TW494515B - Method for preparing test piece for transmission electron microscope - Google Patents

Method for preparing test piece for transmission electron microscope Download PDF

Info

Publication number
TW494515B
TW494515B TW90105057A TW90105057A TW494515B TW 494515 B TW494515 B TW 494515B TW 90105057 A TW90105057 A TW 90105057A TW 90105057 A TW90105057 A TW 90105057A TW 494515 B TW494515 B TW 494515B
Authority
TW
Taiwan
Prior art keywords
scope
patent application
item
layer
substrate
Prior art date
Application number
TW90105057A
Other languages
Chinese (zh)
Inventor
Wen-Tung Chang
Hsing-Shuang Chou
Jing-Fang Chiu
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW90105057A priority Critical patent/TW494515B/en
Application granted granted Critical
Publication of TW494515B publication Critical patent/TW494515B/en

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The present invention discloses a method for preparing a test piece for a transmission electron microscope, which enables the use of a transmission electron microscope to analyze a test piece containing a photoresist layer. The method comprises using a conductor layer and a dielectric layer to protect the photoresist layer of a test piece of a transmission electron microscope so as to prevent the photoresist layer from slicing damage and ion bombardment. The conductor layer and the dielectric layer can block the photoresist layer from an oxygen-containing and a moist environment and avoid a shrinkage of the photoresist layer caused by such an environment. Furthermore, the preparation of the test piece for the transmission electron microscope does not need to use an organic solvent or water to clean the test piece.

Description

494515 五、發明說明(1) 5 - 1發明領域: 法 - 2發明背景: η JSC.體電路的分析中,超大型積體電路試 片的面衫像(Prof He Image)是十分關鍵的分析依據。 尤其是當超大型積體電路的線寬尺寸推進至小於〇 2微米(494515 V. Description of the invention (1) 5-1 Field of invention: Method-2 Background of the invention: η JSC. In the analysis of the body circuit, the Prof He Image is a very important analysis in accordance with. Especially when the line width dimension of the ultra-large integrated circuit is advanced to less than 0.2 micron (

Micron)時,能直接顯示許多製程結果的剖面影像更成為 進一步製程技術發展的關鍵與解決各種導致元Micron), cross-sectional images that can directly display the results of many processes have become the key to further process technology development and solve various causes.

,.問題的基式電子顯微鏡(SeanningEiW 叫Cr〇SC〇Pe)可祝疋現代半導體業界最為普遍使用之 工具之一,但掃瞄式電子顯微鏡在現代超大型積體電路憋 程技術的應用已經面臨瓶頸,這是因為掃二二 的最大解析度大約只有12埃。為了要能 :‘= 半導體元件極微小的特,,穿透式電子顯微鏡: = 分析工具,這是因為穿透式電子顯微鏡的最大解 達1. 4埃。儘管如此’穿透式電子顯微鏡分析仍解斤„可 所有的需4。舉例來說,當欲分析的試片上有光二滿足 甚至試片上之光阻材料本身即為觀察的 ::二 J 牙透式電 494515 五、發明說明(2) 子顯微鏡分析將遭遇一些問題。問題來自於試片的製備困 難,由於穿透式電子顯微鏡分析上的要求,試片的製備過 程通常至少包含切割、研磨、拋光與清潔的過程。切割的 過程通常以聚焦離子束(Focused I on Beam)轟擊切割試 片,而造成光阻層的損壞同時破壞了欲觀察的特徵。此外 ,清潔的過程常使用丙酮等有機溶劑,而有機溶劑卻會將 光阻層溶解並完全破壞欲觀察的特徵。 以穿透式電子顯微鏡分析光阻材料的另一問題源自於 在含氧與濕氣的環境中光阻材料之尺寸改變扭曲現象。已 經曝光並顯影而形成圖案的光阻材料尺寸改變扭曲會使製 程技術發展的努力大打折扣,這是因為用以形成如接觸洞 、介層洞與閘極等的光阻層圖案的精確尺寸對於下一世代 的積體電路製程技術發展而言是十分重要的。此外以穿透 式電子顯微鏡分析光阻材料時必然遭遇的另一問題是用於 成像的電子束對於光阻材料直接的電子束轟擊( B 〇 m b a r d m e n t )形成一加熱源將引起光阻材料收縮,造成觀 測時尺寸失真的現象。 因此非常有必要提出一種能解決上述的問題的新穎穿 透式電子顯微鏡試片製備的方法,而本發明的方法正符合 這樣的需求。The problematic basic electron microscope (SeanningEiW called Cr0SC〇Pe) may wish to be one of the most commonly used tools in the modern semiconductor industry, but the application of scanning electron microscopes in modern ultra-large integrated circuit process technology has been Faced with a bottleneck, this is because the maximum resolution of the sweep second is only about 12 Angstroms. In order to be able to: ‘= a very small feature of a semiconductor element, a transmission electron microscope: = an analysis tool, because the maximum resolution of a transmission electron microscope is 1.4 angstroms. In spite of this, the analysis of the transmission electron microscope is still available. All the requirements are 4. For example, when the test piece to be analyzed has light II, even the photoresist material on the test piece itself is observed. Formula 494515 V. Description of the invention (2) The sub-microscope analysis will encounter some problems. The problem comes from the difficulty in preparing the test piece. Due to the requirements of the transmission electron microscope analysis, the preparation process of the test piece usually includes at least cutting, grinding, The process of polishing and cleaning. The cutting process usually uses a focused ion beam (Focused I on Beam) to bombard the cutting test piece, which causes damage to the photoresist layer and destroys the characteristics to be observed. In addition, the cleaning process often uses organic materials such as acetone Solvent, while organic solvents will dissolve the photoresist layer and completely destroy the characteristics to be observed. Another problem of analyzing photoresist materials by transmission electron microscopy comes from the photoresist materials in the environment containing oxygen and moisture. Dimension change distortion phenomenon. The size change distortion of photoresist materials that have been exposed and developed to form a pattern will greatly reduce the development of process technology. This is because the precise size of the photoresist layer patterns used to form contact holes, vias, and gates is very important for the next generation of integrated circuit process technology. In addition, a transmission electron microscope Another problem that must be encountered when analyzing photoresist materials is that the direct electron beam bombardment (B 0mbardment) of the electron beam used for imaging to the photoresist material will cause the photoresist material to shrink and cause dimensional distortion during observation Therefore, it is very necessary to propose a novel method for preparing a transmission electron microscope test piece that can solve the above-mentioned problems, and the method of the present invention meets such a demand.

第5頁 494515 五、發明說明(3) 5 - 3發明目的及概述: 本發明之一目的為提供一種可供穿透式電子顯微鏡分 析的光阻試片。 本發明之另一目的為提出一種穿透式電子顯微鏡光阻 試片製備的方法,此方法不會造成以聚焦離子束切割試片 所產生的損壞問題,且可避免觀察時電荷蓄積的問題。 本發明之又一目的為提供一具有精確尺寸的穿透式電 子顯微鏡光阻試片,同時使光阻試片的剖面影像能清晰呈 現並使精確量測一用以定義一深次微米半導體元件的光阻 層的尺寸成為可能。 為了達成上述之目的,本發明利用一導體層與一介電 層保護穿透式電子顯微鏡試片之光阻層。此導體層與介電 層皆是以物理氣相沈積法在光阻層仍保持穩定的溫度下形 成。在試片切割與以穿透式電子顯微鏡觀察時,已定義之 光阻層的尺寸仍可維持不變,因此光阻試片的剖面影像能 清晰呈現並使精確量測光阻層的尺寸成為可能。 上述有關發明的簡單說明及以下的詳細說明僅為範例 並非限制。其他不脫離本發明之精神的等效改變或修飾均 應包含在的本發明的專利範圍之内。Page 5 494515 V. Description of the invention (3) 5-3 Purpose and summary of the invention: One object of the present invention is to provide a photoresist test piece that can be analyzed by a transmission electron microscope. Another object of the present invention is to propose a method for preparing a photoresist test piece for a transmission electron microscope. This method does not cause damage caused by cutting a test piece with a focused ion beam, and can avoid the problem of charge accumulation during observation. Yet another object of the present invention is to provide a transmission electron microscope photoresist test piece with precise size, and at the same time, can make the cross-sectional image of the photoresist test piece clear, and accurately measure a deep sub-micron semiconductor element The size of the photoresist layer becomes possible. To achieve the above object, the present invention utilizes a conductive layer and a dielectric layer to protect a photoresist layer of a transmission electron microscope test piece. Both the conductor layer and the dielectric layer are formed by physical vapor deposition at a temperature at which the photoresist layer remains stable. When the test piece is cut and observed with a transmission electron microscope, the size of the defined photoresist layer can still be maintained, so the cross-sectional image of the photoresist test piece can be clearly displayed and the size of the photoresist layer can be accurately measured. may. The foregoing brief description of the invention and the following detailed description are examples only and are not limiting. Other equivalent changes or modifications that do not depart from the spirit of the invention should be included in the patent scope of the invention.

第6頁 494515 五、發明說明 (4) 5 - 4發明 在此 含完整之 施,在此 以下 示均為簡 利於瞭解 參考 一光阻層 圓,但不 介電層或 現代半導 用傳統形 Coating) 參考 洞形成過 轉移至光 在顯影之 的詳細說明: 必須說明的是以下描述之製程步驟及結構並不包 製程。本發明可以藉各種積體電路製程技術來實 僅提及瞭解本發明所需之製程技術。 將根據本發明所附圖示做詳細的說明,請注意圖 單的形式且未依照比例描繪,而尺寸均被誇大以 本發明。 第一圖所示,顯示一底材1 0 0,該底材1 0 0上具有 1 0 2。底材1 0 0可以是一半導體底材,例如一矽晶 必然是一半導體底材。底材1 0 0亦可至少包含一 一導體層,視分析的需求而定。光阻層1 0 2可為 體業界使用之任何光阻材料。此外光阻層1 〇 2可 成光阻層之方法形成,舉例來說,旋塗(S p i η 法0 第二Α圖所示,為了要獲得在形成接觸洞或介層 程中已顯影的光阻層的剖面影像,一洞的圖案被 阻層1 0 2以曝露出底材1 0 0以一傳統之微影製程。 後,一洞便形成。由於駐波效應的緣故,此洞的 494515 五、發明說明(5) 側壁實際上係呈現如第二B圖所示之輪廓·。這樣的側壁輪 廓唯有以解析度約可達1 . 4埃至約1 . 8埃的穿透式電子顯微 鏡才能清晰觀察,尤其是當第二B圖中所示之洞的直徑小 於0. 2微米時,側壁輪廓之凹處尺寸是極微小而不易辨別 。若需精確量測第二B圖中所示之洞的直徑,顯然必須先 獲得清晰的側壁輪廓影像才行,因此清晰的側壁輪廓影像 是十分重要的。 參考第三圖所示,一導體層104形成於光阻層102與第 二A圖中所示之洞的底部,且一介電層1 0 6接著形成於導體 層1 0 4上。導體層1 0 4可為一翻(Platinum)層、一金層、 一銅層、一紹層與一鈦層,而以一韵層較佳。舶之所以被 選擇是因為鉑是一種穩定的或是貴金屬,而且鉑可以容易 形成一薄層。導體層1 〇 4以物理氣相沈積法形成較佳,例 如一直流濺鑛(D C S p u 11 e r i n g)法並在約2 0°C至約3 0°C之 間進行。此物理氣相沈積法的溫度必須維持在適當的水準 ,因為高溫的環境會使光阻材料收縮或形狀改變。實際上 不僅導體層10 4之形成溫度不可過高,整個穿透式電子顯 微鏡試片製備的過程中的溫度亦不可過高以避免引起光阻 材料收縮或形狀改變。導體層1 0 4之厚度則在約5 0埃至約 2 0 0埃之間,而以約1 0 0埃較佳。如第三圖所示,導體層 1 0 4未能填滿此洞,這是因為此洞的微小尺寸與物理氣相 沈積法的有限的階梯覆蓋能力的緣故。不過這並不重要也 不會影響本發明的有效性。導體層1 〇 4與介電層1 0 6是用以Page 6 494515 V. Description of the invention (4) 5-4 The invention contains a complete application. The following illustrations are for the convenience of understanding the reference to a photoresist layer circle, but do not use the traditional form of dielectric layers or modern semiconductors. Coating) Detailed description of reference hole formation and transfer to light development: It must be noted that the process steps and structures described below do not include the manufacturing process. The present invention can be implemented by various integrated circuit process technologies. Only the process technologies required to understand the present invention are mentioned. The detailed description will be made according to the accompanying drawings of the present invention. Please note that the form of the drawings is not drawn to scale, and the dimensions are exaggerated for the present invention. As shown in the first figure, a substrate 100 is shown, and the substrate 100 has 102 on it. The substrate 100 can be a semiconductor substrate, for example, a silicon crystal must be a semiconductor substrate. The substrate 100 can also include at least one conductor layer, depending on the needs of the analysis. The photoresist layer 102 can be any photoresist material used in the bulk industry. In addition, the photoresist layer 10 can be formed as a photoresist layer. For example, spin coating (Spi n method 0 shown in Figure 2A), in order to obtain the The cross-sectional image of the photoresist layer, the pattern of a hole was blocked by the layer 102 to expose the substrate 100 by a traditional lithography process. Later, a hole was formed. Due to the standing wave effect, the hole's 494515 V. Description of the invention (5) The side wall actually shows the outline as shown in the second figure B. Such a side wall profile can only be a penetrating type with a resolution of about 1.4 Angstroms to about 1.8 Angstroms The electron microscope can clearly observe, especially when the diameter of the hole shown in the second figure B is less than 0.2 micrometers, the size of the recess of the sidewall profile is extremely small and difficult to distinguish. If accurate measurement is required in the second figure Obviously, the diameter of the hole shown must first be obtained with a clear sidewall profile image, so a clear sidewall profile image is very important. Referring to the third figure, a conductor layer 104 is formed between the photoresist layer 102 and the second The bottom of the hole shown in Figure A, and a dielectric layer 106 is then formed on the conductor layer Above 104. The conductor layer 104 can be a platinum layer, a gold layer, a copper layer, a shaw layer, and a titanium layer, and a rhyme layer is preferred. The reason why the ship was chosen is because Platinum is a stable or noble metal, and platinum can easily form a thin layer. The conductor layer 104 is preferably formed by a physical vapor deposition method, for example, a DCS pu 11 ering method and about 20 ° C to about 30 ° C. The temperature of this physical vapor deposition method must be maintained at an appropriate level, because the high temperature environment will shrink or change the shape of the photoresist material. In fact, not only the formation of the conductive layer 104 The temperature should not be too high, and the temperature during the entire preparation process of the transmission electron microscope test piece should not be too high to avoid causing the photoresist material to shrink or change its shape. The thickness of the conductive layer 1 0 4 is about 50 angstroms to about 2 Between 0 0 angstroms, and preferably about 100 angstroms. As shown in the third figure, the conductor layer 104 did not fill the hole because of the small size of the hole and the physical vapor deposition method. For reasons of limited step coverage. This is not important and does not affect the invention Effectiveness. 1 square conductor layer 4 and the dielectric layer 106 is used for

第8頁 494515 五、發明說明(6) 隔離外在潮濕的環境與防止光阻層1 0 2氧化。此外,導體 層1 0 4也可避免電荷蓄積現象,此電荷蓄積現象係源自於 電子束或是離子束的使用。再者,導體層104非常有助於 清楚分辨光阻層10 2與介電層10 6之間的介面。介電層106 可為一二氧化石夕層或一氮化石夕層,而以一二氧化石夕層為佳 。介電層1 0 6可以物理氣相沈積法形成,並以一直流濺鍍 法較佳。此濺鍍法可以傳統穿透式電子顯微鏡試片製備過 程中所用之離子研磨機(Ion Miller)進行。藉由加速氬 離子(Ar +)電漿,將二氧化矽或氮化矽分子自一石英玻璃 靶或一氮化矽靶。此濺鍍法係在約1 0 _6 t 〇 r r的壓力下與約 2 0°C至約3 0°C之間進行。介電層1 0 6之厚度則在約5 0 0埃至 約1微米之間,而以約1 0 0 0埃較佳。介電層1 0 6是用以保護 光阻層1 0 2,使光阻層1 0 2免於在穿透式電子顯微鏡試片製 備過程中被破壞,尤其是在以使用鎵離子(Ga +)的聚焦離 子束(Focused Ion Beam)轟擊切割試片時。由於在實際 試片製備過程中發現聚焦離子束所造成之損壞厚度為約 5 0 0埃,因此介電層1 0 6之厚度必須超過5 0 0埃。 在形成光阻層1 0 2之後,底材1 0 0例如一矽晶圓是以聚 焦離子束切割,以形成第四圖中所示之穿透式電子顯微鏡 試片2 0 0,其尺寸為約1 0微米X約5微米X約0 · 2微米,其 中長度為約1 0微米,寬度為約5微米,厚度為約0. 2微米。 為了要以穿透式電子顯微鏡觀察試片2 0 0,試片2 0 0以使用 細玻璃針之靜電吸附法吸起放置在一鍍有薄碳膜之銅網上Page 8 494515 V. Description of the invention (6) Isolate the external humid environment and prevent the photoresist layer from oxidizing 102. In addition, the conductor layer 104 can also avoid the charge accumulation phenomenon, which is caused by the use of an electron beam or an ion beam. Furthermore, the conductive layer 104 is very helpful for clearly distinguishing the interface between the photoresist layer 102 and the dielectric layer 106. The dielectric layer 106 may be a dioxide layer or a nitride layer, and is preferably a dioxide layer. The dielectric layer 106 can be formed by a physical vapor deposition method, and a DC sputtering method is preferred. This sputtering method can be performed with an ion mill (Ion Miller) used in the preparation process of a conventional transmission electron microscope test piece. By accelerating the argon ion (Ar +) plasma, silicon dioxide or silicon nitride molecules are removed from a quartz glass target or a silicon nitride target. This sputtering method is performed at a pressure of about 10 to 6 torr and between about 20 ° C to about 30 ° C. The thickness of the dielectric layer 106 is between about 500 angstroms and about 1 micron, and preferably about 100 angstroms. The dielectric layer 106 is used to protect the photoresist layer 102, and to prevent the photoresist layer 102 from being destroyed during the preparation of the transmission electron microscope test piece, especially when using gallium ions (Ga + ) Focused ion beam (Focused Ion Beam) bombarded the cutting test piece. Since the thickness of the damage caused by the focused ion beam was found to be about 500 angstroms during the actual preparation of the test strip, the thickness of the dielectric layer 106 must exceed 500 angstroms. After the photoresist layer 102 is formed, a substrate 100 such as a silicon wafer is cut with a focused ion beam to form a transmission electron microscope test piece 200 shown in the fourth figure, and its size is 2 微米。 About 10 microns X about 5 microns X about 0.2 microns, wherein the length is about 10 microns, the width is about 5 microns, and the thickness is about 0.2 microns. In order to observe the test piece 200 with a transmission electron microscope, the test piece 200 was picked up by a static absorption method using a thin glass needle and placed on a copper mesh coated with a thin carbon film.

494515 五、發明說明(7) ,此細玻璃針具有一約1微米的尖端。 上述穿透式電子顯微鏡試片製備過程是用於製備具有 接觸洞與介層洞於其内之光阻試片。儘管如此,本發明的 試片製備方法亦可用於製備具有其他結構之光阻試片。舉 例來說,如第五圖所示,光阻層1 0 2係用於定義一閘極, 而底材1 0 0此時可為一導體層,如一多晶矽層。在本發明 的任一實施例中,導體層1 0 4與介電層1 0 6能有效保護光阻 層1 0 2並隔絕光阻層1 0 2使其免於受到一濕氣與含氧環境的 侵襲。另外,在穿透式電子顯微鏡電子束與聚焦離子束轟 擊時所造成的光阻層1 0 2收縮也可以避免。導體層1 0 4主要 是用於避免源自於穿透式電子顯微鏡電子束與聚焦離子束 之電荷蓄積現象。由於試片2 0 0是放置在鍍有薄碳膜之銅 網上做觀察,導體層1 0 4也可以省略。 上述有關發明的簡單說明及以下的詳細說明僅為範例 並非限制。其他不脫離本發明之精神的等效改變或修飾均 應包含在的本發明的專利範圍之内。494515 V. Description of the invention (7), this thin glass needle has a tip of about 1 micron. The above-mentioned preparation process of the transmission electron microscope test piece is used to prepare a photoresist test piece having contact holes and interlayer holes therein. Nevertheless, the method for preparing test pieces of the present invention can also be used to prepare photoresist test pieces having other structures. For example, as shown in the fifth figure, the photoresist layer 102 is used to define a gate, and the substrate 100 can be a conductive layer, such as a polycrystalline silicon layer. In any of the embodiments of the present invention, the conductive layer 104 and the dielectric layer 106 can effectively protect the photoresist layer 10 and isolate the photoresist layer 1 02 from being exposed to moisture and oxygen. Environmental attack. In addition, the shrinkage of the photoresist layer 102 caused by the transmission electron microscope and focused ion beam bombardment can also be avoided. The conductor layer 104 is mainly used to avoid the charge accumulation phenomenon originating from the electron beam and focused ion beam of the transmission electron microscope. Since the test piece 200 is placed on a copper net coated with a thin carbon film for observation, the conductor layer 104 can also be omitted. The foregoing brief description of the invention and the following detailed description are examples only and are not limiting. Other equivalent changes or modifications that do not depart from the spirit of the invention should be included in the patent scope of the invention.

第10頁 494515 圖式簡單說明 第一圖顯示一具有一光阻層於其上的底材的剖面圖; 第二A圖顯示一形成於第一圖中所示之光阻層内的洞 第二B圖顯示因駐波效應而形成之一洞之剖面輪廓; 第三圖顯示連續形成一導體層與一介電層於第二A圖 中所示之結構上的結果; 第四圖顯示以本發明之試片製備方法所製作之一穿透 式電子顯微鏡試片;及 第五圖顯示以本發明之試片製備方法所製作定義一閘 極之光阻層之剖面影像。 主要部分之代表符號: 1 0 0 底材 102 光阻層 104 導體層 106 介電層 2 0 0 試片Page 494515 Brief description of the drawings The first diagram shows a cross-sectional view of a substrate having a photoresist layer thereon; the second diagram A shows a hole formed in the photoresist layer shown in the first diagram Figure 2B shows the cross-sectional profile of a hole formed by the standing wave effect; Figure 3 shows the result of the continuous formation of a conductive layer and a dielectric layer on the structure shown in Figure 2A; Figure 4 shows the A transmission electron microscope test piece produced by the test piece preparation method of the present invention; and the fifth figure shows a cross-sectional image of a photoresist layer defining a gate produced by the test piece preparation method of the present invention. Main symbols: 1 0 0 Substrate 102 Photoresist layer 104 Conductor layer 106 Dielectric layer 2 0 0 Test piece

第11頁Page 11

Claims (1)

494515 六、申請專利範圍 1. 一種穿透式電子顯微鏡試片製備的方法,至少包含下列 步驟: 提供一底材,該底材上至少包含一光阻層; 形成一介電層於該底材上;及 切割該底材。 2. 如申請專利範圍第1項所述之方法,其中上述之該底材 至少包含一石夕晶圓。 3. 如申請專利範圍第1項所述之方法,其中上述之該底材 至少包含一導體層。 4. 如申請專利範圍第1項所述之方法,其中上述之該底材 至少包含一介電層。 5. 如申請專利範圍第1項所述之方法,其中上述之該介電 層至少包含一二氧化石夕層。 6. 如申請專利範圍第1項所述之方法,其中上述之該介電 層至少包含一氮化石夕層。 7. 如申請專利範圍第1項所述之方法,其中上述之該介電 層是以一物理氣相沈積法形成。494515 6. Application scope 1. A method for preparing a transmission electron microscope test strip, including at least the following steps: providing a substrate, the substrate including at least a photoresist layer; forming a dielectric layer on the substrate On; and cutting the substrate. 2. The method as described in item 1 of the scope of patent application, wherein the substrate mentioned above includes at least one Shi Xi wafer. 3. The method according to item 1 of the scope of patent application, wherein the substrate mentioned above comprises at least a conductor layer. 4. The method according to item 1 of the scope of patent application, wherein the substrate mentioned above comprises at least a dielectric layer. 5. The method according to item 1 of the scope of patent application, wherein the dielectric layer described above comprises at least a dioxide layer. 6. The method according to item 1 of the scope of patent application, wherein the dielectric layer includes at least one nitride layer. 7. The method according to item 1 of the scope of patent application, wherein the dielectric layer is formed by a physical vapor deposition method. 第12頁 494515 六、申請專利範圍 8. 如申請專利範圍第1項所述之方法,其中上述之該介電 層是於約2 0°C至約3 0°C之間形成。 - 9. 如申請專利範圍第1項所述之方法,其中上述之該底材 是以一聚焦離子束切割。 1 0. —種穿透式電子顯微鏡試片製備的方法,至少包含下 列步驟: 提供一底材,該底材上至少包含一光阻層; 形成一導體層於該底材上以一第一物理氣相沈積法; 形成一介電層於該導體層上以一第二物理氣相沈積法 ;及 切割該底材。 11.如申請專利範圍第1 0項所述之方法,其中上述之該底 材至少包含一矽晶圓。 1 2.如申請專利範圍第1 0項所述之方法,其中上述之該底 材至少包含一導體層。 Ο 1 3 .如申請專利範圍第1 0項所述之方法,其中上述之該底 材至少包含一介電層。 1 4.如申請專利範圍第1 0項所述之方法,其中上述之該導Page 12 494515 6. Scope of patent application 8. The method described in item 1 of the scope of patent application, wherein the dielectric layer is formed between about 20 ° C and about 30 ° C. -9. The method according to item 1 of the scope of patent application, wherein said substrate is cut with a focused ion beam. 1 0. A method for preparing a transmission electron microscope test strip includes at least the following steps: providing a substrate, the substrate including at least a photoresist layer; forming a conductor layer on the substrate with a first Physical vapor deposition method; forming a dielectric layer on the conductor layer by a second physical vapor deposition method; and cutting the substrate. 11. The method according to item 10 of the scope of patent application, wherein the substrate mentioned above comprises at least one silicon wafer. 1 2. The method according to item 10 of the scope of patent application, wherein the substrate mentioned above comprises at least one conductor layer. Ο 1 3. The method according to item 10 of the patent application scope, wherein the substrate mentioned above comprises at least one dielectric layer. 14 4. The method as described in item 10 of the scope of patent application, wherein the above guide 第13頁 494515 六、申請專利範圍 體層至少包含一翻層。 1 5 .如申請專利範圍第1 0項所述之方法,其中上述之該該 導體層至少包含一銅層。 1 6.如申請專利範圍第1 0項所述之方法,其中上述之該導 體層至少包含一金層。 1 7.如申請專利範圍第1 0項所述之方法,其中上述之該導 體層至少包含一紹層。 1 8 .如申請專利範圍第,1 0項所述之方法,其中上述之該介 電層至少包含一二氧化石夕層。 1 9.如申請專利範圍第1 0項所述之方法,其中上述之該介 電層至少包含一氮化石夕層。 2 0 .如申請專利範圍第1 0項所述之方法,其中上述之該第 一物理氣相沈積法至少包含一錢鍍法。 2 1.如申請專利範圍第1 0項所述之方法,其中上述之該第 二物理氣相沈積法至少包含一濺鍍法。 2 2 .如申請專利範圍第1 0項所述之方法,其中上述之該第Page 13 494515 6. Scope of patent application The body layer contains at least one turning layer. 15. The method according to item 10 of the scope of patent application, wherein the conductor layer includes at least one copper layer. 16. The method as described in item 10 of the scope of patent application, wherein the conductor layer described above includes at least one gold layer. 1 7. The method as described in item 10 of the scope of patent application, wherein the conductor layer mentioned above comprises at least one layer. 18. The method according to item 10 of the scope of patent application, wherein the dielectric layer described above comprises at least a dioxide layer. 19. The method as described in item 10 of the scope of patent application, wherein the dielectric layer includes at least one nitride layer. 20. The method as described in item 10 of the scope of patent application, wherein the first physical vapor deposition method described above includes at least a coin plating method. 2 1. The method according to item 10 of the scope of patent application, wherein the second physical vapor deposition method includes at least a sputtering method. 2 2. The method described in item 10 of the scope of patent application, wherein the above 第14頁 494515 六、申請專利範圍 一物理氣相沈積法與該第二物理氣相沈積法是在約2 0°C至 約3 0°C之間執行。 2 3 .如申請專利範圍第1 0項所述之方法,其中上述之該底 材是以一聚焦離子束切割。 2 4. —種穿透式電子顯微鏡試片製備的方法,至少包含下 列步驟: 提供一底材,該底材上至少包含一光阻層; Φ 形成一導體層於該底材上以一第一濺鍍法; 形成一介電層於該導體層上以一第二濺鍍法;及 切割該底材。 2 5 .如申請專利範圍第2 4項所述之方法,其中上述之該底 材至少包含一碎晶圓。 2 6 .如申請專利範圍第2 4項所述之方法,其中上述之該底 材至少包含一導體層。 2 7 .如申請專利範圍第2 4項所述之方法,其中上述之該底 材至少包含一介電層。 2 8 .如申請專利範圍第2 4項所述之方法,其中上述之該導 體層至少包含一翻層。Page 14 494515 6. Scope of patent application A physical vapor deposition method and the second physical vapor deposition method are performed between about 20 ° C and about 30 ° C. 2 3. The method as described in item 10 of the scope of patent application, wherein the substrate is cut with a focused ion beam. 2 4. A method for preparing a transmission electron microscope test strip, including at least the following steps: providing a substrate, the substrate including at least a photoresist layer; Φ forming a conductor layer on the substrate with a first A sputtering method; forming a dielectric layer on the conductor layer by a second sputtering method; and cutting the substrate. 25. The method according to item 24 of the scope of patent application, wherein the substrate mentioned above comprises at least one chip. 26. The method according to item 24 of the scope of patent application, wherein the substrate mentioned above includes at least one conductive layer. 27. The method according to item 24 of the scope of patent application, wherein the substrate mentioned above comprises at least one dielectric layer. 28. The method according to item 24 of the scope of patent application, wherein the conductive layer described above includes at least one turning layer. 第15頁 494515 六、申請專利範圍 2 9 .如申請專利範圍第2 4項所述之方法,其中上述之該該 導體層至少包含一銅層。 3 0 .如申請專利範圍第2 4項所述之方法,其中上述之該導 體層至少包含一金層。 3 1.如申請專利範圍第2 4項所述之方法,其中上述之該導 體層至少包含一銘層。 3 2 .如申請專利範圍第2 4項所述之方法,其中上述之該介 電層至少包含一二氧化石夕層。 3 3 .如申請專利範圍第2 4項所述之方法,其中上述之該介 電層至少包含一氮化矽層。 3 4 .如申請專利範圍第2 4項所述之方法,其中上述之該第 一濺鍍法與該第二濺鍍法是在約2 0°C至約3 0°C之間執行。 3 5 .如申請專利範圍第2 4項所述之方法,其中上述之該底 材是以一聚焦離子束切割。Page 15 494515 6. Scope of patent application 29. The method according to item 24 of the scope of patent application, wherein the conductor layer includes at least one copper layer. 30. The method according to item 24 of the scope of patent application, wherein the conductor layer described above comprises at least one gold layer. 3 1. The method according to item 24 of the scope of patent application, wherein the conductor layer mentioned above includes at least one inscription layer. 32. The method according to item 24 of the scope of patent application, wherein the dielectric layer described above comprises at least a dioxide layer. 33. The method according to item 24 of the scope of patent application, wherein the dielectric layer includes at least one silicon nitride layer. 34. The method according to item 24 of the scope of patent application, wherein the first sputtering method and the second sputtering method described above are performed between about 20 ° C and about 30 ° C. 35. The method according to item 24 of the scope of patent application, wherein the substrate is cut with a focused ion beam.
TW90105057A 2001-03-06 2001-03-06 Method for preparing test piece for transmission electron microscope TW494515B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90105057A TW494515B (en) 2001-03-06 2001-03-06 Method for preparing test piece for transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90105057A TW494515B (en) 2001-03-06 2001-03-06 Method for preparing test piece for transmission electron microscope

Publications (1)

Publication Number Publication Date
TW494515B true TW494515B (en) 2002-07-11

Family

ID=21677537

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90105057A TW494515B (en) 2001-03-06 2001-03-06 Method for preparing test piece for transmission electron microscope

Country Status (1)

Country Link
TW (1) TW494515B (en)

Similar Documents

Publication Publication Date Title
Broers et al. 250‐Å linewidths with PMMA electron resist
JPH08220006A (en) Method and apparatus for analyzing minute foreign matter, and manufacture of semiconductor element or liquid crystal display element using the method and apparatus
Savolainen et al. Ion beam sputtering for progressive reduction of nanostructures dimensions
US6646259B2 (en) Method of sample preparation for transmission electron microscope analysis
US6884362B2 (en) Mass production of cross-section TEM samples by focused ion beam deposition and anisotropic etching
US20030058437A1 (en) Submicron dimensional calibration standards and methods of manufacture and use
CN101009236A (en) A method for making CDSEM calibration sample
JP2002228562A (en) Sample preparing method for transmission electron microscope
US6723650B1 (en) TEM sample preparation using transparent defect protective coating
TW494515B (en) Method for preparing test piece for transmission electron microscope
US6420703B1 (en) Method for forming a critical dimension SEM calibration standard of improved definition and standard formed
US7745236B2 (en) Floating gate process methodology
TW201940857A (en) Sample preparing method for use in physical failure analysis
US6251782B1 (en) Specimen preparation by focused ion beam technique
US9245809B2 (en) Pin hole evaluation method of dielectric films for metal oxide semiconductor TFT
JPH061764B2 (en) Pattern formation method
US7049157B2 (en) Calibration standard for critical dimension verification of sub-tenth micron integrated circuit technology
US6388265B1 (en) Method for distinguishing a specific region in a sample to be observed by a microscope
US6642518B1 (en) Assembly and method for improved scanning electron microscope analysis of semiconductor devices
US6548314B1 (en) Method for enabling access to micro-sections of integrated circuits on a wafer
US6492188B1 (en) Monitor method for quality of metal ARC (antireflection coating) layer
TWI236724B (en) Method of wafer defect monitoring
KR100676613B1 (en) Manufacturing Method of Semiconductor Specimen by Using Paraffin
KR100655581B1 (en) Device for Coating Specimen for Analyzing by Transmission Electron Microscope and Method for Coating it using the same
US7268001B1 (en) Enhancement of grain structure for contacts

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent