TW494572B - Memory device including nanoclusters and method for manufacture - Google Patents

Memory device including nanoclusters and method for manufacture Download PDF

Info

Publication number
TW494572B
TW494572B TW090114441A TW90114441A TW494572B TW 494572 B TW494572 B TW 494572B TW 090114441 A TW090114441 A TW 090114441A TW 90114441 A TW90114441 A TW 90114441A TW 494572 B TW494572 B TW 494572B
Authority
TW
Taiwan
Prior art keywords
dielectric layer
layer
nanoparticle
substrate
group
Prior art date
Application number
TW090114441A
Other languages
Chinese (zh)
Inventor
Sucharita Madhukar
Ramachandran Muralidhar
David L Omeara
Hsing H Tseng
Bruce E White
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Application granted granted Critical
Publication of TW494572B publication Critical patent/TW494572B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • H01L29/42332Gate electrodes for transistors with a floating gate with the floating gate formed by two or more non connected parts, e.g. multi-particles flating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A semiconductor memory device with a floating gate that includes a plurality of nanoclusters (21) and techniques useful in the manufacturing of such a device. The device is formed by first providing a semiconductor substrate (12) upon which a tunnel dielectric layer (14) is formed. A plurality of nanoclusters (19) is then grown on the tunnel dielectric layer (14). Such growth is facilitated by formation of a nitrogen-containing layer (502), which may be nitride, overlying the tunnel dielectric layer (14). Selected portions of the nitrogen-containing layer (502) may be removed to aid in controlling where nanoclusters are formed. The growth of the nanoclusters may also be facilitated by treating the surface of the tunnel dielectric layer (14) to alter the bonding structure of the tunnel dielectric layer. After formation of the nanoclusters (21), a control dielectric layer (20) is formed over the nanoclusters (21). A gate electrode (24) is then formed over the control dielectric, and portions of the control dielectric layer (20), the plurality of nanoclusters, and the gate dielectric that do not underlie the gate electrode are selectively removed. After formation of spacers (35), source and drain regions (32, 34) are formed by implantation in the semiconductor layer (12) such that a channel region is formed between the source and drain regions (32, 34) underlying the gate electrode (24).

Description

494572 五、發明說明(i) 麥前申諳案參者 此申請案已在2000年6月16曰在美國提案為專利申請編 號0 9 / 5 9 5, 8 3 0。 發明範疇 本發明一般而言係關於半導體裝置’更特定而言,係關 於一半導體記憶裝置,及形成這種半導體記憶裝置的製 相關技藝 本主題文獻係揭示於美國專利申請編號SC11076TP,名 為"記憶體裝置及製造方法f’ (”Mem〇ry Device and Method for Manufacture") ’及美國專利中請編號 SC10966TP,名為n記憶體及使用預製隔離的儲存元件之方 法"("Memory Device and Method for Using Prefabricated Isolated Storage Elementsn),及美國 專利申請編號SC11062TP,名為"包含保護的毫微顆粒群的 口己憶體裝置及製造方法"(” Memory Device That494572 V. Description of the invention (i) Participants in Mai Qianshen's case This application has been proposed in the United States as a patent application number 0 9/5 9 5, 8 3 0 on June 16, 2000. FIELD OF THE INVENTION The present invention relates generally to semiconductor devices. More specifically, the present invention relates to a semiconductor memory device and the manufacturing-related techniques for forming such a semiconductor memory device. The subject document is disclosed in US Patent Application No. SC11076TP, named & quot Memory device and manufacturing method f '("Mem〇ry Device and Method for Manufacture") and U.S. Patent No. SC10966TP, named n-memory and method using pre-isolated storage elements "(" Memory Device and Method for Using Prefabricated Isolated Storage Elements), and U.S. Patent Application No. SC11062TP, named " oral memory device and manufacturing method containing protected nanoparticle groups " ("Memory Device That

Includes Passivated Nanoclusters and Method for anu f act ure”),其同時提案,並授權給本受讓人。Includes Passivated Nanoclusters and Method for anu f act ure "), which was simultaneously proposed and licensed to the assignee.

一 7% ^ eT 電氣抹除可程式唯嘈々比碰/、 性資料儲存的積憶體(EEPR〇M)結構常用於非揮發 常包含一浮動閘,I =中。如所知的,EEpR〇M裝置結構通 浮動閘結構,或使^ i ί電荷儲存能力。電荷可加入到該 該浮動閑Ξ下以=壓來由浮動閑結構中移除。在 等電性可明顯地由儲存在該浮動閘中A 7% eT electrical erasable programmable memory-only memory module (EEPROM) structure is often used for non-volatile and often contains a floating gate, I = medium. As is known, the EEPROM device structure is either a floating gate structure or a charge storage capability. Charge can be added to the floating idler to remove it from the floating idler structure. The isoelectricity can obviously be stored in the floating gate

494572 五、發明說明(2) 的電荷存在而改變。由於一充電或未充電的浮動閘之導電 性差異可為電流感應,因此允許決定出二元值記憶體狀態 。該導電性差異也可由關於兩個不同狀態中的裝置之臨限 電壓(VT)的偏置來代表。 當半導體裝置持續地改良時,這種半導體裝置的操作電 壓可經常降低,以適用於低功率應用。其有需要達到這種 操作電壓降低,而仍保證維持或改善該裝置的速率及功能 。在操作電壓中需要來程式化及抹除包含浮動閘之裝置的 控制因素為該隧穿氧化物的厚度,藉此讓載子可在該浮動 閘及其下的通道區域之間交換。494572 V. Invention description (2) The charge exists and changes. Since the difference in conductivity of a charged or uncharged floating gate can be current-sensed, a binary memory state is allowed to be determined. This conductivity difference can also be represented by a bias with respect to the threshold voltage (VT) of the device in two different states. As semiconductor devices continue to improve, the operating voltage of such semiconductor devices can often be reduced to suit low-power applications. It is necessary to achieve this reduction in operating voltage, while still guaranteeing to maintain or improve the rate and function of the device. The controlling factor that needs to be programmed and erased in the operating voltage is the thickness of the tunneling oxide, thereby allowing carriers to be exchanged between the floating gate and the channel region below it.

在許多先前技藝的裝置結構中,該浮動閘係由一均勻的 材料層形成,例如複晶矽。在這種先前技藝裝置結構中, 在該浮動閘之下的一薄隧穿介電層會呈現由該浮動閘經由 在該薄隧穿介電層中的缺陷而洩漏電荷到其下的通道之問 題。這種電荷洩漏可導致儲存在該裝置内的記憶體狀態的 劣化,因此並不宜產生。為了避免這種電荷洩漏,通常是 增加隧穿介電層的厚度。但是,較厚的隧穿介電層需要較 高的(程式化及抹除)電壓來儲存及移除浮動閘的電荷,因 為該電荷載子必須穿過較厚的隧穿介電層。在許多狀況中 ,較高的程式化電壓需要在積體電路上實施電荷泵,藉以 增加該供應電壓來達到程式化電壓的需求。這種電荷泵會 .消耗相當多的積體電路之晶片面積,因此會降低記憶體陣 列面積效率,且增加整體成本。 為了降低所需要的隧穿介電層厚度,並藉由降低電荷泵In many prior art device structures, the floating gate system is formed from a uniform material layer, such as polycrystalline silicon. In this prior art device structure, a thin tunneling dielectric layer under the floating gate will present a charge leaking from the floating gate to the channels below it through defects in the thin tunneling dielectric layer. problem. Such charge leakage may cause deterioration of the state of the memory stored in the device, and therefore, it is not suitable to be generated. To avoid this charge leakage, it is common to increase the thickness of the tunneling dielectric layer. However, a thicker tunneling dielectric layer requires a higher (programming and erasing) voltage to store and remove the charge of the floating gate because the charge carrier must pass through the thicker tunneling dielectric layer. In many cases, a higher programmed voltage requires a charge pump on the integrated circuit to increase the supply voltage to meet the demand for the programmed voltage. This charge pump consumes a considerable amount of chip area of the integrated circuit, so it will reduce the memory array area efficiency and increase the overall cost. In order to reduce the required thickness of the tunneling dielectric layer, and by reducing the charge pump

第8頁 494572 五、發明說明(3) 〜 —一 ~- =^求來改善記憶體結構的面積效率,用於該浮動 句^,層可由複數個毫微顆粒群來取代,其做 何儲存元件。這種毫微顆粒群通常也稱之為毫微=的電 Cnan〇cryStals),因其由矽晶體形成。在厶 趿 個毫微顆粒群提供了適當的電荷儲存:σ姓^複數 際隔離,使得任何經由一局部潛在的:“巧彼:實 ,粒群所發生的任何洩漏不會造成電,= =(藉由控制毫微顆粒群之間的平均間隔、毫微顆二群 層裝置中的浪漏效應以!:包 層子動閘的裝置中發生狀態資訊的損失。 勾勻 限微f粒群構成的浮動閑之裝置的 小,密在洋動閘結構中該毫微顆粒群的大 浮動Η ΐ ☆二二。該毫微顆粒群的密度對於該裝置在嗲 充:=之Γ決定該臨限電i = 要較高的密产了】鍺存元件的電荷密度時,較需 技藝中用以為其導增加臨限電壓的改變。先前 ,或每持=:顆粒群的電_ 來自個別的毫中較高的儲存密度基本上會導致 ㈣㈣的電荷損失’因此而劣化了該浮動Page 8 494572 V. Description of the invention (3) ~~~~~ = ^ to improve the area efficiency of the memory structure. For this floating sentence ^, the layer can be replaced by a plurality of nanoparticle groups, and how is it stored? element. This group of femtoparticles is also commonly referred to as femtocells, as they are formed from silicon crystals. Provides a proper charge storage in a nanoparticle group: σ surname ^ plural inter-isolation, so that any potential through a local: "Qiao Bi: Really, any leakage occurred in the particle group will not cause electricity, = = (By controlling the average interval between the nano-particle groups, the wave leakage effect in the nano-two-layer device is reduced by :! Loss of state information occurs in the cladding sub-brake device. The small floating device constituted by the floating device is a large floating Η 洋 洋 of the nano-particle group in the ocean moving gate structure. The density of the nano-particle group is sufficient for the device: = Γ determines the The current limit i = higher density.] When the charge density of the germanium storage element is increased, it is necessary to change the threshold voltage for its conductance in the prior art. Higher storage density in the millimeter will basically cause a loss of tritium's charge, thus deteriorating the floating

五、發明說明(4) ,的整體電荷保持特性 p & = Γ較長的程式化 段來在已經儲存一開始的 進入每個毫微顆粒群。 在當提高了每個毫微顆粒群 在先前技藝的形成毫微 來植入矽原子到一介電材料 造成這些植入的矽原子經由 微顆粒群ο使用這種技術時 而很難控制該矽毫微顆粒群 因為該隔離儲存元件形成的 電子特性,離子植入並不能 控制水準。 在另一個先前技藝的形成 非晶石夕層係沉積在該隨穿介 火步驟來重新結晶該非晶碎 需要密度及大小的毫微顆粒 使得其厚度可在7-10埃的等 會很難控制,因此在製程中 外,由於在該非晶梦層中預 問題。這種預先存在的晶體 會不利地干擾毫微顆粒群形 長。 在其它形成毫微顆粒群的 了此限制之 時間,因為 子之後,強 ,加入後續 的電荷密度 粒群之技術 。接下來的 相分離而聚 ’因為在介 形成的厚度 厚度會大為 提供在一製 外,較低 其需要一 迫連績的 載子所需 時即會持 中,使用 植入,一 集在一起 電材料中 ,而會造 影響該形 造情況中 的毫 較長 電荷 要的 續增 離子 退火 來形 的相 成問 成裝 所需 毫微顆粒群之技術中 電材料上。其在後續 成為毫微顆粒群。為 群’該層非晶矽必須 級。要沉積這樣薄的 並不實際。除了這種 先存在的結晶區而造 做為晶體成長的成核 成所需要的同時發生 微顆 的時 栽子 時間 加。 植入 步驟 成毫 分離 題。 置的 要的 ,一薄的 使用一退 了產生所 被沉積, 非晶矽層 控制因素 成額外的 地區’其 的晶體成 先前技術中,化學氣相沉積5. Description of the invention (4), the overall charge retention characteristic p & = Γ is a longer stylized section to enter each nanoparticle group at the beginning of storage. It is difficult to control the silicon when using this technology to improve the formation of nano-particles of each nano-particle group in the previous technology to implant silicon atoms into a dielectric material causing these implanted silicon atoms to pass through the micro-particle group. The nanoparticle group cannot control the level due to the electronic characteristics of the isolated storage element. In another previous technique, an amorphous stone layer was deposited in the step of passing through the medium to recrystallize the amorphous fragment. The amorphous particles need to have a density and size of nano-particles so that the thickness can be difficult to control. Therefore, during and outside the process, due to pre-problems in the amorphous dream layer. Such pre-existing crystals can adversely interfere with the nanoparticle population growth. At the time when this limit is formed for other nanoparticle groups, because the particle is strong, the subsequent charge density particle group technology is added. The next phase is separated and gathered, because the thickness of the meso-form will be greatly provided outside the one system, and the carrier that requires a continuous performance will be lower when it is needed. It will be implanted and used together. In the electrical materials, the ionic annealing that will affect the nano-long charge in the forming situation is formed on the electrical materials in the technology of forming the required nano-particle groups. It subsequently becomes a nanoparticle group. For the group ', this layer of amorphous silicon must be graded. It is not practical to deposit such a thin layer. In addition to this pre-existing crystalline region, the nucleation and formation required for the growth of the crystals are accompanied by the occurrence of microparticles at the same time as the plant time. The implantation step is completely separate. What's important is that a thin layer of a layer is used to generate the deposited silicon. The amorphous silicon layer is controlled by additional factors. Its crystals are formed in the prior art.

第10頁 -_______ 4 494572 五、發明說明(5) ' (CVD)技術’例如低壓化學氣相沉積(LpcvD)係用來直接地 在該隧穿氧化物上成核及成長該毫微顆粒群。這種先前技 藝的L P C V D技術基本上佔用非常短的沉積時段,其級數約 =1 0-30秒。此沉積時段的部份包含一培育期,其中一適 2數目的矽原子在進行形成該毫微顆粒群的結晶結構的聚 ,動作之前會產生在該介電層的表面上。該時間的其餘部 =則用來成核及成長該毫微顆粒群到所需要的大小。由於 關於^成核及成長的時段非當短^+ 的趨& μ二=刃吋扠非冷姐的畢實,在處理參數中微小 =變化,對於最後毫微顆粒群的結果密度及大小均 2深的影響。再者,系統效應會很明顯。舉例而古 密二而在處理的石夕晶圓部份,可構成更高的 群:大小’藉此距離該反應氣體源較遠的 寸田這種製程非均句性在製程中係不想見=及較小的尺 半要:種方法來以一種方式包含毫微顆粒群在 存元件的尺寸分散性。 件而維持控制該儲 圖式簡單jgj 類:?例來說明’且不受限於所附的圖面,其中 的參考文子代表類似的元件,而其中· 、 曲】1所示為包含關於毫微顆粒群形成的曲線,i中4 、、友為CVD製程中對於毫微顆粒群密产 ,、中1^種 圖2所千為一车道栌其妬夕度及時間來綠製; 所不為半導體基板之一部份的截面圖,1 層隧穿介電層; 八包含Page 10 -_______ 4 494572 V. Description of the invention (5) '(CVD) technology' such as low pressure chemical vapor deposition (LpcvD) is used to nucleate and grow the nanoparticle group directly on the tunneling oxide . This prior art L PC C V D technology basically occupies a very short deposition period, and its number of stages is about 10-30 seconds. Part of this deposition period includes an incubation period, in which a suitable number of silicon atoms are aggregated to form the crystal structure of the nanoparticle group, and will be generated on the surface of the dielectric layer before the action. The rest of the time = is used to nucleate and grow the nanoparticle group to the required size. Due to the tendency of ^ nucleation and growth period to be unduly short ^ + &μ; = the completeness of the edge of the fork non-cold sister, in the processing parameters small = change, the resulting density and size of the final nanoparticle group Both have 2 deep effects. Furthermore, systemic effects can be significant. For example, the part of Shixi wafer processed by Gumi II can form a higher group: the size of the inch field, which is far away from the source of the reactive gas, is an inhomogeneity in the process. = And smaller rulers: a way to include the size dispersion of nanoparticle populations in one way. The simple jgj class: the example to illustrate 'is not limited to the attached drawings, where the reference text represents similar elements, and where [, qu] 1 shows The curve formed by the microparticle group, i, 4, and You are the dense production of nanoparticle groups in the CVD process, and the medium is a lane. Its jealousy and time are green; A cross-sectional view of a part of a semiconductor substrate, 1 layer of tunneling dielectric layer;

圖1 4所示為圖丨3的半導體基板部份的截面圖 圖’其根據 的含氮層; 圖,其包含 結結構; 圖’其根據 穿介電層的 圖’其中根 已經開始形 面圖,其係 續時段中形 ’其中根據 經部份地或 ’其中根據 介電層; ’其中根據 材料層; ’其中根據 經圖案化而 ’其中根據 五、發明說明(6) =3所示為圖2的半導體基板的 明的一特殊具體實施例接下來ί ΐ的截面 圖4所示為圖2的半導體基板 ^成一覆蓋 u介電層的表面處具有該初 面 所示為圖4的半導體基板的該::::鏈 矣:的—特殊具體實施例接下來改面 表面處改變該分子鏈結結構;术改變在該隧 所示為圖2的半導體基板的該 ί本發明的-特殊具體實施例,該; 成, 宅微顆粒群 圖7-9所示為圖6的丰導雜其拉 根據本發明的一特殊I的該部份的截 成的毫微顆粒群1而對應於在後 本Π Ξ : ; :9具的體半=^ : 全部達到與該隧穿介電層的表面之平J粒群已 士 f11所示為圖10的半導體基板部份的巷而願 ,所示為,的半導體基板 圖1 明3 ::ϊ殊具體實施例’ 6經形成-閘極 本發明& 圖12的半導體基板部份的截面圖 ΐί-具體實施例’該閘極材料層已FIG. 14 is a cross-sectional view of the semiconductor substrate portion of FIG. 3 ′ according to its nitrogen-containing layer; FIG. Which includes the junction structure; FIG. Figure, which is continued in the period of the shape of 'where according to the warp partly or' where according to the dielectric layer; 'where according to the material layer;' where according to the patterned and 'where according to the fifth, the description of the invention (6) = 3 A specific embodiment of the semiconductor substrate of FIG. 2 is shown next. FIG. 4 shows the semiconductor substrate of FIG. 2. The surface of the dielectric layer covering u has the initial surface shown in FIG. 4. The :::: chain semiconductor of the semiconductor substrate-a special embodiment. Next, the molecular chain structure is changed at the surface; the technical change is shown in the tunnel of the semiconductor substrate of the invention of FIG. 2- In a specific embodiment, the microparticle group is shown in FIGS. 7-9, which are corresponding to the truncated nanoparticle group 1 of the part of FIG. 6 according to a special I of the present invention. In the later version Π Ξ:;: 9 bodies and half = ^: all reach the tunnel The flat J-grain group on the surface of the dielectric layer has been shown as f11 in the semiconductor substrate portion of FIG. 10, and the semiconductor substrate shown in FIG. 1 is shown. -Gate of the Invention & FIG. 12 is a cross-sectional view of a portion of a semiconductor substrate.

第12頁 rz 五、發明說明(7) 本發明的一特殊具體實施例,豆中該控制介電層的一部份 已經選擇性地被移除; $15所示為圖14的半導體基板部份的截面圖’其中根據 =I的一特殊具體實施例,其為在選擇性地移除部份的 、。;1電層’複數個毫微顆粒群及該控制介電層之後; ,16所不為圖15的半導體基板部份的截面圖’其中根擄 =明的一特殊具體實施例,對於一半導體裝置已經形成 曰::壁’源極區域與汲福區敁: ,、 H a /jnfj lyn 7 間隙壁,源極區域與汲極區域 掳— 19所示為圖3的半導體基板部份的截面圖’其中根 ^ f,的一特殊具體實施例,其為在使用了後續步驟來 7覆盖^該隨穿介電層的含氮層區段之後; 本^明0所不為圖1 9的半導體基板部份的截面圖,其中根據 性^ 巧一特殊具體實施例,接下來的毫微顆粒群的選擇 隧^ ^ ^不為根據本發明的一特殊具體實施例,形成在一 圖^層上的複數個毫微顆粒群的擴大截面圖; 中^攄太^為圖2 1的複數個毫微顆粒群的擴大截面圖,其 其下的隱^ ^的一特殊具體實施例,其為部份或完全地與 ^ '、、穿"電層的表面達到平衡; 據Γ發3:巧2殊粒;”大截面圖,其中根 一包覆層中·、 ^ _ β “耄微顆粒群已經包覆在 明J 2—f : 23的該結構的擴大截面圖,其中根據本發 寺殊具體實施例,一控制介電層已經形成在該隧穿Page 12 rz V. Description of the invention (7) A special embodiment of the present invention, a part of the control dielectric layer in the bean has been selectively removed; $ 15 shows the semiconductor substrate portion of FIG. 14 A cross-sectional view of 'wherein according to a special specific embodiment of = I, which is partially removed. 1 electric layer 'after a plurality of nanoparticle groups and the control dielectric layer; 16 is a cross-sectional view of the semiconductor substrate portion which is not shown in FIG. 15' where a specific embodiment is described, for a semiconductor The device has been formed: "wall 'source region and drain region 敁:, H a / jnfj lyn 7 gap wall, source region and drain region 掳 -19 is a cross section of the semiconductor substrate portion shown in FIG. 3 Figure 'where a root ^ f' is a special embodiment, which is after using subsequent steps to cover ^ the nitrogen-containing layer section of the dielectric layer passing through; this is not shown in Figure 19 A cross-sectional view of a semiconductor substrate portion, where according to a special embodiment, the next selection tunnel of the nanoparticle group is not a special embodiment according to the present invention, and is formed in a layer An enlarged cross-sectional view of the plurality of nanoparticle groups on the above; ^ 摅 太 ^ is an enlarged cross-sectional view of the plurality of nanoparticle groups in FIG. 21, and a special embodiment of the hidden ^^ below it is Partially or completely in equilibrium with the surface of the electrical layer; according to Γ 发 3: 巧 2 "粒"; large cross-section view, in which the root-coating layer, ^ _ β "耄 microparticle group has been coated in the enlarged section of the structure of Ming J 2-f: 23, according to the Benfa Temple special In a specific embodiment, a control dielectric layer has been formed in the tunneling

--—- 第13頁 五、發明說明----- Page 13 V. Description of Invention

介電層 圖2 5 據本發 顆粒群 圖26 明的一 一控制 圖27 明的一 顆粒群 圖28 成一隧 ,及一 專業 見,其 尺寸可 的具體 及該包覆的 所示為圖2 2 明的一特殊 之下形成一 所示為圖2 5 特殊具體實 介電層; 所示為圖2 2 特殊具體實 的一多層控 所示為根據 穿介電層, 部份會整個 人士可以瞭 不必要依比 相對於其它 實施例。 毫微顆粒群之下; 的該毫微顆粒群的擴大截面圖, 具體實施例,為接下來在該複數 薄介電層; 的該結構的擴大截面圖,其中根 施例,為接下來在該薄介電'層之 的該結構的擴大截面圖,其中根 施例’為接下來形成覆蓋該複數 制介電層;及 本發明的一特殊具體實施例中, 複數個覆蓋該隧穿介電層的毫微 覆蓋控制介電層之處理裝置的架 解圖面中的元件僅是為了簡化及 例繪製。舉例而言,圖面中一些 元件來放大,藉以協助增進瞭解 其中根 個毫微 據本發 下形成 據本發 個毫微 用以形 顆粒群 構圖。 清楚起 元件的 本發明 詳細說明 一般而言’本發明係關於具有一浮動閘的半導體 裝置,其包含複數個毫微顆粒群,及可用於製造這 的技術。該裝置係由首先提供其上形成有一隧穿介 一半導體基板來形成。然後複數個毫微顆粒群成長 穿介電層上。這種成長係由形成一含氮層來促進, 氮化物’其覆蓋該隧穿介電層。該含氮層中選擇的 記憶體 種襞置 電層的 於該隨 其可為 部份可 494572 五、發明說明(9) "~ 被移除來辅助控制毫微顆粒群形成的地方。該毫微顆粒群 的成長也可藉由處理該隧穿介電層的表面來促進,以改 該随穿介電層的該鏈結結構。在形成該毫微顆粒群之後, 一控制介電層係形成在該毫微顆粒群上。然後一閘極形成 在該控制介電層之上,而不位在該閘極之下的部份控制介 電層,複數個毫微顆粒群,及該閘介電層被選擇性地移除 。在形成間隙壁之後’源極與〉及極區域係由在該半導體層' 中植入來形成,使得一通道區域形成在該閘極之下的該源 極與汲·極區域之間。 藉由使用經由一控制的LPCVD,RTCVD或UHCVD製程而成 長的毫微顆粒群來形成該半導體裝置的浮動閘,包含在該 _ 浮動閘結構中的毫微顆粒群密度可被緊密地控制。在該$ 格中’對於LPCVD製程的參考可說明可使用LPCVD或RTCVD 製程技術來執行的製程。在使用LPCVD的具體實施例中, 一多步驟製程可用來保證對於不同的毫微顆粒群形成階段 有成核化及成長的選擇性。因此,所需要的毫微顆粒群密 度在當製程中保證其大小及密度的均勻性時,即可達到。 在使用UHVCVD來成長該毫微顆粒群結構的具體實施例中, 由於在發生形成毫微顆粒群的環境中降低了背景的污染, 可以達到額外的好處。在LPCVD技術中所使用的形成毫微 顆粒群的類似最佳化’可以應用在UHVCVD技術中,藉以產 生所需要的毫微顆粒群結構。在UHVCVD技術中,即使壓力籲 低於存在於LPCVD技術中的壓力,其可提供成長動力學的 進一步降低,所以在該毫微顆粒群形成時可以達到較高層Dielectric layer diagram 2 5 According to the present particle group diagram 26, one-to-one control diagram 27, one particle group diagram 28, and 28, a tunnel, and a professional view, the size can be specific and the coating is shown in Figure 2 2 A special concrete dielectric layer formed under a special structure shown in Figure 2 is shown in Figure 2 5; a special multi-layered dielectric structure shown in Figure 2 2 is shown in the figure. It may be unnecessary to compare with respect to other embodiments. An enlarged cross-sectional view of the nanoparticle group below the nanoparticle group; a specific embodiment is an enlarged cross-sectional view of the structure next to the plurality of thin dielectric layers; the root embodiment is the next An enlarged cross-sectional view of the structure of the thin dielectric 'layer, wherein the root embodiment' is to form a dielectric layer covering the plurality of dielectric layers next; and in a special embodiment of the present invention, a plurality of covering the tunneling dielectric is formed. The components in the schematic drawing of the processing device for controlling the dielectric layer with the nano-layer covering the electrical layer are only for simplicity and example drawing. For example, some elements in the drawing are enlarged to help improve the understanding. The nanofibers are formed to form the particle group to form a picture. DETAILED DESCRIPTION OF THE INVENTION This invention is clear from elements. Generally speaking, the present invention relates to a semiconductor device having a floating gate, which contains a plurality of nanoparticle groups, and a technique that can be used to manufacture the same. The device is formed by first providing a tunneling semiconductor substrate formed thereon. A plurality of nanoparticle groups then grows through the dielectric layer. This growth is facilitated by the formation of a nitrogen-containing layer, which nitride ' covers the tunneling dielectric layer. The memory layer selected in the nitrogen-containing layer may be part of the electrical layer. 494572 V. Description of Invention (9) " is removed to help control the formation of nanoparticle groups. The growth of the nanoparticle group can also be promoted by processing the surface of the tunneling dielectric layer to modify the chain structure of the tunneling dielectric layer. After forming the nanoparticle group, a control dielectric layer is formed on the nanoparticle group. A gate is then formed over the control dielectric layer, a portion of the control dielectric layer not located below the gate, a plurality of nanoparticle groups, and the gate dielectric layer is selectively removed. . After the formation of the gap wall, the 'source and electrode' and the electrode region are formed by implantation in the semiconductor layer ', so that a channel region is formed between the source electrode and the drain electrode region below the gate electrode. By forming a floating gate of the semiconductor device using a long nanoparticle group formed through a controlled LPCVD, RTCVD or UHCVD process, the density of the nanoparticle group contained in the floating gate structure can be tightly controlled. In this box, a reference to the LPCVD process can describe a process that can be performed using LPCVD or RTCVD process technology. In a specific embodiment using LPCVD, a multi-step process can be used to ensure selectivity for nucleation and growth for different nanoparticle population formation stages. Therefore, the required nanoparticle group density can be achieved when the size and density uniformity are guaranteed in the manufacturing process. In a specific embodiment where UHVCVD is used to grow the nanoparticle group structure, additional benefits can be achieved because the background pollution is reduced in the environment where the formation of the nanoparticle group occurs. Similar optimization of the formation of the nanoparticle group used in the LPCVD technique can be applied to the UHVCVD technique to generate the desired nanoparticle group structure. In UHVCVD technology, even if the pressure is lower than the pressure existing in LPCVD technology, it can provide a further reduction in growth kinetics, so a higher layer can be reached when the nanoparticle group is formed

第15頁 494572 五、發明說明(ίο) 次的控制。再者 群成長速率中的 本發明可藉由 為在該成核化及 微顆粒群的一般 31 2。曲線3 0 2對 ’由於前 潛在梯度 參考圖1 -成長階段 性發展的 應於符合 其中經由一單一步 成長時 制。關 的單一 毫微顆 對應 育階段 旦在該 始發生 ’呈現 較低溫 兩沉積 亦較高 在其被 子來形 ° ~石夕 於較長 核速率 段,將造成對 於這種先前技 步驟製程中所 粒群形成之成 於先前技藝沉 開始,其中石夕 介電材料上沉 。由於較高溫 在該介電層上 度的環境中。 溫度的狀況。 。在較高溫度 一已經存在的 成一穩定晶核 原子被一既存 的擴散距離而 有較大的影響 驟沉 於毫 藝技 有階 長之 積技 原子 積了 度係 的矽 該穩 已經 時, 晶核 之前 晶核 將會 〇此 驅物氣體空乏效應,在毫微顆粒 可進一步最小化。 28來得到更佳的瞭解。圖1所示 做為時間的函數期間,顯示出毫 曲線。圖1所示為兩條曲線3 0 2及 先前技藝技術的毫微顆粒群發展 積製程所產生的較高溫度及較短 微顆粒群成長的控制層次受到限 術的參數提供在對應於曲線3 02 段期間,缺乏對於成核化到關於 選擇性的控制。 術的曲線302,其以一簡短的發 開始沉積在該隧穿介電層上Q _ 足夠的矽原子之後,成核化即開 配合先前技藝技術來使用的事實 ^子的表面擴散率將高於存在於 疋的關鍵晶核之大小亦高於在較 形成的晶核的成長在較高溫度中 到、達該介電層表面的矽原子必須 補捉,或是其結合其它擴散矽原 $而移動通過一較長的擴散距餘 補捉的機率在較高溫度之下,= ^,因此該晶核的成長率對 種受限的成核化及快速成長βP.15 494572 V. Control of Invention (ίο) Times. Furthermore, the present invention in the group growth rate can be generalized by the nucleation and microparticle group. The curve 3 0 2 ′ is due to the potential latent gradient before referring to Figure 1-The growth phase of the development should be consistent with the one-step growth time system. Corresponding to a single nanoparticle at the beginning of the breeding stage, at the beginning, it showed a lower temperature and two deposits were also higher in the shape of its quilt ° ~ Shi Xi at a longer nuclear rate segment, which will cause The formation of grain clusters began with the previous technique Shen, in which the Shi Xi dielectric material sinks. Due to the higher temperature in the environment above the dielectric layer. Condition of temperature. . At higher temperatures, a stable nucleus atom that already exists is affected by an existing diffusion distance and has a large impact. The atom suddenly accumulates in silicon. The atomic product of silicon has stabilized. Before the nucleus, the crystal nucleus will have zero emptying effect of this gas, which can be further minimized in nano particles. 28 to get a better understanding. Figure 1 shows the milli-curve as a function of time. Figure 1 shows the two curves 3 0 2 and the previous process of the nano particle group development and integration process. The higher temperature and shorter micro particle group growth control levels are limited by the parameters provided in the curve corresponding to curve 3. During the 02 period, there was a lack of control over nucleation to selectivity. The technical curve 302, which begins with a short hair deposition on the tunneling dielectric layer after Q _ sufficient silicon atoms, the fact that the nucleation is opened and used in conjunction with the previous technology will have a high surface diffusivity. The size of the key crystal nucleus present in plutonium is also higher than the growth of the formed crystal nucleus. At higher temperatures, the silicon atoms reaching the surface of the dielectric layer must be captured or combined with other diffused silicon. And the probability of moving through a longer diffusion distance to catch is at a higher temperature, = ^, so the growth rate of this nucleus is limited to the nucleation and rapid growth of the species β

第16頁 494572 五、發明說明(11) - 必要的,因為其會f1較少數目的大型毫微顆粒群。 一旦已經通過曲線2上的飽和區域304,這些大型毫微 顆粒群持續地成長,並開始融合在H= f顆粒群密度小於關於曲線3 0 2的最大飽和密度3〇6。請注 意,該曲線302的平坦處具有—相當簡短的時段,其 達到該飽和密度。對應於曲線3〇2的較高溫度,在^生該 初始成核化及後續的毫微顆粒群成長期間,會造成一大 減少的時段,因此降低了整體毫微顆粒群發展的控制程度 。一再者,對應於曲線302的關於毫微顆粒群成長的時間之Page 16 494572 V. Description of the invention (11)-necessary because it will f1 a small number of large nanoparticle groups. Once the saturation region 304 on curve 2 has been passed, these large femtoparticle populations continue to grow and begin to fuse at a density of H = f particle populations that is less than the maximum saturation density of 306 with respect to curve 3 02. Note that the flat portion of the curve 302 has—a fairly short period of time—that it reaches the saturation density. The higher temperature corresponding to curve 302, during the initial nucleation and subsequent growth of the nanoparticle group, will result in a greatly reduced period, thus reducing the degree of control of the overall nanoparticle group development. Again and again, the time corresponding to the growth of the nanoparticle group corresponding to the curve 302

輕微變化,會造成該毫微顆粒群密度及大小的更為明顯的 變化。 ’A slight change will cause a more pronounced change in the density and size of the nanoparticle group. ’

該曲線3 1 2根據此處所提供的一部份原理而對應於毫微 顆粒群發展。這種原理提供一較低的溫度處理,其可造成 對於毫微顆粒群成核化及成長的更大的控制程度。因此, 該毫微顆粒群發展可以用一多重步驟製程來執行,而非單 一且較難控制的步驟。在對應於該曲線312的發育階段32Q ’將發生一南度選擇性的成核化階段3 1 8。該成核化階段 8允許關於在該隧穿介電層表面上形成亳微顆粒群之較 面成核化對成長比例。因此,存在於該隧穿介電層表面上 的石夕原子(或用來形成該毫微顆粒群的其它材料之原子), 其比附著到預先存在的晶核更有可能地形成晶核,其將造 成成長。對於這種選擇性成核化階段較佳的狀況,可包含 低溫及該反應氣體的較高部份壓力。請注意該溫度必須不 致過低而使反應受限。因此,在該成核化階段期間(一第The curve 3 1 2 corresponds to the development of a nanoparticle group according to a part of the principle provided here. This principle provides a lower temperature treatment, which can lead to a greater degree of control over the nucleation and growth of the nanoparticle population. Therefore, the development of the nanoparticle group can be performed by a multi-step process instead of a single and difficult to control step. At the development stage 32Q ' corresponding to this curve 312, a south selective nucleation stage 3 1 8 will occur. The nucleation stage 8 allows for a relative nucleation to growth ratio with respect to the formation of a group of rhenium microparticles on the surface of the tunneling dielectric layer. Therefore, Shi Xi atoms (or atoms of other materials used to form the nanoparticle group) existing on the surface of the tunneling dielectric layer are more likely to form crystal nuclei than adhere to the pre-existing crystal nuclei, It will cause growth. The better conditions for this selective nucleation stage may include low temperatures and higher partial pressures of the reaction gas. Please note that the temperature must not be too low to limit the reaction. Therefore, during this nucleation stage (a first

第17頁 494572 五、發明說明(12) 一階段),其形成複數個關鍵晶核(足夠來維持穩定的較大 晶核)。 ‘ 在該成核化階段3 1 8之後,比關於先前技藝的毫微顆粒 群形成技術要長得多的一飽和區域314,可允許控制該成 核化的毫微顆粒群結構之成長。在此第二或成長階段期間 ,該關鍵晶核係成長成毫微顆粒群。存在於該飽和區域 314之控制,可使得所需要毫微顆粒群的大小將可均勻地 形成在覆蓋該表面上的該隧穿介電層的表面上。由於事實 上該飽和區域3 1 4在時間上相當地長,該最佳化飽和密度 可在一製造環境中達成。因此,關於在發生該毫微顆 粒f成長的時段之變化,將對於在該隧穿介電層上所得到 的毫微顆粒群密度具有較少的影響。 一旦已經達到飽和’對於延長該飽和區域3〖4很重要的 因素包含了該前驅物氣體的較低部份壓力,及大於或等於 成核化溫度的溫度。因此,在該飽和區域3丨4期間升高該 成長速率的因素也降低了通常關於該成核化階段318的該 f核化速率。因此,在該介電層上沉積該毫微顆粒群,可 區分為兩個步驟的製程,其每個步驟可以個別地控制來達 到所需要的結果。 其必須注意到’關於圖1所示的曲線之時間僅提供為範 例,、其不能夠視為限制。因此,關於該曲線3丨2的成核化 及成長階段的時段可根據在不同沉積階段期間存在的狀況 變化來修正。如同本技藝中一般專業人士可以瞭解,較高 的溫度在當該部份壓力維持在一固定程度時,將會降低關Page 17 494572 V. Description of the invention (12) The first stage), which forms a plurality of key crystal nuclei (sufficient to maintain stable large crystal nuclei). ‘After this nucleation stage 3 1 8, a saturation region 314 that is much longer than the nanoparticle group formation technology of the prior art allows the growth of the nucleated nanoparticle group structure to be controlled. During this second or growth phase, the key nucleus system grows into a nanoparticle group. The control existing in the saturated region 314 can make the size of the required nanoparticle group uniformly formed on the surface of the tunneling dielectric layer covering the surface. Since in fact the saturated region 3 1 4 is considerably longer in time, the optimized saturation density can be achieved in a manufacturing environment. Therefore, the change in the period during which the growth of the nanoparticle f occurs will have less influence on the density of the nanoparticle group obtained on the tunneling dielectric layer. Once saturation has been reached, factors that are important for extending the saturation region 3 [4] include the lower pressure of the precursor gas and a temperature greater than or equal to the nucleation temperature. Therefore, factors that increase the growth rate during the saturated region 3,4 also reduce the f-nucleation rate, which is typically associated with the nucleation stage 318. Therefore, depositing the nanoparticle group on the dielectric layer can be divided into a two-step process, and each step can be individually controlled to achieve a desired result. It must be noted that the time with respect to the curve shown in FIG. 1 is provided as an example only, and it cannot be regarded as a limitation. Therefore, the period of the nucleation and growth phase of the curve 3, 2 can be modified according to the changes in conditions existing during different deposition phases. As one of ordinary skill in the art can understand, a higher temperature will reduce the pressure when the pressure in this part is maintained at a fixed level.

第18頁Page 18

IIH 五、發明說明(13) 於f個階段的時段。類似地,較高的壓力在當該溫度保持 固疋時,將會降低關於不同階段的時段。 圖2所示為一半導體基板10的一部份之截面圖,其包含 一半導體層12。該半導體層12可為矽。一隧穿介電層14, 其也可稱之為隧穿氧化層,其已經形成來覆蓋該半導體層 12。該隧穿介電層14可為二氧化矽,氮氧化矽,或其它高 介電常數材料。該隧穿介電層14可以熱性地成長或沉積。 該隧穿介電層14的厚度可以在小於50埃的程度。在該形成 的裝置用於更為揮發性記憶體結構的狀況中,其可使用較 薄的隧穿介電層,例如那些在15-20埃的程度。IIH V. Description of the invention (13) Period in f stages. Similarly, higher pressures will reduce periods for different stages while the temperature remains solid. FIG. 2 is a cross-sectional view of a portion of a semiconductor substrate 10 including a semiconductor layer 12. The semiconductor layer 12 may be silicon. A tunneling dielectric layer 14, which may also be referred to as a tunneling oxide layer, has been formed to cover the semiconductor layer 12. The tunneling dielectric layer 14 may be silicon dioxide, silicon oxynitride, or other high dielectric constant materials. The tunneling dielectric layer 14 may be thermally grown or deposited. The thickness of the tunneling dielectric layer 14 may be less than 50 angstroms. In the case where the formed device is used for a more volatile memory structure, it may use a thinner tunneling dielectric layer, such as those in the range of 15-20 angstroms.

為了便於在該隨穿介電層14的表面上形成毫微顆粒群’ 該隧穿介電層14的表面可被修正來促進毫微顆粒群結構的 成核化。換言之,該表面結構可被修正,使得關鍵晶核尺 寸,矽原子的表面擴散可以降低,並增加了該反應物副產 物的釋出。In order to facilitate the formation of nanoparticle groups on the surface of the through-dielectric layer 14, the surface of the tunneling dielectric layer 14 may be modified to promote the nucleation of the nanoparticle group structure. In other words, the surface structure can be modified so that the critical crystal nucleus size, the surface diffusion of silicon atoms can be reduced, and the release of the by-products of the reactant is increased.

圖3所示為一種改變該隧穿介電層14的表面之技術,以 增加促進成核化。請注意,該隧穿介電層1 4的表面變化也 有助於沉積預成形的毫微顆粒群,如描述於共同提出的專 利申請案,名為”使用預製的隔離儲存元件之記憶體裝置 及方法” ("MEMORY DEVICE AND METHOD FOR USING PREFABRICATED ISOLATED STORAGE ELEMENTS”),其具有 律師備案編號SC10966TP,其與本發明於同日提出,在此 引用做為參考。圖3所示為該半導體基板1〇的該部份的一 截面圖,其中一含氮層502已經形成在該隧穿介電層上14Fig. 3 shows a technique for changing the surface of the tunneling dielectric layer 14 to increase the promotion of nucleation. Please note that the surface variation of the tunneling dielectric layer 14 also helps to deposit a pre-formed nanoparticle population, as described in the co-filed patent application, entitled "Memory Device Using Prefabricated Isolated Storage Elements and "Method" (" MEMORY DEVICE AND METHOD FOR USING PREFABRICATED ISOLATED STORAGE ELEMENTS "), which has a lawyer's record number SC10966TP, was proposed on the same day as the present invention, and is incorporated herein by reference. Figure 3 shows the semiconductor substrate. A cross-sectional view of this part, in which a nitrogen-containing layer 502 has been formed on the tunneling dielectric layer 14

第19頁 494572 五、發明說明(14) ~~--- 。該含氮層502可包含 該氮化物及氮氧化石夕可改變=上化主石夕(Si〇A) ° ^ ^ ^ ^ Τ改變該隧穿介電層的表面結構,以 ^ g Μ =種成核化促進包含以原子數目為主來降 面擴:;晶面:r促…顆粒群成核化的表 二應,使得由毫微顆粒群形成所造 成的2想要的副產物更快地由表面 ,並 微顆粒群原子之黏結到該基板表面。 吾匕3宅 該含氮層5 0 2可用CVD製程形成,例如LPCVD或UHVCVD, 且該含氮層502係直接接觸於該隧穿介電層14。該含氮層 的UHVCVD可比LPCVD更具控制性,因為UHVCVD通常更慢地 發^ 此該成長速率可以更為精確地調整。該含氮層可 為這些氣體反應的沉積結果,例如矽甲烷(或其它矽來源 前驅物’像是二氣矽甲烷,或二矽甲烷)及氨(或其它的氨 氣種類,例如電漿離子化的氮,或⑽),或與一反應氣 體的表面反應,例如氨(或其它的氨氣種類,例如電漿離 子化的氮,或NO)。二氯矽甲烷及氨氣結合於一些惰性 氣體及含氧氣體的共同流動,其可用來成長該含氮層5〇2 。一旦一薄含氮層已經形成在該隧穿介電層14的表面上, 穿透到下面隧穿介電層14的氮氣通常會受到妨礙,所以會 造成洩漏的該隨穿介電層14的污染可以避免。 該含氮層502的厚度較佳地是受到限制來保證包含在氮 結構中的載子陷阱不會影響所形成半導體裝置的電荷儲存 方面。在一具體實施例中,該含氮層所需要的厚度係小於 10埃。在另一具體實施例中,所需要的厚度可為5埃或更Page 19 494572 V. Description of the invention (14) ~~ ---. The nitrogen-containing layer 502 can include the nitride and oxynitride. The surface structure of the tunneling dielectric layer can be changed by changing the main stone (SiOA) ° ^ ^ ^ to ^ g M = This kind of nucleation promotes the reduction of surface expansion based on the number of atoms :; crystal plane: r promotes the nucleation of particle groups. Table II should make the 2 desired by-products caused by the formation of nanoparticle groups more Quickly adhered to the surface of the substrate from the surface and the microparticle group atoms. The nitrogen-containing layer 502 can be formed by a CVD process, such as LPCVD or UHVCVD, and the nitrogen-containing layer 502 is directly in contact with the tunneling dielectric layer 14. The UHVCVD of the nitrogen-containing layer can be more controllable than LPCVD, because UHVCVD usually occurs more slowly ^ This growth rate can be adjusted more precisely. The nitrogen-containing layer may be the result of the deposition of these gas reactions, such as silane (or other silicon source precursors such as two-gas silane, or disilazane) and ammonia (or other types of ammonia, such as plasma ions) Nitrogen, or rhenium), or reacts with the surface of a reactive gas, such as ammonia (or other types of ammonia, such as plasma ionized nitrogen, or NO). Dichloromethane and ammonia are combined with a common flow of some inert gases and oxygen-containing gases, which can be used to grow the nitrogen-containing layer 502. Once a thin nitrogen-containing layer has been formed on the surface of the tunneling dielectric layer 14, the nitrogen penetrating to the tunneling dielectric layer 14 below is usually hindered, so leakage of the tunneling dielectric layer 14 may be caused. Contamination can be avoided. The thickness of the nitrogen-containing layer 502 is preferably limited to ensure that the carrier traps contained in the nitrogen structure do not affect the charge storage aspect of the formed semiconductor device. In a specific embodiment, the required thickness of the nitrogen-containing layer is less than 10 Angstroms. In another embodiment, the required thickness may be 5 angstroms or more.

494572 五、發明說明(15) ^-~_____ 小。使用薄含氮層可保證佶 構所形成的記憶體f置@ # 已3毫微顆粒群之浮動閘結 要的規格。較厚長;:荷保持特…符合所需 ,係因為該得道的裝置之」:那些在20埃或更多的層級 氮層的電荷保持特性受到奢^ 特性可經由該受限的含 體電荷保持特性。影響所得到裝置的整 或等於20埃,其可增加關含氮層’例如大於494572 V. Description of the invention (15) ^-~ _____ Small. The use of a thin nitrogen-containing layer ensures the specifications of the memory formed by the structure. Thicker and longer ;: Holder… is required because of the proper device. ”: Those charge retention characteristics at the level of 20 angstroms or more nitrogen layer are extravagant. The characteristics can be passed through the restricted inclusion body. Charge retention characteristics. Affects the entire device or is equal to 20 angstroms, which may increase the nitrogen-containing layer ’, for example, greater than

Hi:!,為該陷牌在途中捕捉了-歧載子。 密?:Πΐί包含至少1012毫微顆粒群的—毫微顆粒群 二f f此ΐ經決定可以接受厚度為10埃或更小的含 氮層。在一些具體實施例中,該氮化層可小於或 ;ί i必須至少需要來保證被該含氮層5〇2均 ί K 層14,使得可發生均勾的毫微顆粒群沉 二具體實施例中,該氮化層的厚度係大於 i間於3埃,使得一可接受的氮化物厚度範圍可在3到、7埃; 放矽做為含氮層50 2的狀況中,在該氮氧化 夕中的氮亂/辰度可大於5 %。包含在氮氧化矽中 八 比濃度可被控制,使得在可以形成在該表面上的毫微ς 群飽和濃度及由於氮化物濃度包含陷阱之間的協調可^調Hi:!, Caught the -ambiguity on the way for the trap. dense? : Πΐί containing at least 1012 nanoparticle groups—nanoparticle groups II f f It has been determined that a nitrogen-containing layer having a thickness of 10 Angstroms or less can be accepted. In some specific embodiments, the nitrided layer may be smaller than or ίi must be at least required to ensure that the nitrogen-containing layer 502 is ίK layer 14, so that a uniform nanoparticle group can occur. In the example, the thickness of the nitride layer is greater than i between 3 angstroms, so that an acceptable nitride thickness range can be 3 to 7 angstroms. In the case of putting silicon as the nitrogen-containing layer 50 2, The degree of nitrogen disturbance in the oxidation evening can be greater than 5%. Contained in silicon oxynitride, the specific concentration can be controlled so that the coordination between the saturation concentration of the femto group that can be formed on the surface and the trap due to the nitride concentration can be adjusted.

整。 J 在其它具體實施例中,在該隧穿介電層14的表面上之毫whole. J In other embodiments, the surface of the tunneling dielectric layer 14

第21頁 494572Page 494 572

微顆粒群的成核化可藉由改變該隧穿 結構來改善。圖4所示為該半導 層14的表面鏈結 圖:接”形成該隧穿介電層14 ::之截面 “係假:為二氧化石夕,*亦顯示該二:二的:穿介電層 鏈結結構5 0 4。請注意在該二氧化矽鏈結結構5〇1 =始表面 該兩2石夕原子被鏈結到—單—氧原子。此構=的每個 少反應於該石夕甲燒前驅物氣體,其通常用常較 开多成。 ’宅微顆粒群Nucleation of the microparticle population can be improved by changing the tunneling structure. FIG. 4 shows a surface link diagram of the semiconducting layer 14: “connected” to form the cross-section of the tunneling dielectric layer 14 :: “cross section” is false: it is a sulphur dioxide, * also shows the two: two: through Dielectric layer chain structure 5 0 4. Please note that in this silicon dioxide chain structure, 501 = the starting surface, the two 2 stone-Xi atoms are linked to the -mono-oxygen atom. Each of these structures is less reactive to the precursor gas of the syrup, which is usually used more often than Kelvin. ‘House microparticle group

友為了改變該隧穿介電層14的上表面的鏈結結構,— 虱體種類y應用到該表面。舉例而言,可為液體形式或氣 體形式的氫氟酸(hf ),或其它試劑,可應用到該隧穿介電 層1 4的表面,以改變該鏈結結構,使得所得到的表面鏈結 結構利於吸收矽甲烷,降低該關鍵粒子尺寸,改善反應副 產物釋出’因此改善在該隧穿介電層14上毫微顆粒群的成 核化。圖5所示為該半導體基板1〇的該部份的一截面圖, 其中該隧穿介電層14的上部或表面之鏈結結構已藉由暴露 於一試劑來改變。該鏈結結構5 〇 6所示為個別矽原子鏈結 到一氧氣反應物配對,其中在暴露於HF時,該反應物(R )In order to change the link structure of the upper surface of the tunneling dielectric layer 14, a lice body type y is applied to the surface. For example, hydrofluoric acid (hf), which may be in liquid or gas form, or other reagents, may be applied to the surface of the tunneling dielectric layer 14 to change the link structure so that the resulting surface chain The junction structure facilitates the absorption of silicon methane, reduces the size of the key particles, improves the release of reaction by-products, and thus improves the nucleation of the nanoparticle group on the tunneling dielectric layer 14. FIG. 5 shows a cross-sectional view of the portion of the semiconductor substrate 10, in which the link structure of the upper portion or the surface of the tunneling dielectric layer 14 has been changed by exposure to a reagent. The chain structure 506 is shown as a pair of individual silicon atoms linked to an oxygen reactant pair, where the reactant (R) when exposed to HF

將為氫氣(Η)或氟氣(F)。在其它具體實施例中,不同的試 劑或反應氣體可用來取代HF。範例試劑包含氣體,像是鍺 烷,磷化氫,硼乙烷,,氨,及水蒸氣◊因此,該鏈結結構 506的反應物部份可為不同的材料,其中該鏈結結構5 〇6會 更多反應於矽甲烷氣體,因此可改善該隧穿介電層14的表 面上之成核化。因此,其它類似的反應氣體可用來達到鏈It will be either hydrogen (Η) or fluorine (F). In other embodiments, different reagents or reaction gases can be used instead of HF. Exemplary reagents include gases, such as germane, phosphine, boroethane, ammonia, and water vapor. Therefore, the reactant portion of the link structure 506 can be different materials, where the link structure 5 6 will react more to the silicon methane gas, so the nucleation on the surface of the tunneling dielectric layer 14 can be improved. Therefore, other similar reaction gases can be used to reach the chain

第22頁 494572 五、發明說明(17) 結結構中相同的改變’如圖5所示。反應該隧穿介電層14 的表面部份來改變該鏈結結構,其可經由濕蚀刻運 到,或藉由使用一反應氣體來執行一退火製程,= = f 知可便於改變這種鏈結結構。 & 圖6所示為在圖2中形成的該半導體基板1〇的該部份之 面圖,其中最終可成長成毫微顆粒群的晶核〗5已開始 。關於圖6的時段較佳地是對應於圖1所示曲線3 12 化階段318。請注意圖6的該隧穿介電層14已經可使風核 圖3-5所述的一個或多個方法來處理,藉以便於成核化M 、 ^^6。中所要發生的成核化基本上依據關於圖丨所述的發育 毫微顆粒群的成長較佳地是使用一 CVD製程來Page 22 494572 V. Description of the invention (17) The same change in the knot structure is shown in FIG. 5. The surface structure of the tunneling dielectric layer 14 is changed to change the link structure, which can be transported by wet etching, or an annealing process can be performed by using a reactive gas. It is convenient to change the chain.结 结构。 Knot structure. & Fig. 6 is a sectional view of the portion of the semiconductor substrate 10 formed in Fig. 2, in which crystal nuclei that can eventually grow into nanoparticle groups 5 have begun. The period of time with respect to FIG. 6 preferably corresponds to the curve 312 2 stage 318 shown in FIG. Please note that the tunneling dielectric layer 14 of FIG. 6 can already be processed by one or more of the methods described in FIGS. 3-5 to facilitate the nucleation of M, ^^ 6. The nucleation that will occur in the process is basically based on the development of the nanoparticle population described in the figure. It is preferable to use a CVD process to

了,一LPCVD製程或一UHVCVD製程。這種CVD製程基上、 ,在一CVD反應室的控制環境中。CVD J受,制的,件下流入一反應室,所以在:前步驅!::: 上,由該⑽運作所造成不需要產物/ 由該表面釋出,並離開該反應室。 屋物將 J了促進毫微顆粒群的成長, iί ^ ^ΓΓΓΜδ - Λ 料形成,例如石夕,錯檢,赤汾从α Α 丁等體材 的狀況中,用來形成該矽毫裰^二金。在矽毫微顆粒群 …,二石夕甲1成前驅物氣趙可ί 來同時促進初始成核化,'及 5 石夕氣體可用 久進一步成長該毫微顆粒群,直Yes, an LPCVD process or a UHVCVD process. This CVD process is based on the control environment of a CVD reaction chamber. The CVD J is made into a reaction chamber under the condition, so before: on the front drive! :::, the unwanted products caused by the operation of the plutonium are released from the surface and leave the reaction chamber. The house will promote the growth of the nanoparticle group, iί ^ ^ ΓΓΓΜδ-Λ material formation, such as Shi Xi, wrong detection, Chifen from the condition of the body materials such as α Α D to form the silicon millet ^ Two gold. In the silicon nanoparticle group…, Ershi Yujia 10% precursor precursor gas can be used to promote the initial nucleation at the same time, and the Shi Xi gas can be used to grow this nanoparticle group for a long time, until

ΜΜ

第23頁 494572 五、發明說明(18) ^~~ - 到得到所需要的密度及大小。 為了促進成核化,在該CVD反應室中的狀況被精密地控 制。一些因素會影響是否關於要形成的毫微顆粒群會發生 成核化或成長。為了促進成核化,該隧穿介電層14的表面 性質’該含半導體氣體的部份壓力,在該反應室中的溫度 ,及任何共同流動氣體的存在與識別,皆要受到控制服$ 合於矽毫微顆粒群的初始成核化的參數,其包含不超過、 6—0 0 °C的反應室溫度,一含矽氣體流動速率會大於或等1一於 每分鐘約在50標準立方公分(SCCM),該含矽氣體的部份壓 力係小於或等於約2〇〇 mT〇rr。這種狀況可保持一大於3〇 秒的時段,藉以允許發生發育及初始的成核化。因此、,在 形成該隨穿介電層14在該基板12上之後,具有覆蓋隨穿介 電層14的基板可置於CVD反應室中,並加熱到不超過6〇〇 ^ ’此時石夕毫微顆粒群可由上述的流動氣體所形成。使用百 分之百石夕甲烷在1 0 0 0 SCCM的58〇 r之溫度持續一 發現為有效。 刀鐘已被 雖然較高的壓力可加速矽的沉積,這種高壓力也可 縮短形成時間,其對於毫微顆粒群的成長是不需要的。σ 此,關於該毫微顆粒群成長的額外加長的時間,可藉由 低該前驅物氣體的部份壓力來達到。藉由結合較低^ j =溫度,可得到延長的成核化時間,因此更可控制 ,核化。在成核化期間降低溫度的進一步好處可在該 匕製程期間由降低所形成的晶核之關鍵尺寸來實現^ ^ ,較少的原子必須聚集在一起來以較低的溫度形成關鍵尺Page 23 494572 V. Description of the invention (18) ^ ~~-To get the required density and size. In order to promote nucleation, the conditions in the CVD reaction chamber are precisely controlled. A number of factors influence whether the nucleation or growth of the nanoparticle population to be formed will occur. In order to promote nucleation, the surface properties of the tunneling dielectric layer 14 'partial pressure of the semiconductor-containing gas, temperature in the reaction chamber, and the presence and identification of any co-flowing gas are subject to control services. Parameters for the initial nucleation of silicon nanoparticle groups, which include a reaction chamber temperature not exceeding 6-0 0 ° C. The flow rate of a silicon-containing gas will be greater than or equal to 1 to about 50 per minute. In cubic centimeters (SCCM), the partial pressure of the silicon-containing gas is less than or equal to about 200 mTorr. This condition can be maintained for a period greater than 30 seconds, thereby allowing development and initial nucleation to occur. Therefore, after the through-dielectric layer 14 is formed on the substrate 12, the substrate having the through-dielectric layer 14 can be placed in a CVD reaction chamber and heated to not more than 600 ^ Even nanoparticle groups can be formed by the above-mentioned flowing gas. It was found to be effective to use 100% of Shixian methane at a temperature of 580 r at 1 00 SCCM. The knife bell has been used. Although higher pressure can accelerate the deposition of silicon, this high pressure can also shorten the formation time, which is not required for the growth of nanoparticle groups. σ Therefore, the extra lengthening time for the growth of the nanoparticle group can be achieved by lowering the partial pressure of the precursor gas. By combining a lower ^ j = temperature, an extended nucleation time can be obtained, and therefore more controllable and nucleation. A further benefit of lowering the temperature during nucleation can be achieved during this process by reducing the critical size of the nuclei formed. ^ ^ Fewer atoms must be clustered together to form a critical ruler at a lower temperature.

第24頁 IIΗ 494572Page 24 IIΗ 494572

五、發明說明(19) 之下形成這種關鍵 寸的晶核,該溫度將低於需要在較高溫 尺寸晶核之溫度。 - Ϊ二ϊ ί Ϊ ί f例中,在毫微顆粒群形成期,曰,,該反應 至内的溫度將在5 0 0 r到6 0 0 r之間。溫度進—乎到 5 0 0 °C以下會造成在毫微顆粒群形成期間降低/導體 晶圓的表面釋出氫氣的速率。這種氫氣釋出逮 低會 因為阻礙了含矽前驅物吸收可用的反應物場所而妨礙了成 核化過程。 圖7所示+為如同圖6所形成的半導體基板1〇的該部份的截 面圖,接著為成核化及一些已建立的晶核之成長。該建立 的晶核1 6已經顯示出會經由加入後續的原子而增加了尺寸 ,藉此額外的晶核1 7可在發生最初成核化的第一階段及發 生建立的晶核之最初成長的第二階段之間的此中間階段期 間來形成。 圖8所示為在圖7中所形成的該半導體基板丨〇的該部份的 截面圖,其中因為該建立的晶核18的大小及密度已經到達 原子要加入到該建立的晶核而不會產生新的晶核的狀況, 該成核化已經大體上停止。一般而言,由成核化變換到發 生成長之點可由改變製程參數來控制,使得所需要的毫微 顆粒群的密度可以達到。一旦已經達到所需要的密度,在 CVD反應室中的狀況可被調整來促進該建立的毫微顆粒群 1 8之成長。 促進毫微顆粒群成長的狀況可包含較低的前驅物氣體的 部伤壓力,其可為稍早所述的含矽氣體。在該成長階段期V. Description of the invention Under (19), the formation of such critical-sized crystal nuclei will be lower than the temperature required for higher-temperature crystal nuclei. -Ϊ 二 ϊ ί Ϊ ί In the example, during the formation period of the nanoparticle group, that is, the temperature within the reaction will be between 50 r and 600 r. Temperatures in the range of -500 ° C and below can cause the rate of hydrogen evolution / conduction on the surface of the conductor wafer to decrease during the formation of nanoparticle clusters. This low hydrogen release traps the nucleation process by hindering the availability of reactant sites for silicon-containing precursors. Fig. 7+ is a cross-sectional view of the portion of the semiconductor substrate 10 formed as in Fig. 6, followed by nucleation and the growth of some established crystal nuclei. The established nuclei 16 have been shown to increase in size by adding subsequent atoms, whereby additional nuclei 17 can be grown in the first stage of initial nucleation and the initial growth of the established nuclei. Formed during this intermediate stage between the second stages. FIG. 8 is a cross-sectional view of the portion of the semiconductor substrate formed in FIG. 7, because the size and density of the established crystal nucleus 18 have reached the number of atoms to be added to the established crystal nucleus without A condition where new crystal nuclei will be generated, and the nucleation has largely stopped. Generally speaking, the change from nucleation to growth point can be controlled by changing the process parameters, so that the density of the required nanoparticle group can be achieved. Once the desired density has been reached, the conditions in the CVD reaction chamber can be adjusted to promote the growth of the established nanoparticle population 18. Conditions that promote nanoparticle population growth may include lower traumatic pressure of the precursor gas, which may be a silicon-containing gas as described earlier. During this growth phase

第25頁 494572 五、發明說明(20) 間’該含石夕氣體的部份壓力可以降低到該部份壓力低於或 等於10 inTorr。有一額外的因素可促進成長而非成核化, 即為增加溫度,使得原子移動加快,使其更有可能附著於 建立的成核化場所,而不會形成新的晶核。該含矽氣體的 降低之部份壓力可造成較少的矽原子會形成在該表面上, 所以該毫微顆粒群的成長速率可被精確地控制。 在I^CVD製程中,通常使用共流的氣體,藉以保證製程 的穩定性。但是’這種共流氣體可阻止矽的沉積及毫微顆 ,群的成長。舉例而言,氫氣為常用的配合矽甲烷的共流 耽體。、在矽將被沉積在該晶圓的表面上時,該石夕甲烷氣體 分解成矽及氫氣的驅勢會被氫氣共流氣體所阻止,因為該 矽甲烷分解作業的氫氣副產品會被防止由該晶圓表面釋出 因此為了促進同時產生成核化及成長所需要的矽沉積 丄了使用一種混合氣體,包含惰性共流氣體,例如氩氣或 氬虱、’以及一種含半導體氣體,例如矽曱烷或二矽甲烷, 來增進晶圓上的石夕沉積。 其須注意到,氫氣常被用於在其它CVD作業中做為與矽 甲烷的共流氣體之原因是,其可協助來防止矽 分解成石夕及氫氣。但是,對於存在於反應室中;所存二^ 於毫,顆粒群的成長之狀況,較低的矽甲烷氣體的部份壓 力結口較低溫度,會防止這種氣相分解。因此,可使用 它的惰性氣體做為共流氣體,以便允許成功地完成LPCVD、 處理’而不用考慮到矽曱烷氣體的氣相分解。 在本發明中,使用UHVCVD來形成該毫微顆粒群的具體實Page 25 494572 V. Description of the invention (20) ’Part of the pressure of the stone-containing gas can be reduced to less than or equal to 10 inTorr. There is an additional factor that promotes growth rather than nucleation, which is to increase the temperature and accelerate the movement of atoms, making it more likely to attach to established nucleation sites without forming new crystal nuclei. The reduced partial pressure of the silicon-containing gas can cause fewer silicon atoms to be formed on the surface, so the growth rate of the nanoparticle group can be accurately controlled. In the I ^ CVD process, co-current gas is usually used to ensure the stability of the process. But 'this co-current gas can prevent the deposition of silicon and the growth of nano particles and clusters. For example, hydrogen is a common co-current propellant with silane. When the silicon is to be deposited on the surface of the wafer, the driving force for the decomposition of the methane gas into silicon and hydrogen will be prevented by the co-current gas of hydrogen, because the hydrogen by-product of the decomposition of silicon methane will be prevented by The surface of the wafer is released so that in order to promote the simultaneous generation of nucleation and growth of silicon deposits, a mixed gas is used, including an inert co-current gas, such as argon or argon, and a semiconductor-containing gas, such as silicon Pinane or disilazane can be used to enhance the deposition of lithosene on the wafer. It should be noted that the reason hydrogen is often used as a co-current gas with silicon methane in other CVD operations is that it can help prevent the decomposition of silicon into silicon and hydrogen. However, for the existence of the particles in the reaction chamber, the growth of the particle group, the lower pressure of the lower pressure junction of the silicon dioxide gas will prevent this gas phase decomposition. Therefore, its inert gas can be used as a co-current gas in order to allow the successful completion of LPCVD, processing 'without considering the gas phase decomposition of the silane gas. In the present invention, UHVCVD is used to form the specific embodiment of the nanoparticle group.

第26頁 494572 五、發明說明(21) ^ ~~--——-~~~-_ 施例中,並不需要共流氣體來促進Page 26 494572 V. Description of the invention (21) ^ ~~ --——- ~~~ -_ In the embodiment, no co-current gas is required to promote

其它含半導體氣體的分佈。因進人中石夕甲烧或 毫微顆粒群形成期間,可不需要3 /導體^體在UHVCVD i密度,後,料導體晶圓較佳地是保ί;ΓΠ;ί;ί 中,以防止該毫微顆粒群的氧化。 =二土化的壤境Distribution of other semiconductor-containing gases. It is not necessary for the 3 / conductor body to be in the UHVCVD i density during the incubation or formation of nano-particle groups. After that, the material conductor wafer is preferably protected; ΓΠ; ί; to prevent the Oxidation of nanoparticle groups. = Sedimentary soil

=化’例如包覆毫微顆粒群,其會詳細描J Ϊ勹二中。進一步可以降低這種氧化的不良影響之步驟 矽=粒Γ來達到其平衡形狀,其大體上可為 ΐ!·Ζί , 二氧夕的隧穿介電層上的融溶石夕之接觸 角大約為90。。因此,該毫微顆粒群的一般形狀可發展 2成類似於毫微顆粒群21的形狀。該毫微顆粒群輪 廓係依據其下的隧穿介電層丨4的潮濕特性。因此,可^ 該隨穿介電層14的預處理來促進這種變濕。 在毫微顆粒群經由LPCVD作業來沉積的狀況中,所得 毫微顆粒群結構的一般形狀大致上為非平衡架構,例如圖 9中所示的毫微顆粒群丨9架構。為了允許由Lpcv])沉積的毫 微顆粒群來達到如圖1〇所示的一平衡形狀,可利用一 製程。 人= 化 ', for example, a coated nanoparticle group, which will be described in detail. The step that can further reduce the adverse effects of this oxidation is silicon = grains Γ to reach its equilibrium shape, which can be generally ΐ! · Zί, the contact angle of the molten stone on the dielectric layer of the dioxin is approximately Is 90. . Therefore, the general shape of the nanoparticle group can be developed into a shape similar to the nanoparticle group 21. The nanoparticle group profile is based on the moisture characteristics of the tunneling dielectric layer 4 underneath. Therefore, the pretreatment through the dielectric layer 14 can be used to promote this wetting. In the case where the nanoparticle group is deposited via the LPCVD operation, the general shape of the obtained nanoparticle group structure is roughly an unbalanced structure, such as the nanoparticle group shown in FIG. 9. In order to allow the nanoparticle population deposited by Lpcv]) to reach a balanced shape as shown in Fig. 10, a process can be used. people

/在該毫微顆粒群經由UHVCVD作業來形成的狀況中,關於 形成毫微顆粒群的延長時間可充份地允許該毫微顆粒群來 達到圖1 0所示的平衡形狀。如果該時間並不充份,可利用 一類似的退火步驟來促進轉換到該平衡架構。/ In a state where the nanoparticle group is formed via a UHVCVD operation, the extended time regarding the formation of the nanoparticle group can sufficiently allow the nanoparticle group to reach the equilibrium shape shown in FIG. 10. If this time is not sufficient, a similar annealing step can be used to facilitate the transition to the balanced architecture.

第27頁 494572 五、發明說明(22)Page 27 494572 V. Description of the invention (22)

對於應用在半導體記憶體結構的毫微顆粒群之所需要的 大小係在3 0到7 0埃之間,在一些具體實施例中,目標直徑 50埃即為適當的。在使用50埃直徑的毫微顆粒群之Z體實 施例中,大於每平方公分5 X 1 011毫微顆粒群的密度/,'可使 用此處所述的形成技術來達到。在這種具體實施f中,在 其下隧穿介電層上的該毫微顆粒群的覆蓋或面積密度大約 在2 0%。該20%的面積密度對於製造半導體裝置是合$的\ 因為其提供了包含在該浮動閘結構中的毫微顆粒群之間的 間隔之容許量。雖然可達到更高的面積密度,在這麼高的 面積密度之具體實施例中的隔離儲存元件之接近度,$增 加毫微顆粒群之間的橫向電荷傳輸的機率,因此^降低^ 其隔離的好處。 圖11所示為圖10的半導體基板部份10的截面圖,其上已 形成有一控制介電層20。該控制介電層2〇覆蓋了該^微顆 粒群21及該隧穿介電層14。該控制介電層2〇可使用CVD濺 鑛’或其它常用於半導體製程作業的沉積步驟來進行沉積 °包含在該控制介電層20中的材料可為氧氮氧(〇N〇),氧 化矽或金屬氧化物。在形成該控制介電層2〇之前,每個毫 微顆粒群21可被包覆來防止以下圖21 —27所述的氧化。The required size for a nanoparticle population applied to a semiconductor memory structure is between 30 and 70 angstroms. In some embodiments, a target diameter of 50 angstroms is appropriate. In a Z-body embodiment using a nanoparticle group of 50 Angstroms in diameter, a density greater than 5 X 1 011 nanoparticle groups per square centimeter / 'can be achieved using the formation techniques described herein. In this implementation f, the coverage or area density of the nanoparticle group on the tunneling dielectric layer below is about 20%. The area density of 20% is suitable for manufacturing a semiconductor device because it provides an allowance for the interval between the nanoparticle groups contained in the floating gate structure. Although a higher area density can be achieved, the proximity of the isolated storage element in such a high embodiment of the area density increases the probability of lateral charge transport between the nanoparticle groups, thus reducing the isolation benefit. Fig. 11 is a cross-sectional view of the semiconductor substrate portion 10 of Fig. 10, on which a control dielectric layer 20 has been formed. The control dielectric layer 20 covers the microparticle group 21 and the tunneling dielectric layer 14. The control dielectric layer 20 can be deposited using CVD sputtering or other deposition steps commonly used in semiconductor manufacturing operations. The material included in the control dielectric layer 20 can be oxygen nitrogen oxide (0N〇), which can be oxidized. Silicon or metal oxide. Prior to forming the control dielectric layer 20, each nanoparticle group 21 may be coated to prevent oxidation as described below in Figs. 21-27.

圖12所示為圖11的該半導體基板丨〇的該部份之截面圖, 其中一導電層22已沉積在該控制介電層2〇之上。該導電層 2 2較佳地是為一閘極材料,例如摻雜複晶矽或金屬。該導 電層22的沉積可使用CVD或其它常用於沉積這種閘極材料 的技術來完成。FIG. 12 is a cross-sectional view of the portion of the semiconductor substrate 10 in FIG. 11, in which a conductive layer 22 has been deposited on the control dielectric layer 20. The conductive layer 22 is preferably a gate material, such as doped polycrystalline silicon or metal. The conductive layer 22 can be deposited using CVD or other techniques commonly used to deposit such gate materials.

第28頁 494572 五、發明說明(23) 囷13所示為圖9的該半導體基板1〇的該部份之截面圖, 其中該導電層22的一部份已被移除來形成一閘極,或閘電 極24。該閘極24的形成定義了該半導體層12中的一通道區 域,其位在該閘極2 4之下。蝕刻該導電層2 2來形成該閘極 24可使用一反應離子蚀刻來完成。Page 28 494572 V. Description of the invention (23) 囷 13 is a cross-sectional view of the part of the semiconductor substrate 10 shown in FIG. 9, in which a part of the conductive layer 22 has been removed to form a gate electrode Or gate electrode 24. The formation of the gate 24 defines a channel region in the semiconductor layer 12, which is located below the gate 24. Etching the conductive layer 22 to form the gate electrode 24 can be accomplished using a reactive ion etch.

圖14所示為圖10的該半導體基板部份10之截面圖,其中 該控制介電層2 0的一部份已經被蝕刻來形成一蝕刻的控制 介電層26。該控制介電層20中被移除來形成該蝕刻的控制 介電層26的該部份,即為位在相鄰於(非在其下方)該閘極 24的部份。因此,為在該閘極24之下的該控制介電層20的 該部份並未蝕刻。這種蝕刻可使用反應離子蝕刻(r丨E)來 執行。 圖15所不為圖14的該基板部份10的截面圖,其中該複數 個毫微顆粒群21的一部份已被反應來形成一合成物,其已 在後續經由蝕刻作業來移除。要反應的該部份為位在該控 制介電層20之下已被蝕刻掉的該部份,藉以產生圖14中所 示的該蝕刻控制介電層2 6。因此,位在該閘極2 4之下的複 數個毫微顆粒群21的該部份一般而言不會受到該反應作業 的影響。反應可包含與氧氣反應,其在矽毫微顆粒群的情 況下會產生氧化矽。Fig. 14 is a cross-sectional view of the semiconductor substrate portion 10 of Fig. 10, in which a portion of the control dielectric layer 20 has been etched to form an etched control dielectric layer 26. The portion of the control dielectric layer 20 that is removed to form the etched control dielectric layer 26 is the portion that is adjacent (but not below) the gate 24. Therefore, the portion of the control dielectric layer 20 that is under the gate electrode 24 is not etched. This etching can be performed using reactive ion etching (r 丨 E). FIG. 15 is not a cross-sectional view of the substrate portion 10 of FIG. 14, in which a portion of the plurality of nanoparticle groups 21 has been reacted to form a composite, which has been subsequently removed by an etching operation. The portion to be reacted is the portion which has been etched away under the control dielectric layer 20, thereby generating the etch control dielectric layer 26 shown in FIG. Therefore, the part of the plurality of nanoparticle groups 21 located below the gate 24 is generally not affected by the reaction operation. The reaction may include a reaction with oxygen, which, in the case of silicon nanoparticle populations, produces silicon oxide.

在反應了該毫微顆粒群的該部份之後,該反應的部份可 使用一蝕刻作業來與對應的該隧穿及控制介電層14及2 6的 部份一起移除。該蝕刻作業可為一非選擇性濕蝕刻作業。 舉例而言,在矽毫微顆粒群的情況中,反應一部份的複數After reflecting the portion of the nanoparticle group, the reacting portion can be removed using an etching operation along with the corresponding portions of the tunneling and control dielectric layers 14 and 26. The etching operation may be a non-selective wet etching operation. For example, in the case of silicon nanoparticle populations, the reaction is part of a complex number

第29頁 494572 五、發明說明(24) 個亳微顆粒群可包含用氧氣來反應那些毫微顆粒群,以形 成氧化石夕。如果該隧穿及控制介電層14及26為氧化石夕,一 使用稀釋風氟酸的濕蚀刻作業將可達到所需要的成果。在 圖15的截面圖中所示剩下的為該閘極24,該控制介電層28 的一選擇的部份,該毫微顆粒群21的一部份,及該隧穿介 電層30的一選擇的部份,其所有皆位在該閘極24之下。Page 29 494572 V. Description of the invention (24) The tritium microparticle group may include reacting those nanoparticle groups with oxygen to form oxidized stone. If the tunneling and controlling dielectric layers 14 and 26 are oxidized stones, a wet etching operation using dilute hydrofluoric acid will achieve the desired results. Shown in the cross-sectional view of FIG. 15 are the gate 24, a selected portion of the control dielectric layer 28, a portion of the nanoparticle group 21, and the tunneling dielectric layer 30. A selected part of the all is located under the gate 24.

圖16所示為圖15的該半導體基板1〇的截面圖,其中已經 形成間隙壁35及源極與汲極區域32及34,以形成一電晶體 結構(或至少為其主要的部份)。該源極與汲極區域32及34 可經由植入摻雜物材料在該半導體層12中來形成。該源極 與没極區域3 2及34的形成可在該源極與汲極區域3 2及3 4之 間的該閘極24之下造成該通道區域的形成。這種電晶體結 構可被產生來包含場隔離區域(未示出),以隔離相鄰裝^ 的電晶體。 例如圖1 6中所示的電晶體,其可用於半槿 中,例如快閃記憶體,EEPROM記憶體,DRAM記憶體,或其 它不同揮發性的記憶體結構。特別是,這種電晶體結構可 用於需要電荷保持特性之快閃記憶體結構的生產中,使得 電晶體的狀態可維持數年之久aFIG. 16 is a cross-sectional view of the semiconductor substrate 10 of FIG. 15, in which a spacer wall 35 and source and drain regions 32 and 34 have been formed to form a transistor structure (or at least its main part). . The source and drain regions 32 and 34 can be formed in the semiconductor layer 12 by implanting a dopant material. The formation of the source and non-electrode regions 32 and 34 may cause the formation of the channel region under the gate 24 between the source and drain regions 32 and 34. This transistor structure can be created to include a field isolation region (not shown) to isolate adjacent transistors. For example, the transistor shown in FIG. 16 can be used in semi-hibiscus, such as flash memory, EEPROM memory, DRAM memory, or other memory structures with different volatility. In particular, this transistor structure can be used in the production of flash memory structures that require charge retention characteristics, so that the state of the transistor can be maintained for several yearsa

為了簡化關於圖14及15所不的複數個毫微顆粒群21的該 部份之反應及蝕刻,該毫微顆粒群的初始成長或沉積可被 控制,使1僅有少數或沒有毫微顆粒群需要被反應或姓刻 掉。藉由簡化該反應及蝕刻步驟,製造效率可以改進。為 了控制毫微顆粒群的形成,使得在所需要的位置可以達到In order to simplify the reaction and etching of this part of the plurality of nanoparticle groups 21 shown in FIGS. 14 and 15, the initial growth or deposition of the nanoparticle group can be controlled so that 1 has only a few or no nanoparticle Groups need to be engraved by response or surname. By simplifying the reaction and etching steps, manufacturing efficiency can be improved. In order to control the formation of the nanoparticle group, the desired position can be reached

五、發明說明(25) 較高的毫微顆軔继a ^ x 佳的成長區域;;;;,可在該随穿:電層14上形成較 14上的區域成長區域對應於該隧穿介電層V. Description of the invention (25) Higher growth area of nanometer particles following a ^ x; ;;, can be formed on the through-passing: the electric layer 14 forms a region over the growth area corresponding to the tunneling Dielectric layer

Si特區段可形成在該随穿介電層14的不㊁ ^7 中該含氮區段可促進較高的毫微顆粒群成核化 以在含氮材料上的毫微顆粒群發展的發育 之不同,毫微顆二氧化矽的隧穿介電材料的發育時間 ,ίί介成核化及成長較佳地是發生在位於 該隧穿介電層14之下的那些含氮區段上。 圖17-20所示為該半導體基板1〇的該部份之截 豆 對應2位在該隧穿介電層丨4之下形成選微顆 粒群中的不同步驟。圖17所示為圖3 :成毫微顆 10的該部份,接著成長一罩幕層52〇, :=基板 圖18所示為圖17的該半導體基板1〇的該部份之 其接著-後續步驟,期間為該罩幕層52 截圖, -圖案化的罩幕層5 22。在一光阻革幕=2來形成 案化可由該光阻的微影曝光,然後是幕—提狀况中二該圖 因此’該罩幕層的剩餘部份522仍維持為在該n完成。 14的該部份之下,其對應需要成長毫微 介電層 此,在移除了該罩幕層5 2 0的該部份 群的區域。因 層5 0 2的遮罩及未遮罩部份。 仍 '准持該含氮 圖19所示為圖18的該半導體基板1〇的 之截面圖,其接著後續製成步驟,其中^ 體基板部份 份5 2 2已與那些含氮層5 0 2的未遮罩/部佟二t养層的剩餘部 仍一起移除(即那些Si-specific sections can be formed in the non-conducting dielectric layer 14. The nitrogen-containing section can promote the nucleation of higher nanoparticle groups for the development of nanoparticle groups on nitrogen-containing materials. In contrast, the development time, tunneling and growth of nano-sized silicon dioxide tunneling dielectric materials preferably occurs on those nitrogen-containing sections located below the tunneling dielectric layer 14. Figures 17-20 show the different steps in the selection of microparticles corresponding to 2 bits under the tunneling dielectric layer 丨 4 corresponding to the portion of the semiconductor substrate 10. FIG. 17 shows the part of FIG. 3: the nanometer 10 is formed, followed by the growth of a mask layer 52o: = substrate FIG. 18 shows the part of the part of the semiconductor substrate 10 of FIG. 17 followed by -The next steps, during which screenshots of the cover layer 52 are taken,-the patterned cover layer 5 22. A photoresist leather curtain = 2 to form a case can be exposed by the photolithography of the photoresist, and then the curtain-lifting condition. The second picture is therefore 'the remaining portion of the mask layer 522 is still maintained at the n . Below this part of 14, it corresponds to the need to grow the femto-dielectric layer. Therefore, the area of the part group of the mask layer 5 2 0 is removed. Because of the masked and unmasked part of layer 5 02. Fig. 19 is a cross-sectional view of the semiconductor substrate 10 shown in Fig. 18, which is followed by subsequent fabrication steps, in which the bulk substrate portion 5 2 2 is already in contact with those nitrogen-containing layers 50 The unmasked / part 2 remaining parts of the nutrient layer are still removed together (ie those

494572 五、發明說明(26) 不位在該罩幕層的剩餘部份5 2 2之下的部份,其可視為該 遮罩的部份)。圖1 8所示的該半導體基板的部份可被非等 向蚀刻來先移除不是位在該罩幕層522的該部份之下的該 含氮層的該未遮罩部份,然後該罩幕層該剩餘部份522也 可被移除來產生圖19所示的結果結構。圖丨9所示的結構包 含一含氮層區段5 24 (該含氮層的遮罩部份),其對應於在 該随穿介電層14上需要毫微顆粒群成長的位置。那些在下 方不具有含氮層區段的隧穿介電層14的部份,係對應於不 想要毫微顆粒群成長的區域。 圖20所不為圖19所示的該結構上的毫微顆粒群的選擇性 成長。如圖所示’毫微顆粒群較佳地是成長在該含氮層區 段524之上’使得其上可形成一些毫微顆粒群52ι。但是, 由於發育時間的不同,以及該隧穿介電層14的較少反應的 特性’僅有一部份的對應毫微顆粒群組合將可直接地 ,成在該隧穿介電層514上。因此,當執行作業來移除不 是位在該裝置的閘極區域之下的毫微顆粒群,必須經由蝕 刻作業被反應及移除的毫微顆粒群數目可大為降低。 、,圖21所示為形成在一隧穿介電層1〇2之複數個毫微顆粒 ^103的擴大截面圖。其後在該半導體基板1〇〇上沉積該毫 =顆粒群103及該隧穿介電層1〇2,該基板1〇〇可暴露在 遭的狀況中。這種暴露在週遭狀況的情形, 顆粒群1〇3的氧化,其依序會造成一些不想/的造影成:毫一微 ΐ:i ί ΐ ί ϊ係考慮到經由在這種氧化期間消耗矽或其 匕複合材料而減小了該毫微顆粒群的有效尺寸。因此494572 V. Description of the invention (26) The part which is not under the remaining part 5 2 2 of the mask layer can be regarded as the part of the mask). The portion of the semiconductor substrate shown in FIG. 18 may be anisotropically etched to remove the unmasked portion of the nitrogen-containing layer that is not located below the portion of the mask layer 522, and then The remaining portion 522 of the cover layer can also be removed to produce the resulting structure shown in FIG. 19. The structure shown in FIG. 9 includes a nitrogen-containing layer section 5 24 (the mask portion of the nitrogen-containing layer), which corresponds to the position where the nano-particle group needs to grow on the through-dielectric layer 14. Those portions of the tunneling dielectric layer 14 which do not have a nitrogen-containing layer section below correspond to areas where the nanoparticle group is not desired to grow. Fig. 20 does not show the selective growth of the nanoparticle group on the structure shown in Fig. 19. As shown in the figure, 'nanoparticle groups are preferably grown on the nitrogen-containing layer section 524' so that some nanoparticle groups 52m can be formed thereon. However, due to the different development time and the less reactive characteristic of the tunneling dielectric layer 14, only a portion of the corresponding nanoparticle group combination will be directly formed on the tunneling dielectric layer 514. Therefore, when an operation is performed to remove a nanoparticle group that is not located under the gate region of the device, the number of nanoparticle groups that must be reacted and removed through the etching operation can be greatly reduced. FIG. 21 is an enlarged cross-sectional view of a plurality of nano-particles ^ 103 formed in a tunneling dielectric layer 102. Thereafter, the milliparticle group 103 and the tunneling dielectric layer 102 are deposited on the semiconductor substrate 100, and the substrate 100 may be exposed to the conditions. In the case of exposure to the surrounding conditions, the oxidation of the particle group 103 will sequentially cause some unwanted / contrast images: a nanometer: i ί ΐ ί ϊ system is considered to consume silicon during this oxidation Or its composite material reduces the effective size of the nanoparticle group. therefore

494572 五、發明說明(27) ---- 氧'二ΐ毫微顆粒’所得到的尺寸可使得其 ymn二其需要允許它們有效地成為電荷 ,存=件。較小的毫微顆粒群由於減小的截面積及其它因 ί县ί:為電荷載子所接受。因&,較高的程式化電壓, 次ί:ΐ式化時間’及較少有效的程式化,皆會由於小於 2 5埃直徑的較小毫微親粒群所造成。 s 其它由於氧化所造成的潛在性不想要的立 增加該隧穿介電層102的厚度,装矸警 八牢J到 士甘丁 =牙力电續=序度其可由於該毫微顆粒群103 或/'下的基板100之氧化而發生。特別是,氧化可 該毫微顆粒群103及該隧穿介電層102之間 化將造成額外的氧化矽,此可有效地增加該隧穿介 102的厚度《這種厚度增加,會因為其會影響包含該 顆粒群103的該半導體裝置的整體電子特性,而成 要的。 , 為了降低或消除該毫微顆粒群103的氧化,可在其 來改變其一般形狀的之後執行後續步驟。圖22所示為圖 中的毫微顆粒群,接著為一後續的製程步驟,其^讲— 了該毫微顆粒群103的一般形狀’以形成大體為丰球形&的^ 毫微顆粒群104。此毫微顆粒群形狀的變話可由一退火步 驟或其它作業來產生,其可允許在該毫微顆粒群中的原 移動來與其下的隧穿介電層102達到平衡。這種步%” 明於上述的圖10中。所得到大體為半球形的毫微顆粒5 104,具有減少的表面積,其可在後續的製程步驟期間暴494572 V. Description of the invention (27) ---- The size of the oxygen 'di-nano-nanoparticles' can make it ymn-n-need to allow them to effectively become a charge, and deposit = pieces. Smaller nanoparticle groups are accepted by charge carriers due to the reduced cross-sectional area and other factors. Because of &, higher stylized voltages, times: ΐstyled time 'and less effective stylizations are all caused by smaller femophilic groups smaller than 25 angstroms in diameter. s Other potential unwanted effects due to oxidation increase the thickness of the tunneling dielectric layer 102, and install the police Hachioji J to Shigading = dental electrical continuity = order. It can be due to the nanoparticle group Oxidation of the substrate 100 occurs at 103 or / '. In particular, oxidation may cause additional silicon oxide between the nanoparticle group 103 and the tunneling dielectric layer 102, which may effectively increase the thickness of the tunneling dielectric 102. It is necessary to affect the overall electronic characteristics of the semiconductor device including the particle group 103. In order to reduce or eliminate the oxidation of the nanoparticle group 103, the subsequent steps may be performed after changing its general shape. FIG. 22 shows the nanoparticle group in the figure, followed by a subsequent process step, which describes the general shape of the nanoparticle group 103 to form a roughly nanosphere group. 104. This change in shape of the nanoparticle group may be generated by an annealing step or other operation, which may allow the original movement in the nanoparticle group to be balanced with the tunneling dielectric layer 102 below it. This step% "is illustrated in Figure 10 above. The resulting substantially hemispherical nanoparticle 5 104 has a reduced surface area that can be exposed during subsequent processing steps.

494572 五、發明說明(28) ~~~- 露於週遭的狀況。再者,氧氣擴散到該毫微顆粒群1〇4 觸於其下隧穿介電層102的部份,會被降低,所以關於辦 加隧穿介電層厚度的問題一般即可避免。 曰 圖22中所示的大體為半球形的毫微顆粒群1〇4的進一牛 好處可根據增加該大體為半球形的毫微顆粒群1〇4與該^ 穿介電層102相接觸的表面積來實現。該大體為半球 毫微顆粒群104提供了增加的截面積,用以在程式化 期間補捉自其下的該裝置之通道區域接收的電荷載子。、 可執行進一步的製程步驟來限制由於週遭暴露造成之 化或其它毫微顆粒群的劣化。圖23所示為圖22 群結構,其接著為包覆步驟。該包覆步驟在每= 群"4上形成一包覆層106。這種包覆層1〇6可由氮毫二顆: 成。氮化矽可藉由暴露該毫微顆粒群丨〇4到高溫下的氮化 環境而形成在該毫微顆粒群1〇4的表面上。這種週遭環产 可包含氨,含氮氧化物,或其它含氮化合物,其可用^ =的方式來與矽進行反應。在一具體實施例中,一薄層 ϊΙΐΐϊίΞΓ毫微顆粒群上,不需要其它的反應物而 ^成在該毫微顆粒群上。在氨氣可以流動的狀況,戈 7"6〇/%度〇^5範圍在攝氏7〇〇_1〇〇〇度,而壓力標準範圍在1 f必須注意到,在圖2 i_27中所述的包覆技術,其 應用到進行的毫微顆粒群,其已經 、了 表面上,其根據共同提出的= 在使Λ的 製的隔離儲存元件之記憶體裝置及方(,,mem〇ry494572 V. Description of the invention (28) ~~~-Exposed to the surroundings. Furthermore, the diffusion of oxygen to the part of the nanoparticle group 104 that touches the lower tunneling dielectric layer 102 will be reduced, so the problem about the thickness of the tunneling dielectric layer can generally be avoided. A further advantage of the roughly hemispherical nanoparticle group 104 shown in FIG. 22 can be obtained by increasing the substantially hemispherical nanoparticle group 104 in contact with the through-dielectric layer 102. Surface area to achieve. This generally provides an increased cross-sectional area for the hemispherical nanoparticle population 104 to capture the charge carriers received from the channel region of the device below it during stylization. Further processing steps can be performed to limit degradation due to ambient exposure or other nanoparticle population degradation. FIG. 23 shows the structure of the group of FIG. 22, which is followed by a cladding step. This coating step forms a coating layer 106 on each group. Such a coating layer 106 may be made of two milligrams of nitrogen. Silicon nitride can be formed on the surface of the nanoparticle group 104 by exposing the nanoparticle group 104 to a nitriding environment at a high temperature. This surrounding environment may contain ammonia, nitrogen oxides, or other nitrogen-containing compounds, which can react with silicon in a ^ = manner. In a specific embodiment, a thin layer of ϊΙΐΐϊίΞΓ nanoparticle group does not require other reactants and is formed on the nanoparticle group. In the condition that ammonia gas can flow, Ge 7 " 60 /% degrees 〇 ^ 5 range is 7000 ~ 100 degrees Celsius, and the pressure standard range is 1 f must be noted, as described in Figure 2 i_27 The coating technology, which is applied to the performed nanoparticle group, has been on the surface. According to the co-proposed = memory device and method (,, mem〇ry

第34頁 494572 五、發明說明(29) DEVICE AND METHOD FOR USING PREFABRICATED ISOLATED STORAGE ELEMENTS”),其在上述中有參考及引用。 較佳地是,該包覆層106的形成可被控制,使得該包覆 層106的厚度是在5埃的程度,或不大毫微顆粒群1〇4的直 徑之10%。在該毫微顆粒群104為矽毫微顆粒群的狀況中, 用來產生該包覆層106的氮化製程基本上為自我限制的。 因此,在一受控制的環境中,在該矽毫微顆粒群1〇4的氮 化矽之成長可相對於該氮化溫度而自我限制。 基本上,用來形成該包覆層106的該氮化週遭並不會以 一明顯的方式來影響其下的隧穿介電層1〇2。因此,用來 形成該包覆層106的氣化步驟將不會造成其下的隧穿介電 層102的氮化。因此,在該包覆層106中可產生的陷阱係隔 離於其下的基板100,以及隔離於相鄰毫微顆粒群的包覆 層。因此,陷阱造成該毫微顆粒群之間的洩漏將較 會發 生◊缺少了健存在該陷解中的電荷劣化,其 進該毫微顆粒群104的電荷儲存特性。 圖24所示為圖23的該半導體基板的該部份,其接著沉積 該控制介電層1 〇8。在先前技藝的系統中,其並未包含以 包覆層106來包覆該毫微顆粒群1〇4,該控制介電層1〇8 的形成可造成氧化該毫微顆粒群1〇4的週遭暴露,所以會 °藉由包含該包覆層106 ’由於氧化該毫微顆粒 鮮104的週遭暴露’可以降低或消除氧化或其它劣化。因 Ϊ随ΪΪΐΐίί顆ί群1〇4的直徑,且不會發生在其下 的隨穿介電層中發生未經控制的增加。Page 494572 V. Description of the Invention (29) DEVICE AND METHOD FOR USING PREFABRICATED ISOLATED STORAGE ELEMENTS "), which has references and references in the above. Preferably, the formation of the coating layer 106 can be controlled so that the The thickness of the coating layer 106 is about 5 angstroms, or 10% of the diameter of the small nanoparticle group 104. In the case where the nanoparticle group 104 is a silicon nanoparticle group, it is used to produce the The nitriding process of the cladding layer 106 is basically self-limiting. Therefore, in a controlled environment, the growth of silicon nitride in the silicon nanoparticle group 104 can be self-relative to the nitriding temperature. Restriction. Basically, the nitrided periphery used to form the cladding layer 106 does not affect the tunnel dielectric layer 10 thereunder in a significant way. Therefore, the cladding layer 106 is used to form the cladding layer 106. The gasification step will not cause nitridation of the tunneling dielectric layer 102 below. Therefore, traps that can be generated in the cladding layer 106 are isolated from the substrate 100 underneath, and from adjacent femto. A coating of particle groups. Therefore, traps cause leakage between the nanoparticle groups Leakage is more likely to occur, due to the lack of charge degradation existing in the trap, and its charge storage characteristics into the nanoparticle group 104. Fig. 24 shows the portion of the semiconductor substrate of Fig. 23, which is then deposited The control dielectric layer 108. In the prior art system, it does not include a coating layer 106 to cover the nanoparticle group 104, and the formation of the control dielectric layer 108 may cause oxidation. The periphery of the nanoparticle group 104 is exposed, so by including the coating layer 106, 'the surrounding exposure of the nanoparticle fresh 104 due to oxidation' can reduce or eliminate oxidation or other deterioration. The diameter of the group 104 is not controlled, and an uncontrolled increase in the through-dielectric layer does not occur thereunder.

第35頁 494572 五、發明說明(30) 在其它具體實施例中,一保護氮化層可被沉積,而非成 長於個別的毫,顆粒群上。圖25所示為圖22中的毫微顆粒 群結構’其接著為沉積一薄氮化層1〇7的步驟。該氮化層 1 07可使用利用氨氣及二氣矽甲烷的CVD作業來沉積。這種 CVD作業可使用LPCVD或UHVCVD技術來執行。該薄氮化層 107的沉積較佳地是受到控制,所以可限制該薄氮化層ι〇7 的厚度。該薄氮化層107所需要的厚度係在5埃左右。這種 有限制的氮化物厚度可限制或消除潛在的陷解,其可劣化 在製造中的半導體裝置的電荷儲存特性。 'Page 35 494572 V. Description of the invention (30) In other specific embodiments, a protective nitride layer may be deposited instead of growing on individual millimeter, particle groups. Fig. 25 shows the nanoparticle group structure 'in Fig. 22, which is followed by a step of depositing a thin nitride layer 107. The nitride layer 107 can be deposited by a CVD operation using ammonia gas and two-gas silane. This CVD operation can be performed using LPCVD or UHVCVD technology. The deposition of the thin nitride layer 107 is preferably controlled, so the thickness of the thin nitride layer 107 can be limited. The required thickness of the thin nitride layer 107 is about 5 angstroms. This limited nitride thickness can limit or eliminate potential pitting, which can degrade the charge storage characteristics of semiconductor devices in manufacturing. '

圖25中所示的薄氮化層1〇7形成對於氧氣的阻障,使得 為在該隧穿介電層102之下的該毫微顆粒群1〇4及其下的半 導體基板1 0 0皆可被保護來防止氧化。因此,增加該隨穿 介電層102的厚度的可能性可被降低。The thin nitride layer 107 shown in FIG. 25 forms a barrier to oxygen, such that the nanoparticle group 104 below the tunneling dielectric layer 102 and the semiconductor substrate 100 below it Both can be protected against oxidation. Therefore, the possibility of increasing the thickness of the through-dielectric layer 102 can be reduced.

圖26所示為圖25的該半導體基板的該部份,其接著形成 該控制介電層108。在形成該控制介電層108期間,該薄介 電層107可防止該毫微顆粒群104的氧化,其也可做^消^ 該隧穿介電層1 02的厚度的不受控制之增加的可能性。♦、 在其它具體實施例中,該控制介電層1 0 8可用一高介電 常數(高Κ)材料形成,其不需要南的氧氣濃度來形成。目 此,該毫微顆粒群的氧化較不會發生。包含金屬氧化物的 控制介電層不需要高濃度的氧氣來成長,不像是石夕氧化物 控制介電層所需要。因此,其較不會劣化該毫微顆粒群結 構。關於金屬氧化物的高介電常數也可用來降低所需要的 程式化電壓,其係與矽氧化物控制介電層相較之下。金屬FIG. 26 shows the portion of the semiconductor substrate of FIG. 25, which then forms the control dielectric layer 108. During the formation of the control dielectric layer 108, the thin dielectric layer 107 can prevent the oxidation of the nanoparticle group 104, which can also eliminate the uncontrolled increase in the thickness of the tunneling dielectric layer 102. Possibility. ♦ In other embodiments, the control dielectric layer 108 may be formed of a high dielectric constant (high K) material, which does not require an oxygen concentration in the south to form. For this reason, oxidation of the nanoparticle group is less likely to occur. A metal oxide-containing control dielectric layer does not require a high concentration of oxygen to grow, unlike the stone oxide oxide control dielectric layer. Therefore, it is less likely to deteriorate the structure of the nanoparticle group. The high dielectric constant of metal oxides can also be used to reduce the required programming voltage, which is compared to silicon oxide controlled dielectric layers. metal

第36頁 494572 五、發明說明(31) -~~ 氧例如氧化鍅,氧化铪,矽化錯,矽化姶,鋁化鑭 ’及鈦化錄等,皆可做為控制介電層。 ^ 一種技術可用來保護該毫微顆粒群1(M及其下的半導 /100不致氧化或其它的劣化者,可由將該控制介電 形成分成一些步驟來完成。圖27所示為圖22的該半 體基板部份,接著為這些處理步驟。 =始時,一薄層的高品質氧化矽i丨2形成在該毫微顆粒 ^ ^及其下的随穿介電層1G2之上。該薄的高品f氧化石夕 二ϋ可造成少量的毫微顆粒群104的氧化。但是,該薄層 插=〇口質氧化石夕層〗丨2的厚度較佳地是受到限制,所以這 =積所而要的時間亦受到限制。因為該沉積的時段受到 2制’該毫微顆粒群104的劣化也受限於一容許量。在一 ^體實施例中,該薄層的高品質氧化矽丨丨2形成大約 唉的厚度。 在形成該薄層的高品質氧化矽丨丨2之後,一富含矽的氧 f層114形成在覆蓋在該薄層的高品質氧化矽丨丨?之上。 ^ =含矽的氧化矽層1 1 4包含矽原子,其可立即鏈結於經 暴露於氧化條件所加入的氧原子。因此,嘗試要移動通 功該虽含矽的氧化矽層114及結合於該毫微顆粒群1〇4中的 原子之氧原子,可被矽原子捕捉,因此防止該毫微顆粒 的劣化,以及其下的半導體基板材料1〇〇。 在一具體實施例中,該富含矽的氧化矽層丨丨4包含大約 f到2%非化學量的矽(過多的矽)。該富含矽的氧化矽層 4的厚度可在2 0 - 2 5埃的程度。其須注意到,此厚度可被Page 36 494572 V. Description of the invention (31)-~~ Oxygen, such as hafnium oxide, hafnium oxide, silicidation, hafnium silicide, lanthanum aluminide ', and titanium alloy, can be used as the control dielectric layer. ^ A technique can be used to protect the nanoparticle group 1 (M and the semiconductors / 100 below from oxidation or other degradation, which can be accomplished by dividing the control dielectric formation into several steps. Figure 27 shows Figure 22 The half-body substrate portion is followed by these processing steps. = Initially, a thin layer of high-quality silicon oxide i 2 is formed on the nanoparticle ^^ and the through-dielectric layer 1G2 below it. The thin high-quality f oxide stone oxide can cause a small amount of oxidation of the nanoparticle group 104. However, the thickness of the thin layer insert = 0 mouth oxide stone oxide layer 2 is preferably limited, so This = the time required by the product is also limited. Because the period of the deposition is subject to the 2 system, the degradation of the nanoparticle group 104 is also limited by a tolerance. In a one-piece embodiment, the height of the thin layer is high. The high-quality silicon oxide 2 is formed to a thickness of about 唉. After the thin layer of high-quality silicon oxide 2 is formed, a silicon-rich oxygen f layer 114 is formed on the high-quality silicon oxide covering the thin layer. ^ = ^ = Silicon-containing silicon oxide layer 1 1 4 contains silicon atoms, which can be immediately linked to The oxygen atoms added under the chemical conditions. Therefore, try to move the silicon oxide layer 114 containing silicon and the oxygen atoms of the atoms combined with the nanoparticle group 104, which can be captured by the silicon atoms, so prevent The degradation of the nano-particles and the underlying semiconductor substrate material 100. In a specific embodiment, the silicon-rich silicon oxide layer 4 contains approximately f to 2% non-chemical amount of silicon (excessive Silicon). The thickness of the silicon-rich silicon oxide layer 4 can be in the range of 20 to 25 angstroms. It should be noted that this thickness can be

第37頁 4^4572 五、發明說明(32) 改變,藉以根據該基板會暴露到的週遭來提供其下的毫微 顆粒群104的適當保護。 該富含矽的氧化矽層114的厚度可根據在後績製程步驟 期間可發生的潛在氧化,以及包含在用於形成該富含矽的 氧化石夕層114材料之過多的矽之量來決定。因此,一協調 會存在於此層内多餘矽的濃度,與在後續製程步驟期間預 期會發生的氧化程度之間。其有需要來保證在該富含矽的 f化石夕層114内多餘矽的大部份會與氧原子結合來保證該 富含矽的氧化矽層1 1 4的導電品質被消除。 在該富含矽的氧化矽層i丨4的沉積之後,該控制介電層 的剩餘部伤可經由覆蓋該先前形成的疊層之額外高品質氧 化矽層1 1 6的成長而形成。該覆蓋高品質氧化矽層i丨6的成 長基本上會暴露該結構的剩餘部份到週遭狀況。但是,如 上所述,該虽含矽的氧化矽層可協助在這種週遭暴露 期間防止該毫微顆粒群1 〇 4的氧化。該覆蓋高品質氧化 層116可經^D作業形成,例如那些對於上述/積氧步化称石夕 述。該覆蓋咼品質氧化矽層116的厚度可在65埃的程度, 或可決定來提供大約100埃的整體控制介電層厚度。又 其必須=意,根據圖23及24所述的包覆技術,根據 及26所述的保護層技術,包含根據圖27所述的富含矽 化層之f f使用其它的控制閘介電層像是金屬化 ,皆可球形或半球形的毫微顆粒群。S此,^ 圖面顯不=大體為半球形的毫微顆粒群的包覆及疊 4 對於本技其的專業人士可以瞭解這種技術也可為較佳的竣Page 37 4 ^ 4572 V. Description of the Invention (32) Changes to provide proper protection of the nanoparticle group 104 below according to the surroundings to which the substrate will be exposed. The thickness of the silicon-rich silicon oxide layer 114 can be determined based on the potential oxidation that can occur during subsequent process steps and the amount of excess silicon contained in the material used to form the silicon-rich oxide layer 114. . Therefore, a coordination exists between the concentration of excess silicon in this layer and the degree of oxidation expected to occur during subsequent process steps. It is necessary to ensure that most of the excess silicon in the silicon-rich f-fossil layer 114 will be combined with oxygen atoms to ensure that the conductive quality of the silicon-rich silicon oxide layer 114 is eliminated. After the deposition of the silicon-rich silicon oxide layer i4, the remaining portion of the control dielectric layer may be formed by the growth of an additional high-quality silicon oxide layer 116 that covers the previously formed stack. The growth of the high-quality silicon oxide layer i6 will basically expose the rest of the structure to the surrounding conditions. However, as described above, the silicon-containing silicon oxide layer can help prevent oxidation of the nanoparticle group 104 during such peripheral exposure. The covered high-quality oxide layer 116 may be formed by a high-temperature operation, such as those described above for the above / oxygenation step. The thickness of the ytterbium-quality silicon oxide layer 116 may be on the order of 65 angstroms, or it may be determined to provide an overall control dielectric layer thickness of approximately 100 angstroms. It must also mean that according to the cladding technology described in FIGS. 23 and 24, and the protective layer technology described in 26, including the silicide-rich layer described in FIG. 27, using other control gate dielectric layer images It is metallized and can be spherical or hemispherical nanoparticle groups. In this case, ^ the figure shows = the coating and stacking of the generally hemispherical nanoparticle group. 4 For professionals in this technology, it can be understood that this technology can also be a better solution.

494572 五、發明說明(33) 形毫微顆粒群或其它形狀的毫微顆粒群。再者,對本技藝 的專業人士可以瞭解,上述的不同技術之組合可用於保護 該毫微顆粒群及其下的基板,避免由暴露到氧化或其它週 遭狀況造成的劣化。 為了進一步促進此處所述的該技術的最佳化及控制,該 隧穿介電層的形成,該毫微顆粒群,及該控制介電層皆可 在一受控制的環境中完成,其在這些製程步驟期間及之間 將不會暴露該基板晶圓到週遭狀況。這種受控制的環境係 如圖28所示,其可代表一叢集工具。如圖28所示,一介電 模組2 08可用於成長或沉積該隧穿介電層,也可形成該控 制介電層,接著形成該毫微顆粒群在該隧穿介電層的表面 上◊如圖所示,該介電模組2〇8係包含在_隔離的區域gig 毫微顆粒群的cvd的模組20 6 °較佳地是,該隔離 區域2 10¼供一受控制的環境,例如一接近真空 5 ΐ Ξ ί: Π8不及舍該二D模組2°6之間發生該半導體基 板日曰圓之傳送,而不會暴露於週遭狀況◊換古 該亳微顆粒群的基板,其可持’ 環境中,來自續在叢集工具的受控制 微顆粒群的步驟之後。 夏到在形成該毫 要執行所有這些步驟而不舍異嘴丨柄 了一歧好處。昔务,防暴露到遭狀況的能力提供 一对處首先防止該隧穿介電層暴露翁业π各 降低i該隨穿介電層上形成污染物的機會; 種污染物的任何降低皆是iiUi不利的影響,因此這494572 V. Description of the invention (33) Shaped nano particle group or other shaped nano particle group. Furthermore, those skilled in the art can understand that the combination of different technologies described above can be used to protect the nanoparticle group and the substrate below it from degradation caused by exposure to oxidation or other surrounding conditions. In order to further promote the optimization and control of the technology described herein, the formation of the tunneling dielectric layer, the nanoparticle group, and the control dielectric layer can all be completed in a controlled environment. The substrate wafer will not be exposed to surrounding conditions during and between these process steps. This controlled environment is shown in Figure 28, which can represent a cluster of tools. As shown in FIG. 28, a dielectric module 208 can be used to grow or deposit the tunneling dielectric layer, or to form the control dielectric layer, and then form the nanoparticle group on the surface of the tunneling dielectric layer. As shown in the figure above, the dielectric module 208 is a module that includes the cvd of the nanometer particle group gig in the isolated area 20 6 °. Preferably, the isolated area 2 10¼ is for a controlled The environment, for example, a vacuum close to 5 ΐ Ξ ί: Π8 can not give up the two D modules 2 ° 6 between the Japanese substrate and the Japanese yen, and will not be exposed to the surrounding conditions. The substrate, which can be held in an 'environment, comes after the step of controlled microparticle populations continued in the cluster tool. The summer solstice is forming a disparate benefit in performing all these steps without hesitation. In the past, the ability to prevent exposure to the conditions provided a pair of places to first prevent the tunneling dielectric layer from being exposed, and reduce the chance that pollutants will form on the dielectric layer; any reduction in such pollutants is iiUi adverse effects, so this

ιΐϋΐι 第39頁 494572 五、發明說明(34) 其次’藉由防止該毫微顆粒群暴露於週遭狀況,其可避 免由於氧化造成的毫微顆粒群劣化。因此,在形成該毫微 顆粒群之後,經由上述的氮化之鈍態化會立即發生,所以 可保證該毫微顆粒群的積集度。 一控制模組2 04控制在該介電模組2 0 8内的該介電層成長 ’及在該毫微顆粒群成長模組2 〇6中的毫微顆粒群成長。 這種控制可包含來源氣體2 〇2及212的調整,以便達到所需 要的流動率及壓力。其它控制可包含調整在該隔離區域 2 1 0内的溫度。 本發明提 毫微顆粒群 持製程控制 性允許該毫 地調整,所 之所需要的 隧穿介電層 在前述的 。但是,本 申請專利範 因此,該規 修正皆是要 關於特定 案皆已在上 ,及任何可 供可用於使 結構的技術 性時允許達 微顆粒群的 以可以達到 電子特性。 ,所以可以 規格中,本 技藝的專業 圍之本發明 格及圖面可 包含在本發 具體實施例 述說明。但 造成任何好ιΐϋΐι Page 39 494572 V. Description of the invention (34) Secondly, by preventing the nanoparticle group from being exposed to the surrounding conditions, it can avoid degradation of the nanoparticle group due to oxidation. Therefore, after the formation of the nanoparticle group, the passivation through the above-mentioned nitridation occurs immediately, so the degree of accumulation of the nanoparticle group can be ensured. A control module 204 controls the growth of the dielectric layer in the dielectric module 208 and the growth of the nanoparticle group in the nanoparticle group growth module 206. This control may include adjustments to source gases 202 and 212 to achieve the required flow rate and pressure. Other controls may include adjusting the temperature within the isolated area 2 1 0. The present invention improves the controllability of the nanoparticle group to allow the nanometer to be adjusted. The required tunneling dielectric layer is as described above. However, the scope of this patent application is therefore to amend the regulations regarding the specific cases are already above, and any available for the use of the structure to allow the technical nature of the micro-particle group to achieve electronic characteristics. Therefore, the specifications and drawings of the present invention, which are specialized in the art, can be included in the description of the specific embodiments of the present invention. But cause any good

用LPCVD及UHCVCD沉積技術來形成 。利用在此處所述的技術,可在保 到高密度的毫微顆粒群。這種控制 大小,分佈及一般均勻性可以精; 包含毫微顆粒群浮動閘結構的裝置 因此,裝置可生產來包含非常薄贫 達到低功率及高速的運作。 發明已藉由特定具體實施例來說明 人士可以瞭解在不背離以下提出說 範固之下進行不同的修正及改變。 視為是說明而非是限制,所有這些 明的範圍内。Formed using LPCVD and UHCVCD deposition techniques. Using the techniques described here, high-density nanoparticle populations can be maintained. This control of size, distribution, and general uniformity can be refined; devices containing a nano-particle group floating gate structure can therefore be produced to include very thin and lean, low-power and high-speed operations. The invention has been illustrated by specific embodiments. One can understand that various modifications and changes can be made without departing from the following claims. It is considered to be illustrative and not restrictive, all within the scope of this description.

^好處,其它優點及問題的解決;5 該好處,優點,問題解決方葬 ’優點或方案成為更為明顯的夭^ Benefits, other advantages and problem solving; 5 The benefits, advantages, and problem solving methods ’The advantages or solutions become more obvious 夭

494572 五、發明說明(35) 件並不是要做為任何或所有申請專利範圍的關鍵,需要, 或基本特徵或元件。在此處所使用的措辭π包含π ,或其它 其變化,皆是要涵蓋一非排除性的包含,例如一製程,方 法,物品,或裝置,其包含一系列的元件,其不只是包含 那些元件,但可包含其它未明確列出或内在於這種製程的 元件,方法,物品或裝置。494572 V. Description of Invention (35) The document is not intended to be the key, required, or essential feature or element of any or all patent applications. As used herein, the word π includes π, or other variations thereof, to cover a non-exclusive inclusion, such as a process, method, article, or device, which contains a series of elements, and not just those elements , But may include other components, methods, articles, or devices not explicitly listed or embedded in this process.

第41頁 494572 圖式簡單說明Page 494572 Illustration in brief

第42頁Page 42

Claims (1)

494572 I 六、申請專利範圍 1 . 一種形成毫微顆粒群的方法,其包含以下步驟: 提供一基板; 形成一隧穿介電層在該基板上; 形成一含氮層在該隧穿介電層上,其中該含氮層的厚 度小於1 0埃;及 形成該毫微顆粒群在該含氮層之上。 2. 如申請專利範圍第1項之方法,其中該含氮層為一氮 4匕物層。 3. —種半導體裝置,其包含: 一半導體基板,其具有一源極及一汲極,其間具有一 通道區域; 一隧穿介電層,其覆蓋該通道區域; 一含氮層在該隧穿介電層之上,其中該含氮層具有小 於1 0埃的厚度; 複數個矽毫微顆粒群,直接在該含氮層上; 一控制介電層,在該矽毫微顆粒群之上;及 一閘極,在該控制介電層之上。 4. 如申請專利範圍第3項之半導體裝置,其中該含氮層 為一氮化物層。 5. —種形成毫微顆粒群之方法,其包含以下步驟: 提供一基板; 形成一隧穿介電層在該基板上; 暴露該隧穿介電層到一試劑;及 在該暴露步驟之後,形成該毫微顆粒群在該隧穿介電494572 I 6. Application scope 1. A method for forming a nanoparticle group, comprising the following steps: providing a substrate; forming a tunneling dielectric layer on the substrate; forming a nitrogen-containing layer on the tunneling dielectric Layer, wherein the thickness of the nitrogen-containing layer is less than 10 angstroms; and forming the nanoparticle group on the nitrogen-containing layer. 2. The method according to item 1 of the patent application scope, wherein the nitrogen-containing layer is a layer of nitrogen and nitrogen. 3. A semiconductor device comprising: a semiconductor substrate having a source and a drain with a channel region therebetween; a tunneling dielectric layer covering the channel region; a nitrogen-containing layer in the tunnel Over the dielectric layer, wherein the nitrogen-containing layer has a thickness of less than 10 angstroms; a plurality of silicon nanoparticle groups directly on the nitrogen-containing layer; a control dielectric layer on the silicon nanoparticle group And a gate above the control dielectric layer. 4. The semiconductor device as claimed in claim 3, wherein the nitrogen-containing layer is a nitride layer. 5. A method of forming a nanoparticle group, comprising the steps of: providing a substrate; forming a tunneling dielectric layer on the substrate; exposing the tunneling dielectric layer to a reagent; and after the exposing step To form the nanoparticle group at the tunneling dielectric 第43頁 494572 六、申請專利範圍 層之上。 6. 如申請專利範圍第5項之方法,其中該試劑為氫氟 酸。 7. —種形成一儲存裝置之方法,其包含以下步驟: 提供一基板; 形成一隧穿介電層在該基板之上; 形成毫微顆粒群在該隧穿介電層之上; 形成一薄層的氮化物在該毫微顆粒群上; 形成一控制介電層在該毫微顆粒群之上;及 形成一導電層在該控制介電層之上。 8 ·如申請專利範圍第7項之方法,其中該薄層的氮化物 係由流動至少氨氣,N20及NO之一而形成在該毫微顆粒群之 上,其不需要其它的試劑。 9. 一種形成一儲存裝置之方法,其包含以下步驟: 提供一基板; 形成一隧穿介電層在該基板之上; 形成毫微顆粒群在該隧穿介電層之上; 形成一控制介電層在該毫微顆粒群之上,其中該控制 介電層包含至少氧化锆,氧化铪,氧化鋁,氧化鑭,富含 矽的氧化矽及氧化鈦之一;及 形成一導電層在該控制介電層之上。 1 0.如申請專利範圍第9項之方法,其進一步包含氮化該 毫微顆粒群表面之步驟,而不需要氮化該隧穿介電層。 11. 一種儲存裝置,其包含:Page 43 494572 Sixth, the scope of patent application is above the level. 6. The method of claim 5 in which the reagent is hydrofluoric acid. 7. A method of forming a storage device, comprising the steps of: providing a substrate; forming a tunneling dielectric layer over the substrate; forming a nanoparticle group over the tunneling dielectric layer; forming a A thin layer of nitride is on the nanoparticle group; a control dielectric layer is formed on the nanoparticle group; and a conductive layer is formed on the control dielectric layer. 8. The method according to item 7 of the patent application range, wherein the nitride of the thin layer is formed on the nanoparticle group by flowing at least one of ammonia gas, N20 and NO, and it does not require other reagents. 9. A method of forming a storage device, comprising the steps of: providing a substrate; forming a tunneling dielectric layer over the substrate; forming a nanoparticle group over the tunneling dielectric layer; forming a control A dielectric layer is on the nanoparticle group, wherein the control dielectric layer comprises at least one of zirconia, hafnium oxide, alumina, lanthanum oxide, silicon-rich silicon oxide and titanium oxide; and a conductive layer is formed on Over the control dielectric layer. 10. The method according to item 9 of the patent application scope, further comprising a step of nitriding the surface of the nanoparticle group without nitriding the tunneling dielectric layer. 11. A storage device comprising: O:\71\71076.ptd 第44頁 494572 六、申請專利範圍 一基板; 一隨穿介電層在該基板之上; 毫微顆粒群在該隧穿介電層之上; 一控制介電層在該毫微顆粒群之上,其中該控制介電 層包含至少氧化锆,氧化铪,氧化鋁,氧化鑭,富含矽的 氧化碎及氧化敛之一;及 一導電層在該控制介電層之上。 12.如,請專利範圍第丨丨項之儲存裝置,其進一步包含一 薄層的氮化物在該毫微顆粒群之上。 1 3 · —種形成石夕毫微顆粒群之方法,其包含以下步驟: 提供一基板; 形成一 1¾穿介電層在該基板之上; 放置該具有隧穿介電層的該基板在一化學氣相沉積反 應室中; 加熱該具有隱穿介電層的該基板到不超過攝氏6〇〇度 的溫度,及 藉由流動一含矽氣體來形成該矽毫微顆粒群在該隧穿 介電層之上’其速率大於或等於約5〇 SCCM,其部份壓力 小於或等於約200 mTorr·,其時間大於3〇秒。 14·如申請專利範圍第13項之方法,其中該隧穿介電層及 m群形成在一叢集工具中,其中該基板係位在 ϊ ί ί i ί 一受控制的環境中,其持續地來自形成該隧 穿;I電層的ν驟,直到在形成該矽毫微顆粒群的步驟之O: \ 71 \ 71076.ptd Page 44 494572 6. The scope of patent application: a substrate; a dielectric layer on the substrate; a nanoparticle group on the tunneling dielectric layer; a control dielectric A layer on top of the nanoparticle group, wherein the control dielectric layer includes at least one of zirconia, hafnium oxide, alumina, lanthanum oxide, silicon-rich oxide fragments and oxidative convergence; and a conductive layer on the control medium Above the electrical layer. 12. For example, the storage device according to the scope of the patent, further comprising a thin layer of nitride on the nanoparticle group. 1 3 · A method for forming a group of nano particles in Shixi, comprising the following steps: providing a substrate; forming a 1¾ through dielectric layer on the substrate; placing the substrate with the tunnel dielectric layer on a substrate In a chemical vapor deposition reaction chamber; heating the substrate with a hidden dielectric layer to a temperature not exceeding 600 ° C, and forming a silicon nanoparticle group by flowing a silicon-containing gas in the tunnel Above the dielectric layer, its rate is greater than or equal to about 50 SCCM, its partial pressure is less than or equal to about 200 mTorr ·, and its time is greater than 30 seconds. 14. The method according to item 13 of the scope of patent application, wherein the tunneling dielectric layer and the m group are formed in a cluster tool, and the substrate is located in a controlled environment, which is continuously From the step of forming the tunneling; I electrical layer, until the step of forming the silicon nanoparticle group 第45頁 494572 六、申請專利範圍 '~ 15_ —種形成半導體毫微顆粒群之方法,其包含以下步 提供一 形成一 放置該 應室中; 藉由流 形成該半導 合氣體的群 僅 該 導體氣體的 基板; 隧穿介電層在該 具有隧穿介電層 動一混合氣體進 體毫微顆粒群, 組,其包含: 有一含半導體氣體;及 基板之上 的該基板 入該化學 其中該混 在一化學氣相沉積反 氣相沉積反應室中來 合氣體係選取自一混 含半導體氣體僅結合一惰 流動速率大於或等於約5 0 力小於或等於約2 0 0 mTorr。 1 6 · —種形成毫微顆粒群之方法,其包含以下步驟: 提供一基板; ^ 形成一隧穿介電層在該 具有隧穿介電層 性氣體,其中該含半 SCCM,且其部份壓 放置該 應室中;及 基板之上 的該基板 在一第一階段流動一氣體進入該 中來形成複數個關鍵晶核; 在一第二階段流動該氣 為該毫微顆粒群。 1 7 ·如申請專利範圍第丨6項 及 體來成長 在該第一階段期間 之方法, 該化學氣相 在一化學氣相沉積反 化學氣相沉積反應室 該複數個關鍵晶核成 其中: 沉積反應室係運作於Page 45 494572 VI. Patent application scope '~ 15_ — A method for forming a semiconductor nanoparticle group, which includes the following steps to provide a formation and place in the application chamber; forming a group of the semiconductive gas by flow only A substrate of a conductive gas; a tunneling dielectric layer moving a mixed gas into the nanoparticle group at the tunneling dielectric layer, the group comprising: a semiconductor-containing gas; and the substrate above the substrate being inserted into the chemistry The gas-mixing system mixed in a chemical vapor deposition reverse vapor deposition reaction chamber is selected from a mixed semiconductor gas only combined with an inert flow rate greater than or equal to about 50 and a force less than or equal to about 200 mTorr. 1 6 · A method for forming a nanoparticle group, comprising the following steps: providing a substrate; forming a tunneling dielectric layer in the gas having a tunneling dielectric layer, wherein the semi-SCCM-containing gas, and a portion thereof The partial pressure is placed in the chamber; and the substrate on the substrate flows a gas into the first stage to form a plurality of key crystal nuclei; the gas flows in the second stage as the nanoparticle group. 1 7 · If the method of applying for patent No. 6 and the method for growing during the first stage, the chemical vapor phase in a chemical vapor deposition anti-chemical vapor deposition reaction chamber, the plurality of key crystal nuclei are formed into: The deposition reaction chamber operates at 第46頁 494572 六、申請專利範圍 第一溫度;及 在該第二階段期間,該化學氣相沉積反應室係運作於 第二溫度,其中該第一溫度小於該第二溫度。 1 8 .如申請專利範圍第1 6項之方法,其中: 在該第一階段期間,該化學氣相沉積反應室係運作於 第一部份壓力;及 在該第二階段期間,該化學氣相沉積反應室係運作於 第二部份壓力,其中該第一部份壓力大於該第二部份壓 力。 1 9.如申請專利範圍第1 8項之方法,其中: 在該第一階段期間,該化學氣相沉積反應室係運作於籲 第一溫度;及 在該第二階段期間,該化學氣相沉積反應室係運作於 第二溫度,其中該第一溫度小於第二溫度。Page 46 494572 VI. Patent application scope First temperature; and during the second stage, the chemical vapor deposition reaction chamber is operated at a second temperature, wherein the first temperature is less than the second temperature. 18. The method according to item 16 of the patent application scope, wherein: during the first stage, the chemical vapor deposition reaction chamber is operated at a first partial pressure; and during the second stage, the chemical gas The phase deposition reaction chamber is operated at a second partial pressure, wherein the first partial pressure is greater than the second partial pressure. 19. The method according to item 18 of the scope of patent application, wherein: during the first phase, the chemical vapor deposition reaction chamber is operated at the first temperature; and during the second phase, the chemical vapor deposition The deposition reaction chamber is operated at a second temperature, wherein the first temperature is lower than the second temperature. 第47頁Page 47
TW090114441A 2000-06-16 2001-06-14 Memory device including nanoclusters and method for manufacture TW494572B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US59583000A 2000-06-16 2000-06-16

Publications (1)

Publication Number Publication Date
TW494572B true TW494572B (en) 2002-07-11

Family

ID=24384850

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090114441A TW494572B (en) 2000-06-16 2001-06-14 Memory device including nanoclusters and method for manufacture

Country Status (3)

Country Link
AU (1) AU2001263370A1 (en)
TW (1) TW494572B (en)
WO (1) WO2001099167A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100601943B1 (en) * 2004-03-04 2006-07-14 삼성전자주식회사 Method of manufacturing memory device comprising gate having uniformly distributed silicon nano dots
US7361567B2 (en) * 2005-01-26 2008-04-22 Freescale Semiconductor, Inc. Non-volatile nanocrystal memory and method therefor
US8697516B2 (en) 2008-08-26 2014-04-15 Nxp, B.V. Capacitor and a method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060743A (en) * 1997-05-21 2000-05-09 Kabushiki Kaisha Toshiba Semiconductor memory device having multilayer group IV nanocrystal quantum dot floating gate and method of manufacturing the same
JP3495889B2 (en) * 1997-10-03 2004-02-09 シャープ株式会社 Semiconductor storage element
US6232643B1 (en) * 1997-11-13 2001-05-15 Micron Technology, Inc. Memory using insulator traps
JP4538693B2 (en) * 1998-01-26 2010-09-08 ソニー株式会社 Memory device and manufacturing method thereof
JP3769120B2 (en) * 1998-05-08 2006-04-19 株式会社東芝 Semiconductor element

Also Published As

Publication number Publication date
WO2001099167A3 (en) 2002-04-04
AU2001263370A1 (en) 2002-01-02
WO2001099167A2 (en) 2001-12-27

Similar Documents

Publication Publication Date Title
US6344403B1 (en) Memory device and method for manufacture
US6297095B1 (en) Memory device that includes passivated nanoclusters and method for manufacture
US6784103B1 (en) Method of formation of nanocrystals on a semiconductor structure
US6090666A (en) Method for fabricating semiconductor nanocrystal and semiconductor memory device using the semiconductor nanocrystal
US6808986B2 (en) Method of forming nanocrystals in a memory device
US6774061B2 (en) Nanocrystalline silicon quantum dots within an oxide layer
US6265268B1 (en) High temperature oxide deposition process for fabricating an ONO floating-gate electrode in a two bit EEPROM device
US7687349B2 (en) Growth of silicon nanodots having a metallic coating using gaseous precursors
TW200541013A (en) Tunnel oxynitride in flash memories
US7001810B2 (en) Floating gate nitridation
US20060189079A1 (en) Method of forming nanoclusters
CN110246805A (en) ONO stacks forming method
US7115949B2 (en) Method of forming a semiconductor device in a semiconductor layer and structure thereof
US7101760B1 (en) Charge trapping nanocrystal dielectric for non-volatile memory transistor
JP2002217317A (en) Non-volatile semiconductor storage device and its manufacturing method
JP2004048062A (en) Method for fabricating semiconductor nanocrystal and semiconductor memory device using the semiconductor nanocrystal
US20090032861A1 (en) Nonvolatile memories with charge trapping layers containing silicon nitride with germanium or phosphorus
TW494572B (en) Memory device including nanoclusters and method for manufacture
CN100541740C (en) Has semiconductor device of nitridated oxide layer and forming method thereof
JP2002261175A (en) Nonvolatile semiconductor memory and its manufacturing method
US6962728B2 (en) Method for forming ONO top oxide in NROM structure
CN100459044C (en) Method for forming nano single crystal silicon and making method of non volatile semiconductor memory
JPS6170763A (en) Manufacture of semiconductor memory storage
Kim Silicon-germanium self-assembled quantum dot growth and applications in nanodevices
KR100678295B1 (en) Method for manufacturing of semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees