TW492012B - Energy bandgap reference circuit with low power supply - Google Patents

Energy bandgap reference circuit with low power supply Download PDF

Info

Publication number
TW492012B
TW492012B TW89126930A TW89126930A TW492012B TW 492012 B TW492012 B TW 492012B TW 89126930 A TW89126930 A TW 89126930A TW 89126930 A TW89126930 A TW 89126930A TW 492012 B TW492012 B TW 492012B
Authority
TW
Taiwan
Prior art keywords
metal
transistor
oxide semiconductor
coupled
patent application
Prior art date
Application number
TW89126930A
Other languages
Chinese (zh)
Inventor
Hung-Chang Yu
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW89126930A priority Critical patent/TW492012B/en
Application granted granted Critical
Publication of TW492012B publication Critical patent/TW492012B/en

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

The invented energy bandgap reference circuit contains one current source, which is in proportion to the absolute temperature current (IPTAT), and the other current source, which is in proportion to the current (IPTVBE) of base-to-emitter voltage (VBE). The first terminals of both IPTAT and IPTVBE current sources are connected to a reference voltage (Vcc), and the second terminals are connected to the reference point by connecting the first resistor (RX) and the operation amplifier (OPAMP) through the reference point (REF). By using IPTAT, IPTVBE and the first resistor RX stated above, the energy bandgap and the sub-energy bandgap voltages are generated.

Description

492012 五、發明說明(1) 發明領域 本發明係有關於一種能隙參考電路(bandgap r e f e r e n c e c i r c u i t),特別是一種利用P T A T電流源之低電 源供給能隙參考電路。 發明背景 次微米製程技術已廣泛地被運用來增進積體電路之性能和 運算速度以降低每顆晶片之成本。而積體電路(I C )在技術 上已有顯著的提昇,增加電子元件的密度已儼然變成一種 趨勢。經由縮小電子元件的尺寸,可以增加半導體積體電· 路的整合密度。隨著電子元件尺寸的縮小化後,積體電路 在製造過程中不斷出現許多新的挑戰。例如,動態隨機記 憶體(DRAM)單元尺寸的縮小後,造成了儲存電容的減少而 導致在可靠性上的缺失。當半導體元件之集積程度增加 時,通常每個記憶胞之面積會縮小。為使記憶胞之面積縮 小,數種技術已被引用來改善元件之表現。特別的是,高 階之積體電路具有多重内連線以介電層隔離之,當電路之 特徵結構減小時,減少伴隨電性連結或接觸窗之電阻的需 求會較以往顯得更重要。 參 在極大型積體電路之設計中,通常需要經常提供一已 知值之區域參考電位,且在溫度以及製程變化下可以維持 穩定。最通常使用之方式為所謂之能隙參考電路(bandgap reference circuit),此種電路可以提供穩定、準確以及492012 V. Description of the invention (1) Field of the invention The present invention relates to an energy gap reference circuit (bandgap r e f e r c n c e c i c u i t), especially a band gap reference circuit using a low power supply of a P T A T current source. BACKGROUND OF THE INVENTION Sub-micron process technology has been widely used to improve the performance and operation speed of integrated circuits to reduce the cost of each chip. The integrated circuit (IC) has been significantly improved in technology, and increasing the density of electronic components has become a trend. By reducing the size of electronic components, the integration density of semiconductor integrated circuits can be increased. As the size of electronic components has been reduced, integrated circuits continue to present many new challenges in the manufacturing process. For example, the reduction in the size of dynamic random memory (DRAM) cells has resulted in a reduction in storage capacitance and a lack of reliability. As the degree of accumulation of semiconductor elements increases, the area of each memory cell typically decreases. To reduce the memory cell area, several techniques have been introduced to improve the performance of the device. In particular, high-order integrated circuits have multiple interconnects to isolate the dielectric layers. When the circuit's characteristic structure is reduced, the need to reduce the resistance associated with electrical connections or contact windows will become more important than in the past. Participation In the design of very large integrated circuits, it is often necessary to provide a regional reference potential of a known value, and it can maintain stability under temperature and process changes. The most commonly used method is the so-called bandgap reference circuit, which can provide stability, accuracy, and accuracy.

492012 五、發明說明(2) 連續之輸出參考電位,以應用於各種類比電路。基本之能 隙參考電位或能隙電位參考胞(bandgap voltage ref erence ce 1 1 )包含雙極性電晶體,經由一操作放大器 驅動’集極耗合於操作放大器。此外其亦包含兩個電阻。 United States Patent 6,002,293,發明人 Brokaw揭露 了一種能隙參考電路,發明名稱為’f H i gh transconductance voltage reference cell"。其它之相 關前案可以參閱:492012 V. Description of the invention (2) Continuous output reference potential for various analog circuits. Basically, the bandgap voltage reference or bandgap voltage reference cell (bandgap voltage ref erence ce 1 1) includes a bipolar transistor, which is driven by an operational amplifier, and its collector is consumed by the operational amplifier. It also contains two resistors. United States Patent 6,002,293, the inventor Brokaw discloses an energy gap reference circuit, the invention name is' f H i gh transconductance voltage reference cell ". For other related previous cases, please refer to:

United States Patent 5, 798, 669,發明人為 Klughart, 發明名稱為 ’’ Temperature compensated nanopower vo 1 tage/current reference丨丨;United States Patent 5, 798, 669, the inventor is Klughart, and the invention name is ‘’ Temperature compensated nanopower vo 1 tage / current reference 丨 丨;

United States Patent 5, 619, 163,發明人為 Koo,發明 名稱為丨,Bandgap voltage reference and method for providing same";United States Patent 5, 619, 163, the inventor is Koo, the name of the invention is 丨, Bandgap voltage reference and method for providing same "

United States Patent 6, 016, 051,發明人為 Can,發明 名稱為丨丨 Bandgap reference voltage circuit with PTAT current source"; 通常能隙參考電路利用P T A T電位,可以提供穩定零溫 度系數參考電位。PTAT電路利用兩基極、射極間電位之差 (VBE1-VBE2),如下: Δ VBE=VBE1-VBE2=VPTAT ⑴ Δ VBE=(kT/q)ln(Jl/J2) (2)United States Patent 6, 016, 051, the inventor is Can, and the invention name is 丨 丨 Bandgap reference voltage circuit with PTAT current source "; Generally, the bandgap reference circuit uses the P T A T potential, which can provide a stable zero temperature coefficient reference potential. The PTAT circuit uses the difference between the base and emitter potentials (VBE1-VBE2) as follows: Δ VBE = VBE1-VBE2 = VPTAT ⑴ Δ VBE = (kT / q) ln (Jl / J2) (2)

第5頁 492012 五、發明說明(3) " ~~~" 其中k為波茲曼常數,τ為凱式溫標之絕對溫度,q為電 荷’ J 1、J 2為分別流過兩電晶體之電流密度。使用△ v B E 才父正電路以及兩電阻之適當比例。 參閱美國專利6 0 1 6 0 5 1號專利,參閱圖一與圖二,為 一先前技術之能隙參考電路,其包含兩個電流源,一為 IPTAT (與絕對溫度成正本之電流)及IBIAS (偏壓電流),兩 者之一端均耦合於電壓源(Vcc)。偏壓電流IBI AS之另一端 與雙極性電晶體之射極搞合。電晶體p 2基極參考端,射極 搞合於偏壓電流IBI AS之另一端,一電阻R2 2橫跨於電晶體春 P2基極與射極之間。電阻R23搞合於IPTAT另一端之參考電 位端與接地端之間。圖二將利用金氧半電晶體Μ 1, Μ 2做為 上述之兩個電流源。 操作時,電流源I ΡΤΑΤ提供一參考電流,其與絕對溫 度成正本。I Β I A S提供一夠大之偏壓電流,以提供一電流 至電阻R22,此提供於電阻R22之電流正比於電晶體P2之基 極-射極電位。然而,在一般點二五或點一八製程下’先 前技術無法在V C C低於1以下操作。假使所期望之參考電位 VREF相當於金氧半電晶體之臨界電壓,在圖二中,PM0S φ Μ 2之V s d (源極、汲極間電壓)必須大於v s g - I Vh卜其 中,V s g為閘極、源極間電位。因此v s d- V s g 一丨V t h I。 若圖一所示之先前技術可操作時,必須滿足下列條Page 5 492012 V. Description of the invention (3) " ~~~ " where k is the Boltzmann constant, τ is the absolute temperature of the Kelvin temperature scale, and q is the charge 'J 1 and J 2 are two electric currents flowing respectively. The current density of the crystal. Use △ v B E for the positive circuit and the proper ratio of the two resistors. See U.S. Patent No. 6016 051, see Figures 1 and 2 for a prior art bandgap reference circuit, which contains two current sources, one is IPTAT (the current that is original to the absolute temperature) and IBIAS (bias current), one of which is coupled to a voltage source (Vcc). The other end of the bias current IBI AS is connected to the emitter of the bipolar transistor. The transistor p 2 base reference terminal, the emitter is connected to the other end of the bias current IBI AS, a resistor R2 2 spans between the transistor spring P2 base and the emitter. The resistor R23 is connected between the reference potential terminal of the other end of the IPTAT and the ground terminal. Figure 2 uses the metal-oxide semiconductor transistors M 1 and M 2 as the two current sources mentioned above. In operation, the current source IPAT provides a reference current, which is a reference to the absolute temperature. I B I A S provides a bias current large enough to provide a current to the resistor R22. The current provided in the resistor R22 is proportional to the base-emitter potential of the transistor P2. However, under the general point 25 or point 18 process, the 'previous technology' cannot operate below V C C below 1. If the desired reference potential VREF is equivalent to the threshold voltage of the metal-oxide semiconductor transistor, in Figure 2, V sd (voltage between source and drain) of PM0S φ Μ 2 must be greater than vsg-I Vh, where V sg Potential between gate and source. Therefore, v s d-V s g-V t h I. If the prior art shown in Figure 1 is operational, the following conditions must be met:

第6頁 492012 五、發明說明(4) 件:Page 6 492012 V. Description of Invention (4):

Vsd,m2(M2)+ VBE+ VREF< VCC 然而,假若約等於0· 5伏,以及VBE約等於0. 5伏時,而通 常,VSD,M2(M2)+ VBE+ VREF> 1 伏 故’先前技術無法在VCC低於1以下操作。 而基於降低操作電壓之趨勢下,目前之電路無法適用 於低供給電位。 發明目的及概述: 鏗於先前技術之缺點,本發明之目的為提供可於低供 給電位操作之能隙參考電路。 本發明之目的為提供一能隙參考電路,其可以提供次 月匕隙參考電位(sub — bandgap reference circuit),用以 於低供給電壓下操作。 能隙參考電路包含:正比於絕對溫度電流(IPTAT)之電 流源;正比於基極射極間電位(VBE)電流(IPTVBE)之電流 源’上述之IPTAT及IPTVBE電流源兩者之第一端耦合於一 參考電位(Vcc),第二端經由參考點(REF)接於第一電阻 (RX);及操作放大器(0ΡΑΜΡ),耦合於上述之參考點,利 用上述IPT AT、IPTVBE及該第一電阻RX,產生能隙及次能 隙電位。Vsd, m2 (M2) + VBE + VREF < VCC However, if it is approximately equal to 0.5 volts and VBE is approximately equal to 0.5 volts, and usually, VSD, M2 (M2) + VBE + VREF > 1 volts' previous technology Cannot operate below VCC below 1. Based on the trend of reducing the operating voltage, current circuits cannot be adapted to low supply potentials. Object and Summary of the Invention: In view of the disadvantages of the prior art, the object of the present invention is to provide a bandgap reference circuit which can operate at a low supply potential. An object of the present invention is to provide an energy gap reference circuit which can provide a sub-bandgap reference circuit for operation at a low supply voltage. The energy gap reference circuit includes: a current source that is proportional to the absolute temperature current (IPTAT); a current source that is proportional to the base-emitter potential (VBE) current (IPTVBE); the first end of the above IPTAT and IPTVBE current sources Is coupled to a reference potential (Vcc), the second end is connected to the first resistor (RX) through a reference point (REF); and an operational amplifier (0ΑAMP) is coupled to the above reference point, using the above IPT AT, IPTVBE and the first A resistor RX generates an energy gap and a secondary energy gap potential.

492012 五、發明說明(5) 上述之能隙參考電路包含IPTAT產生電路,用以產生上 述I PTAT之電流,I PTAT產生電路包含:第一雙極性電晶 體,耦合於IPTAT之電流源;第二電阻,耦合於IPTAT之電 流源;及第二雙極性電晶體,耦合於第二電阻。 上述之能隙參考電路包含IPTVBE產生電路,用以產生 上述IPTVBE電流,IPTVBE產生電路包含··第三雙極性電晶 體,耦合於IPTVBE之電流源;及第三電阻,耦合於IPTVBE 之電流源。 發明詳細說明: 本發明揭露一種能隙參考電路,請參閱圖三,本發明 之架構包含兩個電流源,一為IPT AT (與絕對溫度成正比之 電流)電流源2 2 0及一正比於VBE電流(IPTVBE)之電流源 210。上述之IPT AT以及IPTVBE係利用IPT AT之電流源(與絕 對溫度成正比之電流)及一正比於VBE之電流源(IPTVBE)產 生。I P T A T及IPTVBE兩者之一端均耦合於參考電位(Vcc), 另一端經由參考點REF接於一電阻RX,流經其之電流為 IBG。操作放大器(OPAMP)—端耦合於上述之參考點,參考 電位為VREF。利用IPTAT之電流源、正比於VBE之電流源 (IPTVBE)以及電阻RX,產生能隙及次能隙電位。其較佳實 施例可以參閱圖五之能隙參考電路2 0 0,其包含第一金氧492012 V. Description of the invention (5) The above bandgap reference circuit includes an IPTAT generating circuit for generating the above-mentioned I PTAT current. The I PTAT generating circuit includes: a first bipolar transistor coupled to a current source of IPTAT; A resistor coupled to the current source of the IPTAT; and a second bipolar transistor coupled to the second resistor. The aforementioned energy gap reference circuit includes an IPTVBE generating circuit for generating the IPTVBE current described above. The IPTVBE generating circuit includes a third bipolar electric crystal coupled to the IPTVBE current source; and a third resistor coupled to the IPTVBE current source. Detailed description of the invention: The present invention discloses a bandgap reference circuit. Please refer to FIG. 3. The architecture of the present invention includes two current sources, one is the IPT AT (current proportional to the absolute temperature) current source 2 2 0 and one is proportional to VBE current (IPTVBE) current source 210. The above-mentioned IPT AT and IPTVBE are generated using a current source (current proportional to absolute temperature) of IPT AT and a current source (IPTVBE) proportional to VBE. One end of I P T A T and IPTVBE is coupled to a reference potential (Vcc), and the other end is connected to a resistor RX through a reference point REF, and the current flowing through it is IBG. OPAMP-terminal is coupled to the above reference point, the reference potential is VREF. Using the current source of IPTAT, the current source proportional to VBE (IPTVBE), and the resistor RX, the energy gap and secondary energy gap potentials are generated. For a preferred embodiment, refer to the energy gap reference circuit 2 0 0 in FIG. 5, which includes a first metal oxide.

第8頁 492012 五、發明說明(6) 半電晶體M4,以一較佳實施而言可以為第一型態電晶體, 可以為ΡΜ0S或NM0S。第一端點係搞合於參考電位Vcc’弟一 端點耦合於電阻RX。閘極則與IPTVBE產生電路4 0 0耦合。 第二金氧半電晶體Μ 5,以一較佳實施而言可以為第一型態 電晶體,可以為PMOS或NMOS,其第一端點係耦合於參考電 位VCC’第二端點耗合於電阻rx,閘極則與ΙΡΤΑΤ產生電路 3 0 0。如熟知該項技藝者可知,上述之電晶體Μ4、Μ5可以 使用第一型態或是第二型態電晶體,也就是PMOS或NM0S。 熟悉該項技藝者可依據PMOS或NMOS,而推得所耦合於端點 V cdi系為沒極或源極。 0 請參閱圖四,依據圖三之實施例,本發明係利用圖四 之架構產生所需之I PTAT之電流(與絕對溫度成正比之電 流)與正比於VBE之電流(IPTVBE)。IPT AT產生電路3 0 0以及 IPTVBE產生電路4 0 0可分別產生與絕對溫度成正比之電流 以及正比於VBE之電流,上述電流之加成則產生I BG,也就 是流經電阻RX之電流。 IPT AT產生電路3 0 0包含IPT AT之電流源2 3 0、24 0分別編 合於第一雙極性電晶體(Q 1 )以及第二雙極性電晶體(q 2 )之_ 射極。上述I PT AT之電流源之實施例可參閱圖五,所述 I PTAT之電流源在一具體實施例中係以四個金氧半電晶體 構成。IPT AT之電流源包含第三金氧半電晶體M6、第四金 氧半電晶體M7、第五金氧半電晶體M8及第六金氧半電晶體Page 8 492012 V. Description of the invention (6) The semi-transistor M4, in a preferred embodiment, may be a first-type transistor, and may be PMOS or NMOS. The first terminal is coupled to the reference potential Vcc 'and the terminal is coupled to the resistor RX. The gate is coupled to the IPTVBE generating circuit 400. The second metal-oxide-semiconductor transistor M 5 may be a first type transistor in a preferred embodiment, and may be a PMOS or NMOS. The first terminal is coupled to the reference potential VCC ′ and the second terminal is dissipated. For the resistor rx, the gate and the IPTAT generation circuit 3 0 0. As known to those skilled in the art, the transistors M4 and M5 mentioned above can use the first type or the second type transistors, that is, PMOS or NMOS. Those skilled in the art can use PMOS or NMOS to infer that the terminal V cdi is coupled to the terminal or source. 0 Please refer to Fig. 4. According to the embodiment of Fig. 3, the present invention uses the architecture of Fig. 4 to generate the required I PTAT current (current proportional to the absolute temperature) and the current proportional to VBE (IPTVBE). The IPT AT generating circuit 300 and the IPTVBE generating circuit 400 can generate a current proportional to the absolute temperature and a current proportional to the VBE, respectively. The addition of the above currents generates I BG, that is, the current flowing through the resistor RX. The IPT AT generating circuit 3 0 includes a current source 2 3 0 and 24 0 of the IPT AT, which are respectively incorporated in the emitter of the first bipolar transistor (Q 1) and the second bipolar transistor (q 2). An embodiment of the above-mentioned current source of I PTAT can be referred to FIG. 5. In a specific embodiment, the current source of I PTAT is composed of four metal-oxide semiconductors. The current source of the IPT AT includes the third metal-oxide semiconductor transistor M6, the fourth metal-oxide semiconductor transistor M7, the metal-metal oxide semiconductor M8, and the sixth metal-oxygen semiconductor.

第9頁 492012 五、發明說明(7) Μ 9。第三金氧半電晶體Μ 6、第四金氧半電晶體Μ 7可利用第 一型態電晶體組成,第一端分別耦合於參考電位V cc,第二 端點則分別耦合於上述之第五金氧半電晶體Μ8及第六金氧 半電晶體Μ 9,其可包含第二型態電晶體組成。第五金氧半 電晶體Μ 8及第六金氧半電晶體Μ 9之另一端則分別耦合於雙 極性電晶體Q卜Q2之射極。第六金氧半電晶體Μ9與雙極性 電晶體Q2間配置一電阻ΪΠ。此外,第三金氧半電晶體Μ6以 及第四金氧半電晶體Μ 7之閘極係耦合於能隙參考電路2 0 0 之第’二金氧半電晶體Μ5之閘極,以及第六金氧半電晶體Μ9 第一端。第五金氧半電晶體Μ8以及第六金氧半電晶體M9i _ 閘極耦合於第三金氧半電晶體Μ 6之第二端。 IPTVBE產生電路4 0 0包含IPTVBE之電流源2 5 0、2 6 0分別 耦合於電阻R 2及第三雙極性電晶體(Q 3 )之射極。上述 IPTVBE之電流源之實施例可參閱圖五,所述IPTVBE之之電 流源在一具體實施例中係以四個金氧半電晶體構成。 IPTVBE之電流源包含第七金氧半電晶體M10、第八金氧半 電晶體Μ 1 1、第九金氧半電晶體Μ 1 2及第十金氧半電晶體 Μ13。第七金氧半電晶體Μ9、第八金氧半電晶體Mil可利用 第一型態電晶體組成,第一端分別耦合於參考電位V cc,第參 二端點則分別耦合於第九金氧半電晶體Μ 1 2及第十金氧半 電晶體Μ 1 3。第九金氧半電晶體Μ 1 2之另一端則耦合於雙極 性電晶體Q3之射極,第十金氧半電晶體Ml 3耦合於電阻 R 2。第九金氧半電晶體Μ 1 2及第十金氧半電晶體Μ 1 3可利用Page 9 492012 V. Description of the invention (7) M 9. The third metal-oxide-semiconductor M6 and the fourth metal-oxide-semiconductor M7 can be composed of the first type of transistor. The first terminal is respectively coupled to the reference potential V cc, and the second terminal is respectively coupled to the above-mentioned one. The first metal-oxygen semi-transistor M8 and the sixth metal-oxygen semi-transistor M9 may include a second-type transistor. The other ends of the first metal oxide semi-transistor M 8 and the sixth metal oxide semi-transistor M 9 are respectively coupled to the emitters of the bipolar transistor Q2 and Q2. A resistor ΪΠ is disposed between the sixth metal-oxide semiconductor transistor M9 and the bipolar transistor Q2. In addition, the gates of the third metal-oxide-semiconductor M6 and the fourth metal-oxide-semiconductor M7 are coupled to the gate of the second metal-oxide-semiconductor M5 of the energy gap reference circuit 200, and the sixth The first end of the metal-oxide semiconductor transistor M9. The first metal oxide semiconductor M8 and the sixth metal oxide semiconductor M9i _ gate are coupled to the second end of the third metal oxide semiconductor M6. The IPTVBE generating circuit 4 0 includes a current source 2 5 0 and 2 6 0 of the IPTVBE respectively coupled to the resistor R 2 and the emitter of the third bipolar transistor (Q 3). An embodiment of the current source of the IPTVBE described above can be referred to FIG. 5. In a specific embodiment, the current source of the IPTVBE is composed of four metal-oxide semiconductors. The current source of the IPTVBE includes a seventh metal-oxide semiconductor M10, an eighth metal-oxide semiconductor M1 1, a ninth metal-oxide semiconductor M12, and a tenth metal-oxide semiconductor M13. The seventh metal-oxide semi-transistor M9 and the eighth metal-oxide semi-transistor Mil can be composed of the first type of transistor. The first terminal is respectively coupled to the reference potential V cc, and the second terminal is respectively coupled to the ninth gold. The oxygen semitransistor M 1 2 and the tenth gold oxygen semitransistor M 1 3. The other end of the ninth metal-oxide semiconductor transistor M 1 2 is coupled to the emitter of the bipolar transistor Q3, and the tenth metal-oxide semiconductor transistor M 13 is coupled to the resistor R 2. Ninth metal oxysemi-transistor M 1 2 and tenth metal oxysemi-transistor M 1 3 are available

第10頁 492012 五、發明說明(8) -- 型態電晶體組成。料,第七金氧半電晶體M9、第八 金軋半電晶體Mil之閘極係耦合於能隙參考電路2〇〇之第一 金氧半電晶體M4之閘極。第九金氧半電晶體M12及第十金 虱半電晶體M13之閘極耦合於第七金氧半電晶體㈣之 端。 依據本發明之配置以及參閱圖四之IpTAm生電路 3 0 0: IPTAT產生電路3 0 0中雙極性電晶體Q1射極端之電位 為VBE1 (射極基極間電位),雙極性電晶體⑽射極端之電位 為VBE2(射極基極間電位)。IpTVBE產生電路4〇〇中,雙極 性電晶體Q3射極端之電位為VBE (射極基極間電位)。 於IPTAT產生電路3 0 0中: V B E 1 (Q謝極基極間電位)=v t 1 η (IC1/ I S1) V B E 2 ( Q 2射極基極間電位):=v t 1 n (卜i IPTAT之電位(VPTAT) ·· VPTAT= VBE 卜 VBE2=Z\ VBE = Vt ln(Icl Is2/Isi Ic2),其中 ln(ICl IS2/IS1 IC2)係為一常數。因此,jpTAT之電位 VPTAT在一特定絕對溫度下為一常數。 於圖四中’ I P T A T為一電流源其電流密度正比於絕對溫4 度,雙極性電晶體Q3之基極—射極電位為VBE,其操作以下 列式子描述之: 圖三之 IBG=I1 + I2,其中 Il = ipTAT,I2 = VBE/R2=IPTVBE, 為正比於VBE之電流。Page 10 492012 V. Description of the invention (8)-Composition of type transistor. It is expected that the gate of the seventh metal-oxide semiconductor M9 and the eighth metal-rolled semiconductor transistor Mil are coupled to the gate of the first metal-oxide semiconductor M4 of the bandgap reference circuit 2000. The gates of the ninth metal-oxide semiconductor transistor M12 and the tenth metal-oxide semiconductor transistor M13 are coupled to the terminals of the seventh metal-oxide semiconductor transistor M13. According to the configuration of the present invention and referring to FIG. 4, the IpTAm generating circuit 3 0 0: The IPTAT generating circuit 3 0 0 has the potential of the emitter terminal Q1 as VBE1 (the potential between the emitter and the base), and the bipolar transistor emits light. The extreme potential is VBE2 (potential between emitter and base). In the IpTVBE generating circuit 400, the potential of the emitter terminal of the bipolar transistor Q3 is VBE (the potential between the emitter and the base). In the IPTAT generating circuit 3 0 0: VBE 1 (Q-electrode base potential) = vt 1 η (IC1 / I S1) VBE 2 (Q 2 emitter-base potential): = vt 1 n (Bu i IPTAT potential (VPTAT) ·· VPTAT = VBE and VBE2 = Z \ VBE = Vt ln (Icl Is2 / Isi Ic2), where ln (ICl IS2 / IS1 IC2) is a constant. Therefore, the potential of jpTAT VPTAT is at It is a constant at a specific absolute temperature. In Figure 4, 'IPTAT is a current source whose current density is proportional to the absolute temperature of 4 degrees. The base-emitter potential of the bipolar transistor Q3 is VBE. Its operation is described by the following formula: No .: IBG = I1 + I2 in Figure 3, where Il = ipTAT, I2 = VBE / R2 = IPTVBE, which is proportional to the current of VBE.

492012 五、發明說明(9) 且,參閱圖四IPTAT產生電路300,VPTAT=Z\ VBE: ΙΡΤΑΤ=Δ VBE/R1-VPTAT/R15 Δ VBE= VBE1-VBE2 因此能隙參考電流可以下列方程式描述: IBG=IPTAT+(VBE/R2)=(VPTAT/R1)+(VBE/R2) =(VBE+VPTATx R2/R1)/R2 依據歐姆定律: IBGx R2 = (VBE + VPTATx R2/R1 ) 使得 VBG = (VBE + VPTATx R2/R1) 亦即 IBG=VBG/R2 VREF-IBGx RX = VBGx RX/R2 所以本發明可以控制RX/R2之配置,且所需求之參考電位 VCC大於第五金氧半電晶體M5之源極汲極間電位加上 VREF,因此所需之VCC小於先前技術(先前技術V、CC需大於 Vsd,m2(M2)+ VBE+ VREF,參見背景說明),是故本發明可以 得到低電源供給之能隙參考電位或次能隙參考電位。 總括以上所陳,本發明之特徵處乃在於利用圖三、圖 以及圖五之電路結構用以得到低電源供給之能隙參考電位 或次能隙參考電位。本發明有易於實施與提昇電性特點。_ 本發明雖以實施例加以說明,然熟知該項技藝者可知,變 換上述之電晶體之摻雜型態,亦包含於本發明之精神下。 本發明雖以一較佳實施例闡明如上,然其並非用以限492012 V. Description of the invention (9) Moreover, referring to FIG. 4 IPTAT generating circuit 300, VPTAT = Z \ VBE: ΙΡΤΑΤ = ΔVBE / R1-VPTAT / R15 ΔVBE = VBE1-VBE2 Therefore, the energy gap reference current can be described by the following equation: IBG = IPTAT + (VBE / R2) = (VPTAT / R1) + (VBE / R2) = (VBE + VPTATx R2 / R1) / R2 According to Ohm's Law: IBGx R2 = (VBE + VPTATx R2 / R1) makes VBG = ( VBE + VPTATx R2 / R1), that is, IBG = VBG / R2 VREF-IBGx RX = VBGx RX / R2. Therefore, the present invention can control the configuration of RX / R2, and the required reference potential VCC is greater than that of the first metal oxygen half transistor M5. The potential between the source and the drain plus VREF, so the required VCC is smaller than in the prior art (the prior art V and CC need to be greater than Vsd, m2 (M2) + VBE + VREF, see background description), so the present invention can get a low power supply Band gap reference potential or secondary band gap reference potential. To sum up, the present invention is characterized by using the circuit structures of Fig. 3, Fig. 5 and Fig. 5 to obtain a low-gap reference potential or a sub-gap reference potential. The invention has the characteristics of easy implementation and improvement of electrical properties. _ Although the present invention is illustrated by examples, those skilled in the art will know that changing the doping type of the above-mentioned transistor is also included in the spirit of the present invention. Although the present invention has been described above with reference to a preferred embodiment, it is not intended to limit the present invention.

第12頁 492012 五、發明說明(ίο) 定本發明精神與發明實體僅止於此一實施例爾,而熟悉此 領域技藝者,在不脫離本發明之精神範圍内,當可作些許 更動潤飾,其專利保護範圍更當視後附之申請專利範圍及 其等同領域而定。Page 12 492012 V. Description of the invention (ίο) The spirit of the invention and the entity of the invention are limited to this embodiment, and those skilled in the art can make some modifications and modifications without departing from the spirit of the invention. The scope of patent protection depends on the scope of patent application and its equivalent fields.

第13頁 492012 圖式簡單說明 圖式簡單說明: ' 圖一所示為先前技術能隙參考電路之示意圖。 圖二所示為先前技術能隙參考電路之示意圖。 圖三所示為本發明能隙參考電路之示意圖。 圖四所示為本發明能隙參考電路之示意圖。 圖五所示為本發明能隙參考電路之示意圖。 圖號對照 能隙參考電路2 0 0 φ 正比於VBE電流(IPTVBE)之電流源210 IPTAT (與絕對溫度成正比之電流)電流源220 IPTAT之電流源2 3 0、240 IPTVBE之電流源 2 5 0、260 IPTAT產生電路300 IPTVBE產生電路400 三金氧半電晶體M6 第四金氧半電晶體M7 第五金氧半電晶體M8 第六金氧半電晶體M9 _ 第七金氧半電晶體M10 第八金氧半電晶體Μ 11 第九金氧半電晶體Ml 2 第十金氧半電晶體M13Page 13 492012 Brief description of the diagram Brief description of the diagram: 'Figure 1 shows a schematic diagram of the prior art bandgap reference circuit. Figure 2 shows a schematic diagram of the prior art bandgap reference circuit. Figure 3 shows a schematic diagram of the bandgap reference circuit of the present invention. Figure 4 shows a schematic diagram of the bandgap reference circuit of the present invention. Figure 5 shows a schematic diagram of the bandgap reference circuit of the present invention. Figure number reference band gap reference circuit 2 0 0 φ current source proportional to VBE current (IPTVBE) 210 IPTAT (current proportional to absolute temperature) current source 220 IPTAT current source 2 3 0, 240 IPTVBE current source 2 5 0, 260 IPTAT generating circuit 300 IPTVBE generating circuit 400 Three metal oxide semi-transistor M6 Fourth metal oxide semi-transistor M7 First metal oxide semi-transistor M8 Sixth metal oxide semi-transistor M9 _ seventh metal oxide semi-transistor M10 Eighth metal oxysemiconductor M 11 Ninth metal oxysemiconductor Ml 2 Tenth metal oxysemiconductor M13

第14頁 492012 圖式簡單說明 電阻 RX、ΙΠ、R2 雙極性電晶體Q卜Q2、Q3 1HII111 第15頁Page 14 492012 Brief description of the diagram Resistors RX, ΙΠ, R2 Bipolar transistors Q2 Q2, Q3 1HII111 Page 15

Claims (1)

492012 六、申請專利範圍 1 · 一種能隙參考電路,包含: 正比於絕對溫度電流(IPTAT)之電流源; 正比於基極射極間電位(V B E )電流(I P T V B E )之電流源,上 述之IPTAT及IPTVBE電流源兩者之第一端耦合於一參考電 位(Vcc),第二端經由參考點(rEF)接於第一電阻(RX);及 操作放大器(OPAMP),耦合於上述之參考點,利用上述 I PTAT、 I PTVBE及該第一電阻,產生能隙及次能隙電 位。 2.如申請專利範圍第1項之能隙參考電路,其中包含第一 金氧半電晶體,耦合於該參考電位(Vcc)及該第一電阻 (RX)之間,控制該正比於基極射極間電位之電流 (IPTVBE)。 3 ·如申請專利範圍第2項之能隙參考電路,其中上述之第 一金氧半電晶體為第一型態金氧半電晶體。 4 ·如申請專利範圍第1項之能隙參考電路,其中包含第一 金氧半電晶體,耦合於該參考電位(Vcc)及該第一電阻 (RX)之間,控制該正比於絕對溫度電流(IPT AT)電流。 5 ·如申請專利範圍第4項之能隙參考電路,其中上述之第 二金氧半電晶體為第一型態金氧半電晶體。492012 6. Scope of patent application 1 · An energy gap reference circuit, including: a current source proportional to the absolute temperature current (IPTAT); a current source proportional to the base-emitter potential (VBE) current (IPTVBE), the above-mentioned IPTAT The first terminal of both the IPTVBE and the IPTVBE current source is coupled to a reference potential (Vcc), and the second terminal is connected to the first resistor (RX) via a reference point (rEF); and the operational amplifier (OPAMP) is coupled to the above reference point Using the above-mentioned I PTAT, I PTVBE and the first resistor, an energy gap and a secondary energy gap potential are generated. 2. The bandgap reference circuit according to item 1 of the patent application scope, which includes a first metal-oxide semiconductor transistor coupled between the reference potential (Vcc) and the first resistance (RX) to control the proportionality to the base Current between emitters (IPTVBE). 3. The bandgap reference circuit according to item 2 of the patent application, wherein the first metal-oxide semiconductor is the first type metal-oxide semiconductor. 4 · The bandgap reference circuit of item 1 of the scope of the patent application, which includes a first metal-oxide semiconductor transistor coupled between the reference potential (Vcc) and the first resistance (RX) to control the proportional to the absolute temperature Current (IPT AT) current. 5. The bandgap reference circuit according to item 4 of the patent application, wherein the second metal-oxide semiconductor is the first type metal-oxide semiconductor. 第16頁 492012 六、申請專利範圍 6.如申請專利範圍第1項之能隙參考電路,其中包含IPTAT 產生電路,用以產生上述IPTAT之電流,包含: 第一雙極性電晶體,耦合於該I PTAT之電流源; 第二電阻,耦合於該I P T A T之電流源;及 第二雙極性電晶體,耦合於該第二電阻。 7 .如申請專利範圍第6項之能隙參考電路,其中上述之 IPTAT產生電路包含第三金氧半電晶體、第四金氧半電晶 體、第五金氧半電晶體及弟六金氧半電晶體, 其中上述第三金氧半電晶體及上述第四金氧半電晶體之第 一端分別耦合於該參考電位(V C C ),第二端點則分別耦合 於上述第五金氧半電晶體及苐六金氧半電晶體; 其中上述第五金氧半電晶體及上述第六金氧半電晶體分別 耦合於第一及第二雙極性電晶體之射極,上述之第二電阻 配置於該第六金氧半電晶體與該第二雙極性電晶體間; 其中上述之第三金氧半電晶體及上述第四金氧半電晶體之 閘極係耦合於該能隙參考電路之上述第二金氧半電晶體之 閘極,上述第五金氧半電晶體以及上述第六金氧半電晶體 之閘極耦合於該第三金氧半電晶體之第二端。 8 .如申請專利範圍第8項之能隙參考電路,其中上述之第 三金氧半電晶體及上述第四金氧半電晶體為第一型態金氧 半電晶體。Page 16 492012 6. Scope of patent application 6. The bandgap reference circuit of item 1 of the scope of patent application includes an IPTAT generating circuit for generating the above IPTAT current, including: a first bipolar transistor coupled to the A current source of I PTAT; a second resistor coupled to the current source of the IPTAT; and a second bipolar transistor coupled to the second resistor. 7. The bandgap reference circuit according to item 6 of the scope of patent application, wherein the above-mentioned IPTAT generating circuit includes a third metal oxide semi-transistor, a fourth metal oxide semi-transistor, a second metal oxide semi-transistor and a sixth metal oxide semi-transistor. A transistor, wherein the first terminal of the third metal-oxide semiconductor transistor and the fourth metal-oxide semiconductor transistor are respectively coupled to the reference potential (VCC), and the second terminals are respectively coupled to the first metal-oxygen semiconductor. And the sixth metal-oxide semiconductor; the first metal-oxygen semiconductor and the sixth metal-oxygen semiconductor are coupled to the emitters of the first and second bipolar transistors, respectively, and the second resistor is disposed in the second resistor The sixth metal-oxide semiconductor transistor and the second bipolar transistor; wherein the gates of the third metal-oxide semiconductor transistor and the fourth metal-oxide semiconductor transistor are coupled to the first section of the energy gap reference circuit. The gate of the second metal-oxide semiconductor transistor, the gate of the first metal-oxide semiconductor transistor and the sixth metal-oxide semiconductor transistor are coupled to the second end of the third metal-oxide semiconductor. 8. The bandgap reference circuit according to item 8 of the scope of patent application, wherein the third metal oxide semiconductor and the fourth metal oxide semiconductor are first type metal oxide semiconductors. 第17頁 492012 六、申請專利範圍 9 .如申請專利範圍第8項之能隙參考電路,其中上述之第 五金氧半電晶體及上述第六金氧半電晶體為第二型態金氧 半電晶體。 I 0 .如申請專利範圍第1項之能隙參考電路,其中包含 IPTVBE產生電路,用以產生上述IPTVBE電流,包含·· 第三雙極性電晶體,耦合於該IPTVBE之電流源;及 第三電阻,耦合於該I P T V B E之電流源。 II ·如申請專利範圍第6項之能隙參考電路,其中上述之 IPTVBE產生電路包含第七金氧半電晶體、第八金氧半電晶 體、第九金氧半電晶體及第十金氧半電晶體; 其中上述第七金氧半電晶體、第八金氧半電晶體之第一端 分別耦合於該參考電位V C C,第二端點分別耦合於該第九 金氧半電晶體及該第十金氧半電晶體, 其中上述之第九金氧半電晶體之另一端則耦合於該第三雙 極性電晶體之射極,上述第十金氧半電晶體耦合於上述第 三電阻;及 其中上述第七金氧半電晶體、上述第八金氧半電晶體之閘 _ 極係耦合於該能隙參考電路之上述第一金氧半電晶體之閘 極0 1 2 .如申請專利範圍第1 1項之能隙參考電路,其中上述之Page 17 492012 6. Scope of patent application 9. For example, the band gap reference circuit of item 8 of the scope of patent application, wherein the first metal-oxygen semi-transistor and the sixth metal-oxygen semi-transistor are the second type metal-oxygen semi-transistor. Transistor. I 0. The bandgap reference circuit according to item 1 of the patent application scope, which includes an IPTVBE generating circuit for generating the IPTVBE current, including a third bipolar transistor coupled to the current source of the IPTVBE; and A resistor is coupled to the current source of the IPTVBE. II. The bandgap reference circuit of item 6 of the patent application range, wherein the above-mentioned IPTVBE generating circuit includes a seventh metal oxide semi-transistor, an eighth metal oxide semi-transistor, a ninth metal oxide semi-transistor and tenth metal oxide A semi-transistor; wherein the first end of the seventh metal-oxide semi-transistor and the eighth metal-oxide semi-transistor are respectively coupled to the reference potential VCC, and the second end is coupled to the ninth metal-oxygen semi-transistor and A tenth metal-oxide semiconductor, the other end of the ninth metal-oxide semiconductor is coupled to the emitter of the third bipolar transistor, and the tenth metal-oxide semiconductor is coupled to the third resistor; And the gate of the seventh metal-oxide semiconductor transistor and the eighth metal-oxide semiconductor transistor are connected to the energy-gap reference circuit of the first metal-oxide semiconductor transistor. Bandgap reference circuit of the range item 11 in which the above 第18頁 492012 六、申請專利範圍 第七金氧半電晶體及上述第八金氧半電晶體為第一型態金 氧半電晶體。 1 3 ·如申請專利範圍第1 1項之能隙參考電路,其中上述之 第九金氧半電晶體及上述第十金氧半電晶體為第二型態金 氧半電晶體。Page 18 492012 VI. Scope of patent application The seventh metal-oxide semiconductor and the eighth metal-oxide semiconductor are the first type metal-oxide semiconductor. 1 3 · The bandgap reference circuit according to item 11 of the patent application, wherein the ninth metal-oxide semiconductor and the tenth metal-oxide semiconductor are the second type metal-oxide semiconductor. I 第19頁I Page 19
TW89126930A 2000-12-15 2000-12-15 Energy bandgap reference circuit with low power supply TW492012B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89126930A TW492012B (en) 2000-12-15 2000-12-15 Energy bandgap reference circuit with low power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89126930A TW492012B (en) 2000-12-15 2000-12-15 Energy bandgap reference circuit with low power supply

Publications (1)

Publication Number Publication Date
TW492012B true TW492012B (en) 2002-06-21

Family

ID=21662347

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89126930A TW492012B (en) 2000-12-15 2000-12-15 Energy bandgap reference circuit with low power supply

Country Status (1)

Country Link
TW (1) TW492012B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI426371B (en) * 2011-03-30 2014-02-11 Global Unichip Corp Bandgap reference circuit
TWI699641B (en) * 2016-04-20 2020-07-21 日商艾普凌科有限公司 Band gap reference circuit and DCDC converter with the circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI426371B (en) * 2011-03-30 2014-02-11 Global Unichip Corp Bandgap reference circuit
TWI699641B (en) * 2016-04-20 2020-07-21 日商艾普凌科有限公司 Band gap reference circuit and DCDC converter with the circuit

Similar Documents

Publication Publication Date Title
US8629712B2 (en) Operational amplifier
US7514987B2 (en) Bandgap reference circuits
US7164260B2 (en) Bandgap reference circuit with a shared resistive network
JP2682470B2 (en) Reference current circuit
KR100957228B1 (en) Bandgap reference generator in semiconductor device
KR100790476B1 (en) Band-gap reference voltage bias for low voltage operation
US20070046363A1 (en) Method and apparatus for generating a variable output voltage from a bandgap reference
JPH06224648A (en) Reference-voltage generating circuit using cmos transistor circuit
JPH0668712B2 (en) Voltage reference circuit
JP2000330658A (en) Current source and method for generating current
JPH0782404B2 (en) Reference voltage generation circuit
EP1417685A1 (en) Proportional to temperature voltage generator
CN108334144B (en) High-performance reference voltage source and implementation method thereof
US4319180A (en) Reference voltage-generating circuit
JP2001510609A (en) Reference voltage source with temperature compensated output reference voltage
TW202135465A (en) Reference generator and method for providing voltage reference signal at output node using reference signal generator
JP4476323B2 (en) Reference voltage generation circuit
JP4023991B2 (en) Reference voltage generation circuit and power supply device
US5684394A (en) Beta helper for voltage and current reference circuits
CN109240407B (en) Reference source
JP2734964B2 (en) Reference current circuit and reference voltage circuit
JP2684600B2 (en) Current source stable against temperature
TW492012B (en) Energy bandgap reference circuit with low power supply
JP2002006968A (en) Reference voltage generating circuit and electric power supply unit
Lin et al. A sub-1V bandgap reference circuit using subthreshold current

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent