt; hm &lt; 3hi and 0.33hl &lt; ho &lt; hl can be satisfied, and the Petzal and contribution components of the projection optical system can be suppressed. The curved image does not show the effect of the device, and the diameter of the lens at the exit portion of the refractive optical portion can be reduced, so that the insertion range of the curved reflector can be formed in the optical path.

2103-3823-PF ; AHDDUB.ptd 第125頁 五、發明說明(123) 有餘裕之影像顯示裝置之效果。 右依據本發明,因使得光 中心附近之光學姓处¥ ^ 双直之不使 成像性能,可禮成犯差,而提咼使用之該光軸外 和=折射光學部之光學材料之折射率及二之之 。 由度,得到可得到更高之成像性 像位ϊ Γ ί ί發明,因使得投影光學裴置之光軸 像位置不在同 性能之影像顯示裂得到可構成具有優 若依據本發明,m 近之扭曲像差,提古估5侍投影光學裝置容許光 接近光軸之矩形使用之大半部分之成像性能 變小,得到邊界以;=:於:外之別邊之相 ^ ^ 1雞餐:成曲線之效果。 右依據本發明,m i 化之範圍限制=和!;=影光學敦置將令光 扭曲像差之影響限定;σ :光:之像角範圍’ 邊可形成正確之矩艰ί,、在先軸中心附近之底邊 向2片、在橫向複數\开=之影像之效果,而且在 部分之晝重疊,:到之Λ台顯示器之情况,在晝1 若依據本發明,0,生晝之間隙等之效果 射光影像信號之平面#使得自投影光學裝置向顯 差之形狀,得到可二具有補償該投影光學裝置 補仏影像顯示裝置之扭曲像差 用之光轴 之範圍之 ί鏡,緩 限制條件 能之效果 中心之成 ,折射光 異之成像 軸中心附 ,可使最 對變形量 學性能惡 得到可將 而其他三 構成在縱 3之連接 〇 示裝置反 之扭曲像 之效果。2103-3823-PF; AHDDUB.ptd Page 125 V. Description of the Invention (123) The effect of a marginal image display device. According to the present invention, because the optical surname near the light center is not allowed, the imaging performance can be deteriorated, and the out-of-optical sum of the optical axis and the refractive index of the optical material of the refractive optical unit are used. The second one. According to the invention, a higher imaging image position can be obtained. Γ ί 发明 Invention, because the projection axis of the optical axis of the optical axis is not at the same position, the image display crack can be obtained. Twisted aberrations, Tigu estimates that the projection performance of a large part of the projection optical device that allows light to be closer to the optical axis becomes smaller, and the boundary is obtained; =: in: outside the other side ^ ^ 1 chicken meal: into The effect of the curve. Right According to the present invention, the range limitation of mi i = = and! ; = Shadowing optical limitation will limit the effect of light distortion aberration; σ: light: the angle of the image angle 'side can form the right moment difficult, the bottom edge near the center of the anterior axis to the two, in the horizontal plural \ On = the effect of the image, and it overlaps in part of the day: in the case of Λ display, in day 1 if according to the present invention, 0, the effect of the gap between day and day, the plane # of the light image signal makes self-projection optics The shape of the device is significantly different, and a mirror having a range of optical axes for compensating the distorted aberration of the image display device of the projection optical device to obtain a mirror can be formed, and the effect center of the conditional energy can be moderated, and the image of refracted light is different. The center of the shaft is attached, which can make the most distorted quantitative performance bad and get the effect of distorting the other three components in the vertical 3 connection.

2103-3823-PF ; AHDDUB.ptd 第126頁2103-3823-PF; AHDDUB.ptd p.126

五、發明說明(124) 若依據本發明, 部之光軸附近之射出 出光之射出瞳偏移, 位置及入射角,可抑 抑制像面彎曲之效果 若依據本發明, 號之反射面之前面至 形成荨厚’可抑制對 可長1向影像顯示裝置 若依據本發明, 號之非投影前面以該 之低反射面和具有比 内部以該光軸為中心 檢測器之功率監視器 像顯示裝置之組立製 之對準調整之效果。 若依據本發明, 之射出面之玻璃罩及 增減和該變動相反的 經由該玻璃罩及該補 璃罩之厚度變動,可 玻璃介質保護傳送裝 系或折射光學部之設 若依據本發明, 因使得 設為該 於溫度 之環境 因使得 反射部 該低反 設置之 及運算 程可容 反射部 前面之 變化之 特性之 反射部 之光軸 射面小 平面形 處理產 易的進 將自作 背面之 前面之 效果。 包括在 為中心 之面積 狀之南 生假想 行反射 因使得折射光學部在構造上將往反射 光之射出曈和往該反射部之周邊之射 調整對於該反射部之該射出光之入射 制在反射部周邊部分之勉曲,得到可 為反射光影像 後面為止之厚度 形狀變化,得到 不反射光影像信 設置之平面形狀 並在該低反射面 反射面,可利用 Α軸,得到在影 #、折射光學部 1使得傳送裝置包括保護影像資料光 =照該玻璃罩之光學上&lt;厚度變動之 ίί變動之光學性厚度之補償透鏡, t透鏡向折射光學部射出光,抵消玻 成利用總是具有固定之光學厚度之 ^之射出面,得到不必變更照明光源 δ十就可利用之效果。 因使得折射光學部在來自傳送裝置之V. Description of the invention (124) According to the present invention, the exit pupil deviation, position, and angle of incidence of light exiting near the optical axis of the part can suppress the effect of suppressing the curvature of the image plane. In order to form a thick thickness, it is possible to suppress a 1-directional image display device. According to the present invention, the non-projection front has a low reflection surface and a power monitor image display device with a detector centered on the optical axis. The effect of the alignment adjustment of the system. If according to the present invention, the glass cover of the exit surface and the thickness of the exit cover are increased and decreased by the thickness change of the glass cover and the fill glass cover, the glass medium protection transmission system or the design of the refracting optical part may be based on the present invention. The setting of the environment at the temperature causes the reflection part to have a low reflection setting and the calculation process can accommodate the characteristics of the change in front of the reflection part. . Including the area-centered Nansheng imaginary line reflection, the refractive optical part is structured to adjust the exit of the reflected light and the exit to the periphery of the reflective part to adjust the incidence of the emitted light of the reflective part. The thickness of the peripheral part of the reflection part can be changed to the thickness and shape of the reflected light image. The flat shape of the non-reflected light image signal can be obtained and the reflecting surface on the low reflection surface can be obtained by using the Α axis. The refractive optical unit 1 enables the transmission device to include a compensation lens that protects the image data light = the optical thickness of the glass cover &lt; the thickness changes the optical thickness of the change, the t lens emits light to the refractive optical unit to offset the glass utilization The light emitting surface with a fixed optical thickness has the effect of being usable without changing the illumination light source δ10. Because the refracting optics

五、發明說明(125) 照明光之入射側包括抵 一 得到可和玻璃罩之厚戶j補償玻璃之補償玻璃拆裝機構, 度之補償玻璃之效果二&quot;更或厚度變動對應的更換最佳厚 若 裝置之 顯示裝 中心之 、反射 點自該 第二點 將該第 點所產 顯示裝 度之效 交之底 反射往 點之光 線方向 之法線 底面 空間配 影像顯 面;在 形之影 第一點 線之反 向該底 方向向 法線方 1構成 示裝置 鏡之反射 用線段連 上並最遠 平面鏡上之第二點 第三點、將該第一 依據本發 感光面正 置所顯示 第一點、 往該第二 底面之法 自該底面 ^點自該 生之配置 置決定之 果0 有和平面 藉著各自 像之底邊 之光線之 射部上之 面投影之 該底面投 向向該底 元件,得 之薄之範 第一投影 影之第二 面投影之 到可在由 圍抑制銀 面及顧示 接位於該 離影像之 點、將言| 投影點、 第三投最 平面鏡和 幕下部虎V. Description of the invention (125) The incident side of the illumination light includes a compensation glass disassembly mechanism that can be used to obtain the compensation glass of the thick glass and the thickness of the glass. In the center of the display device of Jiahouruo, the reflection point from the second point reflects the bottom of the display device produced at that point to the normal line of the point in the direction of the light. The bottom space is matched with the image display surface; The first point line is opposite to the bottom direction toward the normal side. 1 constitutes the second line point and the third point on the farthest plane mirror connected to the reflection line segment of the display device mirror. The method of displaying the first point, toward the second bottom surface, is determined from the bottom surface ^ the point is determined by the configuration of the life. 0 and the plane is projected by the bottom surface projected by the surface of the light ray on the bottom side of the respective image. To the bottom element, the second surface of the thin projection of the first projection can be projected to the point where the silver surface can be restrained and the display is located at the point away from the image. The projection point, the third projection mirror. Under the curtain Tiger

若依據本發明,According to the invention,

要部分,由發射照使得傳送裝置包括··聚光光學系主 之射出光依次著色之L之照明光源部、將來自照明光源部 之射出端面之照户八乞色輪、使來自照明光源部之照明光 來自該棒形積八二刀布均勻化後射出之棒形積分器以及將 使來自該中繼^二之照明光中繼之中繼透鏡構成;物鏡, 型影像資料賦與=之照明光之f光線方向一致;以及反射 作為光影像信^ ,供給來自該物鏡之照明光影像資料後 部分配置為構成-射,在配置空間將該聚光光學系之主要 要部分之照明朵=件,而且包括將來自該聚光光學系之主 °该物鏡依次反射之第二光路彎曲裝置及In the main part, the transmission device includes the illumination light source portion of L, which emits light in order that the emitted light of the main optical system is sequentially colored, the illumination light source portion that emits light from the end face of the illumination light source portion, and the light source portion from the illumination light source portion. The illumination light comes from the rod-shaped integrator that is emitted after the rod-shaped eighty-two knife cloth is homogenized and the relay lens that will make the illumination light relay from the relay ^ 2; the objective lens, and the type image data are assigned = The direction of the f light of the illumination light is the same; and the reflection is used as the light image signal, and the illumination light image data provided from the objective lens is partially configured to constitute -radiation, and the illumination light of the main part of the focusing optical system is arranged in the configuration space = And also includes a second optical path bending device which reflects the main lens of the condensing optical system in turn and the objective lens and

第128頁 五、發明說明(126) 第三光路彎曲裝置 利用配置於配置空 若 軸設置 會使照 應各種 若 車由設置 源部和 點高, 幕下部 果0 依據本發明 成和顯示裝 明光源部之 利用形態之 依據本發明 成和顯示裝 該光轴之交 得到可構成 之高度並可 ’因使得將 置之感光面 壽命變短、 影像顯示裝 ’因使得將 置之感光面 點在錯垂方 不會使照明 適應各種利 聚光光學系之主要 及底面平行,得到 抑制銀幕下部之高 置之效果。 聚光光學系之主要 平行,而且令傾斜 向比中繼透鏡和該 光源部之壽命變短 用形態之影像顯示 部分之光 可構成不 度並可適 部分之光 成照明光 光軸之交 Λ抑制銀 裝置之效 若依據本發明,因使得傳送裝置包括設置聚/ 之主要部分及物鏡之調整台,而且在該調整Α &quot;于糸 —, 0 包括收歲筮 二光路彎曲裝置之收藏孔,得到可構成更抑制 高度之影像顯示裝置之效果。 、下部之 若依據本發明,因使得聚光光學系之主要部八 光路彎曲裝置或第三光路彎曲裝置之至少~方之=與面二 為曲面形狀,藉著在其曲面形狀下工夫可賦與光線:: 自由度,得到可改善各種光學性能之效果。 、 二 若依據本發明,因使得反射部由合成樹脂製成,得到 可容易形成其形狀而且能以低價格量產之效果。 于 若依據本發明,因使得反射部如自其光軸方A主 々同看到之Page 128 V. Description of the invention (126) The third optical path bending device is arranged in the configuration. If the shaft is set, it will take care of various types of vehicles. The source and point of the installation are high. According to the invention, according to the present invention, the intersection with the optical axis of the display device can be constituted to a height that can be constructed, and because the life of the photosensitive surface to be placed is shortened, the image display device is caused to be placed at the wrong point. The vertical side will not make the lighting adapt to the main and bottom surfaces of various concentrating optical systems, and the effect of suppressing the high position of the lower part of the screen is obtained. The focusing optical system is mainly parallel, and the light in the image display part in the form of tilting shorter than the lifespan of the relay lens and the light source part can constitute an inadequate light and the appropriate part of the light becomes the intersection of the optical axis of the illumination light. Suppressing the effect of the silver device According to the present invention, the transmission device includes an adjustment table for setting the main part of the lens and the objective lens, and the adjustment Α &quot; 于 糸 —, 0 includes the storage hole of the two-way bending device , To obtain the effect that can constitute an image display device with further reduced height. According to the present invention, the lower part of the eighth optical path bending device or the third optical path bending device of the main part of the condensing optical system according to the present invention has a curved surface shape with the second surface, and can be given by working on the curved surface shape. Light :: Degree of freedom to get the effect of improving various optical performance. According to the present invention, since the reflecting portion is made of synthetic resin, the effect that the shape can be easily formed and mass production can be achieved at a low price is obtained. Therefore, according to the present invention, because the reflection portion is seen from the optical axis square A,

2103-3823-PF ; AHDDUB.ptd 第129頁 五、發明說明(127) ---- 正面形狀變成長方形般切掉不向顯示裝置反射光影像信號 之非反射部分·,而且包括··第一螺絲固定部,在該長方形 之下邊上以既定之偏心距離設於光軸附近,對於第一反射 部安裝機構樞軸固定;第二螺絲固定部,設於該長方形之 下,^外之邊,對於第二反射部安裝機構保持成滑動;以 及第二螺絲固定部,設於該長方形之下邊以外之邊,對於 第三^射部安裝機構保持成滑動,抑制因溫度變化所引起 之^膨脹•熱收縮而發生之反射部之形狀變形或光軸偏差 ’知到可防止影像顯示裝置之光學性能惡化之效果。 若依據本發明,因使得第一反射部安裝機構及第一螺 4、固心邛利用推拔螺絲固定,而且具有推拔形狀和該推拔 螺絲之推拔部分一致之螺絲孔,得到可確實的進行樞軸固 定之效果。 m =不贫明,因使得反射部如自其光軸方向看到之 片大又成長方形般切掉不向顯示裝置反射 射部分;而且包括:凹部,在該長方形之下邊上: :心距離設於光輛附近;圓柱支撐體,其曲面和誃 口,2支彈貫,其一端各自固定於該凹部之左右, 射部供給拉力;篦-總鉍田6立 外之邊,對於笛’設於該長方形之 固疋部’設於該長方形之下邊以外之邊,對二 脹·熱收縮而發生制因溫度變化所引起 防止〜像顯不裝置之光學性能惡化差 496999 五、發明說明(128) 若依據本發 正面形狀變成長 之非反射部分; 既定之偏心距離 其V槽;2支彈簧 反射部供給拉力 以外之邊,對於 三螺絲固定部, 反射部安裝機構 膨脹•熱收縮而 到可防止影像顯 若依據本發 各自固定於該第 共同點,對該反 倒後利用時,可 ,可提高第一螺 若依據本發 定部以及第三螺 反射部安裝機構 像信號之反射部 置反射部之反射 若依據本發 保持機構上並將 之部分透鏡群支 明,因使得 方形般切掉 而且包括: 設於光輛附 ,其一端各 丄第二螺絲 第二反射部 設於該長方 保持成滑動 &amp;生之反射 示裝置之光 明,因使得 一螺絲固定 射部供給拉 向彈簧分散 絲固定部之 明,因使得 絲固定部對 以及第三反 之前面側保 面之效果。 明,因使得 折射光學部 撐成滑動; 反射部如自其光軸方向看到之 不向顯不裝置反射光影像信號 凸°卩,在該長方形之下邊上以 近;V槽支撐體,該凸部嵌入 自,定於該凸部之左右,對該 固疋4 ’設於該長方形之下邊 安裝機構保持成滑動;以及第 形之下邊以外之邊,對於第三 ’抑制因溫度變化所引起之熱 部之形狀變形或光軸偏差,得 學性能惡化之效果。 反射部包括2支彈簧,其一端 部之左右’而且另一端固定於 力’在將影像顯示裝置上下顛 集中於第一螺絲固定部之應力 可靠性。 第一螺絲固定部、第二螺絲固 於第一反射部安裝機構、第二 射部安裝機構各自將反射光影 持成接觸’得到可高精度的配 包括:2支滑動支撐柱,設於 之全部透鏡群或該折射光學部 第一安裝板,位於該2支滑動2103-3823-PF; AHDDUB.ptd Page 129 V. Description of the Invention (127) ---- The front shape becomes rectangular and cut off the non-reflection part that does not reflect the light image signal to the display device, and includes the first The screw fixing portion is provided near the optical axis at a predetermined eccentric distance below the rectangle, and is pivotally fixed to the first reflecting portion mounting mechanism; the second screw fixing portion is provided below the rectangle, and the outer side, The second reflecting part mounting mechanism is kept sliding; and the second screw fixing part is provided on the side other than the lower side of the rectangle, and the third reflecting part mounting mechanism is kept sliding to suppress the expansion due to temperature changes. It is known that the deformation of the reflection portion or the deviation of the optical axis due to the thermal shrinkage can prevent the optical performance of the image display device from being deteriorated. According to the present invention, since the first reflecting part mounting mechanism and the first screw 4 and the fixed core are fixed with push screws, and have screw holes with the same push shape as the push portions of the push screws, the reliability can be obtained. Effect of pivoting. m = not poor, because the reflecting portion is cut away from the display device without reflecting to the display device as a large and rectangular piece seen from the direction of its optical axis; and includes: a concave portion, on the lower side of the rectangle:: heart distance It is located near the light car; a cylindrical support with a curved surface and a mouth, two elastic penetrations, one end of which is fixed to the left and right of the recess, and the shooting part provides pulling force; The solid part of the rectangle is provided on the side other than the lower side of the rectangle to prevent the expansion and thermal contraction caused by temperature changes. The optical performance of the image display device is not deteriorated. 496999 V. Description of the invention ( 128) If it becomes a long non-reflective part according to the shape of the front of the hair; the predetermined eccentric distance from its V-groove; 2 springs that provide tension beyond the reflective part. For the three-screw fixing part, the reflective part mounting mechanism expands and shrinks to It is possible to prevent the image from being fixed to the first common point according to the present invention, and when used after being reversed, the first screw can be improved. If the reflection part of the No. reflection part is set according to the holding mechanism of the hair and a part of the lens group is made clear, it is cut off like a square and includes: It is installed on the light car, and one end of the second screw is second reflection The light provided in the rectangular shape is maintained as a sliding &amp; reflective display device, because a screw-fixed shooting part is provided to pull the light of the spring-dispersed wire fixation part, so that the wire fixation part pair and the third reverse front side are secured. Surface effect. Ming, because the refractive optical part is supported to slide; the reflecting part does not reflect the light image signal to the display device as seen from the direction of its optical axis, and is convex near the lower side of the rectangle; the V-groove support body, the convex The part is embedded at the left and right sides of the convex part, and the fixing mechanism 4 'is installed in the lower side of the rectangle to keep the mounting mechanism sliding; and the sides other than the lower side of the third side are suppressed from being caused by temperature changes. The deformation of the hot part or the deviation of the optical axis can degrade the performance. The reflecting portion includes two springs, one side of which is left and right 'and the other side is fixed to a force', which stresses the image display device upside down on the first screw fixing portion. The first screw fixing part, the second screw are fixed to the first reflecting part mounting mechanism, and the second emitting part mounting mechanism respectively hold the reflected light and shadow in contact with each other to obtain a highly accurate configuration including: 2 sliding support columns, all of which Lens group or the first mounting plate of the refractive optics, located on the two slides

2103-3823-PF ; AHDDUB.ptd 第131頁2103-3823-PF; AHDDUB.ptd p.131

2 …骨動支撐柱之門並5固”機構上;第二安裝板;位於該 群或其部分透鏡群0之下:於構成折射光學部之全部透鏡 裝板及該第二安裝板以及壓電元件’如由該第—安 壓之增減在該折射光學V::持接觸’利用施加之控制電 溫度變化而發生之隹軸方向伸縮,得到可調整因 ^ ........5天準之效果。 構上右::’因使得包括齒輪支撐柱’設於保持機 =光光學部之全部透鏡群或該 變化:發生之焦點;中之-’得到樹因溫度 若依據本發明,因传 所保持之折射光學部或該保少構 :準:Ξ:制在使用環境下發生之溫度斜率並可調整焦 = 光學部之鏡筒溫度;溫二;、=·溫度感測器,感測折k 度;以及控制單元,按機構之_ ,控制壓電元件、齒輪機構或加熱“ 效果。 正U服度k化而發生之焦點失準$ 右依據本發明 到之線性插值式該環境溫度後所求νΛ之焦 敍里仁制壓電兀件、齒輪機構或加熱 :點相 Υ之至少其2… the door of the bone movement support column is fixed on the 5 ”mechanism; the second mounting plate; is located under the group or a part of the lens group 0: all the lens mounting plates and the second mounting plate and the pressure plate forming the refractive optical part If the electric component is stretched in the refractive optical V :: hold contact by the increase and decrease of the first ampere pressure, the z-axis direction expansion caused by the change in the temperature of the control electric power is applied, and the adjustable factor ^ ....... .5 quasi effect. Top right: 'Because the gear supporting column is included' is set in the holder = all the lens groups of the optical optics section or the change: the focal point that occurs; the middle of-'gets the tree factor temperature if the basis According to the present invention, the refracting optical part or the structure that is kept due to transmission is: quasi: Ξ: control the temperature slope that occurs in the use environment and can adjust the focus = lens barrel temperature of the optical part; temperature two; And the control unit, according to the _ of the mechanism, controls the piezoelectric element, the gear mechanism or the heating effect. Focus inaccuracy caused by positive k-degrees k Right focus according to the present invention The linear interpolation formula obtained according to the present invention is the focus of νΛ after the ambient temperature The piezoelectric element, gear mechanism or heating made by Surin: Point phase at least

^6999 五 -、發明說明(130) 一 種境ΐ度和焦點之關係變成-對-對應,得到 可進订更正確之焦點調整之效果。 右依據本發明’因使得肖— 示裝置之非影像顯示區域之光於疋+,感光射入顯 元,按照該焦點資料之= 點資料;及控制單 或力:熱冷:器之中之至少-•,于使用】= 反映焦點失準的進行焦點調整 若依據本發明,因使得 之妓呆 裝置之非影像顯示區域之光之以 70件&amp;射射入顯不 限制為影像顯示區域之極至反射鏡,得到在將筐體 果。 ^之情況也可檢測焦點資料之效 若依據本發明,μ π 光強度分布作為声點資料侍=制單元將CCD元件所感光之 控制成使該尖峰值變大枓二为析該焦點資料之尖峰值後, 焦點調整之效果。 付到可直接反映焦點失準的進行 光強:ίίΐΠ。:得控制單元將⑽元件所感光之 寬後,控制成使該既定位準:J =點!既定位準之 點失準的進行焦點調整之效果見又 付,可直接反映焦 若依據本發明, 光強度分布作為焦點次f得控制單元將cci)元件所感光之 後,控制成使該傾斜=二,=析該焦點資料之肩部之傾斜 行焦點調整之效果。文 得到可直接反映焦點失準的進 若依據本發明,保持機構包括分別支撐折射光學部及^ 6999 5-Description of the invention (130) A relationship between the degree of focus and focus becomes-right-corresponding, and the effect of more accurate focus adjustment can be obtained. Right according to the present invention, 'cause the light in the non-image display area of the Xiao-display device is 疋 +, the light is incident into the display element, according to the focus data = point data; and the control unit or force: hot cooling: in the device At least-•, in use] = Focus adjustment that reflects focus misalignment. According to the present invention, the light of the non-image display area of the prostitute device is not limited to the image display area. Go to the mirror to get the fruit in the box. In the case of ^, the effect of the focus data can also be detected. According to the present invention, the μ π light intensity distribution is used as the sound point data. The control unit controls the sensitivity of the CCD element to make the peak value larger. The effect of focus adjustment after spikes. Paying can directly reflect the progress of focus inaccuracy: ίίΐΠ. : The control unit will control the width of the light sensing element to make the existing positioning accurate: J = point! The effect of focus adjustment when the point is misaligned can be directly reflected. It can directly reflect the focus. According to the present invention, the light intensity distribution as the focus time f is obtained by the control unit after the cci) element is photosensitive, and then controlled to make the tilt = Second, the effect of the focus adjustment of the tilted shoulders of the focus data. According to the present invention, the holding mechanism includes a support for the refractive optical section and

2103-3823-PF ; AHDDUB.ptd 第133頁 4969992103-3823-PF; AHDDUB.ptd page 133 496999

496999 五、發明說明(133) 和该折射光學部之光軸對應設置之第二透射孔之孔空反射 ,丄自該光路彎曲反射鏡經由該第二透射孔向該高反射面 ,又^反射以該折射光學部之理想之光軸為中心之平行光束 紡Ϊ被Ϊ孔空反射鏡反射之該平行光束和自該高反射面向 了、路彎曲反射鏡依次反射之回路之該平行光束之行進方 ,之步驟;自該透鏡保持凸緣拆下該孔空反射鏡後設 資5二,f學部之步驟;以及設置該照明光源部及該影像 = 該影像資料賦與部將自該照明光源部發 曲為該光影像信號,㈣該折射光學部、該 及該反射部令該光影像信號成像於治具顯示裝 置上之正书之位置之步驟,得到可令影像 之壁面等完全密接之效果。 裝置孝房間 圖式簡單說明 。圖1係表示本發明之實施例1之影像顯示襄置之構造圖 圖2係在概念上說明折射先聲读 補償凸面鏡之線軸型扭曲像差之動作見之圖。桶型扭曲像差 圖3係在概念上表示以光路追蹤求@ 光學透鏡利用凸面鏡或平面鏡反射光時之德、、差之折射 圖4係表示追加了平面鏡之本發 之方法之圖。 示裝置之構造圖。 κ知例1之影像顯 圖5係表示本發明之實施例2 。 ”彳冢顯不裝置之構造圖 圖6係放大了凸面鏡和夫瑞乃鏡之圖。496999 V. Description of the invention (133) The hole of the second transmission hole provided correspondingly to the optical axis of the refractive optical part is reflected in the air, and is reflected from the optical path bending mirror to the highly reflective surface through the second transmission hole, and is reflected again. The parallel light beam centered on the ideal optical axis of the refractive optical section is traveled by the parallel light beam reflected by the cavity mirror and the parallel light beam in the loop which is reflected in turn by the highly reflective surface and the curved road mirror. Steps; steps for setting up a faculty after removing the hole-reflection mirror from the lens retaining flange; and setting up the illumination source section and the image = the image data imparting section will start from the illumination source The part of the curve is the light image signal. The steps of the refracting optical part, the reflection part, and the reflection part for imaging the light image signal on the position of the original book on the fixture display device, and the wall surface of the image can be completely sealed. effect. Installation of filial room. Fig. 1 is a view showing a structure of an image display device according to Example 1 of the present invention. Fig. 2 is a view conceptually illustrating the action of the refraction pre-reading to compensate the spool-type distortion of the convex mirror. Bucket-type distortion aberrations Figure 3 is a conceptual representation of the optical path tracking to determine the virtues, differences, and refraction of light when reflecting light using a convex or flat mirror. Figure 4 is a diagram showing the method of adding a flat mirror. Show the structure of the device. κ Image Display of Known Example 1 FIG. 5 shows Example 2 of the present invention. "Structure diagram of Hagi Tsukasa's device" Fig. 6 is an enlarged view of a convex mirror and a Freyn mirror.

2103-3823-PF ; AHDDUB.ptd 第136頁 496999 五、發明說明(134) 圖7係比較凸面鏡和夫瑞乃鏡之扭曲像差之差異之圖 〇 圖8係表示本發明之實施例3之影像顯示裝置之構造圖 〇 圖9係放大了光學元件之圖。 圖10係表示在光學元件之内部射入之光路之圖。 圖1 1係表示向一方向展開被反射面折回之光學元件内 之光路之圖。 圖12係放大了光學元件之圖。 圖1 3係表示本發明之實施例4之影像顯示裝置之構造 圖。 圖1 4係表示本發明之實施例4之影像顯示裝置之構造 圖。 圖1 5係表示本發明之實施例4之影像顯示裝置之構造 圖。 圖1 6係表示本發明之實施例4之影像顯示裝置之構造 圖。 圖1 7係表示本發明之實施例5之影像顯示裝置之構造 圖。 圖1 8係表示正透鏡、負透鏡之相對於阿貝數之比之功 率之變化狀況之圖。 圖1 9係說明在非球面凸面鏡發生之過小之像面彎曲之 圖。 圖2 0係表示本發明之實施例6之影像顯示裝置之構造2103-3823-PF; AHDDUB.ptd Page 136 496999 V. Explanation of the invention (134) Fig. 7 is a graph comparing the difference of the distortion aberration between a convex mirror and a Fresnel mirror. Fig. 8 is an image showing Example 3 of the present invention. Structure of a display device. FIG. 9 is an enlarged view of an optical element. FIG. 10 is a diagram showing an optical path incident into the optical element. Fig. 11 is a view showing an optical path in an optical element folded back by a reflecting surface in one direction. Fig. 12 is an enlarged view of an optical element. Fig. 13 is a diagram showing the structure of an image display device according to a fourth embodiment of the present invention. Fig. 14 is a diagram showing the structure of an image display device according to a fourth embodiment of the present invention. Fig. 15 is a diagram showing the structure of an image display device according to a fourth embodiment of the present invention. Fig. 16 is a diagram showing the structure of an image display device according to a fourth embodiment of the present invention. Fig. 17 is a diagram showing the structure of an image display device according to a fifth embodiment of the present invention. Fig. 18 is a graph showing changes in the power of the ratio of the positive lens and the negative lens to the Abbe number. Fig. 19 is a diagram illustrating an excessively small image plane curvature occurring in an aspherical convex mirror. FIG. 20 shows the structure of an image display device according to a sixth embodiment of the present invention.

2103-3823-PF ; AHDDUB.ptd 第137頁 496999 五、發明說明(135) 圖。 圖2 1係將非球面應用於光之集中處或光之分散處之 圖。 圖2 2係表示圖2 1之數值計算結果之一例之圖。 圖2 3係表示本發明之實施例7之影像顯示裝置之構造 圖。 圖2 4係用以說明圖2 3之影像顯示裝置之效果之圖。 圖2 5係用以說明圖2 3之影像顯示裝置之效果之圖。 圖2 6係表示本發明之實施例8之影像顯示裝置之構造 圖。 圖2 7係表示反向光學系之構造圖。 圖28係表示數值實施例8A之數值資料之圖。 圖2 9係表示數值實施例8 A之構造之圖。 圖30係表示數值實施例8B之數值資料之圖。 圖3 1係表示數值實施例8B之構造之圖。 圖32係表示數值實施例8C之數值資料之圖。 圖33係表示數值實施例8C之構造之圖。 圖34係表示數值實施例4A之數值資料之圖。 圖3 5係表示數值實施例4 A之構造之圖。 圖36係表示數值實施例4B之數值資料之圖。 圖37係表示數值實施例4B之構造之圖。 圖38係表示數值實施例7A之數值資料之圖。 圖3 9係表示數值實施例7 A之構造之圖。 圖4 0係表示後側焦距、入射瞳位置以及折射光學透鏡2103-3823-PF; AHDDUB.ptd Page 137 496999 V. Description of the invention (135) Figure. Fig. 21 is a diagram in which aspheric surfaces are applied to a place where light is concentrated or a place where light is scattered. FIG. 22 is a diagram showing an example of a numerical calculation result of FIG. 21. Fig. 23 is a diagram showing the structure of an image display device according to a seventh embodiment of the present invention. FIG. 24 is a diagram for explaining the effect of the image display device of FIG. 23. FIG. 25 is a diagram for explaining the effect of the image display device of FIG. 23. Fig. 26 is a diagram showing the structure of an image display device according to an eighth embodiment of the present invention. Fig. 27 is a view showing the structure of a reverse optical system. Fig. 28 is a diagram showing numerical data of Numerical Example 8A. Fig. 29 is a view showing the structure of Numerical Example 8A. Fig. 30 is a diagram showing numerical data of Numerical Example 8B. Fig. 31 is a diagram showing the structure of Numerical Example 8B. Fig. 32 is a diagram showing numerical data of Numerical Example 8C. Fig. 33 is a diagram showing the structure of Numerical Example 8C. Fig. 34 is a diagram showing numerical data of Numerical Example 4A. Fig. 35 is a diagram showing the structure of Numerical Example 4A. Fig. 36 is a diagram showing numerical data of Numerical Example 4B. Fig. 37 is a diagram showing the structure of Numerical Example 4B. Fig. 38 is a diagram showing numerical data of Numerical Example 7A. Fig. 39 is a diagram showing the structure of Numerical Example 7A. Figure 40 shows the back focal length, entrance pupil position, and refractive optical lens

2103-3823-PF ; AHDDUB.ptd 第138頁 496999 五、發明說明(136) 之關係圖。 圖4 1係表示本發 圖。 明之實施例9之影像顯示裝置之構造 圖43传^ - ^路彎曲反射鏡之配置條件之圖。 圖43係表不保持折射光 凸面鏡之保持機構之圖。 4反射鏡以及 = 以說明光路彎曲反射鏡之配置條件之圖。 圖係表不本發明之實施例1 1之影像顯示裝置之構造 圖。 圖4 6係表示實施例丨丨之數值實施例丨丨a之圖。 圖47係表示一般之光學系之成像關係之圖。 圖4 8係表示像面彎曲之光學系之例子之圖。 圖49係表示本發明之實施例丨3之影像顯示裝置之構造 圖5 0係表示本發明之實施例丨4之影像顯示裝置之構造 圖5 1係表示以多台構造使用之情況之影像顯示裝置之 圖5 2係表示數值實施例丨4 a之數值資料之圖。 圖5 3係表示數值實施例丨4 A之構造之圖。 圖54係表示在數值實施例14A之扭曲像差之數值計算 結果之圖。 圖5 5係表示在數值實施例4 a之扭曲像差之數值計算結 果之圖。 圖 圖 圖2103-3823-PF; AHDDUB.ptd Page 138 496999 V. The relationship diagram of the description of the invention (136). Fig. 41 is a diagram showing the present invention. Structure of the image display device of the ninth embodiment of the invention Fig. 43 is a diagram showing the arrangement conditions of the ^-^ curved reflector. Fig. 43 is a diagram showing a holding mechanism of a convex mirror that does not hold refracted light. 4 mirrors and = A diagram to explain the configuration conditions of the optical path bending mirrors. The figure shows the structure of an image display device according to Embodiment 11 of the present invention. Fig. 46 is a diagram showing a numerical embodiment of the embodiment 丨 丨 a. Fig. 47 is a diagram showing the imaging relationship of a general optical system. Fig. 48 is a diagram showing an example of an optical system with a curved image plane. Fig. 49 is a diagram showing the structure of an image display device according to an embodiment of the present invention 丨 3 Fig. 50 is a diagram showing the structure of an image display device according to an embodiment of the present invention 丨 4 Fig. 51 is an image display showing a case where multiple structures are used Fig. 52 of the device is a diagram showing numerical data of numerical example 4a. Fig. 53 is a diagram showing the structure of a numerical example 4A. Fig. 54 is a graph showing the numerical calculation results of the distortion aberration in Numerical Example 14A. Fig. 5 is a graph showing the numerical calculation results of the distortion aberration in Numerical Example 4a. Figure figure figure

2103-3823-PF ; AHDDUB.ptd 第139頁 496999 五、發明說明(137) 圖。圖56係表示本發明之實施例15之影像顯示裝置之構造 圖5 7係用以說明對於溫度變化之凸面 縿夕Θ ^子度方 向之 形狀變化之圖 圖58係表示使用凸面鏡之對準調整方法之 圖5 9係表示本發明之實施例丨6 &quot; 圖。 心〜彳冢顯不裝置之構造 圖60係表示玻璃罩之厚度和補償玻璃之厚度 圖61係表示數值實施例16A之數值資料 圖62係表示數值實施例1βΑ之構造之回。 圖63係表示使用平面鏡、光路 / 裝置之構造圖。 反射鏡之影像顯示 圖64係表示本發明之實施例1?之影像顯示裝置之構造 圖65係表示利用和銀幕正交之[A, 示影像顯示裝置之剖面圖。 平面各自表 圖6 6係表示光軸傾斜之昭 圖67係表示影像顯示〆置狀態圖。 圖68係表示本菸 $種利用形態圖。 圖。 a Α %例17之影像顯示裝置之構造 圖 圖 示設置了收藏第三光路彎 之調整台之圖 之關係 曲反射鏡之收藏孔 之影像顯示裝置之構造 圖7〇係表示本發明之實施例182103-3823-PF; AHDDUB.ptd Page 139 496999 V. Description of the invention (137) Figure. Fig. 56 is a diagram showing the structure of an image display device according to Embodiment 15 of the present invention. Fig. 57 is a diagram for explaining the change in the shape of the convex surface θ ^ sub-degree direction with respect to temperature change. Fig. 58 is an alignment adjustment using a convex mirror. Figures 5-9 of the method are diagrams showing an embodiment of the present invention. The structure of the heart-to-head gravel display device FIG. 60 shows the thickness of the glass cover and the thickness of the compensation glass. FIG. 61 shows the numerical data of Numerical Example 16A. FIG. 62 shows the structure of Numerical Example 1βΑ. Fig. 63 is a structural diagram showing a plane mirror and an optical path / device. Image display of a mirror Fig. 64 shows the structure of an image display device according to the first embodiment of the present invention. Fig. 65 shows a cross-sectional view of the image display device using [A] orthogonal to the screen. Tables of planes Fig. 6 is a view showing the tilt of the optical axis. Fig. 67 is a view showing the state of the image display setting. Fig. 68 is a diagram showing the use patterns of the present tobacco. Illustration. a Α% Example 17 Structure of the image display device shows the structure of the image display device provided with the storage hole of the curved mirror for storing the diagram of the adjustment table for the third optical path bend. FIG. 70 shows an embodiment of the present invention. 18

2103-3823-PF ; AHDDUB.ptd 第140頁 496999 五、發明說明(138) 圖。 圖7 1係用以說明因溫度變化而熱膨脹之凸面鏡之動作 圖。 圖72係用以說明凸面鏡以偏心距離EXC之第一螺絲固 定部為中心只轉動角度0時光軸之偏差角△( 0 )之圖。 圖73係採取溫度變化對策之凸面鏡之構造變化圖。 圖74係用以應用於上下顛倒之情況之影像顯示裝置之 溫度變化對策用凸面鏡之構造變化圖。 圖7 5係表示本發明之實施例1 9之影像顯示裝置之構造 圖。 圖7 6係表示本發明之實施例1 9之影像顯示裝置之構造 圖。 圖7 7係表示本發明之實施例1 9之影像顯示裝置之構造 圖。 圖7 8係表示控制單元之焦點資料之分析方法圖。 圖7 9係表示本發明之實施例1 9之影像顯示裝置之構造 圖。 圖8 0係表示移動折射光學透鏡之一部分透鏡而補償焦 點偏差之一例之圖。 圖8 1係表示本發明之實施例1 9之影像顯示裝置之構造 圖。 圖8 2係表示應用於本發明之實施例2 0之影像顯示裝置 之凸面鏡之構造圖。 圖8 3係表示本發明之實施例2 0之對準調整方法之流程2103-3823-PF; AHDDUB.ptd Page 140 496999 V. Description of the invention (138) Figure. Fig. 71 is an operation diagram of a convex mirror for explaining thermal expansion due to temperature change. Fig. 72 is a diagram for explaining the deviation angle Δ (0) of the optical axis when the convex mirror is rotated only by an angle of 0 with the first screw fixing portion of the eccentric distance EXC as the center. Fig. 73 is a structural change diagram of a convex mirror that takes measures against temperature changes. Fig. 74 is a diagram showing a structure change of a convex mirror used for a temperature change countermeasure of an image display device applied to an upside-down situation. Fig. 75 is a diagram showing the structure of an image display device according to Embodiment 19 of the present invention. Fig. 76 is a diagram showing the structure of an image display device according to Embodiment 19 of the present invention. Fig. 7 is a view showing the structure of an image display device according to Embodiment 19 of the present invention. Fig. 78 is a diagram showing an analysis method of focus data of a control unit. Figs. 7 to 9 are diagrams showing the structure of an image display device according to Embodiment 19 of the present invention. Fig. 80 is a diagram showing an example of compensating the focus deviation by moving a part of the lens of the refractive optical lens. Fig. 81 is a diagram showing the structure of an image display device according to Embodiment 19 of the present invention. Fig. 82 is a structural diagram showing a convex mirror applied to an image display device of Embodiment 20 of the present invention. FIG. 8 is a flowchart showing the alignment adjustment method of the embodiment 20 of the present invention

2103-3823-PF ; AHDDUB.ptd 第141頁 496999 五、發明說明(139) 圖。 圖84係表示按照對準調整方法依次配置光學系構成元 件下去之狀況之圖。 圖8 5係表示按照對準調整方法依次配置光學系構成元 件下去之狀況之圖。 圖8 6係表示按照對準調整方法依次配置光學系構成元 件下去之狀況之圖。 圖8 7係表示按照對準調整方法依次配置光學系構成元 件下去之狀況之圖。 圖8 8係表示按照對準調整方法依次配置光學系構成元 件下去之狀況之圖。 圖8 9係本發明之實施例2 1之影像顯示裝置之構造圖。 圖9 0係表示將在各實施例所示之影像顯示裝置收藏於 習知之筐體之情況之概觀。 圖9 1係本發明之實施例2 2之影像顯示裝置之筐體之概 觀圖。 圖9 2係表示採用2台影像顯示裝置之多台構造之情況 之圖。 圖9 3係表示採用2台影像顯示裝置之多台構造之情況 之圖。 圖9 4係表示採用4台影像顯示裝置之多台構造之情況 之圖。 圖9 5係表示習知之影像顯示裝置之構造圖。 圖9 6係表示追加了平面鏡之習知之影像顯示裝置之構2103-3823-PF; AHDDUB.ptd Page 141 496999 V. Description of the invention (139) Figure. Fig. 84 is a diagram showing a state where the optical system constituent elements are sequentially arranged in accordance with the alignment adjustment method. Fig. 85 is a diagram showing a state where the optical system constituent elements are sequentially arranged in accordance with the alignment adjustment method. Fig. 86 is a diagram showing a state where the optical system constituent elements are sequentially arranged in accordance with the alignment adjustment method. Figs. 8 to 7 are diagrams showing a state where the optical system constituent elements are sequentially arranged in accordance with the alignment adjustment method. FIG. 8 is a diagram showing a state where the optical system constituent elements are sequentially arranged in accordance with the alignment adjustment method. 8 and 9 are structural diagrams of an image display device according to Embodiment 21 of the present invention. Fig. 90 is an overview showing a case where the image display device shown in each embodiment is stored in a conventional case. FIG. 9 is a schematic view of a housing of an image display device according to Embodiment 2 2 of the present invention. Fig. 92 is a diagram showing a case where a plurality of structures of two image display devices are used. Fig. 9 is a diagram showing a case where a plurality of structures of two image display devices are used. Fig. 9 is a diagram showing a case where a plurality of structures of four image display devices are used. Fig. 95 is a diagram showing the structure of a conventional image display device. Figure 9 6 shows the structure of a conventional image display device with a flat mirror added.

2103-3823-PF ; AHDDUB.ptd 第142頁 496999 五、發明說明(140) 造圖。 符號說明 11〜發光體(傳送裝置、照明光源部); 1 2〜拋物面反射鏡(傳送裝置、照明光源部); 1 3〜聚光透鏡(傳送裝置、照明光源部); 1 4〜微反射鏡裝置(傳送裝置、反射型影像資料賦與 部); 15〜折射光學透鏡(折射光學部); 16〜凸面鏡(反射部);2103-3823-PF; AHDDUB.ptd Page 142 496999 V. Description of the invention (140) Drawing. DESCRIPTION OF SYMBOLS 11 ~ Luminous body (transmission device, illumination light source section); 1 2 ~ Parabolic mirror (transmission device, illumination light source section); 1 3 ~ Condensing lens (transmission device, illumination light source section); 1 4 ~ micro reflection Mirror device (transmission device, reflection-type image data imparting unit); 15 ~ refractive optical lens (refractive optical unit); 16 ~ convex mirror (reflection unit);

17〜投影光學系(投影光學裝置); 18〜銀幕(顯示裝置); 1 9〜折射光學透鏡; 2 0〜光轴; 2 1〜平面鏡; 2 2〜平面鏡; 23〜折射光學透鏡(折射光學部); 24〜夫瑞乃鏡(反射部); 25〜投影光學系(投影光學裝置); 2 7〜光轴;17 ~ projection optics (projection optics); 18 ~ screen (display device); 19 ~ refractive optical lens; 20 ~ optical axis; 2 ~ flat mirror; 2 ~ flat mirror; 23 ~ refractive optical lens (refractive optics) Department); 24 ~ Fräiner mirror (reflecting section); 25 ~ Projection optics (projection optics); 2 7 ~ Optical axis;

28〜折射光學透鏡(折射光學部); 2 9〜光學元件(反射部); 30〜投影光學系(投影光學裝置); 3卜低分散玻璃(低分散介質); 3 2〜邊界面;28 ~ refraction optical lens (refractive optics); 2 9 ~ optical element (reflection); 30 ~ projection optics (projection optics); 3 low dispersion glass (low dispersion medium); 3 2 ~ boundary surface;

2103-3823-PF ; AHDDUB.ptd 第143頁 496999 五、發明說明(141) 3 3〜高分散玻璃(高分散介質); 3 4〜反射面; 3 5〜光學元件; 3 6〜高分散玻璃; 3 7〜邊界面; 3 8〜低分散玻璃; 3 9〜反射面; 40〜折射光學透鏡(投影光學裝置、折射光學部); 4卜非球面凸面鏡(投影光學裝置、反射部); 42〜非球面透鏡(投影光學裝置、折射光學部); 4 3〜球面凸面鏡(投影光學裝置、反射部); 4 4〜光車由; 45〜非球面凸面鏡(投影光學裝置、反射部); 46〜非球面凸面鏡(投影光學裝置、反射部); 47〜非球面透鏡(投影光學裝置、折射光學部); 4 8 A〜正透鏡; 4 8 B〜負透鏡; 49〜折射光學透鏡; 5 0〜光轴; 5 1〜平面; 5 2〜像面; 5 3〜像面; 54〜折射光學透鏡(投影光學裝置、折射光學部、像面 彎曲補償透鏡);2103-3823-PF; AHDDUB.ptd page 143 496999 V. Description of the invention (141) 3 3 ~ high dispersion glass (high dispersion medium); 3 4 ~ reflection surface; 3 5 ~ optical element; 3 6 ~ high dispersion glass 3 7 ~ boundary surface; 3 8 ~ low dispersion glass; 3 9 ~ reflection surface; 40 ~ refractive optical lens (projection optics, refractive optics); 4 aspherical convex mirror (projection optics, reflecting parts); 42 ~ Aspheric lens (projection optics, refractive optics); 4 3 ~ Spherical convex mirror (projection optics, reflecting unit); 4 4 ~ Growing light; 45 ~ Aspherical convex mirror (projection optics, reflecting unit); 46 ~ Aspherical convex mirror (projection optics, reflecting section); 47 ~ Aspheric lens (projection optics, refractive optics); 4 8 A ~ positive lens; 4 8 B ~ negative lens; 49 ~ refractive optical lens; 5 0 ~ Optical axis; 5 1 ~ Plane; 5 2 ~ Image plane; 5 3 ~ Image plane; 54 ~ Refractive optical lens (projection optics, refractive optics, image surface curvature compensation lens);

2103-3823-PF ; AHDDUB.ptd 第144頁 496999 五、發明說明(142) 55〜非球面透鏡(投影光學裝置、折射光學部、非球面 形光學元件); 56A、56B〜非球面透鏡(投影光學裝置、折射光學部、 非球面形光學元件); 5 7〜非球面凸面鏡(投影光學裝置、反射部、非球面形 光學元件); 58〜非球面透鏡(投影光學裝置、折射光學部); 58〜z折射光學透鏡; 59〜光路彎曲反射鏡(光路彎曲裝置); 60〜凸面鏡(投影光學裝置、反射部); 6 1〜光轴; 62〜反向光學系(投影光學裝置、折射光學部); 63〜折射光學透鏡(投影光學裝置、折射光學部); 6 4〜非球面凸面鏡(投影光學裝置、反射部); 6 5、6 6〜折射光學透鏡; 6 7、6 8〜折射光學透鏡; 69〜凸面鏡; 7 0〜光轴; 7 1〜邊部光線; 7 2〜負透鏡; 7 3〜光轴; 74〜保持機構; 7 5〜反射光線; 76〜折射光學透鏡(折射光學部);2103-3823-PF; AHDDUB.ptd Page 144 496999 V. Description of the invention (142) 55 ~ aspherical lens (projection optics, refractive optics, aspherical optical element); 56A, 56B ~ aspheric lens (projection Optical device, refractive optical unit, aspherical optical element); 5 7 ~ aspherical convex mirror (projection optical device, reflective unit, aspherical optical element); 58 ~ aspherical lens (projection optical device, refractive optical unit); 58 ~ z refracting optical lens; 59 ~ light path bending mirror (light path bending device); 60 ~ convex mirror (projection optical device, reflecting part); 6 1 ~ optical axis; 62 ~ reverse optical system (projection optical device, refracting optics) Parts); 63 ~ refractive optical lenses (projection optics, refracting optics); 6 4 ~ aspherical convex mirrors (projection optics, reflecting parts); 6 5,6 6 ~ refractive optical lenses; 6 7,6 8 ~ refraction Optical lens; 69 ~ convex lens; 70 ~ optical axis; 7 ~ 1 side light; 7 ~ 2 ~ negative lens; 7 ~ 3 ~ optical axis; 74 ~ holding mechanism; 7 ~ 5 reflected light; 76 ~ refraction optical lens (Refractive Optics Division);

2103-3823-PF ; AHDDUB.ptd 第145頁 496999 五、發明說明(143) 77〜凸面鏡; 7 8〜光轴; 7 9〜邊部光線; 80〜正透鏡; 8卜入射側透鏡群; 8 2〜射出側透鏡群; 83〜折射光學透鏡(投影光學裝置); 84〜凸面鏡(投影光學裝置); 8 5〜成像面;2103-3823-PF; AHDDUB.ptd page 145 496999 V. Description of the invention (143) 77 ~ convex mirror; 7 8 ~ optical axis; 7 9 ~ edge light; 80 ~ positive lens; 8b incident side lens group; 8 2 ~ exit side lens group; 83 ~ refractive optical lens (projection optics); 84 ~ convex mirror (projection optics); 8 5 ~ imaging surface;

86〜A、86B成像位置; 8 7折射光學透鏡; 88〜凸面鏡; 8 9〜像面; 9 0 A、9 0 B〜成像位置; 91〜折射光學透鏡(折射光學部); 92、93〜凸面鏡; 9 4〜光轴; 9 5、9 6〜射出光; 9 7、9 8〜射出瞳;86 ~ A, 86B imaging position; 8 7 refractive optical lens; 88 ~ convex lens; 8 9 ~ image surface; 9 0 A, 9 0 B ~ imaging position; 91 ~ refractive optical lens (refractive optical part); 92, 93 ~ Convex mirror; 9 4 ~ optical axis; 9 5, 9 6 ~ emit light; 9 7, 9 8 ~ exit pupil;

9 9〜射出光; 100、 100A〜100F〜銀幕; 101、 101A 〜101F〜光軸; 102、 102A〜102F〜最大範圍; 103A、103B〜折射光學透鏡(折射光學部);9 9 ~ outgoing light; 100, 100A ~ 100F ~ silver screen; 101, 101A ~ 101F ~ optical axis; 102, 102A ~ 102F ~ maximum range; 103A, 103B ~ refracting optical lens (refractive optical part);

2103-3823-PF ; AHDDUB.ptd 第146頁 496999 五、發明說明(144) 104〜凸面鏡(反射部); 1040〜凸面鏡(反射部); 104C〜非反射部分; 104F 、104F’〜前面; 104R、104R’ 〜後面; 104L〜低反射面; 104H〜高反射面、計數器; 1 0 5〜光轴; 1 0 6〜光線;2103-3823-PF; AHDDUB.ptd Page 146 496999 V. Description of the invention (144) 104 ~ convex mirror (reflecting section); 1040 ~ convex mirror (reflecting section); 104C ~ non-reflecting section; 104F, 104F '~ front; 104R 104R '~ back; 104L ~ low reflection surface; 104H ~ high reflection surface, counter; 105 ~ optical axis; 106 ~ light;

1 0 6 P〜反射點; 1 0 7〜雷射; 1 0 8〜隔離器; I 0 9〜半反射鏡; II 0〜檢測器; 110A、110B、110C、110D 〜感光元件。, 111、112〜去路、回路之雷射光; 11 3〜假想光軸; 114〜玻璃罩(傳送裝置); 11 5〜補償玻璃(傳送裝置);1 0 6 P ~ reflection point; 107 ~ laser; 10 8 ~ isolator; I 0 9 ~ half mirror; II 0 ~ detector; 110A, 110B, 110C, 110D ~ photosensitive element. 111, 112 ~ laser light for the way and return; 11 3 ~ imaginary optical axis; 114 ~ glass cover (transport device); 11 5 ~ compensation glass (transport device);

11 6〜影像顯示裝置; I 1 7〜銀幕下部; 118〜底面; II 9〜光線; 1 2 0〜光線;11 6 ~ image display device; I 1 7 ~ lower part of the screen; 118 ~ bottom surface; II 9 ~ light; 1 2 0 ~ light;

2103-3823-PF ; AHDDUB.ptd 第147頁 496999 五、發明說明(145) 1 2 1、1 2 2〜線段、S空間(配置空間); 123、 123A、123B〜照明光源系(傳送裝置、照明光源 部、聚光光學系之主要部分); 124、 124B〜色輪(傳送裝置、聚光光學系之主要部 分); 125、 125B〜棒形積分器(傳送裝置、聚光光學系之主 要部分); 126、 126B〜中繼透鏡(傳送裝置、聚光光學系之主要 部分); 127、 127B〜第二光路彎曲反射鏡(第二光路彎曲裝置) 128〜第三光路彎曲反射鏡(第三光路彎曲裝置); 129〜物鏡(傳送裝置); 130、130A、130B〜光軸; 1 3 1〜剩餘空間; 1 3 2〜調整台; 1 3 3〜收藏孔; 134〜凸面鏡(投影光學裝置、反射部); 1 340〜凸面鏡; 1 3 4 F〜前面; 1 3 4 R〜後面; 1 3 5〜光轴; 135P〜凸面鏡頂點; 1 3 6〜第一螺絲固定部;2103-3823-PF; AHDDUB.ptd Page 147 496999 V. Description of the invention (145) 1 2 1, 1 2 2 ~ Line segment, S space (configuration space); 123, 123A, 123B ~ Illumination light source system (transmission device, Illumination light source section and main part of condensing optical system); 124, 124B ~ color wheel (main part of transmission device and condensing optical system); 125, 125B ~ rod integrator (main part of transmission device and condensing optical system) Part); 126, 126B ~ relay lens (main part of transmission device and condensing optical system); 127, 127B ~ second optical path bending mirror (second optical path bending device) 128 ~ third optical path bending mirror (section Three-light path bending device); 129 ~ objective lens (transmission device); 130, 130A, 130B ~ optical axis; 1 3 1 ~ remaining space; 1 3 2 ~ adjustment stage; 1 3 3 ~ storage hole; 134 ~ convex lens (projection optics) Device, reflecting part); 1 340 ~ convex mirror; 1 3 4 F ~ front; 1 3 4 R ~ back; 1 3 5 ~ optical axis; 135P ~ convex mirror vertex; 1 3 6 ~ first screw fixing part;

2103-3823-PF ; AHDDUB.ptd 第148頁 496999 五、發明說明(146) 136H〜螺絲孔; 1 3 7〜第二螺絲固定部; 137H〜螺絲孔; 1 3 8〜第三螺絲固定部; 138H〜螺絲孔; 1 3 9〜推拔螺絲; 139W〜墊圈; 139N〜螺帽; 140〜凸面鏡安裝機構(反射部安裝機構); 1 4 1〜直螺絲; 141W〜墊圈; 141N〜螺帽; 142〜凸面鏡安裝機構(反射部安裝機構); 143〜彈簧; 1 4 4〜凹部; 145〜圓柱支撐體; 1 4 6〜凸部; 146A、146B〜彈簧座部; 147V〜槽支撐體; 148〜微反射鏡裝置(傳送裝置、影像資料賦與部); 149〜折射光學透鏡(投影光學裝置、折射光學部); 149A、149B、1490 透鏡; 1 5 0〜光轴; 151〜光學底座(保持機構);2103-3823-PF; AHDDUB.ptd Page 148 496999 V. Description of the invention (146) 136H ~ screw hole; 1 3 7 ~ second screw fixing portion; 137H ~ screw hole; 1 3 8 ~ third screw fixing portion; 138H ~ screw holes; 1 3 9 ~ pushing screws; 139W ~ washers; 139N ~ nuts; 140 ~ convex mirror mounting mechanism (reflection part mounting mechanism); 1 4 1 ~ straight screws; 141W ~ washers; 141N ~ nuts; 142 ~ convex mirror mounting mechanism (reflection part mounting mechanism); 143 ~ spring; 1 4 4 ~ concave; 145 ~ cylinder support; 1 4 6 ~ convex; 146A, 146B ~ spring seat; 147V ~ groove support; 148 ~ Micro-mirror device (transmission device, image data distribution unit); 149 ~ refractive optical lens (projection optics, refractive optical unit); 149A, 149B, 1490 lens; 150 ~ optical axis; 151 ~ optical base ( Holding agency);

2103-3823-PF ; AHDDUB.ptd 第149頁 496999 五、發明說明(147) 1 5 2、1 5 3〜滑動支撐柱; 154、155〜安裝板; 156〜壓電元件; 1 5 7〜齒輪支撐柱; 157G〜齒輪機構; 1 5 8、1 5 9〜溫度感測器; 1 6 0〜加熱冷卻器; 1 6 1〜控制單元;2103-3823-PF; AHDDUB.ptd Page 149 496999 V. Description of the invention (147) 1 5 2, 1 5 3 ~ Slide support post; 154, 155 ~ Mounting plate; 156 ~ Piezo element; 1 5 7 ~ Gear Support column; 157G ~ gear mechanism; 158, 159 ~ temperature sensor; 160 ~ heating cooler; 161 ~ control unit;

162〜凸面鏡(投影光學裝置、反射部); 1 6 3〜平面鏡; 164〜銀幕(顯示裝置); 1 6 5〜影像顯示區域; 1 6 6〜非影像顯示區域; 1 6 7〜小型反射鏡; 168〜CCD元件; 1 6 9〜固定支撐柱; 170〜凸面鏡(投影光學裝置、反射部); 1 700〜凸面鏡; 1 7 1〜光轴;162 ~ convex mirror (projection optics, reflecting section); 1 6 3 ~ flat mirror; 164 ~ screen (display device); 1 6 5 ~ image display area; 1 6 6 ~ non-image display area; 1 6 7 ~ small mirror 168 ~ CCD element; 169 ~ fixed support column; 170 ~ convex mirror (projection optics, reflecting part); 1700 ~ convex mirror; 1 7 1 ~ optical axis;

1 7 2〜反射凸部; 1 7 3〜反射凹部; 174〜雷射光源; 1 7 5〜分光鏡; 1 7 6〜治具銀幕(治具顯示裝置);1 7 2 ~ reflective convex part; 1 7 3 ~ reflective concave part; 174 ~ laser light source; 1 7 5 ~ beam splitter; 1 7 6 ~ fixture screen (fixture display device);

2103-3823-PF ; AHDDUB.ptd 第150頁 496999 五、發明說明(148) 176H〜it 射 iU 第一 it 射?L); 177〜光學底座(保持機構); 178〜聚光透鏡; 1 7 9〜四分割檢測器; 1 8 0〜光轴; 1 8 1〜光路彎曲反射鏡; 1 8 2〜透鏡保持凸緣; 1 8 3〜孔空反射鏡; 183Η〜透射孔(第二透射孔); 184〜折射光學透鏡(投影光學裝置、折射光學部); 185〜微反射鏡裝置(傳送裝置、影像資料賦與部); 1 8 6〜照明光源系(傳送裝置、照明光源部); 187〜微反射鏡裝置(傳送裝置、影像資料賦與部); 188〜折射光學透鏡(投影光學裝置、折射光學部); 189〜凸面鏡(投影光學裝置、反射部); 1 8 9 F〜前面; 1 9 0〜光轴; 1 9 1〜透鏡層; 19110〜入射出面; 1 9 2〜銀幕(顯示裝置); 1 9 3〜銀幕下部; 1 9 4〜筐體前部; 194C〜轉角; 194Ρ〜平行面;2103-3823-PF; AHDDUB.ptd Page 150 496999 V. Description of the invention (148) 176H ~ it shoot iU first it shoot? L); 177 ~ optical base (holding mechanism); 178 ~ condensing lens; 179 ~ quad-divided detector; 1 8 0 ~ optical axis; 1 8 1 ~ light path bending mirror; 1 8 2 ~ lens holding convex Edge; 1 8 3 ~ hole empty mirror; 183Η ~ transmission hole (second transmission hole); 184 ~ refractive optical lens (projection optics, refractive optics); 185 ~ micro-mirror device (transmission device, image data And Department); 1 8 6 ~ Illumination light source system (transmission device, illumination light source unit); 187 ~ micro-mirror device (transmission device, image data application unit); 188 ~ refractive optical lens (projection optics, refractive optical unit) ); 189 ~ convex mirror (projection optical device, reflecting part); 189 F ~ front; 190 ~ optical axis; 19 1 ~ lens layer; 19110 ~ incident exit surface; 192 ~ silver screen (display device); 1 9 3 ~ lower part of the screen; 1 9 4 ~ front part of the housing; 194C ~ corner; 194Ρ ~ parallel plane;

2103-3823-PF ; AHDDUB.ptd 第151頁 496999 五、發明說明(149) 1 9 5〜平面鏡; 1 9 6〜筐體後部; 196C〜轉角; 1 94V〜垂直面; 197U、197L、197R〜斜面(上部斜面、左部斜面、右部 斜面); 1 9 8〜底面; 1 9 9〜連接構件; 199A、199B〜端面(第一、二端面);2103-3823-PF; AHDDUB.ptd Page 151 496999 V. Description of the invention (149) 1 9 5 ~ plane mirror; 1 9 6 ~ rear of the housing; 196C ~ corner; 1 94V ~ vertical plane; 197U, 197L, 197R ~ Bevel (upper bevel, left bevel, right bevel); 198 ~ bottom; 199 ~ connecting members; 199A, 199B ~ end faces (first and second end faces);

1 9 9 C〜連接面; 199D〜裡面。1 9 9 C ~ connecting surface; 199D ~ inside.

2103-3823-PF ; AHDDUB.ptd 第152頁2103-3823-PF; AHDDUB.ptd page 152

Claims (1)

496999 案號 90105157 九年Μ月27曰 修正本 六、申請專利範圍 1. 傳 送;及 顯 之影像 其 反 投 償該扭 光學部 該2. 傳 送;及 顯 之影像 其 反 投 之折射 該 而且該3. 傳送裝 m 4 \\\ 一種影像顯示 送裝置,供給 裝置,包括: 照明光影像資料後作為光影像信號傳 示裝置,接收該光影像信號後顯示依照該影像資料 特徵在 射部, 影光學 曲像差 構成; 於包括 反射該 裝置, 而且將 顯示裝置經由 一種影像顯示 送裝置,供給 光影像信號;及 由在該反射部具 該光影像信號向 有扭曲像差之情況補 該反射部投影之折射 該投影光學裝置感光該光影像信號。 裝置,包括: 照明光影像資料後作為光影像信號傳 示裝置,接收該光影像信號後顯示依照該影像資料 特徵在 射部, 影光學 面之折 顯示裝 反射面 如申請 置包括 明光源 於包括 具有反 裝置, 射光學 射該光影像信號 具有將該光影像 部構成; 該投影光學裝置 置經由 及該折射面之至少一個 專利範圍第1或2項之影 部,發射照明光;及 之反射面;及 信號向該反射部投影 感光該光影像信號, 面形成非球面形狀。 像顯示裝置,其中,496999 Case No. 90105157 Revised on May 27th, 2009 VI. Application for patent scope 1. Transmission; and display of the image, the reverse compensation of the twisted optics section 2. Transmission; and the reflection of the display of the image, its reverse reflection should and should 3. Transmission device m 4 \\\ An image display and transmission device and supply device, comprising: as the light image signal transmission device after illuminating the light image data, after receiving the light image signal, displaying the light in accordance with the characteristics of the image data in the shooting section, the shadow The optical curvature aberration structure comprises: reflecting the device, and supplying the display device with an optical image signal via an image display transmitting device; and supplementing the reflecting portion by the reflecting portion with the optical image signal to a distortion aberration condition. Refraction of the projection The projection optical device receives the light image signal. The device comprises: a light image signal transmitting device after illuminating the light image data, and receiving the light image signal and displaying the light in accordance with the characteristics of the image data in a shooting section, a folding display of the shadow optical surface, and a reflecting surface. A reflecting device is provided, and the optical image signal is transmitted by the optical lens, and the optical image portion is configured; the projection optical device is arranged to pass through at least one of the patent scope item 1 or 2 of the refractive surface, and emits illumination light; and the reflection A surface; and a signal that projects the light image signal onto the reflecting portion, and the surface forms an aspheric shape. Like a display device, 2103-3823-pfl.ptc 第153頁 496999 _案號90105157_年月曰 修正_ 六、申請專利範圍 反射型影像資料賦與部,接受自該照明光源部發出之 照明光,而且供給該照明光影像資料後作為光影像信號反 射。 4. 如申請專利範圍第1或2項之影像顯示裝置,其中, 反射部包括反射自傳送裝置傳送之光影像信號之旋轉非球 面0 5. 如申請專利範圍第1或2項之影像顯示裝置,其井, 反射部設為具有負功率之凸面鏡。 6. 如申請專利範圍第1或2項之影像顯示裝置,其中, 反射部設為具有負功率之夫瑞乃鏡。 7. 如申請專利範圍第1或2項之影像顯示裝置,其中, 反射部包括反射面,由在自傳送裝置傳送之光影像信號透 射之方向積層之低分散介質及高分散介質構成,具有負功 率並反射透射了該低分散介質及高分散介質之光影像信號 之該光影像信號。 8. 如申請專利範圍第1或2項之影像顯示裝置,其中, 反射部具有反射面,如在光軸周圍具有大凸之曲率並隨著 接近周邊該曲率變小般形成。 9. 如申請專利範圍第1或2項之影像顯示裝置,其中, 反射部具有在由偶數次之項構成之多項式加上奇數次之項 後所求得之奇數次非球面形狀之反射面。 1 0.如申請專利範圍第1或2項之影像顯示裝置,其 中,折射光學部具有在由偶數次之項構成之多項式加上奇 數次之項後所求得之奇數次非球面形狀之折射面。 11.如申請專利範圍第9項之影像顯示裝置,其中,反2103-3823-pfl.ptc Page 153 496999 _Case No. 90105157 _ Amendment _ Sixth, the patent application scope Reflective image data granting unit accepts the illuminating light from the illuminating light source unit and supplies the illuminating light The image data is reflected as a light image signal. 4. If the image display device of the scope of patent application item 1 or 2, wherein the reflection part includes a rotating aspheric surface reflecting the light image signal transmitted from the transmission device 0 5. If the image display device of the scope of patent application item 1 or 2 The reflection part is a convex mirror with negative power. 6. The image display device according to item 1 or 2 of the scope of patent application, wherein the reflection part is a Freun mirror with negative power. 7. For example, the image display device of the scope of patent application No. 1 or 2, wherein the reflecting portion includes a reflecting surface, which is composed of a low-dispersion medium and a high-dispersion medium that are laminated in the direction in which the optical image signal transmitted from the transmission device is transmitted, and has a negative The power also reflects the optical image signal transmitted through the optical image signal of the low dispersion medium and the high dispersion medium. 8. If the image display device according to item 1 or 2 of the patent application scope, wherein the reflecting portion has a reflecting surface, it is formed as having a large convex curvature around the optical axis and the curvature becomes smaller as it approaches the periphery. 9. The image display device according to item 1 or 2 of the scope of patent application, wherein the reflecting portion has an odd-numbered aspherical reflecting surface obtained by adding a polynomial composed of even-numbered terms plus an odd-numbered term. 10. The image display device according to item 1 or 2 of the scope of patent application, wherein the refracting optics section has an odd-numbered aspheric refraction obtained after a polynomial composed of even-numbered terms plus an odd-numbered term. surface. 11. The image display device according to item 9 of the patent application scope, wherein 2103-3823-pfl.ptc 第154頁2103-3823-pfl.ptc Page 154 修正 -案號 901Π5157 六、申請專利範圍 構成。 1 9 ·如申請專利範圍第1 中,包括向顯示裝置反射來 之平面鏡。 或2項之影像顯示裝置,其 自投影光學裝置之光影像信號 將 中 20.如申請專利範圍第19項之影像顯示裝置,其中 顯不裝置之感《面和平面#之反射面設為平行之關係 2 1.如申請專利範圍第丨或2項之影像顯示裝置,且 ,折射光學部包括: 〃 反向光學系,由具有正功率之正透鏡 之負透鏡群構成;及 ’貞功羊 /折射光學透鏡,微調來自該反向光學系之光影像信號 往反射部之射出角度。 口〜 22.如申請專利範圍第丨項之影像顯示裝置,复中,反 向光學系由2組正透鏡群及丨組負透鏡群構成。/、 23·如申請專利範圍第1項之影像顯示裝置,其中,反 向光學系由1組正透鏡群及丨組負透鏡群構成。/、 24·如申請專利範圍第12項之影像顯 折射光學透鏡包括: 在置其中, 負透鏡’具有1·45以上1.722以下之折射率之平均信 並具有負功率;及 正透鏡,具有大於1.722而小於1.9之折射率平均 並具有正功率。 τ ~ m 2 5 ·如申請專利範圍第丨2項之影像顯示裝置,其中 折射光學透鏡包括:Amendment-Case No. 901Π5157 6. Scope of Patent Application. 1 9 · As described in the first patent application, including a flat mirror reflected to the display device. Or the image display device of item 2, the light image signal of the self-projection optical device will be middle 20. For example, the image display device of item 19 of the scope of patent application, in which the sense of the device "the reflection surface of the plane and plane # is set to be parallel Relationship 2 1. The image display device according to item 1 or 2 of the scope of patent application, and the refractive optical unit includes: 〃 a reverse optical system, which is composed of a negative lens group of a positive lens with positive power; and / Refracting optical lens, finely adjusts the angle of the light image signal from the reverse optical system to the reflection part. Mouth ~ 22. For the image display device in the scope of the patent application, the reverse optical system is composed of two groups of positive lens group and one group of negative lens group. / 、 23. The image display device according to item 1 of the patent application range, wherein the reverse optical system is composed of a positive lens group and a negative lens group. / 、 24. The image-refractive optical lens according to item 12 of the patent application scope includes: in which, the negative lens has an average refractive index of 1.45 or more and 1.722 or less and has a negative power; and a positive lens having a value greater than A refractive index of 1.722 and less than 1.9 is average and has a positive power. τ ~ m 2 5 · The image display device according to item 2 of the patent application scope, wherein the refractive optical lens includes: 496999 曰 修正 案號 90105157 六、申請專利範圍 負功率;及 有正鏡,具有大於38而小於6◦之阿貝數之平均值並具 26.如申請專利範圍第丨2項之 折射光學部由構成正透鏡之玻璃材料之不衣巫、令, 構成負透鏡之玻璃材料之折射率平,^之平均值和 上1以下之透鏡玻璃材料構成。之干均值之差值為〇.〇4以 構成負透鏡之玻璃材料=阿貝』之阿貝數之平均值和 16以下之透鏡玻璃材料構成。、之平均值之差值為〇以上 28.如申請專利範圍第丨或2項 ,令自構成折射光學部之複數铲心像顯示裝置,其中 射出面之透鏡至該傳送裝置光=中最接近傳送裝置光 該傳送裝置光射出面至該折射光學=止之後側焦距和自 距離一致。 4之入射瞳位置為止之 29·如申請專利範圍第丨或2項之旦 #投影光學裝置在邊部光線之低處^^示裝置,其中 鏡。 匕括具有負功率之負透 30. 如申請專利範圍第15項之景 將光軸方向之彎曲角度設成在折射7段肩不裝置,其中, 曲裝置至反射部為止之光路之範圍=予部不遮住自光路彎 31. 如申請專利範圍第16項之上近該光路。 將光軸方向之彎曲角度設成在 ^象顯不裝置,其中, 彎曲裝置至第二透^裝置為止之鏡裝置不遮住自光路 ~接近該光路。 2103-3823-pfl.ptc 第157頁 496999 索號 901051^496999 Amendment No. 90105157 VI. Negative power in the patent application range; and there is a positive mirror with an average value of Abbe number greater than 38 and less than 6◦ with 26. If the refracting optics section of item 2 of the patent application range consists of The material of the glass material that constitutes the positive lens is not worn, and the refractive index of the glass material that constitutes the negative lens is flat, and the average value of ^ and the lens glass material above 1 are composed. The difference between the dry average value is 0.04, which is the average value of the Abbe number of the glass material constituting the negative lens = Abbe, and the lens glass material of 16 or less. The difference between the average values of 0 and 0 is greater than 28. If the patent application scope item 丨 or 2 is used, the complex shovel image display device that constitutes the refracting optics section, wherein the lens on the exit surface to the transmission device is the closest to the transmission. Device light: The focal length and the self-distance from the light emitting surface of the transmission device to the refracting optics are the same. Up to the entrance pupil position of 4 29. If the scope of the patent application is No. 丨 or 2 of the Dan #projection optical device ^ ^ shows the device at the low position of the side light, among which mirror. The negative transmission with negative power 30. For example, the scene in the scope of the patent application No. 15 sets the bending angle in the direction of the optical axis to refract the 7-segment refraction device, where the range of the optical path from the curved device to the reflection portion = The Ministry does not cover the bend of the light path. 31. If you approach the light path above the 16th in the scope of the patent application. The bending angle in the direction of the optical axis is set to the image display device, wherein the mirror device from the bending device to the second transparent device does not cover the light path to approach the light path. 2103-3823-pfl.ptc p.157 496999 call number 901051 ^ 申請專利範圍 ___ 32·如申請專利範圍第16項之影像顯示 將自折射光學部至反射部設置面為止之句 ’、中’ 限制值以下之範圍。 取且距離設為厚度 Q Q 如Φ諸裒刹姑Ο n 4 ^ &amp; 六 32·如 限制值从,〜干0吗。 …y 33·如申請專利範圍第30項之影像顯示壯 使自反射部設置面至光路彎曲裝置為止之田衣置,*其中, 反射部設置面至折射光學部為止之最長距$長距離或自該 畏善距離和厚度限制侑相笺。 &amp; Μ之中較長之該 1之曰久巧J 。丨…八此叫土 7U坪咢、 反射部設置面至折射光學部 〜^ 最長距離和厚度限制值相等。 ^雕之中較長之1 34.如申請專利範圍第3〇項之影像顯 ‘ 使自反射部設置面至光路彎曲裝置為止之四衣’其中, 反射部設置面至折射光學部為止之最長最長距離和自該 35.如申請專利範圍第30項之影像顯示離相等。 折射光學部設為刪除光影像信號不通 、置,其中, 狀。 之非透射部分之形 36.如申請專利範圍第丨或2項之影像 部設為切掉不向顯示裝置反射光 $不凌置,反射 形狀。 彳5唬之非反射部分之 3尺如申請專利範圍第i或2項之$ 一 ,包括將折射光學部及反射部保持成一顯示裝置,其中 38.如申請專利範圍第15項之一體化之保持機 中,包括將折射光學部、光路彎曲&amp;像顯示裝置’其 一體化之保持機構。 、置M及反射部保持成 , 39.如申請專利範圍第1或2項之旦 ,折射光學部在邊部光線之高處包括^顯示裝置,复 鏡。 有正功率之正透 申請專利範圍第1或2項之&amp;,其中 2103-3823-pfl.ptc 第158頁Scope of patent application ___ 32. If the image display of item 16 of the patent application scope displays the range from the limit value of ‘, middle’ between the self-refractive optical section and the reflecting surface. Take and set the distance to the thickness Q Q such as Φ Zhu 裒 裒 〇 n 4 ^ &amp; six 32 · such as the limit value from, ~ dry 0? … Y 33 · If the image in the scope of patent application No. 30 shows the field clothes from the reflection part installation surface to the optical path bending device, * Among them, the longest distance from the reflection part installation surface to the refracting optical part is $ long distance or Since the distance and thickness should be limited, the photo album. &amp; M is the longest one, Jiu Qiao J.丨 ... The eight is called soil 7U ping 咢, the distance from the reflecting part to the refracting optical part ~ ^ The longest distance and thickness limit are equal. ^ The longer one in the carving. 1 34. If the image of item 30 of the scope of patent application is displayed, 'the four garments from the installation surface of the reflection section to the light path bending device', the longest is the reflection section installation surface to the refracting optical section. The longest distance is equal to the distance from the image displayed in item 35 of the scope of patent application. The refracting optical part is set to delete the light image signal, and the shape is not set. The shape of the non-transmissive part 36. If the image part in the scope of patent application No. 丨 or 2 is set to cut off and not reflect light to the display device, the shape is not reflected.尺 3 feet of the non-reflective part of the 5th, such as $ 1 of item i or 2 of the scope of patent application, including maintaining the refracting optical part and the reflection part into a display device, of which 38. such as the integration of item 15 of the scope of patent application The holding machine includes a holding mechanism that integrates the refractive optical section, the optical path bending &amp; image display device. , M and the reflection part are kept as 39. As in the case of claim 1 or 2 of the scope of patent application, the refracting optical part includes a display device and a compound mirror at the height of the side light. Positive transmission with positive power &amp; patent application scope 1 or 2 & 2103-3823-pfl.ptc page 158 496999 ijUlUblbY 六、申請專利範圍 該W面之背面之後面為止之厚度形成等厚 如申請專利範圍第丨或2項之影像y 反射部包括在不反射光影像信號之非 表置,,、中 部之光軸為中心設置之平面形狀之低二:前面以該反射 反射面小之面積並在該低反射面内部1和具有比該低 之平面形狀之高反射面。 5亥光軸為中心設置 49. 如申請專利範圍第i或2項之影像顯 ,傳迗裝置包括保護影像資料光之射出、'、置,其中 該玻填罩之光學上之厚度變動之增減===按照 變動之光學性厚度之補償透鏡,經由該破=相反的減加 鏡向折射光學部射出光。 壤罩及該補償透 50. 如申請專利範圍第49項之影像顯示 折射光學部在來自傳送裝置之照明朵 、 /、中’ 償玻璃之補償玻璃拆裝機構。 入射側包括拆裝補 面; 千面鏡之反射面及顯示裝置之感光面正交之底 在藉著各自用線段連接位於該 形之影像之底邊上並最遠離影像之中:=所顯不之四角 第-點之光線之平面鏡上之第二點中反射往 =射部上之第三點、將該第-點自該之光 向°亥底面投影之第一投影點、將該第二點白,、、良方向 方向向該底面投影之第二投影點、將爷第^面之法線 =方向向該底面投影之第三投影點;;::自:;面之 置構成元件。 77座生之配置空間配 IH 2103-3823-pfl.ptc 第160頁 496999496999 ijUlUblbY Sixth, the scope of the patent application The thickness of the rear surface of the W surface is equal to the thickness of the image applied for the patent application item 丨 or 2 y The reflecting part is included in the non-surface setting that does not reflect the light image signal. The second low of the planar shape provided with the optical axis as the center: the front area is a small area of the reflective surface and inside the low reflective surface 1 and the high reflective surface has a lower planar shape. The optical axis is set at the center of 49. If the image display of item i or 2 of the scope of patent application is applied, the transmission device includes the protection of the image data from the light emission, the setting, and the optical thickness variation of the glass filling cover increases. Minus === a compensation lens according to a varying optical thickness, and the light is emitted to the refracting optical portion through the opposite minus addition lens. The mask and the compensation lens 50. For example, the image of the 49th scope of the patent application shows the compensation glass dismounting mechanism of the refracting optics in the illumination glass from the transmission device. The incident side includes the disassembly and repair surface; the reflective surface of the thousand-face mirror and the photosensitive surface of the display device are orthogonal to each other. They are connected by line segments on the bottom edge of the image of the shape and are farthest from the image: = displayed The second point of the light at the fourth point of the four corners is reflected from the second point on the plane mirror to the third point on the shooting part, the first projection point of the first point projected from the light toward the bottom surface, and the first point Two-point white, the second projection point projected on the bottom surface in the direction of the good direction, the third projection point that projected the normal on the first surface of the ^ = direction toward the bottom surface ;; :::; . 77 seat configuration space with IH 2103-3823-pfl.ptc page 160 496999 傳送裝置包括: 聚?光學系主要部分,由發射 將來自:明光源部之射出光依次著色之=輪、使來自照 先f二肊明先之射出端面之照度分布均勻化後射出之 形以及將來自該棒形積分器之照明光中繼之中繼 構成, 棒形 透鏡構成 物鏡,使來自該中繼透锖 致;以及 透鏡之照明光之主光線方向- 反射型影像資料賦與部,供认 像資料後作為光影像信號反射;σ 该物鏡之照明光杉 在配置空間將該聚光光學系之主 件,而且包括將來自該聚光光學系^ π为配置為構成元 該物鏡依次反射之第二光路f曲裝^部分之照明 路彎曲穿蜜 53. 如申請專利範圍第52項之 、置 將聚光光學系之主要部分之光軸設、像顯示裝置 面及底面平行。 成和顯示 54. &quot;請專利範圍第 將聚光光學系之主要部八♦丄、±&lt;心像顯示骏置 面平行,❿且令傾斜成:2軸設置成和顯示,其中, 方向比中繼透鏡和該心光源部和該光㈣ &lt; :置之感 55. 如申請專利範Λ之交點高。 父點在紐 傳送裝置包括設置聚光圍光 =項之二^ 台,而且在該調整台包 ^ 要部分及物# 光路f曲之調整 、1收藏 #中, 裝置之感光 光 垂 其中Conveying devices include: The main part of the optical system is to color the emitted light from: the light source part in turn by the emission = wheel, make the shape of the emitted light uniform from the emission end face of the light source f, the light source, and integrate the shape from the rod shape. The relay structure of the illumination light relay of the device, the rod lens constitutes the objective lens to make the relay transparent; and the main ray direction of the lens's illumination light-the reflection type image data assignment unit, which is used as light after the recognition data Image signal reflection; σ The illumination light firing of the objective lens is the main part of the condensing optical system in the configuration space, and includes a second optical path f-curve from the condensing optical system ^ π configured to constitute the element in order to reflect the objective lens. The lighting path of the installation part is curved and honey 53. As described in item 52 of the scope of the patent application, the optical axis of the main part of the focusing optical system is set, and the image display device surface and the bottom surface are parallel. Cheng and display 54. Please request the scope of the patent to cover the main parts of the focusing optics. 丄 丄, ± &lt; The heart image display is parallel to the display surface, and the tilt is: 2 axes are set to the display, where the direction ratio The relay lens and the core light source portion and the light beam &lt;: The feeling of being placed 55. The intersection point of the application patent Λ is high. The parent point is located in New Zealand. The transmission device includes setting the spotlight surrounding light = item 2 ^, and in the adjustment table package ^ Major parts # Adjusting the optical path f song, 1 collection #, the device's photosensitive light is vertical. 2103-3823-pfl.ptc 496999 _案號90105157_年月日__ 六、申請專利範圍 iL 。 5 6.如申請專利範圍第5 2項之影像顯示裝置,其中, 聚光光學系之主要部分將第二光路彎曲裝置或第三光路彎 曲裝置之至少一方之光學面設為曲面形狀。 5 7.如申請專利範圍第1或2項之影像顯示裝置,其 中,反射部由合成樹脂製成。 5 8.如申請專利範圍第5 7項之影像顯示裝置,其中: 反射部如自其光軸方向看到之正面形狀變成長方形般 切掉不向顯示裝置反射光影像信號之非反射部分; 而且包括: 第一螺絲固定部,在該長方形之下邊上以既定之偏心 距離設於光軸附近,對於第一反射部安裝機構樞軸固定; 第二螺絲固定部,設於該長方形之下邊以外之邊,對 於第二反射部安裝機構保持成滑動;以及 第三螺絲固定部,設於該長方形之下邊以外之邊,對 於第三反射部安裝機構保持成滑動。 5 9.如申請專利範圍第58項之影像顯示裝置,其中, 第一反射部安裝機構及第一螺絲固定部利用推拔螺絲固定 ,而且具有推拔形狀和該推拔螺絲之推拔部分一致之螺絲 孔。 6 0.如申請專利範圍第5 7項之影像顯示裝置,其中, 反射部如自其光軸方向看到之正面形狀變成長方形般切掉 不向顯示裝置反射光影像信號之非反射部分; 而且包括: 凹部,在該長方形之下邊上以既定之偏心距離設於光2103-3823-pfl.ptc 496999 _Case No. 90105157_year month__ Sixth, the scope of patent application iL. 5 6. The image display device according to item 52 of the scope of the patent application, wherein the main part of the condensing optical system sets the optical surface of at least one of the second optical path bending device or the third optical path bending device to a curved shape. 5 7. The image display device according to item 1 or 2 of the patent application scope, wherein the reflecting portion is made of synthetic resin. 5 8. The image display device according to item 57 of the scope of patent application, wherein: the reflective portion cuts off the non-reflective portion that does not reflect the optical image signal to the display device as the front shape viewed from the direction of its optical axis becomes rectangular; and It includes: a first screw fixing portion, which is set near the optical axis at a predetermined eccentric distance below the rectangle, and is pivotally fixed to the first reflecting portion mounting mechanism; a second screw fixing portion, which is provided outside the lower edge of the rectangle The third reflecting portion mounting mechanism is slid to the second reflecting portion mounting mechanism; and the third screw fixing portion is provided on the side other than the lower side of the rectangle. 5 9. The image display device according to item 58 of the scope of patent application, wherein the first reflecting portion mounting mechanism and the first screw fixing portion are fixed with a push screw, and the push shape is consistent with the push portion of the push screw Screw holes. 60. The image display device according to item 57 of the scope of application for a patent, wherein the reflective portion cuts off a non-reflective portion that does not reflect the optical image signal to the display device as the front shape viewed from the direction of its optical axis becomes rectangular; and It includes: a recessed portion, which is set on the light below the rectangle at a predetermined eccentric distance 2103-3823-pfl.ptc 第162頁 ----—室號 90105157 修正 曰 六、申請專利範圍 車由附近; 圓柱支撐體,其曲面和哕 2支彈簧,其一端各。二凹⑷耿合; 射部供給拉力; 疋於該凹部之左右,對該反 ★第二螺絲固定部,設於兮 於第二反射部安裝機構拄^長方形之下邊以外之邊,對 第三螺絲固定部滑動;以及 於第三反射部安裝機構保持^ ^方形之下邊以外之邊“對 Η·如申請專利範圍第57月動/ 反射部如自其光軸方向看 、之影像顯示裝置,其中, 不向顯示裝置反射光影之正面形狀變成長方形般切掉 而且包括·· 〜像化號之非反射部分; 凸部’在該長方形 軸附近; 邊上以既定之偏心距離設於光 :槽支撐體,該凸部嵌 2支彈簧,其一端久槽, 射部供給拉力; *疋於咸凸部之左右,對該反 第二螺絲固定部, 於第二反射部安裝機構保持=形::邊以外之邊’對 第三螺絲固定部 ^月動’以及 於第三反射部安褒持=長方形之下邊以外之邊,對 62.如申請專利二二成滑動: 反射部包括2支彈菁,其 項之影像顯示裝置,其中, 部之左右,而且另^一 :、端各自固定於該第〆螺絲固定 力。 一^固定於共同點,斜該反射部供給拉2103-3823-pfl.ptc Page 162 ------ Room No. 90105157 Amendment VI. Scope of Patent Application Near the vehicle; The cylindrical support has a curved surface and 2 springs, one at each end. The two recesses are congruent; the shooting part provides pulling force; 疋 is located to the left and right of the recess, and the second screw fixing part is set on the side other than the lower side of the rectangle of the second reflecting part mounting mechanism, and the third The screw fixing part slides; and the third reflecting part mounting mechanism holds ^ ^ other than the lower side of the square "opposing. · If the patent application scope is 57th, the moving / reflecting part is viewed from the direction of its optical axis, the image display device, Among them, the front shape that does not reflect light and shadow to the display device becomes a rectangle and is cut away and includes a non-reflective portion like a digit; a convex portion is near the rectangular axis; and the light is provided on the side with a predetermined eccentric distance. Support body, the convex part is embedded with 2 springs, one end of which has a long groove, and the ejection part provides tensile force; * Looking at the left and right of the convex part, the anti-second screw fixing part is held in the second reflecting part mounting mechanism and is shaped like: : The side other than the side 'to the third screw fixing part ^ month movement' and the third reflection part holding = the side other than the side below the rectangle, 62. If the patent application 22% slide: The reflection part includes 2 bullets Jing, Paragraph image display apparatus, wherein portions of the left and right, and the other a ^:., A first end fixed to the respective screw force 〆 ^ fixed to a common point, the reflective portion of the supply ramp pull 2103-3823-pfl.ptc 第163頁 496999 -901Q5L57_年月 曰^___F _ 六、申請專利範圍 6 3 ·如申请專利範圍第5 8項之影像顯示裝置,其中, 第》累4、口疋邰、第二螺絲固定部以及第三螺絲固定部對 於第反射部安裝機構、第二反射部安裝機構以及第三反 射部安裝機構各自將反射光影像信號之反射部之前面側保 持成接觸。 64·如申請專利範圍第37項之影像顯示裝置,豆中, 包括: 〃 支π動支撐柱,设於保持機構上並將折射光學部之 全部J鏡群或該折射光學部之部分透鏡群支樓成滑動; 伴拷,位於該2支滑動支撐柱之間並固定於該 保持機構上; ,二安裝板·’位於該2支滑動支撐柱之間並固定於 射光學部之全部透鏡群或其部分透鏡群之下部;以 接觸,利用施加之控制電壓之辦衣板夾住般保持 方向伸縮。 ㈣電…曰減在該折射光學部之光轴 65.如申請專利範圍第37項之影像 包f齒輪支撐柱’設於保持機構上,並利用、齒幹機、:, 之全部透鏡群或該折射光學部之“:以 包二如申請專利範圍第37項之影像顯示裝置,意Φ ^熱冷卻器,將保持機構所保持之折 /、中, 持機構之中之至少一方加熱冷卻。 邻或该保 包括6…請專利範圍第64項之影像顯示裝置,其中,2103-3823-pfl.ptc Page 163 496999 -901Q5L57_Year Month ^ ___ F _ Sixth, the scope of patent application 6 3 · If you apply for the image display device of the fifth scope of the patent application, among which "Tired 4, mouth (2) The second screw fixing portion and the third screw fixing portion respectively hold the front side of the reflecting portion of the reflected light image signal to the first reflecting portion mounting mechanism, the second reflecting portion mounting mechanism, and the third reflecting portion mounting mechanism. 64. If the image display device of the 37th scope of the patent application, the bean, including: 〃 Supported π moving support column, set on the holding mechanism and all the J lens group of the refractive optical part or a part of the lens group of the refractive optical part The supporting building slides; with copying, is located between the two sliding supporting columns and is fixed to the holding mechanism; two mounting plates are located between the two sliding supporting columns and are fixed to all the lens groups of the optical section. Or part of the lower part of the lens group; the direction of expansion and contraction is maintained in contact with the clothes board which is controlled by the applied control voltage. Electricity ... reduced in the optical axis of the refractive optics 65. For example, the image package f of the 37th patent scope of the patent application, the gear support column is set on the holding mechanism, and all the lens groups, The refracting optics part ": using the image display device of item 37 in the scope of patent application of the second aspect of the application, means ^ ^ thermal cooler, heating and cooling at least one of the holding mechanism of the holding mechanism. Neighbor or this warranty includes 6 ... please the image display device of the patent scope item 64, of which, 案號 90105157 六、申請專利範圍 折射光學部之鏡筒溫度 快座丨押-, 你持機構之内部溫度,·以及 技制早7G,按照自該鏡曰 點補償量控制壓電元件、齒幹:;:Λ :邓溫度求得之焦 少一種。 Μ輪械構或加熱冷卻器之中之至 68·如申請專利範圍第 包括: 員之〜像顯示裝置,其中, 溫度感測器,感測環境溫度;及 ^ 控制單元,按照供給自至 整點得到之線性插值式該環境溫产 不同之焦點調 控制壓電元件、齒輪機構或加:二::之焦點補償量 種。 …、7部σσ之中之至少其中一 69·如申請專利範圍第64 包括: 貝之〜像顯不裝置,其中, CCD元件,感光射入顯示 後檢測焦點資料;及 衫像顯示區域之光 控制單元,按照該焦點資 件、齒輪機構或加熱冷卻器之中:;:::控制壓電元 包括向⑽元件反射射入顯: = 置,其中, 之小型反射鏡。 置之非〜像顯示區域之光 71·如申請專利範圍第69項 =制單元將CCD元件所感光之光強;八布:羞置’其中, 褒置,其中,Case No. 90105157 VI. Patent scope: Mirror tube temperature fast seat of refracting optics 丨-, the internal temperature of your holding mechanism, and the technology as early as 7G, according to the point compensation amount from the mirror to control the piezoelectric element, tooth dry :;: Λ: One less kind of coke obtained by Deng temperature. Among the MW wheel structure or heating cooler, if the scope of the patent application includes the following: an image display device, among which, a temperature sensor, which senses the ambient temperature; and a control unit, which is adjusted from supply to completion The linear interpolation type obtained by the point can be used to control the piezo element, gear mechanism or the focus compensation amount of different focus temperature control piezo elements. …, At least one of the 7 σσ 69. If the scope of the patent application is 64th, it includes: 贝 image display device, in which, the CCD element detects the focus data after the light is incident on the display; and the light in the shirt display area The control unit, according to the focus document, the gear mechanism or the heating cooler ::::: Controlling the piezoelectric element includes reflecting the ⑽ element into the display: = set, of which, a small mirror. Non-approach ~ Light of the image display area 71. For example, the scope of patent application No. 69 = the light intensity of the CCD element by the production unit; eight cloth: shame ', where, where, 2103-3823-pfl.pt 第165頁 4^6999 六 控 分 之 控 分 撐 等 反 之 層 皇號 90105157 申請專利範圍 =:兀將CCD元件所感光之光強度分布作為焦點資料,點資料之既定位準之寬後,控制成使該既定位準 7^3、如申請專利範圍第69項之影像顯示裝置,其 挤::將CCD元件所感光之光強度分布作為焦點資料, 析j焦點資料之肩部之傾斜後,控制成使該傾斜變大。 •如申請專利範圍第3 7項之影像顯示裝置,其 柱保持機構包括分別支撐折射光學部及反射部之多支支 使该支撐柱在鉛垂方向之高度和線膨脹率之積全部相 75·如申請專利範圍第48項之影像顯示裝置,其中, 射部包括具有高反射面及低反射面或者整個面高反射面 反射凸部或反射凹部。 76·如申請專利範圍第1或2項之影像顯示裝置,其中 反射部在作為反射光影像信號之反射面之前面包括透鏡 曰 修正 7 7 · —種影像顯示裝置,包括: 前部筐體,設於筐體之底面上 後部筐體,設於該底面上;以 上部斜面、左部斜面、右部斜 至該後部筐體之間並和該底面一起 其特徵在於: 該左部斜面及右部斜面在該前 顯示裝置平行之平行面,在後部瀘 並具 及 面, 形成2103-3823-pfl.pt Page 165 4 ^ 6999 Six control points, control points, etc. Conversely, layer number 90105157 Application scope of patent =: Use the light intensity distribution of the CCD element as the focus data, and the location of the point data After the standard width is controlled, the image display device with the positioning accuracy of 7 ^ 3, such as item 69 of the patent application scope, is squeezed: the light intensity distribution photosensitived by the CCD element is used as the focus data, and the analysis of j focus data is analyzed. After the shoulder is tilted, it is controlled to make the tilt larger. • For an image display device with the scope of patent application No. 37, its column holding mechanism includes a plurality of branches that respectively support the refractive optical section and the reflective section so that the product of the vertical height of the support column and the linear expansion coefficient are all 75. For example, the image display device according to item 48 of the patent application, wherein the emitting portion includes a reflecting convex portion or a reflecting concave portion having a highly reflecting surface and a low reflecting surface or a whole reflecting surface. 76. If the image display device according to item 1 or 2 of the patent application scope, wherein the reflection part includes a lens before the reflection surface of the reflected light image signal, the lens includes a correction 7 7. An image display device including: a front housing, It is arranged on the bottom surface of the casing and the rear casing is provided on the bottom surface; the upper inclined surface, the left inclined surface and the right inclined between the rear casing and the bottom surface are characterized by: the left inclined surface and the right The oblique surface is parallel to the front display device and parallel to the rear surface. 有顯示裝置 設 收 於自 藏空 該 間 前部筐體There is a display device located in the front housing 2103-3823-pfl.Ptc2103-3823-pfl.Ptc 留和該 该顯示Stay and that the show 496999 號 90105157 ^ g 」多正 六、申請專利“ 裝置垂直之垂直面。 78·如申請專利範圍第7? 包括連接構件,具有俊衫像顯示裝置, =之平行面連接之第一端c置之左右之其V— ,之弟二端面以及和該第二浐、该千伃面同側之垂 ^連接面和別的連接構件之連U平行之連接面; .如申請專利範圍第78 面連結。 連接構件包括第三端面,貝之^像顯示U,其中, :且分別和第-端面及第二端面:ί顯示袭置同-高度, sn 又,和別的連接構件連 •如申清專利範圍第7 7 經由上部斜面、左部斜面以及^影像顯示裝置,其中, 纜類自筐體之内部向外部通過。^斜面使排氣·排熱或電 8 1 ·#申請專利範圍第項之 背ΐ:第三端面的連接構件而為至7; Λ示裝置,其中籍 =面设置在壁上,經由左部斜面、i兩台的多台構成,其 體的内部通至外部,籍由由上右部斜面,將排熱從筐 斜面和上述右部斜面、上述壁=接構件鄰接的上述左部 上下方向之上述排熱用管。匕 的二腳柱之區域可用作 8 2 · —種對準調整方法,進“ 而對光賦與透鏡作用之折射光風丁告以光輛為中心旋轉成形 轉成形並反射該光而且具有以:部’和以該光軸為中心旋 狀之高反射面之反射部2對輕為中心設置之平面形 其特徵在於包括下列步驟:° ’ @減身射^直線前進光, 且調整該反射部之姿 第167頁 2103-3823-pfi.ptc 496999No. 496999 90105157 ^ g "Positive six, patent application" device vertical vertical surface. 78. If the scope of the patent application No. 7? Includes a connection member, with a handsome shirt-like display device, the first end c of the parallel plane connection is placed The left and right V—, the second end face of the younger, and the connection surface that is parallel to the vertical connection surface of the second side and the thousandth surface and the connection U of other connection members; such as the 78th surface connection of the scope of patent application The connecting member includes the third end face, and the U-shaped image shows U. Among them,: and the first end face and the second end face, respectively, show the same height, sn, and are connected to other connecting members. The scope of patent No. 7 7 passes through the upper slope, the left slope, and the image display device, wherein the cables pass from the inside to the outside of the casing. The slope allows exhaust, heat or electricity to be discharged. Back: the connecting member of the third end face is 7; Λ shows the device, where Ji = face is arranged on the wall, and is composed of two sets of the left bevel and i. The interior of the body is connected to the outside. From the upper right bevel, the heat is removed from the basket bevel and The right bevel, the wall = the above-mentioned heat-exhaust pipe in the up-down direction of the left part adjacent to the connecting member. The area of the two-legged pole of the dagger can be used as a method of alignment adjustment. The refracting light wind that interacts with the lens is formed by rotating and forming the light center as a center, and reflecting the light. The light reflecting part has a pair of light parts and a reflective part with a high reflection surface rotating around the optical axis. The flat shape is characterized by including the following steps: ° '@ 减 身 射 ^ Straight forward light, and adjust the posture of the reflection section 167 2103-3823-pfi.ptc 496999 2103-3823-pfl.ptc 第168頁 案號 90105157 六、申請專利範圍 勢,令射入該高反射面之該 射面反射之該直線前進光&lt; 向該高反射面射入經由 前進光,而且自該折射光學 回路之直線前進光,調整言亥 射光學部射出之該回路之直 83· —種對準調整方法 部、供給該照明光影像資料 赋與部、以光軸為中心旋轉 鏡作用之折射光學部、反射 信號之光路彎曲反射鏡、以 來自該光路彎曲反射鏡之該 為中心設置之平面形狀之高 該反射部之光影像信號後顯 設置之透射孔之治具顯示裝 其特徵在於包括下列步 垂直的射入該治具顯示 平行光束被該高反射面反射 孔之間令該平行光束之去路 自該光路彎曲反射鏡向 光學部之理想之光軸為中心 該光路彎曲反射鏡之間令該 步驟; 在透鏡保持凸緣設置具 設置之第二透射孔之孔空反 =前進光之去路和被該高反 回路一致之步騍;以 夂 該折射光學部之該^ 部射出被該高反^面路之直線 折射光學部之姿勢,反射之該 線前進光之功率變&amp;,自該折 |進行發射照明光\\最大。 後射出以彡们t 7 成形而對該光影像=像貝料 來自該折射光學就賦與透 該光軸為中心旋该光影像 光影像信號而且具=形並反射 反射面之反射部^ 以該光軸 示影像而且具有和該^來自 置之對準調整, 光轴對應 驟: 裝置後透射了該一、 ’在該高反射面:射孔之 和回路一致之嘀弟一透射 該高反射面依次^ 之平行光束,在 f以該折射 平行光束之去败=高反射面和 路和回略〜致之 有和該折射光學 射鏡,自該光路』:光軸對應 496999 i號 Q〇in5157 六、申請專利範圍 由該第二透射孔向該 理想之光車由為中心之 該平行光束和自該高 之回路之該平行光束 自該透鏡保持凸 學部之步驟;以及 設置該照明光源 資料賦與部將自該照 ’經由該折射光學部 該光影像#號成像於 修正 曰 _a 高反射面依次反射以該折射光學部之 平行光束’令被該孔空反射鏡反射之 反射面向該光路彎曲反射鏡依次反射 之行進方向一致之步驟; 緣拆下該孔空反射鏡後設置該折射光 =^ 5亥影像資料賦與部,利用該影像 明先源部發射$ $ 、兮也〜射之先作為該光影像信號 治具顯示F置卜夕鏡 射部令 装上之正常之位置之步驟 2103-3823-pf1.ptc 第169頁2103-3823-pfl.ptc Case No. 90105157 on page 168 6. The scope of the patent application is to make the straight forward light reflected by the incident surface that is incident on the highly reflective surface &lt; Furthermore, the straight forward light from the refracting optical circuit adjusts the straightness of the circuit emitted by the optical optics section. 83. A method of alignment adjustment, a supply unit for supplying the illumination light image data, and rotating the mirror around the optical axis. The refracting optical part of the function, the light path bending mirror for reflecting the signal, and a plane shape centered on the plane from the light path bending mirror, which is set at the center, is high. The light hole of the reflection part is provided with a fixture for displaying a transmission hole. It is characterized by including the following steps perpendicularly incident on the jig to show that the parallel light beam is reflected between the reflection holes of the highly reflecting surface to make the path of the parallel light beam from the optical path curved mirror to the ideal optical axis of the optical part as the center. This step is performed between the mirrors; the hole air reflection of the second transmission hole provided in the lens holding flange setting means = the direction of the forward light is consistent with the step of the high reflection circuit;姿势 The position of the refracting optical part that emits the straight line of the refracting optical part with the high-reflection path, the power of the forward light reflected by the line becomes &amp; The post-exposure is shaped by the lens t 7 and the light image = image material from the refracting optics is given through the optical axis as a center to rotate the light image light image signal and has a reflecting portion that is shaped and reflects the reflecting surface ^ The optical axis shows the image and has an alignment adjustment with the vertical axis. The optical axis corresponds to the following steps: After the device transmits the light, 'on the highly reflective surface: the perforation and the circuit are consistent, the younger brother transmits the high reflection. The parallel beams with planes ^ are defeated at f with the refracted parallel beams = highly reflective surfaces and paths and retracement ~ and there is the refraction optical mirror from the optical path ": the optical axis corresponds to 496999 i number Q. in5157 VI. The scope of applying for a patent from the second transmission hole to the ideal light car from the center of the parallel beam and the parallel beam from the high circuit steps to maintain the convex part from the lens; and set the lighting source information The imparting unit will image the photo 'through the refractive optics section and the light image # on the correction _a. The highly reflective surface sequentially reflects the parallel beams of the refractive optics section', so as to be reflected by the cavity mirror. Steps in which the bending directions of the curved reflecting mirrors facing the optical path are sequentially reflected in the same direction; and the refracted light is set after removing the hole-shaped empty mirror = ^ 5 Hai image data application department, using the image Mingyuan source section to emit $$, Xi It is also the step of displaying the normal position of the F image lens as the light image signal fixture before the shooting 2103-3823-pf1.ptc page 169
TW90105157A 2000-05-10 2001-03-06 Image display device and alignment adjusting method TW496999B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000137602 2000-05-10
JP2000241757 2000-08-09
JP2000273723 2000-09-08
JP2000313652 2000-10-13
JP2000345571 2000-11-13

Publications (1)

Publication Number Publication Date
TW496999B true TW496999B (en) 2002-08-01

Family

ID=27531525

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90105157A TW496999B (en) 2000-05-10 2001-03-06 Image display device and alignment adjusting method

Country Status (1)

Country Link
TW (1) TW496999B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8426795B2 (en) 2008-12-12 2013-04-23 Young Optics Inc. Image display apparatus with adaptive optics for adjusting an image size formed by a projecting light
TWI420136B (en) * 2009-07-03 2013-12-21 Young Optics Inc Fixed focus lens and imaging system
TWI696029B (en) * 2019-06-11 2020-06-11 王志煌 Projector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8426795B2 (en) 2008-12-12 2013-04-23 Young Optics Inc. Image display apparatus with adaptive optics for adjusting an image size formed by a projecting light
TWI420136B (en) * 2009-07-03 2013-12-21 Young Optics Inc Fixed focus lens and imaging system
TWI696029B (en) * 2019-06-11 2020-06-11 王志煌 Projector

Similar Documents

Publication Publication Date Title
US10067324B2 (en) Projection device and projection system
JP3727543B2 (en) Image display device
CN111699429B (en) Projection optical system and image display device
CN1959462B (en) Projection type image display
US10606042B2 (en) Magnification optical system
US9348122B2 (en) Projection lens including first lens group and second lens group and projection device including planar reflector
US6779897B2 (en) Rear projection optical system
JP5696644B2 (en) Image display device
JP2002207168A5 (en)
TW200424739A (en) Image projection system and method
JP2012027113A (en) Projective optical system and picture projecting device
JP4731808B2 (en) Image display device
JP2018180238A (en) Projection optical system and image projection device
JP2009116149A (en) Projection type image display apparatus
TW496999B (en) Image display device and alignment adjusting method
JP2002277741A (en) Reflection and refraction type macro projection optical system
JP2004295042A (en) Image projector
JPS6235088B2 (en)
CN113311565A (en) Wide-angle ultra-short-focus projection lens
JP2006139055A (en) Projection type display device
RU2315344C1 (en) Projection optical system
JP2001013586A (en) Light source device, illuminator and projection type display device
JP2015143861A (en) Projection optical system and image display device
CN101336393A (en) Wide angled projector lens system and method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent